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A 2D dual-scale method to address contact problems 
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a Department of Industrial Engineering, University of Padova, I-35131 Padua, Italy 
b Department of Materials Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands   
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A B S T R A C T   

A seamless 2D dual-scale computational scheme is developed to study contact problems. The model consists of an 
atomistic domain close to the contact, coupled with an elastic continuum domain away from the contact. The 
atomistic formulation provides a description of the contact interaction through interatomic potentials and per-
mits to capture atomic wear and defect formation in the contact region. The fields in the continuum domain are 
calculated by an efficient FFT-based Green’s function method. The novel scheme is validated against full 
atomistic simulations and applied to study the effect of adhesion on the scratching of a rough copper surface by a 
rigid smooth spherical tip.   

1. Introduction 

Although the field of contact mechanics is more than a century old, it 
is still a subject of interest and importance [1–3]. It gained new attention 
with the development of MEMS, where surfaces of moving parts can 
undergo significant friction and wear, due to the increased 
surface-to-volume ratio of the components and the inevitable roughness 
and adhesion that occur at the nano-scale [4,5]. Surface roughness and 
adhesion are found to play a dominant role also in macro-scale appli-
cations involving contact, [6,7]. Real surfaces have self-affine roughness 
with wavelength spanning over various decades of length scale, 
including the nanometer scale. It has been shown that all these scales 
must be taken into account to capture accurately the contact response 
[8–10]. 

Different numerical methods have been developed to study the 
contact deformation of elastic solids with self-affine rough surfaces [11]. 
Boundary element methods, especially the ones relying on FFT have 
been found to be the most computational-efficient, outperforming the 
finite element method [12–14]. These techniques allow one to mesh the 
surfaces with a very high density of discretization points, thus spanning 
all wavelengths required. First contact occurs only at the tips of nano- 
and micro-scale scale asperities, which must sustain loads that give rise 
to very high local contact pressure. The pressure exceeds significantly 
the yield point of the material and is often responsible for non-linear 
behavior. This is why we deem important to model the contact regions 
not only elastically but also by considering possible non-linearities, 
including atomic wear and dislocation nucleation and glide. The most 

accurate way of modeling such non-linearities is the use of atomistic 
simulations. An important asset of atomistic simulations is also that they 
describe contact interactions accurately through interatomic potentials, 
and naturally include adhesion between surfaces, when present [15]. 

Considering only the nano-scale is not sufficient to tackle contact 
between micro- or macro-scale bodies, because what occurs at the nano- 
scale does not scale up, and treating large domains atomistically is either 
unfeasible or very time consuming. To overcome the computational 
burden of atomistic simulations, time efficient dual-scale modeling 
techniques have been proposed, where an atomistic domain has been 
coupled to a continuum domain. The most successful have been the 
Quasi Continuum QC method [16], the Coupling of Length Scales (CLS) 
method [17], the Finite Element combined with Atomistic modelling 
(FEAt) [18] and the Coupled Atomistic and Discrete Dislocation plas-
ticity method CADD [19]. These techniques could succesfully address 
problems like incipient plasticity under indentation [20] and crack 
propagation [21]. In all these dual-scale methods the coupling occurs 
between an atomistic domain and an elastic continuum, modeled by 
means of the finite element method. CADD, which is similar to CLS and 
FEAt, has the added value to include discrete dislocations in the con-
tinuum region, which can thus deform also through dislocation 
plasticity. 

For application to contact problems it is computationally more effi-
cient to rely on boundary element methods to treat the continuum 
domain, which is sufficiently far away from the contact to have smooth 
fields that do not require a finer discretization than what is provided at 
the interface. Pastewka et al. [22] proposed a method to approximate the 
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substrate up to harmonic order using a Green’s function formulation. 
Their seamless method is efficient at the interface of the atomistic and 
continuum domains and is not affected by ghost forces, a problem that 
was encountered in the models coupling MD and FEA [23]. A small 
drawback of the method is that it is crystal orientation specific and thus 
not very versatile in its use, since the Green’s functions need to be 
derived for the specific crystal lattice. 

