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Abstract This manuscript summarizes the main recent research efforts at Delft University
of Technology in the field of drone and urban air mobility (UAM) vehicle noise. Illustra-
tive examples are showcased, specifically in terms of acoustic measurements (both in-field
and in wind-tunnel facilities), noise modelling (both data-driven and physics-based), and
human perception of these sounds. In particular, the measurements feature microphone
arrays and acoustic imaging to detect, localize, and isolate drone noise emissions. Regard-
ing drone noise modelling, the proposed approaches cover noise generation, propagation,
and acoustic footprint calculation. The evaluation of the human perception of drone noise
and the perceived annoyance is another crucial aspect. To this end, psychoacoustic lis-
tening experiments are conducted in laboratory conditions and the results are analyzed us-
ing perception-based sound metrics. Data from aeroacoustic measurements and synthetic
sound auralizations are considered. Combining these three main approaches holistically,
the perception-driven design and assessment can be performed by targeting the minimiza-
tion of the perceived noise annoyance, rather than merely reducing sound pressure levels.
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1. INTRODUCTION

Whereas the expanding utilization of drones (also referred to as unmanned aerial vehicles,
UAVs) presents promising opportunities (e.g. aerial photography, delivery services, emer-
gency assessment, environmental monitoring, etc.), it simultaneously raises substantial con-
cerns with respect to noise pollution. In addition, Urban Air Mobility (UAM) vehicles are cur-
rently not widely used yet, but future forecasts suggest that they will be soaring our skies in
the near future. The development of models for predicting the noise of drones is an active
field of research (Dreier & Vorländer, 2024). A number of complementary approaches exist,
ranging from detailed physics-based prediction models to fully empirical models. In this con-
tribution, these various approaches are addressed while highlighting the important potential
contribution of outdoor measurements in the model development and validation. These al-
low for the noise assessment for a wide range of drone types and maneuvers. To minimize
contributions from other sound sources and propagation effects, such as ground reflections,
the use of acoustic arrays for taking these measurements is strongly recommended.

Typical drone sounds present different acoustic aspects compared to other familiar sources
of environmental noise, such as road traffic (Bazilinskyy, Merino-Martinez, Özcan, Dodou, &
de Winter, n.d.), aircraft (Merino-Martinez, Heblij, Bergmans, Snellen, & Simons, 2019), or
wind turbines (Merino-Martinez, Pieren, & Schäffer, 2021). In fact, despite emitting typically
lower sound levels than other sources, the high-frequency and tonal content of their noise
signatures and their relatively closer proximity to the population could likely raise potential
concerns about their social acceptance (Gwak, Han, & Lee, 2020; Yupa-Villanueva, Merino-
Martinez, Altena, & Snellen, 2024). Some recent literature even suggests that for the same
noise exposure (expressed as equivalent A-weighted sound pressure level, Lp,A,eq), drones
are perceived as considerably more annoying than commercial aircraft (Gwak et al., 2020).
Therefore, the noise emissions of these devices have attracted increasing interest from the
industrial and scientific communities (Rizzi et al., 2020; Schäffer, Pieren, Heutschi, Wunderli,
& Becker, 2021; Green, Torija, & Ramos-Romero, 2024).
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Figure 1: Overview of the proposed perception-influenced design and assessment framework for drones and
UAM vehicles.

The current paper provides a general (non-exhaustive) overview of the research efforts
recently conducted at Delft University of Technology (TU Delft) in the Netherlands focused
on drone and UAM vehicle noise. These investigations can be conveyed in a holistic manner
in a perception-influenced design and assessment framework, see Fig. 1. This framework
can be divided into three main pillars:

1. Acoustic measurements (section 2), including full-scale field experiments (section
2.1) and measurements in laboratory conditions (section 2.2). This approach provides
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essential information on the acoustic signature of the device or component under eval-
uation, provided that a physical model already exists. In particular, the measurement
examples presented here make use of microphone arrays (see Fig. 2) and acoustic
imaging methods (Merino-Martinez, Sijtsma, et al., 2019) to detect, localize, and iso-
late drone noise emissions from the ambient sounds and reflections, see Fig. 3.

2. Noise modelling (section 3), including data-driven (section 3.1) and physics-based
(3.2) methods. These techniques are useful for assessing the noise emissions of de-
signs or procedures that may not exist in reality yet. Most models provide informa-
tion in the frequency domain that is not audible. Therefore, auralization techniques
(Vorländer, 2008; Thoma, Merino-Martinez, Grönstedt, & Zhao, 2024; Dreier & Vor-
länder, 2024) (the acoustical counterpart of visualization) are typically employed to
convert these predictions into audio files.

3. Human perception (section 4) of the sound signatures of drones and UAM vehicles is
a critical aspect for ensuring their societal acceptance. The psychoacoustic perception
of these sounds can be evaluated using state-of-the-art sound quality metrics (Greco,
Merino-Martinez, Osses, & Langer, 2023) and listening experiments (Merino-Martinez,
von den Hoff, & Simons, 2023). The latter approach is preferred, but it is normally
unfeasible to evaluate all the (typically large number of) iterations within usual design
processes.

Since drones and UAM are not as prevalent as other sources of environmental noise
(e.g. aircraft, road traffic), the present moment represents a unique opportunity to draw
lessons from past shortcomings in noise assessment and sound design. This allows for
the development of low-annoyance devices that can be harmoniously integrated into current
soundscapes, minimizing disturbances to the living environment.

This paper summarizes the content presented by the first two authors in a keynote lecture
during this conference.

