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A B S T R A C T

Medical image analysis often involves time-consuming annotation processes. Pediatric image analysis introduces 
additional complexity due to the scarcity of data, noise, and growth-related anatomical variations, particularly in 
bone analysis, where bone structures evolve more slowly compared to other organs. This study aims to develop a 
segmentation model that scales across different age groups, reduces annotation effort, and ensures high accuracy, 
particularly in low-quality images.

To address these challenges, we propose a segmentation pipeline (PedVision) that first uses a Region of In
terest (ROI) network to identify relevant regions, followed by a foundation model that translates each region into 
meaningful instances. These instances are then mapped to segmentation classes through an instance classifier 
(IC) network. To initiate rounds of the training of ROI and IC networks, we developed a fast, semi-automated 
annotation framework that leverages foundation models to annotate a subset of images using an object-level 
approach. In subsequent rounds, a human discriminator selects promising predictions from the last round, 
which are fed by unseen data, progressively enriching the model’s training dataset for further fine-tuning of the 
networks. The networks are expanded from low-parameter to high-parameter models across rounds, incorpo
rating a curriculum learning approach to capture increasingly complex features.

We evaluated PedVision on 552 hand X-ray images of children, retrieved from the publicly available Radio
logical Society of North America (RSNA) and Digital Hand Atlas (DHA) datasets, which represent a diverse range 
of ages and racial backgrounds. PedVision performed segmentation of 19 hand bones, grouped in five classes, and 
was compared against U-Net and DeepLabV3+ models using ResNet34 and ResNet101 backbones, as well as the 
SegFormer model with four different encoder variants. For pediatric cases (i.e., 0–7 years), the PedVision pipeline 
outperforms the best-performing models, achieving an 11.08 % improvement in Dice score over U-Net in the 
RSNA dataset and a 7.68 % improvement in the DHA dataset. When compared to DeepLabV3+, the improve
ments are even more substantial, with gains of 14.43 % in RSNA and 14.78 % in DHA. Additionally, PedVision 
shows notable advantages over the best SegFormer model, with improvements of 8.16 % in RSNA and 1.91 % in 
DHA. The project is open source at github.com/mohofar/PedVision.

1. Introduction

The latest developments in deep learning (DL), particularly in visual 
foundation models (VFMs) [1–4], have transformed the field of com
puter vision for medical image analysis. These powerful models excel at 
tasks involving medical images of adults due to the vast amount of 
available training data with fully mature anatomical structures. How
ever, applying these models to pediatric medical images presents sig
nificant challenges due to the development of children’s anatomy and 

open growth plates. For example, the epiphyses of the phalanges and 
metacarpals typically complete the fusion between the ages of 13 and 16 
for females and males [5]. This ongoing developmental process requires 
specialized algorithms that account for anatomical variations 
throughout this crucial growth period while coping with a limited 
number of samples per age group. This highlights the urgent need for 
robust and age-agnostic methods in pediatric image analysis.

Existing methods, including those presented in the references [6–8], 
have struggled with the inherent variability in pediatric images, such as 
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density variations and potential fractures. In this regard, Noguchi et al. 
[9] employed different data augmentation techniques, such as mixing 
random parts of cropped body images into a single image, to cope with 
this problem. However, the effectiveness of each augmentation strategy 
in capturing the specific variations and pathologies remains unclear 
[10]. While Liu et al. [11] demonstrated the benefits of leveraging large 
datasets and human expertise for training, this approach may not be 
feasible for pediatric medical image processing tasks due to data scar
city. This scarcity is due to the ionizing radiation associated with X-ray- 
based imaging modalities, such as planar X-rays and CT scans, and the 
difficulty of obtaining high-quality images at earlier ages when limiting 
the subject movements during the imaging process [12] is challenging.

While the studies mentioned above [6–11] highlight the limitations 
of DL models in pediatric musculoskeletal imaging, some other studies 
offer promising directions in solving pediatric challenges. For example, 
Boutillon et al. [13] presented a DL model for segmenting the ankle and 
shoulder, customized for pediatric magnetic resonance images (MRIs). 
This targeted approach acknowledges the unique challenges of pediatric 
anatomical growth. However, their work covers ages 5 to 17 years and 
lacks evaluation of younger age groups (under five years), a crucial age 
period of significant skeletal development. Additionally, they did not 
report age-based results to evaluate the effects of early bone growth on 
their segmentation task.

Another study by Boutillon et al. [14] segmented ankle, knee, and 
shoulder joints from pediatric MRIs of multi-domain datasets. While 
addressing diverse populations is valuable, their model struggled with 
unseen data from a new domain (e.g., a new modality). This highlights 
the ongoing challenge of developing generalizable models that can 
adapt to new datasets and imaging protocols. By addressing these 
challenges, DL has the potential to revolutionize pediatric musculo
skeletal image analysis, leading to more accurate diagnoses and 
improved patient outcomes.

Unlike other areas that struggle with limited pediatric data, hand 
bone segmentation benefits from datasets covering various age groups, 
including newborns [15]. This rich data source facilitates the develop
ment of models specifically designed for the details of pediatric hand 
anatomy. Several studies highlight the effectiveness of DL in this 
domain. For example, Deshmukh et al. [16] employed a U-Net-based 
model for segmenting hand bones from X-ray images, achieving superior 
performance in age estimation compared to traditional segmentation 
techniques. Liu et al. [17] also utilized a U-Net model for segmenting 
hand bones from X-rays but identified potential issues with the 
appearance of rectangular irrelevant regions on pediatric images. Their 
proposed method addressed this specific challenge in pediatric hand 
bone segmentation. Du et al. [18] presented a two-step approach 

involving bone detection and segmentation, achieving promising results 
through data pre-processing and model selection (OSA-YOLOv5 for 
detection and GRU-U-Net for segmentation). Ding et al. [19] focused on 
lightweight architectures designed explicitly for pediatric hand bone 
segmentation, demonstrating the potential of U-Net variations in this 
domain. Nagaraju et al. [20] explored the application of DeepLabV3+
[21] based models with different backbones for efficiently segmenting 
five hand bones across various age groups. Tay et al. [22] focused on 
different deep DL-based approaches for segmentation of pediatric hand 
phalanges that explicitly account for anatomical growth. Their work 
emphasizes the importance of growth-aware models and highlights 
DeepLabv3+’s suitability for handling anatomical variability in pedi
atric imaging.

