
Gaussian Process
regression for the
prediction of
aerodynamic
performance
A study of multi-output surrogate modeling with
optimal sampling for the development of
hypersonic vehicles

Sebastian Fernandez Ruiz de las Cuevas





Gaussian Process
regression for the

prediction of
aerodynamic
performance

Thesis report

by

Sebastian Fernandez Ruiz de las Cuevas

to obtain the degree of Master of Science

at the Delft University of Technology

to be defended publicly on August 27, 2025 at 10:00

Thesis committee:

Chair: Dr.ir. Alexander Herman van Zuijlen

Supervisors: Dr. Mariasole Laureti

Dr. Anh Khoa Doan

External examiner: Dr. Botchu Jyoti

Place: Faculty of Aerospace Engineering, Delft

Project Duration: December, 2024 - August, 2025

Student number: 5947626

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Faculty of Aerospace Engineering · Delft University of Technology

http://repository.tudelft.nl/


Copyright © Sebastian Fernandez Ruiz de las Cuevas, 2025

All rights reserved.



Preface

This work was only possible thanks to the support from DLR Göttingen. I would like to thank the spacecraft

department for their continuous support and being always available and welcoming. I especially thank Dr.

Laureti and Dr. Doan for supervising this work and always providing valuable feedback. Also, thanks to Dr.

Horchler and Dr. Ecker for hosting me at the DLR for both my internship and Masters thesis. And finally, I

want to thank my parents for their constant support.

ii



Contents

List of Figures vi

List of Tables viii

I Introduction 1

1 Introduction and literature review 2

1.1 Re-usable space transportation systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Gasdynamic challenges for re-entry vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Design methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Surrogate models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Research Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

II Methodology 10

2 Gaussian Process Regression 11

2.1 Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Multi-output Gaussian Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Active Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Python implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 CFD model and simulation setup 18

3.1 CFD model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

III Discussion of results 23

4 Capsule 24

4.1 CFD results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 GP results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Glider 37

5.1 CFD Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 GP results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

IV Conclusions and recommendations 46

6 Conclusion 47

6.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 Recommendations 49

References 56

A Capsule GP results 57

B X-38 Trajectory data 59

iii



Nomenclature

List of Abbreviations

ANN Artificial Neural Network

AoA Angle of Attack

CA Committee A

CB Committee B

CNN Computational Fluid Dynamics

CNN Convolutional Neural Network

DLR German Aerospace Center (Deutsches

Zentrum für Luft- und Raumfahrt)

DTR Decision Tree Regressor

ESA European Space Agency

GBR Gradient Boosting Regression

GU Greedy Uncertainty

KL Kullback-Leibler

LHC Latin Hypercube

MAE Mean Average Error

MC Monte Carlo

MOGP Multi Ouptput Gaussian Process

MSE Mean Squared Error

RANS Reynolds-Averaged Navier–Stokes

RBF Radial Basis Function

RF Random Forest

RLV Reusable Launch Vehicles

RMSE Root Mean Square Error

ROM Reduced-Order Model

RQ Rational Quadratic

SBO Surrogate Based Optimization

SSTO Single Stage To Orbit

SVM Support Vector Machine

TPS Thermal Protection System

VTOL Vertical Take-off and Landing

List of Symbols

α Angle of Attack

αS Stoichiometric coefficient of reactants

β Ballistic Coefficient

βS Stoichiometric coefficient of products

βbf Body flap deflection angle

λ Mean free path

µ Mean value

ν Smoothness parameter

ωS Chemical source term

ρ Density

Σ Covariance Matrix

σ Standard deviation

FEu Inviscid flux matrix in the Navier-Stoker

equations

FNS Viscous flux matrix in the Navier-Stoker

equations

I Identiy matrix

P Viscous stress tensor

n Normal vector

Q Source term

A Area

ar, br, cr Coefficients in the Arrhenius equation for

the reaction rate

CA Axial force coefficient

CD Drag coefficient

CL Lift coefficient

iv



Nomenclature v

Cm Moment coefficient

CN Normal force coefficient

Cp Pressure coefficient

D Drag

Da Damköhler number

E Specific total energy

H Height

Keq Equilibrium constant

kr Reaction rate

Kn Knudsen number

L Lift

l Lenght scale

M Mach number

MS Molar mass of species S

N Number of training points

ns Molar concentration of species S

P Number of outputs

Sc Schmidt number

T Temperature

t Time

u Velocity

v Velocity

XS Molar fraction of species S



List of Figures

1.1 Illustration of entry corridor [15] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Typical flow field around re-entry capsule [15] . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Typical flow field for retro propulsive rocket [15] . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Two 2-dimensional Gaussian distributions. One the left a weakly correlated distribution

with covariance matrix Σ =
[
1 0.950.95 1

]
and one the right a strongly correlated one with

Σ =
[
1 0.020.02 1

]
[43] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Illustration of the change of view introduced by the ”kernel trick” [44] . . . . . . . . . . . . . 12

2.3 Weak and strong correlation in the feature space introduced by the ”kernel trick” [43] . . . . 13

2.4 Arbitrary extension of the dimensions of a Gaussian distribution [43] . . . . . . . . . . . . . 13

2.5 Samples from GP with RBF kernel with two different length scales, on top l = 10 and on the
bottom l = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Distributions drawn from different sampling methods . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Schematic of dual cell structure in the TAU code [60] . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Stardust geometry [62] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Meshed surface of the Stardust capsule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Mesh around the field of the Stardust capsule . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Overview of the X-38 vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6 Mesh of the field around the X-38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Effect of the AoA (α) on the flow field around the Stardust capsule at M = 24.7. Sonic line
shown in white . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Freestream Mach number effect on the flow field around the Stardust capsule at α = 5◦ . . 26

4.3 Divergence of the velocity field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Effect of Mach number on the temperature field . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.5 Field Mach number, surface pressure coefficient and streamlines colored by temperature

for the Stardust capsule at 10◦ at M=7.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.6 Initial database generated with LHC sampling technique . . . . . . . . . . . . . . . . . . . . 28

4.7 Sample of functions using RBF derivative kernels as priors . . . . . . . . . . . . . . . . . . 29

4.8 Samples using the ExpSineSquared covariance function as prior . . . . . . . . . . . . . . . 29

4.9 Drag polar predictions for 6 validation trajectory points . . . . . . . . . . . . . . . . . . . . . 31

4.10 Lift polar predictions for 6 validation trajectory points . . . . . . . . . . . . . . . . . . . . . . 31

4.11 Databases generated with 3 different methods. In blue the initial database, in red the added

points for each method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.12 Mean uncertainty evolution of successive steps for different sampling methods . . . . . . . 33

4.13 Uncertainty distribution for data base generated with the GU method . . . . . . . . . . . . . 34

4.14 Uncertainty distribution for data base generated with the committee A . . . . . . . . . . . . 34

4.15 Uncertainty distribution for data base generated with the committee B . . . . . . . . . . . . 35

5.1 Comparison of experimental and numerical results for the aerodynamic coefficient of the

X-38 from [72] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Flow field around X-38 at α = 45◦, βbf = 20◦, M = 20.87, H = 70.15Km . . . . . . . . . . . 38

5.3 Experimental Schlieren imaging for M=6, α = 40◦, βbf = 25◦ [73] . . . . . . . . . . . . . . . 38

5.4 Effect of the AoA (α) on the flow field around the Stardust capsule at M = 20.9,H =
70.157 Km,βbf = 20◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.5 Freestream Mach number effect on the flow field around the X38 at α = 22.5◦, βbf = 20◦ . . 39

5.6 Temperature field around X-38 at α = 22.5◦, βbf = 20◦, M = 20.87, H = 70.15Km . . . . . . 40

5.7 Flow field near the nose of the X-38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vi



List of Figures vii

5.8 Flow field near the flap of the X-38 with an angle deflection of βbf = 20◦ . . . . . . . . . . . 41

5.9 Predicted drag curve for βbf = 10◦, H = 56.905 Km, M = 13.451 . . . . . . . . . . . . . . . 42

5.10 Predicted drag curve for βbf = 15◦, H = 56.905 Km, M = 13.451 . . . . . . . . . . . . . . . 43

5.11 Predicted lift curve for βbf = 10◦, H = 56.905 Km, M = 13.451 . . . . . . . . . . . . . . . . . 43

5.12 Trajectory points of the X-38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



List of Tables

4.1 Stardust trajectory points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Result comparison for AoA = 0◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Result comparison for AoA = 5◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4 Optimized length scales of the RBF kernel for drag prediction . . . . . . . . . . . . . . . . . 29

4.5 Optimized length scales of the RBF kernel for lift prediction . . . . . . . . . . . . . . . . . . 30

4.6 Committee definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.7 Mean relative error for the prediction of the drag coefficient for different angles of attack and

number of outputs of the GP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.8 Mean relative error for the prediction of the lift coefficient for different angles of attack and

number of outputs of the GP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1 Result comparison for X-38 at M = 6.68, Alt = 40 Km . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Optimized length scales of the RBF kernel for all coefficients prediction . . . . . . . . . . . 42

5.3 Validation data set for MOGP for Glider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4 Mean relative error for the prediction of the lift coefficient and drag coefficients . . . . . . . 45

A.1 Result comparison for AoA = 0◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.2 Result comparison for AoA = 5◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.3 Result comparison for AoA = 10◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.4 Result comparison for AoA = 5◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.5 Result comparison for AoA = 10◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

B.1 X-38 Trajectory data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

viii



Part I
Introduction

1



1
Introduction and literature review

Reusable space systems are designed to recover the main components of the vehicle itself after a

mission, therefore making space travel more sustainable and cost-efficient. With an ever-growing space

industry looking to capitalize on new markets, such as satellite constellations and space tourism, reusable

technologies have undergone substantial development in recent years. The most prominent example is

Falcon 9, SpaceX’s propulsive landing test vehicle. It has demonstrated the technological and economic

maturity of reusable space systems with more than 419 successful launches. Through the European Space

Access Strategy, the European Space Agency (ESA) has also made it clear that developing reusable

vehicles is a priority for security and defense reasons. Although they have not successfully tested re-

usability, there is a series of projects that aim to develop it, most notably Prometheus, Callisto, Themis,

and Icarus, with Arian Next being the final goal of a reusable ”cost-efficient European rocket” [1].

Besides retro-propulsion systems, there exist other typologies of reusable space systems, most notably

those that use atmospheric drag as the main braking mechanism. A prime example of this is NASA’s

Space Shuttle, which can be classified as a glider. Other types of vehicles include capsules, such as

the Apollo command module, and lifting bodies, such as the X-38. Although different vehicles undergo

different physical phenomena, they share some common scenarios, most notably the high heat loads and

g-loads during entry. Due to the high velocity and rarefied flow present, complex gasdynamic and chemical

phenomena need to be studied. In order to characterize this complex flow field, a series of experimental

and numerical methodologies exist; however, they both come with their own set of drawbacks. Both

methodologies take significant resources to operate and are time-intensive, which represents a serious

bottleneck in the development pipeline of these vehicles. This work explores the use of surrogate models

to quickly predict aerodynamic quantities, reducing the development time of reusable vehicles.

Surrogate models approximate complex relationships based on available data points. They have been

extensively used in many areas such as finance [2], medicine [3] [4], and agriculture [5] [6]. Moreover,

there are many instances of applications in the aerospace field that show promising results [7] [8]. The

purpose of this work is to explore how these methods can aid the design of re-entry vehicles. This first

part of the work is organized into an overview of vehicle architectures in section 1.1 and the physical

phenomena present in their missions in section 1.2, an overview of existing experimental and numerical

design methodologies in section 1.3, an explanation of surrogate models and their current state of the art

in the aerospace field in section 1.4 and finally the research questions are established on part 1.5. Then,

the theoretical background and methodology followed are presented in part II, the discussion of the results

in part III, and the conclusions in part IV.

1.1. Re-usable space transportation systems
In the early years of rocket propulsion, technology was too heavy to pose the question of re-usability.

