Diffractive @pticgl elgments
are all yoy rreed

Designing an optical system using phyS|c mformed and
data-driven methods /
Marek O%ﬁ&ns s

= b 5 4 ; :.n:
S e

it)\of Technology

Delft Univers

]
TUDelft

Diffractive optical
clements are all you
Neeo

Designing an optical system using
physics-informed and data-driven methods

by

Marek Oerlemans

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on Thursday July 7, 2022 at 14:00.

Student number: 4970071
Project duration: September 1, 2021 — July 7, 2022
Thesis committee: dr. M. Mdller, TU Delft, supervisor

dr. A. Adam, TU Delft, supervisor
ir. A. M. N. Heemels, TU Delft
dr. H. N. Kekkonen, TU Delft

Front cover image taken from WikiMedia Commons

An electronic version of this thesis is available at http://repository.tudelft.nl/.

]
TUDelft

https://commons.wikimedia.org/wiki/File:Diffraction_Pattern_White_LED_Light.jpg
http://repository.tudelft.nl/

Preface

The work you are about to read concludes my past six years of studying at univer-
sity. This journey started for me at Erasmus University in Rotterdam, where | started
a bachelor in Econometrics in 2016. As the econometrics program is practically the
same as a mathematics program in the first year, this first year already build mathe-
matical interest in me. My interest in mathematics only grew from then on. Where
econometrics is mostly applied mathematics, this led me to a gap in my knowledge
and an interest to discover more rigorous mathematics. | tried to fill this gap by taking
the minor in applied mathematics in my third bachelor year. Here | was introduced to
partial differential equations, numerical mathematics and real analysis. Even though |
almost failed my first course ever, the course in partial differential equations (as | had
none of the prerequisites and had not really seen differential equations at all), | had a
very good time during my minor.

Filling some gaps in my mathematical needs | chose to study financial economet-
rics. But already in one of the first courses, | felt | missed the rigour and reason how
one could solve a numerical problem (something about the Black-Scholes equation).
The year after | returned to TU Delft to fill this gap in my knowledge by starting the
master program in mathematics. The one thing that | feel is so special about this pro-
gram is the absolute freedom | had to choose courses. | already pursued this study
because of interest and now | could fill it with everything | liked. This is also one of
the reasons | find myself now, a little shorter than two years after | started the master,
with 139 study points obtained instead of the normal 120 study points.

Another special thing about this master is that it leads to such broad projects. Be-
sides this work, | have done an internship in medical imaging and projects in fluid
dynamics and optimization. Had you told me two years ago that | would be doing op-
tics, | would have laughed at you. These broad applications of mathematics have also
led me to my next step, which is a PhD position at the Netherlands Cancer Institute.

That this time in Delft was such a wonderful time for me was made possible by a
certain number of people. | would like to say thank you to my supervisors Matthias,
Aurele and Alex for all the hours of supervision. | would like to say thanks to other
students with whom | have worked during this master. And | would like my girlfriend,
friends and family for supporting me.

The text you are about to read will lead you through the valleys of optics and the
peaks of deep learning. What | think makes this work so special are the completely
different fields coming together. | hope you become as curious about the possibilities
of optics by reading as | became by writing this.

Marek Oerlemans
Rotterdam, July 2022

Summary

In this work, we consider how to optimize an optical system, specifically one with
diffractive optical elements (DOE). We start by describing optical theory called Fourier
optics also known as wave optics. This type of optics is found by making assumptions
from the Maxwell equations for magnetic and electrical fields. This leads us to the
Rayleigh-Sommerfeld diffraction integral, which we need to propagate light.

To optimize an optical system, we introduce the standard optimization methods
used when gradients are available and also dive into data-driven methods. Two well-
known algorithms in each category: the Adam optimization method, which is an exten-
sion of normal gradient descent methods, and the UNet convolutional neural network.
To make the optimization methods work with our physics simulation, we use an auto-
matically differentiable implementation which gives the gradients for the optimization.

Combining the two optimization methods with our optics engine, we optimize op-
tical designs such that the resulting intensity on the sample plane resembles some
target intensity. We are able to optimize systems with single and multiple DOE and
for high and low resolution DOE designs. We find that more lenses makes the opti-
mization better and increases the variability in the created projection. We also find
that increasing the resolution severely slows down the optimization with the Adam
method.

Although, the optimization method Adam is well suited for this optimization task. It
becomes computationally very expensive on high resolution due to the physics sim-
ulation at every optimization step. Some physical simulations require high resolution
to make sure the simulation does not contain to much artefacts. We show that the
data-driven approach has potential to solve this issue. We train a network that takes
as input a target intensity and outputs the lens that produces that intensity.

Combining these results, we conclude that modern optimization methods are well
suited for optical system optimization and we find that there is a large untapped po-
tential for data-driven methods in optics.

Preface i

Summary ii
1 Introduction

2 Theoretical foundations 4

21 FourierOptics. 4

211 WaveEquation 4

21.2 Huyghensprinciple. 5

2.1.3 Rayleigh-Sommerfeld diffraction 6

2.1.4 Fresnel and Fraunhofer approximation 8

215 Addingalens 10

216 Coherencyoflight 10

2.2 Numericaloptics 11

221 SOUICES v i i e e e 11

222 Lenses e 14

2.2.3 Diffraction 16

23 Deeplearning 20

2.31 Neuralnetworks 20

2.3.2 Convolutionallayers 21

2.3.3 Upsamplinglayers 22

2.3.4 Max-poolinglayers 22

2.3.5 Backpropagation 22

2.3.6 Batch normalization 23

2.3.7 Residual connections 23

2.3.8 Physics informeddeeplearning. 24

2.3.9 Network Architectures L. 25

2.3.10 Optimization 28

2.4 Parametricsurfaces 32

241 B-splines e 32

24.2 Radialbasisfunctions 36

3 Previous Research 38

3.1 Related Literature 38

3.1.1 Phase retrieval and deep holography 38

3.1.2 Freeform and diffractive optical elements 40

3.1.3 Deeplearninginoptics 42

3.2 PreviousworkatTUDelft 44

3.2.1 Imhof (2020) 44

3.22 Crijns (2021) e 44

Contents

Contents iv
4 Experiments 45
4.1 Optimizing a system of diffractive optical elements 48
4.1.1 System of a single optical element 48

4.1.2 Multiplelenses o 52

413 Highresolution 56

4.2 Data-driven methods foroptics 58
4.3 Incoherent caustic design for multiple sources 63

5 Conclusion 70
References 72
A Comments on implementation and code 78
B Extra figures 79

Introduction

The study of optics dates back to the ancient Egyptians and Mesopotamiens, who
developed the first lenses using polished crystals. Optics has gained a lot of traction
since then and applications such as glasses and optics applied to computer chips
cannot be overlooked in modern society. The design of lenses is an active topic of
research as it poses a difficult inverse problem. If one desires to know what light a
lens projects, a light could shined through the lens and the intensity it produces can
be observed on a sample plane. However, if one wants to know what type of lens
creates a certain projection, this cannot be told directly from the projection. Here, the
forward step would be shining a light through the lens and one would have to change
the lens a little bit to improve the projection bit by bit. Similar to the process at an
optometrist. You tell the optometrist if the current lens is more or less clear than the
previous lens and step-by-step you find the correct strength for your eyes. This is a
rather inefficient procedure of trial and error, which often is the result when solving an
inverse problem.

Lenses in glasses are usually of simple shapes. These shapes are symmetric and
their most important property is the focal point. However, in certain applications these
simple symmetric lenses do not have enough variety. We use a freeform lens, which
is a lens that has a non-symmetric, but still a continuous, surface. These lenses find
application in many different use cases. An ingenious example of freeform lens capa-
bility is an application to street lights. LED-lights are energy efficient, but illuminate a
large area with a low intensity. For street lightning, a uniform intensity in a focused
area right in front of the light is desired, this can be achieved by freeform lenses ([30]).
Freeform lenses are applied to improve camera lenses and applications of freeform
lenses are found in caustic design. This last application is similar to our research,
which will be discussed below.

Figure 1.1: Example of an application with a projection through a freeform lens made by Rayform.

Unfortunately, with a highly variable freeform lens, the search space for optimal
lens parameters increases in size. This is where recent advances in computational
mathematics are helpful. Decades ago iterative algorithms like the Gerchberg-Saxton
algorithm for phase retrieval were introduced. Moreover, over time multiple approaches
to design freeform lenses have been made using elliptic differential equation or by
turning the problem into a minimization problem. We also approach this problem as a
minimization problem.

Alongside optics, the area of statistical learning and machine learning has seen
broad improvements recently. Due to the increase in computing power, larger net-
works can be optimized which results in for example hand written digit recognition with
over ninety percent accuracy (see for example [22]). These deep learning applications
are also interesting for our problem. We apply these similar methodologies to optics.
In more recent work, it has also been suggested to implement physical knowledge in
neural networks, to combine the physical knowledge and the broad generalization of
these deep networks.

We bridge the gap between applied optics theory and recent computational ad-
vances in deep learning. Several possibilities have already been shown in, for exam-
ple, deep diffractive neural networks. We use these methods to our advantage and
extend their results to freeform lenses as the current literature on freeform elements
with our application is limited. We do this all with one central question in mind:

How can we optimize a system consisting of diffractive optical elements efficiently?

In this thesis we answer this question by the combination of state-of-the-art op-
timization, neural network models and with optical systems, which we specify more
clearly later on. We start by applying certain optimization algorithms directly to the
optical problems and see that these optimization methods are able to optimize the sys-
tem, but this approach does not work in all circumstances. Therefore, a deep learning
pipeline is proposed to make the setup work with higher resolutions. Lastly, itis shown
how our methods compare and our optimization pipeline is applied to problems with
multiple sources. This final experiment looks into optimizing an optical system with
multiple sources in combination with multiple lenses. Fourier optics in combination
with gradient descent type algorithms give a good foundation to optimize optical sys-
tems. In situations where this setup fails, a network can be trained and improves the

https://rayform.ch/

system with a data-driven approach. This shows that new advances in data-driven
modelling are able to improve optics research.

This thesis is divided in five chapters. After the introduction, the second chapter
concerns all theoretical foundations to our methods. We subdivide this chapter into
four subsections about theoretical optics, numerical optics, deep learning and opti-
mization, and parametric surfaces. The third chapter discusses what has been done
in literature and at the optics group of TU Delft as well. The fourth chapter discusses
our experiments. Building on the theory, this chapter discusses our methods and
shows what methods work and which did not. Chapter five concludes the thesis and
gives our outlook on interesting research directions in the future.

Theoretical foundations

2.1. Fourier Optics

In this section the theory of optical physics is introduced. The framework of Fourier
optics is considered, which is a part of scalar wave optics. Starting with the general
Maxwell equations for electric and magnetic fields, scalar diffraction theories such as
Rayleigh-Sommerfeld diffraction are derived. On top of this, simplifications in either
the near-field or the far-field given by Fresnel or Frauenhofer diffraction, respectively,
are considered. This section is mostly based on theory discussed in [20]

2.1.1. Wave Equation

The Maxwell equations are a set of partial differential equations that together describe
how electromagnetic fields are related to themselves and their sources. In the ab-
sence of free charge, the equations are given by

~ oH
VXS——ME,
. O
VXH—EE7 (2.1.1)
V-e€=0
V-uﬁ:O.

Here, £ is a vector describing the real electric field in three dimensions. # is the real
magnetic field also in three dimensions. The parameters p and ¢ are, respectively,
the permeability and the permittivity in the medium. We assume that the medium has
certain properties, such as constant permittivity in the whole medium. x and - are
the vector cross product and vector dot product, respectively. The V operator is the
gradient to the specific dimension. Cross-multiplying the first equation on both sides
by the gradient operator and substituting the second equation in the right-hand side.
Rewriting the left-hand side with V x V x £ = V(V - £) — V2£ and substituting the

2.1. Fourier Optics 5

third equation, where ¢ is assumed to be constant. The following equations are found

. n2o%E

2 _——— =
V 8 C2 0t2 0’ (2 1 2)
2 9247 T
o NOTH
V*“H ERpY 0,
where .
=5 and 2=, (2.1.3)
€0 Ho€o

Here, n is the refractive index of the medium, ¢, is the vacuum peﬁmittivity and cis the
light speed of propagation in the medium. Since all elements of £ and all elements of
‘H follow the above equations, they can be posed in a single equation
2 92
9 n” 0% u

where u(Z,t) is a function of position © = (x,y, z) and time. This equation is known
as the wave equation. Certain assumptions were made on the medium and thus the
equation is only an approximation for media that closely follow these assumptions.

Considering monochromatic waves, the function «(z,t) can be separated as fol-
lows

u(@ t) = R{U
U#) = A(
u(r) = 20

where j is the imaginary unit and R{-} denotes the real part of a complex number. The
last equation shows the change to polar coordinates, this transformation is appropriate
if the waves are spherical, i.e. originating from the center of the coordinate system. In
polar form we have r = /22 4 y? + 22. Substituting u(z, t) in the wave equation, the
following is found

(2)exp(2mjut)} (2.1.5)
v) exp (—jé(7)) (2.1.6)

) exp (jkr + ¢), (2.1.7)

(V2+ k) U =0. (2.1.8)

Here, the wave number k& = 27nv/c and the wavelength A\ = 27 /k are introduced.
Eq. 2.1.8 is called the time-independent Helmholtz equation.

2.1.2. Huyghens principle
In optics, we assume the field is known at a plane at one location. This is used to
describe the field at a different plane. That is, the complex field at #, = (2/,7/,0) is
given and the complex field at (z, y, z) is found using the methods of optics. Calculating
this field given an earlier field is also known as diffraction. Using equation (2.1.6) would
give us the influence to the complex field only from this point (z/,4',0). However,
to compute the full complex field we can use the Huygens-Fresnel principle. This
principle states that every point on a wavefront acts as a point source and combining
these sources together form the wavefront.

According to this principle, the complex field at (x,y, z) is given by summing the
contributions from all point sources.

2.1. Fourier Optics 6

2.1.3. Rayleigh-Sommerfeld diffraction

A plate is placed on a plane z = 0. This plate has a rectangular aperture in the center.
An aperture is an opening through which light can pass. The light not passing through
the aperture is blocked.

VR N T

Figure 2.1: Refraction on an aperture according to the Huygens-Fresnel principle. The blue lines are
the incoming light, the yellow dots represent the light in the aperture as a source according to the
Huygens principle and the green lines represent the light behind the aperture. The aperture lies at

z = 0. Reprinted from Wikimedia.

By the Huygens principle the whole of the aperture is considered a source. Tak-
ing infinitesimally small steps changes the summation of the sources into integration.
Using equation (2.1.6) in polar form this results in the following

exp (jkr)

Ulx,y,z) = / U2,y 0) dx'dy (2.1.9)
aperture

where r = \/(z — 2/)2 + (y — /)2 + 22. As this is not rigorous, a better approach uses
the method of Green’s functions. Green’s function is the impulse response solution to
a differential equation. The convolution of Green’s function and the source gives the
solution to a differential equation. A short overview of the calculations is given here.
Starting with Green’s theorem,

/UVQG—GVQUCZV:/ Ua—G—Ga—Uds, (2.1.10)
v oV 871 (9n

which relates the integral of two complex valued functions U(x) and G(x) and their
derivatives over the volume V' with an integral over the closed boundary oV. It is
assumed that the first and second partial derivatives exists and are continuous on 9V'.
0/0n denotes the partial derivative towards the outward normal direction. Let both U
and G be equations that satisfy the Helmholtz equation (2.1.8), the following holds

/ UV?G — GV?UdV = — / UGEK? — GUK*dV =0,
174 1%

https://en.wikipedia.org/wiki/Huygens%E2%80%93Fresnel_principle

2.1. Fourier Optics 7

where the Helmholtz equation is substituted and the right-hand side is cancels out.
Thus deriving

oG ou
— —G—ds = 2.1.11
/av U an G 8’” 5 O, ()
choosing the area of integration in a specific manner this results in
1 ou oG
Ulz,y, z :—/ —G — U—ds, (2.1.12)
() 4 aperture an an

For a more detailed derivation the reader is advised to look at [20] equation (3-24),
where the derivation is done more formally. In deriving this equation three assumptions
are made as [20] shows:

1. The scalar theory is valid
2. Both U and G satisfy the wave equation
3. The Sommerfeld radiation condition is satisfied.

The first assumptions implies that the theory to derive the wave equation holds. The
third assumption implies that only outgoing waves are considered. In our optical setup,
we make sure that this condition is met. Choosing Green’s function G in a smart fash-
ion is key. This is also the main difference between the Kirchhoff diffraction, another
well known method which is not considered as it has certain disadvantages, and the
Rayleigh-Sommerfeld diffraction. The choice for Green’s function is

Glo,y, z) = SXPURT) _ eXPUAT) (2.1.13)

r r

where r and 7 are the radii as depicted in Figure 2.2. If Green’s function was generated
only by a point source at Py, only the first term would appear. However, this causes
computational inaccuracies. Therefore, a second mirrored point source on the other
side of the aperture is considered as seen in Figure 2.2.

2.1. Fourier Optics 8

! P
S P
'

Figure 2.2: The setup of point sources for the derivation of Green’s function. Recreated from [20],
Figure 3.8.

The derivative of Green’s function is given by

9G _ 9 ik cos(0) ZXPUET) (2.1.14)
on r
— 2j]ﬁM) (2.1.15)
T T

where ¢ is the angle between the normal vector and the radius (ro; in Figure 2.2).
Substituting this in the integral, the Rayleigh-Sommerfeld diffraction formula is found

1 zexp(jkr)
Uxuyvz :_/ Ux,vylvo_—
() JA aperture ()T r

The above equation is similar to equation 2.1.7 apart from the factor z/r. Rayleigh-
Sommerfeld diffraction is an attractive method to use because its validity is not influ-
enced by the sampling distance, which will be seen in the next section is not always
the case.

dz'dy'. (2.1.16)

2.1.4. Fresnel and Fraunhofer approximation

The integral in equation 2.1.16 is difficult to calculate. Numerical integration would
work. However, assumptions on the distance to the source (that is, assume = is of
certain length), can simplify the integral. Taking z large and using Taylor approxima-

2.1. Fourier Optics 9

tions, we find the following

r=y/(z—a)?+(y—y)?+ 22

_Z\/lJr (- ")+ (y—y)?

z

N2 2
%Z_i_(x—x);;(y—y) use 1+sz1+§
:Z+$2+y2+x’2+y’2_$9€’+yy'

2z 2z z
x2+y2 $:El+yy/
T2 z

Using this approximation in the exponent and elsewhere approximating r ~ z, we find
the following chan esQin the Rayleigh-Sommerfeld integral when excluding the last
step, keeping the % terms. What remains is a Fourier transform as approximation:

o (i (- - 1)

JAz

2 12 / /
/ {U(x, y,0) exp (jk:m +y > } exp (—jkw) dz'dy'.
aperture 2z z

(2.1.17)

Uz, y,z) ~

This approximation is called the Fresnel approximation or diffraction. The Fresnel
diffraction is valid in the near field. For the Fresnel approximation to hold, the higher
order terms of the phase must be negligible. This gives the condition F6?/4 < 1,
where F'is the Fresnel number and 6 is the maximum angle between the ray from the
screen and the normal vector. Simplifying this is 2% > 1W*/\, where W is the size of
the aperture. Adding the last simplification in the approximation of the radius r, the
calculating gives the following

o (i (- - 1)

U(ZE, Y, Z) ~ : / U(flf, Y, O) exp (—jkw) d[['/dy/,
])‘Z aperture
(2.1.18)
exp (jk (z + _x22+2y2>> vy
= PE F{U(z = 0)} <E E) . (2.1.19)

Thus assuming that = is large enough compared to the aperture, the integral changes
into an even simpler Fourier transform (where F is the Fourier operator). This integral
is valid in the far-field, which can be quantified as

2

Z> WT (2.1.20)

where W is again the largest size of the diffracting aperture. This approximation is
called the Fraunhofer approximation.

2.1. Fourier Optics 10

2.1.5. Adding a lens

In the above discussion, only apertures have been discussed and lenses were ig-
nored. That is because in the limit of a thin lens, the lens only adds a phase shift
to the field U. Let U, and U, denote the field before and after the lens, respectively.
Then U,(z,y, z) = t(x,y, 2)Us(z,y, z), where t(z,y, z) = exp(jknA(z,y)) is the phase
shift induced by the lens. Here, n is the refractive index of the lens and A(z,y) is the
thickness at the specific x, y-coordinates. In [20] an overview is given with the above
in mind and considering multiple lenses. However, as we consider freeform lenses,
A(x,y) denotes an arbitrary function for now. For an optical system it is also interest-
ing what happens with multiple lenses behind each other. To simulate light through
multiple lenses, the field needs to be calculated directly in front of the second (or next)
lens to find the field behind the lens. Thus diffraction is done multiple times.

