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A transcriptomic based deconvolution
framework for assessing differentiation
stages and drug responses of AML
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E. Onur Karakaslar1,2,3, Jeppe F. Severens 1,2,3, Elena Sánchez-López3,4, Peter A. van Veelen4,
Mihaela Zlei5,6, Jacques J. M. van Dongen6,7, Annemarie M. Otte4, Constantijn J. M. Halkes8,
Peter van Balen8, Hendrik Veelken3,8, Marcel J. T. Reinders1,2,3, Marieke Griffioen8 &
Erik B. van den Akker 1,2,3

The diagnostic spectrum for AML patients is increasingly based on genetic abnormalities due to their
prognostic and predictive value. However, information on the AML blast phenotype regarding their
maturational arrest has started to regain importance due to its predictive power for drug responses.
Here, we deconvolute 1350 bulk RNA-seq samples from five independent AML cohorts on a single-
cell healthy BM reference and demonstrate that the morphological differentiation stages (FAB) could
be faithfully reconstituted using estimated cell compositions (ECCs). Moreover, we show that the
ECCs reliably predict ex-vivo drug resistances as demonstrated for Venetoclax, a BCL-2 inhibitor,
resistance specifically in AMLwith CD14+monocyte phenotype. We validate these predictions using
LUMCproteomics data by showing thatBCL-2 protein abundance is split into two distinct clusters for
NPM1-mutated AML at the extremes of CD14+monocyte percentages, which could be crucial for the
Venetoclax dosing patients. Our results suggest that Venetoclax resistance predictions can also be
extended to AMLwithout recurrent genetic abnormalities and possibly toMDS-related and secondary
AML. Lastly, we show that CD14+monocytic dominated Ven/Aza treated patients have significantly
lower overall survival. Collectively, we propose a framework for allowing a joint mutation and
maturation stage modeling that could be used as a blueprint for testing sensitivity for new agents
across the various subtypes of AML.

Acutemyeloid leukemia (AML) is an aggressive hematological cancer of the
myeloid lineage. AML is caused by a combination of relatively few genetic
alterations that are predominantly somatically acquired and cooperatively
induce a maturation arrest in combination with rapid uncontrolled pro-
liferation of immature myeloid precursor cells. The prognosis of AML is
highly dependent on the presence of such recurrent genetic alterations and
varies from > 90% cure rates to <10%1. Therefore, the current WHO clas-
sification primarily defines AML subtypes according to the presence of

eleven recurrent genetic aberrations (RGA) changes and an added hetero-
geneous umbrella subtype composed of a highly diverse set of relatively rare
RGAs2–5. Only AML cases that lack any detected RGA are characterized
according to their maturation stage according to the French-American-
British (FAB) cytomorphological/cytochemical classification6.

Recently, the maturation and differentiation stage of AML blasts has
gained importance due to a striking associationwith sensitivity or resistance
tonewdrugs7–9.AMLdifferentiation stage canbe assessedbydiagnosticflow
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cytometry more accurately and objectively than by cytomorphological
examination alone. Current standardized flow cytometry for AML diag-
nosis, analyzes few carefully selected differentiation markers, sufficient for
accurate immunological AML classification10. However, gene expression
profilingbybulkRNA-sequencing (RNA-seq) analysesmanymoremarkers
(several thousands) and is an attractive alternative technique as it allows
both calling of genetic aberrations and estimation of cell subsets, i.e. esti-
mated cell composition (ECC) from the same sample11–13. Reported
attempts to estimate ECCs by deconvoluting bulk AML samples utilizing
single-cell RNA-seq as an in-silico reference, were mostly focused on
detection of survival differences without performing thorough validation of
the ECCs and/or used leukemic samples as reference14–16, which prevents
assessing whether ECCs are tissue- or sample- specific.

Here, we perform deconvolution, a technique in which you try to
estimate each cell type within the total gene expression profile of a bulk
mixture, of 1350 AML transcriptomic samples via a healthy single-cell
reference while validating our findings with our in-house (LUMC) flow
cytometry data. Of note, we demonstrate that the ECCs recapitulate the
entire FAB landscape (M0-M7). Then, using these ECCs we predict ex-vivo
drug resistance data from literature and show the agreement of these results
at protein levelwith the help of LUMCproteomicsdata inAMLpatients, for
whom we also had acquired gene expression data. To conclude, we hereby
propose a transcription-based single-cell guided deconvolution framework
to assess the drug effectiveness to differentmaturational stages of AML.We
also provide our framework as a CRAN R package available at https://
github.com/eonurk/seAMLess.

Results
Deconvolution pipeline recapitulates healthy and malignant
hematopoiesis
We initially created a healthy bone marrow (BM) reference atlas from
single-cell transcriptomics data (Fig. 1a). For this purpose, we integrated
data from 69 101 cells covering 439 genes from three publicly available
datasets (two full-transcriptome and one targeted) from two studies17,18 (Fig.
1b, Methods). T-cells and B-cells formed separate clusters in the UMAP
plot, whereas the myeloid lineage cells clustered together. To differentiate
early myelopoiesis, we distinguished >3349 hematopoietic stem cells (HSC)
and 1 432 erythro-myeloid progenitors (EMP), 2 939 lymphoidmultipotent
progenitors (LMPP), as well as 3 508 granulocytes-monocytes progenitors
(GMP) (Fig. 1c). Inter-individual variability, possibly due to age differences
or technical differences,mostly affectedT- andB- cells anddidnot influence
overall clustering (Fig. S1A). Homogeneous distribution of the studies on
the UMAP plot showed successful integration of the different datasets
(Fig. S1B).