2. ACOUSTIC MEASUREMENTS

2.1 Full-scale field experiments

Given the large variety of drone configurations and operations, outdoor measurements are
a crucial element in the realization of empirical noise models for predicting drone noise
and evaluating its annoyance. To develop such assessment tools and models, a broad and
comprehensive database of drone noise in outdoor areas, reflective of realistic conditions,
is required. In such studies, the acoustic measurements have to be recorded in conjunction
with several drone telemetry records to characterize operational conditions. Such operations
also need to be comprehensive in terms of all the maneuvers that characterize a typical flight
envelope. In addition, they have to be representative of different flight dynamics variables,
such as drone velocity and mass, and they have to be repetitive; several replicates need to
be recorded to assess and quantify variability in a -mostly- non-controlled environment.

Outdoor experiments, although informative and irreplaceable, have an inherent variability
caused by factors, such as environmental conditions, like wind gusts, and the presence of
other sound sources in the local airspace (Ramos-Romero, Green, Torija, & Asensio, 2023).
Therefore, the use of microphone arrays (see Fig. 2) is highly preferable.

These devices are beneficial compared to single microphone systems for two reasons:
First, the signal-to-noise ratio can be significantly improved compared to single-microphone

measurements by focusing the array in the desired direction through beamforming tech-
niques (Merino-Martinez, 2024). From the resulting microphone array measurements, high-
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quality databases can be created and used to develop noise prediction models for drone
operations.

Secondly, the microphone array’s localization capabilities can be used to synchronize
data from different sources, such as the GPS measurements of the drone. In addition,
the measurement geometry (relative array location and orientation) can be estimated by
maximizing the match between acoustic localizations and those of the GPS, for example.
It should be noted that due to the rapid increase in the use and availability of drones, the
development of acoustic localization techniques is, in addition to the application mentioned
above, an important research topic. The reason is that drones might pose a threat to public
safety, both intentionally and unintentionally. To mitigate this threat, drones must be located
in a timely manner. Acoustic localization techniques can serve as a solution for this, see
Fig. 3. The benefits of acoustic localization techniques, compared to other techniques, are
the relatively low costs and the passive behavior.

(a) (b)

Figure 2: Examples of the microphone arrays employed in field measurements. (a) 64-microphone array (PUI
Audio 665-POM-2735P-R) distributed in a multi-arm spiral configuration. (b) CAE Bionic M-112 microphone
array measuring the noise emissions of a hovering drone.

Figure 3: Drone detection and localization using frequency-domain acoustic beamforming supported by optical
camera measurements. This plot is an animated version of the results of (Altena et al., 2023)
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2.2 Measurements in laboratory facilities

Figure 4: Experimental setup at the anechoic ‘A-Tunnel’ open-jet facility of TU Delft for the aeroacoustic
analysis of propeller turbulence ingestion noise. The red circle denotes the microphone position for the data
reported in Figure 5.

Figure 5: Pressure Band Level (PBL, d f = 0.84 Hz and pre f = 20 µPa) of the acoustic pressure measured at
the propeller plane (at a distance of 1.3 m from the rotational axis) for different inflow turbulence intensity (T I)
levels and constant inflow velocity of 25 m/s and Blade Passing Frequency (BPF) of 1012.6 Hz. Left: tonal
component at BPF harmonics, right: broadband component.

Testing in laboratory facilities allows for greater control over the operating flow conditions
and environmental factors than what is possible during field measurements. This, in turn,
permits a more detailed parametric investigation of the effects of specific parameters (e.g.
number of blades, incoming turbulence) on the phenomenon under consideration. Labora-
tory measurement campaigns are therefore particularly well-suited for fundamental studies
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aimed at providing reliable data for the validation of theoretical and numerical models (Allen
et al., 2002).

Anechoic chambers are typically employed for the acoustic characterization of drones
or propellers in static hover conditions, e.g. (Tinney & Sirohi, 2018; Heutschi, Ott, Nuss-
baumer, & Wellig, 2020; Merino-Martinez, Ben-Gida, & Snellen, 2024). Low-speed, open-jet
wind tunnels with anechoic plenums are instead used in the study of propellers subject to
differing types of inflow conditions, e.g. (Petricelli et al., 2023). The anechoic ‘A-Tunnel’
facility at TU Delft belongs to the latter type; a comprehensive description of it can be found
in (Merino-Martínez et al., 2020). Propeller noise has been the subject of a number of ex-
perimental campaigns in this facility, with the aim to provide more insights into the noise
generation mechanisms of low-Reynolds number propellers present in drones (Casalino,
Grande, Romani, Ragni, & Avallone, 2021; Grande, Romani, Ragni, Avallone, & Casalino,
2022; Baars & Ragni, 2024).

The recent rise in Unmanned Aerial Vehicles (UAVs) and novel aircraft propulsion tech-
nologies involving the use of rotors (e.g. boundary layer ingestion (BLI), distributed electric
systems) has led to a renewed interest in propeller aeroacoustics. Within this context, the
influence of nearly-isotropic grid-generated turbulence ingestion by an isolated propeller on
the far-field noise emissions has recently been investigated at the ‘A-Tunnel’ facility. Pre-
liminary results of these campaigns can be found in (Piccolo, Zamponi, Avallone, & Ragni,
2024; Quaroni, Merino-Martinez, Monteiro, & Kumar, 2024). The latter study in particular
focused on the effects of the characteristics of the inflow turbulence (i.e. turbulence intensity
T I and streamwise integral lengthscale Λx) on the noise emissions of a six-bladed propeller
model (referred to as X-PROP-S) with a radius of 101.6 mm and adjustable blade pitch an-
gle β . The geometry of the propeller, as well as its aerodynamic characteristics, can be
found in (Van Arnhem et al., 2020). Figure 4 depicts a picture of the experimental setup em-
ployed, featuring two microphone arrays: a 64-microphone planar one (on the left) and an
8-microphone directivity arc (on the right). Figure 5 shows the influence of the incoming tur-
bulence characteristics on both the tonal and broadband components of the noise emissions
recorded at a distance of 1.3 m from the rotor’s shaft and in the propeller plane (see red circle
in Fig. 4). The results for three different T I values are reported: 0%, 2%, and 3%. In gen-
eral, the broadband noise emissions increase with the increasing T I values. Interestingly,
the noise levels of the first two tones and some of the higher harmonics are attenuated to
some extent when the T I is increased. Ongoing further analyses are possible by considering
data from both microphone arrays and aerodynamic measurements (hot-wire anemometry
for incoming turbulence spectral characterization and traversing pressure probes for blade
loading estimation, see (Quaroni et al., 2024)).