2.1.6. Coherency of light

Coherency is the manner in which light interferes with other light. Completely coherent
light could interfere with other light, this happens when the temporal and spatial cor-
relation between the light is high. Incoherent light does not interfere with other light.
Coherent light from two sources is added together as if it were light from the same
source as with the Huygens-Fresnel principle. With coherent light we add the fields
of the light to each other during propagation. Incoherent light on the other hand does
not interfere and we therefore cannot add the complex fields but the intensity. Simply
said; with incoherent light the intensity profile after diffraction are added to each other,
with coherent light the complex fields are added to each other. Within the scope of
this thesis we will focus on incoherent light.

2.2. Numerical optics 11

2.2. Numerical optics

In this chapter we look at the numerical methods used to implement a physically cor-
rect simulation of light. Firstly, the simulation of sources is discussed. Secondly, prop-
agation with multiple methods is discussed. What methods are favourable and what
restrictions should be taken into account. Lastly, aspects of lenses are discussed. Ex-
amples of lenses are mentioned, which are used to generate various intensity profiles.

2.2.1. Sources

In this section, simulating the complex field of a source is elaborated on. Three differ-
ent sources are considered: the plane wave, the point source and the Gaussian beam.
Lastly, this section describes how a source changes if it comes into our system at an
angle.

Plane wave
A plane wave consists of a constant phase and a constant amplitude over the entire
sampling domain. Thus the formula for its field is given by

= L X
Uplane wave(x) =Axe ¢7

where A is the (spatially constant) amplitude of the field and ¢ is the (spatially constant)
phase of the field.

Intensity

Phase 010 Phase Amplitude (Total intensity is 1_0E+013g
0.0004 ' 0.0004 6 0.0004 0.0004 68
0.0002 0.05 0.0002 R 0.0002 105 0.0002 66
0.0000 0.00 0.0000 0.0000 100 0.0000 54
-0.0002 _gos —0.0002 2 -0.0002 pgs —0.0002 os
-0.0004 -0.0004 -0.0004 -0.0004
010 . 0 0.9 0.0
u = u u = ["a) '3 = u u =] un
2 2 2 2 2 g 2 2 2 2 2 2
(=] (=] (=] [=] (=] (=1 (=] (=] (=] [=] (=1 =]
o = = o = = o = = o = =1
I]]]
Intensity
Phase 00 Phase Amplitude (Total intensity is 1_0E+01330
0.0004 ' 0.0004 0.0004 0.0004)
10005 075
0.0002 o5 0.0002 0.0002 0.0002 g
0.0000 0.0000 0.0000 10000 gopoo 0.50
-0.0002 -10 _poooz -0.0002 09935 —0.0002 025
-0.0004 -0.0004 -0.0004 -0.0004
15 0.9990 : 0.00

~0.0005
0.0000
0.0005
-0.0005
0.0000
0.0005
-0.0005
0.0000
0.0005
-0.0005
0.0000
0.0005

Figure 2.3: An example of a plane wave before and after propagation.

The plane wave seen in Figure 2.3 is as expected. On the border aliasing can be
seen in the amplitude after propagation, this is caused by the low resolution.

Point source

Another source with properties similar to a plane wave at specific distances is the
point source. Sources like a LED light could be though of like a point source. A point
source is the light of a single pixel propagated in every direction. The point source is

2.2. Numerical optics 12

therefore a symmetric round shape. The field at position # due to a point source at

position %, is given by

exp(ikR)
TR

where k is the wave numberand R = /(z — 0)2 + (y — v0)? + (2 — 2)% is the distance
between 7 and 7,
Equation 2.2.1 is a fundamental solution to the Helmholtz equation

(2.2.1)

Upoint source (fa fO) =

V2u + k*u = —0(F — 7).

Intensity
Amplitude (Total intensity is 1.1E+02)

0.0004
08

0.0002
6 p.o0oo
4 —-0.0002
02 —0.0004

Intensity
Amplitude (Total intensity is 1.1E+02)

0.0004
08 0.8
o 0.0002 06
0.0000 04

L4 —0.0002
02

pz —0.0004
00

Figure 2.4: An example of a point source before and after propagation.

3

0.0004 T 0.0004

0.0002 0.0002

=

0.0000 0.0000

2 —p.0002

=

~0.0002 L8

—0.0004 {1 —0.0004

—-0.0005
0.0000
0.0005

-0.0005
0.0005

-0.0005
0.0000
0.0005

-0.0005
0.0000
0.0005

0.0004 gt 0.0004

0.0002 ey 0.0002

0.0000 0.0000

=

-0.0002 (iRt NN 2 _g.0002

—-0.0004 AEar —0.0004

—0.0005
0.0000
0.0005

—0.0005
0.0000
0.0005

—0.0005
0.0000
0.0005

As can be seen in Figure 2.4, the point source has an amplitude as expected,
around one point. The phase has multiple axis of symmetry through the centre as
expected. The phase is however not completely symmetrical as we would expect as
a unit impulse is also completely symmetrical.

Gaussian beam

Another common source is the Gaussian beam and has similar properties to a laser
beam. It is named Gaussian as its intensity is in the form of a Gaussian function.
The Gaussian beam is dependent on a parameter w, called the waist radius, which is
related to the beam size at the point = = 0. The complex field of a Gaussian beam is
given by

> o Wo —r? . ooor?)
UGaussian beam (T, To) = w exp W exp (ikz + ka —ap(2) |,

where the following holds:

« r=/(z—20)? + (y — w0)?
* k is the wavelength

2.2. Numerical optics 13

2
* w(z) =wey/1+ (=) is the radius where the total intensity has decreased by
ZR

1/e?
2
.

* R(z) ==z (1 + (%)2> is the radius of curvature

Y(z) = arctan () is also known as the Gouy phase. This is a correction for
the phase in the near-field.

Note that w, should be large enough compared to the wavelength to be physically
correct.

Intensity
Phase Phase Amplitude (Total intensity is 1.3E4+02)
0.0004 ¥ oooos 0.0004 Y oo0s e
0.0002 3 0.0002 4 0.0002 0.0002
0.0000 0.0000 0.0000 0.0000
-0.0002 1 —poooz 2 —p.oooz -0.0002
-0.0004 . —0.0004 -0.0004 : —0.0004

—0.0005
0.0000
0.0005

—0.0005
0.0000
0.0005

—0.0005
0.0000
0.0005

—0.0005
0.0000
0.0005

Intensity
Phase Phase Amplitude (Total intensity is 1.3E4+02)

0.0004 0.0004 0.0004
8 .
0.0002
6 .
0.0000
4 X
—0.0002
2 .
—0.0004

Figure 2.5: An example of a Gaussian beam before and after propagation.

0.0004

0.0002 0.0002 0.0002

0.0000 0.0000 0.0000

-0.0002 —0.0002 2 —p.po02

-0.0004 —0.0004 —0.0004

—0.0005
0.0000
0.0005

—0.0005
0.0000
0.0005

—0.0005
0.0000
0.0005

—0.0005
0.0000
0.0005

From Figure 2.5, the intensity, similar to a point source, is around the center. The
phase in this source is zero, therefore the intensity does not diverge of our sampling
plane. This is similar behaviour as expected from a collimated laser.

Other numerical aspects of sources
To simulate a wave incident at an angle a linear phase term uchange angie i1 added.

v — tk(zsin@siny-+y cos O sin
Ughange angle (T, 0, 1) = €™ Pty %)

such that the new field with an angle becomes
Unew (fa 0, w) = Uchange angle (f; 0, 77D)Usource (f)

Here, usource denotes the old source and ¢ and v denote the change of angle.

2.2. Numerical optics 14

Intensity
Phase Phase Amplitude 10 (Total intensity is 2.2E+03

)
6 10
0.0004 0.0004 0.0004
08
0.0002
0.6
0.0000
04
—0.0002
0z
—0.0004
0.0

Intensity
(Total intensity is 2.1E+03)

00 5 oo0s 100

075 00002 075

050 0.0000 050

pzs ~0:0002 025
-0.0004

0.00

Figure 2.6: An example of a Gaussian beam at an angle before and after propagation. To make this
feasible we had to increase the resolution and increase the propagation distance compared to
previous images. Note also that due to the source field touching the sides the light has a square
shape in the upper left corner.

0.0004

0.0002 0.0002 0.0002

4

0.0000 0.0000 0.0000

—0.0002 —0.0002 2 —0.0002

—0.0004 —0.0004 —0.0004

—0.0005
0.0000
0.0005

—0.0005
0.0000
0.0005

—0.0005
0.0000
0.0005

—0.0005
0.0000
0.0005

Amplitude

0.0004 &

0.0002

0.0004
0.0002

0.0004
0.0002

0.0000
-0.0002

0.0000
—0.0002

0.0000
2 —0.0002

-0.0004 —0.0004

-0.0004 £

-0.0005
0.0000
00005 K8

-0.0005
0.0000

-0.0005
0.0000
0.0005

-0.0005
0.0000
0.0005

In Figure 2.6, a clear shift from the top corner to the middle is seen. The intensity
pattern itself does not change, only the position. The top and left sides of the Gaussian
beam are straight due to effects from the numerical propagation. For point sources
one would move the source in the zy-plane to create an angle.

2.2.2. Lenses

The methods to design a lens can be divided in two classes: lenses which are de-
scribed per pixel and parametrizable lenses. In this section we show propagation
results with both these types of lenses.

Diffractive Optical Elements

Diffractive optical elements (DOE) are the most straight-forward lenses. DOEs are not
surfaces described by continuous functions, but the lens thickness or phase change
is determined per pixel. This comes at the cost of having certain speckle effects that
continuous lenses do not have. However, DOEs also have more freedom as they
are not restricted to be continuous and are therefore able to generate more complex
patterns.

2.2. Numerical optics 15

Intensity
Amplitude 10 (Total intensity is 9_2E+031}I0
00004 00004
8 08
0.0002 0.0002
6 06
0.0000 0.0000
4 04
—0.0002 —0.0002
2 0z
=0.0004 —0.0004
a 00
wn o wn wn = in n = n n = in
3 2 2 2 2 2 2 2 2 2 2 2
[=] o (=] [=] (=] =] (=] (=] (=] [=] (=] (=1
CI, = =] CI, =] =] ‘-T, =] =] CI, =] =]
Intensity
Amplitude (Total intensity is 9.2E+03)

0.0004 0.0004

0.0002 0.0002
0.0000 o 0.0000
—0.0002 —0.0002

-2
—0.0004 —0.0004

0.0004 1gp Q0004
10
0.0002 075 0.0002
0.0000 0.0000
050 05
—0.0002 -0.0002 :
025
—0.0004 -0.0004
0.00 0.0

—0.0005
0.0000
0.0005

—0.0005
0.0000
0.0005

—0.0005
0.0000
0.0005

—0.0005
0.0000
0.0005

Figure 2.7: An image of a shirt from the FMNIST dataset used as a lens. The top part shows the field
before propagation which is a combination of the Gaussian beam and a phase from the FMNIST
dataset. The bottom images are of the propagated field.

In Figure 2.7, a system with a Gaussian beam is simulated, which is then given a
phase change with the shirt from the FMNIST as DOE. The FMNIST image was first
scaled such that pixel contrast is between a range of 0 and 27. In the propagated field
we clearly see that the intensity resembles the shirt. This shows that the shape of the
lens and the intensity it generates are connected.

Parametric lenses

To make the optimization more feasible, a restriction could be made to lenses de-
scribed by parametric surfaces. Such a surface can be a NURBS surface or a radial
basis function. Lenses designed with continuous parametric surfaces have the advan-
tage that they are less prone to speckle effects.

Phase Intensity
'- -
* pooos R YR 1 S & pooos 200
L4 e
, 00002 ¥ /‘ 4 00002 150
Sy |
0.0000 '7— ——— 0.0000 100
!
1 -p.0002 l‘//‘\\\,l 2 -0.0002 50
. s f\ .
- b4 . 0.0004 ".,__ 1374 . 0.0004 .
[=] [Ta] = [Fa] [=] [=] [Tal = [Fa] (=] [=] [Ta] [=] i [=]
T2l ™~ = ™~ u (T2l (] = ™~ un [Tal ™~ (=] ™~ i
S g 8 8 8 S § 8 8 8 g g8 8 8 8
= & = = o = & = © =9 = & S5 © o

Figure 2.8: Radial basis polynomial before and after diffraction.

In Figure 2.8, a radial basis surface is used to describe the surface of a lens. This
generates an intensity similar to the lens.

2.2. Numerical optics 16

We also consider B-spline lenses (We write B-spline lenses instead of lenses mod-
elled by B-splines). We discuss B-splines and other parametrics surfaces in section
2.4. Other B-spline lenses are also considered in the results in chapter 4.

2.2.3. Diffraction

Diffraction is the process of propagating the light from directly behind the lens to the
sampling plane. In this section the fast Fourier transform (FFT), two methods of diffrac-
tion and improvements to make the system more well-behaved are described.

Fast Fourier Transform
The Fast Fourier Transform (FFT) lies at the heart of our diffraction methods and we
improve our diffraction methods by improving on the weaknesses of the FFT. There-
fore, we give a short introduction to the FFT.

To numerically calculate the Fourier transform of a function

f@w:/mfmw%%&Ma

The integral can be replaced by a sum also known as the discrete Fourier transform
(DFT)

A N-1 .
FO =" flan)e ™~
n=0

As a computer can only handle finite values this makes our interval of calculation
limited, thus affecting analysis close to or at the border of our input. A naive imple-
mentation would have computational costs of O(N?), a better implementation named
the fast Fourier transform takes O(N log N). In the FFT the above sum is split in the
terms with even n and odd »n and these terms can be treated as two separate DFTs,
recursively applying the same procedure to these two DFTs gives us an efficient al-
gorithm. Due to this recursive application and splitting the domain in two, the FFT is
most efficient if V is a power of two as for 2= < N < 2! there will be i recursive steps.

Fraunhofer propagation
As previously seen in section 2.1.4 Fraunhofer propagation is a Fourier transform
multiplied by a complex term

_exp(ik(z +1%/2z) Ty
- iXz Fthy (E E) ’

where % = 22 + y2. This should hold if z > "=_ In this formulation F can be replaced
by the FFT. From the above equation it follows that the computational costs of the
Fraunhofer diffraction is dominated by the computational costs of one FFT.

U(7)

Rayleigh-Sommerfeld propagation
As mentioned, the Fraunhofer diffraction is not accurate enough when not in the far
field. Especially when multiple lenses are considered there is need for a more accurate
method, as the propagation distance between the lenses is too short for methods like
Fraunhofer. Numerically approximating the Rayleigh-Sommerfeld integral is such a
method. We can do this in two ways.

2.2. Numerical optics 17

To solve the Rayleigh-Sommerfeld integral, the angular spectrum (AS) method is
introduced as in [61]. Revisiting the Rayleigh-Sommerfeld (RS) integral in equation
2.1.16

1 , - zexp(jkr)
Ux,y,z:,—/ U',y,0)—————=
() JA aperture (>T r

Let A(w, 8, 2) = F{U(-,-, z)} be the Fourier transformation of the light field at distance
z. Propagation over a distance z then admits the following reformulation

dx'dy’.

Ao, 8,2) = Ao, 8,0)G(av, B, 2), (2.2.2)

where G(a, 8, z) = exp (j,z\/k2 —a?— 62) is the optical transfer function. The func-

tion GG is a solution to the Helmholtz equation. Let the inverse Fourier transform is
denoted by F~!, respectively. We then find that

Ulz,y,z) = F {A(a, 8, 2)}, (2.2.3)
= F HA(x, 8,0)G(a, 8, 2)}, (2.2.4)
= F YF{U(x,y,0)}G(c, B,2)}. (2.2.5)

Numerically, a fast Fourier transform (FFT) is done instead of a real one and thus the
two terms in the inverse Fourier transform are multiplied element-wise as describe in
[61].

Another method to solve the RS integral is to numerically integrate the RS integral.
Following the methods of [61] here. Applying the inverse Fourier transform to our
optical transfer function F~'{G(a, 8,2)} = g(x,y,2) = 22U (L _ k) there are

27 r T

similarities between the original RS integral and these terms. Continuing, this gives
Ulz,y,z) = / U,y ,0)g(x — o',y — v, z)dx'dy’. (2.2.6)
aperture

The above equation is a convolution integral, which was seen with Green’s function as
well. Following [61] and choosing the correct (zero-padded) matrices, this can again
be solved with aid of fast (inverse) Fourier transforms as follows

U =IFFT{FFT{U (2, v, 0)}FFT{g(z', v/, 2) } }Ax' Ay . (2.2.7)

Summarizing, two methods to solve the Rayleigh-Sommerfeld integral are described.
One based on the angular spectrum method and another based on numerical inte-
gration. Both methods consist of sequentially applying the fast Fourier transform and
have similar computational costs according to [61]. Furthermore, both methods have
their benefits and drawbacks. As the angular spectrum method seems to be more
popular and gives better results in our implementation, we choose this method. The
angular spectrum method has computational costs dominated by the FFT and its in-
verse, this is therefore double the computational costs of the Fraunhofer diffraction.

2.2. Numerical optics 18

Aperture Intensity

10
00004 00004 0.4
0.8
0000z 0.o00z 0.3
0.6
0.0000 0s 0.0000 02
—0.00032 =0.00032
03 01
=0.0004 =0.0004
0.0 0.0

Figure 2.9: An example of a double slit before and after propagation with Rayleigh-Sommerfeld
diffraction.

—0.0005
0.0000
0.0005

—0.0005
0.0000
0.0005

In Figure 2.9 the double slit aperture and light after propagation are shown. The
double slit is a famous experiment were an uninformed person would think it would
create two rectangles on the sample plane, however multiple rectangle like intensities
should appear on the sample plane. The intensity is as expected, multiple intensity
peaks appear on the sample plane.

Aperture Intensity Intensity (zoomed in)

10 - : 15
00004 00004 0.0002 48 "
08 15
00002 00002 00001
0.6 14d
00000 0.0000 140 0.0000
o4
—0.0002 —0.0002 05 —0.0001 0.5
02 ! ;
—0.0004 —0.0004 —0.0002 ' J
T 0.0 0.0 0.0

Figure 2.10: An example of a Poisson spot before and after propagation with Rayleigh-Sommerfeld
diffraction. What is remarkable to the Poisson spot is that even though light in the middle is
completely blocked it still forms a small spot in the middle. The Poisson spot is named after Simeon
Denis Poisson who ridiculed the propagation theory of Fresnel, as he showed that with Fresnel's
calculation such a spot should appear and this should be nonsense. As a response Fresnel showed
that the spot indeed appeared in physical experiments validating his theory.

-0.0005
0.0000
0.0005

-0.0005
0.0000
0.0005

-0.0002
0.0000
0.0002

In Figure 2.10, the Poisson spot is generated. For the Poisson spot we expect the
circular block to be seen on the sample plane as well as a small intensity peak in the
middle of the block. We see both these things. We also see that the intensity shows
a discontinuous pattern, this is caused by aliasing.

Padding and aliasing

As we use the fast Fourier transform in this work, we have to take into account numer-
ical artefacts. To combat effects on the edge of our images all fields are padded with
zeros before propagation in such a way that the total dimension is a power of two for
efficiency.

2.2. Numerical optics 19

Furthermore, we also experience aliasing when using certain sources, with a Gaus-
sian beam for example. Especially, when there is a large difference in intensity be-
tween parts of the field. A way to solve this problem is to increase the resolution. In
our settings a resolution of N = 2!9 = 1024 generates correct intensities, however this
brings a clear computational costs.

