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Abstract
Slotted resampling transforms an irregularly sampled process into an equidistantly sampled
signal where data are missing. Equidistant resampling always causes spectral bias, due to
aliasing and to shifting of the observation times. The shift bias can be diminished by using a
slot width that is smaller than the resampling time step. A special approximate maximum
likelihood time series estimator has been developed to estimate the power spectral density and
the autocorrelation function of multi-shift slotted nearest-neighbour resampled data sets with
missing observations. The algorithm estimates several time series models and selects the best
model order and model type from a number of candidates. It is tested with benchmark data. It
can estimate spectra up to frequencies more than a thousand times higher than the mean data
rate. It can be applied to various irregularly sampled data, including bubbly turbulent flow and
very sparse climate or atmospheric data.

Keywords: autocorrelation estimation, autoregressive model, nearest-neighbour resampling,
slotting, spectral estimation, uneven sampling
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1. Introduction

Continuous-time processes will be irregularly sampled if
signals are observed at times given by irregular triggering
events. Irregular intervals may be caused by wireless sensor
networks in various applications, from astronomy to remote
weather stations that are triggered by atmospheric events.
Irregular sampling may arise naturally in geophysics, heart
rate analysis [1], astronomy [2] and climate research. In
LDA (laser Doppler anemometry), the velocity can only be
measured if a seeding particle passes through the measurement
volume [3]. Computing the spectral density of irregular data is
simple with the direct method of Lomb–Scargle [4], which is a
least squares fit of sine curves to the data. The method turned
out to be severely biased for the turbulence spectra of irregular
data [3]. A strong bias is also found with this method for
equidistantly sampled data, if some observations are missing
[5]. It is possible to detect peaks at high frequencies with the
Lomb–Scargle method, but only if the signal has a periodic
component with a very small amount of additive noise. Slopes

in the spectrum could not be estimated and direct Fourier
methods are not advised for the spectra of irregular LDA data
[3].

Irregular sampling intervals imply a continuous-time
process and models of this type are the first choice for spectral
estimation. A continuous-time maximum likelihood (ML)
approach has been developed for autoregressive (AR) models
of irregularly sampled data [6]. However, inspection showed
that the surface of the computed likelihood as a function of the
continuous-time AR parameters was very rough [7], with many
local maxima. No better continuous-time algorithm could be
found and numerical problems prevented the convergence of
this method. Similar problems have been reported before [6].
To the author’s knowledge, no general applicable and reliable
continuous-time ML estimation method for practical unevenly
sampled data is yet available. In addition, continuous-time AR
models have been estimated by approximating the derivative
operator [8]. Promising results for low order models have been
reported, but care had to be taken in the chosen approximation
of the derivative [8]. The derivative is computed by using
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a fixed number of neighbouring observations [8]. This will
become less accurate in sparse data, if spectra have to be
estimated for frequencies far above the mean data rate. To find
a spectrum for those high frequencies, discrete-time solutions
will be investigated.

The first discrete-time solution is the slotted
autocorrelation estimation. The product of two observations
contributes only to the slotted autocorrelation at a certain lag
k� if their distance is between (k − 0.5)� and (k + 0.5)�
[3, 9]. Unfortunately, slotted autocorrelation estimates are not
positive semi-definite. Hence, slotted autocorrelation
estimates do not fulfil the theoretical requirements for being
an autocorrelation function. Some improvements have been
introduced, local normalization [9] and fuzzy slotting [10],
where every contribution is distributed over the two nearest
lags. The spectral variance has been reduced further with
variable windows [9]. Spectra obtained with variable
windows often look well for strong peaks at low frequencies.
However, no variant of the estimated slotted autocorrelation
functions is positive semi-definite. They all fail to
consistently produce a spectrum that is positive for all
frequencies, especially for frequencies at weak spectral parts.
The autocorrelation fit of slotting or its spectral quality is a
matter of taste, not of any objective quality measure. No
sensible or reliable quality measure could be defined for
slotted autocorrelations and their spectra, not even for very
large samples. Therefore, other estimation methods will be
considered.

Resampling techniques can replace an irregularly sampled
continuous-time signal by an equidistant discrete-time signal,
with resampled observations at a grid of equal time intervals.
After resampling, the discrete-time equidistant data can be
analysed with the conventional spectral analysis techniques
[3] or with modern time series models [7]. Sample and hold
(SH) resampling is equivalent to low-pass filtering followed by
adding white noise [11]. Spectral estimates are severely biased
at frequencies higher than f0/2π , where f0 denotes the mean
data rate. The filter effects can in theory be eliminated by using
a refined SH estimator [3]. This refinement explicitly uses and
is limited to a Poisson distribution for the observation instants.
Refinement and noise suppression can take place in the time [3]
or in the frequency domain [12]. If applicable, it can enlarge
the useful frequency range somewhat, from f0/2π to about
f0 [12]. The variance of the estimated spectra, the deviations
from Poisson-distributed arrival times and the limited accuracy
of step noise removal limit this frequency range in practice
until a maximum that is somewhat lower than f0. Nearest-
neighbour (NN) resampling has similar characteristics to SH
and cannot estimate spectra at frequencies higher than f0.
Resampling irregular data on a fixed and dense grid will often
have the problem that no irregular observation has been made
close to a grid node. Observations further away have to be used
in the resampled signal and the same irregular observation is
substituted at several equidistant grid nodes. This multiple use
of one observation is the main cause for the very large bias of
SH and NN resampling. The advantage of simple resampling
is that the signal processing is simple and easy with contiguous
equidistant data. The disadvantage is that the bias is too large,

unless the highest frequency of interest is much lower than the
mean data rate.

Intuitively, it seems preferable to interpolate the irregular
observations and to substitute the value of the reconstructed
signal on the grid nodes. This idea has been tested with simple
linear interpolation and with more sophisticated methods
like fractal reconstruction or the projection onto convex sets
[13]. The conclusion was that the visual appearance of the
reconstructed signal looked promising, but the bias of spectral
estimates could not be improved in comparison with SH
resampling [3, 13].

Multiple uses of single observations in resampling are
avoided with the slotting principle. The slotting principle can
be applied to the NN resampling of irregular data on a regular
time grid [7]. An observation is only accepted in resampling
if a true observation is within half the slot width from an
equidistant resampling grid point. Slotted resampling has bias
properties that are similar to the bias of slotted estimates of the
autocorrelation function. The bias can be reduced by taking
a higher resampling frequency or by making the slot width
smaller than the resampling distance [7]. Using the slotting
principle gives an equidistant signal, with data missing at those
grid nodes that are further than half the slot width away from
an actual irregular observation.

Equidistant missing-data problems have been investigated
as a separate problem [5]. Spectral estimation for equidistant
observations with missing data is much simpler than the
spectral analysis of continuous irregular data. For missing
data, Jones described an efficient method to calculate
the exact likelihood [14]. This equidistant likelihood
algorithm has much more favourable numerical properties
than his continuous algorithm [6]. An automatic time series
programme uses this ML algorithm and outperformed other
methods that have been described for missing-data problems
[5]. This accurate method for missing data will be applied
here to multi-shift slotted NN resampled (MSSNNR) irregular
data [7].