Accurate segmentation is fundamental to bone age assessment of the 
hand, as it directly impacts the reliability of evaluating skeletal maturity 
in children by ensuring precise delineation of bone boundaries and 
structures. For instance, Jia et al. [23] developed a DL model using a 
recursive feature pyramid network, achieving precise segmentation of 
fine-grained bone structures and improving bone age assessment. 
Similarly, Spampinato et al. [24] employed a convolutional neural 
network with a BoNet architecture, reporting an improvement in the 
Dice score for hand bone segmentation, which in turn enhanced bine age 
assessment consistency across diverse age groups. However, challenges 
such as variations in X-ray quality and anatomical differences due to 
developmental stages can cause inaccurate boundary delineation and 
segmentation errors, as noted by Halabi et al. [15]. These studies high
light the significant progress in pediatric hand bone segmentation using 
DL.

Despite advancements in pediatric hand bone segmentation, current 
DL models encounter several challenges, including age dependency due 
to limited available training data, sensitivity to image quality (e.g., 
noise), and the need for manual segmentation of images from different 
age groups is a major bottleneck, as annotated datasets are often scarce 
or require substantial preparation. These factors hinder the generaliza
tion of DL models across diverse age groups and degrade segmentation 
performance.

This paper presents a novel segmentation pipeline (i.e., PedVision) 
that addresses critical challenges in medical image analysis, with a 
particular focus on pediatric cases characterized by limited training 
samples. Unlike conventional deep networks, our approach eliminates 
the need for manual annotation by leveraging a fast annotation frame
work for initialization and integrating ultralow-effort human feedback 
through an efficient approval/disapproval mechanism during training. 
By introducing object-level processing, the pipeline offers a new 
perspective on segmentation, achieving superior performance in 

Fig. 1. Segmentation pipeline for all rounds. A. ROI detection part receives raw images and gives a binary mask to exclude irrelevant parts. B. The instance classifier 
uses raw images and VFM-predicted masks to classify each instance (i.e., bone). C. The human discrimination part selects the most accurate predictions to be included 
in the next round of training. This part is only used during the training process. To understand the mathematical notation, see Algorithm 1.
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pediatric groups, significantly surpassing traditional models in data- 
scarce scenarios while maintaining robust segmentation across all age 
ranges. The design leverages the capabilities of VFMs to generalize 
across ages, mitigate the effects of noise and artifacts, and adapt effec
tively to pediatric imaging challenges. Its scalability, robustness, and 
adaptability position it as a transformative solution for pediatric medical 
imaging, ensuring consistent performance even in diverse and resource- 
constrained settings.

2. Methods

Fig. 1 illustrates the main components of the proposed pipeline and 
the data flow. The pipeline incorporates (1) a VFM, (2) a region of in
terest (ROI) network, 3) an instance classifier (IC) network, and (4) a 
human discriminator. The VFM converts pixel-level information into 
meaningful instances, such as bone segmentation masks, while the ROI 
and IC networks supervise the VFM inputs and outputs. Specifically, the 
ROI network focuses on regions containing only hand bones in images to 
prepare the input of VFM, while the IC network classifies the instances 
generated by the VFM into five classes, including four different hand 
bone types (i.e., metacarpals and proximal, middle, and distal pha
langes) and an irrelevant instances class. These two networks were 
trained and fine-tuned over multiple rounds using an initial dataset with 
limited annotated samples. Using the VFM at the pipeline’s core elimi
nates the need for a rich dataset with annotated samples, reducing the 
demanding workload for human annotators. Instead, the human 
discriminator supports the enrichment of the training dataset for the ROI 
and IC networks by performing the ultralow effort task of approving or 
disapproving the segmentations predicted by the VFM for unseen im
ages. In each round of training, we fine-tuned the ROI and IC networks 
and used the human discriminator to enrich the training dataset.

In the following subsections, we provide details of the dataset used 
and pipeline components, along with pseudocode, to clarify the steps 
followed. Additionally, we detail the experimental studies conducted to 
evaluate the pipeline’s performance and compare it with different 
models.

2.1. Dataset

We used two publicly available datasets for our study. The first 
dataset, provided by the Radiological Society of North America (RSNA) 
for the 2017 Pediatric Bone Age Machine Learning Challenge [15], 
contains 12,611 hand X-ray images without bone segmentation masks. 
These images, taken from both male and female left or right hands, 
exhibit variability in size and resolution and were acquired from in
dividuals aged 4 to 228 months, reflecting a wide range of growth 
variations in hand bones. We used this dataset to train our networks and 
test the performance of the proposed pipeline.

To evaluate the pipeline’s ability to generalize in segmenting hand 
bones from X-rays acquired from different sources and race groups, we 
used a second dataset, the Digital Hand Atlas (DHA)[25]. The DHA 

dataset comprises 1,390 digitized left-hand radiographs from children 
aged 0 to 18 years, evenly distributed across four race groups (Cauca
sian, Asian, African American, and Hispanic) and both genders. Each 
image is annotated with demographic information and bone age as
sessments provided by pediatric radiologists.

2.2. Data preparation

PedVision efficiently annotates data to initiate ROI and IC model 
training in the first round of training. In subsequent rounds, it self- 
annotates new samples. The following details provide more informa
tion about the first round.

For the first-round training (r1) and validation of the ROI and IC 
networks, we retrieved 101 radiographs with arbitrary image sizes from 
the RSNA database. These radiographs were manually selected to cap
ture a range of image resolutions, artifacts (e.g., irrelevant objects), and 
ages, ensuring diverse representation in the dataset. The radiographs 
were divided into training (88 samples) and validation (13 samples) sets. 
The validation set is used solely to save the best model during training.