Wenext performed in silico experiments to validate our deconvolution
set-up.We first used the healthy BM reference to create in silicomixed bulk
samples with known cell compositions. Pseudobulk profiles were simulated
with one abundant cell type (80%of the cells) with the remaining cells being
a mix created by random selection (Methods). Then, MuSiC13 with the
default settings was used to deconvolute the simulated pseudobulk profiles
into their respective cell types (Fig. S1C). To validate on an independent
dataset, we also simulated pseudobulks from 40 000 healthy bone marrow
cells across 8 donors of the human cell atlas (HCA)19 (Fig. S1D) and per-
formed deconvolution via MuSiC. All simulated pseudobulk profiles were
successfully deconvoluted into their respective cell types (matching to the
most abundant cell type) apart from EMP (Fig. 1d). For this profile, the
annotations were shared mostly among EMP (14%) as well as HSC (25%)
and Early Erythrocytes (23%). This discrepancy might be explained by the
transcriptional similarity of these cell types (Fig. 1b).

Next, we analyzed our LUMC diagnostic flow cytometry data
(EuroFlow10 panels; see Methods) for 22 AML samples with matched bulk
RNA-seq data. An overview ofmeanfluorescence intensity (MFI) values for
these samples’ abnormal cells after staining with antibodies for 33 markers
distributed over 7 tubes (1 Orientation+ 6 AML assignment tubes) is
shown in Fig. S1E (Supplementary Table S1, Fig. S7). In line with our

expectations, the most abundant cell types for all samples were in the
myeloid lineage for both flow cytometry analyses and estimated cell com-
positions (ECCs) (Fig. 1e, Supplementary Table S4). To quantify whether
monocyticAMLcanbe accurately distinguished fromAMLwithmore stem
cell-like phenotypes, we plotted CD14+ monocyte percentages as deter-
mined by deconvolution against MFI values of antibodies of monocytic
markers (CD11b, CD64, IREM2, andCD14) on all BM cells without gating,
and observed statistically significant correlations for 3 markers (CD11b,
CD64, IREM2), with CD64 being most significant (R2 = 0.43, P < 0.001)
(Fig. S1F). Also, percentages of AML cells assigned to the monocytic subset
by EuroFlow panels and ECCs showed statistically significant correlations
(R2 = 0.64, P < 0.001) (Fig. 1f).

Lastly, we downloaded publicly available TARGET AML and ALL
(B-ALL and T-ALL) data and deconvoluted these samples (n = 719) with
the healthy BM reference (Fig. 1g, Supplementary Table S1) to show that
different leukemic phenotypes could be captured by deconvolution. The
ECC of the matching cell type of origin was significantly higher for the
different acute leukemias (Fig. S1G), most prominent for B-ALL, con-
firming the ECCs’ ability to capture the patients’ immune phenotypes at
major cell type levels. Together, these benchmarking andvalidation analyses
demonstrated that given a healthy single cell BM transcriptomic atlas, the
cell type proportions can be recapitulated faithfully via deconvolution from
bulk transcriptomic leukemia cases.

Deconvolution of bulk AML transcriptomics reveals the dom-
inating immune fraction
To investigate heterogeneity in cell composition of AML, we next applied
our framework to deconvolute five independent bulk transcriptomic AML
studies, i.e. TCGA-LAML20 (n = 151), BEAT-AML21 (n = 460), TARGET-
AML22 (n = 187), LEUCEGENE23 (n = 452) and our cohort LUMC11

(n = 100) totaling in 1350 samples from 1267 patients (Fig. S2A). The
results are shown in Fig. 2a as a heatmap where each sample was decom-
posed into the 22 cell types from the healthy BM reference. We also added
information on patients’ clinical blast counts, FAB6, WHO 20163, and ELN
20175 classes for an overarching picture of AML landscape, and we also
calculated the stemness score24, which is a gene expression signature for
patient prognosis trained on engraftment capacity of AML in immunode-
ficient mice (Supplementary Table S2). Each sample was assigned to the
most abundant cell type as determined by deconvolution (AMLphenotype)
and arranged according to their fractions within each phenotype. The data
showed a clear dominance of one immune cell type for most of the cases,
indicating that maturational arrests and lineage skewing are leukemic
properties that can be readily assessed using transcriptome sequencing. The
majority of AML cases was estimated to be dominated bymyeloid cells (Fig.
2a, S2A, S2B, S3A, S3D). As notable exceptions, a few pediatric AML
samples from the TARGET cohort showed ECC profiles dominated by
T-cells or B-cells. As previously reported these cases can nevertheless be
considered as a special subgroup of pediatric AML, and specifically T-cell
dominatedpatientswere recognized forpoor survival25. Furthermore, in line
with previous reports17, patients with acute promyelocytic leukemia (APL),
classified as AML-M3 by FAB, were correctly assigned to have a cell com-
position dominated by granulocyte-monocyte progenitors (GMPs). Besides
APL, there are alsoAMLcases dominatedbyGMPand large groupsofAML
assigned as monocytic AML or AML with an earlier HSC or EMP pheno-
type, again demonstrating that bulk transcriptomics can be used to capture
the stage of arrest of AML during hematopoiesis by deconvolution.