The same propeller geometry shown in Fig. 4 (X-PROP-S) was also tested in a distributed-
propulsion configuration, see Fig. 6(a) featuring three identical six-bladed steel propellers
(Monteiro, Merino-Martinez, & Lima Pereira, 2024). This configuration is representative of
multi-propeller configurations in unconventional aircraft configurations and several UAM ve-
hicle designs (Schade et al., 2024). The three propellers were tested in the closed-section
low-turbulence wind tunnel (LTT) of TU Delft and placed approximately 85 mm away from
the leading edge of a wing angled 5◦ downward relative to the wing chord. A tip clear-
ance of 4.8 mm between adjacent propellers was set. This experimental setup enables
setting the relative blade phase angle ∆φ between adjacent propellers under synchrophas-
ing conditions with a precision of 0.16◦ standard deviation, to investigate its influence on the
generated noise emissions. A planar 64-microphone array was placed behind a Kevlar win-
dow to prevent the turbulent boundary layer of the wind tunnel wall from contaminating the
recorded acoustic signals (Bento et al., 2023). For further details on the experimental setup,
the interested reader is referred to (Monteiro et al., 2024).
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(a) (b) (c)

Figure 6: (a) Experimental setup inside the acoustic test section of the low-turbulence wind tunnel (LTT) of
TU Delft. (b) Definition of relative blade-phase angle ∆φ . (c) Microphone array positioning behind the Kevlar
window. Adapted from (Monteiro et al., 2024).

A total of six different relative blade-phase angles ∆φ were considered: 0◦, 10◦, 20◦, 30◦,
40◦, and 50◦, as well as a baseline case with random ∆φ values. The results presented
here refer to three different microphones located approximately at emission angles θ of 52◦

(upstream direction), 90◦ (flyover direction), and 125◦ (downstream direction). A freestream
velocity of 30 m/s and a wing angle of attack of 2◦ were considered. These conditions corre-
spond to a blade tip Mach number of 0.35, and Reynolds numbers at the tip of approximately
6.0×104.

Figure 7 depicts the noise emissions in the three selected microphones for the different
∆φ values. Two different sound metrics are considered: the maximum A-weighted sound
pressure level (Lp,A,max) and the maximum tone-corrected perceived noise level (PNLTmax)
(Merino-Martinez, 2018). The PNLT includes a tone penalty based on the one-third-octave
band spectrum, which is an adjustment for sounds with noticeable tonal components. The
highest noise emissions are observed in all cases for ∆φ = 0◦, whereas the cases of ∆φ = 20◦

and ∆φ = 30◦ present considerable noise reductions (up to 10 dBA and 8 PNLTdB), espe-
cially in the downstream direction. The original reference (Monteiro et al., 2024) contains
the results corresponding to more sound metrics (including psychoacoustic indicators) and
operational conditions. These preliminary results indicate the potential of synchrophasing in
distributed propulsion systems for noise reduction.

3. NOISE MODELLING

Noise prediction models are essential tools to predict the acoustic signature of drones and
UAM vehicles, which enable the assessment of different configurations and operational con-
ditions and their corresponding perceptual impact on the ground. Therefore, these methods
are crucial for devising noise mitigation strategies.

When modelling drone noise, two common approaches, namely empirical or data-driven
methods and physics-based (PB) methods, can be used. The models should link the sound
metrics to the operational parameters of the drone, such as position, velocity, and blade
passing frequency (BPF). Each type of method has its own strengths and limitations. A brief
review of these is provided below.

Empirical data-driven methods leverage data collected from acoustic measurements to
create predictive models for drone and UAM vehicle noise. By applying machine learning
(ML) methods to these measurements relationships between input variables (e.g. position,
velocity, BPF) and sound metrics can be established without modelling the physics explic-
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Figure 7: Noise emissions as a function of the relative blade phase angle ∆φ at θ = 52◦, 90◦ and 125◦: (a)
Lp,A,max, (b) PNLTmax

itly. The advantages of ML methods are that, once trained, they can provide near-real-time
predictions of noise levels based on input parameters, which makes them highly efficient for
real-time applications. ML models can also easily incorporate different operational param-
eters and environmental factors, such as wind speed, altitude, and atmospheric conditions
into the noise prediction model without needing complex mathematical formulations. When
trained on large datasets, data-driven models can, in principle, generalize across different
drones and operating environments. This is valuable for assessing a wide range of scenar-
ios without needing detailed and drone-specific physical models. On the other hand, there
are also drawbacks to ML methods. The performance of ML models is heavily dependent
on the quality and quantity of the training data, which can be a challenging problem. When
modelling the noise performance over a typical set of maneuvers using ML, it is necessary
to have experimental data representative of such maneuvers from which the model can gen-
eralize for similar operations. In addition, unlike PB models, empirical methods lack direct
ties to physical laws, which can make it difficult to understand the (variations in) predicted
noise metrics.

Physics-based methods rely on fundamental physical principles to model sound genera-
tion, propagation, and interactions with the environment. In recent years, both high-fidelity
and low-order PB methods have been widely used to study drone noise generation and prop-
agation in urban environments. Whereas high-fidelity methods offer detailed insights, they
become computationally impractical for larger propagation distances, higher frequencies,
and varying outdoor operating conditions. Consequently, the main drone noise PB predic-
tion approach at TU Delft emphasizes low-order methods, which are specifically developed
to handle these practical challenges.