Here, we propose a more flexible method where the atomistic 
domain is linked through pad atoms to a generic linear elastic isotropic 
domain, described through Green’s functions. The orientation of the 
atomistic crystal is thus transferred to the continuum domain only 
through its elastic constants, and therefore the response is slightly less 
accurate than the one obtained by [22]. Loading of the continuum 
domain, whose surface is flat, occurs through the tractions imposed by 
the atomistic domain. When computing the equilibrium static solution, 
energy minimization is enforced explicitly on the atomistic domain only, 
to reduce the computational burden, while guaranteed everywhere by 
the concurrent coupling. 

To validate the dual-scale model we perform two-dimensional sim-
ulations of indentation and shallow scratching of a thin copper layer by 
means of a cylindrical indenter and compare the results with those of 
full-atomistic simulations for the same problem. The analysis is per-
formed on a section of the film (the x-y plane in Fig. 1) considering 
plane-strain conditions: the displacements of the atoms in the out-of- 
plane direction z are set to zero at each time step of the simulation. 
After validation, we perform simulations with the dual-scale model to 
investigate what are the qualitative differences between scratching a 
rough metal crystal with an adhesive and a non adhesive indenter for 
copper films with various thickness. Two-dimensional and quasi-three- 
dimensional simulations were often performed at the advent of molec-
ular dynamics simulations to limit the number of atoms in the model due 
to limitations in the computational facilities. Nowadays, they are still 
carried out for various problems, including the study of interfaces, twins 
and grain boundaries, and their interaction with dislocations [24–27], 
crack nucleation [28], phase transitions [29], nanoindentation [30], and 
mostly in the framework of multi-scale modeling [19,31,32]. 

This article is organized as follows: Section 2 explains the method-
ology, provides details on both domains and on the coupling between 
them. Validation through comparison to full size atomistic simulations 
for indentation and light scratching of smooth and rough copper surfaces 
is presented in Section 3. The effect of increasing height of the body by 
increasing the height of the continuum domain is studied in Section 4 for 
the light scratching of rough copper crystals by means of a rigid and 
smooth spherical indenter. 

2. Methodology 

A 2D dual-scale single crystal of width W is constructed with the top 
part, of height HA, described by an atomistic domain and the bottom 
part, of height HC, described by a continuum domain as shown in Fig. 1 
(a). In this way, the material is modeled atomistically close to the con-
tact, where non-linear behavior is expected to prevail, and as a linear 
elastic continuum elsewhere. The continuum solution is obtained using 
a Green’s function formulation, which is described in Section 2.2. The 
atomistic and continuum domains are coupled concurrently through pad 
atoms shared by both domains. The pad atoms comprise five layers of 
atoms so that the height of the region exceeds the cut off distance of the 
force field. 

The deformation is transferred from the continuum to the atomistic 
domain by means of pad atoms which are shared by the two domains: 
the pad atoms impose displacement boundary conditions to the bottom 
of the atomistic domain after their positions are updated in response to 
the deformation of the continuum domain. 

The algorithm used to couple the continuum and atomistic domains 
is summarized in Fig. 1 (b) for the case study of the indentation of a 
single crystal. Note that the scheme presented here has sufficient flexi-
bility to admit any type of quasi-static loading that can be applied in a 
generic atomistic simulation. Here, an incremental load is applied to the 
surface of the crystal by displacing normally the indenter. First, as in a 
typical molecular statics simulation, the position of the atoms in the 
atomistic domain is updated by minimizing the potential energy while 
keeping the pad atoms fixed (the pad atoms are represented in blue in 
Fig. 1). Then, the stress at the bottom of the atomistic domain is 
computed at the atoms that in Fig. 1 are represented in yellow: the atoms 
where the stress is computed are taken to be at a distance from the pad 
atoms of the same order as the force field cut-off distance. This is to 
avoid spurious effects caused by the presence of the fixed pad atoms. The 
stresses are then interpolated to the grid-points that discretize the con-
tinuum domain and used to impose traction boundary conditions to the 
continuum. The displacement caused by the imposed tractions on the 
continuum is computed using the Green’s function method. At this point 
also the position of the pad atoms is updated as if they moved by being 
rigidly linked with the deforming continuum domain. The displacement 
of the pad atoms is then used to load once more the atomistic domain, 
while the indenter is still frozen. The energy is again minimized in the 
atomistic domain, new equilibrium positions are found for the atoms 
and the stress is again computed at the interface to load once more the 
continuum domain. Such iterative procedure continues until the varia-
tion in energy of the atomistic domain over the last three iterations, 
computed using a finite difference backward scheme, is smaller than a 

Fig. 1. (a) Schematic representation of the dual-scale structure. Indenter atoms are green, crystal atoms red, interface atoms yellow, and pad atoms blue. (b) 
Flowchart of the dual-scale scheme. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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small quantity that we take to be ϵc = 10-4 eV. Then the iteration is 
terminated and the next incremental indentation step is initiated. Here, 
the energy is explicitely minimized in the atomistic domain only, instead 
of in both domains as done in other work (e.g. Shilkrot et al. [19]), with 
the aim of reducing the computational time. 