Deconvolution of bulk AML transcriptomics agrees upon
stemness score
To comprehensively visualize changes in ECCs in relation to metadata,
ECCs of AML samples were visualized using a UMAP plot. As expected,
samples with similar ECCs clustered, as shown after annotating the samples
for theirmost abundant cell type (Fig. 2b—eft panel).When superimposing
the deconvoluted percentages of 6major cell types on the sameUMAP plot
(Fig. 2b—right panels), gradual shifts in cell composition became apparent,
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in particular, APL samples populated the extreme extension of the GMP
cluster. Moreover, a gradient towardsmonocytic outgrowth and conversely
to a high stemness was also observed. Comparisons with the previously
published stemness score showed an overall agreement with ECCs, with
patients dominated by HSCs and EMPs having a statistically significantly
higher stemness score than patients dominated by CD14+Monocytes and

GMPs (Fig. S3B). Late Erythrocyte also had high stemness score, albeit with
large variation. By dividing AML into cases with high and low stemness
scores, we observed similar compositional changeswith abundance ofHSCs
and EMPs in AML with high stemness scores in all cohorts. Late ery-
throcytes, however, were not consistently enriched in all cohorts. Further-
more, we noticed that in TARGET, T cells are abundant in AML with high
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stemness scores (Fig. S3C). This raises the question whether the stemness
score,whichhas been trained on adultAML, is useful to predict prognosis of
pediatric patients particularly considering that large subtypes of adult AML
such as APL and AMLwithmutated NPM1 are rare in pediatric AML. The
consistent enrichment of HSCs and EMPs in AML with high stemness
scores in all cohorts, however, further supports correct determination of the
cell composition of AML by deconvoluting bulk transcriptomics.

Estimated cell composition recapitulates FAB classes
Clear associationswere also observed between cell type assignments by ECC
and FAB classification status (left panel of Fig. 2c). Furthermore, distinct
distributions of cell type-defining gene expression profiles became evident
for each FAB AML type by plotting continuous values of deconvolutions
rather than categorical assignments: M0 (minimally differentiated AML)
cases had high levels of the HSC-defining signature, whereas these levels
decreased and EMP- and GMP signatures appeared in M1 (AML without
maturation) andM2 (AMLwithmaturation). As expected,M3 (APL) cases
were almost completely dominated by theGMP signature, whileM4 (Acute
Myelomonocytic Leukemia) and M5 (Acute monoblastic/monocytic leu-
kemia) samples resembled CD14+monocyte cells and GMP. Noticeably, a
few samples that were dominated by the GMP signature were assigned to
AML M4 or M5 by morphological assessment (top left corner). Further
inquiry in LEUCEGENE, which used more detailed FAB annotations,
revealed that these AML samples were enriched for M5a (Fisher exact
p = 3.08 × 10–8) and M4Eo (Fisher exact p = 2.06 × 10-6) (Fig. S3E). AML
M5a are dominated bymonoblastic cells6 andAMLM4Eoare characterized
by myelomonocytic marrow infiltration with eosinophils containing
abnormal immature granules26. BothAML subtypes aremore differentiated
than GMP, but less differentiated and clearly distinct from AML M4 and
M5b, which contain more mature promonocytic or monocytic cells. The
small groups of M6 (Acute Erythroleukemia) and M7 (Acute Mega-
karyoblastic Leukemia) AML were dominated by the signatures of Late
Erythrocytes and Megakaryocyte Progenitors, respectively. These data
demonstrated and confirmed that our single cell guided deconvolution
strategy successfully captures the maturational arrest of AML cells at dif-
ferent differentiation stages of hematopoiesis.

Estimated cell composition captures genetic subtype-specific
resistances to various drugs
To explore whether ECCs convey information on drug resistances,
ex vivo drug response data of 122 small molecule inhibitors provided as
area under the curves (AUC) for 363 AML samples from BEAT were
downloaded. A higher AUC indicates that cancer cells are relatively
resistant since higher drug concentrations are needed to induce cell
death. To understand whether drug resistance of AML samples can be
predicted by ECCs, we trained random forest (RF)models per drug via a
leave-one-out cross validation (LOOCV) setting. For each RF model
Spearman ρ values were calculated (Supplementary Table S5-S7). The
strongest correlation was observed for the BCL2 inhibitor Venetoclax27

(ABT-199) drug (Spearman ρ = 0.509). Drugs like EGF-R inhibitor
Erlotinib (Spearman ρ = 0.376) and the mTOR pathway inhibitor

Rapamycin (Spearman ρ = 0.368) are amongst the top 10 drugs for
which resistance could be best predicted (Fig. S4A).

Next, we asked how changes in each cell type affect drug responses and
therefore univariately associated ECC to drug resistance (Fig. 3a, Supple-
mentary Table S8). This analysis revealed that most change in resistance
occurs across maturational states. For instance, CD14+ Monocytic AML
are more resistant to Venetoclax, whereas more immature cell subsets are
more sensitive. This trend was also clear after overlaying the AUC values of
Venetoclax onto the UMAP plot (Fig. 3b) or when comparing AUC values
across states (Fig. S5A) (one-way ANOVA p = 6.31 × 10−13; Supplementary
Table S9).