Amplitude before propagation Intensity after propagation

00004 25
08
00002 20
06
15
00000
04
10
-0.0002
02 05
-0.0004
00 00

Figure 2.11: A propagated point source with a resolution of 64 x 64

Phase befors pmpagatmn
1, sl i

0.0000 £
-0.0002
L

-0.0004 R
L o

—0.0004
-0.0002
0.0000
0.0002
00004
—0.0004
-0.0002
0.0000
0.0002
00004

Phase before propagation Amplitude before propagation Intensity after propagation

6
0.0004 0.0004
5 08
0.0002 0.0002
4
06
3 00000 0.0000
04
2 -poooz ~0.0002
02
1
-0.0004 ~0.0004
0 0.0

Figure 2.12: A propagated point source with a resolution of 256 x 256

0.0004 42

0.0002

0.0000

-0.0002

~0.0004
0

-0.0004
—0.0002
0.0000
0.0002
0.0004
—0.0004
—0.0002
00000
00002
00004

Phase before propagation Amplitude before propagation Intensity after propagation

&
0.0004 0.0004 0.0004
0008
5 [11:]
0.0002 00002 0.0002
4 0006
06
0.0000 5 00000 0.0000
na 0.004
-0.0002 2 -0.0002 -0.0002
02 0.002
1
-0.0004 ~0.0004 ~0.0004
0 0.0 T T T T T 0.000

Figure 2.13: A propagated point source with a resolution of 2048 x 2048

-0.0004
-0.0002
0.0000
0.0002
0.0004
-0.0004
—0.0002
0.0000
0.0002
0.0004
-0.0004
-0.0002
0.0000
0.0002
0.0004

The above pictures show the effect of aliasing. Propagating over a distance of
1cm should result in an intensity similar to a plane wave, which is only seen in the last
figure. In the other two intensities we can see two different patterns in the intensity.

2.3. Deep Learning 20

2.3. Deep Learning

In this section deep learning is discussed. The section starts with the foundation
of neural networks and extends this with different types of layers, such as convolu-
tional, pooling and residual layers. Afterwards, different network architecture combin-
ing these layers are discussed. The section is concluded by elaborating on the opti-
mization methods used to optimize optical systems and neural networks. The theory
in this section is based on [29].

2.3.1. Neural networks
Neural networks are universal function approximators, allowing a neural network to
approximate any function, as long as the network is large enough ([24]). The input of
a neural network can be a scalar, a vector or another type of tensor, denoted by X
and the output vector is denoted as v, this can also be a scalar, a vector or a tensor.
The input is multiplied by a weight 1/, and a bias b, is added, which should have
the correct dimension. This results in W, X + b;, which is a linear function. To let
the network express complex (non-linear) relations between variables a non-linear
transformation is done. Thus a one-layer network is

Yy = O'(WlX + bl), (231)

where o is a non-linear function, also called an activation function. In literature, the
Sigmoid function o(z) = 1/(1+e~") or the rectified linear unit (ReLU) o(z) = max{0, 2}
are commonly used. The activation function is applied element-wise.The Rectified
Linear Unit (ReLU) is chosen as it mimics the way neurons in a brain activate on
signals.

In a network with multiple layers, the output of the previous layer becomes the
input of the next layer. Thus a two-layer network becomes

Yy = O'(WQO'(WlX + bl) + bg) (232)
and a general neural network becomes
y=0cWnoo(W,_10(...) + by_1) + by). (2.3.3)

Given data pairs for input and output this setup allows us to find weights and biases
to approximate any functional relationship between input and output variables. A loss
function, such as the mean squared error (MSE), is minimized to find the weights and
biases that best fit the data. Let (X;,y;) fori = 1,..., N be the data, then the MSE
is given by MSE(Xyn, y1:n) = + Yooy |lyi — 9(X3)|[3. Here, §(-) is the output of the
network given the parameters as in Equation (2.3.3).

Even though neural networks are universal function approximators, finding the cor-
rect weights and biases is not trivial. Optimizing a single layer network to have a
128 x 128 image as input and a full weight matrix already has over 16000 optimizable
parameters. Therefore, we introduce several application specific layers that have in-
ductive biases. Inductive biases are properties some layers should have based on
the type of input, such as translational invariance for images.

2.3. Deep Learning 21

2.3.2. Convolutional layers
If all the parameters in the weight matrix 1/ are optimized for, that layer is called fully
connected (FC) as all input values are connected to the output values. Thic could
cause many inefficient connections due to an underlying structure in the data. An
example is image analysis, in imaging the information in pixels mainly relates to the
pixels around themselves. Thus the network should be restricted to have this inductive
bias. Therefore, convolutional layers were introduced.

Convolutional layers consist of multiple discrete convolutions. A convolution of a
function f with a function g is denoted by

frgln]=>" flmlgln —m], (2.3.4)

where the sum is taken over the entire discrete domain, the rectangular brackets de-
note that we are working on a discrete domain.

An example of a convolution would be to take g[—1] = —1, ¢[0] = 2, g[1] = —1 and
zero elsewhere. We then have 2 f x g[i] = —[E=UR2H-IEH which s the finite differ-
ence approximation of the second derivative. This is one example of a convolution.
The output consist of a weighted summation of neighboring pixels. If g[i] is non-zero
over the entire domain, we are essentially back to the fully connected layer.

The kernel size of a convolution denotes the non-zero amount of values in the
kernel g. A kernel size of three means that we take into account the left and right
neighbour. In deep learning convolutional layers are used in image recognition as
they are able to use the structure of an image, where pixels lying next to each other
should be connected. On top of this, convolutional layers are invariant to translations
in images, which is exploited in object recognition. To work on images we could use
a two dimensional convolution and to work on three dimensional volume images, we
can use three dimensional convolutions.

The input of a convolution is an image or tensor and the output is a tensor. The
input image or tensor usually consists of three dimension, height width and amount
of channels. In the input the channels often relate to color, RGB images are three
channels. Later in the network each channel describes a different feature. The in-
put in a two dimensional convolution on an image would be batch size x height x
width x # of channels in input and the output would be batch size x height x width x
of channels for output. Let us denote the number of input channels by c¢;, and the
number of output channels by c,. Then a single convolutional layer has Cout X (Cin X
kernel width x kernel height + 1) number of parameters, as each output needs a bias
and the convolution parameters. The 1D and 3D convolution parameters work simi-
larly.

Filter
Input
map

Figure 2.14: A visual representation of a convolutional layer taken from [70].

2.3. Deep Learning 22

2.3.3. Upsampling layers

The inverse of a convolutional layer or a transposed convolutional layer is known as
an upsampling layer. These layers act like a convolutional layer but increase the
dimension of our image instead of decrease.

Upsampling multiplies every pixel of the input image with a kernel and then places
the outcome in an output image. Then moving to the next pixel and depending the
stride the output of this next pixel will be added on the overlapping pixels in the output
image. In Figure 2.15 a visual example of an upsampling layer is given.

Input Kernel

01 Transposed 0f1

2 3 Conv 3 3
Qutput
0|0 0] ojo|
=|0}]0 + 213|+|j0])2 + o|3|=|0]|4]6
416 619 41121 9

Figure 2.15: An example of a transposed convolution with stride 1. The effects of every pixel in the
output image are added if they overlap due to the chosen stride. Image taken from d2l.ai.

2.3.4. Max-pooling layers

In neural networks for images, the input is often larger than the output. In a classifica-
tion case such as handwritten image set MNIST, we have an input size of 28 x 28 = 784
and 10 possible output numbers (the probability the input resembles a particular num-
ber). In convolutional layers the dimension can be reduced by changing the number
of output channels or by moving the convolutional kernel multiple pixels at a time. To
capture better effect, average-pooling and max-pooling layers are introduced. Similar
to a convolution layer, these layers look at the input tensor and consider a certain
kernel, however the value this operation outputs is either the maximum value in the
kernel or the average value of all kernel items. Furthermore, were a convolutional
layer moves per pixel such that when moving the kernel one pixel, the previous pixel
still has an effect on the output, the pooling layers consider each pixel only one time.
A 2 x 2 kernel thus reduces the amount of values after a layer by a factor of four. An
average pooling layer can also be mimicked by a convolutional layer with fixed weights
and a fixed stride (the step-size of the kernel).

2.3.5. Back propagation

As we will see in Section 2.3.10, our optimization methods require gradients. These
gradient are calculated through back propagation. This is best understood by a clear
example. Let us define our network to be a one layer network as in equation (2.3.1),
for simplicity the data, weights and biases are taken to be one-dimensional. Let us
take the sigmoid function as the activation function o(-) and the loss is the MSE. As for
multiple data points we would sum the losses, we consider (X’,) to be a single data
point. Then to derive the derivative of the loss with respect to the weight the weight

https://d2l.ai/chapter_computer-vision/transposed-conv.html

2.3. Deep Learning 23

Wi eRis
aim%HU (W1X + b1> —g|]? = (U <W1X N bl> B g) do (W((/;M)Z—I- b1>
= (o () =) (e()(1 = 0o (-))) 0W8++b

= (0 () =9) (0(-)(1 = a())) X.

This shows that the chain rule is important in back propagation. Moreover, from the
above work we could quickly also find the derivative with respect to b; as only the last
step changes. This shows the power of back propagation and by saving the gradient
at each step, we can quickly recover the gradient for multiple parameters which need
to be optimized.

Calculating the gradient is done automatically in packages such as Facebook’s
PyTorch, in such packages the computer keeps track of the computational graph, as
each chain rule application can be seen as a node in a graph. Note that this procedure
also has drawbacks. For example, using the sigmoid function as the activation func-
tion and W1 X + b; going to infinity, the sigmoid function approaches one. Therefore,
the gradientis o(-)(1—o(-)) ~ 0 and thus the whole derivative becomes approximately
zero. As we will see later this in turn means that our optimization step vanishes. This
is called the vanishing gradient problem and can be solved by multiple techniques,
which we discuss in Section 2.3.7.

2.3.6. Batch normalization

A technique that makes back propagation more stable is called batch normalization.
When training a network with multiple layers there is a technical artifact called internal
co-variate shift. As weights in the first few layers of the network get updated, the
distribution of their output values changes such that the input of the deeper layer also
has a different distribution. The deeper layers chase a moving target when optimizing.
To standardize the distribution of inputs in each layer we apply the so-called batch
normalization. This concept was introduced to the artificial intelligence world in [28].
The application of batch normalization layers is quite simple. We take the mean and
the variance of the output of the last layer and subtract the mean and divide by the
variance to get the standardized input in the next layer. The distribution of our input
values has mean zero and variance one. Therefore, the optimization no longer chases
a moving target.

2.3.7. Residual connections

A method to combat vanishing gradients mainly used in convolutional networks is
called a residual connection. Residual connections were first introduced in [22]. In a
residual layer, the input of the layer would be added to the output of the layer. Thus if
the input of a layer is the output of a convolutional layer, the input would be a tensor of
dimension 50 x 100 x 100 in channels, width, height format. Assume a convolutional
layer with output 25 x 100 x 100 inside our residual block, then the output after adding
the residual is 75 x 100 x 100 as all the channels of the input are added to the channels
of the output.

2.3. Deep Learning 24

weight layer
F (X) l relu

weight layer

X

identity

Figure 2.16: A residual layer.

The main benefit of this approach is that even though an activation function is
applied on the output of our layer, the gradient information does not vanish as all
information also skips this activation function and thus the gradient flows through to
the next layer. The idea behind this method is also that the network can learn the
change between input and output instead of the whole transformation.

2.3.8. Physics informed deep learning

A recent application in the field of both deep learning and physics is known as physics
informed deep learning. The idea was first introduced in [50]. In general physics
are described by partial differential equations, these equations are often modeled by
solving them on a grid, so derivatives can be approximated on the grid. However,
as illustrated above, the design of neural networks makes it possible to calculate their
derivatives with respect to the weights of the network. In the same manner, derivatives
of a neural network can also be calculated with respect to the input. In the simplest
setting a physics informed neural network tries to solve a boundary value problem
Lp(t) = f(t) for p(t), where L is a differential operator and f(t) is source. The loss of
the network is Y, ||Lp(t;) — f(t;)||* and minimize this. The function should be close
to the solution to our boundary value problem. Note that we still have to evaluate the
loss on a finite amount of grid points, but the main feature is that the derivatives are
no longer approximated. Moreover, it is also possible to combine this approach with
data and find unknown parameters in the equation simultaneously with solving the
equation.

2.3. Deep Learning 25

PDE: L(u(x,t),0) = g

Figure 2.17: A Physics informed neural network architecture as found in [37]. Note that the given
MSE consists of error terms on the PDE, the initial conditions (IC) and the boundary conditions (BC).

Recent advancements in physics informed deep learning have shown that it is
also possible to learn operator between function spaces and even Banach spaces. In
[34], it is shown that neural networks are able to learn entire families of PDEs and
outperform other methods. In [65] DeepONets are introduced which learn operators
based on data and underlying physics.

2.3.9. Network Architectures

In the previous chapter, we have introduced multiple different kinds of layers that are
able to give information to the next hidden or output layer in a different way. These lay-
ers by themselves do not mean much, however when combined in a specific manner
they prove to be versatile. We discuss tricks that work in practice. We discuss three
types of convolutional neural networks, that is, network structures using convolutions.
We start with a standard convolutional neural network (CNN). After this we discuss
residual convolutional neural networks and lastly we discuss the state-of-the-art net-
work we use in combination with our optical system: the UNet.

Convolutional Neural Networks

The name convolutional neural network can be given to any neural network that uses
convolutions anywhere in its architecture. Convolutional neural networks have be-
come popular since they won the ImageNet competition (https://www.image-net.org/).
A typical example of a convolutional neural network is given in Figure 2.18

https://www.image-net.org/

2.3. Deep Learning 26

E—muck
— vaN
O

[—eievere

‘ o FULLY
PU CONVOI 1ON + RELU POOLING CONVOLUTION + U POO G FLATTEN
“/ INPUT NVOLUT! L LIN OLUTION + REL! LIN 5 KlA El CONNECTED

FEATURE LEARNING CLASSIFICATION

SOFTMAX

Figure 2.18: The architecture of a typical convolutional neural network taken from
towardsdatascience.com.

In neural networks the structure as seen in Figure 2.18 is very common, where the
first part of the network decreases the dimension of the input in a limited amount of
features and the second part uses these features for classifications or other output.
This structure is called an encoder-decoder structure, where the first part is called the
encoder and the second part the decoder. For classification a fully connected output
is used, whereas the encoder is mainly dependent on the input data.

In Figure 2.18, the typical layers used in a convolutional neural network are also
seen. As discussed convolutional layers are used to find features in the image. Pool-
ing layers are then used to aggregrate these features so that only important ones
remain and the dimension of the feature space is reduced. Finally, a non-linearity like
a ReLU function is used to add non-linearity to the network. This allows to estimate
various complex non-linear relations. A batch-normalization layer is added before or
after a convolution to help with normalizing the data at every step of the network.

ResNet

To get the current state-of-the-art convolutional neural networks we have to add resid-
ual connections to our list of techniques we use so far. Residual connections append
the input of the layer to the output.

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

2.3. Deep Learning 27

VGG-19 ResNet-152

Feedforward

Neural Network

[3x3 conv, 64 | [7x7 conv, 64 |
53 o, 64 |

12
(ResNet-152 output
+ VGG-19 output)

7
[3x3 copv, 128 |

[3x3 co\ v, 128 | ¥
[3x3 copv, 256 | I 64 |
[3x3 copv, 256 | | ;'; |
[3x3 copv, 256 | . v
[3x3 cohv, 256 | 3x3 co§v, 128 | :
["3x3 conv 128.4-7 h i
| 3x3 copv, 512 | (onyc omst/)cosus
or no

[3x3 co‘Ev, 512 | 152 layers
[3x3 copv, 512 |
[3x3 copv, 512 |

v
L e |
[AEs |
l fC 6

Figure 2.19: A comparison between a residual network and two convolutional neural networks. The
VGG-19 model has around 143 million parameters and the ResNet-152 has approximately 160 million
parameters ([22]).

The number of parameters in convolutional neural network can be very large and
this is where the residual connections work best. Due to them linking the input and
output of every layer they help with the gradient flow allowing for very deep networks.
Currently ResNets are the state-of-the-art in image classification.

UNet

UNet is a structure for networks that take in a picture and output a same-sized picture.
The UNet architecture was introduced in [56] for biomedical segmentation, but UNet
has also proven to be useful as a generative model. Generative models generate an
output image or tensor given some input data, in contrast to classification models that
assign classes to data.

2.3. Deep Learning 28

input
image |»|»
tile

output
segmentation
3 map

256 128

HH

H D»ﬂ D-»D-»D = conv 3x3, ReLU

copy and crop
wD.;l:Mt;; ’_DEH: § max pool 2x2
4 up-conv 2x2
=» conv 1x1

:I#il#l:l
Figure 2.20: The UNet architecture clearly shows where it got its name. Taken from [56].

As shown in Figure 2.20 we recognize that UNet has an encoder-decoder struc-
ture. The encoder consists of a number of combinations of convolutions, pooling lay-
ers and non-linearities reducing the dimension of the latent space to only the important
features. Then the features are upsampled with upsampling convolutions. The main
innovation of the UNet was that during the upsampling a residual connection is con-
catenated from the encoder layer. This allows again these networks to capture many
different features.

2.3.10. Optimization

In this section we introduce the optimization method we use for both the lens design
parameters and the neural network weights and biases. These methods work only
when gradients are available.

Gradient Descent

Optimizing a function when gradients are available, one can use a linear approxima-
tion of the function and minimize that. When minimizing the linear function we have to
take into account that we are making a linear approximation and thus should not take
a step to large. Let the current point be z,. This gives us the following equation

. . 1
min f(x) & min f(zo) + (z — 20)V f(20) + %HSC — o|3.
Here, the first and second term are given by linearizing and the last term is a penalty
to stay close to the current point of evaluation. We use the n here for weighting the
penalty. We set the derivative to zero on the right-hand side to find an extreme point

2.3. Deep Learning 29

and see the following

0=V, (f(a:o) + (z — 20)V f(20) + %Hx - 550”3)

0=Vf(xy)+ %(m — xp)
x = zo — nV f(2o).

Replacing z by x; and z(by z;_; we get the famous gradient descent algorithm in step
t. This allows us to optimize any function with a gradient by walking down along the
path of steepest descent also known as the negative gradient. The above approach is
a simplified derivation of an algorithm called mirror descent. More on mirror descent
can be found in this lecture at http://www.cs.cmu.edu/ 15850/notes/lec19.pdf.

The parameter 7 is known as the stepsize as it determines what size of a step we
take. This is very important as one could imagine applying gradient descent to the
function f(z) = 22, it is not hard to see that choosing n = 1 would jump back and forth
and not converge and that » > 1 would actually diverge away from the optimum when
to far from the optimum, except if you start at the optimum.

Too low Just right Too high

16 |)6 | 1(8) \

A small learning rate The optimal learning
requires many updates rate swiftly reaches the
before reaching the minimum point
minimum point

Too large of a learning rate
causes drastic updates
which lead to divergent
behaviors

Figure 2.21: Choosing the step size is important in gradient descent. Taken from medium.com

Adam
To optimize the network we use the Adam optimizer [33]. This optimizer is an exten-
sion of the normal gradient descent and works as follows

t+—1t+1

g Vol (6 1) (get gradient)
my < Prmy_1+ (1= 51) - g (update biased first moment estimate)
vy < Boviq + (1 — By) - g7 (update biased second moment estimate)
My < my/(1— 1) (bias correction)
O v /(1 — L) (bias correction)

0, < a1/ (Vo1 +€) (update parameters)

http://www.cs.cmu.edu/~15850/notes/lec19.pdf
https://medium.com/swlh/an-overview-of-gradient-descent-algorithms-9701b3eb8ce3

2.3. Deep Learning 30

The strength of this method is that it works with exponential averages of gradient
and squared gradient to make to make the right step and not behave very erratically.
This also allows the method to step over local minima, as the step does not vanish
directly from a low gradient value. As we use regularization, which we discuss further
later on, we could define that as a squared weight term in the loss function or we sim-
ple change the second operation in the Adam algorithm to g; < Vg fi(0;—1) + \0;_1.
Here,)\ is the amount of influence the regularization to has. This step can be derived
from the loss function approach as well. The standard values, the authors suggest,
for the parameters are A = 0, a = 1 x 107%, 3, = 0.9 and 3, = 0.999. Increasing
A, adds more regularization. The f’s influence how long previous values are taken
into account in the current optimization step. When dealing with noisy data 5, and
B2 should be lowered so the noise averages out over more iterations. The learning
rate « is the most important. The learning rate should be low enough to not step over
minima, but at the same time the learning rate should also be high enough so the
optimization moves away from non optimal zones faster. Higher learning rate could
also help with stepping over local minima. In normal stochastic gradient descent we
would decrease the learning rate every iterate, however as Adam is already an adap-
tive gradient method this is not necessary for convergence. Adaptive in this sense
means that the overall learning rate changes based on the steps. In practice both a
constant and a decreasing learning rate seem to work.

Regularization

Another concept in machine learning we use is regularization. When training on a
lot of data the network is prone to overfitting. Overfitting is the concept of having the
network optimize very well on the training set, but not learning the right features and
thus performing bad on out-of-sample data.