This paper studies the bias properties of slotting, due to
aliasing and to shifting of observation times to a grid. The
ARMAsel-irreg algorithm [7] with the automatic selection
of an AR, MA or ARMA model for irregular data has been
developed to evaluate the MSSNNR data. However, order
selection sometimes failed [7] and the results did not always
become better if more data were available. These problems
are investigated here. The quality of automatically selected
time series models of an improved ARMAsel-irreg algorithm
is established for the resampled irregular data of a turbulence-
like benchmark example [15]. The behaviour of the algorithm
for growing sample sizes is studied. The spectra of selected
models are shown to be accurate at frequencies much higher
than the mean data rate. Spectra can also be accurate if the
irregular inter-arrival times do not obey a Poisson distribution.

2. Time series models

A discrete-time autoregressive, moving average ARMA(p, q)
process can be written as [16, 17]

xn + a1xn−1 + · · · + apxn−p = εn + b1εn−1 + · · · + bqεn−q,

(1)
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where εn is a purely random white noise process of independent
identically distributed stochastic variables with zero mean and
variance σ 2

ε . It is assumed that the data xn represent a stationary
stochastic process. For resampled continuous-time data with
resampling distance Tr, the signal xn is the observation at time
nTr. Other values for Tr would give different parameters and
σ 2

ε in (1).
Theoretically, every discrete-time stationary stochastic

process can be represented by an ARMA(p, q) model,
an AR(∞) or a MA(∞) model [16]. In practice, finite
orders will be sufficient for estimated models because high
order parameters are generally negligible and not statistically
significant. It is important that it is in no way a restriction
to suppose that data are represented by an ARMA(p, q)
model, because all stationary random data have a model in
that class. Data with additive noise are modelled together
as a single ARMA(p, q) model. The model represents a
unique parametric estimate of the autocorrelation function
or of the power spectral density for the noisy data. An
automatic ARMAsel algorithm has been developed to estimate
the parameters and to select the best model type and model
order for given equidistant data, without user interaction [17].

The roots of the polynomial Ap(z), built with the AR(p)
parameters as coefficients,

Ap(z) = 1 + a1z
−1 + · · · + apz−p, (2)

are denoted as the poles of the AR(p) model. It is always
assumed that data represent a stationary stochastic process,
which is guaranteed if all poles of Ap(z) are inside the unit
circle. Likewise, the roots of the MA(q) part

Bq(z) = 1 + b1z
−1 + · · · + bqz

−q (3)

are called the zeros.
Spectral estimates describe the distribution of the power

over the frequencies, but are also important for integral time
scales, spectral peaks and slopes, dissipation rates and general
scale information. The power spectral density h(ω) of the
model and the frequency range depend on the resampling time
Tr. The spectrum and the autocorrelation function are fully
determined by the parameters in (1) together with the variance
σ 2

ε and Tr. The discrete-time spectrum is given by

h(ω) = σ 2
ε Tr

2π

|Bq(ejωi)|2
|Ap(ejωi)|2

= σ 2
ε Tr

2π

∣∣1 +
∑q

i=1 bi e−jωi
∣∣2

∣∣1 +
∑p

i=1 ai e−jωi
∣∣2 , − π

Tr
< ω � π

Tr
. (4)

The true continuous-time spectrum has an infinitely wide
frequency range, which cannot be represented exactly with
(4). Two approximations are available for the model of the
true process spectrum in the limited discrete-time frequency
range in (4). They give different sets of true parameters
and σ 2

ε . The first option is to determine parameters that
describe the true continuous infinitely wide spectrum without
aliasing for only the given frequency range until ω = π/Tr and
to consider the true spectrum outside that frequency range
as zero. The autocorrelation function at lags kTr can be
approximated in this option by an inverse discrete Fourier
transform of (4). The spectrum is maintained in a part of

the frequency range at the cost of a distorted autocorrelation
function. The second possibility gives the aliased spectrum
for the frequency range that is determined by the resampling
frequency Tr. Aliasing is the effect that the continuous-time
contributions to the spectrum, for frequencies outside the
discrete-time frequency range, are folded back into that limited
range [16]. The spectrum is distorted in this option. However,
the autocorrelation is given now by the true autocorrelation
function sampled at the lags kTr. The formulae that relate the
autocorrelation to the parameters of (1) are the same for both
options, but different parameter sets give different results for
the autocorrelation. Autocorrelations of a MA(q) process are
zero for lags greater than q; other processes have in principle
an infinitely long, decaying, autocorrelation function.

The goal would be to estimate the true power spectral
density without aliasing in the discrete-time frequency range.
This is not possible with equidistantly resampled observations.
Therefore, the practical purpose will be to choose the
resampling frequency 1/Tr high enough to have only a small
influence of aliasing. This happens if the power of the true
spectrum is as small as possible for the frequency range f >

1/(2Tr), which agrees with the radial frequency range ω >

π/Tr. However, a higher resampling frequency gives more
equidistant resampling grid points for the same number of
irregular observations. Therefore, a compromise between
a small aliasing effect and a low resampling frequency is
necessary.

Time series models can also be used for missing-data
problems [5, 18] and for irregularly sampled data [7]. The
automatic, approximate maximum likelihood, ARMAsel-
mis program has been developed for the estimation of
ARMA(p, q) models for equidistant missing-data problems
[5]. Modifications of that missing-data algorithm to the time
series program ARMAsel-irreg for irregular data have been
described before [7]. Sometimes, selection of the model order
had unexpected results when applied to irregular data.

An AR order selection criterion GIC has been developed
for missing-data problems [5]:

GIC(p) = LH + αp. (5)

It uses twice the minimized negative log-likelihood, denoted
by LH, with a penalty factor α that depends on the missing
fraction. Extensive simulations for missing-data problems
have been used to determine which values of α give the best
results in order selection. Penalties between 2 and 20 have
been considered [18]. It has been advised to use α = 3 if less
than 25% is missing, α = 5 for more than 75% missing and
α = 4 in the range between. The same penalty will be used
for equidistantly resampled irregular observations.

The number of grid points after resampling with the slot
width w is approximately given by NT0/w, where T0 = 1/f0

is the average distance between the irregular samples. The
fraction of non-empty grid points is approximately given by
w/T0. The application of this order selection criterion to
irregular data is investigated in this paper by applying it to
benchmark data where the true process, both with and without
aliasing, is known.

NN resampling replaces an unevenly sampled signal by
an equidistant signal with the resampling distance Tr. At
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every resampling node, the closest irregular observation is
substituted. If necessary, the same observation will be used
for more resampled data. This causes a large extra bias. The
properties are similar to SH [11], and spectra are only more
or less reliable until f0/2π . The bias can be reduced with the
slotting principle, where the slot width is taken equal to the
resampling distance. Slotted NN only accepts an observation
if it is within half the slot width from the resampling time. If no
irregular observation falls within the slot width, the grid node
is left empty as a missing observation. If more observations
are present within the slot, only the one closest to the grid
point is used. It excludes the possibility that a single irregular
observation is used at different resampling points and strongly
reduces the bias.

A further improvement of the bias due to the shifting
of observations to a grid is found with MSSNNR, where the
slot width w is made smaller than the resampling distance
[7]. Taking w = Tr/M, where M is an integer number, gives
disjoint intervals for the slots and several irregular observation
times ti are not within the small slot around t = nTr. MSSNNR
extracts M different equidistant missing-data signals from one
irregular data set by using M shifted starting points at mw with
distance w, m = 0, 1, . . . , M − 1. The non-empty resampling
instants nTr + mw, where an irregular observation falls within
the slot width, are determined for the M signals by

nTr + mw − 0.5w < ti � nTr + mw + 0.5w,

m = 0, 1, . . . ,M − 1, (6)

where ti denotes the time of an irregular observation. Now,
all slots of width w are connected in time. M shifted starting
points give M equidistant sequences, each with a time step Tr.
Data are missing in each signal. The likelihood function can
be calculated for every signal individually with the ARMAsel-
mis algorithm.