We also stratified RF-based predictions according to WHO classifi-
cations for all drugs (Fig. S4B, S5B, Supplementary Table S10). Notably,
drug responses to the Erlotinib and Rapamycin showed statistically sig-
nificant correlations with AML with mutated NPM1 (n = 77, R2 = 0.29,
P = 3.7 × 10−7) and inv(3) (n = 6, R2 = 0.91, P = 3.2 × 10−3), respectively.
Also, responses to Flavopiridol (Spearman ρ = 0.325), a CDK kinase inhi-
bitor, showed significant correlations with ECC within the group of AML-
NOS (n = 77, R2 = 0.31, P = 3.7 × 10−7) while showing higher resistance
towards AML with more stem cell like cell phenotypes (Fig. S5C, S5D).
These annotations also revealed that PML-RARA-carrying APL samples
(n = 8) are dominated by GMPs are sensitive for Venetoclax, whereas AML
with CBFB-MYH11 (n = 7) had the best fit (R2 = 0.78, P = 0.009) (Fig. 3c),
although the small sample size of CBFB-MYH11 cases prohibits drawing
robust conclusions. Larger groups of AML, however, such as NPM1
mutated cases (n = 55, R2 = 0.33, P < 0.001), and AML-NOS (n = 42,
R2 = 0.17, P = 0.007), together accounting for ~58% of AML, also showed a
clear trend for Venetoclax resistance (Fig. 3c). Also, within the group of
NPM1 mutated samples, which is the largest class of AML, CD14+
Monocytedominated casesweremost resistant toVenetoclax (Fig. S5E, S5F;
one-way ANOVA p = 7.6 × 10−4; Supplementary Table S11). In summary,
these findings suggest that information on the ECCs of AML will yield
therapeutic implications even within one genetic subtype.

Estimated CD14+Monocyte percentages predict Venetoclax
resistance better than BCL-2mRNA expression
Since Venetoclax is targeting the anti-apoptotic BCL-2 protein, we next
checked BCL-2mRNA expression levels in AML and overlaid the CD14+
Monocyte percentages for these cases (Fig. 3d). The data showed that low
BCL2 expression indeed correlated with strong resistance to Venetoclax.
However, a few samples were resistant despite relatively high BCL-2
expression (samples at upper right corner in Fig. 3d). As the majority of
these cases had a CD14+Monocyte phenotype, we univariately associated
BCL-2 expression and CD14+ Monocyte percentage to investigate which
factor best explains the Venetoclax response (Fig. 3e). We also associated
metadata such as reported blast percentages, ELN status and primary
diagnosis to determine their effect sizes and significance (Supplementary
Table S12). This analysis demonstrated that both CD14+ Monocyte per-
centages (adjusted P = 1.7 × 10−18) and BCL-2mRNA expression (adjusted
P = 4.8 × 10−14) were associated significantly with the Venetoclax response.
Furthermore, we investigated whether previously reported MAC Score28

Fig. 1 | Schematic of the study and compositional validation. aThe overview of the
study. Integrated cells for healthy bone marrow (BM) dataset were collected from
two studies17,18. Five independent bulk transcriptomic AML cohort (TCGA-LAML,
BEAT-AML, TARGET-AML, LEUCEGENE and LUMC) samples (n = 1,350) were
deconvoluted. Drug resistance data (n = 122) from BEAT-AML were predicted
using ECCs. Additional ALL samples (n = 532) from TARGET study were used for
validating deconvolution framework. Proteomics (n = 39) and flow cytometry
samples (n = 22) from LUMC cohort were used for further validation of the fra-
mework. bUMAP plot of integrated healthy BM (n = 69,101) cells. Annotations are
lifted via Azimuth framework. T and B cell subset were merged, resulting into 22 cell
types (abbreviations; GMP: Granulocyte Monocyte Progenitors, LMPP: Lymphoid
Primed Multipotent Progenitors, NK: Natural Killer, EMP: Erythroid Mega-
karyocyte Progenitor, pDC: Plasmacytoid Dendritic Cell, CLP: Common Lymphoid

Progenitor, HSC: Hematopoietic Stem Cell, BaEoMA: Basophil Eosinophil Mast
Progenitor, Prog Mk: Progenitor Megakaryocyte, pre-mDC: Precursor Myeloid
Dendritic Cell, ASDC: AXL+ Dendritic Cell). c Barplot for cells per cell type of the
healthy BM. X-axis is in log10 scale. d Heatmap showing the fraction of deconvo-
luted cell types for simulated pseudobulks from HCA subset. Each row indicates a
simulated pseudobulk with an overabundant cell type (80%) and adds up to 1, and
each column is a cell type from the healthy BM reference. e Cellular composition of
the same samples via flow gating of orientation tube (ALOT) and ECCs (RNA-seq).
f Percentage of monocytic subsets measured by flow cytometry (fresh material) and
ECCs (thawed for RNA-seq). g Ternary plot showing the ECCs of TARGET AML
and ALL cohorts (n = 719), each dot represents a sample and corners indicate a
major cell type and colors indicate the primary diagnosis of each leukemic sample
(Supplementary Table S1).
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Fig. 2 | Capturing differentiation stages with ECCs. a Heatmap showing the
deconvoluted fractions for of five AML cohorts (TCGA-LAML, BEAT-AML,
TARGET-AML, LEUCEGENE and LUMC). Each column represents a sample,
which is deconvoluted into 22 cell types (bottom part with blue) via healthy single
cell BM reference. Top part of the annotations shows the provided meta data (FAB,
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(AML phenotype) and samples within each assignment were sorted according to the
assigned phenotype. b UMAP plot of deconvolution levels annotated via most
abundant cell type as the left panel; and on the right, ECCs of 6 out of 22 cell types
were shown in continuous scale (HSC, CD14+Monocytes, Late Erythrocytes, GMP,
EMP and cDC). c Similar to UMAP plot in (b) but colored with FAB classifications
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(right panel).
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(albeit in gene expression) was more associated to Venetoclax resistance
compared to BCL2 gene expression alone (R = -0.54, andR = -0.53), but the
results were similar, and the estimated CD14Monocytes percentages had a
stronger correlation (R = 0.60) (Fig. S6E). Next, we created a multivariate
model to investigate whether the significance of CD14+ Monocyte per-
centages diminishes along with the presence of BCL-2 expression in the
same model (Fig. 3f, Multivariate Venetoclax Tab in Supplementary Table
13). In this model, CD14+ Monocyte percentages remained significantly
associated with Venetoclax resistance (P = 1.92 × 10−5), while BCL-2
expression was below the significance threshold of 0.01 (P = 0.015). In
conclusion, these results indicate that cellular composition is a more robust
marker than BCL-2 mRNA expression to predict Venetoclax resistance,
specifically for AML from NOS and NPM1 mutated patients.