Training the ROI and IC networks requires paired images (I) and 
masks (M). For the first round of training (r1), two sets of paired images 
and masks, one for the ROI network (Ir1 ,MROI

r1
) and one for the IC network 

(Ir1 ,MIC
r1

), were generated using the VFM-based annotation frameworks 
that we developed. In the ROI annotation framework, each image was 
paired with a selected set of 2D point coordinates (x, y) as the VFM 
prompt, which was used as input of the VFM to predict the hand region 
(mROI

r1
). Following this step, the VFM network used 322 random number 

of points coordinates on the masked image (ir1 *m̂ROI
r1

) to predict a set of 

mask instances (M̂
VFM
r1

). We used the highest predicted mask score as the 
hand region. Using the IC annotation framework, each of the VFM- 
predicted masks was assigned to one of the 5 classes (i.e., m̂IC

r1
) corre

sponding to (i) the distal phalanges, (ii) the intermediate phalanges, (iii) 
the proximal phalanges, (iv) the metacarpals, and (v) regions other than 
related hand bones. The IC and ROI annotation frameworks were 
employed only in the first training round. In the subsequent training 
rounds, the ROI and IC masks for the unlabeled images (MROI

rj>1
,MIC

rj>1
)

were automatically generated by the pipeline.
The images used to train the ROI and IC networks were resized to 

256 × 256. However, since the VFM model operates with images of 
arbitrary sizes, resizing raw images to a constant size may lead to in
formation loss. Thus, we used the results from the IC network to select 
the relevant masks and create the final mask based on each image’s 
original size and resolution.

To test the performance of the pipeline, we randomly retrieved 400 
radiographs from the RSNA database, ensuring that half of them were 
from individuals up to 7 years of age (hereafter referred to as the Pe
diatric group) and the other half from individuals aged between 14 years 
and 21 years (hereafter referred to as near-skeletally-mature, NSM, 
group). This was done to study the age dependency of the proposed 

Table 1 
Dataset characteristics. DHA dataset ages are presented as years, with starred cases indicating the minimum and maximum based on months to align with the RSNA 
dataset.

No. samples Manual segmentation Age Min (month) Age Max (month) Age Mean (month) Age 
SD 
(month)

Train RSNA-first round 88 No 6 228 111.23 47.83
Train RSNA-last round 407 No 6 228 108.95 50.12
Validation RSNA 13 No 10 168 88.92 65.24
Test RSNA-NSM group 200 Yes 169 228 186.59 10.28
Test RSNA-Pediatric group 200 Yes 4 84 50.16 22.95
Test DHA-total test 152 Yes >0* <228* 120 65.94
Test DHA-NSM group 40 Yes >168* <228* 204 17.18
Test DHA-Pediatric group 56 Yes >0* <84* 48 24.21
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pipeline. To test the generalizability of the pipeline, we used the DHA 
dataset, randomly selecting a test sample from each combination of age, 
gender, and race to cover the full diversity of hand radiographs. With 19 
age groups (0–18 years, in one-year increments), two genders (male and 
female), and four racial categories (Caucasian, Asian, African American, 
and Hispanic), we utilized a total of 152 images from the DHA dataset.

All the test images were resized to 1024 × 1024 pixels to ensure high- 
quality images, and all of them were manually segmented using the 
open-source software LabelMe [26]. These manual segmentations 
served as the gold standard for evaluating the segmentations predicted 
by the trained models. The details of the training, validation, and test 
datasets are outlined in Table 1.

2.3. Networks and algorithms

2.3.1. ROI network
To train the ROI network, we used PyTorch segmentation models 

[27] with the Efficientnet-B0 [28] backbone as the encoder, pre-trained 
on the ImageNet dataset. We utilized a U-Net-based architecture [29] to 
complete the ROI network’s decoder part. Over the training rounds, the 
ROI model was fine-tuned using the pairs of images and ROI masks (Ir1 ,

MROI
r1

) obtained as explained in Section 2.2.
To enhance the generalization of the ROI network, various 

augmentation techniques were applied during each training epoch, with 

a 50 % probability of replacing actual data in each training epoch. These 
techniques included random horizontal flipping, zooming by a random 
factor between 0.4 and 1.2 times the original size, translation of up to 64 
pixels in both translational directions, rotation by a random degree 
between − 90 and 90◦, and brightness adjustment by a random factor 
ranging from 0.3 to 1.5 times of the original image intensity. Addi
tionally, random rectangular shapes of varying sizes and transparency 
levels (ranging between 0 and 0.8) were superimposed on the original 
images.

The ROI network’s weights were updated using Dice-based loss and 
the Adam optimizer, which has a learning rate of 1 × 10− 4. The vali
dation set was used to identify the best-performing fine-tuned ROI 
network during each training epoch. The model with the highest vali
dation Dice score over 50 epochs in each training round was saved for 
future use.

2.3.2. VFM
Segment Anything Model (SAM) [1], trained on an extensive dataset 

of eleven million images and over one billion masks, was used as the 
VFM model. We employed the huge model weights (i.e., ViT-H) with 322 

points over images, an IoU prediction threshold of 0.9, and a stability 
score threshold of 0.9. All other parameters of the VFM were kept at the 
default settings of the SAM model [1]. The default settings were pre
served to achieve a balance between performance and computational 
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feasibility. Modifying VFM parameters requires retraining the IC 
network to ensure alignment with VFM for each parameter adjustment. 
This process is time-consuming and yields only minor performance 
variations. In the training of the pipeline, we used masked images 
(m̂ROI

rj
*irj ) to feed the VFM and obtain different instances of each ROI- 

masked image as VFM masks (M̂
VFM
rj

).