3.1 Data-driven models

In general, the data-driven methodology to predict the noise from drone operations re-
searched at TU Delft focuses on understanding empirical relations between operational con-
ditions and the noise signatures of different UAV types. For this, variables representative of
operational conditions are defined as features in the frame of ML and statistical modelling
approaches. Since the ultimate goal is to prescribe the noise annoyance at observer points,
sound metrics are defined as the output variables whose dynamics have to be predicted.

Initial efforts in this area focused on exploring potential linear relationships that could link
operational parameters with acoustic metrics. For this, several acoustic metrics were ex-
tracted from data obtained in experimental field campaigns, which represent distinct acoustic
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features. These were the overall sound pressure level (OSPL, separated as both broadband
and tonal), the acoustic power dispersion of the tones (as a measure of how heterogeneous
the tonal energy is), and the number of tones present as a function of time (also as a mea-
sure of heterogeneity but in the frequency domain). In this way, these observables build
parameters of the tonal sound pressure level distribution as a function of time. To build the
feature matrix, GPS data recorded during the corresponding experimental campaigns were
used; relative positions, velocities, and accelerations were computed as features. To study
the adequacy of linear models, an electric vertical take-off and landing (eVTOL) drone fixed
wing, see Fig. 8, operated by the company ANWB was studied during flybys over or next
to the microphone array. The drone takes off and lands vertically as a quadcopter, using
the 4 vertical rotors. For forward flight maneuvers, the horizontal propeller is used while
the 4 rotors only operate in case additional trajectory stabilization and maneuverability are
required.

Figure 8: Photo from the eVTOL Avy Aera 3.

Formally, the acoustic metric of interest is allocated to an output vector y, with the number
of components corresponding to each realization of the quantity in time, while each opera-
tional parameter vector a becomes a column in a feature matrix A, such that the number of
columns corresponds to the number of operational parameters considered, and the number
of rows to the number of realizations or data points. Assuming a linear relation between
these two groups of variables means that there is a scalar xi that connects the operational
parameter ai (ith column of A) and the acoustic observable or output y. In matrix notation,
this relationship can be represented as y = Ax+ e, where each entry of x corresponds to the
scalar xi associated with the ith operational parameter. The vector e represents the residual
vector, indicating the deviation from the linear assumption. Furthermore, to keep the as-
sumptions simple, the parameters x are estimated using the least-squares theory; therefore
the estimated value of x is x̂ = (AT Q−1

y A)−1AT Q−1
y y, with Qy the dispersion matrix (covari-

ance matrix) of the observations. This estimation allows to compute an estimated value of
y, ŷ = Ax̂, and also an estimate for the error ê = y− ŷ.

By splitting the pertinent data into a training set, from which x is calculated, and a val-
idation set, it is possible to assess the performance of the approach and the best linear
model. In these scenarios, the training performance can be evaluated using the test statis-
tics Tq = êT Q−1

y ê and assessing whether it is smaller than a certain critical value (Teunissen,
2000). The linear model presented here was determined by finding the combination of oper-
ational parameters for which the resultant model gave the smallest test statistic Tq = êT Q−1

y ê.
In Figure 9, some results corresponding to the OSPL analysis can be observed. It was

found that in most cases, the overall time-dependent behavior is recovered, both at the
training (Fig. 9(a)) and prediction (Fig. 9(b)) cases. In Fig. 9(a), the linear model parameters
were trained, where the model manages to reconstruct the trend of the signal, but not the
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detailed variations. This behavior is also observed in the validation results from Fig. 9(b).
For some instances, it is observed that the model does not manage to trace sudden changes
in OSPL, which can be seen around the secondary crests of the different signals.

Figure 9: Example of the linear data-driven OSPL prediction model for the Avy Aera 3 drone for training and
validation cases.

Given the results and the underlying assumptions, this approach has limitations and
should serve as a preliminary guide to develop more sophisticated and accurate models.
The current assumption that a linear relationship exists between operational parameters
and acoustic metrics is too simplistic. Also, the available telemetry data is insufficient, as
rotor-specific information was not included in the current study. Nonetheless, this approach
did capture the general trends, which will need to be represented, either directly or indirectly,
in more advanced models moving forward.

Predicting drone noise from operational parameters can also be performed through var-
ious machine learning (ML) methods, including support vector regression (SVR), random
forest (RF), multilayer perceptron (MLP), and a recently developed method called least-
squares-based deep learning (LSBDL). As feature-based ML methods, they offer unique
advantages for drone noise prediction. They can be used to capture complex and non-
linear relationships between input features and the resulting noise at observer locations.
SVR maps input data to a high-dimensional feature space (Awad & Khanna, 2015), where
it seeks to model intricate patterns in the operational conditions and acoustic metrics. This
can be effective in capturing subtle variations in noise levels that simple linear models may
overlook. RF is a robust ensemble-learning technique that combines the outputs of numer-
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ous decision trees (Breiman, 2001; Sabzehee, Amiri-Simkooei, Iran-Pour, Vishwakarma, &
Kerachian, 2023), offering resilience to noise in the data and the ability to model complex
interactions without overfitting. In drone noise studies, RF can be applied to predict acoustic
metrics by analyzing how variables such as GPS-derived velocities or positions correlate
with overall sound pressure levels (OSPL) and tonal noise components. RF’s ensemble
approach averages the predictions of individual trees, enhancing reliability in varying oper-
ational conditions. MLP, as a fully connected feed-forward neural network, is also used to
approximate nonlinear relationships (Ezugwu, Fadare, Bonney, Da Silva, & Sales, 2005).
With sufficient training data, MLP can also effectively learn to represent the relationships
between flight parameters and noise levels.