EstimatedCD14+MonocytepercentagesassociateswithBCL-2
protein abundance
Next, we compared the effects of BCL-2 gene expression and CD14+
Monocyte percentages with BCL-2 protein abundance within each sample.
For this purpose, we used our LUMC produced proteomics data, and after
batch correction (Fig. S6A, S6B, see Methods) for matched AML cases
(n = 39; LUMC) to correlate the abundance of Apoptosis regulator BCL-2
protein vs gene expression (Fig. S6C) and CD14+ Monocyte percentages
(Fig. S6D). The data showed that BCL-2 gene expression and CD14+
Monocyte percentages both correlated with BCL-2 protein abundance to a
similar extent (R2 = 0.45, P < 0.001). We also overlaid plots for BCL-2
expression and CD14+ Monocyte percentages with information on
patients’ genetic abnormalities (Fig. 4a, b). Based on their low AUC for
Venetoclax response (Fig. 3b), two AML cases with PML-RARA had high
BCL-2 protein expression (n = 2, dark green).We also confirmed the strong
variability in AUC for Venetoclax response within the group of AML with
mutated NPM1 (n = 18, green) by showing two distinct groups at the
extremes of CD14+ Monocyte percentages which correlated with BCL-2
protein expression (Fig. 4b). Within the group of AML patients with
mutated NPM1, CD14+ Monocyte percentage associated stronger with
both BCL-2 protein abundance (R2 = 0.56, P < 0.001) than BCL-2 gene
expression (R2 = 0.52) (Fig. 4c, d). In conclusion, the data demonstrate the
relevance of our deconvolution approach on bulk RNA-Seq to separate
AML, especially those with mutated NPM1, with high and low monocyte
percentages to predict the patient’s response to Venetoclax.

Estimated CD14+Monocyte phenotype captures Venetoclax
treated patient prognosis
To test whether deconvolution approach associates with clinical outcome,
we utilized BEAT-AML study and selected Venetoclax/Azacitidine (Ven/
Aza) treated patients with overall survival and RNA-seq data (n = 20).
Deconvolution revealed that 5 of these patients had a CD14+ monocytic
phenotype and these patients had a significantly worse overall survival
(p = 0.047) compared to others (Fig. 4e; Supplementary Table S14). On the
contrary, stemness score24 (p = 0.11) and ELN classification (p = 0.14) were
not able to fully split these patients with the notable exception of ELN
favorable patients. In summary, this analysis highlights the clinical sig-
nificanceof employingECC-basedannotation forVen/Aza treatedpatients.

Discussion
In this work, we utilized single cell guided deconvolution to decompose
bulk transcriptomics data from five independent AML cohorts and show
that the obtained estimated cell compositions (ECCs) faithfully recon-
stitute the FAB landscape (M0-M7). Moreover, using same-sample flow
cytometry, we were able to validate our deconvolution framework.
Hence, following our previous work using deep transcriptomics to call
various types of leukemia-defining genetic aberrations11,29, our current
findings further underpin the power of transcriptomic-based approa-
ches as a comprehensive and versatile platform for AML diagnosis. We
next illustrated the potential use of our deconvolution framework for
precisionmedicine applications, by correlating the estimated ECC to the

results of an ex vivo drug resistance screening of 122 small-molecule
inhibitors in the BEAT-AML study. For the BCL-2 inhibitor Venetoclax
we show that higher levels of the estimated ECC subset ‘CD14+
Monocyte’ correspond to a higher resistance, and intriguingly, that
estimated CD14+ Monocyte levels is a better explanatory variable of
resistance to Venetoclax than BCL-2 expression alone. Nevertheless,
using same-sample LUMC proteomics data in 39 patients, we show that
the estimated CD14+ Monocyte levels accurately mark BCL protein
expression, and that forNPM1-mutated patients the presence or absence
of a CD14 monocytic outgrowth corresponds with a distinct NPM1
protein abundance. Lastly, we show that CD14 monocyte phenotype
correlates with poor survival outcome. Our findings may potentially
have important implications on drug use especially for genetically
uncharacterized patients (AML, NOS) currently accounting for ~40% of
all AML as well as other well-characterized patients such as NPM1
mutated samples.