If a continuous-time representation of a signal were
available for all t, it is possible to make a discrete-time
representation by sampling it at the resampling instants nTr. M
different discrete-time signals could be extracted by using the
resampling instants nTr + mw, m = 0, 1, . . . , M − 1, with
w = Tr/M. These M signals would be very similar for a
small value of Tr, and the M likelihoods that can be computed
for the M signals would be strongly dependent. One single
signal for one value of m would contain almost all valuable
information and there is hardly anything gained by evaluating
all M signals. Nothing is lost either, because all signals
would give approximately the same time series model. This
changes if the M signals are obtained with MSSNNR of
(6) for irregular data. Now, each signal is a missing-data
record, with many missing data if a small value for Tr is
used. Generally, it can be expected that the places where
some close irregular observations at distances of a multiple of
Tr are present are on different and independent locations for the
M missing-data signals. This is certainly the case for Poisson-
distributed irregular sampling instants, and also for many other
irregular sampling schemes. Nearby observations can best be
predicted and give the largest influence on the negative log-
likelihood that is minimized in parameter estimation. Hence,
the influential parts may be at different places for the M

MSSNNR signals. These M likelihoods are added to a single
likelihood value in the ARMAsel-irreg algorithm, as if they
were independent. It does no harm if they are dependent,
but it can give a much better accuracy than a single signal if
they are independent. Therefore, it will reduce the estimation
variance of the parameters. The AR parameters are estimated
by maximizing the sum of the M likelihoods together as a
function of the parameters [7]. MA and ARMA models are
computed from those AR parameters. Afterward, (4) is used
to compute the spectrum.

3. Accuracy measures

The sum or the integral of the squared differences between
spectra is equal to the sum of the squared differences of
their autocorrelation functions, according to Parseval’s law
for Fourier transforms [16, 17]. Large relative errors in small
spectral values, say less than 0.001 of the peak value of the
spectrum, have almost no influence on the sum of squared
differences of autocorrelations or spectra. The sum of squares
can be small for very large relative spectral errors. Therefore,
the sum of squares is not an acceptable measure for the spectral
or autocorrelation accuracy of arbitrary data.

The spectral distortion (SD) is a relative integral spectral
error measure that has been defined as [17]

SD = 0.5Tr

2π

∫ π/Tr

−π/Tr

[ln{h(ω)} − ln{ĥ(ω)}]2 dω

= 0.5Tr

2π

π/Tr∫
−π/Tr

{
ln

h(ω)

ĥ(ω)

}2

dω. (7)

where h is true and ĥ denotes the estimated spectral density.
The accuracy of equidistant time series models can be

evaluated with the prediction error [17]. The prediction error
PE(p′, q′) of an ARMA(p′, q′) model with arbitrary orders
p′ and q′ is defined as the squared error of the one-step-ahead
prediction with that model in new fresh data. The FPE of
Akaike [19] can be computed as an estimate for PE from
equidistant data. The PE for irregular data, however, can
only be computed if the parameters of the true ARMA(p, q)
process and of the estimated model with arbitrary orders p′ and
q′ are known. This occurs in simulations and in benchmark
experiments [17]. It does not require the availability of new
data. It has been shown that the prediction error is strongly
related to the SD. Its value is given for an ARMA(p, q) process
with the true parameter polynomials Ap(z) and Bq(z), estimated
polynomials Âp′(z) and B̂q ′(z) and known variance σ 2

ε by
[17]

PE(p′, q ′) = σ 2
ε Tr

2π

∫ π/Tr

−π/Tr

h(ω)

ĥ(ω)
dω

= σ 2
ε Tr

2π

π/Tr∫
−π/Tr

∣∣∣∣∣
Âp′(ejω)Bq(ejω)

Ap(ejω)B̂q ′(ejω)

∣∣∣∣∣
2

dω, (8)

where (4) has been used for the computation of the true and
for the estimated spectra. If the quotient of h and ĥ is close to
1, the logarithm of 1 + δ in (7) can be approximated by δ and
the differences between (7) and (8) are mainly in scaling and
an additional constant.
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Dividing PE(p′, q′) by σ 2
ε makes the new scaled error

measure PEs(p′, q′) independent of the variance level of the
data. The same result is obtained by normalizing σ 2

ε to the fixed
value 1 in simulation experiments. PEs(p′, q′) can be used for
pure AR models where q′ = 0, and for MA models with
p′ = 0. The expectation of the PEs(p′, q′) for efficiently
estimated unbiased ARMA(p′, q′) models from equidistant
data is given by the number of estimated parameters and the
sample size N [17]:

E[PEs(p
′, q ′)] = E

[
PE(p′, q ′)

σ 2
ε

]

≈ 1 +
p′ + q ′

N
, p′ � p, q ′ � q. (9)

The approximation (9) can be used for models of the true order
or higher. Every additional parameter gives a contribution
1/N due to its estimation variance. Models of lower orders
are truncated and biased because they do not have sufficient
parameters to describe the exact true spectrum (4). They have
a higher PEs(p′, q′) than given by (9), and the truncation bias
contribution does not depend on N. Bias is an important reason
why spectral estimates will not become better if more data are
available.

4. Bias of multi-shift slotted NN resampling

After equidistant resampling, the frequency range of the
discrete-time spectrum is determined by the resampling
frequency. The discrete-time autocorrelation function is the
sampled version of the continuous autocorrelation R(τ ). The
aliased true spectrum can be computed with [16]

h(ω) =
∫ ∞

−∞
R(kTr) e−jωk dk, − π

Tr
< ω � π

Tr
. (10)

It can also be found by superimposing folded ranges of the
spectrum [16]. The aliased spectrum has the same integrated
power over its limited frequency range as the continuous
spectrum over the infinite range. This follows because the
integral over the frequency range concerned is given by
the same value R(0). Aliasing has a strong influence on the
spectrum if that is rather flat. The influence can be small if the
spectrum has a steep slope at higher frequencies. The smallest
possible influence for continuous spectra is a difference of a
factor 2 at ω = π/Tr. It is not possible to reduce the influence
of aliasing on irregular data by using anti-aliasing filters.

In addition, shifting the irregular observation times to an
equidistant grid has influence on the autocorrelation function
and the spectrum. For a smaller slot width or increasing
M, the bias of MSSNNR in (6) is reduced in comparison
to slotted NN with M = 1 and still more in comparison
to ordinary NN, where the multiple use of observations
occurs. For Poisson sampling instants, the bias of multi-shift-
slotted NN has been described with the probability density
function f (τ) of the continuous-time lags τ of the continuous
autocorrelation function R(τ ) that contribute to the resampled
autocorrelation Rres(kTr) [7]. The expectation of the resampled
autocorrelation becomes

Rres(nTr) =
∫ w

−w

R(nTr + τ)f (τ) dτ , n �= 0

Rres(0) = R(0). (11)

The resampled spectrum follows by substituting Rres(kTr) in
(10) for R(kTr). It has been demonstrated how the bias in
spectra is diminished by using a smaller value for Tr if M = 1
and with greater values for M if Tr is kept fixed [7].

