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Abstract

The transition to green energy is reshaping the energy landscape, marked by increased integration of
renewable energy sources, distributed resources, and the electrification of other energy sectors. These
changes challenge grid security, particularly regarding the N-1 security criterion, a crucial factor in
preventing blackouts. Furthermore, climate change is contributing to the growing frequency of extreme
weather events, which constitute the second major cause of blackouts. As grid complexity keeps on
increasing, the need for N-k security, where k lines fail simultaneously, and increased resilience against
extreme weather events is becoming increasingly evident. This necessitates studying the security
constrained optimal power flow (SCOPF) problem considering multiple line outages (N-k). Current
methods exhibit poor scalability as k increases. In response to the challenge of limited scalability, this
thesis proposes a constraint-driven machine learning approach to approximate N-k SCOPFs.

The proposed approach relies on the linearized direct current optimal power flow. The approach utilizes
a neural network to map power system loads to generator setpoints. A feasibility restoration layer is
employed to restore base case infeasible predictions. By incorporating line outage distribution factors
(LODFs), all post-contingency flows are computed. The loss function utilized to train the neural network
draws inspiration from the penalty function method. Lastly, a copula analysis computes joint outage
probabilities for k >1 enabling a probabilistic security assessment. The first academic contribution of
this thesis is the development of a constraint-driven approach to approximate N-k SCOPFs considering
all contingencies using LODFs. The second academic contribution is the formulation of a N-k risk based
security criterion, providing an alternative to the current deterministic N-1 security criterion.

The approach shows promise in its ability to scale effectively to N-k contingencies. Using LODFs, the
approach effectively computes all post-contingency flows for up to k = 3. Moreover, case studies show
the constraint-driven approach’s effectiveness in identifying violating post-contingency cases, with up to
173× speedups and close to optimal dispatch costs. However, the consideration of N-k contingencies
holds combinatorial complexity, and more efficient methods need to be developed for the computa-
tion and storage of all LODFs, and for the computation of all post-contingency flows. Additionally, the
proposed constraint-driven approach can not enforce any post-contingency constraints, necessitating
post-contingency feasibility checks when security against specific contingencies is required. Next, by
incorporating probabilities, the approach shows promise in improving power systems security and re-
silience, but further research is necessary.

In this thesis, only line outages are considered. In the future, the approach could be modified to addi-
tionally account for other equipment outages (e.g. generator outages). Furthermore, future research
could investigate the adoption of this approach in corrective control settings, where it is employed in
the restorative phase of a contingency event. Another suggestion is centered around the incorporation
of graph neural networks in the proposed approach, which could provide a more scalable alternative to
fully connected linear neural networks. Furthermore, more scalable methodologies could be explored
to construct the matrix containing all LODFs, and a more scalable methodology for computing all post-
contingency flows could be developed. Finally, future work could investigate how to utilize the proposed
approach under varying conditions like network topology changes or changing outage probabilities.
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1
Introduction

The energy sector is swiftly evolving towards sustainability, driven by the increasing integration of re-
newable energy sources, expanding distributed energy assets, and electrification across diverse do-
mains [1]. These developments pose a challenge to grid security, or operational reliability, making
it harder to meet the N-1 security criterion, the failure of which has led to numerous blackouts. Fur-
thermore, unforeseen weather events, now more frequent due to climate change, account for the sec-
ond major cause of these blackouts [2, 3]. The growing grid complexity highlights the importance of
N-k outages, where k lines fail simultaneously, necessitating enhanced N-k security and increased re-
silience against high impact low probability (HILP) weather triggered events [4]. While the N-1 criterion
historically balanced security and computational efficiency, recent developments advocate for a proba-
bilistic risk-based assessment, encompassing N-k contingencies with k >1, to enhance power system
operational reliability [5]. Conventional methods encounter difficulties in effectively tackling the com-
putationally demanding N-k security due to its inherent combinatorial complexity. This thesis focuses
on the optimization problem faced by transmission system operators (TSOs), known as N-k security
constrained optimal power flow (SCOPF), which seeks to find the most cost-efficient dispatch which is
secure against k outages.

1.1. Conventional Approaches
In the context of solving N-k SCOPF problems, different approaches have been introduced to reduce
problem size. In [6, 7], Benders decomposition (BD) [8] is used, to decompose the problem into amaster
problem and subproblems representing contingency cases. Furthermore, [9] employs a column-and-
constraint generation algorithm (C&CGA) to iteratively add the most violating contingencies. However,
these approaches face challenges like slow convergence when dealing with numerous contingencies
or the risk of generating infeasible predictions when too many constraints are introduced. Alternatively,
[10] employs an iterative contingency screeningmethod to identify themost critical contingencies, allow-
ing the SCOPF to be solved with a selected subset of contingencies. In [11, 12], this screening process
leverages line outage distribution factors (LODFs) due to their computational efficiency in managing
multiple contingencies. The proposed approaches in [6, 7, 9, 10, 11, 12] do not scale with the number
of outages k, as demonstrated in [13]. A comparison between BD, a combination of C&CGA with robust
optimization (RO), and LODFs reveals issues such as timeouts and slow convergence for N-3. This is
particularly limiting for addressing the N-k SCOPF problem that requires multiple daily resolutions.

The recurrent nature of the N-k SCOPF problem has prompted exploration of machine learning (ML)
techniques as a means to approximate its solution. Reference [14] predicts generator setpoints from
power system loads for N-1 SCOPF using a multi-layer perceptron (MLP). Similarly, reference [15]
utilizes a MLP to classify binding constraints. Both approaches in [14, 15] do not scale with increasing
k. This is because they rely on training data, which becomes exceedingly difficult to generate for k >1.
To address these limitations, [16] proposes a C&CGA-ML algorithm in combination with RO, iteratively
adding constraints, succesfully solving N-1 SCOPFs, but unable to solve N-k SCOPFs. Moreover, in
[17], an adversarially robust ML approach is introduced, using a min-max strategy where the worst-

1



1.2. Proposed Approach 2

case contingency is computed and incorporated in the SCOPF. However, the success of [17] is highly
reliant on the ability to identify the worst-case contingency. To address the issue of prediction feasibility,
recent attention within various engineering disciplines has focused on the integration of constrained
optimization and ML techniques [18, 19]. However, these methods also struggle in finding secure and
feasible predictions while maintaining scalability with increasing k. Therefore, there is a pressing need
to develop novel, practical methodologies that can effectively approximate the N-k SCOPF problem.

1.2. Proposed Approach
This thesis proposes a constraint-driven ML approach to approximate the N-k SCOPF problem, consid-
ering all possible contingencies. The approach utilizes the computationally efficient linearized direct cur-
rent optimal power flow which is widely adopted in transmission network operation [20]. A MLP learns
the mapping from loads to generator setpoints. With the use of LODFs, all post-contingency flows are
efficiently computed through a simplematrix multiplication. The LODFmatrices are expressed in sparse
format to significantly reduce memory cost and accelerate the computation. An algorithm is developed
to reduce the computational graph which guides the backpropagation process. The proposed approach
is constraint-driven and does not require labeled training data, eliminating the necessity of solving the
computationally expensive N-k SCOPF [13]. Furthermore, to formulate a risk-based security criterion,
contingency probabilities are included during training. These probabilities are computed considering a
spatial correlation between individual line outages which is characteristic to extreme weather phenom-
ena [21, 22]. The performance of the security assessment is evaluated using loss of load expectation
and expected energy not supplied.

1.3. Research Questions
This section outlines the primary academic contributions of this thesis, along with their associated
research questions:

Objective 1: Develop a deterministic constraint-driven approach to approximate N-k SCOPFs, consid-
ering all possible contingencies using LODFs.

Q1 Can LODFs be effectively employed to approximate N-k SCOPFs, incorporating all con-
tingencies, in a scalable and computationally efficient manner?

Q2 Can a constraint-driven ML approach reduce post-contingency violations?
Objective 2: Perform a probabilistic security assessment to formulate an N-k risk-based security cri-

terion, providing an alternative to the current deterministic N-1 security criterion.

Q3 Does a probabilistic risk-based security criterion incorporating all contingencies improve
power systems security?

Q4 Does this proposed risk-based security criterion increase power systems resilience?

1.4. Thesis Outline
Chapter 2 discusses the basics on electric power system optimization, including a description of the
SCOPF problem. Additionally, this chapter clarifies the foundational ideas in ML, ML for constrained
optimization and mathematical fundamentals. Moving forward, Chapter 3 provides an overview of the
popular conventional methods and current ML approaches for approximating the N-k SCOPF problem.
To give a thorough analysis of the key issues, both their advantages and disadvantages will be outlined.
The chapter wraps up with a discussion on power systems operational reliability and resilience. Chap-
ter 4 sequentially explains the proposed approach for approximating the N-k SCOPF problem. This
includes an explanation of the probabilistic framework. Chapter 5 presents the case studies for testing
the proposed approach. Finally, Chapter 6 provides a discussion and conclusion including suggestions
for future work. A schematic of the thesis outline is presented in Figure 1.1.
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2
Background

2.1. Electric Power System Optimization
At the heart of the optimization problems to determine the optimal mode of operation of the power grid
lies the optimal power flow (OPF) problem. Transmission system operators (TSOs) solve this problem
multiple times an hour to balance generation with the constantly fluctuating demand. The OPF problem
and its different variants will be briefly discussed.

2.1.1. Economic Dispatch
Economic dispatch (ED) is a power systems problem that aims to find the lowest-cost generation dis-
patch for a given system. In the end, the total generation equals the total load [23]. The only constraints
that are considered are the generator limits. The network is assumed to be a copper plate, meaning
that infinite transmission capacity is assumed and network constraints are neglected [24]. Optimal
power flow is an optimization problem which couples this ED with the power flow equations and solves
them simultaneously. Not only is the optimal generation dispatch found, the power flow equations are
also solved and the physical network constraints are taken into account. These constraints include the
generator limits, voltage limits and line flow limits. Optimal power flow can be done by using the full AC
power flow equations or by using the simplified DC power flow equations.

2.1.2. AC Optimal Power Flow
The AC optimal power flow (ACOPF) problem provides the most comprehensive description of the OPF
problem and is given in Eq. (2.1). It employs the AC power flow equations, presented in Eq. (2.1b) and
Eq. (2.1b), which most accurately capture the system’s physics. As these equations contain the square
of the voltage and trigonometric functions, they are quadratic in nature and non-convex. This results
in a non-linear and non-convex optimization, making it more complex to solve, especially when the
problem increases with size. The objective of the optimization problem as described in Eq. (2.1a) is to
minimize the generator dispatch cost. The dispatch cost is the summation of the individual generator
power outputs multiplied by their respective cost factors. Eq. (2.1b) - Eq. (2.1i) show the set of equality
and inequality constraints. These constraints are respectively the AC power flow equations, the line
flow limits, the current limits, the active and reactive power limits of the generators, the bus voltages
and the voltage angles. The set ΩG represents the set of all generators, the set ΩL represents the
set of all lines and the set ΩB represents the set of all buses. The ACOPF problem is formulated as
follows.

min
n∈ΩG

∑
cGn

PGn
∀n ∈ ΩG (2.1a)

4
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subject to:

Pi =
∑
j∈ΩB

(|Vi||Vj |(Gij cos(δi − δj) +Bij sin(δi − δj))) (2.1b)

Qi =
∑
j∈ΩB

(|Vi||Vj |(Gij sin(δi − δj)−Bij cos(δi − δj))) (2.1c)

Fmin
l ≤ Fl ≤ Fmax

l ∀l ∈ ΩL (2.1d)
Imin
l ≤ Il ≤ Imax

l ∀l ∈ ΩL (2.1e)
Pmin
Gn
≤ PGn ≤ Pmax

Gn
∀n ∈ ΩG (2.1f)

Qmin
Gn
≤ QGn

≤ Qmax
Gn

∀n ∈ ΩG (2.1g)
V min
i ≤ Vi ≤ V max

i ∀i ∈ ΩB (2.1h)
δmin
i ≤ δi ≤ δmax

i ∀i ∈ ΩB (2.1i)

2.1.3. DC Optimal Power Flow
Alternatively, the linearized DC optimal power flow problem (DCOPF) can be utilized to solve the OPF
problem and is given in Eq. (2.2). The DCOPF employs the linearized DC power flow equations, given
in matrix form in Eq. (2.2b). To convert the ACOPF equations into the DCOPF equations, certain
assumptions are applied: fixed bus voltage magnitudes set to 1 p.u., absence of reactive power con-
siderations, and the assumption of small voltage angle differences. Despite the decreased accuracy
with respect to an ACOPF, a DCOPF still gives a reasonable representation of reality and is convex,
enabling more straightforward computations. Consequently, the DCOPF is widely used by TSOs as a
support tool to operate the grid [20]. Similarly to the ACOPF problem, the objective is to minimize the
generator dispatch cost Eq. (2.2a). Eq. (2.2b) - Eq. (2.2d) are the equality and inequality constraints
for this optimization problem. These constraints are respectively the DC power flow equations, the line
flow limits and the generator limits. The optimization problem is formulated as follows.

min
n∈ΩG

∑
cnPGn ∀n ∈ ΩG (2.2a)

subject to:

B · δ = PG −PD (2.2b)

Fmin
l ≤ 1

xij
(δi − δj) ≤ Fmax

l ∀i, j ∈ ΩB , ∀l ∈ ΩL (2.2c)

Pmin
Gn
≤ PGn

≤ Pmax
Gn

∀n ∈ ΩG (2.2d)

Sensitivity Factors
In the context of the DCOPF problem, linear sensitivity factors such as the power transfer distribution
factor (PTDF) and line outage distribution factor (LODF) can be employed to compute approximate
changes in line flows for changes in power injections or network configuration [23]. These sensitivity
factors, which depend on the topology and characteristics of the network, make it possible to quickly
recompute network parameters in response to shifting circumstances.

Power Transfer Distribution Factor The PTDF gives the incremental change of flow over a line due
to an injection or withdrawl of power at a certain bus. In the following formulation A is the branch
incidence matrix A ∈ {−1, 1}|ΩL|×|ΩB |, where 1 indicates the ’from bus’ and -1 indicates the ’to bus’.
The matrix B ∈ R|ΩB |×|ΩB | is the susceptance matrix which is computed using the line reactances xij

as follows.
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Bii =
∑
j=i

1

xij
∀i, j ∈ ΩB (2.3a)

Bij = −
1

xij
∀i, j ∈ ΩB (2.3b)

To avoid singularity, the row and the column corresponding to the slack bus are removed from the
susceptance matrix B. The matrix X is the inverse of the susceptance matrix X = B−1. Finally, the
matrixBbr ∈ R|ΩB |×|ΩB | is a diagonal matrix with the line reactances on the diagonal entries, and zeros
elsewhere. The PTDFs can be computes as

PTDF = Bbr ×A×X (2.4)

Subsequently, the change of flow over a line can be computed by the change of power injection at a
bus, multiplied by the PTDF.

∆F = PTDF ·∆P (2.5)

In the context of the DCOPF problem, the PTDF can also be used to reformulate the line flow constraints.
This removes the need for computing the phase angels to determine the line flow.