Furthermore, the first rockets, such as the V-2 [9], were meant to deliver weapons, so their recovery

was never a concern. However, after the war, research focus changed, and reusable vehicles started to

be conceptually developed. Early examples include the Von Braun Ferry Rocket [10] and the General

Dynamics Nexus [11]; however, like many other early projects, they were never built. Nonetheless, they

helped develop the technology in this field. The first successful reusable launcher was the Space Shuttle

[12]. Developed by NASA in the 1960s, this vehicle was composed of three main parts: the orbiter (also

2



1.1. Re-usable space transportation systems 3

called space plane), two recoverable solid boosters, and an expendable fuel tank. During launch, the

solid boosters would aid the orbiter to reach the desired altitude, and once they had consumed all the

fuel, the orbiter would detach. The first flight was in 1981 with the Columbia orbiter, whereas the final

mission was carried out by Endevour in 2011. Over the course of three decades, over 100 successful

launches and landings were performed by 5 different orbiters. In the 1990s, the Delta Clipper (DC-XA) [13]

was also developed, a vertical takeoff, vertical landing (VTVL) single-stage rocket that had 8 successful

flights. For both cases, the motivation to develop reusable technologies was similar; they wanted to build a

cost-effective method to get to space, and at that time, the NASA Reusable Launch Vehicle Technology

Program determined that a fully-reusable, rocket-powered single-stage-to-orbit (SSTO) launch was the best

solution. Another objective was to open the ’space frontier’ to new space industries, improving economic

competitiveness. In order to do this, NASA collaborated with private industries with the hope of incentivizing

them to further develop RLV. However, in order to achieve this goal, a series of technical challenges had

to be overcome. Shortly after the first test of the DC-XA, a paper [14] was published highlighting the main

technical concerns. Among them were the weight of the cryogenic tank, the thermal protection system

(TPS), the composite primary structure, and the propulsion system. Although these are still concerns

for modern vehicles, most of these problems have been addressed by Falcon 9, which has proven the

technological maturity of VTVL vehicles. SpaceX has developed a carbon fiber oxygen tank, reducing the

weight significantly, along with the Raptor engine, which is the highest thrust-to-weight ratio engine to date.

Furthermore, the TPS has been improved, allowing for a reliable reentry phase. Nonetheless, Falcon 9 and

recently Starship are currently the only vehicles capable of performing retro-propulsive landing. Moreover,

this typology of vehicles is not intended to return humans to Earth. For this purpose, capsules or lifting

bodies remain the best choice. On a global scale, reusable technology is still far from mature. Although

there are several promising projects, there are important challenges that have yet to be overcome.

One of the main problems is the high temperature that the reusable vehicles experience during

atmospheric re-entry. For this typology of vehicles, the main braking mechanism is atmospheric drag,

which causes the vehicle’s kinetic energy to be dissipated into the surrounding air. The high velocities

cause specific total energies of around 10 MJ/Kg for orbital velocities [15]. As a result, the shock layer

around the vehicle can reach extreme temperatures. These conditions limit the vehicle’s design parameters

significantly, as not every material can handle these operating conditions. Classic re-entry vehicles, such

as capsules, are very blunt in order to increase drag; however, they lose aerodynamic performance and

control authority. The strong deceleration also causes the vehicle to experience high g-loads, which limits

the design parameters further, as it needs to remain as light as possible for the launching phase, but

strong enough to endure atmospheric re-entry. Generally, a steep re-entry angle results in high maximum

aero-thermal loads, but less exposure time. Steep-angle trajectories are usually limited by the TPS and

structural strength. On the other side, shallow re-entry angles are limited by the integral loads, since the

maximum loads are lower but over a longer period. Furthermore, in order to achieve shallow angles, the

vehicle needs to be able to generate sufficient lift and control capability in order to penetrate the denser

atmosphere. However, if the lift is too high or the angle is too shallow, the vehicle might not be able to

enter the thicker parts of the atmosphere and generate sufficient drag to slow down. This concept is known

as ”skipping” since it is analogous to skipping stones in water. The overall limitations can be depicted in a

re-entry corridor diagram (Figure 1.1).

An important parameter to assess the re-entry nature is the ballistic coefficient β,

β =
m

cDA

where m is the vehicle mass, cD is the drag coefficient, and A is the reference area used to calculate cD.
A lower β means a lower vehicle mass or higher drag/area, which generally results in less intense heating

and deceleration. Overall, there is a need to balance several, often competing requirements, mainly:

heating, deceleration, and landing precision and accuracy. To design a vehicle capable of performing a

successful re-entry, it is absolutely imperative that all the present physical phenomena are understood.

This makes it possible to quantify the aerothermal loads, through quantities such as lift coefficient, drag

coefficient, and heating fluxes, among many others, that serve as design parameters for the TPS and

structure. In the following section, the relevant physical phenomenon for re-entry vehicles is studied in

order to understand the main design challenges. First, the most relevant gasdynamic challenges are

explored in section 1.2 and the main design methodologies in section 1.3.
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Figure 1.1: Illustration of entry corridor [15]

1.2. Gasdynamic challenges for re-entry vehicles
The typical flow field and physical phenomena encountered change for every vehicle architecture. Although

some share similarities, this chapter goes into detail for each of them. A typical flow field around a capsule

is shown in Fig. 1.2. One of the main elements observed is the bow shock, which dissipates most of the

vehicle’s kinetic energy (95%− 99%) into the surrounding air, while the remaining one is transferred as

heat to the vehicle’s surface. On the leeward side, a series of shock and expansion waves develops,

whose exact structure depends on the angle of attack and the shape of the capsule. Furthermore, as is

characteristic in hypersonic flow, there is a thin shock layer on the windward side. Moreover, there are

secondary shock structures in the wake that can lead to unwanted heating.

Figure 1.2: Typical flow field around re-entry capsule [15]

Gliders and lifting body configurations also experience a thin, high-temperature, shock layer, as is

expected from the hypersonic regime. Moreover, there are phenomena that increase in significance with the

Mach number. As the hypersonic flow is slowed down by viscous effects, the kinetic energy is dissipated into

the surrounding air, causing a strong increase in the temperature. Considering a constant pressure in the

wall normal direction, it follows from the ideal gas equation ρ = p/RT that this results in a strong decrease

in density. This can cause the boundary layer to grow, displacing viscous interactions. Furthermore, wing
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structures cause highly curved shock waves that generate entropy layers, which can be thicker than the

boundary layer and can cover large parts of the vehicle. The phenomena can have significant effects on the

flow field, most notably adverse cross-flow, earlier boundary layer separation, and altered laminar-turbulent

transition points. Therefore, the flow properties close to the vehicle are not governed by viscous properties

exclusively but depend greatly on the leading edge design and configuration.

Furthermore, as NASA’s X-15A2 rocket-powered aircraft experiment showed, shock-shock interaction

can severely damage the vehicle’s structure. For example, an outer shock wave impinging on a local bow

shock forms a supersonic jet downstream of the interaction, generating extreme loads. Shocks can also

interact with the development of the boundary layer, creating strong local adverse pressure gradients,

leading to the growth of the boundary layer and the separation of the flow zones.

A typical flow field for a retro-propulsive vehicle is shown in Figure 1.3. One of the main elements is the

detached bow shock found upstream of the engine exhaust plume. This large plume forms a barrel shock

and Mach disk, which shields the vehicle from the high-energy incoming free stream. At high altitude, the

plumes from different engines can merge and interact with each other due to the low back pressure, which

can lead to backflow of hot gases and therefore areas of high heating.

Figure 1.3: Typical flow field for retro propulsive rocket [15]

Another important phenomenon present in reentry missions is Aerothermochemistry. Vehicles entering

the atmosphere are usually in the hypersonic regime, which is commonly defined as above M = 5. In this
environment, a bow shock forms, which causes the kinetic energy of the atmospheric gas to be dissipated

into thermal energy. This results in a steep increase of thermodynamic energy and collisional interactions

between particles, which then results in a series of chemical and thermodynamic processes. Mainly,

the kinetic energy excites the vibrational and rotational modes of molecules, which, eventually, causes

inter-nuclear bonds to break and dissociation to occur. This excitement also causes collisional processes

between molecules and atoms, which further excite electrons and cause the gas to radiate electromagnetic

energy as electrons decay into lower energetic states.

The purpose of this section is not to perform a detailed analysis on the aerothermochemistry; for that,

the following sources are provided [16] [17]. For now, it is sufficient to understand that there are several

phenomena that complicate the modeling methods and make these simulations particularly resource-

intensive.
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1.3. Design methodologies
There are two main approaches when it comes to characterizing the flow around reentry vehicles: Experi-

mental and numerical. Both come with a series of benefits and drawbacks. An ideal study would include

both approaches in a way that they complement each other. However, it is often not practical or feasible to

cover both areas, and compromises are often made. In order to better understand how to approach this

problem, the following section gives a brief overview of both experimental and numerical approaches.

1.3.1. Experimental methods
Experimental tests are often performed in wind tunnels and are therefore referred to as ’ground-based’

tests. The main challenge with this approach is the ability to simulate the desired flight conditions. There is

no single test facility capable of simulating all of the flight conditions a reentry vehicle encounters during a

mission [18]. Therefore, specific facilities are used to study a particular phenomenon or condition. The

effectiveness of simulating certain conditions can be evaluated through the use of similarity parameters,

which are values that describe the flow state. For low-enthalpy flows (below 2MJ/Kg), the Mach and

Reynolds numbers are the only relevant parameters. However, for high-enthalpy conditions, the Mach

number becomes increasingly irrelevant due to thermochemical phenomena such as dissociation and

ionization of the air that travels through strong shocks [19]. Therefore, other parameters are used to

describe the flow, specifically the flow velocity and the Damkohler number, which relates the vehicle body

length and the dissociation relaxation distance. There are cases in which matching all relevant criteria is

not feasible; therefore, engineering judgments need to be applied to interpret the results in a correct way.

Several types of ground-based facilities achieve different flight conditions and rely on different mecha-

nisms. A blowdown tunnel works by expanding flow coming from a high-pressure reservoir through a nozzle

into a low-pressure section, which can be ambient pressure or lower if a vacuum system is in place. This

provides a short test time but the ability to produce high Reynolds numbers as a result of high pressures.

Another drawback is the fact that the air gets cooled down as it expands, and therefore, in order to avoid

condensation, the operating temperature is often limited. This also means that Mach number similarity is

achieved with a lower velocity flow, which means lower enthalpy and stagnation temperatures relative to

flight conditions. This can be overcome by introducing an arc heater, but this introduces problems such as

electric erosion. In order to achieve higher enthalpy flow, shock or expansion tunnels can be used. This

facility typology uses shock waves in order to generate a region of high temperature and high pressure,

without sacrificing the flow velocity [15].

Overall, the primary limitation of experimental methods is their inability to replicate the full flight envelope,

ranging from low to high Mach numbers, low to high enthalpy conditions, and varying flow regimes. As a

result, multiple specialized tests are typically required, and engineering judgment is necessary to interpret

and correlate the results. Additionally, issues such as geometric scaling, insufficient flow enthalpy, and

short test durations constrain the extent to which ground-based facilities can accurately reproduce flight

conditions. These limitations are particularly critical in the design of hypersonic vehicles, where many

complex physical phenomena—such as strong shock interactions, chemical non-equilibrium, and turbulent

transition—occur simultaneously.

1.3.2. Numerical methods
The other main approach to studying reentry vehicles is numerical methods, mainly Computational Fluid

Dynamics (CFD). To apply this method, a consistent discretization scheme is used to transfer the governing

continuous partial differential equations (PDEs) to a discrete system of algebraic equations. Consistency

means that the discretization process can be reversed through a Taylor series expansion. In other words,

as the discretization becomes infinitely small, the discrete equations should approximate the continuous

PDEs. Then, a solver is used to approximate the solution of this system. This solver should be stable, in

other words, provide lower numerical errors as the solution process goes forward. Numerical methods

make it possible to study conditions impossible to replicate in ground-based testing; however, they come

with their own limitations, as this section will address.