2.3.3. IC network
In each training round, after completing the training of the ROI 

network, we froze its weights to pass the data through it and prepare the 
data for training the IC network. The IC network used pre-trained 
models (e.g., MobileNet_V2) with three input channels. We used input 

images (Irj ), an instance of predicted masks by VFM (M̂
VFM
rj

), and sum

mation of all predicted masks (
∑

M̂
VFM
rj

) as three channels of the IC 
network. During each training epoch, augmentation techniques were 
applied to the images with a 50 % probability of replacement with actual 
images. These techniques included random horizontal flipping, zooming 
by a random factor between 0.4 and 1.2 times the original size, random 
translation up to 128 pixels in both translational directions and random 
rotation by an angle between − 20 and 20◦. We utilized a curriculum 
learning approach to overcome overfitting, which a limited number of 
training samples can cause. This was achieved by employing various 
pre-trained networks, ranging from low-parameter to high-parameter 
networks, across different training rounds. The networks used 
included MobileNet_V2 [30], Efficientnet-B1 model [28], and 
EfficientNet-B5 [28]. When transitioning from one model (e.g., Mobi
leNet_V2) to the next (e.g., Efficientnet-B1), we initiated training for the 
next model using ImageNet-based weights.

We used cross-entropy loss and the Adam optimizer with a learning 
rate of 1 × 10− 3. At each training round of 50 epochs, the best- 
performing model was selected based on the highest average Dice 

score across all classes using the validation set.

2.3.4. Human-in-the-loop
After each training round, which involved training the ROI network, 

getting the masks from VFM, and training the IC network, we froze all 
the networks. Then, we used a random subset of unseen and unlabeled 
images (Ius ) to predict segmentation masks (m̂IC

us
). The role of the human 

discriminator was to identify cases where the segmentation masks were 
predicted correctly. This task involved accepting or rejecting the pre
dicted masks, which is an ultralow effort task in contrast to manual 
annotation. After providing an arbitrary number of promising segmen
tation cases, the pipeline added them to the training set of the IC 
network. For the ROI network, we chose four random points within the 
bone areas predicted by the IC network as the prompt of the VFM (Fig. 1. 
C). The VFM results with the highest probability were saved as the ROI 
masks (i.e., hand region) in the ROI training set. After all this procedure, 
the pipeline was ready for the next round of training, which included 
fine-tuning ROI and IC networks, followed by the human discriminator 
to add more promising samples to the training set from new unseen and 
unlabeled data.

An overview of the pipeline and training procedure is presented in 
Algorithm 1. For further clarification of the pseudocode, we refer 
readers to the Supplementary material.

2.4. Performance evaluation of the pipeline

The performance of the proposed pipeline was compared to several 
architectures: DeepLabV3+ [21] and U-Net [29] using ResNet34 [31] 
and ResNet101 [31] encoders, and SegFormer [32] with mit-b0, b1, b2, 
and b3 encoders. Given that the primary difference between the hand 
radiographs of the Pediatric and NSM groups lies in nonlinear trans
formations of the bones (e.g., variations in shape and size), DeepLabV3+
is considered one of the most suitable options for performance com
parison [22]. We considered U-Net as a standard convolutional archi
tecture. We also included the recently developed SegFormer models, 
which are state-of-the-art transformer-based architectures that have 
demonstrated superior performance across various segmentation tasks 
[32,33].

These models were evaluated using Dice, IoU, precision, and Haus
dorff distance (HD) scores. The average for each class was computed 
using the previously mentioned metrics. Mean and 95 % confidence 
interval (95 % CI) values were then calculated by averaging across all 
classes, excluding the background class. Confidence intervals were 
derived using the standard error of the mean and the corresponding 
critical value from the z-distribution. The margin defines the range 
around the meaning within which the true value is expected to lie with 
95 % confidence, expressed as mean ± margin. While Dice and IoU 
capture overall overlap, precision explicitly reflects the model’s ability 
to avoid false positives, ensuring that only truly relevant pixels are 
included, which is crucial in clinical tasks such as avoiding over
treatment areas. HD complements these by quantifying the worst-case 
boundary error, highlighting cases where the model fails to capture 
fine anatomical details. We used the directed HD from the SciPy library 
in Python. Low HD values indicate strong alignment with expert anno
tations, whereas high HD values particularly in small pediatric struc
tures, often suggest critical margin deviations due to anatomical 
complexity or image contrast variability.

All the models were trained using training images and masks (i.e., 
images of 1024 × 1024 pixels) employed in training the ROI and IC 
networks during the first training round. However, cases with missing 
segmentation parts in a mask (e.g., a part of bone missed by VFM) were 
excluded. This exclusion was necessary because label inconsistencies, 
such as missing parts, could negatively impact the performance of the 
compared models [34]. We trained all the models for 50 epochs, saving 
the best-performing model based on the highest Dice score on the 

Fig. 2. Test set performance (mean ± SD) during training for the Pediatric and 
NSM groups using RSNA dataset over rounds of training. A. Dice score. B. 
IoU score.
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validation set. Finally, all models were evaluated using the same test 
samples from the RSNA and DHA datasets. A more detailed comparison 
of the PedVision pipeline with the other models was conducted on the 
DHA dataset, with results stratified by age, race, and gender. This 
analysis enabled us to assess the influence of demographic factors on the 
performance in segmenting hand bones, as detailed in the Results 
section.

In addition, we performed four experiments, detailed in the Ablation 
study presented in the Results section, to assess how the inclusion of the 
ROI model and variations in the VFM parameters affect the performance 
of the proposed pipeline in segmenting hand bones from X-rays in the 
RSNA dataset. In the first experiment, we varied the number of points 
used in the VFM (i.e., 162 and 642, as well as 322 points, as the default 
setting) without fine-tuning the networks in the pipeline. The second 
experiment involved replacing the ViT-H model with smaller models, 
including the ViT-L and ViT-B models, which have fewer parameters. In 
the third experiment, we studied the effects of removing the ROI model 
entirely from the pipeline.

In addition, the quality of segmentations produced by the PedVision 
was systematically analyzed to gain a detailed understanding of its 
performance. Segmentation inaccuracies were categorized into four 
types: 1) extra objects (predicted regions that do not correspond to any 
target bone), 2) misclassifications (a bone incorrectly labeled as 
another), 3) missing parts (one or more bones not detected), and 4) 

minor inaccuracies.