Convergence to equilibrium is easier reached when the height of the 
continuum domain is small, because its deformation induces small dis-
placements of the pad atoms. However, the model becomes really useful 
only when the continuum domain is large, e.g. when HC is at least one 
order of magnitude larger than HA. Convergence is improved for large 
values of HC by limiting the variation of the traction vector acting on the 
continuum domain from an iteration to the next. This is done by intro-
ducing a virtual spring between the current and previous traction vec-
tors, similarly to the Nudged Elastic Band (NEB) method explained in 
[33]. 

2.1. Atomistic domain 

The interaction between the atoms in the crystal is described using 
the Embedded Atom Method (EAM) [34] many-body interatomic po-
tential, parametrized by Mishin et al. [35] for copper. The indenter is 
modeled as a rigid hollow and smooth cylinder. The reason for selecting 
a smooth spherical rigid indenter instead of a real crystal is that a 
spherical shape carved in a nano-scale crystal is atomically stepped. The 
steps in the surface would play a dominant role in the contact and 
scratching behavior, and affect significantly adhesion. Here we prefer to 
focus on how a rough surface deforms when the indenter is atomically 
smooth and does not deform. 

To isolate the effect of adhesion, we take the indenter to be either in 

adhesive or in non adhesive contact with the crystal. The adhesive 
interaction between the rigid indenter and the crystal is modeled 
through the same EAM force field used for the crystal. For the non ad-
hesive interaction, we select instead the Morse potential, because the 
adhesive contribution of the field can be easily removed from pair-wise 
potentials. Only the portion of the energy function which results in 
repulsive force is used by setting the cut-off distance equal to the equi-
librium distance (r0). Following the work by Lincoln et al. [36] the value 
of the equilibrium distance is taken to be r0 = 2.8985 Å, and the values 
for the cohesion energy and elastic energy to be D0 = 0.3282 eV and α =
1.3123 Å− 1, respectively. 

To describe the copper crystal in two dimensions, we have consid-
ered a single atomic plane, namely the (111) plane, to coincide with the 
x-y plane of analysis. The displacements of the atoms as well as the 
forces acting on them in z-direction are set to zero at each time step of 
the simulation (see https://docs.lammps.org/Howto_2d.html). This en-
tails that the FCC crystal is not explicitly described in the z-direction, i.e. 
neither the spacing between atomic planes nor the interactions between 
atoms in z-direction enter in the picture, but the behavior is inferred 
through the plane strain analysis. For a more realistic analysis of the 
behavior of an FCC crystal, many authors consider a quasi-3D descrip-
tion of the crystal, where at least three layers of atoms repeat periodi-
cally. In the framework of a dual-scale model, where the atomistic 
domain is coupled with a two-dimensional continuum, considering more 
than one atomic layer is however not possible. The same 2D approach 
was used by [37,23,38]. The (111) plane is selected to be in the plane of 
analysis, as done in similar studies [19,39,31], because it is the plane of 
easy glide for edge dislocations in FCC crystals. The dislocations that can 
be observed in these simulations have Burgers vector a < 1120 >

Fig. 2. Force vs. displacement curves resulting from indentation of (a) a non adhesive smooth, (b) a non adhesive rough, (c) an adhesive smooth and (d) an adhesive 
rough surface. Red arrows show the points where a dislocation reaches the interface between domains and the dual-scale model is no longer valid. 
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contained in the (111) plane. The lattice parameter is a = 2.46 Å. The 
dimensions of the crystal are HA = 10 nm and W = 31 nm, corresponding 
to 7784 atoms. Periodic boundary conditions are imposed in x-direction. 