PTDF(PG −PD) ≤ Fmax (2.6)

DCOPF Formulation Based on PTDF By employing PTDFs to formulate the DCOPF problem, the
need for nodal balance equations and variables δ is eliminated. Instead, Eq. (2.7b) is introduced to
ensure the total generation equals the total demand. The DCOPF formulation based on PTDFs is
provided below:

min
n∈ΩG

∑
cnPGn ∀n ∈ ΩG (2.7a)

subject to: ∑
n∈ΩG

PGn −
∑
s∈ΩD

PDs = 0 (2.7b)

PTDF(PG −PD) ≤ Fmax (2.7c)
Pmin
Gn
≤ PGn

≤ Pmax
Gn

∀n ∈ ΩG (2.7d)

Line Outage Distribution Factor Similarily, LODFs can be employed to compute the change of flow
on a line following the outage of another line in the system. Because of this characteristic, LODFs
are useful for determining line overloads in contingency cases. The method of generalized line outage
distribution factors for computing LODFs is given below [25]:

LODFM,O = PTDFM,O(E−PTDFM,O)−1 (2.8)

The letter M denotes the set of monitored lines, the letter O denotes the set of outaged lines and the
superscript 0 indicates the pre-contingency state. Here, E ∈ R|ΩL|×|ΩL| is the identity matrix. The
matrix A is the bus-to-monitored line incidence matrix. Additionally, matrix Â is the bus-to-tripped line
incidence matrix where Â ∈ {−1, 1}|ΩL|×|ΩB |. PTDF0

M,O and PTDF0
O,O are computed as:

PTDF0
M,O = Bbr ×A×X× ÂT (2.9)
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PTDF0
O,O = Bbr × Â×X× ÂT (2.10)

As depicted in Eq. (2.11), the change of flow on a line can be computed bymultiplying the pre-contingency
flow of the outaged line with the LODF. The post-contingency flow can then be determined by adding
the change of flow to the pre-contingency line flow as shown in Eq. (2.12).

∆Fl = LODF · F 0
l (2.11)

F c
l = F 0

l +∆Fl (2.12)

2.1.4. Security Constrained Optimal Power Flow
The security constrained optimal power flow (SCOPF) problem seeks to find the most cost-efficient
dispatch which is also secure in contingency cases, playing a critical role in maintaining a reliable
power system [26]. The SCOPF adresses the OPF problem in both the base case and during one or
multiple contingency cases, defined as instances where line or equipment failures lead to outages. The
SCOPF can be formulated using both the AC and DC power flow equations. In the context of DC power
flow equations, the only additional constraints compared to a DCOPF are the line flow limits during
contingency cases. In the formulation in Eq. (2.13), the set ΩC represents the set of all contingency
cases, with c = 0 indicating the base case without any contingencies.

min
n∈ΩG

∑
cnPGn

∀n ∈ ΩG (2.13a)

subject to:

Bc · δc = PG −PD ∀c ∈ ΩC (2.13b)

Fmin
l ≤ 1

xij,c
(δi,c − δj,c) ≤ Fmax

l ∀i, j ∈ ΩB , ∀l ∈ ΩL, ∀c ∈ ΩC , (i, j) ̸= c (2.13c)

Pmin
Gn
≤ PGn ≤ Pmax

Gn
∀n ∈ ΩG (2.13d)

The letter k denotes the number of simultaneous outages. For a N-1 SCOPF, the SCOPF must be
secure against any single line outage. For a N-2 SCOPF, the SCOPF must be secure against any
double line outage. As the number of contingency cases |ΩC | holds combinatorial complexity

(
N
k

)
, the

size of the SCOPF problem increases exponentially as k increases, presenting a big computational
challenge.

The SCOPF problem can be approached in either a preventive or corrective fashion. In preventive
SCOPF, the system operating conditions must fulfill both pre- and post-contingency constraints and
remain constant once established. On the other hand, corrective SCOPF allows for redispatching
following an outage. This indicates that going above network restrictions within a given time frame is
acceptable if the violations can be mitigated through redispatching.

2.2. Machine Learning
Having established the fundamentals on power system optimization, the next section will discuss basic
concepts of machine learning (ML) [27] for this thesis. Since directly solving a SCOPF is computation-
ally challenging, the objective of this thesis is to utilize ML to develop a proxy that can approximate the
SCOPF, eliminating the need to directly solve it.

2.2.1. Neural Network Architectures
Multi-Layer Perceptron
A neural network is a ML model inspired by the human brain. Figure 2.1 shows the most common type
of neural network, a fully connected linear neural network, otherwise known as a multi-layer perceptron
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(MLP). It is designed to learn and predict complicated functions and patterns from data and is built
as a network of interconnected artificial neurons structured in layers, comprising an input layer, one
or more hidden layers, and an output layer [28]. Each neuron employs an activation function to its
input, transmitting the output to the subsequent layer. The inter-neuron connections, characterized
by weights, are adjusted during training using an algorithm called backpropagation [28]. This iterative
process minimizes a user defined loss function, fine tuning the parameters of the model after each
iteration. During backpropagation, the gradients of the error are computed with respect to the weights.
MLPs are very expressive, and are well suited to develop a proxy which can approximate an OPF [14,
29, 30, 31].

Input layer
Hidden layers

Output layer

Figure 2.1: Schematic representation of a fully connected linear neural network, known as a
multi-layer perceptron (MLP).

Graph Neural Networks
Delving into graph neural networks (GNNs), these are a particular category of neural networks tailored
to process graph-structured data. In situations like power systems, which are intrinsically defined by
graph-structured data, GNNs find practical applicability since they are particularly adept at revealing
underlying connections within such data. GNNs have not only found applicability in power flow compu-
tations, but also in fault scenario applications or time series predictions [32].

Lets denote a graph G = (V, E)where V is the set of nodesΩB and E is the set of edges or branchesΩL.
Introducing matrix W, defined as the adjacency matrix of the network where Wi,j = wi,j if (i, j) ∈ ΩL.
Here, a graph signalZ ∈ R|ΩB |×|ΩF | whereZ signifies the state of the nodes, with each node associated
with a set of features ΩF .

Leveraging the adjacency matrix W, a shifted version of signal Z can be defined as:

T = WZ (2.14)

Resulting in a new graph signal T ∈ R|ΩB |×|ΩF |, which is a shifted version of Z across the graph.
This shift operation involves updating each state in the graph based on a linear combination of states
from neighboring nodes. In a convolution, adjacent values are similarly combined linearly, to use an
analogy. The idea of a graph convolution, which is basically a linear combination of a graph signal that
has experienced a shift, is created by integrating both the shift operation and a convolution.

The result of the shift of Z is weighted byHu ∈ R|ΩF |×|ΩG|. The matrixHu takes the input features ΩF

and returns a new set of featuresΩG which are a linear combination of the input features. Consequently,
the output assumes dimensions Y ∈ R|ΩB |×|ΩG|.

Information from U-hop neighbors can be obtained by repeated application of W resulting in WuZ.
This can be achieved locally by performing u exchanges with 1-hop neighbors. To go from these graph
convolutions to a layer in a GNN, a sequence of K graph convolutions are performed to which a non-
linearity ϕ(·) is applied.
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T = ϕ

(
U−1∑
u=0

WuZHu

)
(2.15)

2.2.2. Training Neural Networks
Having established the neural network architectures, the next step involves defining training method-
ologies for these models. One frequently employed technique for training ML models is supervised
learning [27]. In this method, an algorithm learns from labelled training data, where the dataset in-
cludes input data paired with their corresponding correct outputs. The goal is to learn the algorithm the
mapping or function that can predict the correct output for new, unseen input data. The algorithm learns
by minimizing the difference between its predictions and the true labels presented in the training data.
When utilized to approximate a DCOPF, the input is the demand while the labels are the generator
setpoints [29]. While supervised learning methods prove effective, their applicability becomes limiting
in situations where labelled training data is unavailable. The applicability of supervised learning in the
context of N-k SCOPFs is limited, since obtaining training data is computationally challenging.

When confronted with limited labelled training data, alternative learning methods come into play. Semi-
supervised learning is an approach where a small portion of labelled data is used in combination with
a large amount of unlabelled data [28]. Moreover, in scenarios where the model has to adhere to cer-
tain constraints, constraint-driven learning can be used. Optimization problems which have to adhere
to hard constraints occur in many settings. The OPF problem is an example of an optimization prob-
lem with hard physical and engineering constraints. Consequently, the fusion of ML and constrained
optimization has attracted significant interest [18]. The following section will delve deeper in ML for
constrained optimization.

2.3. Machine Learning for Constrained Optimization
By fusing ML and mathematical optimization, results can be obtained which the two fields cannot
achieve independently [18]. A big opportunity for enhancing optimization with ML is when the opti-
mization is simply too slow. This often happens when there are either real time constraints which have
to be solved, or when the simulation is too large. In the power systems domain, there is also an in-
creasing interest in ML models which can be used as approximate solvers for complex power system
tasks [14, 16, 17]. For a large problem like the N-k SCOPF problem, ML can be extremely useful to
get an approximate solution.

Naive deep learning approaches can not strictly enforce the constraints which are imposed on the opti-
mization problem. This can result in infeasible solutions. The field of integrating solvers or optimization
methods into deep learning is referred to as end-to-end constrained optimization. This domain can sub-
sequently be divided into two areas [18]. The first area approaches constrained optimization as a layer
in a neural network structure. This will be referred to as predict-and-optimize. The second area tries to
predict approximate solutions of constrained optimization problems using ML architectures. This will
be referred to as learning with constraints.

2.3.1. Predict-and-Optimize
Predict-and-optimize methods are a combination of prediction models (ML models) and decision mod-
els (constrained optimization models). The specification of the partially defined decision models are
completed by predictions from data. Based on the accuracy of the model’s output, the model is trained
end-to-end. In this area, the goal is to create a model that can learn to make decisions based on input
data [18].

Implicit Formulation
Often the layers in a neural network are explicitly defined, where there is a direct, closed-form mapping
from input to output [28]. These explicit functions are computationally cheap and their gradients can be
easily computed allowing for backpropagation. Much richer behaviour can be expressed by implicitly
defining the relationship between input and output. An implicit function as such cannot be solved in
closed form; instead, an iterative approach, akin to Newton’s technique, must be used to achieve the
solution. In recent years, the use of an implicit layer in a neural network setting has been investigated
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[33, 34, 35]. A category of implicit layers in neural networks are optimization layers such as [33, 34].
The output of these layers is the solution of a constrained optimization problem based on its preceding
layers. In principle, such layers can be used to enforce constraints, by projecting the output of a ML
model on a constraint set [19]. In the context of the OPF problem, such a layer can also be used to
directly solve the optimization.

To be able to employ such a layer in a neural network, it has to support a forward pass and a backward
pass. As discussed, the forward pass of an implicit layer is implemented using an iterative solution
method such as Newton’s. The backward pass is performed using implicit differentiation. For an
optimization problem, the conditions ensuring stationarity, primal feasibility, dual feasibility and com-
plementary slackness are the Karush Kuhn Tucker (KKT) conditions [36]. For convex optimization
problems such as the DCOPF problem, these conditions are the necessary and sufficient conditions
for indicating the optimal solution. Therefore, for convex problems, the gradients can be computed by
implicitly differentiating these KKT conditions at its solution. For convex problems, such a layer can
scale nicely. For quadratic programming layers, such layers have cubic complexity in the number of
variables and constraints and therefore do not scale as nicely [33].

2.3.2. Learning with Constraints
Alternatively to a predict-and-optimize method, learning with constraints methods develop ML archi-
tectures to predict approximate solutions to predefined constrained optimization problems, without the
use of solvers at the time of inference [18]. In [19], a framework is proposed applying deep learn-
ing to a wider range of optimization problems with hard constraints, showing its capacity to solve the
non-convex ACOPF problem. Using differentiable equality completion and inequality correction, the
constraints are incorporated in the training loop. This framework leverages insights from the previously
discussed optimization layers ([33, 34]). The framework employs implicit differentiation for backpropa-
gation through the equality constraints, providing a less computationally expensive alternative for these
optimization layers.

Constrained to Unconstrained Optimization
In the context of learning with constraints, a possible avenue is to directly incorporate constraint viola-
tions in the loss function. This is enabled by transforming a constrained optimization problem into an
unconstrained one. This is precisely what the penalty function method accomplishes, it transforms a
constrained optimization problem into an unconstrained counterpart by augmenting the objective func-
tion with penalty terms for constraint violations, each scaled by a penalty coefficient. Consider the
following optimization problem:

min f(y) (2.16a)

subject to:

h(y) = 0 (2.16b)
g(y) < 0 (2.16c)

The goal becomes to solve the unconstrained optimization problem in the form of:

min f(y) + λ1|g(y)|+ λ2 max(0, h(y)) (2.17)

Here, λ1,2 denote penalty coefficients assigned to constraint violations, and these coefficients are it-
eratively adjusted until the constraints are close to being satisfied. Nevertheless, the penalty function
method transforms the problem into a fully unconstrained one, potentially resulting in infeasible ap-
proximations, as demonstrated for an ACOPF in [19]. An alternative strategy involves a Lagrangian
relaxation approach based on constraint violations, as discussed in [37]. This formulation is based on
augmented Lagrangian relaxations [38]. The violation-based Lagrangian function becomes:

f(y) + λg|g(y)|+ λh max(0, h(y)) (2.18)
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And the optimization problem becomes:

LRλ = argmin
y

(f(y) + λg|g(y)|+ λh max(0, h(y))) (2.19)

In this formulation, λg and λh serve as Lagrangian multipliers. This is similar to the penalty method
function, where now the augmented Lagrangian can be seen as the unconstrained optimization prob-
lem. However, by leveraging Lagrangian duality and by solving the dual problem, the constraints can
be satisfied, whereas the optimization in the penalty method function is completely unconstrained. The
Lagrangian dual aims to find the best Lagrangian multipliers, and is given by:

LD = argmax
λ

(LRλ) (2.20)

A combination of Lagrangian duality and deep learning has proved to be effective in predicting ACOPFs
[39].

2.4. Mathematical Fundamentals
2.4.1. Exploring Convexity
A function f is convex if the line segment connecting any two points on a graph lies above the graph
f itself as shown in Figure 2.2. An optimization problem is convex if its objective function is convex,
the inequality constraints are convex and the equality constraints are affine [36]. A function is affine,
if it can be expressed by a linear transformation, and a linear translation. Especially in the context
of optimization, optimization problems which are convex have some desirable properties. One of the
properties of convex optimization problems is that the optimal solution lies on the border of the solution
space. Another fundamental property in the context of convex optimization is that a local optimum
in the feasible space is also immediately a global optimum [36]. Moreover, if the solution space is
an intersection of a convex set, the solution space is also convex. These properties make convex
optimization problems noticeably more tractable than their non-convex counterparts. The solution of
convex optimization problems can be obtained with increased efficiency, reliability, and with robust
guarantees about the optimal solution.

As an additional note in the context of optimization problems, if an optimization problem contains inte-
gers, the solution space becomes disjunctive and not continuous.

Figure 2.2: Schematic visualisation of a convex function [36].

2.4.2. Tensors
A tensor is a multidimensional representation of a vector or matrix [40]. Up to 3 dimensions, a tensor
can be intuitively visualized as shown in Figure 2.3. When more dimensions are considered, this
representation gets more abstract. Reducing the storage complexity of large, high-dimensional tensors
is a topic of interest in academia [40, 41, 42, 43].

Tensor Decomposition One possible tensor decomposition method is called tensor train decomposi-
tion (TTD) [41, 42, 43]. TTD decomposes a large tensor into smaller tensors, referred to as cores, with
lower ranks. When these cores are arranged sequentially, they resemble a train of tensors, hence the
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X

number 1D tensor 2D tensor 3D tensor

(vector) (matrix)

Figure 2.3: Schematic visualisation of a tensor up to three dimensions.

name tensor train. TTD reduces the exponential storage complexity of a tensor to a quadratic storage
complexity. The figure below illustrates a standard graphical representation of a tensor train.

C1

r1 r2
C2 C3

i1 i2 i3

𝑋(𝑖1, 𝑖2, 𝑖3)

TTD

Figure 2.4: Schematic visualisation of a 3D tensor X, decomposed using tensor train decomposition
into a tensor train with three cores.