Underfit Optimal Overfit
o .. o . 8 g

| o o 2 o ¥ 2 .00
« e Le.0 @ ® o0 O a TNy @
g ® " . o® g ® o? g . ¢ v

e _go,. o9 K ‘@ ’
§_ . o ® §_ . ",’o o §_) -
S| ® e 5| e S| e
@] . Ol .» Ol e

Predictor variable Predictor variable Predictor variable

Figure 2.22: The data can be fitted by a simple line. By optimizing a high order polynomial we are
also able to get minimal loss, but this does not capture the essence and will give a high error when
evaluated on points not in the dataset. Figure taken from educative.io.

To make sure overfitting does not happen an extra parameter is added to the loss
function. This parameter is the square of the weights, therefore the weights are forced
to stay small. Regularization, the name for this procedure, actually is a bias-variance
trade-off. We trade the unbiasedness of the network to reduce the variance, as we
can see from Figure 2.22. In deep neural networks there is also a phenomenon called

https://www.educative.io/answers/overfitting-and-underfitting

2.3. Deep Learning 31

double descent, where adding more network parameters actually causes another de-
scent in the loss after the bias-variance trade-off has already been taken into account.
This phenomenon is described in [42]. In our research we also need to take this into
account.

2.4. Parametric surfaces 32

2.4. Parametric surfaces

In this section we describe different surface parametrization techniques that we have
used to represent lenses. A parametric surface is a surface that is defined by certain
parameters and allows to be calculated at every point in the domain, in contrast to
grid-wise defined surfaces. We discuss B-splines and NURBS first. After this we also
discuss radial basis functions.

2.4.1. B-splines

In this section we explain what B-spline curves and surfaces are. We start with the
former and name its properties, after that we extend this to the B-spline surfaces that
we use for our lens design.

B-splines (which is an abbreviation for basis-splines) are a specific set of polyno-
mial basis functions that are used to fit a curve or surface along a certain set of control
points. Let us denote the number of control points as n and denote the coordinates of
the points as P;, where i ranges from 0 to n. We would like to find basis functions with
the property that our curve C satisfies the expression C(u) = >, fi(u)P;. From this
summation one can see that possible continuity is independent of the control points
and only dependent on the basis functions themselves. To form the basis functions
we first define the knot-vector U = (uy, ..., u,,), for which we have that the knots are
non-decreasing a < u; 1 < u; < ujp; < bfori =1,...,m — 1, a and b denote our
interval here. Let us define 1V, , to be the ith basis function of degree p (note that here
i =0,...,m, where m is the number of knots). Then the B-splines basis functions are
defined recursively as

1 ifuy; < .

Nio(u) = { DS S (2.4.1)
0 else

Ni,p<u) = Wi,p—l(u)Ni,p—l(u) + (1 - wi-i—l,p—l(u))Ni—‘rl,p—l(u)? (2-4-2)

here we define

_u—ui if t, t;
wip(x) = { Mrem a (2.4.3)
0, else
This recursive formula is know as the Cox de Boor recursion formula ([47]). Due to
this definition, in the interval [u;, u;+1) only N;_,,, ..., N;, are non-zero and the basis
function N, , is only nonzero in the interval [u;, u;,+1). For p = 0 the step function is
found.
An example of these basis functions with p = 2 can be found in Figure 2.23.

2.4. Parametric surfaces 33

Ns 2 Nz

N.
Nl.? .Ng_g 3.2 N4.2 -
6,2

Figure 2.23: The quadratic B-spline basis functions with knot vector U = (0,0,0,1,2,3,4,4,5,5,5).
This figure is extracted from [48].

Figure 2.23 also clearly shows the impact the knotvector has on the B-splines.
When the multiplicity of a knot equals &, then the continuity at that point is C*~*. We
see that for v = 0 and u = 5, we have multiplicity three such that the curve C is dis-
continuous at these locations. For v = 4 we have multiplicity two, thus the curve
itself is continuous here, but not its derivatives. All other interior knots have mul-
tiplicity one, thus these basis functions and their derivatives are continuous at the
knot locations. Another observation from this figure is that when the first and last
knot have multiplicity p + 1, then there is exactly one basis function active at that
point. We call such a knot vector open. Furthermore, as the B-splines are a weighted
sum with their weights summing up to one, we must also have for u € [u;, u;;1) that
> iz Nip(u) = Z;’:i—p Njp(u) = 1.

For knot vector U of length n + p + 1 we can define a p-times continuously differ-
entiable B-spline curve in the following way

C(u) = Xn: Nip(u) By, (2.4.4)

where P; € R? are the control points. This is illustrated in Figure 2.24.

2.4. Parametric surfaces 34

Figure 2.24: A B-spline curve in R2. The red dots denote the control points. Taken from [26]

To make a B-spline surface in R?, we choose the following. A surface consist of
a tensor product of B-spline, for simplicity we assume that our p holds for both basis
functions in each term. And furthermore let the knot vectors U and V' be open and of
length n+p+ 1 and m + p+ 1 and denote B-splines from knot vector U as V, ,(u) and
B-splines from knot vector V' as M, ,(v). Then we describe the B-spline surface which
is p-times continuously differentiable as

S(u,v) = Z Z Nip(u)M;,(v)P; ;. (2.4.5)

Here, P, ; € R? are the control points. An example of a B-spline surface and its control
points can be found in Figure 2.25.

e’ P.q_o

(a) The control points. (b) The B-spline surface.

Figure 2.25: On the left-hand side we see the control points and on the right-hand side we see the
B-spline surface. Images taken from [48].

2.4. Parametric surfaces 35

B-spline curves and surface are themselves already able to fit a variety of curves,
however a shape as a circle can only be approximated and never fitted exactly. It
would require many degrees to get a good approximation. A more flexible parametriza-
tion technique that extends B-splines are non uniform rational B-splines (NURBS).
NURBS use rational B-splines in the following way. Let { P, € R¢},_,., be the control
points and let {w; € R},—., be the weights. NURBS curves are defined as follows

O(u) = == (2.4.6)
(u) > izo Nip(w)w;
=S "R, w)P, (2.4.7)
=0
with N
R, i ()0 (2.4.8)

Z?:o Nip(w)w;
A NURBS curve is more general than a simple B-spline as it can approximate with
rational functions as well. It does however cost n new weight parameters. We can
recover basic B-splines by setting all weight equal to a constant. When applying an
affine transformation to the curve it is enough to apply it to the control points. The
same properties that hold for B-splines with regard to continuity and differentiability
also hold for NURBS. Extending this definition of NURBS curves to NURBS surfaces
similar steps are taken as with B-spline surfaces. A NURBS surface S(u,v) is defined
as follows

_ 2io 2jo Nip(uw) My (0)wi i Py

Su,v) == T — : (2.4.9)
) 2 im0 2jmo NipMjp(0)wi
= Ry jp(u,v) Py, (2.4.10)
=0 j=0
with N y
Rijp(u,v) = (W) M;pl0)s (2.4.11)

Z?:o Z;‘nzo NipM;p(v)w; ;-

We saw already that we could calculate the basis functions using the Cox de Boor
recursion formula (2.4.2), however this procedure is not very efficient as on most in-
tervals a part of the B-splines are zero. Thus to make the algorithm more efficient we
need to make sure these calculations do not happen. In [9] a solution for this problem
is proposed which changes the recursion into multiple efficient matrix multiplications.
To show how this works, we first have to revisit the weight function (2.4.3) to build the
B-splines. Using this function w; ,(x) we define the B-spline factor matrix as follows

1= wipr1p() Wimpt1p(2) 0 0

0 1 — wiprop() Wimpr2p(7) 0

Tp(x) = . . . _ :
0 . 0 1 —wip(x) wip(z)

(2.4.12)

2.4. Parametric surfaces 36

T,(z) isap x (p+ 1) band-limited matrix and this matrix can thus be used in sparse
matrix computations. Let us denote 77(z) = Ti(z)1s(x)...T,(x), then we can rewrite
a B-spline with control point vector P as C'(u) = T7(u)P. To extend this to a B-spline
surface, we first have to introduce the Kronecker product ®, which is defined as

CLHB algB e alnB
A 2 B (IQ%B CI,QIQB . CLQT-LB

and let us also define the vectorization of a matrix as
-
VeC<A> = [(ZH, ceey A1, A12, ooy A2, ooy Qlp, e, amn}

. We denote N(u) = T?(u) and M(v) = TY(v), then these are exactly the B-spline
matrices in the x and y direction. We rewrite the B-spline surface as

S(u,0) =Y > Nip(w) M, (v) Py (2.4.13)

i=1 j=1

= (N(u) ® M(v))VeC(PJ;erH’jszrqH). (2.4.14)

This allows us to efficiently calculate the values on the surface, without multiplying a
lot of zeros due to the limited support of B-splines. We can easily extend these results
for B-splines to the NURBS setting.

2.4.2. Radial basis functions

Next to B-splines in optics three other parametrization are also used as seen in [57].

They are the Zernike polynomials, the XY polynomials and radial basis functions.
The Zernike polynomials are a set of polynomials that are orthogonal on the unit

disk. The definition of Zernike polynomials is split up in even and odd polynomials.

The even polynomials are defined as

Zy (p,) = Ry'(p) cos(ma)) (2.4.15)

and the odd polynomials are defined as

Z;™(p) = RI(p) sin(m), (2.4.16)

. Here, R"(p) are radial polynomials and by odd and even we mean that m is odd or
even. The Zernike polynomials have applications in modelling aberrations in lenses.

Another method to model a surface are the XY-polynomials. These polynomials
are different compared to Zernike polynomials as they are not orthogonal and similar
to B-splines in that they use basis functions. The XY polynomials use basis functions
of the form z"y™. The XY polynomials have more degrees of freedom when compared
to a Zernike polynomial.

A method not necessarily based on polynomials are the radial basis functions
(RBFs). We can describe a surface in terms of RBFs as

S(u) =3 wnbuley), (2.4.17)

2.4. Parametric surfaces 37

where we define ¢, (x,y) = ¥(||(x,y) — (n,yn)||2). These surfaces are thus build of
weighted sums of radially symmetric functions. Typical choices for ¢ in optics are for
example Gaussian functions.

Other polynomials used in freeform optics are Chebyshev polynomials, Legendre
polynomials and Jacobi polynomials. An overview of the different methods is given in
[73].

We found that generating Zernike polynomials is very computationally expensive,
due to the summation in the radial polynomial part. Therefore, we choose to use the
radial basis idea of radial basis functions and Zernike polynomials to generate random
radial basis functions (that is radial basis functions with random coefficients) as exam-
ple lenses which we use later. We use B-spline surfaces to represent lenses and radial
basis functions to generate a variety of diffraction patterns, as Zernike polynomials are
a subset of these basis functions.

Previous Research

3.1. Related Literature

In this section, we discuss the literature in the fields necessary for our research. We
divide the literature interesting for us in three categories: phase retrieval, freeform and
diffractive lens design and lastly deep learning and optics.

3.1.1. Phase retrieval and deep holography

The inverse problem of finding a freeform lens that produces a certain distribution, is
strongly connected to the problem of phase retrieval. This problem is given by finding
the appropriate phase of a given input source amplitude and a target intensity. To
solve this problem a popular algorithm was proposed in 1972 in [18]. In [19] an iter-
ative algorithm is proposed which has as input two different intensities and the task
of the algorithm is to find the phase change to propagate from one to the other. This
algorithm, called the Gerchberg-Saxton (GS) algorithms, works by iterating between
forward and backward Fourier transforms on the source and target intensity, itera-
tively until a stopping criterion is met. Figure 3.1 illustrates the general principle of the
algorithm. The GS algorithm has applications in multiple fields, in optics it is mainly
used in holography and coherent imaging, but it also has applications in other imaging
sciences.

image diffraction pattern

@ - initial phase plane plane

randor? pt;as?_ -3 | uexplio) % Uexp(i®)
-ntom

measured measured
amplitude , amplitude U,

X
wexplig) | € | Usexp(io)

Figure 3.1: The Gerchberg-Saxton algorithm.

It can be proven that the GS algorithm is monotonically decreasing its objective
function ([18]), which is remarkable given that the algorithm is mostly applying Fourier

38

3.1. Related Literature 39

transforms. In [16] it was shown that the GS algorithm is equivalent to a gradient
descent algorithm. Where it is also shown that the convergence of the GS algorithm is
actually not as good as other gradient descent and Fourier based methods. However,
the GS algorithm remains the standard in the literature. Recently, a deep learning
approach to phase retrieval was taken in [59], where a convolutional neural network
inspired by the GS algorithm is proposed. In other literature we also see the use of
convolutional neural networks which work with the methods we discussed in previous
sections. An example is [55], where a network is made to extract the phase from a
single intensity image. The structure of this network can be seen in Figure 3.2.

fj—» =[

Input |
s § © § e |

block

+
N —

Conv
layer
Residual

\

=

— 0 ® & —>

Conv
|ayer
M2
Residual
block

us
black
;
v

Output

) |

D ‘ Conv
lay_er
]
]
]
!
D ‘ uis
block

LA X B o

Conv

layer

uis
block

16

Figure 3.2: The network structure used for phase and amplitude recovery in [55].

Figure 3.2 also gives an idea of the networks used in these types of problems. In
[41] a convolutional neural network is used for phase recovery and denoising. Met-
Zler et al. also compare their method to multiple other established methods, such as
gradient descent based methods and show that their method has better convergence
properties. [21] gives a more theoretical overview of the subject and based on the
theory they propose a method with a generative model.

Phase recovery is connected to the field of holography as it solves a similar prob-
lem. In the field of holography, the challenge is to reconstruct the whole wave field
from a reference beam. Thus considering phase-only holography, this would essen-
tially be equivalent to phase recovery. Deep learning has also made an impact on the
field of holography. An example of this is [23], where the inverse process of finding the
hologram is solved by giving the network a target pattern, letting the network suggest
hologram and applying an optical propagation, the forward process, to the suggested
hologram. This gives an error between the target pattern and the reproduced pat-
tern, which should be minimized. For the network Horisaki, Takagi, and Tanida use a
UNet like convolutional network, which also shares properties with the above shown
network of [55]. In [54] a review is also given with applications in, e.g., microscopy
and material science. Where the conventional optics leave the 3D nature of light and
only consider the phase and amplitude, Ren et al. considers 3D vectorial holography
and shows that they are able to train a deep network to solve the inverse problem
in this setting as well. Cheremkhin et al. show that they are able to find a diffractive

3.1. Related Literature 40

optical elements as output of the network, where the input is the intensity image. The
network is trained on the MNIST dataset of written digits. In [25] again an unsuper-
vised UNet approach is discussed. Another interesting development is [62], where a
similar network is proposed as in [23], but optimized to be memory efficient and being
able to operate on less powerful devices than standard computers. This enables the
techniques to be applied in almost real-time on embedded systems.

3.1.2. Freeform and diffractive optical elements

Two fields in optics that are also relevant to our research are the field of freeform optics
and the field of diffractive optics. Freeform optics studies the properties of freeform
lenses, whereas diffractive optics studies diffractive optical elements. Freeform lenses
are lenses which do not have any rotational symmetry. Where normal lenses in, for
example, glasses focus the light on a specific point, freeform lenses are able to shape
the light in any way. Diffractive optical elements (DOE) consist of phase plates, which
change the phase of the light, this is similar to freeform lenses. However, DOEs can
consists of non-continuous surfaces, where a freeform lens has a continuous surface.

(a) (d) (c)

Figure 3.3: Different diffractive optics as shown in [43]: (a) Shows a DOE used as a diffractive lens.
(b) shows a DOE as a wavefront corrector. (c) shows a null corrector.

The theory of designing diffractive optical elements is very strongly connected to
the contents of the previous section on phase retrieval as with phase retrieval one
could make a phase plate or a diffractive optical element to get the correct intensity.

Freeform lenses have a wide range of applications, but one application is well
researched in literature. Freeform lenses are used extensively in the control of illumi-
nation. As the lenses can shape the illumination pattern of a lens in any way this has
applications in normal lighting especially for light emitting diodes (LEDs), which have
a very broad intensity pattern. Most of the light is too weak to be useful. However,
LEDs are very energy efficient and thus we would like to use their capabilities. To fix
this problem in, for example, street lighting, we could use a freeform lens to make a
uniform intensity pattern such that a part of the road is well lit. Such optical systems for
street lights are described in [63], in which an actual working optical system is shown.
Similar design for street lighting is also considered in [74] and [64]. [31] and [14] show
theoretical results, which confirm the power of freeform lenses for street illumination.
The aforementioned papers all consider the challenge of illumination control. Other ap-
plications which include the use of freeform optics to create see-through lenses with
a large field-of-view as described in [10]. Also Peng et al. shows that it is possible
to create a freeform camera lens that has better field-of-view properties than normal

3.1. Related Literature 41

lenses. An overview of applications in freeform optics and other freeform industrial
parts is given in[58].

The shape design of a freeform lens is not a trivial problem. The design of freeform
lenses is often performed in a setting of geometrical optics (also known as ray optics).
In this setting [53] and [52] describe how the problem can be turned into a set of
non-linear partial differential equations of the Monge-Ampere type. The equations
are manipulated to be solvable by standard numerical methods, but this restricts the
boundary conditions for which these equations can be solved. As the Monge-Ampere
equations are of elliptic type, it can be shown that the finding of solutions to the equa-
tions is equivalent to solving a minimization problem. In [67] it is shown how to find a
minimization problem for lens design. Wolansky and Rubinstein shows how the func-
tional that is minimized is connected to other well-known equations, such as transport
equations. The minimization of a functional is used more in literature, see for example
[2] where a functional is found by reformulating the problem with an eikonal distribu-
tion. This functional is then minimized by gradient descent methods. We also see
an optimal transport formulation again in [60]. [3] gives a set of generalized Monge-
Ampere equations. One paper that differs from the rest is [35], where other papers
mostly consider only one point source, here multiple sources are considered. This
also has applications for our research, as we also consider multiple sources. With
multiple sources Lin note that the equations become harder, but they are able to solve
the problem by a weighted least squares approach. These conventional methods of
freeform design are still being investigated as can be seen from [4], where the elliptical
PDE problem is revisited again in a formulation which allows for even less restrictions
on the lenses and the output and input irradiance required.

Where the previous paragraph mainly describes algorithms involving the finding
of a solution to partial differential equations or by minimizing a functional, the output
is a function which would describe the freeform lens. To restrict the problem it is also
common to look at the design of freeform surfaces described by basis functions. Com-
mon surface representations are Bézier, B-spline or Non Uniform Rational B-Spline
(NURBS) surfaces as [58] lists. These parametrized surfaces have advantages over
non-parametrized surfaces as they have an mathematical expression which describes
them by a low amount of parameters and they are often already available in computer
aided design (CAD) and computer graphics applications. Applications in CAD is espe-
cially true for NURBS surfaces as can be found in [5]. Other surface representations
are also found, such as in [7] where the basis functions are chosen as Gaussian func-
tions. These Gaussian functions allow a variety of lenses and this is shown in practical
applications. [17] discusses a basis of orthogonal polynomials and how to efficiently
compute their coefficients. A specific algorithm to design freeform optics with NURBS
is introduced in [68], they show how to change this problem into an overdetermined
non-linear system and how to solve this system using the Gauss-Newton method.
[15], [73] and [69] give an overview of surface representation. Wu et al. mentions that
alongside the already mentioned NURBS and Gaussian functions, XY-polynomials
and Zernike-polynomials are also used. This last class of Zernike-polynomials is ac-
tually used in optics as the polynomials have special properties, which help with lens
abberation correction. A recent book on the same topic which also mentions multiple
algorithms to find the correct parametrization is [32].

3.1. Related Literature 42

Another related topic in optics are the properties of freeform lenses themselves
and why we would use them compared to diffractive optical elements. In certain ap-
plication diffractive optical elements create speckles, a problem that freeform lenses
do not have. The problem of creating a uniform square intensity for street lighting
is approached in [45], where the problem is solved with diffractive optical elements.
However, due to discontinuities in the phase of their optical elements it is not possible
to create uniform intensity and the correct amplitude. [1] also considers this and gives
a mathematical description of the speckles and give methods how to remove these
speckles. A clear take away from [1] and [45] is that requiring continuity in the lenses
would make sure that there are no speckles. This gives an advantage of freeform
over diffractive optical elements due to their continuity. However, the continuity of a
freeform lens also has consequences as [6] mentions. As freeform lenses only have
continuous phase changes we cannot have multiple non-connected intensities in our
output intensity. This is due to the reformulation of the previously mentioned eikonal
function in terms of a linear assignment problem.

3.1.3. Deep learning in optics

In the previous paragraphs we saw that deep learning techniques are applied to the
field of holography and phase recovery. Deep learning has also found its way to other
fields within optics. An overview of deep learning in optics and photonics can be found
in [66].