Kuusanmaki et al. reported that monocytic differentiation of AML
reduced sensitivity to Venetoclax ex vivo8, and also with a recent paper they
show ex-vivo drug responses correlate with AML response in clinic30.
Similarly, Pei et al. reported that the different monocytic subclones in vivo
created resistance to Venetoclax treatment9, and also recently, White et al.
showed that BCL-2 inhibitor resistance could be predicted via the genes
associated with monocytes. Recently, using the flow cytometry data from
untreatedMDS patients Ganan-Gomez et al. showed that after relapse and
becoming secondary AML (sAML) patients, those patients with less
maturated cell types (EMP) before treatment had a faster complete remis-
sion (CR) and longer relapse free status compared tomorematured cell type
(GMP) with Venetoclax treatment, supporting our hypothesis that ECCs
could also predict Venetoclax resistance for MDS and sAML patients31.
Collectively, these studies suggest thatVenetoclaxhasdifferent resistancesat
different maturational stages, and especially higher resistance for patients
with CD14+ Monocyte dominated phenotype as we have shown in this
manuscript, and we provide an open-source framework, seAMLess, for
replicating our results or applying it to other clinically relevant datasets.

A limitation of our deconvolution strategy is that it cannot distinguish
the cancerous cell types as it uses a healthy bone marrow as a reference.
Although it is conceptually appealing, we have three rationales behind not
using a cancerous reference. First, without mutation calling for all cells, one
cannot be sure whether a cell is cancerous or not. Strategies like predicting
cancer cells based on their transcriptional similarity of cells with mutation
calling, proposed by Van Galen et al.17, adds another level of ambiguity to
already not perfect deconvolution pipelines. Secondly and more impor-
tantly, heterogeneity ofAMLcauses further sub-clusteringwithin individual
AML cases (e.g. UMAPplots of Triana et al.18), therefore creating a notwell-
characterized cell type signature but rather patient specific clusters10,18.
Lastly, using healthy subsets as reference allows our framework to provide
more interpretable and intuitive results for clinicians and doctors, as it
reports immune phenotypes and percentages on contrary to score-based
prognostic values16,24,29. To summarize, we believe our proposed pipeline
could be a blueprint for assessing new drugs’ resistances on different cell
types of AML and along with our framework, they may provide better
insights for clinicians and help paving the way into precision medi-
cine in AML.

Methods
Creating the healthy BM single-cell reference
We downloaded three different healthy BM datasets from two different
studies, namelyVanGalen et al.17 (full-transcriptome,n = 6915), andTriana
et al.18 (full-transcriptome, n = 13,165; 462 targeted mRNA, n = 49,057).
Then, all cell labels were uplifted up via Seurat package32 (v4.0.3) default
query annotation pipeline tomatchwith the Triana’s full-transcriptome cell
labels as it had themost recent and detailed labels. Next, Seurat’s integration
pipeline with CCA was run and the cells that were labeled as doublets/
multiplets were removed from the down-stream analyses, and this yielded a
healthy BM atlas of 69,130 cells in total, covering 439 genes. Also, we used
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the 40,000 cell subset of HCAprovided by SeuratObject package (v4.0.2) for
the validation analyses (Fig. 1c, d).

Different schemes of creating pseudobulks
To create a cancerous-like pseudobulk profile from healthy BM reference
and HCA subset, we selected a total of 1000 cells for each profile, majority
(80%) of them coming from a cell-type (over-abundant) and the rest of the
cellswere distributed according to inverse proportionof thenumbers of cells
for the remaining cell types. To achieve this, first integrated counts were
exponentiated to make them non-log scale and slice_sample function from
dplyrpackage (v1.0.7)was usedwith a replacement option.Then, these non-
log scale cell counts were summed up to create the pseudobulk profiles. For
individual-based pseudobulk, AggregateExpression from Seurat package
was used.

Flow cytometry data
AML cases were stained with fluorescent antibodies and analyzed by flow
cytometry for diagnosis, prognosis, and disease monitoring of AML in the
diagnostic laboratory of the department of Hematology in the Leiden
UniversityMedicalCenter. Theflowcytometric test has beendeveloped and
performed according to EuroFlow standard operating procedures (www.
euroflow.org)10. EuroFlow antibody combinations have been tested against
references databases of normal cells from healthy individuals and allow
multidimensional identification and distinction of aberrant cells from
normal cell populations. The flow cytometric test includes 8 tubes with
different antibody combinations, i.e. one ALOT tube (acute leukemia
orientation tube) and 7 AML tubes (AML1-7). The ALOT tube contains
antibodies against CD3, CD45, MPO, CD79, CD19 and CD7. The AML
tubes contain antibodies against CD16, CD13, CD34, CD117, CD11b,
CD10, HLA-DR and CD45 (AML-1), CD35, CD64, CD34, CD117,
CD300e/IREM2, CD14, HLA-DR and CD45 (AML-2), CD36, CD105,
CD34,CD117,CD33,CD71,HLA-DRandCD45 (AML-3),NuTdT,CD56,
CD34, CD117, CD7, CD19, HLA-DR and CD45 (AML-4), CD15, NG2,
CD34, CD117, CD22, CD38, HLA-DR and CD45 (AML-5), CD42a and
CD61, CD203c, CD34, CD117, CD123, CD4, HLA-DR and CD45 (AML-
6). AML tube 7 contains antibodies against CD41, CD25, CD34, CD117,
CD42b, CD9, HLA-DR and CD45, but this tube has not been used to stain
AML cases analyzed in this study.