For very dense irregular sampling, if the slot width w =
Tr/M is much greater than the average distance T0 between the
irregular observations, several observations will mostly fall
within the slot width and only the one closest to the centre
of the slot nTr is accepted. This means that the probability
density f (τ) is much narrower than the slot width w. If w is
much smaller than T0, however, the influence of the probability
density function of the observation instants on f (τ) is no
longer important. The width of f (τ) is determined by 2w

and the shape of f (τ) turns out to become almost triangular.
A triangle is a fair approximation for the shape of f (τ) for
w > T0 and a very good approximation for still smaller w. The
explanation is easy. If there is only one observation within the
slot width, it can be anywhere. This means that the density
function of the observation time within the slot is uniform over
w. Combining two independent observations in different slots
to compute the autocorrelation function gives the convolution
of two uniform rectangular densities for the combined density
f (τ). The convolution of two rectangles gives a triangle. This
was also the density to which Poisson distributions converged
for very small w.

The triangular shape of f (τ) is largely independent of the
arrival times if the slot width of MSSNNR is smaller than the
average time between the irregular observations. Therefore,
the bias of multi-shift slotting can be approximated with

f (τ) = w − |τ |
w2

, 0 < |τ | < w

f (τ) = 0, |τ | > w.

(12)

This density can be substituted in (11) for arbitrary densities
of the observation times. Formula (12) loses its accuracy only
if irregular observations are found more often within one slot
width.

In principle, this bias of shifting time instants to a grid can
be made as small as desired by using denser and denser grids,
with a smaller slot width w. The limiting value is the aliasing
bias that follows with (10). The disadvantage of smaller slots
is that the number of grid points increases for the same number
of irregular observations, and more grid points are left empty.
This gives a greater missing fraction, and the estimation of
time series parameters becomes less accurate and takes more
computing time [7]. It turns out in many examples that the
bias, due to shifting irregular times to a regular grid, is always
rather small if the dynamic range in the spectrum is less than
about 100. Only spectral details that are less than 0.01 times
the peak values are lost by the bias.

At least four sources of bias have been defined for time
series models of irregular data. The first is aliasing given
in (10). The second is the shifting bias that follows from
(11). The third is called the truncation bias. This is caused
by estimating underfitting models, with a lower order than
the true process. Not all details can be represented by such
models. The magnitude of the truncation bias is independent
of the sample size N, like the aliasing bias and the bias due
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Figure 1. The different true spectra that represent an irregular benchmark process of type 3 of Nobach [15]. The true spectrum is given, the
spectrum resampled with Tr = 1/5000 s with only aliasing bias and four different spectra with the additional shifting bias, for w = Tr/M,
with M = 1, 2, 4 and 8.

to shifting irregular times to a grid. It can be measured with
the PEs of (9) and will be a constant. The fourth bias type
is a special bias that will only occur when data are missing
[5]. It has a simple explanation. For contiguous equidistant
observations, only observations at distance Tr contribute to the
estimation of the AR(1) parameter. If the true correlation at
distance Tr were zero, the expected AR(1) estimate could also
be zero and it is independent of the autocorrelation at greater
lags. This does not apply to missing data because observations
at multiples of Tr will also contribute to the likelihood estimate
of that AR(1) parameter if data are missing. This causes an
additional bias in estimated missing-data models as long as
the order is lower than the true process order. The same
reasoning has been applied to an AR(2) missing-data signal
with two non-zero parameters [5]. The explanation is only
qualitative. No quantitative theoretical derivation for the bias
is known. It will depend on the probability density function
of the observation times. This bias type is no longer present if
models of the true order or higher orders are estimated.

Three different representations can be given for a true
spectral density in benchmark tests:

• T: the part of the infinitely wide true continuous-time
spectrum that falls in the frequency range after resampling
with Tr which is given by −π/Tr < ω � π/Tr,

• A: the aliased true spectrum in that frequency range which
is obtained with (10),

• S: the aliased spectrum with the additional shifting bias
obtained by shifting the observation times to a regular
grid with width w = Tr/M, which can be computed by
substitution of the correlation function Rres(kTr) of (11) in
(10), where f (τ) is given by (12).

All three representations can be used as the true parameter
polynomials Ap(z) and Bq(z) in (8), to compute the prediction
error. To indicate the mutual difference, the prediction error
is denoted PET

s , PEA
s , PES

s . By computing the prediction error
for an estimated model with the three measures, it can be seen
whether estimated spectra are close to the true, the aliased or
the shifted expectations of the true spectrum.

The different spectra have been computed for an example
that will be studied in this paper. It is spectral type 3 of the
benchmark generator [15], which gives a Heisenberg spectrum
with two constant slopes in the double logarithmic spectrum,
proportional to f −5/3 from f = 100 Hz and to f −7 from f =
1000 Hz. Figure 1 gives the spectra for Tr = 1/5000; only the
part of the frequency range where they are different is shown.
In this example, the influence of aliasing is small. Only a very
small part of the total power is above the highest frequency
2500 Hz for this spectrum that is proportional to f −7. The
aliased spectrum is a factor 2 greater than the true continuous
spectrum at the end of the range, and aliasing has almost no
effect for frequencies below 1800 Hz. In other examples or in
the same example if it were resampled with a frequency lower
than 1000 Hz, the influence of aliasing could be much greater.
The shifting bias depends on the slot width. The spectrum
converges to the aliased spectrum if the slot width is small
enough. The PET

s of aliasing is 1.010 here and the PET
s of the

shifting bias for w = Tr/M is 1.408, 1.134, 1.040 and 1.016
for M = 1, 2, 4 and 8, respectively. This implies that the best
accuracy PET

s of spectra estimated with w = Tr can only be
1.408. It is certainly worthwhile to try a smaller slot width.
PEA

s of the spectra with a shifting bias is 1.327, 1.085, 1.013
and 1.001 for M = 1, 2, 4 and 8, respectively. This shows
that all spectra with shifting bias are closer to the aliased true
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Figure 2. Estimated and true spectra of 1000 irregular benchmark observations of a type 3 process of Nobach [15], with a mean data rate of
1010 Hz. Slotted NN used Tr = T0/5 and w = Tr/4. ARMAsel-irreg selected the AR(3) model that gives the best fit of all models estimated
for those data.

spectrum than to the true continuous spectrum. They converge
to the aliased spectrum for very small w.

5. Benchmark data with Poisson sampling

In the first application of the ARMAsel-irreg algorithm
to irregular simulated data, satisfactory results have been
obtained with estimated AR models with a known and low
order [7]. It has been demonstrated that using very high
resampling rates is not a computational problem for the
ARMAsel-irreg algorithm. The spectra of practical bubbly
flow data [20] have been analysed up to frequencies which
are 250 times higher than the mean data rate f0 [7]. However,
order selection was unreliable in that example and the accuracy
of the estimates could not be evaluated because the true
spectrum was not known for those real-life data. Therefore,
irregular benchmark signals with a known true spectrum will
be used here.

Several test signals with Poisson-distributed arrival times
can be generated with a benchmark generator; program and
description are available on the Internet [15]. Spectral type 3
of the benchmark [15] gives a Heisenberg spectrum with
two constant slopes in the double logarithmic spectrum,
proportional to f −5/3 from f = 100 Hz and to f −7 from f =
1000 Hz. This process has already been used in figure 1 to
evaluate the biases. The true process is theoretically AR(∞).
However, all parameters of orders higher than 6 are less than
0.1 and above order 80 they are all less than 0.001. The
parameters of the AR(500) model have been used as the true
process parameters to compute the prediction error with (8).

Many simulation runs have been examined, for different
N, Tr and w. No numerical problems have been encountered.