Once a tensor is transformed to TT format, all operations should also be done in TT format to keep
the advantage of the compression. Many basic operations can be easily performed in TT format. As
a consequence of many of these operations, the storage complexity increases, and a recompression
step called rounding has to be performed. This rounding step introduces a trade-off between accuracy
and storage complexity.

When extensive tensors are involved which result in memory issues, first constructing the full tensor,
and then applying TTD is not possible. In this case, the TT has to be constructed alternatively. One
approach could be to construct the TT with a stochastic process called randomization. Without prior
knowledge about the structure of the TT, this method results in very large errors. Another option is to
recursively build the TT. This involves building up the full TT in small chunks and iteratively performing
adding and rounding steps. The final compression achieved with TTD depends on the structure of the
tensor and the similarities between dimensions. For a more extensive background on TTD, Appendix D
can be consulted.

2.4.3. Sparse Matrix Handling
Sparse matrices are matrices in which most of the elements are zero. Therefore, storing a sparse
matrix as a dense matrix would require significant valuable memory resources. To reduce the storage
requirements for a sparse matrix, it can be expressed in sparse format. When a matrix is expressed
in sparse format, only the non-zero values and their corresponding locations in the matrix are stored.
Expressing sparse matrices in sparse format can reduce the number of stored elements significantly.
Among others, there are three popular methods to express a matrix in sparse format. The most intuitive
method is the coordinate list (COO) format, where simply the non-zero element along with its row and
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column index are stored. Other popular methods are the compressed sparse row (CSR) format and
the compressed sparse column (CSC) format, which store the row and column indices more efficiently,
making them more efficient for row-oriented and column-oriented operations respectively.



3
Literature Review

3.1. Conventional Methods for SCOPF
Various methods exist to handle the combinatorial complexity associated with N-k SCOPFs. Relying
on the fact that only a subset of contingencies account for the majority of faults, these methods have
the same end goal in common; reduce the problem size to enable an off-the-shelf solver to solve it.
Three conventional approaches are commonly used; Benders decomposition, column-and-constraint
generation algorithm and iterative contingency screening [44].

3.1.1. Benders Decomposition
In [6, 7], Benders decomposition (BD) [8] is used to decompose the problem into a master problem
and subproblems representing contingency cases. In the context of the SCOPF, the master problem
represents the OPF in the pre-contingency state, while the subproblems check for infeasibility of post-
contingency states. If a subproblem identifies a violation of constraints, a Benders cut is added to
the master problem, restricting the feasible region of the master problem. This iterative solving of
the master problem and subproblems is done until no more violations are found. A schematic of a BD
workflow is shown in Figure 3.1. A Benders cut is a linear inequality constraint derived from the solution
of the subproblem. The computational time required for solving BD depends on the size of the master
problem and the number of subproblems that have to be solved. As hinted before, BD can only be
used for convex linear optimization problems. In [6, 45], frameworks are proposed for BD schemes
for power system problems. In these studies, the contingencies are checked one by one as described
above, and Benders cuts are generated in case of violations.

14
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Figure 3.1: Benders decomposition workflow for SCOPF as described in [13]. The master problem is
denoted with MP, the subproblems are denoted with SP.

BD has demonstrated effectiveness in solving various power system problems by decomposing them
into amaster problem and different subproblems, oftenmaintaining small-sized subproblems. However,
when applied to the N-k SCOPF problem which considers many contingencies, iteratively solving all
subproblems is slow and can become computationally challenging for large scale optimization problems.
Moreover, adding unnecessary cuts not only results in slow convergence, it can even lead to infeasible
solutions. Consequently, the scalability of BD is limited when addressing N-k SCOPFs.

3.1.2. Column-and-Constraint Generation Algorithm
Furthermore, [9] employs a column-and-constraint generation algorithm (C&CGA) to iteratively add
the most violating contingencies. Whereas BD is a technique specific for linear optimization problems,
C&CGA can be used to incorporate constraints for optimization problems which are not necessarily
linear. Robust optimization (RO) is a technique used to find solutions that are resilient to different
forms of uncertainty in the problem parameters [46]. When C&CGA and RO are used in combination,
the most violating contingency is identified, and only for that contingency a constraint is added to the
master problem [44]. A schematic workflow of combined C&CGA with RO is shown in Figure 3.2. This
constraint can be in the form of a linear Benders cut if suited, but other types of constraints can also
be incorporated. This iterative process continues until no further violations occur for the worst-case
contingency, ensuring a robust and feasible solution. Exemplarily, in [47] a two-stage RO method is
proposed to solve N-k security constrained unit commitment.
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Figure 3.2: Column-and-constraint generation algorithm workflow for SCOPF as described in [13].
The master problem is denoted with MP, the subproblems are denoted with SP.

Similar to BD, a combination of C&CGA with RO can face challenges such as slow convergence when
dealing with numerous contingencies, or the risk of generating infeasible predictions when too many
constraints are introduced. Therefore, the C&CGA shows limited scalability for the N-k SCOPF prob-
lem.

3.1.3. Iterative Contingency Screening
Alternatively, [10] employs an iterative contingency screening method to identify the most critical con-
tingencies, allowing the SCOPF to be solved with a selected subset of contingencies. In [11, 12], this
screening process leverages LODFs due to their computational efficiency in managing multiple contin-
gencies. A schematic workflow is shown in Figure 3.3. This is also the workflow of the baseline utilized
in this thesis. In [23] a method is described using performance index sensitivities based on decoupled
power flow. Reference [48] proposes another contingency screening method to effectively reduce the
number of contingencies.
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Figure 3.3: Iterative contingency screening workflow as used as baseline in this thesis. Ωsub is the
subset of the most violating contingencies which are added at every iteration.

The proposed approaches in [6, 7, 9, 10, 11, 12, 45, 47] struggle to scale efficiently with the number
of outages k, as demonstrated in [13]. A comparison between BD, a combination of C&CGA with RO,
and LODFs reveals issues such as timeouts and slow convergence for N-3. This is particularly limiting
for addressing the N-k SCOPF problem that requires multiple daily resolutions.

3.2. Machine Learning for SCOPF
The recurrent nature of the N-k SCOPF problem has prompted exploration of ML techniques as ameans
to approximate its solution. The next section delves into proposed ML approaches for SCOPFs.

3.2.1. Determining Active Constraints
Despite the rapid growth in the total number of constraints with system size, the number of relevant
active sets is considerably smaller [49]. Consequently, there is a growing interest in leveraging ML to
identify these active constraint sets. The objective of the ML agent is to determine the set of active
constraints. Once the agent has identified the binding constraints, a traditional solver is employed to
solve the optimization problem.

In [15], an algorithm is developed to establish a mapping between input parameters and their corre-
sponding active set of constraints. The optimal active set is identified using an ’ensemble policy’ among
a set of relevant active sets. Similarly, [50] introduces a MLP as a classifier to learn the mapping be-
tween input parameters and the active set of constraints at the optimal solution. Moving on to [51], an
enhancement to BD is proposed. This time a support vector machine is trained to identify valuable
Benders cuts. A valuable cut is a cut which is tight at the optimal solution or a cut which significantly
cuts the feasible region.

These methods offer a significant advantage in terms of reduced computational time compared to con-
ventional decomposition algorithms like BD. However, these methods do not scale with increasing k.
This is because these methods rely on training data, which becomes exceedingly difficult to generate
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for k >1. Additionally, once a model is trained for a specific system, its applicability is confined to
systems of the same size and with the same number of constraints, further limiting scalability with k.

3.2.2. Iterative Constraint Incorporation
To address these limitations, [16] proposes a C&CGA-ML algorithm in combination with RO, iteratively
adding constraints. This approach successfully approximates N-1 SCOPFs with notable reductions in
computational times and minimal optimality gaps. The approach in [16] uses a Lagrangian dual method
to penalize violating constraints. In instances of infeasible approximations, a feasibility restoration step
is employed. Additionally, in [17], an adversarially robust ML approach is introduced, using a min-max
strategy where the worst-case contingency is computed and incorporated in the SCOPF. The approach
in [17] successfully reduces violating post-contingency cases up to N-3 for large test systems.

These methods demonstrate efficacy in risk reduction by selectively incorporating the most critical con-
straints. Nevertheless, the success of [17] is highly reliant on the ability to identify the worst-case
contingency, and no guarantee is given for the strength of the attack. Futhermore, while the method in
[16] successfully approximates N-1 SCOPFs, scalability becomes a challenge as k increases.

3.2.3. Alternative Approaches for OPF
References [14, 29] useMLPs to predict generator setpoints from power system loads for a DCOPF and
N-1 SC-DCOPF, respectively. Similarily, [31] employs a MLP to learn the mapping between loads and
generator setpoints as well as voltages for an ACOPF. Eventually, the power flow equations are solved
to ensure overall ACOPF feasibility. While these methods demonstrate effectiveness, their dependency
on labeled training data imposes limitations on scalability as k increases.

Other methods try to decrease training time, improve accuracy and minimise worst-case violations by
including the physics of the system during training [30, 52]. In [52], a MLP is trained using a loss
function which contains the discrepancies from zero of the KKT conditions. If the MLP outputs the
optimal solution, these discrepancies will be zero. As the constraints are incorporated in the loss
function, these methods also show limited scalability with increasing k.

To address the issue of solution feasibility, recent attention within various engineering disciplines has
focused on the integration of constrained optimization and ML techniques as discussed in Section 2.3
[18, 19]. However, these methods also struggle in finding secure and feasible solutions while main-
taining scalability with increasing k. Therefore, there is a pressing need to develop novel, practical
methodologies that can effectively tackle the N-k SCOPF problem.

3.2.4. Graph Neural Networks for OPF
As previously discussed, power systems are models with graph structured data. Because GNNs can
capture inherent structural information and dependencies from graph structured data, they are suited
for various power systems related problems. Also for the OPF problem different methods have been
introduced using GNNs. In [53] a graph convolutional neural network (GCNN) is proposed to approx-
imate an OPF. In [54] a encoder-decoder architecture is proposed for GNNs to account for the high-
dimensional nature of the input data. These methods show promise for the employement of GNNs
to approximate OPF problems, but to the best of our knowledge, no research on N-k SCOPFs using
GNNs has been performed yet.

3.3. Power Systems Operational Reliability and Resilience
3.3.1. Operational Reliability and Resiliency
The entire population must have access to electricity, which is provided by the electrical power grid,
a pillar of contemporary society. As a result, it is crucial that the electricity system runs safely, ensur-
ing reliability while minimizing costs. Security, or operational reliability, can be defined as the ability
of the grid to withstand disturbances i.e. contingencies without interrupting the electricity supply [1].
Achieving 100% security in grid operations is both impractical and financially taxing. A widely accepted
trade-off is the N-1 security criterion, signifying the power systems capability to withstand any single
component outage. Failing to meet this criterion can result in more outages, possibly leading to black-
outs. Resiliency can be defined as the power systems ability to mitigate and recover after extremely
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damaging events. A distinction can be made between short-term resiliency and long-term resiliency
[2]. Short-term resilience encompasses the attributes that the grid must possess before, during, and
immediately after an event. Contrarily, long-term resiliency is primarily concerned with post-blackout
learning. As high impact low probability (HILP) events are becoming more and more likely due to cli-
mate change [2], the need for a resilient power system is increasing. Table 3.1 presents the main
differences between reliability and resilience.

Table 3.1: Main differences between reliability and resilience [1]

Criterion Reliability Resilience
Events considered N-k (Mainly N-1) N-k
Event probability High Very low
Event impact Low/medium/high High
Objective Minimize objective cost Minimize unserved energy

3.3.2. Power System Blackouts
A blackout is an unplanned complete interruption of power to a certain area of the grid for an unknown
period of time. Two causes for blackouts can be typically distinguished [1].

1. Cascading equipment failures leading to complete blackouts represent the primary category and
constitute a major cause of blackouts. If the system is not N-1 secure, a single component failure
exerts substantial stress on the system, rendering equipment protection ineffective in mitigating
the resultant overload. This, in turn, triggers a rapid sequence of component trips, leading to a
cascade of failures.

2. The second category encompasses simultaneous failures of k components during a short pe-
riod of time, the common cause often being natural disasters or extreme weather events. Such
extreme weather events are HILP events.

Blackouts falling within the first category are typically associated with power systems security. The
fulfillment of the N-1 security criterion, coupled with adequate contingency handling, would have averted
such blackouts. The blackouts in the second category pertain to power systems resilience. The events
happening in this category are low probability but have a high impact.

3.3.3. Probabilistic Reliability Indicators
Different metrics are used to assess power systems reliability and resilience. Loss of load expectation
(LOLE) and expected energy not supplied (EENS) are two of those reliability indicators [2, 5, 55]. The
LOLE represents the expected amount of time per period that the demand cannot be fully supplied.
Moreover, EENS quantifies the amount of energy that is expected not to be supplied during a given
time period, serving as a quantitative addition to LOLE [56]. To evaluate a system’s reliability, differ-
ent simulations are performed for different scenarios, and the values for these indices are computed.
Additionally, these reliability indices can be evaluated during a HILP event. Such assessments can en-
hance understanding of short-term resilience to extreme weather events [2], and these indices reveal
the impact of the HILP event in the absence of any recovery actions [57].

3.3.4. Correlated Component Failures
Because large cascades are rare but have a huge impact, it is important to quantify the risk of their
occurrence well. A common assumption is that k component outages are statistically independent.
However, different types of correlation exist between outages. According to [58] multiple line outages
often occur in motifs, and contingency motifs of two lines with a common bus occur much more often.
Moreover, in highly loaded systems, failures in nearby detection devices are more likely due to large
transients [59]. Similarly, cascading branch failures with a common cause like extreme weather events
are likely to be spatially correlated [21, 22]. In [21, 22], a copula analysis is introduced to quantify
the risk while taking into account the correlation between cascading failures. A copula is a statistical
concept used to describe the dependence between multiple random variables. It couples the individual
(marginal) probability distributions to the joint probability distribution based on the dependent structure.



4
Methodology

A constraint-driven approach is presented considering all contingencies. The proposed approach uti-
lizes the linearized DCOPF, ensuring a convex solution space and enabling the utilization of linear
sensitivity factors. To transform it into a SCOPF, only the post-contingency flows need to be consid-
ered as additional constraints. The following will be discussed in this chapter. Section 4.1 discusses
two methods for computing all post-contingency flows. Section 4.2 sequentially explains the proposed
method. Finally, Section 4.3 describes the method for the risk-based N-k SCOPF.

4.1. Post-Contingency Flows
In this section, themethods of using PTDFs and LODFs are compared for computing all post-contingency
flows. Key factors in this comparison encompass the computational time required for constructing all
sensitivity factors, the degree of compression achieved by both methods (indicating a decrease in the
number of elements stored), and their potential practical applicability within the proposed approach.

The PTDF method involves the computation of the post-contingency flows utilizing a contingency spe-
cific PTDF matrix, denoted as PTDFc. This matrix is obtained by removing the rows and columns
corresponding to the line that is out of service from the susceptance matrix B to form Bc. The inverse
of this modified matrix, denoted as Xc, is employed to calculate PTDFc using Eq. (2.4). Due to the
contingency-specific nature of Bc, inverting it for each contingency poses a computational challenge.
Consequently, all individual PTDFc matrices are stacked to form a 3D tensor termed full PTDFc

(FPTDFc). To reduce memory requirements, TTD is applied to iteratively construct the FPTDFc

tensor, as constructing it entirely and then applying TTD is not feasible.

In contrast, the LODF method computes the post-contingency flows through the use of LODFs. These
LODFs are structured into amatrix, facilitating efficient computation of all post-contingency flows through
amatrix multiplication and a summation. The sparsity of the LODFmatrix makes it well suited for sparse
matrix operations, thereby enhancing computational efficiency. Additionally, the smaller size of the ma-
trix to be inverted (k × k), results in a notably faster computation of sensitivity factors.