The indenter is taken to be rigid and hollow with outer radius of 8 
nm. The top surface of the crystal is taken to be either flat or rough. The 
rough surface is constructed as self-affine with a Gaussian height dis-
tribution. A rough profile is first generated with rms-height sq = 3 Å, 
Hurst exponent H = 0.5 and wavelength cut-off qr = 100. To minimize 
the energy of the surface atoms, a relaxation run is performed using a 
NPT Nosé-Hoover thermostat [40,41] at 800K for 100ps at zero pressure 
in the periodic direction. The temperature is brought to 1K with a 
quenching rate of 8 K∕ps and relaxed using NPT at 1 K for 20 ps. 

The Large-scale Atomistic/Molecular Massively Parallel Simulator 
(LAMMPS) is used to find the configuration with minimum potential 
energy of the crystal by means of the Fast Inertial Relaxation Engine 
(FIRE) [42] followed by the conjugate gradient method at 0 K. Stress is 
computed using the virial formulation [43]. 

2.2. Continuum domain 

The continuum domain has the same periodic length as the atomistic 
domain and is taken to have various heights. The top surface, which 
corresponds to the interface with the atomistic domain, is initially flat 
and is discretized through grid-points spaced as the atoms. The bottom 
surface of the domain, although not explicitly modeled, is fixed. Periodic 
boundary conditions are implicitly imposed in x-direction. 

A Green’s function method is used to find the deformation for any 
given point (x,y) in the domain. For that, the tractions applied at the 
nodes are Fourier transformed in x-direction. The displacements are 
then computed as a function of these tractions as 
⎡

⎢
⎢
⎣

uI
x(q, y)

uI
y(q, y)

⎤

⎥
⎥
⎦ =

⎡

⎣
Gxx(q, y) Gxy(q, y)

Gyx(q, y) Gyy(q, y)

⎤

⎦

⎡

⎢
⎢
⎣

T I
x(q, y)

T I
y(q, y)

⎤

⎥
⎥
⎦ (1)  

where q is the wavevector, TI
i are the tractions, uI are the displacement 

and Gij are the Green’s functions, given in Appendix. Finally, inverse 
Fourier transforms are used again to retrieve the displacements of the 
points (x,y) in the real domain. The interested reader is directed to 
Nyqvist et al. [45] or Venugopalan et al. [46] for a detailed derivation of 
(1), while here only a short description of the main steps will be given. 
The equations for linear elasticity are transformed to Fourier space in 
x-direction while the boundary conditions are applied in real space. This 
results in a set of equations that only contains derivatives with respect to 
y that can be solved analytically. Note that, since the Green’s functions 
are an analytical solution of the equations of elasticity, no iteration is 
required within the continuum domain. 

The continuum domain is here treated as an elastic and isotropic 
material. To select elastic constants that would minimize mismatch 
between continuum and atomistic domains, a tensile test was performed 
on the atomistic crystal, by loading in the same orientation used sub-
sequently for indentation. This allowed us to measure the average 
contraction of the crystal in the elastic regime, and determine the elastic 
modulus and the Poisson’s ratio to be used for the continuum: E = 181 
GPa and ν = 0.32. 

3. Validation 

3.1. Indentation 

The dual-scale scheme is validated against full atomistic simulations 
for four test cases: two crystals with smooth and rough surface are 
indented with and without adhesion. The total height of the crystal is 
HTOT = 20 nm. In the dual-scale model the height of the atomistic 
domain and of the continuum domain are HA = 10 nm and HC = 10 nm, 

respectively. The loading step is set to be uy = 0.5 Å. The increase in 
normal force during indentation is shown in Fig. 2: on the left column 
the curves correspond to indentation of the crystal with (a) non adhesive 
and (c) adhesive flat surface; on the right column the indentation of a 
crystal with (b) non adhesive and (d) adhesive rough surface. The non 
adhesive smooth surface shows the usual Hertzian response until a 
dislocation is nucleated at an indentation depth of approximately 11 Å. 
The nucleated dislocation immediately travels toward the middle of the 
crystal and, when it reaches it, there is the expected discrepancy be-
tween full atomistic and dual-scale results. The red arrow indicates the 
point when full atomistic and dual-scale stop matching. A similar curve, 
albeit with initial tensile response due to adhesion is observed for the 
smooth adhesive surface in Fig. 2 (c). When the crystal surface is rough, 
the curves are less smooth, but the agreement between the two models is 
still excellent until a dislocation reaches the interface between domains. 