The surface of the computed likelihood function has been
investigated for the MSSNNR data, because the numerical
result for continuous likelihood was very rough, with many
local minima [7]. The surface of the AR likelihood of the
MSSNNR data was always smooth, and it did not have local
minima close to the global minimum. It has been verified that
the minimization procedures did converge to the same global
optimum from different starting values for the parameters.
If all zeros are used as starting values, it converged to the
same minimum. But sequential estimation with increasing
AR model orders is preferable. Using the AR model of the
previous order and an additional zero as starting values for the
new order in ARMAsel-irreg generally gives a faster overall
convergence, as well as the spectral estimates for all lower
order AR models. Furthermore, this gives the likelihoods of
all model orders that are required in (5) for order selection.

As an example, the results of a single run are presented.
Figure 2 gives the true spectrum, the expectation of the
spectrum with shift bias for N = 1000, Tr = T0/5 and w =
Tr/4 and three estimated AR spectra, for the orders 2, 3 and
6. The frequency axis has been made logarithmic. The AR(3)
model was selected in this run. The spectra of the AR(2) and
the AR(4) models have a regular appearance. Models of order
5 and higher have spurious spectral peaks and they have never
been selected in other runs with the same example. AR models
can also be estimated for a smaller frequency range than up to
2500 Hz. However, these models would miss the characteristic
spectral slopes of the process. The best estimated spectrum
that can be expected with the MSSNNR resampling for given
values of Tr and w is a spectrum close to the true spectrum with
the shift bias included, because that is the actual spectrum of
the resampled data after the shifts of the irregular observation
times to a resampling grid. Therefore, the proper choice of
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Table 1. Several accuracy measures for estimated AR models computed for the 1000 irregular data used in figure 2 with Tr = T0/5 and w =
Tr/4, as a function of the model order. The final columns give the PET

s results for the true truncated continuous process in the limited
frequency range of the resampled signal and of the true aliased spectrum with the shift bias added.

AR
order PET

s GIC LH PEA
s PES

s PET
s (true) PET

s (shift)

0 18.76 1570.0 1570.0 17.50 15.75 18.76 18.76
1 2.61 1408.0 1403.0 2.44 2.20 2.52 2.53
2 1.81 1405.9 1395.9 1.70 1.55 1.52 1.52
3 1.14 1405.1 1390.1 1.09 1.05 1.13 1.13
4 1.29 1410.0 1390.0 1.23 1.15 1.05 1.06
5 3.18 1413.6 1388.6 3.02 2.81 1.02 1.04
6 5.91 1413.6 1383.6 5.64 5.36 1.01 1.04

Tr and w is important. If reliable a priori knowledge about
the true spectral shape is available, this can probably be used
in the construction of the likelihood function to diminish the
influence of the shift bias.

The missing fraction is determined by the choices of Tr

and w. Taking Tr = T0/K and w = Tr/M makes the number of
grid points KM times greater than the number of observations
that have an average distance of T0. Therefore, the remaining
fraction γ is approximately 1/KM and the missing fraction
is 1 − 1/KM. The effective number of observations is for
Poisson-distributed inter-arrival times approximately given by
γ N. The effective number of observations is the expectation
of the number of observation pairs in the MSSNNR data with
a distance of Tr, 2Tr, 3Tr and so on. Asymptotically, these
expected numbers are all equal for Poisson distributions. A
smaller slot width gives a better approximation of the aliased
spectrum in figure 1 at the cost of a larger missing fraction
and a smaller effective number of observations. To obtain
reliable estimates with ARMAsel-irreg, the effective number
of observations γ N must at least be as large as would be
required from contiguous equidistant data of the same process.
That number depends on the true process characteristics, but it
will generally be much greater than 10. This limits the choices
of Tr and w for a measured irregular data set, for which N and
T0 are given constants.

Table 1 gives information about the accuracy of estimated
AR models and of the exact truncated lower order models
derived from the true process parameters. AR models are
truncated to lower order models by keeping only the values of
the lower order reflection coefficients. Reflection coefficients
are defined as the negatives of partial correlation coefficients
for increasing orders [17]. Parameters for increasing orders
can be computed from the reflection coefficients with the
Levinson–Durbin recursion [17]. Estimated AR models are
stationary if all reflection coefficients are less than 1 in absolute
value. This property has been used in the likelihood function
that is computed in the ARMAsel-irreg algorithm to guarantee
the stationarity of the estimated AR model [7]. AR models
of orders higher than 6, MA and ARMA models were never
selected and they are not interesting for this type of data.
A missing-data analysis showed that the AR model type is
mostly selected if more than 50% of the data is missing [18].
Therefore, MA and ARMA are not discussed here, although
they have been estimated with ARMAsel-irreg.

The columns in table 1 with PE values use the definition
of (8) and require knowledge about the true AR(500) process.
Therefore, they can only be given in simulation experiments
where the true process is exactly known. The column with
LH gives the minimized LH for practical data and GIC is
the order selection criterion that is derived from LH with (5).
GIC is the practical measure, and the order with the smallest
GIC is selected. The three columns with PET

s , PEA
s and PES

s
give the accuracy of the estimated model in comparison with
the true continuous spectrum, the true aliased spectrum and
the expectation of the spectrum with the shift bias included,
respectively. The final two columns give the accuracy of
truncated true AR(m) processes in comparison with the true
continuous AR(500) spectrum, as a function of the model order
m. PEA

s is somewhat smaller than PET
s in table 1 for all model

orders because the estimated AR model fits better to the aliased
spectrum of the resampled data. For all model orders, PES

s is
the smallest, which demonstrates that the estimated models
have shifting bias.

Order 3 is selected because GIC has its minimum there.
The expected decrease of the likelihood for high order AR
models above the true order is always 1 for each additional
parameter, independent of the sample size or of the true process
parameters or the mean data rate. The decrease of 167 for order
1 is very significant, but the decrease of LH for higher orders
is rather small. The PET

s value for the AR(0) process was
so high in repeated simulations that AR(1) was always better.
The likelihood always gives a significant decrease to select at
least the order 1 with (5). On the other hand, the decrease of
the likelihood was never significant from order 3 to 4, which
is remarkable because order selection criteria generally allow
a small probability of selecting too high orders. Therefore,
order selection will give varying results in different simulation
runs, but order 0 will never be selected.

The error PET
s of the selected AR(3) model is 1.14, very

close to the expectation 1.13 that belongs to the truncated
true or shifted AR(3) process in the last columns of table 1.
The minimum expectation of the prediction error in (9) is still
closer to 1, but that is only applicable to unbiased models.
No AR(3) model will have a smaller PEs than the expectation
1.13, independent of the number of observations, because the
true AR process has an order higher than 3. The increase
of PET

s for higher order estimated AR models is due to the
estimation variance. Due to this variance, the large variations
of the parameters cause high values of PET

s , but only small

8



Meas. Sci. Technol. 19 (2008) 015103 P M T Broersen

10
1

10
2

10
3

10

10

10

10

10

  frequency f [Hz]

true benchmark

25 realizations of 1000
irregular observations

Figure 3. True spectrum of 1000 irregular benchmark observations
and 25 estimated AR(3) spectra for N = 1000 with a mean data rate
of 1000 Hz. MSSNNR used Tr = T0/5 and w = Tr/2.

variations of the likelihood for higher AR orders in table 1.
PET

s due to the truncation bias of the true AR(4) model is
1.05 for the given values of Tr and w. The truncation bias is
negligible for truncated true AR models of an order higher than
6 and PET

s (true) converges to 1. PET
s (shift) converges to the

final value 1.04 for high order models with aliasing and shift
bias included for the given values of Tr and w. For N = 1000,
the estimation variance strongly disturbs PET

s of estimated AR
models of order 4 and higher. The truncation bias for a given
AR order will not decrease for more data; only the variance
may become smaller.