3. Results

3.1. Progression of PedVision performance over training rounds

To show how the model improves its segmentation performance over 
time, we present Fig. 2, which shows the pipeline’s progress across 12 
training rounds using the RSNA dataset. As additional training samples 
were introduced in each round, the Dice score for the NSM group 
improved from 0.78 in the first round to 0.95 in the final round, while 
the Pediatric group saw an increase from 0.76 to 0.94. Similarly, the IoU 
score for the Pediatric group increased from 0.66 to 0.89, and for the 
NSM group, it rose from 0.67 to 0.91. These performance gains were also 
accompanied by a reduction in standard deviation (SD) as shown in 
(Fig. 2), indicating more consistent and stable model predictions over 
time.

3.2. Evaluation of PedVision and benchmark models

3.2.1. Age-based comparison
For the RSNA dataset, PedVision demonstrated generalization across 

different age groups (Table 2). PedVision achieved a Dice score of 94.13 
% (95 % CI margin: 0.54) for the Pediatric group and 94.80 % (95 % CI 

Table 2 
Segmentation comparison on 200 NSM group and 200 Pediatric group images. The 95 % confidence interval (CI 95 %) margins are presented in parentheses alongside 
all metrics.

Models RSNA dataset

Pediatric group NSM group

Dice IoU Precision HD Dice IoU Precision HD

U-Net (Res34) 83.05 
(2.40)

74.84 
(2.72)

78.69 
(1.97)

97.22 
(14.08)

94.59 
(0.43)

90.00 
(0.68)

91.70 
(0.57)

87.85 
(1.05)

U-Net (Res101) 74.64 
(2.64)

64.19 
(2.94)

72.40 
(2.09)

− 87.85 
(1.05)

79.96 
(1.38)

85.77 
(0.47)

106.55 
(9.67)

DeeplapV3+ (Res34) 77.09 
(1.77)

65.05 
(1.98)

66.97 
(1.68)

− 88.54 
(0.37)

79.86 
(0.56)

80.48 
(0.48)

−

DeeplapV3+ (Res101) 79.87 
(1.95)

68.98 
(2.19)

73.75 
(1.53)

− 90.78 
(0.41)

83.46 
(0.64)

84.68 
(0.56)

24.50 
(3.69)

SegFormer (mit_b0) 75.89 
(2.09)

64.18 
(2.28)

71.08 
(1.71)

− 87.95 
(0.52)

78.96 
(0.79)

80.77 
(0.69)

153.13 
(12.21)

SegFormer (mit_b1) 84.04 
(1.61)

74.61 
(1.95)

80.07 
(1.35)

− 90.94 
(0.47)

83.75 
(0.75)

86.08 
(0.65)

108.58 
(11.27)

SegFormer (mit_b2) 85.97 
(1.41)

76.96 
(1.82)

80.18 
(1.38)

177.23 
(11.18)

91.91 
(0.44)

85.30 
(0.71)

87.17 
(0.63)

135.89 
(9.36)

SegFormer (mit_b3) 83.86 
(1.84)

74.59 
(2.27)

77.58 
(1.93)

− 92.79 
(0.44)

86.83 
(0.71)

87.91 
(0.68)

93.85 
(7.65)

PedVision 94.13 
(0.54)

89.46 
(0.78)

94.80 
(0.58)

18.40 
(3.31)

94.80 
(0.50)

90.56 
(0.75)

96.45 
(0.30)

27.75 
(4.11)

models DHA dataset
Pediatric group NSM group

Dice IoU Precision HD Dice IoU Precision HD

U-Net (Res34) 87.57 
(4.59)

81.71 
(5.01)

88.99 
(3.02)

− 91.58 
(1.84)

85.34 
(2.37)

91.21 
(0.67)

86.34 
(22.09)

U-Net (Res101) 72.75 
(6.13)

63.12 
(5.97)

76.46 
(3.97)

− 80.18 
(3.41)

69.47 
(3.75)

80.58 
(0.99)

144.85 
(22.65)

DeeplapV3+ (Res34) 79.66 
(5.32)

70.39 
(5.20)

75.63 
(4.08)

− 86.47 
(2.56)

77.40 
(2.85)

81.15 
(1.54)

66.47 
(10.76)

DeeplapV3+ (Res101) 80.47 
(5.64)

72.06 
(5.71)

81.18 
(4.20)

− 88.30 
(2.34)

80.32 
(2.82)

86.77 
(0.73)

59.78 
(15.34)

SegFormer (mit_b0) 90.09 
(2.46)

83.27 
(3.13)

87.68 
(0.88)

60.46 
(14.04)

91.72 
(0.64)

84.91 
(1.01)

88.19 
(0.62)

78.95 
(13.57)

SegFormer (mit_b1) 90.87 
(2.01)

84.25 
(2.58)

88.74 
(0.85)

60.94 
(13.62)

91.05 
(0.76)

83.94 
(1.13)

88.11 
(0.56)

87.05 
(14.62)

SegFormer (mit_b2) 92.49 
(1.49)

86.74 
(2.10)

90.52 
(0.71)

42.96 
(13.84)

92.93 
(0.56)

87.02 
(0.87)

89.89 
(0.52)

90.95 
(13.60)

SegFormer (mit_b3) 93.34 
(0.99)

87.87 
(1.52)

89.79 
(0.97)

30.01 
(11.88)

93.86 
(0.33)

88.54 
(0.57)

90.08 
(0.48)

65.47 
(14.24)

PedVision 95.25 
(0.46)

91.17 
(0.78)

95.94 
(0.49)

33.14 
(10.08)

94.98 
(0.81)

90.74 
(1.28)

96.01 
(1.12)

52.33 
(11.17)
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margin: 0.50) for the NSM group. Other models did not achieve similarly 
high scores or consistent results across both the Pediatric and NSM 
groups. For example, the U-Net model with a ResNet34 encoder ach
ieved a Dice score of 94.59 % (95 % CI margin: 0.43) for the NSM group 
but experienced an 11.54 % reduction in performance for the Pediatric 
group, resulting in a Dice score of 83.05 % (95 % CI margin: 2.40). Fig. 3
shows the Dice score and its stability for all models in more detail. This 
figure indicates that the Dice scores achieved with PedVision are higher 
and more stable for both the Pediatric and NSM groups. In contrast, 
other models exhibit this stability only for the NSM group.