There is a series of governing equations that can describe the flow field depending on the operating

conditions. The main parameter for this choice is the Knudsen number, which relates the mean free path

of the gas λ to the characteristic length scale of the problem, L.
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Kn =
λ

L

The Boltzmann equation is a nonlinear integro-differential equation for the 6-dimensional probability

density function of gas particles andmomentum and is theoretically valid for any Knudsen number. However,

since it models the evolution of the flow field through particle advection and binary collisions, they are

usually employed in low-density, rarefied conditions. Other methods, such as the Bhatnagar-Gross-Krook

(BGK) or Fokker-Planck, provide a more efficient solution for high-density flows. However, the most

important equations for aerothermal analysis of space vehicles are the Navier-Stokes equations, valid for

Knudsen numbers below an order of magnitude of 102.

Despite major advancements in computational power, there are still crucial challenges with CFD,

such as the quantification of physical modeling errors and discretization errors. Furthermore, the added

complexity of solving hypersonic flows introduces many limitations. For example, the high-temperature

gradients require grid spacing in the order of 10−6m. Furthermore, strong shocks can produce large

errors if not properly aligned with the grid, for example, the carbuncle phenomenon. Moreover, if the

thermodynamic and chemical relaxation rates are of a similar order of magnitude as fluid time scales,

additional transport equations and chemical non-equilibrium models need to be introduced.

Overall, numerical methods face important limitations when applied to the complex aerothermal envi-

ronment of atmospheric entry. These include uncertainties in physical models, namely for turbulence and

non-equilibrium thermochemistry, which often lack experimental validation. Furthermore, high-fidelity CFD

simulations are computationally expensive, making full trajectory and multi-parameter studies impractical.

Lastly, no single numerical model can accurately describe all flow regimes. Therefore, similar to the

experimental methods, engineering judgment is necessary to interpret the results.

1.3.3. Aerodynamic data bases
As explained in Section 1.2, reentry vehicles go through a series of different operating conditions charac-

terized by different Mach numbers, atmospheric densities, and physical phenomena. Understanding how

a vehicle behaves under these conditions is an integral part of the design phase of its various subsystems.

A common practice is to run a series of numerical simulations and experimental tests to cover the various

vehicle configurations and collect all this data in a single place, known as a database. This allows for a

complete understanding of the vehicle’s mission, which has an impact on other areas such as the structural,

thermal, and guidance systems. An example is presented by Bibb K et al (2011) [20] where an aerodynamic

database was created for the Orion Crew Module. The database provides force and moment coefficients

for a given velocity, altitude, and vehicle configuration. The data used was mainly obtained through CFD

tools, with over 1000 viscous, reacting gas chemistry simulations covering a range of Mach numbers from

2 to 37. The final database was used to design the vehicle trajectories, assess flight performance, and

predict the landing ellipse during flight operations.

Another is the database presented by Marwege A, et al (2024) [21] consisting of experimental data

for the landing burn of RETALT in the Vertical Free-Jet Facility Cologne at DLR in Cologne. The main

objective of this work was to analyze the subsonic retropropulsion flow fields. The main focus was on

characterizing the unsteady flow field through a series of high-speed schlieren videos and power spectral

density.

Ecker et al (2024) [22] presents an aerothermal database for the descent phase of the CALLISTO

vehicle. A series of CFD simulations was conducted to study the aerothermal loads present during the

landing approach corridor for different configurations of the vehicle’s aerodynamic surfaces. The purpose

of this work is to gain a deeper understanding of the thermal loads to design a proper thermal protection

system (TPS). In order to describe the landing phase, a large parameter space was needed (i.e., Mach

number, altitude, and angle of attack). For this reason, the database mainly consists of 2D computations,

but higher-fidelity 3D simulations were made on trajectory points where important phenomena take place,

especially those involving 3D flow effects.

The creation of aerodynamic databases involves the use of both experimental and numerical data. As

explained in the previous sections, these are time-intensive methods that represent the main bottleneck of

the design process. Therefore, efforts have been made to use statistical and probabilistic approaches to
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generate these databases. The work in [23] compares the performance of most state-of-the-art machine

learning models for the creation of an aerodynamic database for the Orion capsule [20]. They establish

that these methods indeed provide an overall reduction in the time and expertise needed. [24] focuses

on the use of multi-fidelity methods to fuse data from different sources. [25] uses structured covariance

neural networks to perform a similar task. These implementations show that surrogate models are an

effective and efficient way to generate aerodynamic databases, which allows for broader and more useful

conclusions compared to traditional methods [26]. In the next section, surrogate models will be explained

in more detail, and further applications will be presented.

1.4. Surrogate models
Surrogate models are approximations of more complex or higher-order relations. They map input data to

an output without knowing the actual relation. This type of model, like most machine learning architectures,

aims to generalize from a finite set of observed data. Surrogate models inherently have a lower accuracy

when compared to the real relation since they are approximations based on a finite set of data points;

however, they come with the advantage of reduced complexity and computational loads. The trade-off

between accuracy and computational time depends on the goals of each individual application. These

models have been widely used in a myriad of fields such as agriculture, finance, medicine, etc.

Often, the main task of a surrogate model is to perform regression, that is, to fit a function that describes

the trend of the data. The simplest example is linear regression (e.g, least squares), where a straight line

is used to approximate the target function [27]. This method, however, is often inadequate to describe the

nonlinearities present in most distributions. Nonlinear methods can be used to fit more complex distributions,

including polynomial regression, splines, radial basis functions, and many more. The following section

provides an overview of these methods and how they are currently used in the aerospace field.

1.4.1. Applications in aerospace
Surrogate models have proven to be a useful tool in the aerospace field as they can replace expensive

computations, mainly fluid flow analysis (i.e CFD) and optimization methods. A large field of this research

focuses on aerodynamic shape optimization. Surrogate-Based Optimization (SBO) tries to reduce the

number of evaluations of high-fidelity models, replacing them with either low-fidelity models or approxima-

tions of the high-fidelity models. The optimization of wings has been a popular problem to solve using

these methods. This research has been active since the 80s. However, only thanks to the increased

computational resources of recent years have these methods started to provide a viable solution. Some

studies focus on 2D airfoils and use a Support Vector Machine as a surrogate model. While [28] uses

a training set of 4000 points, [7] only uses 100, and both present methods that accurately predict the

aerodynamic coefficients of the airfoil. However, these studies are limited to simple 2D geometries in

subsonic and transonic configurations. The work in [29] compares 5 different machine learning algorithms

for the prediction of the lift-to-drag ratio. The algorithms used are Random Forest (RF), Gradient Boosting

Regression (GBR), Decision Tree Regressor (DTR), AdaBoost, and Linear Regression (LR). The study

used the Coefficient of Determination R2 and the MSE as indicators of performance. It was found that for

different training set sizes, different algorithms performed the best. A large number of studies use kriging

or Gaussian Process Regression for shape optimization in a wider range of test cases, including subsonic

[30][31][32] and hypersonic 3D geometries optimization [33]. This method uses significantly fewer data

points for the training process than the previously presented methods, as well as classic neural network

applications [34].

Another set of studies focuses entirely on predicting the aerodynamic coefficients of more complex

geometries. Yuxin Y et al. [35] explore the use of surrogate modeling for predicting a hypersonic lift body

aerodynamic performance. The study compares a Gaussian process regression, polynomial regressions,

and support vector regression to find that they perform similarly with large training sets, but with a training set

size below 40% of the dataset, the GPR outperforms the rest. [26] uses a different configuration of a GPR

to successfully predict various aerothermal quantities of a reentry vehicle. Other works implement the use

of Artificial Neural Network (ANN) architectures to make these predictions. Convolutional Neural Networks

have been widely used to predict flow field quantities from images. However, these are data-intensive

algorithms that perform poorly on small datasets [36] [37] [38].

Another area of research focuses on predicting the flow field rather than the global performance metrics.
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Most of these studies use a reduced order model (ROM) to simplify the complexity of the problem. Francés-

Belda V. et al (2024) [39] present a new method using ß-variational autoencoder (ß-VAE) to reduce the

dimension of the aerodynamic data to capture the most relevant features with fewer dimensions and then

uses Gaussian process regression to predict the pressure distribution over a 3D wing. The performance

indicators used include MAE, RMSE, and R2 score. This work is able to predict nonlinearities in the

pressure field due to shock waves in a transonic regime. Similar studies include [40] and [35], which uses

the proper orthogonal decomposition method as a ROM. Since the purpose of this work is to study the

macro aerodynamic performance of a reentry vehicle (i.e, Cl, Cd, and Cm), ROMs will not be studied.

From the literature studied, it is clear that when it comes to small training set sizes, the GPR outperforms

most methods. This result derives from the fact that you can inform a GP not only with the observations but

also the prior distribution through the kernel function. Data efficiency is especially important in hypersonic

aerodynamics, where simulations and experiments are particularly expensive. In fact, most works aiming

to make predictions for hypersonic vehicles use a GPR. Moreover, as [26][41] [42] show, implementing

a multi-output architecture can further reduce the amount of training points needed to make accurate

predictions. Therefore, this is the method that will be explored in this work.

1.5. Research Formulation
Following the previous literature review, the following research questions and research objective can be

derived.

To develop and assess the accuracy of a Gaussian process regression model that can predict

the aerodynamic performance of reentry vehicles, namely capsules and gliders, by performing

3D CFD simulations using the DLR TAU code.

Research Objective

How accurately can a Gaussian Process regression predict the aerodynamic performance of a

reentry vehicle?

Research Question 1

How do the results change for different vehicle architectures? How much does the accuracy

change? Do the covariance function and hyper-parameter need to be modified?

Research Question 2

To what degree can the number of simulations be reduced in order to build a representative

aerodynamic database?

Research Question 3



In this part, the theoretical background for the Gaussian Process is de-

scribed in Chapter 2. Namely, the mathematical framework is established

for the single- and multi-output architectures, along with details of imple-

mentation. Then, the theory behind the TAU numerical solver is described

in Chapter 3. Here, the numerical and physical assumptions are estab-

lished alongside details regarding the setup used to run the simulations for

the capsule and then for the glider.

Part II
Methodology

10



2
Gaussian Process Regression

2.1. Theoretical background
Gaussian Process (GP) models are a type of surrogate model that has been widely used in machine

learning applications. Their main use is non-linear regression, in other words, modeling observed data

by a function that is a non-linear combination of the model parameters and depends on one or more

independent variables. When coupled with a Bayesian framework, it can provide a powerful statistical

model that can not only make predictions but also estimate their uncertainty, unlike other methods such

as artificial neural networks (ANN). Another feature of this model is that it is non-parametric, which offers

more flexibility when working with highly dimensional problems, as there is no risk of over-fitting. A GP is

a generalization of multivariate Gaussian distributions; therefore, in order to understand it, we must first

address the mathematical foundations on which it is built.

Multivariate Gaussian distribution is a generalization of univariate Gaussian distributions to higher-

dimensional spaces. A vector X = [X1, ..., Xn] is said to have a multivariate Gaussian distribution if every
linear combination of its components has a univariate normal distribution. Furthermore, its probability

density function is given by:

p(x;µ,Σ) =
1

(2π)n/2 | Σ |1/2
exp(−1

2
(x− µ)TΣ−1(x− µ))

Which can simply be written as X ∼ N (µ,Σ), where µ is the mean and Σ is the covariance matrix. The

diagonal of Σ indicates the variance σ2
i of the i-th random variable. The off-diagonal elements σij indicate

the correlation between the i-th and the j-th random variable, which can assume values in the range [−1, 1],
where ±1 indicates the strongest possible correlation and 0 indicates no correlation. To illustrate the effect
of the covariance function, two different 2-dimensional examples with µ = 0 are shown in Figure 2.1.

11
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Figure 2.1: Two 2-dimensional Gaussian distributions. One the left a weakly correlated distribution with

covariance matrix Σ =
[

1 0.95
0.95 1

]
and one the right a strongly correlated one with Σ =

[
1 0.02

0.02 1

]
[43]

The distribution on the left has a covariance matrix Σ =
[

1 0.02
0.02 1

]
, meaning that x1 and x2 have a

correlation of 0.02, which implies a weak correlation. On the other hand, the covariance matrix Σ =[
1 0.95

0.95 1

]
, implying that x1 and x2 have a strong corelation of 0.95.

In order to extend this concept to higher dimensions, we introduce another representation of the problem

where the y-axis represents the value of a particular variable and the x-axis indicates the index of this

variable, as shown in Figure 2.2 for the example of the 2-dimensional case. In this view, sampling from a

highly correlated distribution will yield points that are close together, as seen in figure 2.3. This change of

view is called the ”kernel trick”, and it effectively introduces a feature space where correlation between

variables is translated as similar output values.