Obtaining bulk transcriptomic data and their preprocessing
We have downloaded the non-normalized count matrices (htseq-counts)
and the meta files of the four discovery cohorts (TCGA-LAML, BEAT-
AML, TARGET-AML and TARGET-ALL) from https://portal.gdc.cancer.
gov. For LEUCEGENE, count data was downloaded from their dedicated
site (https://data.leucegene.iric.ca/) along with their providedmeta data. All
meta/count data were pre-processed using R (v4.1.0). For the meta data,
genomic aberration labels were relabeled to the main AML WHO 2016
classes, non-AML samples were removed from the down-stream analyses,
ELN-classes were relabeled according to ELN 2017 recommendations. For
the countdata, ERCCspike-ins andmitochondrial geneswere removed, and
the count matrix was then sorted according genes standard deviation in
order to remove the duplicated genes that had less variation thus providing
less information, and lastly the gene ensembl ids were converted to gene
symbols. Before converting ensembl ids into gene symbols, the stemness
score for each patient was calculated via count-per-million (cpm) normal-
ized libraries, and these libraries were normalized using cpm function from
edgeR package33 (v.3.34.1).

Our 100 AML samples (LUMC) deposited to EGA with accession
number EGAS00001003096 and they are accessible upon request. One
hundred cryopreserved AML samples were selected from the Hematology
Biobank of LeidenUniversityMedicalCenter (LUMC)with approval by the
institutional reviewboard (no. B 18.047) andwritten informed consentwere
obtained according to the Declaration of Helsinki. QC benchmark analyses
for these samples were done in our previous paper11. Therefore, we ran
default HT-SEQ pipeline (v0.11.2) with paired-end option aligning fastq

files to hg38 to obtain the count matrix. All abovementioned preprocessing
steps (filtering, gene name conversion) were also conducted for these
samples as well before deconvolution.

Deconvolution pipeline
To deconvolute the simulated pseudobulks and bulk RNA-seq AML
patients, we used MuSiC13 package (v0.1.1) as it benchmarked highly and
consistently across different cell types at various settings12 and had an easy-
to-use open-source (GPL-3) implementation (https://github.com/xuranw/
MuSiC). We used non-log scaled count values as inputs and set the nor-
malization option to false. Patients were assigned to the groups (e.g., GMP,
CD14+ Monocyte etc.) according to their most abundant deconvoluted
ECCs. In the heatmap (Fig. 2a), patients were re-ordered according to their
ECCs within each assignment.

UMAP of estimated cell compositions
First, to obtain reproducible results with umap plots, we set a seed to 2 as
UMAP procedure involves random initialization. Then, we ran umap
function with default parameters from umap package (v0.2.7) and used the
first two reduced dimensions to create the plots. All related figures were
plotted using ggplot2 package (v3.3.5).

Drug resistance predictions via random forest
BEAT-AML has drug resistance data for 122 small-molecule inhibitors, we
downloaded these from their manuscript (Supplementary Table S5). Then,
each drug response was min-max normalized, then matched with their
available RNA-seq samples. Next, drug resistances were predicted with the
deconvoluted ECCs. Random forest algorithm from randomForest package
(v.4.6-14)with default parameterswas used for the predictions. Each sample
within each drug was predicted at leave-one-out cross-validation settings.
Then, for each drug, Spearman ρ values were calculated between predicted
and actual drug resistance values. To stratify the drugs according to their
primary diagnosis ofWHOclassification, samples within each diagnosis are
selectedand theneachdrugspredicted, andnormalizeddrug resistancewere
associated, then the correlation andp-valueswere calculatedusing summary
function in base R.

Venetoclax association analysis
First, each attribute was associated to standardized (min-max normalized)
Venetoclax resistance from BEAT-AML study at univariate settings using
lm function in R environment (v4.1.0) (Supplementary Table S12). Then,
p-values and coefficients were calculated using summary function and then
p-values were multiple hypothesis corrected using Benjamini-Hochberg
procedure. For multivariate models, FAB classification, and ECC levels
(except CD14+Monocytes) were excluded as only 76 out of 460 samples of
BEAT-AMLhadFABclassifications and as otherECCs are not independent
of CD14+ Monocyte percentages (as the question is whether CD14+
Monocyte levels are independently predictive ofVenetoclax resistancegiven
BCL-2 expression in the samemodel). Again, p-values and coefficients were
calculated with summary function and plotted in a volcano plot (Fig. 3f,
Supplementary Table S13).

Survival analysis
ggsurvival and survminerRpackageswas used for producingKaplan–Meier
curves. P-valueswere calculated with log-rank test. For ECC graph, patients
were annotated with their most abundant cell type. Stemness score is split
into low and high categories using the median value.

Proteomics sample preparation
Cell lysis, digestion and TMT labeling was performed as described in Paula
et al.34. Cell lysis was performed using 5% SDS lysis buffer (100mM Tris-
HCl pH7.6) and 5 U benzonase nuclease (Thermo Scientific) with incu-
bation at 95 °C for 4min. Protein concentration was determined using
Pierce BCAGold protein assay (ThermoFisher Scientific). 100 µg protein of
each sample was then reduced with 5mM TCEP. Reduced disulfide bonds
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were alkylated using 15mM iodoacetamide. Excess iodoacetamide was
quenched using 10mM DTT. Protein lysates were precipitated using
chloroform/methanol; resulting pellets were re-solubilized in 40mM
HEPES pH 8.4 and digested using TPCK treated trypsin (1:12.5 enzyme/
protein ratio) overnight at 37 °C. Peptide concentration was then deter-
mined using Pierce BCA Gold protein assay.