A specific application of deep learning in optics is the invention of deep diffractive
neural networks. These networks are physical neural networks, where each layer
consists of a diffractive optical element. When multiple of these DOEs are placed
consecutively, they are able to approach non-linear relations similar to normal neural
networks.

Detectors

-
£

e

&5
C
=

/
A
(=

Input Object

Figure 3.4: An example of a deep diffractive neural network as shown in [36]

These deep diffractive neural networks (D*NN) are implemented digitally to opti-

3.1. Related Literature 43

mize the phase plates as described in [36]. They test their D°NN in a classification
setting, the setup for this can be seen in Figure [36]. In [39] a further analysis shows
that their D°NN achieves a 97.18 percent accuracy when their network consists of
five phase-only plates. In [44] and [38] it is shown that these networks are able to
adapt to data that is shifted, rotated, scaled or misaligned in another way. This shows
similarities between convolutional neural networks and these networks, as one of the
advantages of convolutional layers is their ability to be invariant under shifting and
rotation. Interestingly there have already been other applications of these networks
than to classification. In [49] it is shown that D’NN are able to solve the inverse prob-
lem of holography, which we discussed earlier in this section. In [40] it is furthermore
shown that these networks are also able to solve the ill-posed inverse problem of
reconstructing overlapping phase images.

More in line with our research there are also applications of deep learning to the
design of lenses and other optical surfaces. We mostly see deep learning being ap-
plied to the generation of starting points for the process of lens optimization. The
optimization of lens design is a difficult problem and the base of our research. In [71]
a neural network is used to find the position of optical elements and the parameters
for these elements. The elements are made by parametrized surfaces of polynomials
such as XY- and Zernike polynomials. The input of the network are the optical system
properties such as field of view and F number. This approach is also found in [12]
and [8], where even more complex optical systems can be found. The latter also adds
new optimization techniques, but the base remains similar.

3.2. Previous work at TU Delft 44

3.2. Previous work at TU Delft

The results from this thesis builds upon the results from projects by other students. As
the goals in this thesis and the other work done at TU Delft differ from the literature
we discuss these results separately. This section summarizes both the results from
[27] and [13]. The former considers the design of a freeform lens based on B-splines
in one dimension and the latter extends these results to two dimension.

3.2.1. Imhof (2020)

In this thesis a one dimensional field is assumed. Imhof uses a physics informed self-
supervised approach and shows that this produces desirable results. Self-supervised
means that the network does not necessarily have data in input/output pairs for the
network to train, but rather it has input and this input is also a term in the loss function.
The setup of this thesis was to have the input of the network be the desired intensity
pattern and the output of the network be the B-spline parameters. The loss function
that makes this self-supervised first turns the B-spline values into a lens design and
then uses the Fraunhofer diffraction to simulate propagation of light. The propagated
intensity pattern is then compared to the desired intensity pattern, thus creating a train-
able loss. In this thesis it was shown that for the one dimensional case this procedure
generates desirable lenses. The network is trained with a number of intensity patterns
that are feasible. The approach is shown to work when the B-splines have three de-
grees of freedom, which is quite limited. It is extensively discussed how the network
is trained. This shows us that this approach should be feasible, at least with limited
degrees of freedom.

3.2.2. Crijns (2021)

In this thesis the approach of Imhof is extended to the two dimensional case. This
work still considers a far-field Fraunhofer diffraction for the optical propagation and
considers the intensity pattern as the input for the network, where the output of the
network are the B-spline parameters. This work differs from the one dimensional work
as only one specific image is considered and the network is trained for this image.
This turns the procedure into a fancy optimizer. To help the optimization procedure it
is chosen to use multiple resolutions. This should make the optimization easier, as
the optimization can first be done on a coarse grid with less degrees of freedom. The
research concludes to show that it is quite hard to make the intensity pattern of the
TU Delft logo.

Experiments

The goals of this thesis is to combine modern computer power, modern optimization
methods and wave optics to optimize a system of diffractive optical elements. The op-
tical system consists of the following three general parts. First, the source of light, this
could be a number of distinct sources or one source. Second are diffractive optical
elements. Here, we can choose to have multiple optical elements behind each other
and possibly also have restrictions on the smoothness of the lens. As discussed be-
fore in Section 3.1, having smooth lenses is favorable as they suffer less from speckle
effects. The last part of the optical system is the sampling plane. The intensity we
optimize for on the sampling plane is given. In our optimization procedure the goal is
to find the design parameters of diffractive optical elements such that the output inten-
sity a system with these elements produces is close to the target intensity. Another
element of our optimization procedure is the parameters we are optimizing over. This,
in essence, determines what phase change the lens induces. In Chapter 2 of this
thesis, we showed that we can simulate propagation of light in multiple different ways.
The three main method were Fresnel, Fraunhofer and Rayleigh-Sommerfeld propaga-
tion. The main differences of these methods are when they are applicable, Fraunhofer
is the most restrictive and requires the sampling plane to be far away from the lens.
Rayleigh-Sommerfeld has the least restrictions. Although, we used Fraunhofer in ear-
lier experiments and showed that we can optimize a simple optical system. We cannot
use it in a system with multiple lenses as the propagation distance between the lenses
is too small for Fraunhofer to be used. Therefore, we use Rayleigh-Sommerfeld diffrac-
tion. In the rest of this chapter we discuss a simple optical optimization using gradient
descent, we discuss a data-driven neural network approach and finally we discuss
an experiment where we optimize a difficult optical system using the two approaches
together.

In most of the experiments shown below, we use the values given in Table 4.1 if
not specified otherwise.

45

46

Table 4.1: Constants used in optical simulation

Name Symbol Value
Sample plane width 1073
Propagation distance z 1073
Wavelength A 633 x 107?
Wavenumber k ~ 0.0036
Beam width wo 300 x 1076
NURBS control points grid size (10,10)

Our basic optical system setup is described in Figure 4.1. This basic optical setup
is extended in the following results with multiple diffractive optical elements and multi-
ple sources. Also the type of sources is varied in different experiments.

Source Diffractive Sample
optical plane
element

Figure 4.1: The setup of our optical system. We can have one or multiple sources next to each other
(in the 2 and y direction) and one or multiple diffractive optical elements (in series, in the z-direction).
We propagate light in the z-direction.

47

Table 4.2: In this table for each figure in the results the optical settings are reported. The resolution
described holds for all elements in the system. When a DOE is not based on a NURBS surface this is

noted in the sixth column.

Number Number
Figure | Resolution Source type of of NURBS Target

sources DOEs
4.2 32 x 32 Plane wave 1 1 X TU Delft logo
4.3 32 x 32 Plane wave 1 1 v TU Delft flame
4.4 32 x 32 Point source 1 1 X TU Delft flame
4.5 32 x 32 Gaussian beam 1 1 X TU Delft flame
4.6 32 x 32 Plane wave 1 2 X TU Delft flame
4.7 32 x 32 Plane wave 1 2 4 TU Delft flame
4.10 512 x 512 Point source 1 1 X FMNIST
4.11 512 x 512 Point source 1 1 X TU Delft flame
412 256 x 256 Point source 1 1 X FMNIST
4.13 1024 x 1024 Point source 1 1 X FMNIST
4.14 128 x 128 Point source 1 1 X Square
417 128 x 128 Point source 2 1 X TU Delft flame
4.18 128 x 128 Point source 3 1 X Multiple
4.20 128 x 128 Point source 3 2 X Multiple

Throughout this chapter the optical system changes for different experiments. In
Table 4.2. This table is given to give a better overview of the different experiments

and to compare directly what changes between experiments.

4.1. Optimizing a system of diffractive optical elements 48

4.1. Optimizing a system of diffractive optical elements

We are tasked with optimizing the optical system. We propose multiple configurations
of diffractive optical elements which we optimize such that the output intensity of the
system resembles the target intensity profile. The different optical systems, vary in
the amount of lenses, the sources, the diffraction method (Fraunhofer or Rayleigh-
Sommerfeld), the parametric formulation of the surface and the different target inten-
sities. We optimize the lens parameters by using the Adam gradient descent opti-
mizing algorithm, we program our own optical system in the Pytorch package with
back-propagation which allows for easily calculated gradients.
An overview of the figures in this section is found in Table 4.3

Table 4.3: In this table for each figure in the results the optical settings are reported. The resolution
described holds for all elements in the system. When a DOE is not based on a NURBS surface this is
noted in the sixth column.

Number Number

Figure | Resolution Source type of of NURBS Target
sources DOEs

4.2 32 x 32 Plane wave 1 1 X TU Delft logo
4.3 32 x 32 Plane wave 1 1 v TU Delft flame
4.4 32 x 32 Point source 1 1 X TU Delft flame
4.5 32 x 32 Gaussian beam 1 1 X TU Delft flame
4.6 32 x 32 Plane wave 1 2 X TU Delft flame
4.7 32 x 32 Plane wave 1 2 v TU Delft flame

4.1.1. System of a single optical element

We first consider the simplest version, a single source and one phase plate, as we
saw in Figure 1.1. The source is given by a plane wave which is normally incident
and has unit amplitude. The lens only modulates the phase. The diffractive optical
element can have phase changes at every pixel of the lens. Depending on the target
intensity we also let the amplitude of the source field be variable, to allow the system
to have enough energy to recreate the target intensity, meaning that the source term
is multiplied by a term which we also optimize.

4.1. Optimizing a system of diffractive optical elements 49

Source Amplitude 10 Source Phase
) 6
0.0004 0.0004
0.8 5
0.0002 1 0.0002 -
4
0.6
0.0000 0.0000 1 3
0.4
-0.0002 4 —0.0002 1 E
0.2 L
-0.0004 - —0.0004
- - . . - 0.0 0
= [=4 ™ -+ L3 e~ [=] [} 3
[=] = = = = =} I=} [=1 [=1 [=1
g g =]] 3 g g E] 2 3
Lens Lens
100 6
0.0004 0.0004 -]
075
. 5
0.0002 0.50 0.0002 A
0.25 4
0.0000 pan 0.0000 3
—0.25
-0.0002 —0.0002 1 E
—0.50
1
~0.0004 —0.75 ~0.0004 -
-1.00 T T T T T 1]
=) s 3 o 2 =) = 3 o 2
(=] (=] (=] (=] (=] (=] (=} (=] (=] [=}

Target Intensity Resulting Intensity

0.0004 u 0.0040 0.0004 0.0040

0.0035 0.0035

0.0002 0.0030 o.0002 0.0030

0.0025 0.0025
0.0020 0.0000

0.0000
0.0015
—0.0002 -0.0002
0.0010
—0.0004 0.0005

—0.0004

0.0020
0.0015
0.0010
0.0005

Q.o0000 0.0000

—-0.0004
—-0.0002
0.0000
0.0002
00004
—-0.0004
—-0.0002
0.0000
0.0002
00004

Figure 4.2: Optimized single DOE system with Rayleigh-Sommerfeld propagation. The first row
shows a plane wave source. The second row shows the single optimized phase plate twice, the right
one is corrected for the range of zero to 2. The bottom row shows the target and resulting intensity.

The first results are shown in Figure 4.2. The top row of this figure shows the
complex field of light created by the source of light. The middle row shows the phase
change we have optimized for and the last row shows the target and resulting intensity.
It can be seen that the TU Delft logo nicely comes back in the resulting intensity on
the bottom right of the figure, however not with a filled logo and only the edges have
contrast. The target intensity is recognizable in the lens. This is expected as we saw
similar effects when propagating FMNIST items.

We could also consider the same single lens system but with a lens described by
a NURBS surface. We also change the target intensity as a continuous lens cannot
describe multiple non-connected elements. We then find the following.

4.1. Optimizing a system of diffractive optical elements 50

Source Amplitude 20 Source Phase

) 6

0.0004 A 0.0004 4
25 5

0.0002 4 20 0.0002
4
0.0000 4 15 0.0000 3
-0.0002 1 Lo -0.0002 2
05 1

—0.0004 1 —0.0004 4

0.0

T T T T T

=] o
= = =} [=] =}
a a8 = = =
= =] = =] =
= o =} = =}

-0.0004
—-0.0002
0.0000 4
0.0002 4
0.0004 4

b
=]

=1

o.o0004 0.0004

0.0002 0.0002 1
0.0000 0.0000 1
-0.0002 -0.0002 E

-0.0004 08 -0.0004 1

—0.0004
—0.0002
0.0000
0.0002
0.0004
—0.0004
—0.0002
0.0000 4
0.0002 4
0.0004 4

Target Intensity Resulting Intensity

0.0004 0.0020 0.0004 0.00110

0.0025 0.00105

0.0002 0.0002

0.00100
0.0020
0.00095

0.0000 0.0000

0.0015
0.00090

=0.0002 0.0010 =0.0002

0.00085

0.0005 0.00080

—0.0004 —0.0004

0.0000 0.00075

—0.0004
—-0.0002
0.0000
0.0002
0.0004
-0.0004
—-0.0002
0.0000
0.0002
0.0004

Figure 4.3: Optimized single NURBS lens system with Rayleigh-Sommerfeld propagation. The first

row shows the source field, the second row shows the phase plate and the last row shows the target

and generated intensity. Note that the lower right intensity is not on the same scale and that with the
correct scale the small effect seen here is not visible.

Comparing the results in Figure 4.3 with the results from the previous optimization
with the DOE in Figure 4.2, we directly see a clear difference. The resulting intensity
is weak compared to the background as can be seen in the bottom row of Figure 4.3.
Similarities between the target and the lens are visible in the middle row of the same
figure, showing that the optimization changes the lens correctly. However, the low
contrast in the intensity shows that this parametric surface is not suitable for this prob-
lem. Note that we changed the target intensity compared to the previous optimization,
as continuous lenses are not able to generate non-continuous intensities. Thus the
discontinuity between the letters and the flame of the TU Delft logo would not be fea-
sible to generate. As this parametric surface is not feasible the following results are

4.1. Optimizing a system of diffractive optical elements 51

with diffractive optical elements.
Instead of the simple plane wave system, we also take a point source and a Gaus-
sian beam as a source, as this is closer to real world application.

Source Phase

Source Amplitude

5000
0.0004 0.0004
4000
0.0002 0.0002
3000
0.0000 0.0000
2000
—0.0002 —0.0002
1000
—0.0004 —-0.0004
0 L

= ™ =+
2 =] =} [=} =}
=3 = = = =
=] = = =] =
= o= =} =} =}
[|
Lens

0.0004 0.0004 A

[}

]

0.0002 0.0002 +

=

0.0000

=

0.0000 A

—0.0002 —0.0002 A
-2
1
—0.0004 -3 —0.0004 -
T T T T o
=+ [a] = ~ =+ = (] =2 ™~ =+
=] 3 = =] =] = 3 = = =]
= = =} = = = = = =} =
= = =} =} =} = = =} =} =}
[| [[

Target Intensity Resulting Intensity

0.0035 0.0035

0.0004 0.0004

0.0030 0.0030

0.0002 0.0025 0.0002

0.0025

0.0020 0.0020

0.0000 0.0000

0.0015 0.0015

—-0.0002 —-0.0002

0.0010 0.0010

0.0005 0.0005

—0.0004 —0.0004

0.0000 0.0000

-0.0004
-0.0002
0.0000
0.0002
0.0004
-0.0004
-0.0002
0.0000
0.0002
0.0004

Figure 4.4: Using a point source with optimization of a DOE with a resolution of 32 x 32. The first row
shows the source field, the second row shows the DOE phase and the last row shows the target and
generated intensity.

For the point source we see in Figure 4.4, that the phase plate corrects for the
phase of the source. Even-though, the pattern that is visible in the source is not
clearly seen in the phase plate. The resulting intensity looks very much like the target,
but we also see effects from the amplitude of the source.

4.1. Optimizing a system of diffractive optical elements 52

Source Amplitude Source Phase

6
0.0004 0006 0.0004 -
5
0.0002 0.005 0.0002 4
4
0.004
0.0000 0.0000 - 3
0.003
—0.0002 0.007 -0.0002 B
0.001 1
—0.0004 -0.0004
0.000 0

2 & 8 8§ 8 T 8 8 § &
2 8 =] =1 S 8 2 = S S
| | | [
Lens Lens
15 3
0.0004 0.0004 4

00002 00,0002 4

05
0.0000 1 -F. | 3

00000

—0.0002 -0.0002 = B
-0.5 1
—0.0004 —0.0004
: : : : . 0
-+ 4 [=] ™~ - =+ e~ =] ~ o
2 2 2 =3 2 2 2 2 2 2
(=] (=] (=] (=] (=] (=] (=] (=] (=] (=]
o o =] =] (=] o o =] (=] =]
| | |]

Target Intensity Resulting Intensity

0.007 0.007
0.0004 0.0004
0.006 0.006
00002 0.00% 00002 0.005
0.004 0.004
00000 00000
0.003 0.003
-0.0002 0.002 -0.0002 0.002
—0.0004 0001 —0.0004 0001
0.000 0.000
=+] = ™~ = o+ o~ = ™~ =y
= = =} =] b=} = I=} [=1 [=] =]
g g s S] g g S s]
P o =] =] =] o o =] =] =]
| | | [

Figure 4.5: Using a Gaussian beam with optimization of a DOE with a resolution of 32 x 32. The first
row shows the source field, the second row show the DOE phase and the last row shows the target
and resulting intensity.

The Gaussian beam mainly illuminates the centre of the DOE, therefore, causing
the optimization to also only focus on the centre as can be seen in Figure 4.5. We thus
see this effect in the phase plate and the resulting intensity. Apart from that the result
is similar the the previous result, however the phase plate does not need to correct
for the phase of the source.

4.1.2. Multiple lenses

To increase the abilities of the optical system to generate more detailed intensities on
the sample plane, we introduce a system with multiple lenses. We show the result
again for DOEs and NURBS lenses.

4.1. Optimizing a system of diffractive optical elements

53

Source Amplitude

10
0.0004
0.8
0.0002
0.6
0.0000
04
~0.0002 1
0.2
~0.0004 {
; ; ; . . 0.0
<+ I =] ~ L8
[=] [=] = (= =
g g] 2 =]
P e = = =
I 1
Lens O
0.4
0.0004
0.2
0.0002
0.0000 0.0
-0.0002 —0.2
~0.0004 -04
= I =1 ~ s
2 2 = 2 2
(=] (=] D. (=] (=]
(=] [=] o = (=]
I 1
Lens 1
0.0004 Lo
0.0002 05
0.0000 0o
-0.0002 -0.3
~0.0004 -0
= I =1 ~ s
3 2 2 2 2
(=] (=] D. (=] (=]
(=] [=] = = =
|]
Target Intensity
0.0004 0.0030
00002 0.0025
0.0020
0.0000
0.0015
~0.0002 0.0010
0.0005
~0.0004
0.0000

) [=] [} o

g =) =} =} =}

= = =} =} =}

=] = = = =]

Py ey = = =
T]

Source Phase

0.0004

0.0002

0.0000

—0.0002 4

—0.0004 4

—0.0004 4

—0.0002 +

0.0000 4

Lens O

=

0.0002 4

0.0004 4

0.0004

0.0002 -

0.0000

—0.0002 4

—0.0004 4

—0.0004

—-0.0002 -

0.0000 4

Lens 1

00002 4

0.0004 4

0.0004

0.0002 A

0.0000

—0.0002 4

—0.0004 4

0.0004

0.0002

0.0000

—0.0002

—0.0004

—0.0004

=
=]
=]
=
=1
T

—0.0002

Resulting Intensity

—-0.0002

o.oo00 4 &

0.0000

0.0002 4

0.0002

0.0004 4

00004

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

Figure 4.6: Optimized double DOE system. The first row shows the source fields, the middle two
rows show the first and second DOE phases and the last row shows the target and resulting intensity.

The parts of a double DOE system which is optimized for a target intensity are

4.1. Optimizing a system of diffractive optical elements 54

seen in Figure 4.6. Although we did not show a single DOE system with this target we
can see very well that the resulting intensity has more definition along the edges in the
bottom right in Figure 4.6. The middle of the generated intensity is still not filled, but
the shape is more recognizable. What is also interesting is that both DOEs resemble
the target pattern, but that the first DOE seems to focus on more coarse edge patterns,
whereas the second DOE focusses along the whole edge.