Figure 2.2: Illustration of the change of view introduced by the ”kernel trick” [44]
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Figure 2.3: Weak and strong correlation in the feature space introduced by the ”kernel trick” [43]

We can then introduce more variables, each less correlated to the first one, as shown in Figure 2.4 (left)

for 8 dimensions, where the correlation coefficients decrease progressively. Furthermore, the covariance

between two consecutive points is always high. This means that if we sample from this distribution, we will

obtain points that have a similar value if they are close together but very different values if they are far

away. This process can naturally be extended to infinitely many dimensions as shown in Figure 2.4 (right).

Figure 2.4: Arbitrary extension of the dimensions of a Gaussian distribution [43]

The process previously described alludes to why a GP can be described as an infinite-dimensional

multivariate Gaussian distribution, from which functions can be sampled. It is worth noting that a GP is

often called non-parametric, which is the same as having infinite parameters, as previously established.

Instead of trying to find the right parameters to describe some data distribution, a GP uses a covariance

function, also called a Kernel, and observations to fit some target distribution. In order to fully understand

this method, a more mathematical definition is now given. Formally, a GP is defined as a collection of

random variables, any finite number of which have a consistent Gaussian distribution. In the same way, a

Gaussian distribution is defined by its mean and variance, a GP is specified by its mean function m(x),
and covariance function k(x, x′). In this way, we can write a GP as:

f(x) ∼ GP(m(x), k(x, x′))

This definition implies a series of properties that follow from its Gaussian nature. These properties later

become fundamental when explaining how a GP can be used to make predictions and generalize data.

Assuming that a random variable follows a multivariate Gaussian distribution, it is possible to partition its

dimension into two sets: A,B. Then, the joint distribution can be written as:

p (f1, f2, ...,︸ ︷︷ ︸
fA

fs+1, fs+2, ..., fN︸ ︷︷ ︸
fB

) ∼ N (µ,K)
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Where,

µ =

[
µA

µB

]
,K =

[
KAA KAB

KBA KBB

]
Moreover, the marginal distribution can be written as:

p(fA,fB) ∼ N (µ,K)

p(fA) =

∫
fB

p(fA,fB)dfB = N (µA,KAA)

This important property means that even if a GP has infinitely many dimensions, we only need to represent

a finite number of them, making it computationally possible to perform this operation. Therefore, given

the available training data f and any (potentially infinite) number of test data f∗ that follow a (potentially

infinite) Gaussian distribution, p(f ,f∗) ∼ N (µ∞,K∞). The marginalization property allows us to deal only
with a finite mean and covariance function:

µ∞ =

[
µX

...

]
,K∞ =

[
KX ...

... ...

]
=⇒ p(f) = N (µX ,KX)

WhereX is the training inputs andKXX is the covariance matrix obtained by evaluating the covariance

function at all given inputs. Therefore, assuming a mean of zero for simplicity, the GP will have the following

joint Gaussian distribution: [
f

f∗

]
∼ N (0,

[
K K∗

K>
∗ K∗,∗

]
)

Where K∗ is the cross-variance matrix obtained by evaluating the function in pairs of training inputs X
and test inputs X∗, i.e

K∗ = k(X,X∗), K∗,∗ = k(X∗,X∗)

Where k(., .) is any given covariance function. Finally, in order to use a GP to make predictions, we

make use of the conditional property, which follows directly from the Gaussian distribution properties.

Assuming a training set X = [x1, x2, ..., xN ] and a GP prior f = [f1, ..,fN ] we can use it to condition the
function outputs of a GP in order to perform an inference for the function value at any input location x∗.

We do this using Bayes’ theorem of conditional probability to get:

p(f∗|f1, ..,fN ) = p(f(x∗)|f(x1), ..., f(xN )) ∼ N (K>
∗ K−1f ,K∗,∗ −K>

∗ K−1K∗)

Where µp = K>
∗ K−1f is called the predictive mean and Kp = K∗,∗ −K>

∗ K−1K∗ is the predictive

covariance. In this way, it is possible to extrapolate or interpolate new data based on the conditioning

through observations and prior functions. The example shown in Figure 2.4 uses a prior defined by a

covariance function that simply generates smooth functions as previously explained. This is known as the

radial basis function (RBF) (also known as the squared exponential kernel) defined as:

kRBF = σ2exp

(
− (x− x′)2

2l2

)

Where σ2 is the output variance, which can be simply treated as a scaling factor. Further, the indices

(x, x’) simply indicate two different variables in the domain, with this particular covariance function, it can
be seen that variables close together will return a value close to σ2 and distant values will return a value

close to zero. This essentially means that values close together will have a similar output value, effectively

making smooth functions. Furthermore, l is the length scale which basically indicates the length of the
fluctuations or the curves in the function as shown in Figure 2.5. σ and l are known as hyper-parameters,
which are modified to fit the desired data.

The RBF function is classified as a universal kernel since it is able to approximate an arbitrary continuous

target function on any compact subset of the input space [45]. Further, every function in its prior has
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Figure 2.5: Samples from GP with RBF kernel with two different length scales, on top l = 10 and on the
bottom l = 1

infinitely many derivatives and only has two parameters [46], making it a powerful and simple way to

approximate most distributions. Other than the RBF, there are a series of commonly used kernels that

have different properties, among them is the Rational Quadratic Kernel (RQ):

kRQ = σ2exp

(
1 +

(x− x′)2

2αl2

)−α

Where α is called the scale mixture parameter, which determines the relative weight of large-scale and

small-scale variations. It can be seen that if α → ∞, this kernel is identical to the RBF. The RQ kernel

is equivalent to adding together many RBFs with different length scales. Like the RBF, this covariance

function is able to approximate smooth functions, since a discontinuity or a ’kink’ would imply a sudden

change of the parameter l. Another kernel that stems from the RBF is the Matern kernel:

kM =
1

Γ(ν)2ν−1

(√
2ν

l
(x− x′)

)ν

Kν

(√
2ν

l
(x− x′)

)

Where Kν(·) is a modified Bessel function and Γ(·) is the gamma function with ν as a parameter

which controls the smoothness of the resulting function, as ν → ∞ the kernel becomes equivalent to

the RBF kernel. For more information about these covariance functions, see [47], Chapter 4. Moreover,

there are many other kernels that describe different types of data structures, such as periodicity, linear

trends, etc. These functions can be combined through multiplication and addition to describe complex,

higher-dimensional distributions. Multiplying kernels is essentially applying the AND operator, where the

resulting function will have a high value only if both of the components do as well. On the other hand,

adding kernels can be thought of as applying the OR operator.

The choice of kernel is relevant since it determines almost all the generalization properties of a GP

model. This choice depends on the specific data that is being approximated, and there exists no rigorous

method for choosing them. Some works present methods for automatically choosing a kernel to best fit the

provided data. For example, Zhao, S. et al (2024) [48] present an automatic kernel search algorithm along

with a hyper-parameter optimization strategy. Yuxin Y, et al (2023) [35] present a beam search approach

for automatic kernel construction for the prediction of the aerodynamic performance of lifting bodies.

2.2. Multi-output Gaussian Process
GPs are usually defined as having a single output; however, multiple outputs can be considered as

well. Furthermore, the relation between these outputs can be modeled, which is of special interest when

predicting multiple quantities that are linked by physical relations, like the drag, lift, and pitching momentum.

This is often referred to as ”multi-task” GP, or simply multi-output GPs (MOGPs). For a vector-valued

prediction, mapping this unknown relation becomes a multi-dimensional function f : RD 7→ RM , where D is
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the number of inputs, and M is the number of outputs in the case of M > 1. Correspondingly, the GP has

a mean function µ : RD 7→ RM . Analogously, the covariance matrix becomes a block structured matrix

K ∈ SMN×MN
+ , where N is the number of samples. The same producer for the scalar-output framework

described in section 2.1 can be used to obtain a posterior predictive mean and covariance. However, in

this multi-output setting, the posterior prediction can potentially be improved if the correlation between the

output target dimensions is incorporated into the structure of the GP kernel.

A popular and simple way to implement the multi-output architecture is through a method called linear

model of coregionalization (LMC) [49]. In LMC a multi-output function f(·) is constructed from a linear

transformation W ∈ RP×L of L independent functions gl(·) as:

f(x) = Wg(x)

Where g(x) = {gl(x)}Ll=1 and gl(·) ∼ GP(0, kl(·, ·′) and with f(x) ∈ RP and g(x) ∈ RL. This definition

implies that the covariance becomes:

k({x, p}, {x′, p′}) =
L∑

l=1

Wplkl(x,x
′)Wp′l

.

One of the main drawbacks of GP is the computational cost, which scales with the number of training

points N as O(N3) over time. For MOGPs, there is the additional cost of calculating the covariance

between all outputs P , which results in an O(N3P 3) scaling. However, there have been developments in
inducing variable approximations [50] that have significantly reduced the computational cost of MOGP.

The use of MOGP is a strategy that provides an additional level of data efficiency by leveraging the

correlation between outputs. Essentially, data from one output contributes to the learning of others through

the shared covariance structure, enabling more efficient use of available data and improved generalization.

In the case of an aerodynamic database, the CL, CD, Cm are all related at a physical level as they are all

governed by the same underlying flow phenomena. The usage of this method will therefore be explored to

determine its efficacy in the particular context of this thesis.

2.3. Active Sampling
The data used to train a surrogate model directly affects its accuracy, efficiency, and generalization

capabilities. Poor sampling can lead to models that fail to capture key behaviors of the underlying system,

while optimal sampling improves model fidelity with fewer data points [51]. Consequently, the method used

to select this data plays a critical role in the development process—nearly as important as the choice of

the surrogate model itself.

Monte Carlo sampling is a simple, unbiased approach in which data points are selected purely at random.

While it is inexpensive and easy to implement, it is distribution-agnostic and often results in uneven coverage

of the input space, potentially leaving large gaps or clusters. To address this, quasi-random sampling

methods have been developed to promote more uniform coverage. Examples include Latin Hypercube

(LHC) sampling and Sobol sequences, which aim to generate samples with low discrepancy—that is,

samples that fill the space as uniformly as possible [52] as seen on Figure 2.6.

Low-discrepancy sampling reduces the variation between the empirical distribution of sampled points

and the ideal uniform distribution. This enhanced coverage improves the surrogate model’s ability to

approximate the system across the entire domain, often leading to faster convergence and better predictive

performance with fewer samples than standard random sampling [53].

In contrast, active sampling strategies select points based on their estimated value in improving model

accuracy. These methods have been widely shown to outperform random sampling [54] [55], especially

when data is limited or expensive to obtain. Unlike the Monte Carlo approach, active sampling queries the

current state of the model to guide the sampling decisions. Common criteria include uncertainty sampling,

where the points are chosen based on the associated confidence. This is particularly useful for GP since

every prediction comes with an uncertainty as well [56]. Another popular approach is committee-based

sampling [57], where a series of different surrogate models, called a committee, make predictions for the
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(a) Random (b) LHC (c) Sobol

Figure 2.6: Distributions drawn from different sampling methods

same data set, and the point where the predictions differ the most is chosen as the most informative one.

This method is based on the assumption that the point where several methods provide a very different

prediction is the one where there is the highest uncertainty and therefore needs to be sampled. One

drawback is that already trained models are required with a certain level of accuracy since their predictions

will determine the next sample.

One of the main objectives of this thesis is to build a database as efficiently as possible; therefore,

exploring active sampling techniques is of great interest since they aim to maximize information gain. By

choosing the most informative points as opposed to random ones, the surrogate model can more quickly

learn trends and make generalizations. Furthermore, this is of particular interest in the field of hypersonic

aerodynamics, where data points are obtained through expensive CFD or experimental methods.

2.4. Python implementation
In order to implement these methods for creating surrogate models, Python was used, where a series

of libraries exist that make the development of GPs more straightforward. Firstly, scikit-learn was used

to initially implement a GP since it allows quick modification of the kernel, which was useful in the initial

exploration phase of the project. Further, it comes with powerful optimization algorithms to find the best

hyperparameters; by default, a Limited-memory BFGS (L-BFGS) optimizer is used. In order to implement

the multi-output architecture, the library GPflow was used, which already comes with an implementation

for the LMC.