The Common neighbor analysis (CNA) [44] is performed on the 
atomistic domains to track the formation of defects during the simula-
tions. Fig. 3 shows representative snapshots of the simulation of 
indentation of a rough adhesive surface in Fig. 2 (d), which is charac-
terized by the roughest force-displacement curve. The salient points 
where the snapshots are taken are labeled in Fig. 2 (d) with roman 

Fig. 3. CNA of the atomistic domain in adhesive indentation of rough surface 
shown in Fig. 3 (d): (I) Initial contact, (II) dislocation nucleation under the 
indenter, (III) dislocation is absorbed back to the surface, (IV) dislocation nu-
cleates and migrates to the interface. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 
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numbers. 
In Fig. 3, blue is used to color atoms that are still in their hexagonal 

configuration, while red indicates atoms that do not correspond to the 
hexagonal coordination and are therefore defects in the crystallographic 
structure. The indenter is shown in green and the dashed line shows the 
position of the interface. A white arrow is used to indicate dislocations. 
The first drop in the load-displacement curve, which is indicated by (I), 
and denotes a sudden increase in tensile contact pressure happens when 
the adhesive force between the indenter and the surface snap into con-
tact. The second drop in the curve, indicated by (II), is caused by the 
nucleation of a dislocation under the indenter. The dislocation does not 
travel far away but is absorbed back into the surface in a subsequent 
loading step (III). It is noteworthy, that nucleation of defects is properly 
captured by the dual-scale method and no deviation is observed from the 
behavior of the full atomistic simulation unless the dislocation reaches 
the interface. This is what happens at snapshot (IV), where a different 
dislocation reached the continuum domain. 

3.2. Light scratching 

To further validate the dual-scale model, simulations are performed 
for a light scratching (the imposed normal load is small) of smooth and 
rough surfaces. The indenter is first displaced normally to a depth Δy =
11 Å and Δy = 12.5 Å for smooth and rough surfaces, respectively, then 
tangentially of Δx = 75 Å. Δy was chosen such that no dislocation rea-
ches the interface before scratching starts, to make sure that we are still 
in the regime where the dual-scale method provides the correct 
response. Normal and tangential forces as a function of the tangential 
displacement of the tip are presented for a smooth and a rough surface 

with and without adhesion in Fig. 4. The best agreement with full 
atomistic simulation is found for the scratching of the non adhesive 
surfaces in Fig. 4 (a) and (b), while the presence of adhesion leads to 
local tiny differences in the curves. Even though the roughness is con-
structed identical, loading of the two systems leads to small discrep-
ancies in atomic locations, which are magnified during loading. The 
source of discrepancy between full atomistic and dual-scale simulations 
is that the dual-scale method approximates the continuum as if it were 
linear elastic and isotropic. This approximation induces an error, 
because upon loading the deformation of the isotropic continuum, with 
fitted Poisson’s ratio, is slightly different than that of an anisotropic 
crystal. This small difference affects negligibly the simulations where 
the interaction is non adhesive, but is enhanced when the scratching is 
done on an adhesive surface, even more so if it is rough. The reason is 
that the surface atoms, that have already a smaller coordination number 
than those in the crystal, can be more easily displaced when also sub-
jected to an attractive force. The attractive force can induce an instable 
movement of the surface atoms that might attach to the indenter or 
displace tangentially. This is why tiny initial differences obtained during 
indentation are amplified during scratching. 

The lateral force experienced by the tip probing the flat non adhesive 
surface displays the typical stick-slip behavior observed in AFM friction 
tests, because the normal load is very small. It is noteworthy, that the 
lateral force for adhesive surfaces is, perhaps surprisingly, on average 
smaller than for non adhesive surfaces. The reason is that it is easier for 
the tip to dislodge and wear away atoms that, owing to adhesion, tend to 
adhere to the tip and do not occupy the typical low-energy atomic po-
sition in the lattice of the copper substrate. Indeed, when the surface is 
adhesive, the stick-slip features are characterized by a smaller 

Fig. 4. Normal and tangential force vs. tangential displacement curves resulting from light scratching of (a) a smooth and (b) a rough surface without adhesion, and 
(c) a smooth and (d) a rough surface with adhesion. 
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amplitude, and by a less regular pattern than when surfaces are non 
adhesive, just because the energy required to drag away the contacting 
atoms is smaller. This can be seen in the final configurations of the 
atomistic domain provided in Fig. 5, which are colored according to the 
CNA on the left hand side and according to the lateral displacement of 
the atoms on the right hand side. 