A comparative analysis between PTDFs and LODFs for computing all post-contingency flows reveals
several key findings:

1. Both methods produce the same post-contingency flows, indicating equivalent accuracy in post-
contingency flow computation.

2. While PTDFs can be efficiently represented in TT-format for smaller systems, scalability becomes
a challenge for larger systems, necessitating iterative construction and posing computational bot-
tlenecks. In contrast, LODFs exhibit faster construction times and greater compression for both
small and large systems.

3. The construction of the loss function using the LODF method is a straightforward process. In
contrast, no practical and manageable method to construct the loss function in TT-format has
been found.

20
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Ultimately, the LODF method is chosen for the final framework due to its computational efficiency, scal-
ability, and practical advantages. A more extensive description of both methods, including numerical
results, is given in Appendix C.

4.2. Proposed Constraint-Driven Learning Approach
The following section introduces a schematic visualization detailing the implementation workflow of
the approach. Initially, a brief outline of the approach at a high level will be provided. Following the
visual representation in Figure 4.1, a comprehensive, sequential explanation of the entire workflow will
develop.
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Figure 4.1: Full workflow of the implementation of the method.

The proposed approach uses ML to approximate the solution of a N-k SCOPF. As Figure 4.2 shows, a
MLP maps the loads to generator setpoints (P̂G). When the MLP prediction lies beyond the feasibility
boundaries constrained by the DCOPF equations, a restoration layer is employed to realign it within
the feasible region. The convex DCOPF enables the utilization of a CVXPYlayer [34], a convex solver
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that computes the gradients through the solution of the optimization. The restoration layer minimizes
the L2 norm between the predicted setpoints and the setpoints adhering to the feasible region. The
restoration layer outputs the restored generator setpoints, along with other variables in the optimization
problem, including phase angles (δ) and line flows (F). The formulation of the optimization is outlined
as follows:

min
n∈ΩG

∑
||PGn − P̂Gn ||2 (4.1a)

subject to:

B · δ = PG −PD (4.1b)

Fmin
l ≤ 1

xij
(δi − δj) ≤ Fmax

l ∀i, j ∈ ΩB , ∀l ∈ ΩL (4.1c)

Pmin
Gn
≤ PGn

≤ Pmax
Gn

∀n ∈ ΩG (4.1d)

To ensure the MLP adheres to the generator limits, the MLP outputs a scaling factor αn ∈ [0, 1], and
P̂Gn

is computed as P̂Gn
= αn · (Pmax

Gn
− Pmin

Gn
) + Pmin

Gn
.

The set of all post-contingency flows for up to k outages is computed using LODFs.

F c
l = F 0

l + LODFN−k × F 0
l ∀l ∈ ΩL (4.2)

The loss function considers the dispatch cost, the predicted base case flow violations, the predicted
generation-demand imbalance and the post-contingency flow violations as below:

Loss = λ0cG
TPG + λ1∥ReLU(|F̂0| − Fmax)∥1 + λ2∥ReLU(|Fc| − Fmax)∥1

+λ3∥ΣP̂G − ΣPD∥1
(4.3)

Here, cG is the vector of generator cost. The predicted base case flows are computed using power
transfer distribution factors (PTDFs) as:

F̂0 = PTDF(P̂G −PD) (4.4)
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Figure 4.2: The workflow of the proposed constraint-driven approach. A MLP maps the loads to
generator setpoints. A feasibility restoration layer restores infeasible setpoints. Using LODFs, all

post-contingency flows are obtained.
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4.2.1. Fundamental Functions
The proposed approach employs three Python-based functions. These functions are instrumental in
constructing the feasibility restoration layer, generating training and testing data, and creating baselines
for comparative evaluation.
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Figure 4.3: M1 - Functions; the functions created for the proposed approach.

M1.1 - Create DCOPF function Function M1.1 is implemented utilizing the CVXPY package [60], and
constructs an optimization problem adhering to the DCOPF constraints, given by Eq. (4.1b), Eq. (4.1c),
and Eq. (4.1d). To ensure feasibility of the optimization problem at all times, two slack terms (γ+, γ−)
are introduced into the nodal balance equations. These slack terms are heavily penalized within the
objective, driving it towards a value of zero. Non-zero values of the slack terms indicate violations of
the DCOPF constraints.

Notably, its objective function deviates from the conventional DCOPF objective, focusing on the min-
imization of the L2 norm between the predicted setpoints and the setpoints adhering to the feasible
region, as given in Eq. (4.1a). To achieve this, the predicted generator setpoints P̂G are introduced
as parameters to the optimization, with the restored generator setpoints PG are treated as variables.
The function takes as input the dataset constructed in M2.1, and generates essential data for the con-
struction of the feasibility restoration layer. Function M1.1 outputs the optimization problem, a set of
parameters (PD, α) and a set of variables (PG, F, δ, γ+, γ−). Consequently, this function forms the
core element for the construction of the feasibility restoration layer in M2.2.

M1.2 - Data generation function The second function, M1.2, is designed to generate data samples
utilizing a Kumaraswamy distribution. It samples load data around the nominal loads, taking as input the
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Pearson correlation coefficient, lower and upper bounds for load sampling, distribution shape param-
eters, and the desired number of samples. The function produces a matrix containing scaling factors
of size R|ΩD|×|ΩS |. By multiplying this matrix with the nominal load profile, the function generates the
complete dataset of power system loads.

M1.3 - Create SCOPF function Finally, function M1.3, constructed with CVXPY, is similar to M1.1,
but also incorporates the line flow limits in contingency cases. This function serves to establish baseline
results for comparative analysis with the proposed approach. It shares the conventional objective of a
SCOPF, to minimize dispatch cost, while also incorporating the heavily penalized slack variables.

4.2.2. Fundamental Component Construction
The following phase involves the construction of fundamental components crucial to the proposed ap-
proach. Initially, an Excel file, denoted asM2.1 - Power system case description, is created for describ-
ing the specifications of the test system data. This file includes required data pertaining to buses, lines,
generators, and loads.
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Figure 4.4: M2 - Training preparation; preparing the data and building blocks for the proposed
approach.

M2.2 - Feasibility Restoration Layer
The feasibility restoration layer is a function which takes as input the predicted generator setpoints,
and outputs the restored generator setpoints, along with other variables in the optimization problem,
including phase angles (δ) and line flows (F). The function is constructed using the Python package
CVXPYlayer [34]. This feasibility restoration layer is initialized with the problem specification derived
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from the function created in M1.1. The feasibility restoration layer is integrated in the proposed ap-
proach, solving the optimization during the forward pass, and computing the gradients through the
solution of the optimization in the backward pass. This enables backpropagation of the loss.

M2.3 - Line Outage Distribution Factors
To compute all post-contingency flows, LODFs are used. The LODFs are computed using the method
of generalized line outage distribution factors as explained in Section 2.1.3.

LODFM,O = PTDFM,O(E−PTDFM,O)−1 (4.5)

For each contingency case, a square single LODF (SLODF) matrix of size R|ΩL|×|ΩL| is constructed.
Algorithm 1 is the algorithm employed to construct each SLODF matrix. In lines 1-2, the algorithm
takes as input the power system case description and the number of simultaneous outages, k. Line 3
determines the set of all possible contingencies. Line 5 determines the indices of the lines in outage for
the considered contingency case and line 6 initializes a square matrix of zeros of size R|ΩL|×|ΩL|. Lines
7-12 compute the LODFs for the lines in outage. In case of singularity of the matrix (E−PTDF0

O,O)−1,
a part of the network gets disconnected, and the LODFs are set to zero. Finally, in line 13 the LODFs
are added to the SLODF matrix at the indices of the lines in outage. Line 14 transforms the SLODF
matrix in sparse COO format. For this thesis, the PyTorch function .to_sparse_coo() is utilized.

Algorithm 1 Function to create SLODF

1: Import: data← M2.1 - power system case description
2: Input: data, k
3: Obtain all contingency combinations ΩC ← data, k (Eq.
Eq. (4.6))

4: function createSLODF (i)
5: Line indices outaged lines c1,c2...ck ← ΩC(i)
6: SLODF = zeros(l, l)
7: PTDF0

M,O, PTDF0
O,O ← PTDF

8: if Determinant((E−PTDF0
O,O)−1) > 0: then

9: LODFM,O = PTDF0
M,O(E−PTDF0

O,O)−1

10: else
11: LODFM,O = 0
12: end if
13: SLODF[:, c1 : ck] = LODFM,O

14: return SLODF← make sparse
15: end function

As Figure 4.5 shows, these SLODF matrices are then vertically stacked to form a larger rectangular
matrix, which is called the full LODF (FLODF) matrix.

Algorithm 2 outlines the procedure for computing the FLODF matrix. Initially, in line 3, we determine
the set of all possible contingencies ΩC . In situations involving a substantial number of contingen-
cies, performing a single matrix multiplication with the FLODF matrix to compute all post-contingency
flows results in memory issues. In such cases, the FLODF matrix is built in multiple batches, with
post-contingency flows computed batch-wise. Each batch comprises a specified number of SLODF
matrices. In cases where a single matrix multiplication with FLODF is possible, the batch size equals
|ΩC |. Lines 4-6 initialize the construction. Lines 8-17 create a SLODFmatrix ∀c ∈ ΩC , and stack them
to FLODFbatch. If the FLODFbatch contains the specified amount of SLODFs, it is appended as a
submatrix to FLODF. In line 18, any remaining SLODFs are appended to the FLODF.

After the FLODF matrix is constructed, a module called pickle is used for storage (line 20) and subse-
quent retrieval of the FLODF within the training loop.
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Figure 4.5: Schematic representation of the computation of all post-contingency flows with a single
matrix multiplication. The FLODF is created by stacked SLODFs for a N-1 case. The white

columns are zero columns, the grey columns contain the LODFs.

Algorithm 2 Construction of the sparse FLODF matrix
1: Import: pickle
2: Import: data← M2.1 - power system case description
3: Input: data, k
4: Obtain all contingency combinations ΩC ← data, k
5: lodf batch = batch size # specified number of SLODFs
per FLODFbatch

6: FLODF = [ ]
7: FLODFbatch = ∅
8: counter = 0
9: for i in range(|ΩC |) do
10: SLODF = createSLODF (i)
11: stack SLODF to FLODFbatch

12: counter += 1
13: if counter == lodf batch: then
14: FLODF.append(FLODFbatch)
15: FLODFbatch = ∅
16: counter = 0
17: end if
18: end for
19: if counter > 0: then FLODF.append(FLODFbatch)
20: end if
21: pickle.dump(FLODF)

MemoryReductionwith Sparsity FLODF As visualized in Figure 4.5, the construction of theFLODF
matrix is designed to enable a single matrix multiplication to obtain all post-contingency flows. As the
number of columns containing non-zero elements equals the number of outages k, this matrix is sparse.
The number of contingency cases |ΩC | holds combinatorial complexity and can be computed as:

ΩC(l, k) =
|ΩL|!

k!(|ΩL| − k)!
(4.6)

Each SLODF contains k non-zero columns. Each column has |ΩL| entries, with (|ΩL| - k) possible
non-zero entries. The maximum possible number of non-zero elements in a SLODF is k(|ΩL| − k).
The maximum possible amount of nonzero elements for the FLODF is k|ΩC |(|ΩL| − k). The number
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of elements in the FLODF is |ΩC ||ΩL|2. A lower bound of sparsity can be computed for the FLODF
matrix:

sparsity = 1− k(|ΩL| − k)

|ΩL|2
(4.7)

This is a theoretical lower bound since for certain cases the LODF is zero due to the network topology,
and in some contingency cases a part of the network gets disconnected. As previously mentioned, in
the context of islanding cases, the LODFs are intentionally set to zero, and islanding is recognized by
the singularity of the matrix (E−PTDF0

O,O)−1. As k increases, more islanding cases occur, especially
for smaller systems. To reduce the memory of the FLODF matrix, the matrix is expressed in sparse
COO format, storing only the non-zero elements along with their row and column indices. Consequently,
a sparse matrix multiplication is performed between the FLODF and the base case flows.

M2.4 -Data Generation
After the construction of the feasibility restoration layer and the FLODF matrix, the next step involves
the generation of training and testing datasets, facilitated by function M1.2. Once generated, these
datasets are stored using the pickle module for later retrieval during training of the proposed approach.

4.2.3. Constraint-Driven Learning
With the construction of the essential building blocks, the proposed approach is now prepared for train-
ing. The initial step, M3.1, specifies all training parameters and imports the fundamental components.
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Figure 4.6: M3 - Training loop; steps taken during training of the proposed approach.
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M3.2 - Neural Network Architecture
We employ a fully connected linear neural network, or MLP. Notably, as the dimensions of the input and
output layer scale with the number of loads and generators within the system respectively, the number
of trainable parameters increases with the system’s size. Consequently, when scaling to larger test
systems, a larger amount of training data is required to adequately train all these parameters, resulting
in limited scalability of the MLP. To address the challenge of scalability, we explore the use of a GCNN,
which parameter count is theoretically independent of the system’s size. This property enhances the
scalability of the proposed approach for larger grids.

To guide the GCNN in finding optimal solutions with respect to dispatch cost, we adopt a preprocessing
step. Prior to passing the hidden features from the last convolutional layer to the readout layer, we
concatenate a L2-normalized cost vector to the hidden feature matrix. This approach draws inspiration
from the work presented in [54]. GCNNs are unique in that they share parameters and simultaneously
learn features for all nodes. Intuitively, the inclusion of the cost introduces a form of prioritization,
favoring the selection of more cost-effective generators.

M3.3 - Training Loop
(1) Predict As Figure 4.7 shows, the first step involves the prediction of the generator setpoints from
the loads using a MLP. To ensure the MLP adheres to the generator limits, the MLP outputs a scal-
ing factor αn ∈ [0, 1]. Both the sigmoid and scaled tanh activation functions possess the property of
predicting a number between 0 and 1. Through the employement of one of these activation functions
in the output of the MLP, the generator constraints are enforced. Subsequently, P̂Gn

is computed as
P̂Gn = αn · (Pmax

Gn
− Pmin

Gn
) + Pmin

Gn
.

neural 
network

𝐏𝐃

Predict

𝑷𝐆

Figure 4.7: Schematic representation of prediction step.

(2) Feasibility Restoration After predicting the generator setpoints, as shown in Figure 4.8, these set-
points are forwarded to the previously constructed feasibility restoration layer from M2.2. The restora-
tion outputs the restored generator setpoints together with the other variables in the optimization prob-
lem (i.e. phase angles δ and line flows F).

𝑷𝐆

𝑔 𝑥 < 0
ℎ 𝑥 = 0

𝑚𝑖𝑛||𝑷𝑮 −  𝑷𝑮||𝟐

𝐏𝐆

Feasibility Restoration

𝑭𝒍

δ

Figure 4.8: Schematic representation of feasibility restoration step.
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(3) Post-Contingency Lastly, as visualized in Figure 4.9, using theFLODFmatrix, all post-contingency
flows are computed. For improved readability, Eq. (4.2) for computing the post-contingency flows is
repeated below:

F c
l = F 0

l + LODFN−k × F 0
l ∀l ∈ ΩL (4.8)

neural 
network

𝐏𝐆LODF𝑭𝒄

Loss

Post-contingency 

Figure 4.9: Schematic representation of post-contingency step.