3
CFD model and simulation setup

3.1. CFD model
To obtain the data required for training and eventually validating the GP, as well as to construct the initial

database, a series of CFD simulations were conducted. To obtain data that is an accurate representation

of the problem being studied, an appropriate solver needs to be used. To achieve this, the DLR-TAU

code was used, a second-order finite-volume CFD solver capable of performing viscous and inviscid flow

simulations for complex geometries covering regimes from low subsonic up to hypersonic flow. Despite

considering reentry vehicles which are normally in the rarefied regime (Kn>0.1), this study only looks at

the lower altitudes of the trajectory, as this is where the aerodynamic forces play the most significant role.

TAU includes a comprehensive range of Reynolds-averaged Navier–Stokes (RANS) turbulence models.

By default, the Spalart-Allmaras one-equation model is used, which is known to be numerically robust

and able to cover a wide range of applications. Further, the model provides a good compromise between

accuracy and numerical efficiency and is particularly suited for flows with strong shocks [58]. Another

consideration to be made when solving hypersonic problems is the chemically reacting high-enthalpy flow.

In order to model this, the Gupta reaction mechanism for air flow was implemented [59]. Considering a

mixture of compressible ideal reacting gases, the Navier-Stokes equations in their integral form (following

notation from [60]) can be written as:

∂

∂t

∫
V

UdV +

∫
S

FEundS =

∫
S

FNSndS +

∫
V

QdV

Where the vector of the conservative variables for thermal equilibrium is:

U = (ρS , ρu
T , ρE)T

The matrix of inviscid (Euler) fluxes is:

FEu =

ρSuT

ρu uT

ρEuT

+

 0

pI

puT


And the matrix of viscous (Navier-Stokes) fluxes is:

FNS =


(
µ

Sc
)∇T ρS

ρ
P

κ∇TT + (
µ

Sc
)
∑

S hS∇T ρS
ρ

+ (P u)T


The diffusion flux, ρSu

d
S , for species S is modeled using Fick’s law using an averaged diffusion coefficient

D for all species using the viscosity µ and the Schmidt number Sc:

18
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ρSu
d
S = −ρD∇(

ρS
ρ
) = −(

µ

Sc
)∇ρS

ρ

The viscous stress tensor P is modeled using the Boussinesq approximation:

P = µ[∇ uT + (∇ uT )T ]− 2

3
µ(∇Tu)I

Lastly, the source vector Q only includes the chemical sources from the reactions ωS

Q =

ωS

0

0


In order to model the chemical reactions taking place, the transport equations describing the evolution

of the individual species, S, need to be solved, and the chemical source term, which determines the rate of
production and destruction of a species, needs to be computed. Chemical sources ωs, are created by a

series of chemical reactions involving the species XS and the stoichiometric coefficients αS and βS . A

chemical source term ωS can be calculated using the law of mass action by summation over all present

reactions r:

ωS = MS

∑
r

(βr
S − αr

S)[k
f
r

∏
S

(nS)
αr

S − kbr
∏
S

(nS)
βr
S ], where nS =

ρS
MS

Where the forward reaction rate is obtained from the modified Arrhenius law:

kfr = (afr )(
T

1K
)exp(−cfr

T
)

The backwards reaction rate is obtained from the equilibrium constant:

kbr =
kfr
Keq

r

Where the equilibrium constant is computed from the partition functions of the involved species:

Keq
r =

∏
S

(
QS

V NA
)β

r
S−αr

S

Regarding the numerical solution procedure, the solver uses an edge-based dual-cell approach based

on a vertex-centered scheme. The primary grid consists of tetrahedra, prisms, hexahedra, and pyramids.

This grid is used to store the flow quantities. To implement the final volume discretization, a dual-grid cell

is constructed around each vertex of the primary grid, as shown in Figure 3.1. We see the dual cell (in

grey) of volume Vi and surface Si constructed around point PL. This hybrid structured/unstructured grid

facilitates the analysis of complex geometries and is optimized for the application of massively parallel

HPC systems.
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Figure 3.1: Schematic of dual cell structure in the TAU code [60]

3.2. Simulation setup
The vehicles chosen for this work are the Stardust capsule [61] and the X-38 CRV lifting body. There exists

ample literature characterizing the aerodynamic performance of these vehicles, which is important for the

validation of the CFD simulations and eventually for the surrogate model. Moreover, the geometries of

these vehicles are widely available, which simplifies the development process. Furthermore, by considering

a glider and a capsule, we can study very different architectures of reentry vehicles and can therefore

analyze how the surrogate model behaves for different operating conditions and physical phenomena,

crucial to assess the robustness.

3.2.1. Geometries and meshing
The geometry for the capsule was obtained from [62] and is shown in Figure 3.2. These measurements

were used to create a 3D model of the vehicle using CAD, which was later used to generate a mesh

(figure 3.3) using the Centaur software. Since the vehicle is symmetrical, only half of it was used for the

CFD simulations in order to reduce the computational time. Furthermore, for the field around the vehicle,

the area where the bow shock was expected was refined (figure 3.4). This finer area was made large

enough so that the shock would be captured for different angles of attack. Since the vehicle is symmetric

and we are not considering roll angles, it was possible to simulate only half of the geometry to reduce

computational time. The final mesh has 621,467 cells.

Figure 3.2: Stardust geometry [62]

The geometry for the X-38 was provided by the DLR in Göttingen, as they had previously worked on

the original vehicle in the 90s. However, the provided CAD model did not include the flaps, which had to

be modeled using reference pictures and manually inserted into the final geometry. This model was then

meshed (figure 3.6) using Centaur. The flap deflection angles were chosen in a way to cover all possible

operational conditions. 3 flap angles are considered: 0, 10, and 20 degrees. Similarly to the capsule, the
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Figure 3.3: Meshed surface of the Stardust capsule

Figure 3.4: Mesh around the field of the Stardust capsule
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Figure 3.5: Overview of the X-38 vehicle

Figure 3.6: Mesh of the field around the X-38

vehicle is symmetric, and no roll angle is considered; therefore, only half of the model is simulated. This

also means symmetry in the field of motion. Moreover, the field mesh was refined to capture the bow

shock at different angles of attack as seen in Figure 3.6. The final mesh has 1,286,291 cells.

3.2.2. Numerical setup
The vehicle surfaces are modeled as isothermal walls with a constant temperature of 600K. As a thermal

study of the vehicles is not the main focus of this work, only one wall temperature was considered.

The reference values to define each trajectory point are given by a pressure value, Mach number, and

temperature. An upwind method is used for the inviscid flux discretization along the AUSMDV flux vector

splitting scheme.



In this part, the results of the CFD simulations and the GP are discussed

for each vehicle. The main focus when analyzing the CFD simulation is to

validate the results by comparing our data with other published works; this

way, we can be sure that our setup provides accurate results. Moreover, we

then examine the capability of the GP to predict new points, emphasizing

accuracy and uncertainty quantification. Firstly, we look at the capsule in

Chapter 4 and then the glider in Chapter 5.

Part III
Discussion of results

23



4
Capsule

4.1. CFD results
In order to validate the simulation pipeline, we compared our results to existing literature. A study by

NASA [62] performed a CFD campaign for the reentry phase of the Stardust capsule. They report the

aerodynamic coefficients at different trajectory points, shown in Table 4.1, for angles of attack (AoA)

0◦, 5◦ and 10◦. In order to compare our simulation results, we used the same reference geometry and
solver settings. In their study, NASA uses the Langley Aerothermodynamics Upwind Relaxation Algorithm

(LAURA), which implements a comparable physical model and numerical setup to TAU. LAURA is an

upwind-biased, point-implicit relaxation algorithm code for numerically solving the Navier-Stokes equations

for three-dimensional, viscous hypersonic flows [61]. In order to remain in the continuum regime, the

highest trajectory point considered was at 50.63 km. A comparison of the results obtained with both solvers

is shown in Tables 4.2 and 4.3 using the relative error (ReE) as a performance parameter. Note that for 0

degrees, no lift or momentum is generated since the capsule is symmetric.

Table 4.1: Stardust trajectory points

Altitude (Km) Mach

83.7 24.7

68.96 17.1

58.7 12.2

50.63 24.7

46.54 17.1

45.75 12.2

44.44 10.5

43.24 8.5

41.6 7.15

Table 4.2: Result comparison for AoA = 0◦

Altitude (Km) CD (NASA) CD (TAU) ReE (%)

50.63 1.482 1.430 3.503

46.54 1.494 1.451 2.863

45.75 1.499 1.468 2.078

44.44 1.515 1.493 1.464

43.24 1.51 1.490 1.322

41.6 1.506 1.482 1.586

24
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Table 4.3: Result comparison for AoA = 5◦

Altitude (Km) CD (NASA) CD (TAU) ReE (%) CL (NASA) CL (TAU) ReE (%)

50.63 1.471 1.418 3.557 0.043 0.046 5.857

46.54 1.481 1.438 2.853 0.0445 0.045 1.794

45.75 1.489 1.451 2.528 0.045 0.042 5.211

44.44 1.498 1.461 2.501 0.041 0.032 20.910

43.24 1.496 1.457 2.624 0.030 0.025 18.802

41.6 1.477 1.453 1.595 0.023 0.021 8.922

The only cases with large errors are the lowest three trajectory points when considering the lift coefficient.

However, for Mach below 12, the authors of [62] assume chemical equilibrium, while this work models the

chemical effects; therefore, discrepancies for this regime are expected. Moreover, for blunt reentry bodies,

the lift is more sensitive to small differences in the flow field, geometry, meshing, and boundary conditions.

This is because the lift force arises primarily from asymmetries in the pressure distribution over the body,

especially between the windward and leeward sides [63]. In contrast, the drag force is mainly influenced

by symmetric pressure loads, such as those on the forebody and base, making it relatively less sensitive

to small-scale flow discrepancies. Overall, we can see that the results are very similar and conclude that

our simulation was set up correctly.

We further examine the flow field to determine whether the expected physical phenomena are present.

Figure 4.1 shows the effect of the angle of attack (AoA) at the highest point of the trajectory. A strong

bow shock is observed, generated by the blunt shape of the capsule, along with a thin shock layer on

the windward side, both of which become increasingly skewed as the AoA increases. Additionally, the

sonic line (shown in white) shifts toward the shoulder region, consistent with observations in [15, 62]. This

phenomenon correlates with the notable decrease in the lift force coefficient for Mach numbers below

12, as shown in Table 4.3. Furthermore, the region of highest pressure coefficient (Cp) becomes more

concentrated and exhibits steeper gradients at higher AoA. The stagnation Cp consistently remains around

1.9, as expected for this type of vehicle [64]. Regarding the effect of Mach number (Figure 4.2), the shock

stand-off distance decreases with increasing flow speed, while the overall pressure distribution and range

remain largely unchanged.

(a) α = 0◦ (b) α = 5◦ (c) α = 10◦

Figure 4.1: Effect of the AoA (α) on the flow field around the Stardust capsule at M = 24.7. Sonic line
shown in white
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(a) M=7.15 (b) M=10.5 (c) M=24.7

Figure 4.2: Freestream Mach number effect on the flow field around the Stardust capsule at α = 5◦

When visualizing the velocity divergence in figure 4.3, we can further observe a system of expansion

and recompression waves on the leeward side. The velocity divergence allows us to characterize the

waves present in the field. When this quantity is negative, there is a compression wave (a shock), and when

it is positive, there is an expansion. Regions of hot gas form between these secondary shock structures

and heat the wake, as seen in Figure 4.4, where we further see the wake and stagnation temperature

increasing with the Mach number. Overall, the highest temperatures are found in the stagnation area. This

phenomenon was also observed for the Mars Pathfinder mission [65] and the Viking Lander [66]. Figure

4.5 further shows areas of recirculation in the base through streamlines, which are not symmetrical as

expected for an AoA of 10◦.