As an innovative approach, LSBDL combines the principles of least-squares estima-
tion with deep learning techniques (Amiri-Simkooei, Tiberius, & Lindenbergh, 2024). This
method establishes the linear relationship y = Ax+ e by using a feature matrix D in the fol-
lowing form:

y = Ax+ e = A(DW )x+ e, (1)

where A(.) represents an activation function, and W denotes the trainable weights and bi-
ases, to be optimized, for example, through a gradient descent method. In conjunction with
the explainable artificial intelligence (XAI), LSBDL offers three important benefits for drone
noise prediction: 1) LSBDL allows the direct calculation of the covariance matrix for the
predicted outcomes, which is valuable in assessing the uncertainty in predictions of drone
noise levels. 2) LSBDL provides a basis for hypothesis testing and outlier detection, which
is essential when sound metrics are derived from real-world drone operations. By flagging
outliers, LSBDL improves model robustness, making it better suited to capture and predict
fluctuating noise patterns in various operational settings. 3) Drone noise datasets are often
diverse due to different operational conditions. LSBDL uses the covariance matrix of train-
ing data to handle inconsistent, heterogeneous, and statistically correlated data, making it a
practical choice for real-world applications.

3.2 Physics-based model

The current physics-based approach in TU Delft for predicting drone noise is mainly focused
on predicting propeller noise under different operating conditions. Propeller noise spectra
are characterized by the presence of both tonal and broadband components.

Tonal noise arises from deterministic sources, including thickness noise, which is due to
the fluid displaced by the moving blades, steady-loading noise, which is caused by the steady
forces acting on the blades, and unsteady-loading noise, which primarily results from local
distortions in the inflow or non-axial inflow conditions, e.g. when the propeller shaft is not
aligned with the incoming airflow. In non-axial inflow, each blade experiences periodic vari-
ations in the local angle of attack, leading to fluctuations in blade loading that generate peri-
odic unsteady-loading noise at harmonics of the blade-passage frequency (BPF) (Magliozzi,
Hanson, & Amiet, 1991). This situation commonly occurs during conversion flight and for-
ward flight conditions of drones and UAM vehicles with significant variation in radiation and
directivity of the noise compared to hovering conditions. The current noise prediction ap-
proach accounts for all aforementioned tonal noise mechanisms in drone noise prediction.

Broadband noise, on the other hand, includes turbulence ingestion noise, blade-wake
interaction noise, and blade self-noise. The latter originates from fluctuations in the boundary
layer or from separations and vortex shedding. This is the only broadband noise generation
mechanism considered in the current noise prediction approach.

Although high-fidelity computational fluid dynamics (CFD) methods are commonly used
to study propeller noise, the current prediction approach relies primarily on low-order meth-
ods to enable their use in impact assessment and optimization studies. These methods are
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computationally efficient and still provide reliable results. Low-order approaches predict pro-
peller noise by coupling aerodynamic and acoustic models. Among the most widely used
aerodynamic models is the blade element momentum theory (BEMT), which offers accu-
racy comparable to CFD but with significantly reduced computational cost. In the in-house
low-order propeller noise prediction solver (LOPNOR), BEMT is employed to calculate the
aerodynamic forces that contribute to both steady and unsteady loading noise, especially
under non-axial inflow conditions.

Two different frequency domain aeroacoustic formulations are implemented in LOPNOR.
The first one is based on the later work of Hanson that accounts for the effects of non-
compactness, sweep, and non-axial flow (1D) (Hanson, 1990). Our recent work (Yunus,
von den Hoff, & Snellen, 2024) has demonstrated that LOPNOR predictions with the Hanson
formulation showed very satisfactory agreement with a high-fidelity simulation and several
outdoor measurements from multiple aircraft flyover events. A direct comparison of time-
level histories of several flyovers between LOPNOR predictions and outdoor measurements
is depicted in Fig. 10.

 40

 50

 60

 70

 80

 90

 100

 10  15  20  25  30  35  40

O
S

P
L 

[d
B

]

Time [s]

Measurement
LOPNOR

(a) Case 1: h = 7.43D, RPM = 2500, α = 0◦.
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(b) Case 2: h = 46.46D, RPM = 2430, α = 5.6◦.
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(c) Case 3: h = 24.16D, RPM = 2460, α = 2.52◦.
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Figure 10: Comparison of time-level history of flyover noise predicted with the LOPNOR tool and outdoor
measurements. The parameter h indicates the source-receiver distance in terms of rotor diameter D. Case 1
corresponds to a constant-altitude level flight, while the other cases represent take-off flights with varying climb
angle α.

The second one is based on the frequency-domain solution of the Ffowcs Williams-
Hawkings (FW-H) integral equation applied to a radial distribution of acoustically non-compact
sources (Ghorbaniasl, Huang, Siozos-Rousoulis, & Lacor, 2015). This formulation is advan-
tageous compared to the abovementioned Hanson’s formulation, as well as the widely-used
FW-H formulations, such as Farassat 1 and 1A, as it accounts for the acoustic effects of
incoming flow with arbitrary direction (3D), whereas both formulations of Farassat 1 and 1A,
without introducing algorithmic modification (Farassat, Dunn, & Spence, 1992), cannot be
directly employed to account for non-axial inflow effects with 3D varying inflow direction. In
our recent work (Yunus, Casalino, Romani, & Snellen, 2024), this formulation was imple-
mented in LOPNOR and coupled with an extended BEMT procedure, accounting for the un-
steadiness due to the variation in the inflow direction, to predict propeller noise at incidence.
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LOPNOR predictions showed good agreement with both experimental measurements and
high-fidelity simulations as shown in Fig. 11.
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Figure 11: Far-field noise spectra for three microphones and both axial (top) and non-axial flow conditions
(bottom).

The works mentioned above highlight the noise prediction capabilities for a single pro-
peller under both axial and non-axial inflow conditions. However, aerodynamic interactions
between adjacent rotors can significantly impact noise generation (Zarri, Dell’Erba, Munters,
& Schram, 2022), depending on the operating conditions and rotor placement configura-
tions. Considerable efforts are underway to model noise generated by rotor-rotor and rotor-
airframe interactions. In the near future, LOPNOR will be further enhanced to improve the
accuracy of drone noise predictions by incorporating rotor-rotor and rotor-airframe interac-
tions, as well as accounting for acoustic scattering from airframes.