The loss function utilized for training the entire approach is based on the penalty function method
detailed in Section 2.3.2. This loss function considers violations of both DCOPF constraints and line
flow limits in post-contingency cases. Since the feasibility restoration layer follows the MLP, the MLP
remains agnostic to this restoration process. Consequently, the loss function incorporates violations of
the DCOPF constraints related to the predicted generator setpoints P̂G. To achieve this, the predicted
base-case line flows are computed using Eq. (4.4). The complete loss function is formally defined in
Eq. (4.3).

Computational Graph Memory Reduction An essential aspect of the training process involves re-
ducing the memory requirements associated with the computational graph. A computational graph is a
directed graph that visually represents a mathematical or computational model, illustrating the data flow
and interconnection of various operations. Computational graphs find significant utility in deep learn-
ing, where they guide the gradient flow for backpropagation in tensors, as illustrated in Figure 4.10.
However, when dealing with extensive tensors, such as those involving large FLODF matrices and
multiple samples, substantial memory is required. To reduce memory requirements, Algorithm 3 is pre-
sented. Lines 7-8 in Algorithm 3 compute the post-contingency flows without the construction of the
computational graph (requires grad = False). Lines 9-15 in Algorithm 3 remove rows corresponding
to non-violating flows from the FLODF matrix and recompute the post-contingency flows using the
computational graph (requires grad = True), constructing only a relatively small computational graph,
therefore reducing memory requirements. A visualization of the reduced FLODF is given in Figure A.1.
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Figure 4.10: The computational graph of the proposed approach.

Algorithm 3 Reducing the computational graph
1: for epoch in Epochs do
2: MLP: αn ← PD

3: function CVXPYlayer(PD, αn)
4: Input: PD, αn

5: return PG, F0, δ
6: end function
7: requires grad = False
8: Fc ← F0 + FLODF × F0

9: if F c
l < Fmax

l then
10: Obtain row indices non-violating F c

l

11: Remove non-violating rows FLODF
12: FLODFreduced ← FLODF
13: end if
14: requires grad = True
15: Fc ← F0 + FLODFreduced × F0

16: Loss:
∑

ReLU(|Fc| − Fmax)
17: Perform backward pass
18: end for

M3.4 - Save MLP
Finally, the MLP weights are stored for future inference and comparison with the proposed baselines.

4.3. Probabilistic Security Assessment
Expanding upon the preceding section, the workflow undergoes slight modifications to facilitate prob-
abilistic security assessment. Incorporating probabilities into the approach enables decision-making
with an N-k risk-based security criterion enhancing N-k security [1]. The goal is to achieve N-k security
and heightened resilience to changing outage probabilities caused by unforeseen HILP events, thus en-
hancing power system operational resilience [3]. The modified sections are highlighted in Figure 4.11,
and will be explained in this section.
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Figure 4.11: Schematic of the proposed approach; additional blocks needed for the probabilistic
security assessment and the inference.

4.3.1. Joint Probabilities with Copulas
M2.5 - Compute Probabilities
Within the training preparation section M2, an additional Jupyter Notebook file is introduced designed
for the computation of the contingency probabilities. To compute the joint line outage probabilities, the
Gaussian copula function introduced in [21] is used. It is assumed that the inverse stress on transmis-
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sion line l follows a Gaussian distribution and is given by a random variable Yl = N(µl, σl). µl and σl

are the mean and standard deviation respectively and the cumulative distribution function is given by:

FYl
(yl) =

1

2

[
1 + erf

(
yl − µl

σl

√
2

)]
(4.9)

For each line l, µl and σl are chosen so that FYl
(0) = pl where pl is the independent probability of line

l going out. Assuming µl = 1 ∀l, σl is determined as:

σl =
−1

erf−1(2pl − 1)
√
2

(4.10)

To compute the covariance between two probabilities, we assume exponential decay of correlation with
distance between lines l and m:

ρl,m = ρ0e
−dl,m/L l,m ∈ ΩL (4.11)

Here, ρ0 represents maximal correlation at zero distance, L is the characteristic length, and dl,m is
simplified as the shortest distance between any pair of buses of the lines (dl,m =min{d(l1,m1), d(l1,m2),
d(l2,m1), d(l2,m1)}) as shown in Figure 4.12. This exponential decay models spatial behavior seen
in events like earthquakes, tornadoes, and hurricanes, which often exhibit geographic correlations [21,
22].

l

m

l1

l2

m1 m2

d(l1,m2)

d(l2,m2)
d(l1,m1)

d(l2,m1)

Figure 4.12: The distances between any pair of buses of two lines. The shortest distance is used, in
the Figure d(l1,m1).

The covariance between lines is calculated as cov(l,m) = ρl,mσlσm. This equation allows for the
construction of the covariance matrix C. The copula is formed using the probability density function of
the multivariate normal distribution given below.

f(y) =
1√

(2π)k|C|
exp

(
−1

2
(y − µ)TC−1(y − µ)

)
(4.12)

The joint probability of k = 2, 3 outages is computed by integrating Eq. (4.12) over the corresponding
region in the joint probability distribution:

FY (0) =

∫ 0

−∞

∫ 0

−∞
· · ·
∫ 0

−∞
f(y1, y2, . . . , yk) dy1 dy2 . . . dyk (4.13)

Here,FY (0) is the joint probability of k outages. In this context, the joint probabilities for all combinations
of k = {2, 3} are computed, resulting in the formation of the vector PN−k. As a result, three distinct
vectors, PN−1, PN−2, and PN−3, are created and finally stored for subsequent retrieval in the training
loop.
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4.3.2. Expected Violations
M3.3 - Modified Training Loop
The training loop in section M3.3 undergoes a small modification to facilitate the integration of probabil-
ities during training. By multiplying the contingency probabilities with the post-contingency flow viola-
tions, the expected post-contingency flow violations are obtained. Using these expected violations the
probability of the system being secure or not is assessed.

E[Fviol] = ∥PN−k ·ReLU(|Fc| − Fmax)∥1 (4.14)

The loss function employed to minimize the expected post-contingency flow violations is similar to
Eq. (4.3). The only modification is that the expected violations are used instead of the actual violations.

Loss = λ0cG
TPG + λ1∥ReLU(|F̂0| − Fmax)∥1 + λ2∥PN−k ·ReLU(|Fc| − Fmax)∥1

+λ3∥ΣP̂G − ΣPD∥1
(4.15)

The MLP is trained using the loss function described in Eq. (4.15), which accounts for all contingencies
across multiple security levels including their probabilities.

4.3.3. Probabilistic Reliability Indicators
The probabilistic reliability indicators LOLE and EENS are evaluated during normal operation. More-
over, these indices are assessed when the proposed approach undergoes a HILP event. These indices
are computed as follows [56]:

LOLE = ∆T
∑
c∈ΩC

P c
N−k[ΣP

c
G < ΣPc

D] (4.16)

In this expression, P c
N−k[ΣP

c
G < ΣPc

D] represents the probability of the generation capacity being
smaller than the total load during contingency c. Here, ∆T denotes the total duration of the study
period in hours. Additionally, the computation of EENS follows the formulation:

EENS =
∑
c∈ΩC

(P c
shed · P c

N−k) (4.17)

The EENS is computed as the sum of the expected load shed during the study period for each contin-
gency c, denoted as P c

shed, multiplied by its respective probability PN−k, considering all contingencies
within the set ΩC .



5
Case Studies

5.1. Case Study Settings
The deterministic approach is tested on the IEEE 39-bus and the IEEE 118-bus systems, while the
probabilistic approach is solely tested on the IEEE 39-bus system [61]. The IEEE 39-bus system is
modified, excluding the transformers. The test case characteristics are presented in Table 5.1. The
single line diagrams are shown in Figure 5.2 and Figure 5.3 respectively.

To model the correlation pattern in power system loads, a Kumaraswamy(1.6, 2.8) distribution is used.
Power levels are sampled within± 0.25 of the nominal load with a Pearson correlation coefficient of 0.75.
First, both systems are trained using a MLP with three hidden layers, dropout (0.2), ReLU activation
and a scaled tanh activation in the output. For the 39-bus system, 1000 samples are used with a
train-validation split of 800/200. 8 neurons per hidden layer result in 410 parameters. The flow limit
for all lines is set to 1000MW. For the 118-bus system, 3200 samples are used with a train-validation
split of 3000/200. 16 neurons per hidden layer result in a total of 2467 parameters. The flow limit is
set to 200MW for most lines, with a higher flow limit for some critical lines. Next, both networks are
trained using a GCNN. For the 39-bus case, the GCNN is constructed using three GraphConv layers,
with 16, 8 and 8 hidden features respectively. One read-out layer is used, resulting in a total of 465
parameters. For the 118-bus case, the GCNN is constructed using three GraphConv layers, with 32, 16
and 16 hidden features respectively. One read-out layer is used, resulting in a total of 1689 parameters.
Inference is done on a not previously seen data set of 1000 samples.

For the probabilistic study, inference is also done on a not previously seen data set of 1000 samples,
representing 1000 hourly simulations. Equal outage probabilities are assumed for all lines, where
pl = 0.005 for l ∈ ΩL. These probabilities are then scaled according to individual line lengths pscall =

pl
Ll−µlen

σlen
for l ∈ ΩL, assuming that longer lines have a higher outage probability than shorter lines.

Here, Ll is the length of line l, µlen is the mean length of all lines and σlen is the standard deviation of
the length of all lines. Joint probabilities for k > 1 are computed using the previously described copula
analysis. We set the characteristic length L to 50 km and the maximum correlation ρ0 to 0.15 resulting
in the correlation plot shown in Figure 5.1. An outage frequency of 0.0051 /cctkmyr (circuit-kilometer-
year) is chosen for all lines with an average repair time of 44h per individual line in outage [56]. It is
assumed that for 10% line overloads no load shedding is necessary, but when a line is more than 10%
overloaded, load shedding has to take place to avoid an outage.

34
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Figure 5.1: Plot showing the exponentially decaying correlation as distance increases.

The 39-bus system is tested on a 16GB RAM desktop with CPU. The 118-bus system is tested on
the DelftBlue supercomputer with 16GB RAM and NVIDIA Volta V100S GPUs [62]. Both the DCOPF
and SCOPF are implemented in the CVXPY 1.3.0 library [60] and the solver was ECOS 2.0.11. The
CVXPYlayer is constructed using CVXPYlayers 0.1.5 [34]. The graph figures are generated using
NETWORKX 3.1 [63]. The whole framework is implemented in PyTorch 1.13.1 [64]. The GCNN is
made using Torch-Geometric 2.3.1 [65].

Table 5.1: System parameters for 39-bus and 118-bus test systems

|ΩB | |ΩG| |ΩD| |ΩL|
Case 39 27 10 21 33
Case 118 118 19 99 186
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Figure 5.2: 39-bus system single line diagram. It is a modified version, excluding the transformers.
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Figure 5.3: 118-bus system single line diagram.

5.1.1. Baselines
The baseline for the deterministic approach is a comprehensive N-1 SCOPF. When k >1 considering
the complete set of contingencies becomes intractable utilizing off-the-shelf solvers, and the ground
truth is obtained by performing a SCOPF with contingency screening (CS) using LODFs. The workflow
of this CS method is illustrated in Figure 3.3. A heuristic (H) approach is used a second baseline, where
the contingency list created by CS is used to solve a SCOPF on a new dataset, bypassing the iterative
addition of contingencies. For the probabilistic approach, a baseline referred to as ’N-k SCOPF’ is
used. TSOs are integrating N-2 contingencies due to the heightened risk of multiple outages. The ’N-k
SCOPF’ includes a comprehensive N-1 SCOPF, encompassing the 20 most critical N-2 contingencies
identified through a contingency filtering process.

To determine the optimal number of contingencies added per iteration, a case study is conducted on the
N-2 and N-3 scenarios of the 39-bus system. The evaluation of the baseline’s performance is focused
around the trade-off between identifying violating post-contingency cases and computational time with
the incremental addition of contingencies. The findings are depicted in Figure 5.4 and Figure 5.5. These
figures illustrate that enhancing the solution’s security comes at the cost of increased solving time for
the optimization problem. Following the analysis, a decision is made to introduce 20 contingencies per
iteration, resulting in a maximum of 60 post-contingency constraints added to the DCOPF.
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Figure 5.4: 39-bus N-2 post-contingency
violations vs time to solve.
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Figure 5.5: 39-bus N-3 post-contingency
violations vs time to solve.

5.2. Memory Reduction
This case study assesses the achieved memory reduction by expressing the FLODF matrix in sparse
format, and by reducing the computational graph. Table 5.2 presents the percentage of islanding cases,
the sparsity of the FLODF matrix, and the achieved reduction in elements through its expression in
COO format. A noteworthy decrease in the number of elements is evident.

Table 5.2: FLODF computed sparsity after construction

k 1 2 3 4 5 6

39-bus sparsity [%] 98.5 97.6 97.5 98.1 98.9 99.6
Reduction COO [%] -95.6 -92.7 -92.4 -94.2 -96.7 -98.8

118-bus sparsity [%] 99.6 99.3 99.0 N/A N/A N/A
Reduction COO [%] -98.8 -97.8 -97.0 N/A N/A N/A
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Figure 5.6: Percentage of contingency cases which are islanding cases as k increases.

For the 39-bus system, the ’reduced graph’ algorithm is compared to a ’full graph’ baseline with un-
modified tensors using a batch size of 100 samples. For the N-5 case, a batch size of 50 is used due
to memory issues of the ’full graph’ baseline. Figure 5.7 shows that the ’reduced graph’ algorithm is
slightly slower during the forward pass as a result of the added operations. The increase in time is



5.3. Deterministic Post-Contingency Violations 38

small, as less than 1% of post-contingency flows violate constraints resulting in quick matrix multipli-
cations with small matrices. In contrast, the N-5 case achieved a 100-fold memory reduction and 8x
speedup in the backward pass by reducing the computational graph and the size of tensors involved
in backpropagation.
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Figure 5.7: Comparison of the speed of the forward pass, the backward pass and the memory
consumption of the full computational graph against the reduced computational graph.

5.3. Deterministic Post-Contingency Violations
The next case study assesses the success of the proposed approach in identifying post-contingency
violations in comparison with the proposed baselines. For enhanced surveyability, the schematic per-
taining to the model inference is shown in Figure 5.8.
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M4 - Model inference

M2.4

CS and H datasets

Figure 5.8: Schematic workflow corresponding to the deterministic post-contingency violation
evaluation.

5.3.1. Multi-Layer Perceptron
Without Feasibility Restoration
To illustrate the challenge of obtaining a feasible solution when applying deep learning to constrained
optimization problems, this case study assesses the proposed approachwithout the use of the feasibility
restoration layer, denoted as MLP ̸= corr. A comparison with the CS baseline is shown in Table 5.3.
The training parameters are shown in Table B.6.
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Table 5.3: 39-bus system results proposed approach ̸= feasibility restoration layer

N-1 N-2 N-3 N-4 N-5

Base case violations SCOPF 0.00% 0.00% 0.00% 0.00% 0.00%
MLP ̸= corr 39.80% 41.30% 42.20% 39.70% 39.30%

Post-cont violations # contingencies 33 528 5,456 40,920 237,336
SCOPF 0.06% 0.74% 3.30% 3.70% 3.51%
MLP ̸= corr 0.32% 1.47% 3.36% 4.77% 4.79%

Time [s] SCOPF 60 248 289 302 388
MLP ̸= corr 5 5 7 22 90
Increase x12 x50 x41 x14 x4

Cost [$] SCOPF 2041 2099 2144 2210 2209
MLP ̸= corr 2156 2165 2164 2195 2151
Increase +5.63% +3.14% +0.93% -0.68% -2.63%

From the results in Table 5.3 it can be observed that the approach without feasibility restoration layer
struggles to identify base case feasible solutions. Furthermore, when compared to the proposed ap-
proach that includes the feasibility restoration layer (Table B.8), it exhibits suboptimal performance in
terms of dispatch cost and identifies fewer post-contingency cases with violations.