Figure 4.3: Divergence of the velocity field
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(a) M=7.15 (b) M=10.5 (c) M=24.7

Figure 4.4: Effect of Mach number on the temperature field

Figure 4.5: Field Mach number, surface pressure coefficient and streamlines colored by temperature for

the Stardust capsule at 10◦ at M=7.15

4.2. GP results
4.2.1. Single output
This section presents the application of a GP pipeline described in Section 2 to predict the aerodynamic

coefficients of the Stardust capsule. The capsule was the first test case for the implementation and

validation of the Gaussian Process. This was done since this vehicle doesn’t have any control surfaces;

thus, an altitude h, velocity v, and angle of attack α are enough to describe a database point. The input data

for the GP is therefore a 3-dimensional array xi = [hi, vi, αi]. The objective is to construct an aerodynamic
database with the least amount of points possible. In [26], a GP is developed to predict the aerodynamic

performance of a reentry vehicle based on the same 3 parameters. In that study, the training data set is

gradually increased, specifically the number of points is N = 10, 20, 30, 40, and 45, where 5 points are

kept for validation. It was found that for N ≥ 30, no significant improvements were found; therefore, it was
determined to use 32 points as an initial baseline for the database. The distribution of these points was

obtained using a Latin-hypercube (LHC) sampling scheme. The initial database is shown in 4.6. Using

the TAU code, simulations were run for 32 points in order to obtain the aerodynamic coefficients, namely

CD, CL and Cm.
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Figure 4.6: Initial database generated with LHC sampling technique

A Gaussian Process (GP) surrogate model was first trained to predict the drag coefficient. Prior to

training, the input parameters were normalized, a standard preprocessing practice when using GPs (and

surrogate models in general). This normalization is essential for improving the stability and efficiency of

hyperparameter optimization during model fitting [67, 68].

In practice, input variables often span different ranges or units, which can distort the GP’s perception

of the geometry of the input space. Without normalization, the kernel (or covariance) function may

assign inappropriate length scales to input dimensions, leading to skewed modeling assumptions, slower

convergence of the marginal likelihood optimizer, and the risk of converging to poor local minima [47, 69].

Normalizing the inputs ensures that all features are treated on a consistent scale, allowing the optimizer to

explore the hyperparameter space more effectively and improving the overall predictive performance of

the surrogate model.

There was no rigorous process to choose the kernel, as developing or implementing an automatic kernel

discovery tool was determined to be outside the scope of this work. Therefore, several combinations of

kernels were manually tested until satisfactory results were obtained. In order to measure the performance

of the model, a K-fold cross-validation metric was employed, a statistical technique used to evaluate the

performance and generalization ability of a model on unseen data. It consists of splitting the data into K

equal parts (folds), using one of them for validation and the remaining K-1 folds as a training set. In this

case, a 4-fold cross validation was implemented, which yielded a 0.37% mean relative error (MRE). The

kernel function that provided this result is the following:

k = RBF (lRBF ) +RQ(α = 0.521, l = 1e+ 05) +Matern(l = 249, ν = 1.5) (4.1)

Where lRBF is an array whose entries correspond to the input dimensions’ length scales (lRBF =
[lh, lv, lα]), while the other two kernels have the same hyperparameters for each dimension. For comparison,
if the covariance function was composed only of the Matern kernel (similar to the implementation in [26]),

the MRE is 0.702%. Similarly, only including the RQ kernel, the MRE is 0.539%, and only including the

RBF yields 0.873%. Overall, all kernels provide accurate predictions and the MRE is always kept under 1%.

In fact, all kernels are variations of the RBF, and when looking at sample functions drawn from each case,

the result is very similar, as seen in Figure 4.7 for the dimension input corresponding to the AoA. All three

kernels produce smooth functions suitable for predicting drag curves. One reason that the combination of

the three kernels performs better than any individual one might be the fact that, in this context, the addition

serves as a OR operator, where the value of the resulting kernel is high if any of the constituting functions

is high as well, possibly making the kernel more sensitive and able to capture more nuances.
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(a) Kernel 4.1 (b) Matern (c) RBF

Figure 4.7: Sample of functions using RBF derivative kernels as priors

When considering a kernel from a different family, the results are very different. For example, when

choosing a periodic kernel, also called ExpSinSquared, defined as k = exp(−2sin2(π(x− x′)/p)

l
) (where

p is a preiodiciy parameter), the MRE jumps to around 50%. This is because we are trying to approximate

non-periodic data with a periodic function, as seen from the function’s samples in Figure 4.8.

Figure 4.8: Samples using the ExpSineSquared covariance function as prior

With the normalization inverted, the optimized length scales are shown in Table 4.4. It can be seen

that the length scales for the altitude and the velocity are similar to the range of the training data, whereas

for the angle of attack, the length scale is smaller than the range of the training data. This result is also

found in [26] and indicates that the aerodynamic coefficients are more sensitive to the angle of attack than

to the other two inputs (altitude and velocity). This is consistent with the physics being modeled.

Table 4.4: Optimized length scales of the RBF kernel for drag prediction

lh (km) lv (m/s) lα (deg)

75.6 1330 8

When it comes to predicting the lift coefficient, a different GP was trained. Obtaining an optimal kernel

in this case was a more challenging task, and the final performance is below that of the drag coefficient

prediction. Performing a 4-fold cross validation, an MRE of 12.3% was obtained. One reason causing

this could be that lift is more sensitive to flow asymmetries and will therefore see larger changes than the

drag for small changes in AoA and trajectory points, overall making it a more difficult distribution to model.

Similar results were found in [70] and [29]. The kernel that provided the best results for the lift prediction is

defined as follows:

k = RBF (lRBF ) +RQ(α = 0.313, l = 3.56e+ 05) +Matern(l = 1.33e+ 0.3, ν = 1) (4.2)
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The optimized values for the length scales of the RBF component are shown in Table 4.5. Using

the same reasoning as before, we observe that the lift has higher sensitivity to the AoA and the velocity

compared to the drag, which is again consistent with the physical model of a blunt body.

Table 4.5: Optimized length scales of the RBF kernel for lift prediction

lh (km) lv (m/s) lα (deg)

86 843 1.7

In order to further validate the model, emphasis is now placed on more realistic and probable data points.

To do this, the GP was tested on the actual trajectory points provided by [62]. Until now the performance

was evaluated on the database generated with the LHS, which effectively covers the parameter domain,

but fails to assess if the points are realistic for a reentry mission (e.g. high mach, low altitude). Measuring

the error on more physically realistic points might give a more insightful perspective of how this tool could

be used together with a trajectory planning tool, as most of the points considered will be within a realistic

trajectory. The results, along with the relative error for all trajectory points, are found in Appendix A and

plotted in Figures 4.9 and 4.10. We observe that when considering only trajectory points, the prediction

for the drag remains very accurate, while the prediction for the lift improves greatly. In this test, the drag

prediction presents an MRE of 0.2% and the lift of 2.29%. Therefore, we can conclude that non-physical

trajectories, for example, high velocity low altitude conditions, make the problem harder to predict and

generalize for the GP. Further, a normal reentry trajectory presents a smooth decrease in both velocity

and height, which is easier to model.

The performance of the method can further be analyzed by looking at the confidence interval of the

predictions. Overall, we see that most test points fall within the 95% confidence interval and are generally

near the mean prediction, and as expected, the uncertainty grows in the extremes where we perform

out-of-distribution predictions. For the first 3 trajectory points (Figures 4.9a, 4.9b, 4.9c) the drag prediction

uncertainty is relatively small compared to the last 3 (Figures 4.9d, 4.9e, 4.9f), where it grows notably,

specially for the last one. This result tells us that the GP is less certain of the prediction for higher altitude

and velocity trajectory points. An explanation could be that the database was constructed in a quasi-random

manner, under-representing this region. Further, at higher altitudes the aerodynamic forces are smaller,

which might increase the difficulty of modeling them.

For the lift curve prediction shown in 4.10, it can also be seen that most points fall within the 95%
confidence interval and are close to the mean prediction. Unlike the drag, the uncertainty stays constant for

all trajectory points. Moreover, the mean prediction is not a smooth curve but has some kinks, especially for

the lower points in figure 4.10a and 4.10b. This might be a case of overfitting, where the algorithm prefers

to fit the observed points, rather than generalize the overall trend, which is still a problem for Bayesian

inference methods like GPs [47]. In this case, using a more generic kernel with fewer hyperparameters

could provide smoother predictions.
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(a) M = 7.15, H = 41.6 Km (b) M = 8.5, H = 43.24 Km (c) M = 10.5, H = 44.44 Km

(d) M = 12.2, H = 45.75 Km (e) M = 17.1, H = 46.54 Km (f) M = 24.7, H = 50.63 Km

Figure 4.9: Drag polar predictions for 6 validation trajectory points

(a) M = 7.15, H = 41.6 Km (b) M = 8.5, H = 43.24 Km (c) M = 10.5, H = 44.44 Km

(d) M = 12.2, H = 45.75 Km (e) M = 17.1, H = 46.54 Km (f) M = 24.7, H = 50.63 Km

Figure 4.10: Lift polar predictions for 6 validation trajectory points
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4.2.2. Active sampling
The initial database was constructed using the Latin Hypercube Sampling (LHS) method to provide a

rapid and space-filling coverage of the input parameter space. However, while LHS is a quasi-random

sampling scheme that ensures uniform marginal distributions, it has certain limitations—most notably

its model-agnostic nature and its inability to incrementally refine an existing sample distribution without

compromising space-filling properties. In this section, we explore methods for sampling optimal points to

expand our database. Mainly, we explore the use of committee-based sampling and uncertainty sampling.

To implement the committee-based sampling, two separate committees were constructed, each com-

posed of two Gaussian Process (GP) models with different kernels (summarized in table 4.6). To quantify

model disagreement in the committee-based approach, metrics such as entropy and Kullback-Leibler (KL)

divergence are commonly used [71]. In this case, the element-wise KL divergence was used, defined as:

kl_div(x, y) =


x log(x/y)− x+ y x > 0, y > 0

y x = 0, y ≥ 0

∞ otherwise

Table 4.6: Committee definition

Committee Kernel 1 Kernel 2

A RQ Matern

B RBF RQ

In parallel, we employ a second strategy, leveraging the inherent uncertainty estimates provided by

Gaussian Processes. In this greedy uncertainty (GU) method, the next sampling point is simply chosen as

the one with the highest predicted variance. This method is straightforward to implement and does not

require multiple models.

We therefore compare the performance of these methods to determine the best one. As an initial

database for all methods, the last 6 trajectory points from section 4.1 are used. This was done to simulate

a case with an extremely small database. In order to assess the performance, the same GP was trained

with the points determined by the 3 different active sampling strategies, and its uncertainty distribution is

used as a performance indicator. This GP was kept constant in order to evaluate the performance of the

point distribution only. Since this was the initial test for any active sampling method, the angle of attack

was fixed to 5 degrees, and only the drag coefficient was studied in order to simplify the problem and

understand the performance of each method more clearly. This procedure was very time-consuming as

we had to wait for the results of the previous simulation to determine the next sampling point; therefore,

after 8 iterations, the process was stopped. The final databases provided by the different methods are

shown in Figure 4.11.

Generally, all three methods chose points near the extremes; however, committee B does this to a

lesser degree, going further inside the domain and being the only one to choose a point within the trajectory.

It is also worth noting that while the committee A and the greedy uncertainty method seem to choose

entirely points within the limit of the domain, the GU method prioritizes extremes on the velocity domain

(Figure 4.11a), while committee A does so for the altitude domain (Figure 4.11b). The mean uncertainty

for each method at different steps is shown in Figure 4.12. Overall, we see that the committee B and the

GU approach provide similar results, outperforming committee A. Overall, the GU method provides a more

constant performance, constantly decreasing the uncertainty.
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(a) Greedy uncertainty method (b) Committee A (c) Committee B

Figure 4.11: Databases generated with 3 different methods. In blue the initial database, in red the added

points for each method

Figure 4.12: Mean uncertainty evolution of successive steps for different sampling methods

Furthermore, we look at the distribution of the uncertainty of a GP trained with the different databases

obtained, shown in Figures 4.13 - 4.15. Firstly, it is interesting to note that the choice of points greatly

influences the distribution of the uncertainty. As expected, the uncertainty is the lowest on the points

belonging to the database. We can see that when the sampling method covers a wide range of the vertical

axis (Figure 4.11a), the uncertainty spreads horizontally (Figure 4.13). Analogously, when the database

covers much of the horizontal axis (Figure 4.11c), the uncertainty spreads vertically (Figure 4.15). However,

comparing the database of committee A and committee B, one would expect similar performances, as the

point distribution is similar overall; however, as previously stated, committee B far outperforms committee

A. We can see that for committee A, the uncertainty spreads more evenly in all directions from each data

point, but with less intensity, leaving large gaps of high uncertainty overall, performing worse.
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Figure 4.13: Uncertainty distribution for data base generated with the GU method

Figure 4.14: Uncertainty distribution for data base generated with the committee A
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Figure 4.15: Uncertainty distribution for data base generated with the committee B

In general, we see that the 3 different methods provide different databases, which further generate

different uncertainty distributions. The greedy uncertainty method, which chooses points on the extremes

of the velocity domain as most informative, seems to reduce the mean uncertainty the most, and provides

a more even uncertainty distribution.