4.1. Optimizing a system of diffractive optical elements 55

Source Amplitude 20 Source Phase
i 6
0.0004 0.0004 4
25
5
0.0002 { 20 0.0002 .
0.0000 15 0.0000 4 3
-0.0002 1 Lo -0.0002 2
0.5 1
-0.0004 - -0.0004 -
. 0.0 0
= [=] N = o [=] ™ o
g8 8 8 g 8 § &8 8 § 8
o o =1 [=] =] o o [=] =] =
|] | |
Lens 0 Lens 0
6
0.0004 04 0.0004
5
02
0.0002 0.0002 4
0.0 4
0.0000 02 0.0000 3
—0.0002 04 —0.0002 i
-0.6 N
-0.0004 -0.0004 -
-0.8
: —_— . 0
= () (=] ™~ - =+ B~ =1 ™~ o
=3 2 & s = 3 2 2 = 8
= =] = =] = = = =] = =]
[=1 [=] (=] (=] = =1 = [=] [=] =
|] | |
Lens 1 Lens 1
03 6
0.0004 0.0004 4
02 <
0.0002 01 0.0002
4
0.0
0.0000 0.0000 A 3
-0.1
~0.0002 -0.2 -0.0002 - 2
-0.3
1
-0.0004 04 -0.0004 A
T T T T T 0
= ™~ =] [n] -t = o~ (=] ™~ =t
3 3 = 2 2 3 3 2 2 b=
[=] [=] = = = =1 = [=] [=] =
|] | |
Target Intensity Resulting Intensity
0.0004 0.0030 n.aoo4 0.00110
0.00105
0.0002 0.0025 0.0002
0.00100
0.0020
0.0000 0.0000 0.00095
0.0015 0.00090
-0.0002 0.0010 -0.0002 0.00085
0.0005 0.00080
-0.0004 -0.0004
0.00075
0.0000
= ~ =4 ™ - s [[=] [} Lo
= [=] = = = = =1 (=1 (=] [=]
g g] 2 E] g g] E] 2
o = = = = o o = = =
|] | |

Figure 4.7: Optimized double NURBS lens system. The first row shows the source field, the middle
two rows show the two NURBS generated phases and the last row shows the target and generated
intensity. Note that the lower right intensity is not on the same scale and that with the correct scale the
small effect seen here is not visible.

4.1. Optimizing a system of diffractive optical elements 56

For the optimized NURBS system in Figure 4.7 the same happens as before as
seen. The output intensity is so low that we have to change the range to make it
visible. We see again the target intensity in the two lenses, this time there is not a
particular focus on certain sections in one of the lenses. This could be caused by the
restrictiveness of the NURBS.

We found that for a logo like the TUD logo, no more than two lenses are required
as the third lens did not improve the output visually. We also found that the best
approach was to optimize both lenses at the same time, instead of optimizing the first
and adding the second one later. The idea of this approach was that the first lens
would capture the main image and the second lens would improve details, however
this proved futile and the second lens would not change the output intensity further.
Although these results are visually confirmed, an additional lens does decrease the
loss after optimization as seen in Figure 4.8.

le—&
231
221
211
i
5
2.0 1
= 1 lensies)
19 2 lensies)
3 lensies)
18 4 = 4 lensles)
0 2000 4000 BOO0 BOO0 10000

Iterations

Figure 4.8: The loss function over the iterations for a different number of lenses in the system. Note
that every iteration becomes more expensive with more lenses as more propagations must be done.

As the main computational costs of the optimization is the simulation of the diffrac-
tion and adding a lens adds a diffraction, the computation time increases when adding
lenses. Thus adding an extra lens in our computation allows generating intensities
more similar to the target, but it comes at an optimization cost.

4.1.3. High resolution

Some sources, for example a Gaussian beam, require a high resolution to have a
realistic propagation. It is therefore interesting to see how well our previous methods
work for higher resolution lenses. Higher resolution has two main consequences, the
first is that optimization steps are longer as per step we need to simulate the light
propagation to calculate the loss and the gradients, which becomes more expensive

4.1. Optimizing a system of diffractive optical elements 57

for larger matrices. A second consequence is that for the DOEs, we optimize for every
lens pixel and thus with a higher resolution we have to optimize more phase changing
pixel and thus more parameters. In this section we return to a setting with one source,
one lens and one target intensity, but with a high resolution.

1000 1
E 0.995 T
2 —
=
& 0990 -
E — 1ax 16 resalution
= 0.985 4 32x%32 resalution
kA 64x64 resolution
E 0980 1 —— 128x128 resolution
= 0.975 A
[Fyl
[Pyl
5 0970 1

0.965 1_ : . : : -

0 2000 4000 000 aooon 10000
lterations

Figure 4.9: The iterations versus the loss for different resolutions. As the loss is resolution depended
we scale the loss at the first iteration to be 1.0.

Looking at Figure 4.9, compared to a low resolution such as 32 x 32 it almost
seems as if a resolution four times higher of 128 x 128 does not decrease in loss. This
scale difference clearly shows the difficulty in optimizing for higher resolution. For
certain settings, we are able to optimize optical system with DOEs with a resolution of
128 x 128, but even this resolution is a challenge. Figures made at that resolution are
those in section 4.3

4.2. Data-driven methods for optics 58

4.2. Data-driven methods for optics

As we saw in the previous section and in Chapter 2, for some sources we need a better
optimization procedure for high resolution systems. Therefore, we use a data-driven
approach to solve this problem. We use the UNet architecture discussed in Section
2.3.9. The input of the network is the target intensity and we train the output to be the
DOE.

The UNet architecture originally stems from application in medical imaging such as
segmentation, where a probability is given to each pixel if it belongs to a certain class.
We use the UNet in a different capacity as a generative network to generate our DOE
surfaces. As convolutional neural networks with upsampling have been successful in
generative tasks we feel that the UNet should be up for the task as the decoder has
exactly such a structure. We use the standard UNet structure as described in [56], we
change the number of down- and up-sampling layers to be three.

To train the network we need to specify the loss function. A simple loss function
would be a supervised loss: we would start with a certain phase plate, calculate the
intensity distribution of this phase plate (call this the target distribution). This target
distribution is the input of the network. The loss will be the difference between starting
phase plate and the phase plate that the network outputs. This method is supervised
as we need to know the phase plate to begin with, which is usually not known in the
system we optimize. Another method is the unsupervised physics informed method.
We start with a target intensity and the network guesses a phase plate with this inten-
sity. We then use this phase plate to calculate the resulting intensity. We compare
the two intensities to each other. This method is unsupervised as it does not need a
beginning phase plate. In experiments we actually see that both methods perform rea-
sonably well and we see that combining them might be beneficial. Thus we combine
the two losses and scale them such that they are both of equal magnitude. Adding
both methods does make the whole system supervised, but in the training phase that
is not a problem as we generate training data ourselves.

Loss = wLlsyp + Lphy
Lsup(target phase, target intensity) = ||target phase — f,(target intensity)||3
Lony(target intensity) = ||target intensity — propagate(f,(target intensity))||3,

here, L,n, denotes the physics informed loss, which clearly depends on the propaga-
tion of the physics and L, denotes the supervised loss, which does not depend on
the physics directly through the loss.

An overview of the results shown here is found in Table 4.4.

4.2. Data-driven methods for optics

59

Table 4.4: In this table for each figure in the results the optical settings are reported. The resolution
described holds for all elements in the system. When a DOE is not based on a NURBS surface this is
noted in the sixth column.

Number Number
Figure | Resolution Source type of of NURBS Target
sources DOEs
4.10 512 x 512 Point source 1 1 X FMNIST
4.1 512 x 512 Point source 1 1 X TU Delft flame
412 256 x 256 Point source 1 1 X FMNIST
4.13 1024 x 1024 Point source 1 1 X FMNIST

We are able to train a network in a relatively simple setting. We use the FMNIST
dataset to be our phases which we train with. We also experimented with training with
other types of input phases, such as totally random, but the model does not train well
on data that is unstructured such as random data. We use that standard parameters
We find the result of this in Figure 4.10.

for the Adam optimizer.

|

Target Intensity 1e

00004

0.0002

0.0000

—0.0002

-0.0004

=
=
2
=

~ =] o -

= =] =] &

g e = e

=] =] =] =]

= p= = = =
T T

Target Intensity

0.0004

0.0002

0.0000

-0.0002

—0.0004

—0.0004
—0.0002
0.0000
0.0002
00004

Target Intensity

0.0004

0.0002

0.0000

-0.0002

-0.0004

- o~ =] o o+

= = =1 =] =1

2 5] =] =] =]

E = =] =] S

=3 Py = = =
T T

Result Intensity

00004
0.0002
0.0000
—0.0002
-0.0004

-0.0004
—0.0002
0.0000
00002

Result Intensity

0.0004

00002

0.0000

-0.0002

—0.0004

-0.0004
—0.0002
0.0000
0.0002

Result Intensity

0.0004

00002

0.0000

—0.0002

—0.0004

= o~ = o
= = 2 =]
=] =] = =
g = S S
] s = =

1e—5

00004

0.0002

0.0000

—0.0002

-0.0004

S = mow B oW @

00004

-0.0004

Target Phase

—0.0002
0.0000

00002

Target Phase

00004

0.0004

00002

0.0000

-0.0002

—0.0004

e ok oMow B oW @

00004

-0.0004

!

g 8
§ £
g g
-
‘

Target Phase

0.0002

00004

0.0004

00002

0.0000

—0.0002

—0.0004

L]

00004

—0.0004

—0.0002
0.0000

0.0002

00004

N . 5 = M ow B ow oo

o kM oW B U oo

DOE Phase

00004

0.0002

0.0000

—0.0002

-0.0004

-0.0004
-0.0002

0.0004

0.0002

0.0000

-0.0002

—0.0004

-0.0004
—0.0002

0.0004

00002

0.0000

—0.0002

—0.0004

T o
2 3
g g
s 2
s o
T T

DOE Phase

DOE Phase

L R R

0.0000
00002
0.0004

0.0000
0.0002
0.0004

0.0000
0.0002
0.0004

Figure 4.10: Results from the UNet architecture given the target intensity as input this gives us the
result phase which we propagate to find the result intensity. The first column shows the different
target intensities generated with the target phases in the third column, the second column shows the
resulting intensities generated with the phases in the fourth column. We see a weird effect where the

network output looks enlarged compared to the ground truth.

4.2. Data-driven methods for optics 60

Figure 4.10 shows that the UNet is able to capture at least the essence of every
picture. We see that both the DOE phase and the resulting intensity look like the
targets. We also see a weird enlarging effect, this effect remains with more training or
other sources which is remarkable.

We also find that the UNet performs very well on data not similar to the training
or validation data. Although above pictures are already generated from the validation
set and thus unseen data, they are the same structure. Applying this approach to the
TU Delft flame intensity, we find that it generates light similar to this target in 4.11.

Target Phase

00004 0.00025 00004

0.0002 000020 5 ggoz
000015

0.0000 00000
000010

-0.0002 —0.0002
000005

-0.0004 —0.0004
0.00000

Result Intensity

000025 o004

000020

000015

0.00010

0.00005

0.00000

00004
-0.0002
0.0000
0.0002
00004
0.0004
0.0002
0.0000
0.0002
00004
00004
0.0002
0.0000
00002
0.0004

Figure 4.11: Applying the UNet to the TU Delft flame logo, which has a completly different structure
than the trainings images. We again see an enlargement. The left subfigure shows the target
intensity, the middle shows the intensity generated by the output phase of the network which is seen
in the right image.

For the TU Delft flame we see that the model is making a DOE and intensity as
expected. The enlargement seen on the FMNIST set is seen here as well.

We also tried to make the system able to generalize to different sources, but were
not successful yet. We propose two ideas for this system which handle the source in a
different way. When representing the source we could see it as a two channel image,
where one channel is the phase of the source and the other channel is the amplitude
of the source. Our first proposal to put this in a UNet would be to concatenate these
two extra channels to the input channel that we already have from the target intensity.
However, as the source and target intensity have different information not connected
to each other in the encoder part, we also propose to add a second encoder arm to
the UNet for the source.

An interesting property that the UNet approach has, is that although we trained
the system for a resolution of 512 x 512 pixels, the system works fairly well on other
resolutions such as 256 x 256 or 128 x 128 as long as the target intensity in this system
does not contain to many artifacts from the optical propagation at low resolution. This
can be seen in Figure 4.12.

4.2. Data-driven methods for optics 61

Target Intensity Result Intensity Target Phase DOE Phase

00004 00004 00004 00004

000020 000020

0.0002 0.0002 0.0002 0.0002

000015 000015

0.0000 0.0000 0.0000 0.0000

0.00010 0.00010

-0.0002
000005

-0.0004

0.00000

-0.0002 -0.0002 —0.0002

000005 =
—0.0004 =8

-0.0004 -0.0004

0.00000

mmmmm
ooooo
ooooo
aaaaa
aaaaa

Figure 4.12: Using a network trained for 512 x 512 images applied to 256 x 256 resolution images. The
first image shows the target intensity, which is the network input, generated by the phase in the third
image. The second image is generated by phase seen in the last image, which is the network output.

More interesting than going from high to low resolution would be the other way
around. Optics simulation at a high resolution are very expensive. Our UNet solves
this problem as it does not iterate for optimization after it has been trained. On top of
this, as the UNet is able to handle higher resolutions that really shows potential in this
method.

Target Intensity 1o Result Intensity le—!

0.0004 10 pooos 10 pooos

00002 %% goooz °% poooz
06 5

0.0000 0.0000 0.0000
04 04

-0.0002 ~0.0002 -0.0002
02

-0.0004 ~0.0004 -0.0004
00

Figure 4.13: Using a network trained for 512 x 512 images applied to 1024 x 1024 resolution images.

The first image shows the target intensity, which is the network input, generated by the phase in the

third image. The second image is generated by phase seen in the last image, which is the network
output.

Target Phase DQE Phase

0.0004

0.0002

0.0000

-0.0002

-0.0004

—0.0004
-0.0002
0.0000
0.0002
0.0004
—0.0004
—0.0002
00000
00002
00004
—0.0004
—0.0002
00000
00002
0.0004
—0.0004
—0.0002
0.0000
00002
00004

In Figure 4.13, we see that the UNet is able to generalize to higher resolution as
well as the two plots on the left show a similar intensity. Although the image is not as
clear, there is potential. Comparing to the result we have of the UNet evaluated on
the same resolution as training, the result intensity and phase show less contrast than
the intensity and phase from the lower resolution.

We actually saw that in other literature that neural networks are used to generate
starting points for the optimization ([72]). As can be seen from our results as well,
the neural networks do produce output that is for a system that does not require it-
erations, however applying an iterative optimizer might be beneficial so the lens is
able to capture more small details. We found that gradient descent does not handle
high resolution optimization, even given a starting point. That gradient descent works
worse on high dimensions was expected from Figure 4.9, but we would have hoped
that gradient descent would be possible when closer to the optimum.

Another network we tried was a neural network with NURBS parameters describing
the surface of the lens as output. However, during research we found that it was
not possible to train a network that outputted the correct parameters. We first tried
without optical simulation, thus the input of the network was a surface (or matrix of
z-coordinates) and the output of the network should be the z-coordinates of the B-
spline surface (we fixed the other coordinates). As for B-splines we know that their

4.2. Data-driven methods for optics 62

neighboring points affect each other more than far away points we tried a convolutional
encoder network. For the decoder we tried two thing: a fully connected decoder and
a UNet decoder. As the output points also have a spatial structure we hoped this
would work as well. Unfortunately, this approach did not work. We do not have a clear
explanation, but clearly the B-spline structure was too hard for the network.

4.3. Incoherent caustic design for multiple sources 63

4.3. Incoherent caustic design for multiple sources

We saw that extending the system with multiple lenses, allows the system to optimize
for more difficult target intensities. In this section we consider a system with multiple
sources. A system with multiple sources, like a system with multiple lenses, has dif-
ferent properties. Optimizing with a second DOE the generated intensities had more
details, does the same thing also happen with a second source? We are also inter-
ested to see if one system can be optimized to generate different target intensities
when a different source is turned on, this would resemble the inverse of the described
diffractive neural network classifiers from [36].
An overview of the results in this section is given in Table 4.5

Table 4.5: In this table for each figure in the results the optical settings are reported. The resolution
described holds for all elements in the system. When a DOE is not based on a NURBS surface this is
noted in the sixth column.

Number Number

Figure | Resolution Source type of of NURBS Target
sources DOEs

4.14 128 x 128 Point source 1 1 X Square

417 128 x 128 Point source 2 1 X TU Delft flame

4.18 128 x 128 Point source 3 1 X Multiple

4.20 128 x 128 Point source 3 2 X Multiple

To get an intuition what happens when a source is added we simulate a system
with a square in Figure 4.14.

4.3. Incoherent caustic design for multiple sources 64

Source Amplitude

0.0004 4000 0.0004 g (o
., o ¥ 'l
3500 b i] ey LR 5
0.0002 3000 00002 {E R R L -_I-%- . .
b : TE e T
2500 i i
0.0000 0.0000 i = o i 3
2000 b - LT R
e s LT, e
~0.0002 1500 -0.0002 5 'I.I,'il". :
1000 i =4 "
x 1 5 I!': 1
-0.0004 500 -0.0004 Wy ol
0 — 0
=+ 4 [=] i~ =t
(=1 = = = (=1
g g =]] 3
o= o =] =] =]
1 I
6 6
0.0004 0.0004
4 5
0.0002 1 0.0002
2 4
0.0000 0 0.0000 3
-2
-0.0002 —0.0002 E
-4
1
-0.0004 s —0.0004
i T 0
-+ o~ =] ~ -
2] 2 2 2
(=] [=] D. (=] (=]
(=] [=] = (=] =
] |
Target Intensity Resulting Intensity
0.0004 0.0025 0.0004 0.0025
0.0002 0.0020 0.0002 0.0020
0.0015 0.0015
0.0000 0.0000
0.0010 0.0010
-0.0002 —0.0002
0.0005 0.0005
-0.0004 —0.0004
0.0000 0.0000
= o~ =] ™ o =+ I = ™ o
= = =1 = = = = =1 =] =
g g] 2 2 g 2 =] 2 2
=1 =1 <@ = = = = =1 =1 =
] |]]

Figure 4.14: Single point source single DOE system optimized to form a square intensity. The first
row shows the source fields, the second row shows the phase of the DOE and the last row shows the
target and resulting intensity after optimization.

As we work with incoherent light a second source is not correlated with the first,
thus moving the source around and comparing resulting intensities shows what hap-
pens if a second source is added. We expect the intensity to also translate with the
source.

4.3. Incoherent caustic design for multiple sources 65

Source Amplitude Source Phase Resulting Intensity

. 0.0030
0.0004 0.0004
a0 5 0.0025
0.0002 . 0.0002 0.0020
60
0.0000 3 0.0000 0.0015
40
-0.0002 2 -0.0002 pooo
» 1 0.0005
—0.0004 —0.0004
]] 0.0000
S o g g 2 z 2 S = 2
] 5]] 5
3 3 g g g 3 3 g g g
S S 8 8 =4 S =4 =4 =4 a
T T T T
Source Amplitude Resulting Intensity
& 0.0030
0.0004 0.0004
80 5 0.0025
0.0002 . 0.0002 0.0020
60
00000 3 0.0000 00015
a0
~0.0002 2 ~0.0002 vooo
B 1 0.0005
-0.0004 -0.0004
0 o 0.0000
E o B o o = o =) o o
8 g] 8 S 8 s = 2]
e e =] =] =] B S]
o o a a = = p=4 b4 b4 a
T T T T
Source Amplitude Resulting Intensity
5 0.0030
0.0004 0.0004
80 5 0.0025
0.0002 . 0.0002 0.0020
&0
0.0000 3 0.0000 0.0015
40
-0.0002 2 -0.0002 pooo
» 1 0.0005
-0.0004 -0.0004
] o 0.0000

s N g o o = + M o
g & 8 8 2 2 2 4 8 g 2
g 8 & 8] 3 s 8 3 2 8 s = 2 8
s B 2 s s s

s 2 & 8 E = s s 8 s 3 s s 3 E

Figure 4.15: Using the previous DOE and moving the point source horizontally. The first column
shows the amplitude of the three different sources, the second shows the phase of the sources and
the last column shows the intensity generated by the combination of source and the phase from
Figure 4.14.

In Figure 4.15, we see that as the source translates the intensity also translates as
expected. Therefore, we can make a system with a single lens and multiple sources
that repeats its intensity in multiple places as Figure 4.16 shows.