On the DHA dataset, PedVision demonstrated consistent perfor
mance, similar to what was observed on the RSNA dataset. In contrast to 
the RSNA results, the stability of the benchmark models showed a 
relative improvement (Table 2). The SegFormer (mit b3) model, in 
particular, achieved results comparable to those of PedVision. With a 
Dice score of 95.25 % (95 % CI margin: 0.46), PedVision exhibited a 
1.91 % higher Dice score compared to the SegFormer (mit-b3) model for 
the Pediatric group. The difference for the NSM group was a 1.12 % 
improvement in PedVision score. A more detailed breakdown of Dice 
scores across smaller age subgroups is provided in Fig. 4.C, which shows 
that PedVision outperformed other models in almost all ages. The larger 
Dice score gaps were observed in individuals younger than 3 years, 

while for older subjects, some models, such as SegFormer, showed 
comparable results to PedVision (Fig. 4C).

Fig. 5 depicts the predictions made by PedVision and the best- 
performing benchmark model (i.e., SegFormer with the mit-b3 back
bone) for both Pediatric and NSM group cases of the DHA dataset. The 
visualizations show that our pipeline achieved more precise bone 
boundary delineation, fewer inter-class misclassifications, and less 
missing bone coverage compared to SegFormer models. Additional 
segmentation results can be found in Fig. S3 of the Supplementary ma
terial for readers interested in further visual comparisons.

3.2.2. Gender and race-based comparison
Fig. 4 compares various models on the DHA dataset across races 

(Fig. 4.A) and genders (Fig. 4.B). Fig. 4.A shows minimal racial differ
ences, with the African American (BLK) group deviating slightly more 
than other models. The SD for this group is 0.028. BLK male group show 
larger SD than females with an SD of 0.035, while all other groups show 
an SD of 0.018. The U-Net and DeepLabV3+ models exhibit more de
viations compared to PedVision and SegFormer (Fig. 4). For other races, 
model results are generally similar, with PedVision consistently 
achieving a higher average Dice score. Fig. 4.B shows that gender-based 
comparison showing that all models have similar results for both male 

Fig. 3. Age-based comparison of the dice scores for the RSNA dataset. A. Pediatric group (the last age group, 84–96, only includes 84-month cases). B. NSM group 
(the last age group, 228–239, includes one sample that is 228 months).
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and female.

3.3. Ablation study

The results mentioned in the previous subsections were achieved 
using the default settings of SAM model, i.e., 322 points for the huge 
version of the SAM (ViT-H), as indicated in [1]. In the first experiment 
presented in Table 3, we varied the number of points in the VFM to 162 

and 642 without fine-tuning networks in the pipeline. The variation in 
the number of points did not noticeably influence the outcome of the 
NSM group cases. However, there was a 3.7 % decrease in the Dice score 
for the Pediatric group cases (Table 3).

In the second experiment, as shown in Table 3 with 322-point SAM, 
we replaced the largest SAM-based model (ViT-H) with other versions (i. 
e., ViT-L and ViT-B). This change had a more significant impact on the 

NSM group when using the smallest model (ViT-B) compared to the 
other model (ViT-L), which has fewer parameters than ViT-H but is 
larger than ViT-B.

The third experiment, presented in Table 3, explored the effects of 
the ROI model by removing it from the pipeline. The most significant 
impact was observed in the Pediatric group population, with a 5 % 
reduction in the Dice score, whereas this reduction in the NSM group 
was less than 2 %. At the same time, there was a maximum of 4 % in
crease in the SD of the results.

In the final experiment, we used the final-round training set gener
ated by our pipeline to train the SegFormer B3 model, which out
performed the other benchmark models included in the study. Fig. S1 in 
the Supplementary material displays the number of samples added for 
each age subgroup during the 12 training rounds of PedVision. Fig. S2
presents the Dice scores achieved for each age subgroup using both the 

Fig. 4. Comparative results of (A) Race, (B) Gender, and (C) Age, for the DHA dataset.
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PedVision and SegFormer B3-based models on the RSNA and DHA 
datasets.

3.4. Evaluation of PedVision’s segmentation outcomes

To improve the transparency of the segmentation error analysis, we 
have summarized the common failure types observed in PedVision’s 
outputs in Table 4. In 67 % of the test cases, the segmentations were 
highly accurate, with only minor boundary discrepancies that may 

reflect imperfect ground truth annotations or human error. Among the 
remaining cases, the most frequent segmentation issue was the missing 
of bone parts, affecting 17 % of the samples. Extra objects and mis
classifications were each observed in 5 % of cases, while minor inac
curacies appeared in 6 %. Examples of these four types of segmentation 
errors are illustrated in Fig. 6.

Fig. 5. Visualization of the NSM and Pediatric group cases for the DHA dataset.
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3.5. Computational time

The time required for first-round annotations, which were semi- 
automated, depends on the computational resources used (e.g., GPU 
speed), image size, and the number of classes to segment. In our case, 
experiments were conducted using a Nvidia GeForce RTX 3080 Ti 
Laptop GPU with 16 GB RAM. In the first round of the ROI annotation, 
the average time required was 18 s per image, including the VFM pre
diction and user interaction time, based on a sample of 10 random im
ages. For the classifier annotation in the first round, the average time 
was 75 s per image for identifying the classes of each predicted mask, 
excluding VFM prediction time, which was performed once for all 
samples before user interaction began. The human-in-the-loop strategy, 
including VFM prediction time, averaged 20 s per image of varying size. 
The inference time was like the human-in-the-loop strategy time, aver
aging 20 s per image. After the first round, there was no need to spend 
the mentioned annotation time, as all processes were completed auto
matically within the training.