4.2.3. Multi-output GP
In this section, we explore the implementation of the multi-output GP trained for the capsule. The idea

behind this method, as stated in section 2.2, is to learn the relationship between the predicted outputs to

further strengthen the accuracy of the GP. For this test, the linear coregionalization method (LCM) was

implemented using the GPflow Python library [42]. LCM, as opposed to other MOGP implementations,

allows each output to have its own hyperparameters, which theoretically can enable simulation predictions

for vastly different distributions. Since the purpose of this section is only to explore the possible benefits of

an MOGP compared to a single-output GP, parameters like the inducing variables will not be explored.

Furthermore, the library used to implement the multi-output architecture was different from the one that

produced the results of the single-output GP in section 4.2.1. Therefore, direct comparison to those results

is not entirely possible. The main difference is that GPflow allows for less control when defining the kernel

function, while scikit-learn provides a wider range of functions and parameters to choose from. This causes

a single-output GP trained with scikit-learn to outperform one trained with GPflow. The purpose of this

section is to analyze how the performance of a GP changes when increasing the number of outputs, which

was tested by initially predicting only the CD, then predicting the CL and CD contemporarily, and finally

predicting CM as well. The method was trained with the database shown in Figure 4.6 and validated using

the trajectory points previously used to validate the single-output GP.

We first look at the drag prediction, where results are shown in Table 4.7. It can be seen that for all

angles of attack, increasing the number of outputs from 1 (CD) to 2 (CD and CL) provided an improvement

in the accuracy of the drag prediction, showing that it is beneficial to predict 2 quantities simultaneously.

This proved that the LCM is able to learn the relation between the lift and drag and improve the predictions.

However, when adding the Cm to the outputs of the GP, little improvement was found for angles of attack

0 and 5 degrees, and a decrease in accuracy was found for 10 degrees. This was an unexpected result as

the momentum coefficient is clearly physically related to the other two quantities and should provide more

information about the underlying equations behind the aerodynamic performance of the capsule. This

test was repeated several times with different settings and kernels, but the results were always similar;

therefore, the results seem to show that the CM is not always beneficial for the drag prediction. A similar

result was found when an MOGP was trained to predict CD, CL, and L/D. In this case, the third output
didn’t provide any improvement for the prediction. However, this is expected since it is a linear combination

of the other outputs and is therefore not informative. The addition of the Cm should be informative, therefore
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a possible explanation is that the complexity of the relation between Cm and the other two coefficients is

not well described by the available database.

Furthermore, the performance of the lift prediction shown in Table 4.8 does not show a clear trend. For

5 degrees, the performance between 1 and 2 outputs is almost identical, worsening slightly, and improving

with the third output. For 10 degrees, the trend is similar to the drag prediction; 2 outputs are beneficial,

but 3 are not. However, unlike previously, the final result is worse than the single output result.

MRe (%) of CD prediction

1 Output 2 Outputs 3 Outputs

0◦ 0.40746825262376 0.317470041081502 0.312670809563351

5◦ 0.171002683479302 0.160746422877557 0.150537862896209

10◦ 0.71066743182376 0.528243808866083 0.542288067771018

Table 4.7: Mean relative error for the prediction of the drag coefficient for different angles of attack and

number of outputs of the GP

MRe (%) of CL prediction

1 Output 2 Outputs 3 Outputs

5◦ 7.61444934477191 7.67928081189179 5.47788479291089

10◦ 3.37910623176539 2.80417209596946 3.82705219815986

Table 4.8: Mean relative error for the prediction of the lift coefficient for different angles of attack and

number of outputs of the GP

From a physical standpoint, all three aerodynamic coefficients are clearly related. However, this

interconnection is not clearly translated to an MOGP architecture. When comparing the performance

between 1 and 2 outputs, there is a slight improvement for all cases except one. However, when adding the

third output, there is no clear performance trend. We might conclude that the LMC is capable of learning

the relation between two outputs, but the third proves to be a more challenging task. Indeed, we are

increasing the dimensionality of the problem while keeping the database constant.

This section presented all results related to the Stardust capsule. The CFD simulations captured the

expected physical phenomena and showed strong agreement with results from existing literature, providing

confidence in their physical accuracy. Establishing the validity of the CFD data was a crucial step, as this

dataset forms the basis for training the Gaussian Process surrogate model. Consequently, the underlying

distribution of the data must accurately reflect the true physical behavior of the system to ensure the

surrogate model is both realistic and reliable.

The single-output GP provided high-accuracy predictions and was able to accurately describe lift and

drag distributions with low uncertainty. Moreover, it was found that the uncertainty sampling method

outperformed both committee-based sampling schemes, proving to be an efficient method to expand an

existing database and quickly reduce the uncertainty. Lastly, the MOGP seems to be beneficial when

predicting two outputs; however, the third output is not always beneficial. The knowledge gained in this

section will now be used for a different test case. The X-38 Glider will now be explored in the next section.



5
Glider

5.1. CFD Results
Following the same procedure adopted for the capsule, we look at existing data in the literature to validate

our CFD simulations for the X-38 reentry vehicle. The flow conditions for the simulation were chosen from

the original vehicle trajectory. This data was provided by DLR Göttingen and is shown in Appendix B. In

order to stay within the continuous regime, the highest trajectory point was at 70.16 Km.

A NASA study [72] conducted a series of CFD simulations to validate wind tunnel results performed

for the X-38; Their results for the aerodynamic coefficients are presented in Figure 5.1. The study does

not provide exact numerical results, so we have to approximate the values from these figures. Before

comparing the results, some differences in the setup must be addressed. Firstly, the authors of [72] use

the ’Rev 3.1’ geometry [73], which corresponds to a slightly smaller version of the vehicle. To match the

dimensions, we scaled our model down by 3%. However, it is not clear if other changes are present,

since only the length and wingspan of the vehicle are provided. Furthermore, the NASA study uses a

flap deflection of βbf = 25◦, while we use βbf = 20◦. Since the purpose of this comparison was only to
validate our results, only 1 of the 6 flight cases was simulated, corresponding to the lowest trajectory point

(M = 6.68, Alt = 40 Km) where aerodynamic forces are more dominant due to the denser atmosphere.

A comparison of the results is shown in Table 5.1. In general, the relative error is between 3.28% and

14%, which, taking into account the differences in the setup, allows us to conclude that our simulations

are representative of the problem and provide physical results. Unlike the capsule in Chapter 4, here we

observe the highest error in the axial force coefficient. This makes sense as we are no longer dealing with

a blunt body but with a reentry glider configuration. In this case, the lift becomes more stable and less

sensitive to small changes in geometry and angle of attack.

(a) Axial force coefficient (b) Normal force coefficient (c) Moment coefficient

Figure 5.1: Comparison of experimental and numerical results for the aerodynamic coefficient of the X-38

from [72]

Furthermore, looking at the flow field, we see the expected phenomena for winged reentry vehicles.

In Figure 5.2, we can see the complete flow field for an angle of attack of 45◦ and flap deflection of 20◦,
where we see the characteristic strong bow shock. The shock structure matches experimental Schlieren

imaging from [73] shown in Figure 5.3. It is worth noting that this image was obtained for M=6; in fact, we

see a larger shock stand-off distance. It is also noted that the models have slightly different geometries;

mainly, the experimental model seems to be slimmer. However, the overall shock structures are very
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Table 5.1: Result comparison for X-38 at M = 6.68, Alt = 40 Km

TAU NASA ReE (%)

CA 0.1288 0.113 13.98

CN 0.7615 0.84 9.34

Cm -0.412 -0.426 3.28

similar. The streamlines show flow separation on the upper surface, which is expected at an angle of

attack of 45◦. This separation region also coincides with an area of negative Cp, which likely indicates an

adverse pressure gradient. Figure 5.4 further shows how the flow field changes with the AoA, where it

can be seen that the area of negative Cp grows in size and intensity as α increases. A similar result was

found in [72]. The location of the highest Cp corresponds to the expected stagnation point in the nose and

belly of the vehicle, and we observe negative values at the top of the vehicle, especially at the interface

between the wings and the body. Furthermore, as the Mach number increases (Figure 5.5), the stagnation
region becomes more concentrated and the gradients become stronger. In addition, it can be seen that

the shock stand-off distance decreases with increasing flow velocity.

Figure 5.2: Flow field around X-38 at α = 45◦, βbf = 20◦, M = 20.87, H = 70.15Km

Figure 5.3: Experimental Schlieren imaging for M=6, α = 40◦, βbf = 25◦ [73]
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(a) α = 0◦ (b) α = 22.5◦ (c) α = 45◦

Figure 5.4: Effect of the AoA (α) on the flow field around the Stardust capsule at

M = 20.9,H = 70.157 Km,βbf = 20◦

(a) M=7.15 (b) M=10.5 (c) M=24.7

Figure 5.5: Freestream Mach number effect on the flow field around the X38 at α = 22.5◦, βbf = 20◦

The full temperature field is shown in Figure 5.6, where two regions with high temperatures are identified.

Firstly, at the stagnation point in the nose of the vehicle, this is due to the energy transfer of the incoming

flow. This can also be seen through the colored streamlines in Figure 5.7. Moreover, we see high

temperatures in the wake, which are most likely caused by the recirculation of hot gases in that region. We

also observe high temperatures near the flap, most likely caused by a shock wave. An area of recirculation

is observed in the flap as shown in Figure 5.8, where the streamlines also show the high temperatures

near this control surface.
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Figure 5.6: Temperature field around X-38 at α = 22.5◦, βbf = 20◦, M = 20.87, H = 70.15Km

Figure 5.7: Flow field near the nose of the X-38
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Figure 5.8: Flow field near the flap of the X-38 with an angle deflection of βbf = 20◦

5.2. GP results
The purpose of this study was to analyze how the previously used GP architecture would behave for

a different vehicle type, with more dimensions. In this case, every data point is described by a Mach

number M , an altitude H, an angle of attack α, and a flap deflection βbf . The database was limited to

36 points, corresponding to 4 different trajectory points for 3 angles of attack and 3 flap deflections. We

first look at a single-output GP and compare the results to those of the capsule. One main difference

from the capsule is the method used for constructing the initial database. Like previously stated, the

flap angle deflections had to be chosen beforehand, so no optimized sampling strategy could be applied.

However, the range of values was covered evenly, like the LHS scheme would do. Similarly, for the angle

of attack, only 0, 22.5, and 45 degrees were considered. Furthermore, based on previous knowledge,

we knew that the aerodynamic coefficients would not change much at the higher points of the trajectory;

therefore, more points were chosen in the high-density regime. The range of the input values are as follows

Alt ∈ [43.479, 70.157]Km,M ∈ [6.2, 20.88], α ∈ [0◦, 45◦], βbf ∈ [0◦, 20◦].

5.2.1. Single output GP
Similarly to the capsule, we first look at the performance of individual single-output GPs and their perfor-

mance for the different quantities of interest. The two main differences for this case are the type of vehicle

and, most importantly, the dimensionality, since we now consider the additional parameter of flap angle

deflection βbf . An interesting result is that the kernel used for the capsule remains a good choice. However,

it was found that removing the Matern function provided better results for all predictions. Furthermore,

unlike the capsule, the same kernel was able to provide good results for all 3 aerodynamic coefficients.