Moreover, accurate prediction of noise propagation in an urban environment is challeng-
ing as various wave phenomena, i.e., multiple reflections, diffraction, refraction, and propa-
gation scenarios, such as standing waves with large amplitude oscillations in narrow urban
canyons and scattering by atmospheric turbulence, should be accounted for. Over the years,
various computational tools have been developed to simulate the propagation of outdoor
noise. Although wave-based models directly solve the convected wave equation and offer
high-fidelity results, they become computationally prohibitive as the source frequency and
the propagation distance increase. Consequently, ray acoustics, based on high-frequency
approximations of the convected wave equation, has emerged as a more practical and effi-
cient approach to simulate outdoor noise propagation (Yunus, Casalino, Avallone, & Ragni,
2023a). In our PB approach, the drone noise propagation is modeled using the ray acoustics
method combined with a Gaussian beam summation technique, which accounts for multiple
reflections over three-dimensional terrain surfaces and atmospheric refraction due to vari-
ations in wind velocity and temperature profiles in both horizontal and vertical directions.
This approach is implemented in our acoustic ray and Gaussian beam propagation solver,
UYGUR. A schematic of the computational procedure is shown in Fig. 12. Further details on
the solver and modelling approach can be found in (Yunus et al., 2023a; Yunus, Casalino,
Avallone, & Ragni, 2023b; Yunus, 2023).

UYGUR has been validated against the full-wave solution of a finite element method
(FEM) based solver. Figure 13 compares the prediction from UYGUR against the FEM
solver, demonstrating both computational efficiency and acceptable accuracy (Yunus et al.,
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Figure 12: Schematic illustration of the computational procedure in UYGUR.

2023a).

Figure 13: Comparison of acoustic wave fields on a vertical plane containing a three-building urban setting
predicted with UYGUR (left) and a FEM-based solver (right). Pressure magnitude (bottom left) and phase
(bottom right) along a line at Z = 10 m above the ground.

Previously, UYGUR has been applied to investigate vertiport noise from hovering drones
near high-rise buildings (Yunus et al., 2023b), as well as the noise footprint of maneuver-
ing flights in vertiport settings that resemble typical urban environments (Yunus, Varriale, &
Snellen, 2024). Future work will validate UYGUR against field measurements and extend
it to study the effects of building-induced turbulence on drone noise propagation in urban
settings.

4. HUMAN PERCEPTION

Recent studies (Merino-Martinez et al., 2021; Merino-Martinez, Pieren, Schäffer, & Simons,
2022; Merino-Martinez, Yupa-Villanueva, von den Hoff, & Pockelé, 2024) showed that Sound
Quality Metrics (SQMs) based on perception describe the subjective perception of sound by
human hearing in a better way compared to conventional sound metrics typically employed
in noise assessment, such as Lp,A,eq, which essentially quantifies the physical magnitude
of sound based on pressure fluctuations. Therefore, there is a growing interest in psychoa-
coustic studies involving SQMs and listening experiments (Gwak et al., 2020; Schade et al.,
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2024; Torija, Ramos-Romero, & Green, 2024) to capture the auditory behavior of the human
ear more accurately.

4.1 Psychoacoustic sound quality metrics

The five most commonly used SQMs (Greco et al., 2023) are:

• Loudness (N): Subjective perception of sound magnitude corresponding to the overall
sound intensity (ISO norm 532–1 – Acoustics – Method for calculating loudness –
Zwicker method , 2017).

• Tonality (K): Measurement of the perceived strength of unmasked tonal energy within
a complex sound (Aures, 1985).

• Sharpness (S): Representation of the high-frequency sound content (von Bismark,
1974).

• Roughness (R): Hearing sensation caused by sounds with modulation frequencies
between 15 Hz and 300 Hz (Daniel & Webber, 1997).

• Fluctuation strength (FS): Assessment of slow fluctuations in loudness with modulation
frequencies up to 20 Hz, with maximum sensitivity for modulation frequencies around
4 Hz (Osses, García León, & Kohlrausch, 2016).

These five SQMs are typically calculated for each drone flyover recording and their 5%
percentile values are normally considered, representing the value of each SQM exceeded
5% of the total recording time. These 5% percentile values can then be combined into global
psychoacoustic annoyance (PA) metrics, following models like those outlined by Zwicker
(Fastl & Zwicker, 2007), More (More, 2010), and Di et al. (Di, Chen, Song, Zhou, & Pei,
2016). The open-source MATLAB toolbox SQAT (Sound Quality Analysis Toolbox) v1.1
(Greco et al., 2023; Greco, G. F. and Merino-Martinez, R. and Osses, A., 2024) is employed
to calculate these SQMs, PA metrics, and conventional sound metrics (e.g. equivalent A-
weighted sound pressure level Lp,A,eq, sound exposure level Lp,A,e, and effective perceived
noise level (EPNL)). This toolbox enables a quick calculation of these metrics for any input
sound signal. The GitHub repository of this toolbox can be found in (Greco, G. F. and Merino-
Martinez, R. and Osses, A., 2023).

Recently, another sound quality metric called impulsiveness (I) is also being considered
in drone noise assessments (Green et al., 2024). The model proposed by Willemsen and
Rao (Willemsen & Rao, 2010) assesses the loudness N over time to quantify the degree
of impulsive content within a sound. The cumulative impulse content denoted IN, can also
be calculated to calculate the PA metric proposed by the same authors (Willemsen & Rao,
2010). The code implementation of the impulsiveness and PA metric by Willemnsen and
Rao is intended to be soon included in the SQAT repository.