For this very light scratching it appears that the atoms engaged by 
the tip and that displace under its action are only very few and localized 
below the tip. Fig. 5 show also that in the case of adhesive scratching the 
lateral force increases on average, owing to atomic wear and material 
piling up in front of the contact. Rough surfaces present similar features 
to smooth surfaces, with the difference that the pattern followed by the 
lateral force is less regular, since it is affected by irregularities in the 
surface topography. The material worn from the surface can be hosted 
by the nano-valleys in front of the tip. 

The supplementary material contains movies of the simulation of 
scratching of a non adhesive rough surface (S1) and, of an adhesive 
smooth (S2) and adhesive rough surface (S3). 

4. Height of the crystal 

The dual-scale method is used to study the effect of crystal size on 
adhesive and non adhesive scratching of rough surfaces. The atomistic 
domain is kept unchanged while the height of the continuum domain is 
increased from 10 nm to 1 μm. The scratching length is chosen to be 70 Å 

after the first slip event, which occurs at smaller displacements for 
thinner crystals. The reason for the difference is that thicker crystals 
undergo approximately the same elastic shear strain as the thinner ones 
before slip occurs, which corresponds to a larger tangential displace-
ment of the top surface. The tangential and normal forces as a function of 
tangential displacements are shown in Fig. 6 (a) and (b), and Fig. 6 (e) 
and (f) for crystals of various heights. The curves for small crystal 
heights present various fluctuations around a changing mean that are 
caused by the typical stick slip behavior of the AFM tip. As expected, the 
amplitude of oscillation of the stick-slip pattern in the lateral force in-
creases with increasing normal force, i.e., decreasing crystal height, for 
both adhesive and non adhesive surfaces. To better distinguish the 
curves for different crystal heights, the same curves shown in Fig. 6 (a) 
and (b) are presented once more in Fig. 6 (c) and (d) after smoothening 
through a weighted moving average of bin size 7. The elastic shearing is 
clearly distinguishable in Figs. 6 (a, b, c, d) since it corresponds to the 
linear force-displacement curve at small loading. It is noteworthy that 
the thickest films are herein included mostly to show that the model can 
address larger domains, but their scratching behavior can be compared 
with that of the thinner layers only after the initial shearing of the 
crystal, when slip starts, i.e. at large tangential diplacement. In these 
simulations the indenter is displaced vertically of the same distance Δy 
= 12.5 Å from the surface for all cases, thus the normal force the indenter 
exerts on the crystal decreases with increasing height, as can be seen in 
Fig. 6 (e) and (f). 

The main difference between the scratching response obtained for 
adhesive and non adhesive interfaces is that the curves for non adhesive 
surfaces are sensitive to the height of the crystal, with thicker crystals 
giving rise to a smaller lateral force than the thinner ones. This depen-
dence on height of the non adhesive crystals is attributed to the differ-
ence in the normal force exerted by the indenter on the surfaces: the 
thinner the crystals the larger the normal force, the larger the resistance 
to scratching. On the contrary, the average lateral force on adhesive 
rough surfaces appears independent of crystal height, indicating that for 
the simulation parameters selected, it is adhesion that controls the 
scratching response. An additional difference between curves of lateral 
force for adhesive and non adhesive surfaces is that the first are very 
jagged and their shape bears no resemblance with the pristine roughness 
of the surface, while the shape of the second can be correlated to the 
roughness profile of the surface. It is noteworthy in this respect that, 
despite the surface profiles before indentation and scratching are all the 
same, the profile changes during indentation in a way that depends on 
crystal height. This is why, although resembling the surface profiles 
before scratching, the curves are not all having the same shape. In the 
case of non adhesive surfaces, the scratching behavior is controlled 
mostly by the geometry of the crystal, i.e., its roughness and its height. 
This is a case where it is critical to model the full height of the body, if 
one is interested in the details of how the lateral force changes. The 
response does not scale with crystal height due to the non-linear 
behavior of the atoms, during both indentation and scratching. In the 
case of adhesive contacts the results have instead lead to conclude that 
adhesion, for the simulation parameters selected, fully controls the 
scratching response and that the crystal geometry, including both its 
thickness and roughness, play a negligible role. 