From a model complexity standpoint, the number of trainable pa
rameters varies substantially across all compared models. U-Net variants 
include approximately 24.4 M (Res34) and 51.5 M (Res101) parameters, 
while DeepLabV3+ has 22.4 M (Res34) and 45.7 M (Res101). Seg
Former models range from 3.7 M (mit-b0) to 44.6 M (mit-b3). In 
contrast, PedVision includes a large VFM with 641 M parameters, which 
is used in a frozen state and thus not trained. Only its lightweight 
components, including the ROI model (6.2 M) and the IC network (28.3 
M), are optimized during training.

4. Discussion

The presented results demonstrate that our proposed pipeline, Ped
Vision, offers a robust and generalizable solution for pediatric medical 
image segmentation, addressing critical challenges related to anatom
ical variability across different age groups and the limited number of 
annotated samples. While previous models, such as those developed by 
Boutillon et al. [13,14] for ankle, shoulder, and knee, are not doing the 
same experiments as ours, they have successfully segmented pediatric 
images for children aged 5–17. However, their work does not fully 
address younger age groups, particularly infants under 12 months, 
where skeletal structures are rapidly developing. In contrast, PedVision 
demonstrated high and consistent Dice scores across all age groups 
(Fig. 3 for RSNA dataset and Fig. 4.C for DHA dataset). Similarly, U-Net- 
based models, such as those proposed by Deshmukh et al. [16] and Liu 
et al. [17] for hand X-ray images, have achieved significant progress in 
pediatric segmentation yet faced challenges with age-dependent vari
ability and irrelevant objects in images. By incorporating an ROI model, 
our approach has been able to mitigate these issues and improve seg
mentation accuracy.

The results of this study highlight the effectiveness and stability of 
our proposed pipeline in segmenting pediatric medical images across 
diverse age groups as compared to the U-Net, DeepLabV3+ and Seg
Former models with different encoder backbones. PedVision consis
tently demonstrated high Dice scores across all ages, particularly in 
younger children, where all compared models struggle. For instance, as 
shown in Fig. 3.A, PedVision achieved a Dice score of 0.90 for age groups 
under 11 months, whereas the other models performed notably worse. 
This level of stability, even with limited training samples (e.g., based on 
Fig. S1.B, only four samples were provided for ages less than ~11 
months) in these subgroups, is a significant achievement, as pediatric 
image segmentation often suffers from data scarcity.

Table 2 presents a comprehensive comparison of segmentation per
formance across Pediatric and NSM groups on the RSNA and DHA 
datasets. While numerical metrics and their associated 95 % confidence 
intervals (CI) quantify performance, several clear trends and outliers 
merit discussion.

Across both datasets (Table 2), PedVision consistently achieved su
perior performance with narrow CIs across Dice, IoU, and Precision, 
indicating both high accuracy and model stability. For example, in the 
RSNA Pediatric group, PedVision achieved a Dice score of 94.13 (CI ±
0.54), significantly outperforming the next best model, SegFormer (mit- 
b2), which had a Dice score of 85.97 (CI ± 1.41). The observed per
formance gap, together with PedVision’s lower HD, indicates improved 
boundary delineation and reduced segmentation variability, which 
result from its VFM-based design and training strategies aimed at 
generalization (e.g., across pediatric anatomies).

When comparing the performance of the pediatric and NSM groups, 
several models demonstrated higher accuracy for the NSM group, 
especially in terms of Dice and Precision (e.g., U-Net Res34: Dice 83.05 
in the pediatric group vs. 94.59 in the NSM group, RSNA dataset). This 
discrepancy may reflect increased anatomical variability and smaller 
organ sizes in pediatric scans, which can challenge general-purpose 
models trained primarily on adult data. PedVision, by contrast, 

Table 3 
Effect of changing the number of points, core model, and usage of ROI model in the pipeline.

Experiments VFM 
Points

VFM 
type

ROI 
model

Dice mean Dice SD IoU mean IoU SD Dice mean Dice SD IoU mean IoU SD

Pediatric group NSM group

Default 32 ViT-H ​ 0.9374 0.0664 0.8907 0.0773 0.9484 0.0355 0.9062 0.0533
1 16 ViT-H ​ 0.9006 0.0753 0.8388 0.0879 0.9338 0.0480 0.8841 0.0670

64 ViT-H ​ 0.9366 0.0664 0.8899 0.0771 0.9459 0.0360 0.9023 0.0539
2 32 ViT-L ​ 0.9316 0.0702 0.8827 0.0828 0.9280 0.0587 0.8754 0.0800

32 ViT-B ​ 0.9282 0.0742 0.8778 0.0844 0.8915 0.1029 0.8251 0.1296
3 32 ViT-H − 0.8826 0.0893 0.8168 0.1041 0.9317 0.0479 0.8804 0.0639

Table 4 
Categorization and frequency of segmentation errors in PedVision.

Error type Description Frequency 
(%)

Error part in the 
pipeline (possible 

causes)

Extra Objects Predicted areas that 
do not correspond 
to any anatomical 
bone

5 IC network error 
between background 
class and bone classes 
(underfitting*)

Misclassifications Bone segments 
labeled as the 
wrong class

5 IC network error 
between bone classes 
(underfitting*)

Missing Parts Absence of one or 
more bone regions

17 VFM error (VFM config 
or unclear bone 
boundaries**)

Minor 
Inaccuracies

Slight boundary 
deviations or 
labeling 
mismatches

6 VFM error (VFM config 
or unclear bone 
boundaries**)

Highly Accurate Minimal or no 
visible errors

67 −

* Underfitting may result from using too few samples in training.
** VFM parameter configuration may change the likelihood of identifying 

bone regions depending on image quality and prompt points.
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maintained nearly identical performance between Pediatric and NSM 
groups (Dice 94.13 vs 94.80), with similarly tight CIs, suggesting better 
generalizability across age groups.

The confidence intervals also help reveal the consistency of the 
model. Narrow CIs (e.g., PedVision’s Precision of 96.45 ± 0.30 in the 
RSNA NSM group) imply stable performance across test samples. In 
contrast, wider CIs (e.g., U-Net Res101 Dice 72.75 ± 6.13 on DHA 

Pediatric) suggest greater sensitivity to sample variability. This insta
bility is especially prominent in models like U-Net Res101 and Deep
LabV3+, likely due to underfitting resulting from a limited number of 
trained samples or a lack of capacity to capture the diverse anatomical 
structures in pediatric imaging.