With Feasibility Restoration
Next, the results are presented of the proposed approach including the feasibility restoration layer.

39-bus system Figure 5.9 presents an absolute comparison between the proposed method and the
CS baseline. Table 5.4 presents the relative differences. The Table containing all results can be found
in Table B.8.
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Figure 5.9: 39-bus system results proposed approach vs CS baseline.

Table 5.4: 39-bus MLP comparison of speed and cost increases with CS baseline

N-1 N-2 N-3 N-4 N-5

Speed Increase x12 x49 x41 x15 x4
Cost Change +1.44% +1.17% +0.51% -0.47% -2.61%

Next, the proposed approach is compared to the H baseline, where the SCOPF is solved with a pre-
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defined contingency list. Figure 5.10 presents the absolute values and Table 5.5 presents the relative
differences. The full Table of results can be found in Table B.9.
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Figure 5.10: 39-bus system results proposed approach vs H baseline.

Table 5.5: 39-bus MLP comparison of speed and cost increases with H baseline

N-1 N-2 N-3 N-4 N-5

Speed Increase x15 x21 x21 x8 x2
Cost Change +1.45% +1.22% +0.10% -0.66% -2.57%

In the case of the 39-bus system, as Figure 5.9 and Figure 5.10 show, the proposed approach outper-
forms baselines for k > 2 by detecting more violating post-contingency cases, while remaining com-
petitive for N-1 and N-2, with a maximum 0.7% absolute increase in violating cases for N-2. Moreover,
the proposed approach exhibits speeds up to 21× faster than the H baseline for N-2 and N-3 cases.
The H baseline, leveraging a pre-existing contingency list, significantly reduces computation time. The
H method’s efficiency results from the limited variability in loading profiles and spatial consistency of
critical contingencies, effectively harnessing historical data.

Critical Lines 39-bus System To evaluate the location of the critical lines, the single line diagram in
Figure A.9 is presented. It shows the number of violations for each line for the 39-bus N-3 case. The
histogram in Figure A.10 shows the number of violations per line in descending order. These figures
illustrate that the proposed approach identifies a different dispatch than the proposed baseline, resulting
in different locations of critical lines. It is important to note that the goal of the proposed approach is
not to mimic the proposed baseline. The single line diagrams and histograms for the 39-bus N-1 and
N-2 cases can be found in the appendix in Figure A.5, Figure A.6, Figure A.7 and Figure A.8.
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(a) Proposed approach.
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(b) Baseline.

Figure 5.11: 39-bus violations for the N-3 case, showing a decrease in the number violations.
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Figure 5.12: Number of violations per line, in descending order, for the 39-bus system N-3.

Security Level Comparison The models are trained for specific security levels, denoted as k =
{1, 2, 3, 4, 5}. Figure 5.13 displays the percentage of identified violating cases for models trained at
individual security levels and Table 5.2 shows the number of islanding cases. It reveals that the N-
3 secure model offers security levels comparable to N-4 and N-5 models, primarily due to a notable
number of islanding cases in N-4 and N-5. The Table containing all values can be found in Table B.10.
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Figure 5.13: Comparison for 39-bus system of violating post-contingency cases for different
contingency levels.

118-bus system Moving on to the 118-bus system, Figure 5.14 and Table 5.6 present the absolute
and relative results respectively. The full Table of results can be found in Table B.12.
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Figure 5.14: 118-bus system results proposed approach vs CS baseline.

Table 5.6: 118-bus MLP comparison of speed and cost increases with CS baseline

N-1 N-2 N-3

Speed Increase x158 x173 x27
Cost Change +2.51% -6.13% -5.29%

Next, Figure 5.15 and Table 5.7 present the absolute and relative differences respectively of the H
baseline compared to the proposed approach. Table B.13 presents the full results.
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Figure 5.15: 118-bus system results proposed approach vs H baseline.

Table 5.7: 118-bus MLP comparison of speed and cost increases with H baseline

N-1 N-2 N-3

Speed Increase x76 x165 x15
Cost Change +2.88% -6.41% -4.92%

For the 118-bus N-1 case, the results of the proposed approach compared to the CS and H baseline
are displayed in Figure 5.14 and Figure 5.15 respectively. Our proposed approach is 76× faster than
the H baseline, with a slight increase in detected post-contingency violations and a 2.5% cost increase.
In the 118-bus N-2 case, our approach is 176× faster, achieving a 6.1% cost improvement with a small
increase in violating post-contingency cases. In the 118-bus N-3 case, our approach outperforms all
baselines, notably reducing violating post-contingency cases by 1.9% in absolute terms.

Critical Lines 118-bus System To evaluate the location of the critical lines for the 118-bus system,
the single line diagram in Figure 5.16 is presented. It shows the number of violations for each line for the
118-bus N-3 case. The histogram in Figure A.16 shows the number of violations per line in descending
order. These figures reveal the identification of the same critical area in the North-West of the single
line diagram. Notably, the proposed approach demonstrates a significant reduction in the number of
violations within this critical area. The single line diagrams and histograms for the 118-bus N-1 and N-2
cases can be found in the appendix in Figure A.15, Figure A.12, Figure A.13 and Figure A.14.
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(a) Proposed approach.
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(b) Baseline.

Figure 5.16: 118-bus violations for the N-3 case. The same critical area in the North-West of the
single line diagram is identified by both methods. The proposed approach reduces the number of

violations in that critical area.
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Figure 5.17: Number of violations per line, in descending order, for the 118-bus system N-3.

Security Level Comparison As shown in Figure 5.18, the N-3 trained model exhibits enhanced
security against k ={1, 2} outages compared tomodels specifically trained for those levels. Furthermore,
the N-3 trained model achieves a dispatch cost similar to the N-2 trained model and only incurs a
modest 2.5% cost increase compared to the N-1 trained model. This demonstrates that for a marginal
cost increase, the N-3 model significantly enhances overall system security. The Table containing all
values can be found in Table B.14.
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Figure 5.18: Comparison for 118-bus system of violating post-contingency cases for different
contingency levels.

5.3.2. Graph Convolutional Neural Network
This case study incorporates a GCNN in the proposed approach. Based on the security level analy-
sis presented earlier, it is established that achieving N-3 security is adequate for the 39-bus system.
Consequently, the GCNN is assessed up to N-3 for the 39-bus system. The comparative analysis with
the H baseline is depicted in Figure 5.19, while the comparison with the CS baseline is illustrated in
Figure A.3. The results reveal the identification of numerous infeasible cases with a modest optimality
gap in cost and a notable enhancement in computational speed. In contrast to the MLP, the GCNN
exhibits a slight underperformance in terms of infeasible case detection and cost.



5.4. Probabilistic Security Assessment 45

N-1 N-2 N-3
0

1

2

Case

Po
st
-c
on
tv
io
la
tio
ns

[%
]

SCOPF
MLP
GNN

N-1 N-2 N-3
0

50

100

150

Case

Ti
m
e
[s
]

N-1 N-2 N-3
0

1,000

2,000

Case

C
os
t[
$]

Figure 5.19: 39-bus system results proposed approach with GNN vs H baseline and MLP.

For the 118-bus system, the comparative analysis with the H baseline is shown in Figure 5.20, while
the comparative analysis with the CS baseline is shown in Figure A.4. The proposed approach exhibits
a notable underperformance specifically in detecting post-contingency violations for the N-2 case. Ad-
ditionally, a suboptimal dispatch cost is observed when compared to the performance of the MLP.

N-1 N-2 N-3
0

2

4

Case

Po
st
-c
on
tv
io
la
tio
ns

[%
]

SCOPF
MLP
GNN

N-1 N-2 N-3
0

500

1,000

1,500

Case

Ti
m
e
[s
]

N-1 N-2 N-3
0

500

1,000

Case

C
os
t[
$]

Figure 5.20: 118-bus system results proposed approach with GNN vs H baseline and MLP.

To summarize, the proposed approach incorporating a GCNN shows promise, but requires more re-
search.

5.4. Probabilistic Security Assessment
5.4.1. Copula Analysis
In the first case study of the probabilistic security assessment, the effect of the copula analysis on the
joint probabilities is evaluated in comparison to the assumption of independent line failures. When
independent line failures are assumed, the joint probability of multiple line failures is simply the product
of the individual probabilities. In Figure 5.21, the probabilities computed using the copula analysis are
compared to the independent probabilities, to visualize by how much the probabilities increase if a
spatial correlation is incorporated.

In Figure 5.21a, the correlation is set to zero to see if the copula analysis computes the joint probabilities
as independent probabilities. As can be seen from the figure, the ratio between the copula probabilities
and the independent probabilities is 1, meaning the probabilities are the same, and the copula analysis
considers the individual probabilities to be independent as expected. Furthermore, when a correlation
is added to the copula analysis, it can be clearly seen in Figure 5.21b that the probabilities around
the line in outage increase, and the probabilities of the lines far away from the outage can roughly be
assumed to be independent.
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(a) Increased outage probability for N-2 failures with copula analysis and
correlation set to 0.

(b) Increased outage probability for N-2 failures with copula analysis and
correlation set to 0.1.

Figure 5.21: Comparison of outage probabilities for specific N-2 cases.

When a N-3 case is considered, it can be seen from Figure 5.22a that if adjacent lines are in outage,
the probability of outage of the surrounding lines significantly increase. When lines far apart experience
an outage, roughly the same increase in probability as for N-2 cases is observed in Figure 5.22b.
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(a) Increased outage probability for N-3 failures with copula analysis for
adjacent lines

(b) Increased outage probability for N-3 failures with copula analysis for
distant lines

Figure 5.22: Comparison of outage probabilities for specific N-3 cases.

This illustrates that incorporating correlations into outage probabilities leads to a substantial increase in
the likelihood of N-k outages. By integrating these probabilities, derived from copula analysis, into the
proposed risk-based framework, a more realistic depiction of multiple line outages can be achieved.
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5.4.2. Risk-Based N-k SCOPF
For enhanced surveyability, the schematic of the workflow pertaining to the security assessment is
shown in Figure 5.23.
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Figure 5.23: Schematic workflow corresponding to the probabilistic security assessment evaluation.

This case study assesses N-k SCOPFs with probability considerations. Instead of training the neural
network solely on a single security level, we compute post-contingency flows for k = {1, 2, 3} and then
compute the expected flows by weighting them with their respective contingency probabilities.

Table 5.8: Comparison of LOLE and EENS between risk-based model and baselines

LOLE [h/y] EENS [MWh/y]

N-1 SCOPF 9.94 13.20
N-k SCOPF 1.08 1.85

Risk-Based Model 0.99 1.40

Table 5.9: Comparison of computational time and dispatch cost between between risk-based model
and baselines

N-1 SCOPF N-k SCOPF Risk-Based Model

Time [s] 61 139 8
Cost [$] 1968 2038 2076

Table 5.8 and Table 5.9 show that the N-1 SCOPF identifies the cheapest and least secure dispatch,
lacking security against N-2 and N-3 contingencies. The proposed model demonstrates strong per-
formance, showing slightly lower LOLE and EENS values compared to the N-k baseline, with only a
1.86% increase in dispatch cost and a 17× speedup.
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5.4.3. Operational Resilience to HILP Events
To test the resilience of the proposed approach against HILP events, a case study is performed where
the probabilities suddenly change due to an earthquake. The results are presented in Table 5.10. The
earthquake simulation is represented using three concentric circles. Within the innermost circle, the
individual probabilities of the lines increase significantly, while in the outermost circle, the individual
probabilities show the least increase. The probabilities for k = {2, 3} are recomputed. The risk-based
model that is trained in the previous section is used, and the reliability indicators are recomputed. The
proposed approach and the baseline exhibit similar LOLE values, but the proposed approach achieves
a 21.5% reduction in EENS, highlighting its enhanced operational resilience against HILP events.

Table 5.10: Comparison of LOLE and EENS after HILP between risk-based model and N-k SCOPF
baseline

After HILP

LOLE [h/y] EENS [MWh/y]

N-k SCOPF 13.37 28.28
Risk-Based Model 13.75 22.20



6
Conclusion and Discussion

6.1. Problem Statement
The transition to green energy is rapidly transforming the energy landscape, driven by the increased
integration of renewable energy sources, distributed energy resources, and the electrification of vari-
ous energy sectors. These developments pose a challenge to grid security, or operational reliability,
making it harder to meet the N-1 security criterion, the failure of which has led to numerous blackouts.
Furthermore, unforeseen weather events, now more frequent due to climate change, account for the
second major cause of these blackouts. The growing grid complexity highlights the importance of N-k
outages, but N-k security remains challenging due to its combinatorial complexity. Conventional meth-
ods struggle to efficiently scale with k. Additionally, HILP are occurring more frequently due to climate
change, increasing the risk of blackouts which typically occur due to cascading failures or common
cause events. This drives the need to develop a method which can approximate N-k SCOPFs, and to
develop a method which enhances power systems security and resilience. In this thesis, a constraint-
driven ML approach is introduced to address the challenges associated with N-k SCOPFs, considering
all possible contingencies. Both a deterministic and probabilistic framework are implemented.

6.2. Proposed Approach
The proposed approach is based on the linearized DCOPF and uses aMLP to learn amapping between
loads as inputs and generator setpoints as outputs. A feasibility restoration layer is employed to restore
the predicted generator setpoints to the base case feasible region. The set of all post-contingency flows
is computed utilizing LODFs. Additionally, the loss function incorporates various terms, drawing inspira-
tion from the penalty function method employed to transform constrained problems into unconstrained
ones. These terms include dispatch cost, predicted violations in base case flows, imbalance between
predicted generation and demand, and post-contingency flow violations. To additionally account for the
probabilities of joint outages where k >1, a copula analysis is applied to compute these joint probabilities
assuming a spatial correlation between individual line outages.

6.3. Research Questions and Answers
In this final chapter the core research questions are revisited. Based on the outcomes of the case
studies, the following results emerge to the proposed research questions:

6.3.1. Constraint-Driven Deep Learning with LODFs
Objective 1: Develop a deterministic constraint-driven approach to approximate N-k SCOPFs, consid-

ering all possible contingencies using LODFs.

Q1 Can LODFs be effectively employed to approximate N-k SCOPFs, incorporating all contin-
gencies, in a scalable and computationally efficient manner?

Q2 Can a constraint-driven ML approach reduce post-contingency violations?

50
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Q1 - Scalable and Efficient LODFs The first research question is aimed to investigate whether
LODFs can be effectively employed in a computationally efficient and scalable manner for approximat-
ing N-k SCOPFs considering all contingencies. The proposed approach effectively approximates N-k
SCOPFs for the 39-bus and 118-bus systems up to k = 3. The approach is tractable by expressing the
FLODFmatrix in sparse format and by reducing thememory requirements related to the computational
graph. Furthermore, by utilizing a MLP together with LODFs, the proposed approach efficiently incor-
porates many post-contingency inequality constraints. Incorporating as many inequality constraints as
the proposed approach using conventional methods is not tractable. Particularly in extensive scenarios
such as the 118-bus N-3 case, where over a million possible contingency cases exist, the proposed ap-
proach incorporating all these contingencies significantly outperforms conventional methods in terms
of speed and post-contingency violation detection. Additionally, the topology-dependent LODFs need
only be computed once or until the network topology changes.