Recent publications assessed the SQM and PA values of flyover field recordings of dif-
ferent drone types. Yupa-Villanueva et al. (Yupa-Villanueva, Merino-Martinez, Altena, &
Snellen, 2024) explored the SQMs through density traces of their instantaneous and their
5% percentiles values, as shown in Fig. 14. Sharpness, tonality, roughness, and impulsive-
ness exhibit similar transient density trace patterns, suggesting a consistent auditory signa-
ture across these attributes. However, loudness and fluctuation strength did not demonstrate
comparable transient density patterns. In terms of perceived attributes, the heaviest drone
was characterized as the ‘harshest’, ‘least sharp’, and ‘quietest’. Conversely, the lightest
drone is perceived as the ‘sharpest’, ‘least harsh’, and ‘least impulsive’. The drone with the
lowest installation ratio (d/D, where d is the diagonal distance between each propeller and D
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is the propeller diameter) was found to be the ‘loudest’, ‘most tonal’, ‘most beating’, and ‘most
impulsive’. Additionally, one of the drones with the largest propeller diameter is perceived as
the ‘least tonal’. An analysis considering single values of psychoacoustic annoyance using
the previous PA models indicated that the drone with the lowest d/D was perceived as the
most annoying, while the heaviest drone was assessed as the least annoying. Additionally,
the Willemsen and Rao PA model predicted higher annoyance values in comparison to other
PA models, as shown in table Table 1.
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Figure 14: Density traces of instantaneous values of sound quality metrics and their 5% percentile values.

Table 1: Summary of normalized psychoacoustic annoyance (PA) values predicted
by the Zwicker, More, Di et al., and Willsemsen and Rao models.

Drone Drone Normalized annoyance [-]
number model Zwicker More Di et al. Willemsen and Rao

1 DJI Mini 2 0.60 0.50 0.55 0.87
2 DJI Mavic 3 0.72 0.60 0.67 0.92
3 Autel EVO II 1 1 1 1
4 DJI Phantom 3 0.86 0.71 0.78 0.96
5 DJI Phantom 4 0.51 0.44 0.48 0.84

In another study, Yupa-villanueva et al. (Yupa-Villanueva, Merino-Martinez, Andino Cap-
pagli, Altena, & Snellen, 2024) studied four types of drones (single-propeller quadcopter,
coaxial-propeller quadcopter, quadplane eVTOL, and tailsitter eVTOL) and the the SQMs re-
vealed (Fig. 15) that the coaxial-propeller quadcopter was deemed the loudest, whereas the
tailsitter eVTOL was evaluated as the quietest, albeit notably sharp. Tonality perception var-
ied among the drones, with the quadplane eVTOL rated as the most tonal and the tailsitter as
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the least one. The single-propeller quadcopter was perceived as emitting the harshest and
most beating sound. Regarding impulsiveness, the coaxial-propeller quadcopter was con-
sidered the most impulsive, whereas the tailsitter was the least impulsive. Figure 16 presents
the psychoacoustic annoyance using the model by Di et al. (Di et al., 2016) for each drone.
The coaxial propeller-equipped drone reveals an annoyance prediction of 71.8 units, while
the single propeller quadcopter achieves 24.5 units, making the coaxial-propeller-equipped
drone approximately three times more annoying. Comparing eVTOL vehicles, the quadplane
is also approximately three times more annoying than the tailsitter, with annoyance values of
9 and 3.2 units, respectively. Nevertheless, the eVTOL vehicles present considerably lower
psychoacoustic annoyance values.
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Figure 15: 5% percentile values of the sound quality metrics.
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Figure 16: Predicted psychoacoustic annoyance for each drone using the Di model.

A recent study (Merino-Martinez, Ben-Gida, & Snellen, 2024) related to the perception-
influenced design (see Fig. 1) and noise assessment of drone propellers modified the ge-
ometry of a baseline APC 14′′× 5.5′′ two-bladed propeller, see Fig. 17(a), to minimize the
perceived noise annoyance while maintaining its aerodynamic performance. The multi-
disciplinary optimization technique employed was performed using the getPROP framework
(Kvurt, Ruf, Hertzman, Stalnov, & Ben-Gida, 2023), which consists of various modules, such
as aerodynamic modelling, performance computation, aeroacoustic prediction, atmospheric
attenuation, psychoacoustics, and multi-objective optimization. The chord and twist angle
radial distributions of both propellers are presented in Fig. 17(a). Both propellers had a
radius of 177.8 mm and a design thrust point of 9.5 N. The blade sections of the baseline
propeller consist of a NACA5608 airfoil shape, whereas a low-Reynolds FX63−137 airfoil was
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selected for the optimized propeller design to improve its performance in the low-Reynolds
number regime (Selig, 2003). The noise emissions of both propellers were measured in a
fully-anechoic chamber with a cut-off frequency of 150Hz using a directivity arc consisting of
fifteen microphones placed at a radial distance of 1.5 m from the propeller hub. The circular
arc spanned an azimuth angular range of 0◦ < θ < 105◦, where θ = 0◦, corresponds to the
axis of rotation above the propeller’s hub, whereas θ = 90◦ refers to the rotor disk plane, see
the schematic propeller test rig depicted in Fig. 17(b). For further details on the experimental
setup, the interested reader is referred to (Merino-Martinez, Ben-Gida, & Snellen, 2024).
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Figure 17: (a) Top: Photographs of both propellers. Center: Radial distribution of the blade’s normalized
chord (c/Rprop), and Bottom: pitch angle (β ), for the reference propeller (black) and the optimal design propeller
(red). (b) Schematics of the experimental setup employed, consisting of the propeller test rig and the circular
arc array.