4.3. Incoherent caustic design for multiple sources 66

Source Amplitude Source Phase Resulting Intensity

0.0030
&
0.0008
. 0.0025
0.0002
n 0.0020
3 0.0000 0.0015
2 -0.0002 e oot
1 0.0005
-0.0008
0 0.0000

S
: = a

0.0004

00002 0.0002 §
0.0000 0.0000

-0.0002 -0.0002 §

~0.0004 00002

—0.0004

—0.0002
0.0000
00002
0.0004
-0.0004
0002
000
0002
0.0004

-0

Source Amplitude Source Phase Resulting Intensity

0.0030

0.0004 0.0004 # 0.0004

0.0025

0.0002 0.0002 § 0.0002

0.0020

0.0000 0.0000 3 0.0000 0.0015

0.0010

-0.0002 -0.0002 2 -0.0002

I 0.0005
-0.0004 -0.0004 4 —0.0004

0.0000

= ~
8 S
e 8

—0.0004
-0.0002
0002
0.0004
-0.0004
-0.0002
0000
0.0004

2 =]
= & =

0

Source Amplitude Resulting Intensity

0.0030

0.0004 0.0004 £ 0.0004

0.0025

00002 0.0002 N 0.0002

0.0020

0.0000 0.0000 3 0.0000 0.0015

00010

-0.0002 -0.0002 2 -0.0002

0.0005
—0.0004

—-0.0004 —-0.0004 £
0.0000

—0.0004
~0.0002
0.0000
0.0002
0.0004
—0.0004

- ~ 2 o T
z =] 2 = 2
S 2 =1 = =1
g2 2 = S 2
a =] & = &
T T

2 S S 2
i = = =

Figure 4.16: Using a DOE that generates a square intensity and adding a source every row. The first
column shows the amplitude of the sources, the second column shows the phase of the sources and
the third column shows the cumulative intensity from adding the source every row to the system.

We thus see that with multiple sources we could create a whole connected intensity
to be used in, for example, street lighting. A single lens system could be used in
combination with multiple sources to create a long uniform intensity along the road.

A system with multiple sources can also be optimized. We revisit the TU Delft
flame logo and optimize it with two sources.

Target 1

Total intensity

Intensity 1

Intensity 2 Phase 1

25

100

125

|
|

0.0000 0.0001 0.0002 0.0000 0.0001 0.0002 0.0000 0.0001 0.0002 0.0000 0.0001 0.0002 2 4 &

Figure 4.17: Optimizing a system with one lens and two sources for a single target intensity. The first

two images show the target and the resulting intensity generated by adding the two intensities in the

third and fourth image. These intensities are generated by propagation two sources trough the phase
in the last image.

In the optimization in Figure 4.17 it seems that the lens divides the light of the two
sources as if every other pixel belongs to one source to generate the intensity. This
gives the two partial intensity a granular look. This result was not expected due to the

4.3. Incoherent caustic design for multiple sources 67

limit to the system as it has only one lens. We also see that the intensity shown in the
left two figures of Figure 4.17 are very similar and that also the middle is filled of the
resulting intensity in the second subfigure.

Although in the street light example this shifting of intensity distribution with moving
of the source and optimizing a system for one target seem nice, we could also take
it one step further. We optimize a system that generates two different target intensity
distributions depending on which source is turned on. We first consider only one lens
and later extend this to multiple lenses.

Optimizing for one lens is difficult as we saw already that changing the source posi-
tion only shifts the intensity distribution. The outcome of optimizing for three different
sources and intensities is shown in Figure 4.18.

Target 1 Target 2 Target 3

0.00025 00004 0.00025 00004 0.00025

0.00020 0.00020 0.00020
0.0002 0.0002

0.00015 0.00015 0.00015
0.0000 0.0000

0.00010 0.00010 0.00010
-0.0002 -0.0002

0.00005 0.00005 0.00005
-0.0004 -0.0004

0.00000 0.00000 0.00000

2
=

0.0000

-0.0002

-0.0004

0.0002
0.0004
0.0004
0.0002
000
0.0002
0.0004
0.0004
0.0002
000
0.0002
0.0004

=]
=

s o
ER
g g
g =
37

Intensity 2 Intensity 3

000025 00008 0.00025 00004 000025

0.0004

0.00020 0.00020 0.00020

0.0002 0.0002 0.0002

0.00015 0.00015 0.00015

0.0000 0.0000 0.0000

0.00010 0.00010 0.00010

-0.0002 -0.0002 -0.0002

0.00005 0.00005 0.00005

-0.0004 -0.0004 -0.0004

0.00000 0.00000 0.00000

0.0002
0.0004
0.0004
0.0002
0000
0.0002
0.0004
0.0004
~0.0002
0.0000
0.0002
0.0004

e
Phase 1

00004 0.00025

20002 000020

0.00015
0.0000

3 0.00010
-0.0002 JIS

0.00005
~0.0004

0.00000

-0.0004

—0.0002
0.0000
0.0002
00004

= & s

= =
T T

Figure 4.18: Optimizing one lens to have a different intensity pattern based on where the source is.
The first row shows the three different targets, the second row shows the resulting intensities from
each source and the last row shows the cumulative intensity of all sources and the phase to generate
all these intensities.

The result shown in Figure 4.18 was not expected, as it should not be possible to
generate two different patterns when the source is only changing its position.

What is then interesting to see is that when moving the source from one location
to the other what would happen.

4.3. Incoherent caustic design for multiple sources 68

Source Amplitude Source Phase Resulting Intensity

100 . 0.0030
00004 0.0004
@ . 0.0025
0.0002 . 0.0002 00020
&0
0.0000 3 0.0000 00015
a0
-0.0002 2 -0.0002 eooL
@ 1 0.0005
-0.0004 -0.0004
0 0 0.0000
= ~ El ~ = = ~ = o o
g g] 2 g S g 2 g 2
3 g E] 2 g g H 3 3
= s a S S = s S E E
T T T T
Source Amplitude Resulting Intensity
100 s 0.0030
0.0004 0.0004
80 5 0.0025
0.0002 B 0.0002 00020
60
0.0000 3 0.0000 00015
0
~0.0002 2 -0.0002 poo
= 1 0.0005
—0.0004 —0.0004
o 0 0.0000
= o = o = = B o = = o = ~ o
g g H 2 2 S H H H S g 2 H H
B 8] 2 3 2 B]]] 3 8 =1]]
= o a =4 =4 p=4 = a8 a a =4 o =4 a8 a8
T T T T T T
Source Amplitude Source Phase Resulting Intensity
100 N 0.0030
0.0004 0.0004 4 0.0004
a0 5 0.0025
0.0002 . 0.0002 00020
60
0.0000 0.0000 3 0.0000 0.0015
40
-0.0002 —0.000: 2 —0.0002 oot
@ 1 0.0005
-0.0004 -0.0004 & —-0.0004
0 — 0 0.0000
S 2 8 g 2 2 S 5] s 8 2
8 g] S S s 8 S S g s g S S S
B e] S 2 S B]]] S e S]]
o o a b4 b= b=t = 2 a a b4 o b4 2 2
T T T T T T
Source Amplitude Resulting Intensity
100 . 00030
00004 0.0004 00004
& 5 0.0025
0.0002 B 0.0002 00020
60
0.0000 0.0000 3 0.0000 0.0015
40 [
-0.0002 -0.0002 {4 2 -0.0002 00010
“ 1 0.0005
—0.0004 —0.000: —0.0004
o 0 0.0000
= ~] o b3 - o = ~ =l o o
2 o g 3 2 I o 8 2 3 I o S 2 3
5 &8 8 &8 8 g8 8 8 8 8 58 &8 8 8 8
s = a =4 =4 =4 & a8 a a b= = =4 a8 a8
T T T T T T
Source Amplitude Source Phase Resulting Intensity
100 S s 0.0030
0.0004 0.0004
80 5 00025
00002 00002 . 0.0002 00020
50)
0.0000 0.0000 3 0.0000 00015
0
-0.0002 -0.0002 £ 2 -0.0002 eooL
B 1 0.0005
-0.0004 -0.0004 £ —-0.0004
o 0 0.0000

- ~ 2 o = = ~ =] o E
-4 o g 2 2 b o 2 = a2
2 S = =1 s 2 2 2 S =1 = g
2 g2 S = S 2 2 S S S 2 g2 = S S
E H = & = i E = = = 3 H & = =

Figure 4.19: Moving the source between the two optimized points give an interpolation of the two

target distribution. The first column shows the amplitude of the sources, the second column shows

the phase of the sources and the last column shows the resulting intensity generated by the phase
seen in Figure 4.18

We see in Figure 4.19, that the intensity shifts over the sample plane and our
explanation for this result is that the two intensities created by the different sources
shift outside the sampling plane when shifting from one source to the next. Thus there
would not be a conflict in generating two intensities.

Adding a lens should give the system a lot more options and the light should not
shift around. Adding a second lens does increase the number of parameters to be
optimized, but it should have a positive impact on our results.

4.3. Incoherent caustic design for multiple sources

69

Target 1

0.0004]

0.0000

—0.0002

—0.0004

0.0004

0.0002

0.0000

-0.0002

—0.0004

-0.0004
—0.0002
0.0000
0.0002
0.0004

Total intensity

0.0004

0.0002

0.0000

-0.0002

—0.0004

- o = o o+
2z] 2 = 2
S 2 =1 =1 g
3 2 = = =1
= & =] & =
T T

Figure 4.20: Optimizing a system with three sources, two lenses and three different target
illumination patterns. The first row shows the three different targets, the second row shows the

000025

000020

0.00015

0.00010

0.00005

0.00000

000025

000020

0.00015

0.00010

0.00005

0.00000

000025

0.00020

0.00015

0.00010

0.00005

0.00000

0.0004

0.0002

0.0000

—0.0002

—0.0004

0.0000

-0.0002

—0.0004

<1

—0.0004

+
2
S
g
o
T

—0.0002

~0.0002

Target 2

0000

[}

Intensity 2

0.0000

0002

0

0.0002

0004

0

0.0004

0.00025

0.00020

0.00015

0.00010

0.00005

0.00000

0.00025

0.00020

0.00015

0.00010

0.00005

0.00000

0.0004

0.0002

0.0000

-0.0002

—0.0004
= ~ 3 o -
z o 8 g 3
g 8 8 8 8
= = i a S
T T

Intensity 3

0.0004

0.0002

0.0000

-0.0002

—0.0004

=
S
g
e
=
T

—0.0002

Target 3

0.0000

0.0002

0.0004

0.00025

0.00020

0.00015

0.00010

0.00005

0.00000

0.00025

0.00020

0.00015

0.00010

0.00005

0.00000

resulting intensities from each source and the last row shows the cumulative intensity of all sources
and the phases to generate all these intensities.

In Figure 4.20 the result from simulation with two DOEs is seen. When comparing
the one DOE system (Figure 4.18) and two DOEs system, there is less noise in the

two DOEs system.

Conclusion

In this thesis we investigated the optimization of optical systems with diffractive op-
tical elements. We started by introducing optical theory as created in the study of
wave optics. This theory is derived from the Maxwell equations and uses that light
at a certain point is the sum of all light at an earlier point in the system. We use the
Rayleigh-Sommerfeld diffraction in combination with the angular spectrum method to
simulate our optics.

To optimize the system we pursue two directions. We discuss modern methods
in gradient descent algorithms, specifically the Adam optimizer. Neural networks are
discussed as a type of data driven approach to solve our optimization problem. We
have particular focus on convolutional neural networks such as UNets. Another field
we visit is the field of parametrizable surfaces, this gives us possible lens describing
surfaces.

We combine this all to answer the question: How can we optimize a system con-
sisting of diffractive optical elements efficiently?

We show that it is possible to optimize either diffractive optical elements or the
lens parameters for a NURBS generated lens in our optical setup. We show that for
different sources of light this is possible. Multiple lenses behind each other allow to
generate more detailed intensities. In other experiments We were able to use data-
driven methods to generate lenses, which circumvented the issues created by high
resolution and have a potential to speed up the process. We also saw the possibilities
of using optical optimization with multiple sources.

The UNet not only showed that it is capable of generating the correct DOE for the
target intensity, but also showed that it can be used on even higher resolutions than
what it was trained on. The UNet has potential and can be extended, but as we tried
to do this with a variable source term as input this proved to be hard.

Our other experiments concerned multiple sources. In this setting we were able
to optimize with one lens, but the result got better with two lenses. However, when
we shift the source from one side to the other, the intensity slowly fades in and out of
the sample plane. We were not able to correct for this and in this current setting if the
sample plane would be made larger the other intensity (belonging to the other source)
should appear, as it is shifted of the small sample plane in the current setting. This
is the desired effect as it, generates a truly different intensity given a different source.
More research in this area should be done, as it also has potential.

70

71

Concluding, the Rayleigh-Sommerfeld diffraction provides us with an optics propa-
gation method which is able to handle a wide variety of circumstances. Furthermore,
in combination with gradient based solvers optical systems based on this diffraction
are able to optimize, as long as the physical settings of the system are set correctly.
These methods do not perform well in high resolution settings. We propose a data-
driven method and show that this achieves desired results even for resolutions higher
than the data it is trained with. We furthermore show how our optimization works in a
system with multiple sources.

Looking forward, the field of optimization in optics with diffractive optical elements
is not very large. There is a limited amount of literature. For applications for our
research, one could think of virtual reality but also about optical computers. The optical
field is also largely unfamiliar with data-driven methods and current methods in optics
to solve inverse problems can be solved more efficient with data-driven methods as
we showed. Moreover, multiple sources also prove to be interesting in to generate
different target intensities. Our analysis of multiple sources was limited to a small
number of experiments and suffered from optical effects outside the sampling plane
and thus is also an interesting topic to improve on this in the future. The combination
of the field of (computational) optics and modern optimization techniques have a bright
future ahead of them.

References

[11 Harald Aagedal et al. “Theory of speckles in diffractive optics and its applica-
tion to beam shaping”. In: http://dx.doi.org/10.1080/09500349608232814 43.7
(1996), pp. 1409-1421. ISSN: 13623044. DOI: 10.1080/09500349608232814.

[2] A A Belousov, L L Doskolovich, and S | Kharitonov. “A gradient method of de-
signing optical elements for forming a specified irradiance on a curved surface”.
In: (2008).

[3] J. H. M. ten Thije Boonkkamp, L. B. Romijn, and W. L. IJzerman. “Freeform
lens design for a point source and far-field target”. In: JOSA A, Vol. 36, Issue
11, pp. 1926-1939 36.11 (Nov. 2019), pp. 1926—-1939. ISSN: 1520-8532. DOI:
10.1364/J0SAA.36.001926.

[4] Christoph Bdsel and Herbert Gross. “Double freeform illumination design for
prescribed wavefronts and irradiances”. In: Journal of the Optical Society of
America A 35.2 (Feb. 2018), p. 236. ISSN: 1084-7529. DOI: 10.1364/J0SAA.35.
000236.

[5] C Brecheretal. NURBS Based Ultra-Precision Free-Form Machining. Tech. rep.
2006.

[6] Dmitry A Bykov et al. “Linear assignment problem in the design of freeform
refractive optical elements generating prescribed irradiance distributions”. In:
(2018). DOI: 10.1364/0E.26.027812.

[71 Ozan Cakmakci et al. “4830) Optical systems design”. In: 220 (2008).

[8] Hang Chen et al. “Diffractive Deep Neural Networks at Visible Wavelengths”. In:
Engineering 7.10 (2021), pp. 1483—-1491. ISSN: 20958099. DOI: 10.1016/j .
eng.2020.07.032.

[9] Xianming Chen, Richard F. Riesenfeld, and Elaine Cohen. “An algorithm for
direct multiplication of B-splines”. In: IEEE Transactions on Automation Science
and Engineering. Vol. 6. 3. July 2009, pp. 433-442. DOI: 10.1109/TASE. 2009.
2021327.

[10] Dewen Cheng et al. “Design of an optical see-through head-mounted display
with a low f-number and large field of view using a freeform prism”. In: (2009).

[11] Pavel Cheremkhin et al. “Machine learning methods for digital holography and
diffractive optics”. In: Procedia Computer Science 169 (2020), pp. 440—444.
ISSN: 18770509. DOI: 10.1016/j.procs.2020.02.243.

[12] Geoffroi Cote, Jean-Francgois Lalonde, and Simon Thibault. “Deep learning-enabled
framework for automatic lens design starting point generation”. In: Optics Ex-
press 29 (3 Feb. 2021), p. 3841. ISSN: 1094-4087. DOI: 10.1364/0e.401590.

[13] L H Crijns. PINN inspired Freeform Design Using Fraunhofer Diffrac-tion to ond
Freeforms de-scribed by B-spline Sur-faces. Tech. rep. 2021.

72

https://doi.org/10.1080/09500349608232814
https://doi.org/10.1364/JOSAA.36.001926
https://doi.org/10.1364/JOSAA.35.000236
https://doi.org/10.1364/JOSAA.35.000236
https://doi.org/10.1364/OE.26.027812
https://doi.org/10.1016/j.eng.2020.07.032
https://doi.org/10.1016/j.eng.2020.07.032
https://doi.org/10.1109/TASE.2009.2021327
https://doi.org/10.1109/TASE.2009.2021327
https://doi.org/10.1016/j.procs.2020.02.243
https://doi.org/10.1364/oe.401590

References 73

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Yi Ding et al. “Freeform LED lens for uniform illumination References and links”.
In: (2008).

F. Z. Fang et al. “Manufacturing and measurement of freeform optics”. In: CIRP
Annals - Manufacturing Technology 62.2 (2013), pp. 823—846. ISSN: 00078506.
DOI: 10.1016/j.cirp.2013.05.003.

J. R. Fienup. “Phase retrieval algorithms: a comparison”. In: Applied Optics, Vol.
21, Issue 15, pp. 2758-2769 21.15 (Aug. 1982), pp. 2758-2769. ISSN: 2155-
3165. DOI: 10.1364/A0.21.002758.

G W Forbes. “Characterizing the shape of freeform optics References and links”.
In: (2012).

R W Gerchberg and W O Saxton. A Practical Algorithm for the Determination of
Phase from Image and Diffraction Plane Pictures. Tech. rep. 2. 1969, pp. 237—-
246.

R W Gerchberg and W O Saxton. A Practical Algorithm for the Determination of
Phase from Image and Diffraction Plane Pictures. 1969, pp. 237-246.

J.W. Goodman. Introduction to Fourier Optics. Tech. rep. 2005.

Paul Hand, Oscar Leong, and Vladislav Voroninski. “Phase Retrieval Under a
Generative Prior”. In: (2018).

Kaiming He et al. “Deep residual learning for image recognition”. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2016,
pp. 770-778.

Ryoichi Horisaki, Ryosuke Takagi, and Jun Tanida. “Deep-learning-generated
holography”. In: Applied Optics 57.14 (May 2018), p. 3859. ISSN: 1559-128X.
DOI: 10.1364/a0.57.003859.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward
networks are universal approximators”. In: Neural networks 2.5 (1989), pp. 359—
366.

M. Hossein Eybposh et al. “DeepCGH: 3D computer-generated holography us-
ing deep learning”. In: Optics Express 28.18 (Aug. 2020), p. 26636. ISSN: 1094-
4087. DOI: 10.1364/0e.399624.

T. J.R. Hughes, J. A. Cottrell, and Y. Bazilevs. “Isogeometric analysis: CAD,
finite elements, NURBS, exact geometry and mesh refinement”. In: Computer
Methods in Applied Mechanics and Engineering 194 (39-41 Oct. 2005), pp. 4135—
4195. ISSN: 00457825. DOI: 10.1016/j.cma.2004.10.008.

Joost Imhof. Freeform lens predictions by a Neural Network and B-splines. Tech.
rep. 2020.

Sergey loffe and Christian Szegedy. “Batch normalization: Accelerating deep
network training by reducing internal covariate shift”. In: International confer-
ence on machine learning. PMLR. 2015, pp. 448—456.

Gareth James et al. An introduction to statistical learning. Vol. 112. Springer,
2013.

https://doi.org/10.1016/j.cirp.2013.05.003
https://doi.org/10.1364/AO.21.002758
https://doi.org/10.1364/ao.57.003859
https://doi.org/10.1364/oe.399624
https://doi.org/10.1016/j.cma.2004.10.008

References 74

[30] Jinbo Jiang et al. “Optical design of a freeform TIR lens for LED streetlight”. In:
Optik 121 (19 Oct. 2010), pp. 1761-1765. ISSN: 0030-4026. DOI: 10.1016/7J.
IJLEOD.2009.04.0009.

[31] Jinbo Jiang et al. “Optical design of a freeform TIR lens for LED streetlight”. In:
Optik 121.19 (Oct. 2010), pp. 1761-1765. ISSN: 0030-4026. DOI: 10.1016/7J.
TJLEO0.2009.04.0009.

[32] X. Jane Jiang and Paul J. Scott. “Free-form surface reconstruction”. In: Ad-
vanced Metrology. Elsevier, 2020, pp. 93-127. DOI: 10 . 1016 /b978-0- 12~
821815-0.00005-8.

[33] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980 (2014).