As an additional proof that the non adhesive curves are correlated to 
roughness while the non adhesive are not, a new crystal is constructed of 
height HC = 100 nm but with a different rough surface profile (that we 
will label as s2) than the one characterized by the light blue curve in 
Fig. 6 (c) and (d), which we will label in the following as s1. 

The tangential forces obtained by scratching the new crystal with 
adhesive and non adhesive interaction is contrasted in Fig. 7 with the 
response obtained with the previous roughness s1. The two curves for 
non adhesive surfaces are markedly different and indicate that the sur-
face profile s2 is initially flatter than s1 and that after a rather pro-
nounced valley the profile becomes again rather flat. This features 
cannot be observed when adhesion is active, because the surfaces 

Fig. 5. CNA and atomic displacement distribution for the light scratching of the 
crystals in Fig. 4 with (a) non adhesive flat, (b) adhesive flat (c) non adhesive 
rough, and (d) adhesive rough surface. Blue atoms have hexagonal coordina-
tion, red atoms have other coordination. The rigid indenter is shown in green. 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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Fig. 6. Scratching of crystals with rough surface and various heights: tangential force calculated while the tip is displaced tangentially on a (a) non adhesive and (b) 
adhesive rough surface. Moving average of the tangential force during tangential displacement of the tip on a (c) non adhesive and (d) adhesive surface. Normal force 
vs. tangential displacement of (e) non adhesive and (f) adhesive contacts. 

Fig. 7. Tangential force calculated while the tip is displaced tangentially on 
adhesive and non adhesive surfaces s1 and s2. 

Fig. 8. CNA after indentation, but before scratching, of the crystals in Fig. 7. 
Blue atoms have hexagonal coordination, red atoms have other coordination. 
The rigid indenter is shown in green while the grey shade shows the final po-
sition of the indenter. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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changes much more locally, with various atoms being dislodged and 
displaced to fill the valleys in front of the tip. The atomic structure of the 
films after indentation but before scratching are represented in Fig. 8. 
The gray shape indicates the end position of the indenter after scratch-
ing, so that the reader can see its complete path. 

When contrasting the average lateral forces for adhesive and non 
adhesive surfaces it appears evident that when the normal load is 
smaller the lateral force is larger for the adhesive surfaces (contrast the 
light blue curves in Fig. 6) while the difference disappears at smaller 
normal load. This is because the indenter engages so little with the non 
adhesive surface that the few atoms on its path are easily displaced from 
the surface and moved to a nano-valley. The displaced atoms can be seen 
in Fig. 9, where it is also possible to see that in the adhesive thicker 
substrate many more atoms have moved with the tip. 

The dual-scale model is approximately twice as fast for the 1 μm 
layer compared to the full atomistic simulation. The gain in speed in-
creases significantly with the height of the crystal considered given that 
the atomistic simulation computational time scales with height with a 
larger coefficient than the dual-scale model. Notice that time compari-
son is not straightforward in that simulation time depends rather 
strongly on the specific system one models: if there is formation of more 
defects in the atomistic region, both simulations become slower of a 
quantity that does not scale with height and is not identical in the two 
methods. Also, the dual-scale model has the advantage to be more 
resource effective, because one does not need to store the data of all the 
atoms in the crystal. 

In the supplementary material, the movie labeled as S4 shows the 
simulation of the scratching of the adhesive rough surface with HC =

100 nm. In this simulation two dislocations nucleate under the indenter 
when it is displaced normally, but when the indenter starts scratching 
and the compressive load on the dislocations is partially relieved, they 
are absorbed back to the surface. 

5. Conclusions 

A 2D dual-scale method is presented to concurrently exploit Green’s 
function based BEM and atomistic simulations to address contact me-
chanics problems. An atomistic domain describes the near contact area 
and a linear elastic continuum domain the rest of the body. In an iter-
ative procedure that leads to equilibrium, the continuum domain is 
loaded by the tractions at the bottom of the atomistic domain, while the 
atomistic domain is loaded at its bottom by the displacement of pad 

atoms, that lay inside the continuum domain. To increase convergence 
speed to a minimum energy for the atomistic domain, a spring is defined 
between the previous and current traction vector at the interface be-
tween domains, to ensure that the deformation of the continuum is 
limited. The dual-scale scheme presented here works for any two bodies 
in contact, provided the interatomic potential of each of the bodies and 
the interaction between them is given. Also, there are no limitations to 
extend the model in three dimensions, except for the additional 
computational burden. 