The missing-data bias has a remarkable effect in table 1.
Estimated AR(1) models have a PET

s value that is always
somewhat greater than the theoretical value 2.52 of the
truncated true AR(500) process. The bias is much stronger
for AR(2) models, with PET

s almost 0.3 greater than the
value for the truncated true process. This bias will not diminish
for greater values of N. Bias is the reason that AR(2) models
of this process will always have poor quality and they will
not become better if more observations are available. The
truncation bias gives PET

s = 1.13 for the truncated true AR(3)
process and the value of the estimated AR(3) model is very
close here. This indicates that the effect of the missing-data
bias is very strong for the AR(2) model and less for higher
order models.

Repeated simulations with N = 1000 give diverse results
for Tr = T0/5 and w = Tr/4, both in selected model orders
and in model quality. Order 3 is selected in about 50% of the
runs, with PET

s close to 1.14. Order 2 was selected in about
40% of the runs, with PET

s about 1.7 and in the remaining
runs AR(1) was selected with PET

s about 2.6. AR(0) has
never been selected. The effective number of observations
was around 50, which is not sufficient to give the same results
in all simulation runs for this benchmark example. Sometimes,
AR(3) may have a lower PET

s than AR(2), but AR(2) is selected
if the order selection criterion GIC(3) of (5) has a higher

Table 2. PET
s for the estimated AR models in a single simulation

run as a function of the model order and of the sample size. The
data are N irregular benchmark observations of a type 3 process of
Nobach [15], sampled with a mean data rate of about 1000 Hz.
Slotted NN used Tr = T0/5 and w = Tr/4. The selected order is
printed in bold face.

N AR(1) AR(2) AR(3) AR(4) AR(5) AR(6)

100 2.84 1.70 1.19 2.90 4.95 6.68
300 2.59 2.02 1.31 2.98 5.43 6.11

1 000 2.61 1.81 1.14 1.29 3.18 5.91
3 000 2.57 1.86 1.17 1.15 1.63 2.95

10 000 2.57 1.85 1.15 1.23 1.15 1.24
30 000 2.58 1.84 1.19 1.12 1.02 1.17

100 000 2.58 1.83 1.17 1.26 1.07 1.15
200 000 2.58 1.83 1.17 1.16 1.02 1.25
300 000 2.58 1.81 1.17 1.18 1.04 1.16

value than GIC(2). Variation of the penalty factor α in GIC
between 2 and 5, trying greater values for the slot width w and
using different resampling frequencies can solve ambiguities
in marginal situations. For those simulation runs where AR(1)
was selected with w = Tr/4, it turned out that the selected
order became AR(3) for w = Tr/2, with PET

s between 1.16
and 1.22. A larger slot width gives a smaller missing fraction
and more reliability in order selection. Generally, the selected
AR order and the shape of the spectrum are almost the same
for several choices of w. It is a subject of future research to
select the best value for w automatically.

Figure 3 gives an idea about the variability of the
ARMAsel-irreg algorithm [7] if 1000 irregular observations
are used in each simulation run. The AR(3) spectrum has
been presented for each run, with 1.28 as an average value for
PET

s . AR(3) has been selected with GIC in 14 runs; in the other
11 runs AR(2) has been selected. The average quality PET

s for
selected orders was 1.42. The plot for selected orders would
look similar to figure 3, with a couple of additional lines that are
somewhat higher at the end of the interval because they belong
to AR(2) models. Figure 3 gives the results for w = Tr/2, with
an effective number of observations γ N approximately 100.
The results for w = Tr give a higher bias and a smaller variance
and for w = Tr/4 the bias would be smaller at the cost of a
higher variance. However, the average model quality PET

s
is about the same for all values of w, also for other series
of 25 runs. It has been verified that more observations give
less variability in the estimated spectra, which converge to
biased spectra, with shift bias and probably missing-data bias
included. Repeated simulations with N = 30 000 and w =
Tr/4 had as average PET

s in 25 runs the value 1.186 and all
realizations had a PET

s value between 1.15 and 1.22. This
value is greater than 1.13 of table 1 because of missing-data
bias. The individual estimated AR(3) spectra were almost
identical for N = 30 000. The biased average was similar to
the AR(3) estimate in figure 2. The individual variations had
about the range of the plotted line width of the true benchmark
spectrum in figure 3. The selected order was AR(3) in all
runs.

In practice, it is always advisable to try various values for
w. In examples where the shifting bias is smaller than the
aliasing effect, w = Tr would be the best choice. In contrast, if
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the shift bias is greater as in figure 1 and if many observations
are available, a smaller slot width would be preferable. The
best choice for w is a compromise. For N = 1000 and variation
of w, estimated AR(3) models gave the PET

s values 1.30, 1.16,
1.14, 1.18, 1.14, 1.51, 1.62 and 2.66 for Trw = 1, 1/2, 1/4,
1/8, 1/16, 1/32, 1/64 and 1/128, respectively, for the data that
have been used in figure 2. The selected orders of ARMAsel-
irreg, however, would be 3, 3, 3, 2, 1, 1, 2 and 1. For a smaller
slot width, the effective number of observations decreases too
much, which gives less accurate parameter estimates. It is
not yet possible to use automatic methods to select the best
slot width w. However, the selected order was 3 for the three
largest slot widths and the AR(3) spectra were close for some
slots that were still smaller.

Table 2 gives the accuracy of estimated AR models for
increasing sample sizes. The effective number of observations
is about N/20 for the given resampling time and slot width.
This means that the missing fraction in the multi-shift-slotted
NN resampled signals is about 95%, independent of N. With
much less than 100 observations, the effective number is too
small to obtain reliable estimates. It is remarkable that the
accuracy of AR models of orders up to 4 hardly improves if
more data are available. The truncated true values for PET

s are
2.52, 1.52 and 1.13 for the orders 1, 2 and 3, respectively. It is
evident that missing-data bias is present for all sample sizes.
The realized values for PET

s are already close to some biased
expectation with aliasing bias, truncation bias, shift bias and
missing-data bias included, for N = 100 for the orders 1, 2
and 3. It cannot become much smaller for greater sample
sizes. The truncation bias is the largest bias contribution
for AR models up to order 4. For higher orders, the main
bias contribution would be the bias in (11) of shifting the
observation times to a grid. However, for small sample sizes,
the variance contributions are the dominant contributions PET

s
in models of order 4 and higher. All model qualities are given
for a single run. The variation in the columns demonstrates that
the AR models of orders 4, 5 and 6 will still need more than
300 000 observations before they converge in all simulation
runs. However, it should be realized that all estimated spectra
with PET

s less than 1.1 are rather accurate.
In repeated simulations with N = 100, Tr = T0/5 and w =

Tr, the order 0 with PET
s = 18.76 was never selected, mostly the

order 1 or 2, and sometimes the order 3, with PET
s = 1.19 for

this value of w. The effective number of observations is about
20 then. Therefore, even for this very small sample size, some
relevant information about the spectral shape is obtained. The
estimated AR(1) spectrum is quite close to the true spectrum
for the frequency range below 1000 Hz, in all simulation runs.
Only for N less than about 15 will order 0 be selected for Tr =
T0/5 and w = Tr.