[34] ZongyiLi et al. “Fourier Neural Operator for Parametric Partial Differential Equa-
tions”. In: (Oct. 2020).

[35] Ku Chin Lin. “Designation of lenses with a single freeform surface for multiple
point sources”. In: Journal of the Optical Society of America. A, Optics, image
science, and vision 29.3 (Mar. 2012), p. 200. ISSN: 1520-8532. DOI: 10.1364/
JOSAA.29.000200.

[36] Xing Lin et al. “All-optical machine learning using diffractive deep neural net-
works”. In: (2018).

[37] Xuhui Meng et al. “PPINN: Parareal Physics-Informed Neural Network for time-
dependent PDEs”. In: (Sept. 2019). DOI: 10.1016/j.cma.2020.113250.

[38] Deniz Mengu, Yair Rivenson, and Aydogan Ozcan. “Scale-, Shift-, and Rotation-
Invariant Diffractive Optical Networks”. In: ACS Photonics 8.1 (Jan. 2021), pp. 324—
334. ISSN: 23304022. DOI: 10.1021/acsphotonics.0c01583.

[39] Deniz Mengu et al. “Analysis of Diffractive Optical Neural Networks and Their In-
tegration with Electronic Neural Networks”. In: IEEE Journal of Selected Topics
in Quantum Electronics 26.1 (Oct. 2018). DOI: 10.1109/JSTQE.2019.2921376.

[40] Deniz Mengu et al. “Classification and reconstruction of spatially overlapping
phase images using diffractive optical networks”. In: (2021).

[41] Christopher A Metzler et al. “prDeep: Robust Phase Retrieval with a Flexible
Deep Network”. In: (2018).

[42] Preetum Nakkiran et al. “Deep double descent: where bigger models and more
data hurt”. In: J. Stat. Mech (2021), pp. 1742-5468. DOI: 10.1088/1742-5468/
ac3ar74.

[43] Donald C O et al. Diffractive Optics: Design, Fabrication, and Test. 2004.

[44] Aydogan Ozcan et al. “Misalignment resilient diffractive optical networks”. In:
Nanophotonics 9.13 (Oct. 2020), pp. 4207—4219. ISSN: 21928614. DOI: 10.
1515/nanoph-2020-0291.

[45] C. Paterson. “Diffractive Optical Elements with Spiral Phase Dislocations”. In:
http.//dx.doi.org/10.1080/09500349414550771 41.4 (Apr. 1994), pp. 757-765.
ISSN: 13623044. DOI: 10.1080/09500349414550771.

https://doi.org/10.1016/J.IJLEO.2009.04.009
https://doi.org/10.1016/J.IJLEO.2009.04.009
https://doi.org/10.1016/J.IJLEO.2009.04.009
https://doi.org/10.1016/J.IJLEO.2009.04.009
https://doi.org/10.1016/b978-0-12-821815-0.00005-8
https://doi.org/10.1016/b978-0-12-821815-0.00005-8
https://doi.org/10.1364/JOSAA.29.000200
https://doi.org/10.1364/JOSAA.29.000200
https://doi.org/10.1016/j.cma.2020.113250
https://doi.org/10.1021/acsphotonics.0c01583
https://doi.org/10.1109/JSTQE.2019.2921376
https://doi.org/10.1088/1742-5468/ac3a74
https://doi.org/10.1088/1742-5468/ac3a74
https://doi.org/10.1515/nanoph-2020-0291
https://doi.org/10.1515/nanoph-2020-0291
https://doi.org/10.1080/09500349414550771

References 75

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Yifan Peng et al. “Learned large field-of-view imaging with thin-plate optics”. In:
ACM Transactions on Graphics 38.6 (Nov. 2019). ISSN: 15577368. DOI: 10.
1145/3355089.3356526.

Les Piegl and Wayne Tiller. “The NURBS Book”. In: (1995). DOI: 10.1007/978-
3-642-97385-7.

Les Piegl and Wayne Tiller. “The NURBS Book”. In: Monographs in Visual Com-
munications (1995). DOI: 10.1007/978-3-642-97385-7.

Md Sadman Sakib Rahman et al. “Ensemble learning of diffractive optical net-
works”. In: Light: Science and Applications 10.1 (Dec. 2021). ISSN: 20477538.
DOI: 10.1038/s41377-020-00446-w.

M. Raissi, P. Perdikaris, and G. E. Karniadakis. “Physics-informed neural net-
works: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations”. In: Journal of Computational
Physics 378 (Feb. 2019), pp. 686—707. ISSN: 0021-9991. DOI: 10.1016/J.JCP.
2018.10.045.

Haoran Ren et al. “Three-dimensional vectorial holography based on machine
learning inverse design”. In: (2020).

Harald Ries and Julius Muschaweck. “Tailored freeform optical surfaces”. In:
(2002).

Harald Ries and Julius A. Muschaweck. “Tailoring freeform lenses for illumina-
tion”. In: Novel Optical Systems Design and Optimization IV. Vol. 4442. SPIE,
Dec. 2001, pp. 43-50. DOI: 10.1117/12.449957.

Yair Rivenson, Yichen Wu, and Aydogan Ozcan. “Deep learning in holography
and coherent imaging”. In: Light: Science and Applications 8.1 (Dec. 2019).
ISSN: 20477538. DOI: 10.1038/s41377-019-0196-0.

Yair Rivenson et al. “Phase recovery and holographic image reconstruction us-
ing deep learning in neural networks”. In: Light: Science and Applications 7.2
(Feb. 2018), undefined—undefined. ISSN: 20477538. DOI: 10.1038/LSA.2017.
141.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Net-
works for Biomedical Image Segmentation. 2015. DOI: 10.48550/ARXIV.1505.
04597.

E. Savio, L. De Chiffre, and R. Schmitt. “Metrology of freeform shaped parts”.
In: CIRP Annals - Manufacturing Technology 56 (2 2007), pp. 810—-835. ISSN:
00078506. DOI: 10.1016/j.cirp.2007.10.008.

E. Savio, L. De Chiffre, and R. Schmitt. “Metrology of freeform shaped parts”.
In: CIRP Annals - Manufacturing Technology 56.2 (2007), pp. 810-835. ISSN:
00078506. DOI: 10.1016/j.cirp.2007.10.008.

Schlieder. Learned Residual Gerchberg-Saxton Network for Computer Gener-
ated Holography. Tech. rep. Sept. 2020, pp. 1-9.

https://doi.org/10.1145/3355089.3356526
https://doi.org/10.1145/3355089.3356526
https://doi.org/10.1007/978-3-642-97385-7
https://doi.org/10.1007/978-3-642-97385-7
https://doi.org/10.1007/978-3-642-97385-7
https://doi.org/10.1038/s41377-020-00446-w
https://doi.org/10.1016/J.JCP.2018.10.045
https://doi.org/10.1016/J.JCP.2018.10.045
https://doi.org/10.1117/12.449957
https://doi.org/10.1038/s41377-019-0196-0
https://doi.org/10.1038/LSA.2017.141
https://doi.org/10.1038/LSA.2017.141
https://doi.org/10.48550/ARXIV.1505.04597
https://doi.org/10.48550/ARXIV.1505.04597
https://doi.org/10.1016/j.cirp.2007.10.008
https://doi.org/10.1016/j.cirp.2007.10.008

References 76

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

Yuliy Schwartzburg et al. “High-contrast computational caustic design”. In: ACM
Transactions on Graphics 33.4 (2014). ISSN: 15577333. DOI: 10.1145/2601097 .
2601200.

Fabin Shen and Anbo Wang. “Fast-Fourier-transform based numerical integra-
tion method for the Rayleigh-Sommerfeld diffraction formula”. In: (2006).

Liang Shi et al. “Towards real-time photorealistic 3D holography with deep neu-
ral networks”. In: Nature 591.7849 (Mar. 2021), pp. 234-239. ISSN: 14764687 .
DOI: 10.1038/s41586-020-03152-0.

Kai Wang et al. “Freeform LED lens for rectangularly prescribed illumination”.
In: Journal of Optics A: Pure and Applied Optics 11.10 (Aug. 2009), p. 105501.
ISSN: 1464-4258. DOI: 10.1088/1464-4258/11/10/105501.

Kai Wang et al. “Freeform LED lens for uniform illumination”. In: Opt. Express
46.18 (2010), pp. 12958—12966.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. “Learning the solution op-
erator of parametric partial differential equations with physics-informed Deep-
Onets”. In: Science Advances 7.40 (Mar. 2021). ISSN: 23752548. DOI: 10 .
1126/sciadv.abi8605.

Gordon Wetzstein et al. “Inference in artificial intelligence with deep optics and
photonics”. In: Nature 588.7836 (Dec. 2020), pp. 39-47. ISSN: 14764687. DOI:
10.1038/s41586-020-2973-6.

Gershon Wolansky and Jacob Rubinstein. “Intensity control with a free-form
lens”. In: JOSA A, Vol. 24, Issue 2, pp. 463-469 24.2 (Feb. 2007), pp. 463—469.
ISSN: 1520-8532. DOI: 10.1364/J0SAA.24.000463.

Rengmao Wu, José Sasian, and Rongguang Liang. “Algorithm for designing
free-form imaging optics with nonrational B-spline surfaces”. In: Applied Optics
56.9 (Mar. 2017), p. 2517. ISSN: 0003-6935. DOI: 10.1364/a0.56.002517.

Rengmao Wu et al. “Design of Freeform lllumination Optics”. In: Laser & Pho-
tonics Reviews 12.7 (July 2018), p. 1700310. ISSN: 1863-8899. DOI: 10.1002/
LPOR.201700310.

Hiromu Yakura et al. “Malware Analysis of Imaged Binary Samples by Convolu-
tional Neural Network with Attention Mechanism”. In: Conference: The 8th ACM
Conference on Data and Application Security and Privacy. Mar. 2018, pp. 127—
134. DOI: 10.1145/3176258.3176335.

Tong Yang, Dewen Cheng, and Yongtian Wang. “Direct generation of starting
points for freeform off-axis three-mirror imaging system design using neural net-
work based deep-learning”. In: Optics Express 27.12 (June 2019), p. 17228.
ISSN: 1094-4087. DOI: 10.1364/0e.27.017228.

Tong Yang, Guo Fan Jin, and Jun Zhu. “Automated design of freeform imaging
systems”. In: Light: Science and Applications 6 (10 Oct. 2017). ISSN: 20477538.
DOI: 10.1038/1sa.2017.81.

Jingfei Ye et al. “Review of optical freeform surface representation technique
and its application”. In: Optical Engineering 56.11 (Nov. 2017), p. 1. ISSN: 1560-
2303. DOI: 10.1117/1.0e.56.11.110901.

https://doi.org/10.1145/2601097.2601200
https://doi.org/10.1145/2601097.2601200
https://doi.org/10.1038/s41586-020-03152-0
https://doi.org/10.1088/1464-4258/11/10/105501
https://doi.org/10.1126/sciadv.abi8605
https://doi.org/10.1126/sciadv.abi8605
https://doi.org/10.1038/s41586-020-2973-6
https://doi.org/10.1364/JOSAA.24.000463
https://doi.org/10.1364/ao.56.002517
https://doi.org/10.1002/LPOR.201700310
https://doi.org/10.1002/LPOR.201700310
https://doi.org/10.1145/3176258.3176335
https://doi.org/10.1364/oe.27.017228
https://doi.org/10.1038/lsa.2017.81
https://doi.org/10.1117/1.oe.56.11.110901

References 77

[74] Zheng Zhenrong, Hao Xiang, and Liu Xu. “Freeform surface lens for LED uni-
form illumination”. In: (2009).

Comments on implementation and code

For this thesis we wrote a bunch of code which has been uploaded to the github reposi-
tory of Alex Heemels athttps://gitlab.tudelft.nl/anmheemels/pinn-based-freeform-design/
-/tree/Marek_branch/experiments. What is mainly interesting in this code is the file
under scripts and differentiable propagation called 'optical_field.py’. This file allows to
build a differentiable optical field with as many sources/ lenses as one wants. Exam-
ples how to use this code can be found in the notebooks in the folder "\Execution_files’.
Furthermore, in the execution files folder, the code for training the network can be
found, as well as code for generating all pictures in this thesis.
An implementation for the neural network can be found in the folder with the scripts,
where one can also find a NURBS implementation made by Bart de Koning, another

master student in the group.

78

https://gitlab.tudelft.nl/anmheemels/pinn-based-freeform-design/-/tree/Marek_branch/experiments
https://gitlab.tudelft.nl/anmheemels/pinn-based-freeform-design/-/tree/Marek_branch/experiments

Extra figures

In the text we made some claims on optimizing multiple lenses at the same time and
in what order one should optimize these lenses, here we show some extra images to
verify our claims. The two claims were the following:

+ Adding a third lens does not add a visual improvement over a two lens system

+ First optimizing one lens and later adding the other to the optimization, does
not help the optimization and with a similar amount of optimization steps the the

resulting intensity of this method is visually worse than when optimizing both
lenses at the same time.

We show the two lens system as a reference again

79

80

Source Amplitude
0.0004 4
0.0002 1
0.0000 4
—0.0002 1
—0.0004 -
T T T T T
= (] (=1 ™~ g
(=1 = =4 (=1 (=]
3 3 s] 3
= = = = =
I I
Lens O

0.0004

0.0002

0.0000

—0.0002

—0.0004

0.0004

0.0002

0.0000

—0.0002

—0.0004

0.0004

0.0002

0.0000

—0.0002

—0.0004

—0.0004

=t
=
f=!
=
o
I

=t
=
=
=
[=1
I

= 2 =
2 = =]
= =] =]
o [=] [=]
I

Lens 1

—0.0002
0.0000
n.0002

Target Intensity

—0.0002
0.0000
n.0002

0.0004

0.0004

0.0004

10

08

0.6

04

0z

0.0

10

05

00

-1.0

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

Source Phase

0.0004 4
0.0002 4
0.0000
—0.0002
—0.0004 4
T T T T T
= (] (=1 ™~ o
[=] [=] (=] (=] (=]
g & g5 g5 3§
o o =] =] =]
I I
Lens 0
0.0004 4
0.0002 4
]
0.0000 =
—0.0002]
—0.0004 4 i
-
T T T T T
< ~ = ™~ o
2 2 2 = =
= = = = =
o o [=] [=] [=]
I I
Lens 1
0.0004 4
0.0002 4
0.0000
—0.0002
—0.0004 4
T T T T T
< ~ = ™~ o
2 2 2 = =
= = =] =] =]
o o [=] [=] [=]
I I

0.0004

0.0002

0.0000

—0.0002

—0.0004

=t
=
=
=
[=1
I

Resulting Intensity

—0.0002
0.0000
n.0002

Figure B.1: A two DOE system given 10000 iterations.

0.0004

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

We see the pattern that we saw already again. Two DOE’s which both look similar
to the target intensity.

81

Source Amplitude

0.0004 4

0.0002 4

0.0000

—0.0002 1

—0.0004

0.0004

0.0002

0.0000

—0.0002

—0.0004

0.0004

0.0002

0.0000

—0.0002

—0.0004

0.0004

0.0002

0.0000

—0.0002

—0.0004

0.0004
0.0002
0.0000
—0.0002
—0.0004

Figure B.2: A three DOE system given 10000 iterations.

—0.0004 4

—0.0004

=
=
=
=
[=1
I

=
=
=
=
[=1
I

T T T
= 2 =
2 = =]
= =] =]
o [=] [=]
I

Lens 0

= 2 =
2 = =]
= =] =]
o [=] [=]
I

Lens 1

= 2 =
2 = =]
= =] =]
o [=] [=]
I

Lens 2

—0.0002
0.0000
n.0002

Target Intensity

—0.0002
0.0000
n.0002

0.0004

0.0004

0.0004

0.0004

10
08
0.6
04
0z

0.0

|
|
|
|

03
0z

01

0.0030
0.0025
0.0020
0.0015
0.0010
0.0005

0.0000

Source Phase

0.0004
0.0002 1
0.0000
—0.0002 1
—0.0004 4
T T T T T
= ~ (=1 ™~ by
3 3 2 2 2
=] =] = = =
(=] (=] (=] (=] [=]
T T
Lens 0
0.0004
0.0002 1
0.0000 4 n
—0.0002 1 i
—0.0004 4 I
=
T T T T T
= ~ (=1 ™~ by
3 3 2 2 2
=] =] = = =
(=] (=] (=] (=] [=]
T T
Lens 1
0.0004
0.0002 A
0.0000
—0.0002 1
—0.0004 4
T T T T T
= ~ (=1 ™~ by
3 3 2 2 2
=] =] = = =
(=] (=] (=] (=] [=]
T T
Lens 2
0.0004
0.0002 1
0.0000
—0.0002 1
—0.0004 A
T T T T T
= ~ (=1 ™~ by
= = = [=1 [=1
]] S S s
= = = = =
T T

0.0004

0.0002

0.0000

—0.0002

—0.0004

=
=
=
=
[=1
I

Resulting Intensity

—0.0002

0.0000
n.0002

0.0004

L — N — e R e— e e— o D m——

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

82

We see that the third lens also follows the target intensity pattern. It does focus
on other parts, but we also see that the phase is not very high. Visually the resulting
intensity does not get a lot better. We did see however that the loss clearly decreases
when adding multiple lenses. However, as the effect is not visually clear and it does
have computational costs, we show mostly double DOE system results.

Source Amplitude 10 Source Phase
3
0.0004 - 0.0004 -
0.8 5
0.0002 A 0.0002 A
06 4
0.0000 - 0.0000 - 3
0.4
-0.0002 1 -0.0002 2
02
1
-0.0004 | -0.0004 4
0.0 T 0
= ™~ [=] =] - N ™~ [=] =] -
= = = = = =] o [=] [=] [=]
3 3 s] 3 3 3 s]]
= = = = = = = = = =
I I I I
Lens O Lens 0
3
0.0004 10 0.0004 -
5
0.0002 05 0.0002 A
4
0.0000 0.0 0.0000 .:.l. = 3
-0.0002 -05 ~0.0002 1 i E
_ 1
-0.0004 Lo -0.0004 1 i
-
T 0
g § & 8§ & g § 8 g §
[=] [=] (=] (=] (=1 [=] [=] (=] (=] (=]
=1 =1 = = =] =1 =1 = = =
I I I I
Lens 1
0.10 3
0.0004 0.0004
0.05 3
0.0002 0.0002
4
0.00
0.0000 0.0000 3
-0.05
-0.0002 -0.0002 2
-0.10
1
-0.0004 -0.0004
-0.15 . 0
= ~ =2 ™~ - = ~ =2 ™~ -
2 2 2 2 2 2 2 2 = =
=1 =1 = = =] =1 =1 = = =
I I I I
Target Intensity Resulting Intensity
00004 0.0030 00004 0.0030
0.0002 0.0025 0.0002 0.0025
0.0020 0.0020
0.0000 0.0000
0.0015 0.0015
-0.0002 0.0010 -0.0002 0.0010
0.0005 0.0005
-0.0004 -0.0004
0.0000 0.0000
= (] (=1 ™ b4 =t (] (=1 ™ b o
= = = = = I=] =3 [=] [=1 [=]
3 3 s] 3 3 3 s]]
= = = = = = = = = =
I I I I

Figure B.3: Optimizing a two DOE system for 10000 iterations, where we add the second DOE to the
optimization after 5000 iterations.

83

We see that the second DOE does start the target intensity as we would expect,
but as we can see on the right hand side the effect is so small it becomes invisible
there. We do see that if we give the complete system more iterations (including the
second lens) that the lens does adapt. We conclude that it does not make sense to
separate the lenses during optimization and that they should all be optimized at the
same time.

	Preface
	Summary
	Introduction
	Theoretical foundations
	Fourier Optics
	Wave Equation
	Huyghens principle
	Rayleigh-Sommerfeld diffraction
	Fresnel and Fraunhofer approximation
	Adding a lens
	Coherency of light

	Numerical optics
	Sources
	Lenses
	Diffraction

	Deep Learning
	Neural networks
	Convolutional layers
	Upsampling layers
	Max-pooling layers
	Back propagation
	Batch normalization
	Residual connections
	Physics informed deep learning
	Network Architectures
	Optimization

	Parametric surfaces
	B-splines
	Radial basis functions

	Previous Research
	Related Literature
	Phase retrieval and deep holography
	Freeform and diffractive optical elements
	Deep learning in optics

	Previous work at TU Delft
	Imhof (2020)
	Crijns (2021)

	Experiments
	Optimizing a system of diffractive optical elements
	System of a single optical element
	Multiple lenses
	High resolution

	Data-driven methods for optics
	Incoherent caustic design for multiple sources

	Conclusion
	References
	Comments on implementation and code
	Extra figures