The dual-scale scheme is here validated by comparison with atom-
istic simulations in the cases of indentation and scratching of copper 
crystals by means of a rigid smooth spherical indenter. The force- 
displacement response of the crystals matches the full atomistic simu-
lations until dislocations reach the interface, and the method is no longer 
valid. 

After validation, the dual-scale scheme is herein applied to model the 
light scratching of adhesive and non adhesive rough surfaces of crystals 
with various heights. The advantage of the dual-scale model is indeed 
that it allows one to increase the size of the continuum domain at low 
computational cost. The force-displacement curves obtained by 
scratching non adhesive rough surfaces are found to depend on crystal 
geometry, i.e., its height and roughness. This is at odds with what occurs 
when adhesion is considered: the force-displacement curves are inde-
pendent of crystal geometry, for the simulation parameters selected in 
this work. 

It is noteworthy that the simulations presented here are two- 
dimensional and as such have limitations on realism. The FCC crystal 
is modeled as a single layer of atoms and the dislocations are bound to be 
straight in the out-of-plane direction. Nevertheless, the simulations 
succeed in showing the agreement between the dual-scale model and the 
full-atomistic simulations and in providing evidence of the difference 
between the scratching response of adhesive and non adhesive rough 
crystals. It is expected that a three-dimensional analysis will not change 
these conclusions, but it would definitely lead to quantitatively different 
results. Three dimensional simulations would include full dislocation 
loops, and their interaction with other loops. This is expected to be of 
relevance when performing simulations to a larger indentation depth, 
where plasticity will have a leading role. 

The model will be extended in future work to account for a contin-
uum domain that can also deform plastically through dislocation dy-
namics. This will enable us to study contact deformation at larger 
indentation depth. 
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Appendix A. Green’s functions 

The Green’s functions in (1) are given by 

Gxx = (Ax + Bxqy)eqy + (Cx + Dxqy)e− qy− qHGF (A.1a)  

Gyy = − i
(
Ay + kBy + Byqy

)
eqy − − i

(
− Cy + kDy − Dyqy

)
e− qy− qH (A.1b) 

Fig. 9. Atomic displacement distribution for the light scratching of the crystals 
in Fig. 6 with (a) non adhesive and (b) adhesive rough surface with HC 
= 100nm. 
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Gxy
(
Ay + Byqy

)
eqy +

(
Cy + Dyqy

)
e− qy− qH (A.1c)  

Gyx = − i(Ax + KBx + Bxqy)eqy − i( − Cx + KDx − Dxqy)e− qy− qH , (A.1d) 

where 

Ax =
[
− (k − 1)k∕(e− 2qh + 1) + qh(k+ 1 − 2qh)cosh(qh)− 2∕2

]
(A.2a)  

Bx =
[
2ktanh(qh)∕(e− 2qh + 1) + (k − 1+ 2qh)cosh(qh)− 1∕2

]
(A.2b)  

Cx =
[(

k − 1)ke− qh + qh(k + 1 + 2qh)cosh(qh)− 1]∕(e− 2qh + 1) (A.2c)  

Dx =
[
− 2ke− qhtanh(qh) + (k − 1 + 2qh)cosh(qh)− 1]∕(e− 2qh + 1) (A.2d)  

Ay = i
[(

k + 1)ktanh(qh)∕(e− 2qh + 1) + qh(k+ 1 − 2qh)cosh(qh)− 2∕2
]

(A.2e)  

By = i
[
− 2k∕(e− 2qh + 1) + (k+ 1 − 2qh)cosh(qh)− 2∕2

]
(A.2f)  

Cy = i
[
− (k + 1)ke− qH tanh(qh) − qh(k + 1 + 2qh)cosh(qh)− 1]∕(e− 2qh + 1) (A.2g)  

Dy = i
[
2ke− qh + (k + 1 + 2qh)cosh(qh)− 1]∕(e− 2qh + 1) (A.2h)  

f = qG
(
4k − (4q2h2 + (4ν − 2)2

)cosh(qh)− 2) (A.2i)  

Appendix B. Supporting information 

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.triboint.2022.107509. 
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