Eventually, for much greater values of N, the value of PET
s

will converge to 1.04 for all model orders greater than 5 for
the slot width w = Tr/4. The bias will not decrease if more
observations are available; only the estimation variance will
become smaller. Due to this estimation variance, the accuracy
of the estimated AR(6) model is still significantly worse than
its biased expectation for N equal to 300 000. The accuracy of
the estimated AR models of orders higher than 5 will become

better for larger sample sizes, but never better than 1.04 if
w = Tr/4. Asymptotically, only a smaller slot width can give
an improvement.

For higher model orders, the estimated spectra converge
to the true biased spectrum, as given by the Fourier transform
of the biased autocorrelation in (11). The estimated AR(5)
spectra with PET

s equal to 1.02 or 1.04 in table 2 are almost
identical with their biased expectation in figure 1, within
the line width for N > 100 000. The accuracy of estimated
autocorrelation functions is also given by PET

s . For N greater
than 100 000, order 5 was selected in most simulation runs.
Often, but not always, the AR model which has its estimated
spectrum closest to some biased expectation is selected with
the criterion GIC(p) of (5), not the model that is closest to the
true continuous spectrum.

6. Benchmark data with disturbed sampling

The ARMAsel-irreg algorithm estimated spectra up to very
high frequencies, even in bubbly flow where the time instants
of the observations are not Poisson distributed. Theoretically,
the only demand for the irregular time series algorithm
seems to be that the true continuous signal is stationary
and stochastic. The smallest inter-arrival distance between
the irregular observations limits the resampling rate and the
possible frequency range belonging to it. There is no reason to
suspect that other distributions than Poisson in the arrival times
will strongly influence the spectral estimates of ARMAsel-
irreg.

The benchmark data [15] have the possibility to add some
practical deviations from a regular Poisson distribution for the
sampling times for the irregular data. The options chosen were
to include [15]

• dropouts, where some time intervals have fewer
observations, like in practice in bubbly flows;

• varying data rate;
• processor delay to simulate the finite measurement

volume in LDA data;
• lower mean data rate, about 100 Hz;
• 10 000 observations instead of the default value of

100 000.

Results of a single run with all deviations mentioned are
given in figure 4. They are representative of many other runs
with the same characteristics of data and slot width. Due to the
possible variation of the irregular sampling times, unexpected
results can sometimes be found in such data sets. If there
are no pairs with the distance Tr in a simulation run, the
result differs from what happens if a couple of such closest
pairs exist. The expectation of the number of pairs would be
100 for 10 000 Poisson-distributed sampling instants and the
given data, resampling rate and slot width. The varying data
rate gives more close pairs here; 132 for 10 000 observations
for w = Tr/2. Obviously, if the irregular observation times
happened to be equidistant in one run, the spectrum cannot be
established further than the half the mean data rate. However,
this theoretical possibility will not likely occur. There can be
many reasons why an estimated AR model does not converge
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Figure 4. Estimated and true spectra of 10 000 irregular benchmark observations of a type 3 process of Nobach [15] with a disturbed
sampling scheme, with a mean data rate of 96.1 Hz. MSSNNR used Tr = T0/50 and w = Tr/2. ARMAsel-irreg selected the AR(3) model
with PET

s = 1.14, while AR(2) and AR(4) give 2.02 and 1.78, respectively.

Table 3. PET
s for the estimated AR models in a single simulation

run as a function of the slot width w for Tr = T0/50. The data are
the 10 000 irregular benchmark observations of a type 3 process of
Nobach [15], sampled with a mean data rate of about 96.1 Hz, that
have been used for figure 4. The selected order is printed in bold
face. The final column gives the number of pairs at distance Tr.

w/Tr AR(1) AR(2) AR(3) AR(4) Pairs Tr

1 2.59 2.01 1.29 1.83 258
1/2 2.58 2.02 1.14 1.78 132
1/4 2.58 2.02 1.14 1.12 59
1/8 2.61 1.85 1.37 2.48 37
1/16 2.59 1.61 1.68 2.04 15
1/32 2.73 1.64 1.60 2.18 7

to a good spectrum with 10 000 irregular observations. The
average quality of AR(3) models is close to 1.14 for repeated
runs. However, the average quality of automatically selected
models will be higher, because different model orders are
selected in some runs.

It is remarkable that dropouts, varying or low data rates
and processor delay have hardly any influence on the accuracy
of the spectral estimates, as long as the true continuous process
is a stationary stochastic process. To the author’s knowledge,
no other algorithms have this property. Furthermore, other
algorithms do not estimate spectra at frequencies much higher
than the mean data rate and require many more data to estimate
useful spectra.

Table 3 gives the results of the data of figure 3 if different
slot widths are used. No accurate models can be estimated any
longer if the effective number of observations, quantified by
the number of consecutive pairs in the MSSNNR signal, is too
small. The quality of the spectra and of order selection is not

very sensitive to the slot width here. Generally, order selection
is most reliable for the largest slot width, if the influence of
bias on the spectra is not dominant. Always, lower orders will
be selected if the slots become so narrow that the number of
pairs decreases too much.

With small effective numbers of observations, order
selection is not very accurate or reliable. Too many
observations are so far from their predecessor that they cannot
be predicted at all. Hence, they do not contribute to a reduction
of the likelihood of the data. The likelihood in (5) is only
reduced if observations can be predicted. Therefore, and
because of the high penalty in (5) for large missing fractions,
too low orders are often selected.

7. Sparse data with Poisson sampling

Irregular data are called sparse if the desired resampling rate
is much higher than the mean data rate. This means that
the missing-data fraction after MSSNNR is close to 1 for
sparse data. The resampling rate was 50 times higher than
the mean data rate in the example of figure 4 with disturbed
sampling. It is unknown what might be the highest possible
resampling rate for given irregular data. This will depend
on the number of pairs at the resampling distance Tr, which
depends on the probability density of the sampling instants. A
sparse example with a Poisson distribution will be investigated
here, with one very significant spectral peak that is generated
by a continuous-time AR(2) process, without other spectral
details [15]. The best discrete-time approximation for this
process is an ARMA(2,1) process [16], which in turn is
equivalent to AR(∞). Higher order true AR parameters will
be small. Therefore, it can be expected that the discrete-
time AR(2) model is a reasonable approximation with very
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Figure 5. The true spectral density and 25 estimates of the AR(2)
spectrum of MSSNNR, estimated with ARMAsel-irreg from N =
2000 sparse observations. The resampling frequency is 200 times
the mean data rate f0, with Tr = 0.005T0, w = Tr. The average
effective number of observations γ N is 10 here, which is enough to
compute some very significant AR parameters.

significant values for the two parameters. However, the
actual truncation and aliasing bias contributions will depend
on the resampling frequency. The slot width is taken equal to
the resampling distance to obtain as many pairs as possible at
the resampling distance Tr. This specific example has been
chosen because a few effective observations will be enough to
obtain good estimates for the AR(2) model.

Figure 5 gives the true continuous spectrum and 25 AR(2)
spectra estimated from 2000 irregular observations each. The
resampling rate was 5 Hz which is 200 f0, the maximum
frequency of the estimated spectrum is 100 f0 and the data
have a spectral peak at about 1 Hz which is 40 f0. The average
effective number of observations NTr/T0 is 10 for each run if
the slot width w is equal to Tr. Figure 5 shows the remarkable
capacity of ARMAsel-irreg to estimate spectra for frequencies
far above the mean data rate. In each individual estimate, a
spectral peak near 1 Hz is found. The AR(1) model cannot
describe a spectral peak, but the peak is present in the estimated
higher order models. The spectrum becomes very inaccurate
for higher AR orders, but those orders would never be selected.
Even much higher resampling frequencies 1/Tr can be used for
the same mean data rate if more observations were available, as
long as the effective number of observations NTr/T0 is greater
than about 5 or 10. In MSSNNR for a Poisson distribution, this
effective number of observations can be seen as the number
of observations with a distance of Tr. It is obvious that the
occurrence of some pairs of observations with that distance is
the minimum requirement to estimate the spectrum up to the
frequency f = 1/2Tr. For the process of figure 5, ten effective
observations are sufficient. However, other processes may
require a higher effective number of observations, e.g. because
they need higher AR orders for a reliable spectral estimate.