The different samples, and reference samples, were arranged into five
TMTpro 16plex sets. The peptides were labeled with TMTpro Label
Reagents (Thermo Fisher Scientific) in a 1:4 ratio by mass (peptides/TMT
reagents), total volume was 35 µL, for 1 h at RT. Excess TMT reagent was
quenched with 5 µL 6% hydroxylamine for 15min at RT. Samples corre-
sponding to a TMT set were pooled and lyophilized.

Each TMT sample (80 ug) was fractionated by high pH reverse phase
chromatrography on a Zorbax RRHD Eclipse Plus C18 2.1 × 150mm 1.8-
micron column, at 800 ul/min using an Agilent1200 binary HPLC system,
equippedwithaUVdetector.Themobile phaseswere10mMAmbicpH8.4
(A) and 10mM Ambic/Acetonitrile 20/80 pH 8.4 (B). The gradient was
from2% to 90%B in 35min. 20 fractionswere collected in a circular fashion,
i.e., collection per vial for 20 sec before moving to the next collection vial.
After collection in the last vial collection is continued in the first vial.
Fractions were subsequently freeze dried.

Mass spectrometry
TMT-labeled peptide fractions were dissolved in water/formic acid (100/
0.1 v/v) and analyzed by on‐line C18 nanoHPLC MS/MS with a system
consisting of an Ultimate3000nano gradient HPLC system (Thermo, Bre-
men, Germany), and an Exploris480 mass spectrometer (Thermo) as in
Rossi et al.35. Fractions were injected onto a cartridge precolumn
(300 μm× 5mm, C18 PepMap, 5 um, 100 A), and eluted via a homemade
analytical nano-HPLC column (50 cm × 75 μm; Reprosil-Pur C18-AQ
1.9 um, 120 A (Dr. Maisch, Ammerbuch, Germany)). Solvent A was water/
formic acid 100/0.1 (v/v). The gradient was run from 2% to 40% solvent B
(20/80/0.1 water/acetonitrile/formic acid (FA) v/v) in 120min. The nano-
HPLC column was drawn to a tip of∼ 10 μm and acted as the electrospray
needle of the MS source. The mass spectrometer was operated in data-
dependent MS/MS mode with a cycle time of 3 s, with the HCD collision
energy at 36 V and recording of the MS2 spectrum in the orbitrap, with a
quadrupole isolation width of 1.2 Da. In the master scan (MS1) the reso-
lution was 120,000, the scan range 350–1200, at standard AGC target
@maximum fill time of 50ms. A lock mass correction on the background
ionm/z = 445.12003 was used. Precursors were dynamically excluded after
n = 1 with an exclusion duration of 45 s, and with a precursor range of 20
ppm. Charge states 2–5 were included. For MS2 the first mass was set to
110Da, and the MS2 scan resolution was 45,000 at an AGC target of 200%
@maximum fill time of 60ms.

Proteomics data processing and down-stream analysis
In a post-analysis process, raw data were first converted to peak lists using
Proteome Discoverer version 2.4 (Thermo Electron), and submitted to the
Uniprot database (Homo sapiens, 20596 entries), using Mascot v. 2.2.07
(www.matrixscience.com) for protein identification. Mascot searches were
performed with 10 ppm and 0.02 Da deviation for precursor and fragment
mass, respectively, and the enzyme trypsin was specified. Up to two missed
cleavages were allowed. Methionine oxidation and acetyl on protein
N-terminus were set as variable modifications. Carbamidomethyl on Cys
and TMTpro on Lys and N-terminus were set as fixed modifications.
Protein and peptide FDR were set to 1%. Normalization was on the total
peptide amount. The 5TMT-16plex analyseswere normalized to eachother
by the bridge samples.

First, the abundance data is log-cpm transformed to stabilize variance
among samples and then to ensure dealing with the technical batch effects,
we ran removeBatchEffect function from limmapackage (v3.48.3) providing
batch information. Then, we overlaid the transformed protein abundances
onto a PCA plot to ensure that there is no batch related clustering, as can be
observed from the positioningof theTMTcontrol samplesbefore (Fig. S6A)

and after correction (Fig. S6B). The down-stream analyses were then done
using only the primaryAML (n = 39). Next, the transformed BCL-2 protein
abundance was associated with the BCL-2 expression from LUMC cohort
(Fig. 4a) and CD14+ Monocyte percentage within each sample (Fig. 4b)
(Supplementary Table S14). R2 and p-values were calculated using stat_-
poly_eq function from ggpmisc (v0.4.5) package and lines were drawn with
geom_smooth function fromggplot2 package (v3.3.5) viamethod option set
to linear model.

Data availability
Our 100AMLsamples (LUMC)have beendeposited toEGAwith accession
number EGAS00001003096and are accessible upon request. These samples
were deposited to EGA for Arindrarto et al.11 For further inquiries, please
contact: e.b.van_den_akker [at] lumc.nl.

Code availability
We have implemented an GPL-3 licensed R package at https://github.com/
eonurk/seAMLess, which deconvolutes a given bulk RNA-seq countmatrix
to 22 cell types from our single-cell reference and predicts drug resistances
via RF algorithm. All scripts related to this project can be found in https://
github.com/eonurk/lumc-sc-aml.
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