That being said, the consideration of N-k contingencies holds combinatorial complexity, and different
approaches for computing LODFs still rely on computationally inefficient matrix inversions [12, 25, 66,
67]. When scaling up to larger grids and for increasing k, the computation of all post-contingency
flows becomes computationally challenging. While there is existing interest in accelerating N-k LODF
computations [12], further research on fast N-k LODF computation remains necessary. Moreover, as
the LODFs are topology dependent, they need to be recomputed if the topology changes. The FLODF
matrix for the 118-bus N-3 case expressed in COO format is constructed in 20 minutes without GPU
acceleration and requires 4.2GB of memory. Subsequently, the construction of the FLODF matrix for
the N-4 case which considers a substantial 48 ×106 contingency cases, resulted in memory issues
when using 16GB of RAM. Although the occurrence of N-4 contingencies is rare, it indicates limited
scalability when scaling up to large test systems. Moreover, as elaborated in Algorithm 2, the post-
contingency flows are computed batch-wise for extensive case due to the occurrence of memory issues
when performing a single sparse matrix multiplication with the complete FLODF. This results in a
slow computation of all post-contingency flows, and therefore in a long training and slow inference
for extensive cases. Smart coding strategies, including potential parallelization, could optimize the
computation process and yield significant speedups, especially when leveraging GPU acceleration. A
final limitation is the exclusion of islanding cases in the proposed approach.

To conclude, utilizing LODFs the proposed approach effectively approximates a N-3 SCOPF for the
118-bus system considering all contingencies. However, due to memory requirements of the extensive
LODFmatrix, the N-3 case of the 118-bus approaches the limit of the approach. The proposed approach
is promising, but to scale even further, more research is required.

Q2 - Constraint-Driven ML Approach The second research question aims to discover whether the
proposed constraint-driven approach can reduce post-contingency violations. To assess the effective-
ness of the constraint-driven ML approach, we conducted a comparative analysis with a conventional
baseline, utilizing 39-bus and 118-bus test cases. In the 39-bus system, the proposed MLP-based
approach achieved a remarkable 21× speed improvement over the fastest baseline, while remaining
competitive in post-contingency violation detection and dispatch cost. For the 118-bus system, the pro-
posed approach employing a MLP demonstrated strong performance in terms of dispatch cost, speed
and post-contingency violation detection, making it a promising approach for larger systems. The no-
table 165× speedup for the N-2 case and a 6% decrease in cost with a 2% absolute reduction in
post-contingency violations for the N-3 case are particularly significant. The slow solving time of the
baselines underlined the slow convergence of conventional methods utilized for solving N-k SCOPFs.
For the 118-bus N-2 and N-3 cases, as the solution space is significantly constrained by the incorpo-
rated contingencies, the solver in the baseline seems to prioritize feasibility over optimality in terms of
dispatch cost. The case study, which introduced a GCNN into the proposed approach, revealed the
potential for improved scalability.

While a constraint-driven approach offers the advantage of learning directly from the problem specifi-
cation without the need for labeled training data, it’s essential to note that, being a ML model, the strict
enforcement of post-contingency constraints using the MLP is not guaranteed. When specific contin-
gency security is required, a feasibility check remains unavoidable. In the event of post-contingency
violations, redispatching is still necessary. Additionally, more research is necessary incorporating a
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GCNN in the proposed approach. Theoretically, the number of parameters of a GNN should not scale
with system size. However, for the 118-bus system, a greater number of parameters compared to the
39-bus system was required to achieve the results presented.

To conclude, the constraint-driven approach effectively reduces post-contingency violations. However,
being a ML model, strict enforcement of post-contingency constraints can not be guaranteed.

6.3.2. Probabilistic Security Assessment
Objective 2: Perform a probabilistic security assessment to formulate an N-k risk-based security cri-

terion, providing an alternative to the current deterministic N-1 security criterion.

Q1 Does a probabilistic risk-based security criterion incorporating all contingencies improve
power systems security?

Q2 Does this proposed risk-based security criterion increase power systems resilience?

Q3 - Improved Power Systems Security The third research question aims at uncovering whether
the proposed risk-based security criterion improves power systems security. During normal operation,
the proposed risk-based security criterion demonstrates a significant decrease in LOLE and EENS
compared to the current conventional N-1 security criterion. Additionally, similar values of LOLE and
EENS are observed in comparison with the N-k baseline, along with a notable 17× speedup and a small
optimality gap in terms of dispatch cost of 1.86%. These results indicate that the proposed approach
holds potential for increased reliability.

Nevertheless, the performed reliability study is not very extensive. The computation of the LOLE and
the EENS is done utilizing contingency probabilities, while conventional reliability studies rely on various
simulations considering different scenarios [2, 55]. Therefore, the performed case study serves only
as an indication of the reliability of the proposed approach. In order to gain a more comprehensive
understanding of the proposed approach’s reliability, these reliability indices should be computed using
extensive simulation methods, considering multiple future scenarios.

Q4 - Enhanced Power Systems Resilience The fourth research question aims at evaluating possi-
ble added resilience by the proposed approach. When faced with rapidly changing probabilities of a
HILP event, the proposed approach exhibited comparable performance to the N-k baseline in terms of
LOLE, while achieving a notable EENS reduction of approximately 21%. This suggests potential for
increased resilience against unforeseen weather related events.

However, the same limitation holds as for the reliability study. A single case study to assess power
systems resilience merely serves as an insight into the added resilience of the proposed approach.
The growing interest in power systems resilience [1, 3, 4] has led to the introduction of various met-
rics to evaluate resilience, including reliability indices [2, 4, 57]. However, these indices, traditionally
used for reliability evaluation, offer limited insights when evaluated against a single HILP event. To
comprehensively assess the added resilience of the proposed approach, a more thorough evaluation
is recommended.

Q2 - Additional Discussion Growing grid complexity underlines the increasing relevance of reliability
and resilience studies [1]. While operational security and resiliency studies can be very extensive [2,
3, 4, 5, 57], the discussion below only focuses on the limitations of the proposed case studies.

The reliability case study involves inference from 1000 random samples, yet the assessment deviates
from the conventional definition of reliability. True reliability assesses a system’s ability to withstand dis-
turbances and common failures during normal operation over a specified time period. In the proposed
case study, all samples have the same outage probabilities, considering only load profile variations. In
reality, power systems are faced with a lot more stochastic behaviour over prolonged normal opera-
tion periods, resulting from varying outage probabilities, and varying weather conditions [55]. Threats
and component vulnerabilities influencing outage probabilities fluctuate over time. These factors fluctu-
ate seasonally, geographically, and depend on equipment factors like thermal aging [5]. Moreover, the
weather influences energy consumption, and the amount of energy produced by RES, resulting in even
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more stochastic behaviour in load and generation. A comprehensive reliability study should at least en-
compass multiple scenarios for specified studied periods, accounting for changing outage probabilities
and diverse weather conditions [55]. Such a case study allows for comparison of the reliability indices
with other studies. Additionally, other reliability indices could be included in the evaluation [55, 56, 57].

While reliability pertains to normal operation, resiliency addresses specific and rare events. The per-
formed case study evaluates two reliability indices after the occurrence of a single HILP event. How-
ever, in the context of short-term resiliency, three separate phases can be distinguished [1, 57]. These
phases pertain to preventive, corrective and restorative actions. A truly resilient power system should
predict, adapt, and recover from rare events with minimal human intervention [57]. The current case
study, which solely examines reliability indices without incorporating recovery actions, provides only a
partial evaluation of power systems’ short-term resilience. Reliability based metrics give some indica-
tion of power systems resilience, but a comprehensive understanding of resilience requires a broader
study [4].

To conclude, the proposed case studies indicate potential for heightened reliability and resilience. How-
ever, the case studies provide limited insight, and more research is recommended.

6.4. Future Work
Building on this thesis, an extension of the proposed approach involves the consideration of additional
component outages (e.g. generator outages) into the approach. In alignment with conventional meth-
ods for preventive SCOPF, the present study exclusively focuses on the analysis of line outages [14,
15, 48]. This is particularly limiting during the energy transition, which is marked by an increased num-
ber generators due to the heightened integration of renewables. Reference [68] argues that generator
outages should be considered in preventive SCOPF, but the inclusion of generator outages introduces
binary variables, resulting in a more challenging MILP problem. Reference [16] mimicks a C&CGA
for N-1 SCOPF to include binary variables. Similar approaches could be investigated to incorporate
generator outages in the proposed approach.

Transitioning from preventive to corrective SCOPF, an avenue for future research involves the utilization
of the proposed approach for corrective control. When a N-k violation takes place, the priority shifts
away from dispatch cost considerations and the approachmay be employed for corrective control during
the restorative phase of an event. Consequently, the approach can be employed to enhance power
systems resilience in this restorative phase [1].

Extending its utility, the proposed approach could be modified to function under diverse conditions,
considering potential variations in system topology and contingency probabilities. The approach is cur-
rently trained for a specific system topology and for specific contingency probabilities. However, in the
event of an outage or unforeseen changes in probabilities, retraining the approach becomes necessary.
Moreover, in order to ensure efficient and reliable system operation, system operators perform transmis-
sion switching and topology control, further changing network topology [69]. Reference [70] introduces
a ML approach for approximating the OPF problem under power grid topology reconfigurations. If the
proposed approach can be effectively retrained after changed probabilities and reconfigurations, the
approach could find broader purpose.

Shifting to alternative neural network architectures, future research could delve deeper into the use of
GNNs within the proposed approach, providing a more scalable alternative to MLPs. Initial results show
promise, but comprehensive testing is necessary to evaluate scalability and performance in terms of
dispatch cost and post-contingeny violation detection. References [53, 71] propose methods which
accurately approximate ACOPFs utilizing GNNs, but future research is necessary for N-k SCOPFs.

Finally, to address the main bottleneck considering scalability, future research must focus on more effi-
cient methods for computing and storing LODFs. The current thesis employs a ’brute force’ approach,
necessitating numerous matrix inversions for LODF computation. To enhance scalability, investigat-
ing more scalable alternatives becomes imperative, particularly for larger test systems. One potential
approach for computing N-k LODFs involves utilizing only N-1 LODFs, reducing the number of matrix
inversions necessary. Additionally, there is room for exploring sophisticated techniques to compute
the entire set of post-contingency flows, aiming to further reduce memory consumption and broaden
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the applicability of the approach to even larger cases. TTD emerges as a potential research direction
in this context. Future research could focus on constructing a TT decomposed tensor with sensitivity
factors and developing a loss function in TT form.
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Figure A.1: Visualization of the reduced FLODF. The lines in red represent the post-contingency
flows in violation. By removing the rows corresponding to the non-violating post-contingency flows,

the sizes of the tensors involved and their computational graph are significantly reduced.
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(a) Increased outage probability for N-1 failures due to HILP
event.

(b) Increased outage probability for specific N-2 failure due
to HILP event.

(c) Increased outage probability for specific N-3 failure due
to HILP event.

Figure A.2: Changing probabilities due to HILP event, simulated by an earthquake.
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Figure A.3: 39-bus system results proposed method with GNN vs CS benchmark and MLP.
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Figure A.4: 118-bus system results proposed method with GNN vs CS benchmark and MLP.
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(a) Proposed approach.
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Figure A.5: 39-bus violations for the N-1 case.
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Figure A.6: Number of violations per line, in descending order, for the 39-bus system N-1.
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(a) Proposed approach.
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Figure A.7: 39-bus violations for the N-2 case.
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Figure A.8: Number of violations per line, in descending order, for the 39-bus system N-2.
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(a) Proposed approach.
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Figure A.9: 39-bus violations for the N-3 case.
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Figure A.10: Number of violations per line, in descending order, for the 39-bus system N-3.
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Figure A.11: 118-bus violations for the N-1 case.
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Figure A.12: Number of violations per line, in descending order, for the 118-bus system N-1.
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(a) Proposed approach.
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Figure A.13: 118-bus violations for the N-2 case.
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(a) Proposed approach.
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Figure A.14: Number of violations per line, in descending order, for the 118-bus system N-2.
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(a) Proposed approach.
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Figure A.15: 118-bus violations for the N-3 case.
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(a) Proposed approach.

0 10 20 30 40 50
0

1

2

3

4

5

·107

Lines

N
um

be
ro
fv
io
la
tio
ns

(b) Baseline.

Figure A.16: Number of violations per line, in descending order, for the 118-bus system N-3.
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Tables

Table B.1: Fixed training parameters sensitivity analysis

N-1 N-2 N-3

MLP Epochs 100 150 200
Batch size 100 100 100

Loss function λ1 0 0 0
λ2 1,000 100 10
λ3 0 0 0

Table B.2: FLODF sparsity lower bound

k 1 2 3 4 5 6

39-bus sparsity [%] 97.1 94.3 91.7 89.3 87.1 85.1

118-bus sparsity [%] 99.5 98.9 98.4 97.9 97.4 96.9

Table B.3: 39-bus system islanding cases

N-1 N-2 N-3 N-4 N-5 N-6

Contingency Cases 33 528 5,456 40,920 237,336 1,107,568
Islanding Cases 2 94 1,902 22,623 178,581 999,868
Percentage Islanding [%] 6.06% 17.80% 34.86% 55.29% 75.24% 90.28%
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Table B.4: 118-bus system islanding cases

N-1 N-2 N-3

Contingency Cases 186 17,205 1,055,240
Islanding Cases 9 1,703 159,591
Percentage Islanding [%] 4.84% 9.90% 15.12%

Table B.5: Reduced vs full computational graph comparison for the 39-bus system

Average per epoch N-1 N-2 N-3 N-4 N-5

Forward pass [s] Full Graph 3.39 3.57 5.04 15.37 69.28
Reduced Graph 3.40 3.58 5.19 16.76 77.87

Memory [GB] Full Graph 0.0026 0.0148 0.1449 1.0987 3.2241
Reduced Graph 0.0006 0.0021 0.0506 0.0900 0.0306

Backward pass [s] Full Graph 2.25 2.40 4.26 17.68 90.81
Reduced Graph 2.24 2.25 2.47 3.98 11.66

Table B.6: Training parameters approach ̸= feasibility restoration layer

N-1 N-2 N-3 N-4 N-5

MLP Epochs 100 150 200 200 200
Batch size 100 100 100 100 100
Time [s] 570 891 1,582 4,413 18,363

Loss function λ0 2 5 5 5 5
λ1 100 100 100 100 100
λ2 1,000 100 10 1 0.1
λ3 2,000 2,000 2,000 2,000 2,000

Table B.7: Training parameters feasibility restoration layer

N-1 N-2 N-3 N-4 N-5

MLP Epochs 100 150 200 200 200
Batch size 100 100 100 100 100
Time [s] 762 789 983 4,344 19,663

Loss function λ0 2 5 5 5 5
λ1 0 0 0 0 0
λ2 1,000 500 10 1 0.1
λ3 0 0 0 0 0
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Table B.8: 39-bus system results proposed method vs CS baseline

N-1 N-2 N-3 N-4 N-5

Base case violations SCOPF 0.00% 0.00% 0.00% 0.00% 0.00%
MLP 0.00% 0.00% 0.00% 0.00% 0.00%

Post-cont violations # contingencies 33 528 5,456 40,920 237,336
SCOPF 0.06% 0.74% 3.30% 3.70% 3.51%
MLP 0.31% 1.33% 2.16% 3.16% 3.11%

Time [s] SCOPF 60 248 289 302 388
MLP 5 5 7 20 101
Increase x12 x49 x41 x15 x4

Cost [$] SCOPF 2041 2099 2144 2210 2209
MLP 2068 2123 2155 2198 2154
Increase +1.44% +1.17% +0.51% -0.47% -2.61%

Table B.9: 39-bus system results proposed method vs H baseline

N-1 N-2 N-3 N-4 N-5

Base case violations SCOPF 0.00% 0.00% 0.00% 0.00% 0.00%
MLP 0.00% 0.00% 0.00% 0.00% 0.00%

Post-cont violations # contingencies 33 528 5,456 40,920 237,336
SCOPF 0.01% 0.60% 2.87% 3.40% 3.39%
MLP 0.25% 1.19% 2.00% 3.00% 3.00%