ARMAsel-irreg can also deal with disturbed sampling
rates as long as at least a couple of pairs are found at the
distance of about Tr.
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Figure 6. The true spectral density and 50 estimates of the AR(2)
spectrum of MSSNNR, estimated with ARMAsel-irreg from N =
1000 sparse observations that are obtained by splitting each of the
25 data sets of figure 5 into two halves. The resampling frequency is
200 times the mean data rate f0, with Tr = 0.005T0, w = Tr. The
average effective number of observations γ N is 5 here, which is not
always enough to compute an accurate spectrum.

The average PET
s for the 25 simulation runs in figure 5

was 1.23. The individual accuracies varied between 1.12 and
1.57 for the spectra in figure 5. The expectations of PET

s for
the truncated true AR models are 3.75, 3.26, 1.117, 1.026
and 1.009 for the orders 0, 1, 2, 3 and 4, respectively, for
the resampling frequency that is used here. The accuracy of
the AR(2) model for a simulation run with 50 000 irregular
observations with the same resampling and mean data rates
was PET

s = 1.12, close to the true truncated value. The
estimated spectra of repeated runs with many more than 2000
observations converged to a narrower spectral range, with an
average accuracy about 1.12 due to the truncation bias.

Taking fewer observations or a still higher resampling rate
gives as the result of ARMAsel-irreg that the white noise model
or AR(0) will be selected in the example of figure 5. This
result of order selection can always be expected, for all sorts
of irregular data, if the effective number of observations is only
3 or less. If no pairs of observations are found within the length
of the autocorrelation function, the irregular observations look
like uncorrelated white noise. This is the limiting case for
extremely sparse data of all possible processes.

Each of the 25 simulated signals that are used in
figure 5 has been divided into two signals of length 1000.
From those 50 shorter signals, AR(2) spectra have been
estimated with ARMAsel-irreg. The spectra are shown in
figure 6. The variability is much greater than in figure 5.
The average PET

s for the 50 simulation runs in figure 6 is 5.3.
The individual accuracies varied between 1.12 and 13.4 for
the spectra in figure 6. The average value 5.3 was computed
from 35 realizations with PET

s < 1.5 and 15 realizations with
PET

s > 1.5. These 15 realizations can all be recognized
individually in figure 6. Taking fewer observations will give
still more variability between the simulation runs, until at
last no realization will find a spectral peak around 1 Hz.
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However, even if the expected effective number of
observations is zero, one of many realizations can have a
couple of nearby observations and still deliver a reasonable
spectral estimate. It has been verified that this may occur,
even for 100 observations of the Poisson-distributed data in
this section, where sometimes a spectral peak near 1 Hz has
been found, with PET

s ≈ 1.2. If observation times are not
Poisson distributed but have clusters at some places, no general
rules can be given.

Some simulations have been carried out with N = 30 000
observations, a mean data rate f0 = 0.001 25 Hz and Tr = 0.2 s
to compute the spectrum until 2.5 Hz. The expected effective
number NT0/Tr is 7.5 here. The results are comparable with
single estimated spectra in figure 6. Sometimes an accurate
spectrum was found and in other runs there was no peak or
a peak at the wrong frequency. The highest frequency in
the discrete-time spectrum was 2.5 Hz, which is 2000 times
the mean data rate. Projected on a different frequency scale,
this means that one can study daily variations from Poisson-
distributed observations with a mean data rate of less than one
observation per year.

The highest discrete-time frequency that can be studied
for Poisson-distributed observations with a given mean data
rate is a final question. Although the effective number
γ N is very important, it is not the only factor. Also, the
total number of observations has a strong influence. The
likelihood LH is in practice diminished only by nearby
observations. Very roughly speaking, there are about γ N
influential contributions and (1−γ )N remaining observations.
These have no perceptible contribution to the likelihood
because no other observation was close enough to give a
significant reduction of the likelihood by any AR model.
However, these (1−γ )N observations together will always
give some variations that mask the γ N effective contributions.
Therefore, repeated simulations with a mean data rate less
than 0.0025 Hz and more observations, such that γ N ≈ 10,
are less reliable than the spectra in figure 5. On the other
hand, no matter how low the mean data rate of Poisson-
distributed observations, there will always be a sample size
N for which γ N for a chosen resampling rate 1/Tr is great
enough to obtain accurate spectra in theory. The computation
time might become a limiting factor then.

The Lomb–Scargle method [4] can also detect high
frequencies, but only if a truly periodic signal with a single
frequency is sampled with a very small amount of white noise.
For strong spectral peaks generated with AR processes, the
bias of the Lomb–Scargle method is too large [5]. It has
been verified that the Lomb–Scargle method did not detect
the peak in the spectrum of figure 5 for the given data,
not even if the data rate were 40 times higher. Both the
slotted resampled data and the original irregular data have
been tried in the Lomb–Scargle algorithm. No matter how
many observations are available, the Lomb–Scargle method
did not detect a peak for irregular observations of this process
if the mean data rate was less than the peak frequency 1 Hz.
Only if the mean data rate is higher than the frequency of the
peak has a slight indication of a periodicity been found in the
estimated Lomb–Scargle spectrum for N = 2000. No other

method is known in the literature that can estimate spectra
at those very high frequencies from relatively short data sets.
Slotted correlation methods [3, 9] would obtain an expected
number of contributions for each correlation lag that is given
by the effective number γ N for a given resampling rate and
mean data rate. About ten contributions for each lag are
certainly not sufficient to obtain a useful spectral estimate.
ARMAsel-irreg is able to detect periodicities in very sparse
and irregular physical, astrophysical, geophysical, medical or
meteorological data and is ready for interesting applications.

8. Conclusions

Irregular data can be transformed into an equidistant missing-
data problem by MSSNNR (multi-shift slotted nearest
neighbour resampling). The ARMAsel-irreg estimator fits
AR, MA and ARMA models and automatically selects the
best model order and model type. That model is used to
compute the autocorrelation function and the spectral density.

The bias caused by shifting the irregular observation times
to a regular resampling grid can be diminished by using a
slot width that is smaller than the resampling distance. The
spectra of the selected models are mostly close to a biased
true spectrum, including the bias effects of aliasing, shift and
missing-data bias. For models of too low AR orders, the
truncation bias can be significant.

The algorithm always computed a model for the data
without numerical problems. It performed well on benchmark
data. Low order AR models can give an accurate description
for various spectral shapes, with a steep slope or with a strong
peak. Spectra can be computed up to frequencies higher than
a thousand times the mean data rate. In simulations with
few irregular data or with strong deviations from the Poisson
distribution for the sampling instants, the results of ARMAsel-
irreg are much better than what can be obtained with any other
known spectral estimation technique.

Areas for future investigations include the automatic
choice of the slot width, the selection of the model order if
high order AR candidates are allowed, the missing-data bias,
the computing time and the application to real practical data.
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