Notably, outliers in HD values were observed, particularly in Seg
Former (mit_b2) on the RSNA Pediatric data (HD: 177.23 ± 11.18), and 

Fig. 6. Different types of segmentation errors.
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U-Net Res101 on the DHA NSM data (HD: 144.85 ± 22.65). These 
abnormally high HD values imply extreme boundary errors in a subset of 
test cases. These outliers may stem from failure to segment small or low- 
contrast structures, especially in pediatric images where organ bound
aries are less distinct. In contrast, PedVision achieved consistently low 
HD across datasets, again highlighting its robustness.

Fig. 4A shows that the BLK group, representing African American 
individuals, contributes to increased SD in Dice scores across all models. 
This aligns with studies [35–37] indicating differences in bone growth 
between African Americans and others. This may be attributed to bio
logical growth variations within this group, which can impact segmen
tation performance.

Fig. 4B displays results stratified by gender, demonstrating no major 
differences in performance between male and female subjects for the 
compared models. This suggests that the anatomical variations between 
male and female hands are accurately captured by all models.

Fig. 4C highlights the superior performance of PedVision on the DHA 
dataset, particularly for ages under 3 years, where it outperforms other 
models. While some models exhibit stable performance in certain age 
groups, their results are inconsistent across the entire age range, limiting 
their reliability. For instance, SegFormer-based models achieve Dice 
scores that are 2–5 % lower than PedVision for individuals above 3 years 
of age (Table 2) but show significantly larger performance gaps for in
dividuals under 3 years.

Introducing the ROI model in PedVision was crucial for achieving 
this stability and removal of unnecessary elements, directing the VFM to 
concentrate on the primary segments of the image rather than the entire 
image. Utilizing ROI increases the number of relevant predicted masks 
generated by VFM. Consequently, this creates a more balanced training 
set for the IC network, with the background class (majority class) having 
a relatively lower number of samples compared to scenarios where ROI 
is not employed.

The Dice score reduction observed when the ROI model was 
excluded, particularly in the Pediatric group cases (Table 3, Experiment 
3), underscores the importance of this step in creating an age-agnostic 
segmentation pipeline. This observation aligns with similar studies, 
such as those by Boutillon et al. [14], which emphasize the challenges in 
pediatric segmentation when the entire image is processed without 
focusing on the most relevant areas.

Furthermore, the IC network in PedVision enhanced segmentation 
accuracy by utilizing a three-channel input, which combines real image 
data, single-instance masks, and aggregated instance masks. This strat
egy allowed the classifier to focus on the essential features of each 
instance, such as bone shapes and spatial relationships, rather than 
relying solely on pixel values, as done in pixel-based models like 
DeepLabV3+. Studies like Deshmukh et al. [16] have shown the limi
tations of pixel-based approaches in handling the anatomical variability 
of pediatric images, further supporting our choice to implement 
instance-level segmentation.

Regarding training, while PedVision benefited from iterative rounds 
of semi-automated annotation, other models, such as SegFormer, would 
require substantially more manually annotated data to achieve similar 
performance improvements, as shown in Fig. S2. This is a notable 
advantage of our approach, especially in pediatric imaging, where 
acquiring annotated datasets is both challenging and time-consuming 
due to factors like limited sample sizes and the challenges of image 
acquisition in younger children [12].

The PedVision pipeline addresses this challenge by producing 
promising initial results using VFM. Combined with the human-in-the- 
loop procedure, PedVision can enhance its performance during 
training rounds. This self-supervised method is not feasible for non-VFM 
based models such as SegFormer. Consequently, both PedVision and 
other compared models were trained on and evaluated using the same 
initial dataset. However, the results shown in Fig. S2 indicate that 
SegFormer b3, identified as the best model of trained models based on 
the first round data, does not exceed PedVision in performance on 

pediatric cases when trained with PedVision generated last round data.
PedVision shows some recurring prediction errors (Fig. 6). The most 

common issue is the absence of a bone in the segmentation output. This 
often results from image quality limitations or VFM configuration pa
rameters, such as the number of points used in the image. Increasing the 
number of points can help recover these missed regions, though at the 
cost of higher computational demand. Another observed error involves 
the appearance of extra objects and misclassification, which may occa
sionally mislead the IC network. Although these mistakes are less 
frequent, their impact can be mitigated by training the IC network with 
additional irrelevant objects, enabling it to better distinguish between 
true and false positives.

Despite all the promising results, this study has limitations that 
should be acknowledged. Using VFM with various configurations 
demonstrated its flexibility; however, the reduced performance with 
fewer points (Table 3) indicates that selecting VFM parameters is crit
ical. Furthermore, model size appears to play a role in segmentation 
performance. The ablation study showed that smaller VFMs may fail to 
separate some meaningful instances, such as bones, especially when 
boundaries are unclear. As a result, smaller models are more prone to 
missing parts of bones than larger models (ViT-H). Future work could 
investigate how this model adapts to different configurations and 
compare its performance to other studies that utilize varying numbers of 
points in their VFM configurations.

5. Conclusions

In this study, we introduced a novel segmentation pipeline with 
several beneficial features for pediatric medical image processing. The 
model operates at the instance level, allowing it to make independent 
decisions for each instance within an image while simultaneously 
considering the context of other instances. This unique feature of 
including human-in-the-loop strategy and visual foundation models 
facilitated the development of an ultralow-effort annotation tool for 
initiating or providing feedback while training the pipeline, enabling the 
pipeline to be initiated without manually annotated datasets, thus 
achieving precise segmentation models rapidly. Moreover, PedVision 
demonstrated robust performance in handling growth-related bone 
changes and addressing image quality variations, including irrelevant 
objects. These capabilities make PedVision particularly effective for the 
complexities inherent in pediatric medical imaging, contributing to 
improved segmentation accuracy and reliability in clinical applications.
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