Time [s] SCOPF 60 103 145 149 163
MLP 4 5 7 20 97
Increase x15 x21 x21 x8 x2

Cost [$] SCOPF 2039 2097 2153 2212 2208
MLP 2067 2123 2154 2197 2154
Increase +1.45% +1.22% +0.10% -0.66% -2.57%

Table B.10: Values of comparison for 39-bus system of violating post-contingency cases for different
contingency levels

k 1 2 3 4 5

N-1 model infeasible cases [%] 0.33 5.10 10.80 13.26 10.75
N-2 model infeasible cases [%] 0.34 1.37 2.88 4.05 3.85
N-3 model infeasible cases [%] 0.33 1.08 2.19 3.11 3.03
N-4 model infeasible cases [%] 0.32 1.11 2.24 3.14 3.02
N-5 model infeasible cases [%] 0.34 1.10 2.20 3.13 3.05
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Table B.11: Training parameters 118-bus system

N-1 N-2 N-3

MLP Epochs 100 100 100
Batch size 100 100 100
Training time [s] 18,400 25,200 67,500

Loss function λ0 1 1 1
λ1 100 100 100
λ2 500 5 0.05
λ3 10 10 10

Table B.12: 118-bus system results CS baseline

N-1 N-2 N-3

Base case violations SCOPF 0.0000% 0.0000% 0.0000%
MLP 0.0000% 0.0000% 0.0000%

Post-cont violations # contingencies 186 17,205 1,055,240
SCOPF 0.9118% 1.0311% 5.8735%
MLP 1.0774% 1.7028% 2.6370%

Time [s] SCOPF 1423 1725 2841
MLP 9 10 104
Increase x158 x173 x27

Cost [$] SCOPF 956 1060 1058
MLP 980 995 1002
Increase +2.51% -6.13% -5.29%

Table B.13: 118-bus system results H baseline

N-1 N-2 N-3

Base case violations SCOPF 0.0000% 0.0000% 0.0000%
MLP 0.0000% 0.0000% 0.0000%

Post-cont violations # contingencies 186 17,205 1,055,240
SCOPF 0.8581% 1.0129% 4.5189%
MLP 0.8876% 1.5288% 2.4203%

Time [s] SCOPF 609 1484 1530
MLP 8 9 104
Increase x76 x165 x15

Cost [$] SCOPF 936 1045 1036
MLP 963 978 985
Increase +2.88% -6.41% -4.92%
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Table B.14: Values of comparison for 118-bus system of violating post-contingency cases for different
contingency levels

k 1 2 3

N-1 model infeasible cases [%] 1.0774 2.5555 4.3070
N-2 model infeasible cases [%] 0.6425 1.7028 3.0781
N-3 model infeasible cases [%] 0.5425 1.4481 2.6370

Table B.15: 39-bus system results proposed method with GCNN vs CS baseline

N-1 N-2 N-3

Base case violations SCOPF 0.00% 0.00% 0.00%
GCNN 0.00% 0.00% 0.00%

Post-cont violations # contingencies 33 528 5,456
SCOPF 0.03% 1.08% 2.92%
GCNN 0.73% 1.80% 2.56%

Time [s] SCOPF 60 248 289
GCNN 5 5 7
Increase x12 x50 x41

Cost [$] SCOPF 1993 2052 2099
GCNN 2025 2089 2144
Increase +1.61% +1.80% +2.14%

Table B.16: GNN comparison of speed and cost increases compared to the CS baseline

N-1 N-2 N-3

Speed Increase x12 x49 x41
Cost Change +2.41% +1.80% +0.57%
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Table B.17: 39-bus system results proposed method with GCNN vs H baseline

N-1 N-2 N-3

Base case violations SCOPF 0.00% 0.00% 0.00%
GCNN 0.00% 0.00% 0.00%

Post-cont violations # contingencies 33 528 5,456
SCOPF 0.03% 1.22% 2.78%
GCNN 0.90% 2.09% 2.85%

Time [s] SCOPF 60 103 145
GCNN 5 5 7
Increase x12 x21 x21

Cost [$] SCOPF 1998 2056 2112
GCNN 2029 2093 2147
Increase +1.55% +1.80% +1.66%

Table B.18: GNN comparison of speed and cost increases compared to the H baseline

N-1 N-2 N-3

Speed Increase x15 x21 x21
Cost Change +2.40% +1.80% +0.14%



C
Post-Contingency Flow Computation

Using PTDFs One way of computing the full set of post-contingency flows is using a PTDFc matrix
for every contingency case. Given the power injections ∆P ∈ R|ΩB |, the post-contingency flows using
PTDFc are computed as follows.

Fc = PTDFc∆P (C.1)

To compute the PTDFc matrix, the row and column corresponding to the line in outage are removed
from the susceptance matrix B ∈ R|ΩB |×|ΩB | to obtain Bc. Next, the inverse is taken as Xc = Bc

−1

and the PTDFc becomes.

PTDFc = Bbr ×A×Xc (C.2)

The relatively large Bc matrix is different for each contingency case, meaning it has to be inverted for
each case posing a computational challenge. By stacking individual PTDFc matrices, a FPTDFc

tensor (Full PTDFc) of size R|ΩL|×|Ωc|×|ΩB | is constructed. To reduce the memory footprint when
many contingencies have to be considered, TTD is used. First constructing the full tensor, and then
applying TTD is not possible. Constructing the TT using randomnization is not suitable since it often
results in large errors, which is not desirable for this application. Therefore, the FPTDFc TT has to be
constructed iteratively.

Using LODFs Alternatively, the post-contingency flows can be computed using LODFs as follows.

Fc = F0 + LODFM,O × F0 (C.3)

When many contingency cases have to be considered, the tensor containing all LODFM,O matrices
becomes large. However, this time the matrix becomes sparse making it a good candidate for express-
ing it in sparse format. The choice is made to construct the LODFM,O matrix such that it can be used
for sparse 2D matrix multiplication. Using the proposed method to compute the LODFs, the matrix that
needs to be inverted only has size k by k. This makes the process of computing sensitivity factors much
faster.

Comparison PTDFs and LODFs Firstly, using PTDFs and LODFs, the exact same post-contingency
flows are obtained, indicating that bothmethods have the same accuracy when computing post-contingency
flows.

Secondly, the construction of the PTDFc in TT format was successful for the 39-bus system. When
scaling to the 118-bus system, the TT had to be iteratively constructed as described earlier. The TTD
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itself and the rounding steps performed were slow, indicating that the PTDFc tensor might not be
the best candidate for TTD. For the 39-bus system, the construction of the N-3 FLODF matrix is
roughly 3× as quick as the TT decomposed PTDFc tensor, and the method utilizing the FLODF
matrix achieved roughly 7× more compression than the PTDFc TT method. For the 118-bus case,
the construction of the N-2 FLODF matrix is roughly 29× as quick as the TT decomposed PTDFc

tensor. The construction of the TT decomposed PTDFc tensor for the N-3 case was not successful
because it was too slow, making the TTD method intractable for this thesis.

Lastly, computations in sparse format are quick and easy, whereas operations in TT format are still
relatively new and unpractical for this application. No practical solution has been found to construct
a suitable loss function from TT format. Consequently, the method using LODFs is used in the final
framework.



D
Tensor Train Decomposition

The storage complexity of a tensor increases exponentially with the number of dimensions, a problem
known as the curse of dimensionality. To mitigate this issue, various tensor decomposition schemes
have been developed.

One such scheme is the Tensor Train Decomposition (TTD) [41, 42, 43], which allows tensors to be rep-
resented in a more compressed format, reducing computational complexity. TTD decomposes a large
tensor into smaller tensors, referred to as cores, with lower ranks. When these cores are arranged se-
quentially, they resemble a ”train” of tensors, hence the name tensor train. The decomposition process
involves iterative steps of unfolding the tensor (matricization) and performing singular value decompo-
sition (SVD) [40] on each unfolded matrix. This iterative process results in a tensor train with N cores,
obtained through N-1 steps. During the SVD step, some of the singular values are removed, reducing
the rank between the cores. The storage complexity and accuracy depends largely on the retained
ranks between the cores. The lower the rank, the lower the storage complexity, but also the lower the
accuracy. Considering a tensor with same sized dimensions, the storage complexity is exponential
O(IN ), where N is the number of dimensions of the tensor and I is the size of each dimension. With
TTD, this storage complexity is reduced to O(NIR2), where R is the rank between tensor cores.

Figure 2.4 illustrates a standard graphical representation of a tensor train. Each ”leg” corresponds to
a dimension, and each circle represents a core. The depicted tensor train consists of 3 cores, i.e.,
3 tensors, where the first core is a matrix with two legs, followed by a 3D tensor, and finally another
matrix.

Basic operations and TT rounding Once a tensor is transformed to TT format, all operations should
also be done in TT format to keep the advantage of the compression. Many basic operations can be
easily performed in TT format, among which are addition of TTs, elementwise (Hadamard) product and
the computation of the matrix norm. A multiplication between a TT and a matrix is another straight-
forward and fast operation. Consider the example below, where a 3D tensor expressed in TT format
is multiplied with a 2D matrix. The 2D matrix represented in TT format by the letter G in Figure D.1,
is simply ’absorbed’ by the second core of the 3D TT. The result is a new TT, where the size of the
dimension IC2 gets replaced by IG2. In full tensor form, the result is the same as multiplying this 2D
matrix with every slice along the second dimension of the 3D tensor.

As a consequence of many of these operations, the ranks between the cores increase. An increase in
ranks inherently means an increase in elements and consequently a reduced compression. To mitigate
the issue of suboptimal ranks [40] resulting from basic operations, a TT rounding step can be performed.
The process of rounding can also be referred to as truncation. Similarily to constructing a TT, during
a rounding step SVD is applied and some singular values are removed to reduce the rank. The same
trade-off between accuracy and complexity has to be made.

76



77

C1

r1 r2
C2

G1

C3

Ic1 Ic2 Ic3

IG2

IG1

C1

r1 r2
C2 C3

Ic1 Ic3IG1

Figure D.1: Visualization of a TT matrix multiplication. The matrix G1 gets absorbed by the second
core C2, resulting in a new TT. The bottom leg of core C2 now has dimension IG1

.

TT Construction When extensive tensors are involved which result in memory issues, first construct-
ing the full tensor, and then applying TTD is not possible. In this case, the TT has to be constructed
alternatively. Two approaches are briefly explained.

Firstly, the TT can be constructed using randomization. This is a stochastic process to approximate
the solution of the TTD. How it exactly works lies outside the scope of this thesis. It’s important to note
that it would involve initializing the ranks of the TT beforehand without knowing what they should be.
Defining the ranks is an iterative process which can be difficult without having any prior knowledge on
what they should be.

Another option is to recursively build the TT. This would involve constructing a part of the full tensor,
and transforming it into TT. Next, the next part of the tensor is constructed, it is transformed into TT
and it is summed to the main TT. After every summation, the rank of the tensor train doubles, so a
rounding step has to be performed to recompress the tensor train. During a rounding step some values
are truncated and the error increases.

If a 3D tensor is considered, the time it takes to convert the tensor in TT format or to perform a rounding
step depends on the structure and the data of the tensor. The more similar the slices of the tensor are,
the faster the TTD and rounding is, and also the more compression you achieve with TTD. If you try to
decompose a tensor into TT format and the matrices along the third dimension are very different, the
TTD will take a long time, and not a lot of compression will be achieved.



E
Sensitivity Analysis

Two different frameworks are designed with different implementations of the CVXPYlayer.

Feasibility Restoration Layer The first framework incorporates the CVXPYlayer as a feasibility restora-
tion layer. In this method, a NNmaps the loads to generator setpoints (P̂G). When the NN prediction lies
beyond the feasibility boundaries constrained by the DCOPF equations, a restoration layer is employed
to realign it within the feasible region. The convex DCOPF enables the utilization of a CVXPYlayer [34],
a convex solver that computes the gradients through the solution of the optimization. The restoration
layer minimizes the L2 norm between the predicted setpoints and the setpoints adhering to the feasible
region. The restoration layer outputs the restored generator setpoints, along with other variables in the
optimization problem, including phase angles (δ) and line flows (F). The formulation of the optimization
is outlined as follows:

min
n∈ΩG

∑
||PGn

− P̂Gn
||2 (E.1a)

subject to:

B · δ = PG −PD (E.1b)

Fmin
l ≤ 1

xij
(δi − δj) ≤ Fmax

l ∀i, j ∈ ΩB , ∀l ∈ ΩL (E.1c)

Pmin
Gn
≤ PGn ≤ Pmax

Gn
∀n ∈ ΩG (E.1d)

Lower Bound Prediction Layer In the second approach, a NNmaps the loads to the lower bounds of
the generator setpoints. By doing so, the role of the neural network shifts to constraining the generator
limits, thereby narrowing down the solution space of the DCOPF. This approach aims to modify the
DCOPF to ensure that it only identifies generator setpoints that prevent post-contingency flow violations.
The lower bound prediction layer operates within the same constraints as the feasibility restoration layer
framework, albeit with a modified objective: instead of seeking the closest proximity to the feasible
region, the focus shifts to finding the lowest dispatch cost. The loss function (Eq. (4.3)) employed in the
feasibility restoration layer framework is also utilized in the lower bound prediction framework. However,
it is good to realize that the objective function of the lower bound prediction layer has undergone a
change. While the feasibility restoration layer aims to find a feasible solution, the objective in the lower
bound prediction layer is to minimize the dispatch cost. The constraints (E.1b) - (E.1d) are the same
as in the feasibility restoration layer method.

min
n∈ΩG

∑
cGn

PGn
∀n ∈ ΩG (E.2)
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Sensitivity Analysis
A sensitivity analysis is conducted to compare the feasibility restoration layer framework and the lower
bound prediction layer framework. The analysis focuses on the N-1, N-2, and N-3 cases of the 39-bus
system. The penalty terms for post-contingency flow violations (λ2) are fixed, while the cost penalty (λ0)
is varied from 0 to 1000. The analysis aims to assess the influence of the cost penalty and determine
which framework performs best in finding secure and optimal solutions.
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Figure E.1: Comparing the amount of identified violating post-contingency cases for both methods
with a varying cost penalty term.
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Figure E.2: Comparing the optimality of the dispatch cost for both methods with a varying cost
penalty term.

The comparative analysis is presented in Figure E.1 and Figure E.2. Figure E.1 depicts that the lower
bound prediction framework almost consistently identifies a higher number of infeasible cases, indicat-
ing less secure solutions compared to the feasibility restoration layer framework. On the other hand,
Figure E.2 reveals that the lower bound framework often achieves more optimal solutions in terms of
dispatch cost, despite its tendency to yield less secure solutions compared to the feasibility restoration
framework. Understanding the sequential steps in both frameworks is crucial.

In the lower bound prediction framework, the NN only influences a subset of the generators, namely
those operating at their lower bound, determined by the NN. Subsequently, within these bounds, the
lower bound prediction layer aims to achieve an optimal cost-based dispatch solution. The focus of
the final step in the framework is to find a cost efficient dispatch, and not to identify post-contingency
feasible cases. Due to its limited impact on generators, the lower bound prediction framework sets a
minimum threshold for identifying infeasible cases. Additionally, when a more secure post-contingency
solution is obtained, this dispatch may push certain generators into base case infeasible regions.
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In contrast, the feasibility restoration method directly influences all generators. Moreover, this training
is guided by a loss function incorporating post-contingency violations and dispatch cost simultaneously.
Afterwards, the restoration layer only corrects these generator setpoints to a base case feasible region.
Therefore, it has a greater capacity to identify violating post-contingency cases, but achieving an optimal
dispatch solution in terms of cost requires careful fine-tuning of the loss function.
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