A preliminary analysis with conventional sound metrics showed noise reductions of about
2 to 3 dBA in the overall A-weighted sound pressure level for the optimized propeller. The at-
tenuation was especially noticeable for the high-frequency range, where reductions of about
9 dBA were reported. Figure 18 depicts the directivity plots for different psychoacoustic
metrics. As expected from the aforementioned reduction in high-frequency noise, the op-
timized propeller shows notable reductions in sharpness (S5, Fig. 18(a)) up to 0.47 acum.
The tonality (K5, Fig. 18(b)) presents considerably high values (up to 0.25 t.u. for the base-
line case) and maximum values on the propeller plane (θ ≈ 90◦). The optimized propeller
appears to reduce the tonality to almost half its baseline value in that direction. This reduc-
tion is explained by the generally lower tones observed for this design and higher masking by
broadband noise, especially at low frequencies. This phenomenon could be explained by the
expected reduction in leading-edge noise (blade-vortex interaction) for the optimized case.
Lastly, the global psychoacoustic annoyance (PA) metric presents consistent reductions up
to 20% in all the emission directions investigated. All in all, these results seem to indicate
that the optimized propeller does indeed provide substantial reductions in noise annoyance
for the same thrust condition. Additional results referring to other SQMs are included in
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(Merino-Martinez, Ben-Gida, & Snellen, 2024).
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Figure 18: Directivity plots for both propellers considering different sound metrics: (a) sharpness, (b) tonality,
and (c) psychoacoustic annoyance.

Additional research examples also employed psychoacoustic metrics and sound aural-
ization to assess the noise footprint of full-scale UAM vehicles (Schade et al., 2024) and
commercial aircraft (Thoma et al., 2024; Merino-Martinez, Besnea, von den Hoff, & Snellen,
2024).

4.2 Listening experiments

Conducting psychoacoustic listening experiments with human subjects is crucial for obtain-
ing valuable information on the perceptual aspects of different designs of drones and UAM
vehicles, as well as their operational conditions and other factors.

The recently-developed Psychoacoustic Listening Laboratory (PALILA) at the Faculty of
Aerospace Engineering of TU Delft (Merino-Martinez et al., 2023) consists of a box-in-box
soundproof booth with interior dimensions of 2.32 m (length) × 2.32 m (width) × 2.04 m
(height). The interior walls, ceiling, and part of the floor are covered with acoustic-absorbing
foam panels to prevent sound reflections, see Fig 19(a). This results in free-field sound
propagation conditions for frequencies higher than or equal to 1600 Hz and a reverberation
time of only 0.07 s. The walls of PALILA consist of a sandwich structure, which provides a
weighted average transmission loss of 45 dB. The A-weighted overall background noise level
is 13.4 dBA. The listening room is equipped with a Dell Latitude 7340 touchscreen laptop
and a pair of calibrated Sony WH-1000XM4 over-ear, closed-back headphones, for sound
reproduction and participant interaction. Participants record their subjective responses to
the sounds using a Python-based graphical user interface (GUI) for listening experiments
(Pockelé, 2024), see Fig 19(b).

A recent investigation (Merino-Martinez, Yupa-Villanueva, et al., 2024) assessed the per-
formance of different sound metrics and PA models in predicting the noise annoyance ratings
from a psychoacoustic listening experiment with 57 participants and featuring the acoustic
recordings of nine different drones of different topologies (see Figs. 14 and 15), including
six quadcopters with single propellers, a quadcopter with counterrotating propellers, and
two types of hybrid eVTOL drones, see Fig. 8. Table 2 shows the correlation coefficients ρ

and the respective p-values of the correlations reported between each metric and the mean
annoyance ratings. For this particular experiment, it seems that the PA models of Zwicker
(ρ = 0.857, p-value = 0.003) and Willemsen and Rao (ρ = 0.856, p-value = 0.003) outperform
the rest of the alternative metrics considered, especially EPNL (ρ = 0.777, p-value = 0.014).
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(a) (b)

Figure 19: Examples of (a) a listening experiment inside PALILA and (b) the graphical user interface (GUI).

For illustration purposes, the correlation analyses for EPNL and the PA model of Zwicker are
presented in Fig. 20.

Table 2: Correlation coefficients and associated p-values reported for the different sound metrics and
psychoacoustic annoyance models for the drone noise psychoacoustic experiments.

Metric / model ρ p-value

Lp,A,eq 0.807 0.009
Lp,A,e 0.808 0.008
EPNL 0.777 0.014

PA (Zwicker) 0.857 0.003
PA (More) 0.828 0.006

PA (Di et al.) 0.834 0.005
PA (Willemsen and Rao) 0.856 0.003
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Figure 20: Mean noise annoyance ratings per drone type with respect to (a) EPNL and (b) PA (Zwicker’s
model). The error bars denote the standard deviations in the annoyance ratings. The respective least-squares
linear fits for all drones are plotted as dashed black lines, including the correlation coefficient ρ and p-value.
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5. CONCLUSIONS

An overview of the recent and ongoing research work in the fields of drone and UAM ve-
hicle noise at TU Delft has been provided in this manuscript. In particular, representative
examples of aeroacoustic measurements (both in field experiments and in wind-tunnel facili-
ties), noise modelling (employing both data-driven and physics-based methods), and human
perception (including analyses with psychoacoustic metrics and listening experiments) were
provided. These three main pillars are all essential for achieving perception-based design
and noise assessment of drones, UAM vehicles, and their components, in order to achieve
devices that cause the minimum disturbance to the living environment.

This research topic is currently a vibrant environment with rapid developments and promis-
ing results. Some current challenges include:

• Accounting for the scalability and installation effects to convert results from scaled
wind-tunnel experiments to full-scale geometries is essential to device noise mitigation
strategies.

• Achieving efficient and accurate noise prediction models for drones and UAM vehicles.
In addition, to assess the perceptual characteristics of the modelled sounds, realistic
auralization techniques that provide plausible results are essential.

• Assessing the influence of topological (e.g. geometric design), operational (e.g. flight
dynamics), and environmental (e.g. signal-to-noise ratio) conditions in human percep-
tion. This is particularly important since drones and UAM vehicles present considerably
different sound signatures than other environmental noise sources.
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