The kernel is defined as follows:

k = RBF (lRBF ) +RationalQuadratic(α = 0.152, l = 111)

Using the same 4-fold cross-validation as before, a mean relative error of 6.14% was obtained for the

CD, 13.51% for the CL, and 8.22% for the CM . It is worth noting that in this case, the performance of all

individual GPs was worse than for the capsule. However, this was an expected result as the size of the

database was kept constant while the dimensionality of the problem was increased. Nonetheless, the

accuracy is kept at an acceptable level. Moreover, we can look at the value of the optimized length scales

for the RBF kernel in Table 5.2. It is interesting to observe that a similar range of parameters is obtained
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for both the capsule and the glider. In this case, the length scale of the height and velocity is slightly

smaller, indicating more sensitivity to these parameters. The sensitivity to the angle of attack seems to be

similar. Moreover, the length scale of the body flap angle is similar to the range of values used for the

training, indicating a similar sensitivity to the height or flow speed. Showing that, as expected, the flap has

a noticeable effect on the aerodynamic coefficients.

Table 5.2: Optimized length scales of the RBF kernel for all coefficients prediction

lh (km) lv (m/s) lα (deg) βbf

65 414 1.1 10.7

Visualizing the uncertainty is a more challenging task in this case since it is a 4-dimensional problem.

However, a useful way to do so is through the aerodynamic polars, where we can visualize the 95%
confidence interval of the prediction over a range of α values. For the trajectory point defined byH = 56.905
Km, M = 13.451, with a flap deflection of βbf = 10◦, the predicted drag curve is shown in Figure 5.9. We

can immediately see that there are 3 points with zero uncertainty, which correspond to 3 existing training

points. As expected, the uncertainty reaches a maximum between these known points. For a contrasting

example, the predicted drag polar for a case with flap deflection βbf = 15◦ is shown in Figure 5.10 for
which there are no corresponding training points. As expected, the uncertainty never goes to zero, but

it is important to note that it is kept constant and does not grow uncontrollably. For the case with flap

deflection βbf = 10◦, the mean uncertainty along the curve is 0.0097σ, while for the βbf = 15◦ case it is
0.0141σ. Similarly, for the lift curve, the mean uncertainty for the βbf = 10◦ case is 0.0242σ, and 0.041σ
for the βbf = 15◦ case. This overall small difference in performance, even for ranges with no existing
training points, shows that the GP can make good out-of-distribution predictions. The lift polar prediction

for the βbf = 10◦ case is shown in Figure 5.11, where we see the same trend as for the drag, where

the uncertainty reaches zero for the training points. While the scale makes the uncertainty look smaller,

the previous numerical values show that the performance for the lift prediction is worse, a trend that is

constantly observed in this work.

Figure 5.9: Predicted drag curve for βbf = 10◦, H = 56.905 Km, M = 13.451
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Figure 5.10: Predicted drag curve for βbf = 15◦, H = 56.905 Km, M = 13.451

Figure 5.11: Predicted lift curve for βbf = 10◦, H = 56.905 Km, M = 13.451

As discussed in section 4.2.3, the greedy uncertainty (GU) method was the best-performing active

sampling strategy; therefore, it is the one adopted for the glider. However, in this case, only one additional

point was sampled. For a GP trained with the original database, the uncertainty over all the domain was

of 0.0169σ for the drag, and of 0.04752σ for the lift. After adding an additional point with the GU method,

this changed to 0.0153σ and 0.0434σ, respectively, representing an improvement in accuracy of 9.5% for

the drag and 8.7% for the lift. However, when dealing with aerodynamic databases, an important point

was addressed in [23]. The authors argue that considering the performance of a model on a complete

range of values might not be representative of the true performance, since possible future observations

will follow a certain distribution, in this case, a reentry trajectory. Therefore, the high uncertainties seen in

extreme values (i.e, high Mach low altitude) might skew the analysis. This had been considered to some

extent in Section 4.2.1 when we observed that the GP performed better when only considering points

within the trajectory. To assess this, we now look at the accuracy of predictions for points within a real

trajectory, shown in Figure 5.12, which was provided by the DLR Göttingen. With the original database,

the uncertainty in this region is 0.0139σ for the drag and 0.0405σ for the lift. Therefore, compared to the
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entire domain, predictions within a trajectory are already 17.8% and 14.8% more accurate for the drag and

lift, respectively.

Figure 5.12: Trajectory points of the X-38

When adding the additional data point through active sampling, the uncertainty within the trajectory

decreases by 2.9% and 2.5%, respectively, compared to the decrease of 9.5% and 8.7% in the global

domain. Therefore, we can see that this type of active sampling benefits the global performance more

than the one for possible future observations. This makes sense when considering that the GU method

often chooses points in the extremes of the domain. Therefore, in the future, a sampling strategy that is

biased towards realistic trajectory points might further improve the data efficiency. In fact, there is no point

in improving the uncertainty of predictions that will likely not be considered for the development of a reentry

vehicle.

5.2.2. Multi-output GP
The purpose of this section is to study the influence of the number of outputs in an MOGP on its accuracy

in predicting the aerodynamic coefficients of the X-38. Similarly to the single output case, it was found that

the same kernel for the capsule also provided good results for the glider. The covariance function used to

conduct these tests is defined using GPflow as follows:

k = gpf.kernels.Matern52() + gpf.kernels.RationalQuadratic()

To perform the test, each aerodynamic coefficient was predicted using 1, 2, and 3 outputs, and the

error was measured on a validation set that included new trajectory points shown in table 5.3. These points

were chosen as they lay between the points used for the initial database. The results for the MOGP test

are shown in Table 5.4. Overall, we observe the same trend as for the capsule; in general, increasing

the number of outputs improves the accuracy. However, for different coefficients, there seem to be more

informative outputs than others. In this case, including the moment coefficient seems to help the drag

prediction more than the lift. From a physical perspective, this makes sense. Flow separation is captured

by the Cm, which for winged bodies like the X-38 affects the CD more severely than the CL. We can

therefore conclude that not all outputs contribute equally, and there are more informative outputs than

others. This finding is supported by similar studies [67] [74] [75].



Table 5.3: Validation data set for MOGP for Glider

Altitude (Km) M α βbf

68.757 20.055 22.5 0

62.344 16.666 22.5 0

52.639 10.863 22.5 0

46.124 7.358 22.5 0

MRe (%) of MOGP prediction

1 Output 2 Outputs 3 Outputs

CD 2.61256267851122 2.52133663740309 2.18673091768778

CL 0.930495866281368 0.778855460804079 0.765704503745365

Table 5.4: Mean relative error for the prediction of the lift coefficient and drag coefficients
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6
Conclusion

The purpose of this thesis was to study the use of Gaussian Process regression to predict the aerodynamic

performance of hypersonic re-entry vehicles. Reentry aerothermodynamics presents a unique challenge

due to the highly nonlinear, multi-regime nature of the flow field, the cost of high-fidelity simulations, and

the need for reliable force predictions across a wide parameter space. The primary goal of this work was

to develop and evaluate surrogate-based frameworks that reduce computational cost while preserving

prediction accuracy in this complex setting. In order to develop this framework, a series of CFD simulations

were performed on a capsule and a glider to build an initial database used to train a series of GPs used

to predict different aerodynamic coefficients, and their performances were compared. The possibility of

expanding databases optimally was addressed by exploring active sampling techniques, mainly uncertainty

sampling and committee-based sampling. Finally, the use of multi-output GPs was studied as a possibility

to further increase the accuracy of the predictions without adding additional training points.

6.1. Research Questions
The research questions posed in Chapter 1 are repeated below for convenience, which will now be

addressed in the full context of the work.

How accurately can a Gaussian Process regression predict the aerodynamic performance of a

reentry vehicle?

Research Question 1

How do the results change for different vehicle architectures? How much does the accuracy

change? Does the covariance function and hyper-parameter need to be modified?

Research Question 2

To what degree can the number of simulations can be reduced in order to build a representative

aerodynamic database?

Research Question 3

The first research question refers to the level of accuracy of these methods. The single-output GPs

seem to provide excellent predictions. For a 3-dimensional GP trained with a database generated using

LHS, 4-fold cross-validation gives an MRE of 0.37% for the drag and 12% for the lift predictions. However,

accuracy is greatly improved when considering only points within a reentry trajectory. Other methods, such

as Gaussian Networks [25], are able to predict the aerodynamics of reentry capsules with similar accuracy,

but use databases 2 orders of magnitude larger. When considering a 4-dimensional GP trained with a

non-optimized database, the MRE of the drag increased to 6.14%, and the lift to 13.51%. Showing that GPs

are not extremely sensitive to the dimensionality of the problem. However, in existing literature, GPs are

rarely used as single output predictors; variations are often used, such as multi-fidelity [76] [77], multi-output
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[26], or paired with reduced order methods [35]. This motivated the further exploration of a multi-output

Gaussian process (MOGP). It was found that for most cases, increasing the number of variables also

increased the accuracy of the prediction. This is expected from the Linear Model of Coregionalization

(LMC) method used, which allows the GP to learn from the relation between the outputs. Unlike most

surrogate models, an MOGP presents 3 sources of information: observations, kernel, and the relation

between outputs, making it extremely data efficient, as the previous results have shown. This allows for

accurate predictions without having to resort to simplified physics or reduced order models [78], which are

inherently intrusive. However, in the tests conducted, this improvement in accuracy was not so significant,

and the trend of performance was not always clear, meaning that for some cases, adding more outputs was

not beneficial. Moreover, it was found that there were more informative outputs than others. This makes

sense from a physical perspective, as there are quantities more strongly correlated than others. Only

one MOGP architecture was studied through the LMC method. However, there are other, more complex

methods that might provide different results. Another advantage of MOGPs is the reduced computational

time, compared to training individual GPs for each output [42]. This criterion was not tested in this study,

but it is a possible area of study for future work.

Furthermore, the capability of efficiently expanding existing databases was explored through different

sampling strategies. It was found that the ability of GPs to inherently provide an uncertainty attached

to every prediction could be used to guide the sampling process. By simply sampling the point with the

highest uncertainty, the mean uncertainty of the GP was reduced by more than half by adding just 8

additional points.

The second research question regards the applicability of the model to different scenarios. Firstly, for the

single-output GPs, it was found that the kernel needed to be modified when predicting different aerodynamic

coefficients. However, when comparing the two different vehicle types, it was found that the same kernel

could provide good results for both. Still, the best results were obtained when hyperparameters were

optimized for each application. It was found that the task of manually tweaking the kernel until obtaining

good results was very time-consuming. It is believed that applying automatic kernel searches such as

[35] [79] [48] [80] would be beneficial for future work. Furthermore, it was interesting to notice that the

optimized hyperparameters for the kernels used in both vehicles showed very similar trends and ranges.

This could indicate that the surrogate model is able to learn the underlying physics of reentry vehicles

regardless of the architecture being studied. Furthermore, the results in the uncertainties of the predictions

seem to be consistent with the physics behind the simulations. Namely, we see that in the capsule, the

uncertainty for the lift prediction was significantly higher than for the drag, consistent with the physical

model of a blunt reentry body, where lift is entirely a result of flow asymmetry, therefore more unstable.

For the Glider, on the other hand, both predictions show a more similar range of uncertainty, consistent

with the more stable lift and drag produced by winged reentry configurations. Therefore, we can conclude

that analyzing the optimized hyperparameters and uncertainties of a GP is a powerful method to further

learn about the underlying physics of the problem at hand.

The third research question addresses the degree to which a database can be reduced and still achieve

accurate predictions. This idea was mainly explored through the use of active sampling strategies. Although

this study mainly explored how different strategies affected the distribution of the uncertainty in a simplified

2D case, it also showed that the uncertainty sampling is a powerful method to quickly reduce the uncertainty

of the model. Mainly, just by adding 8 additional points, the uncertainty of the prediction dropped by 66%.

Moreover, even when analyzing the results of the GPs trained with quasi-random sampling distributions,

highly accurate predictions are achieved with very few simulations. In the case of the capsule, with 32

points, the predictions of aerodynamic coefficients for points within a re-entry trajectory present an MRE of

under 1%. Even when adding an additional dimension to the parameter space, data-efficient methods like

the MOGP keep the accuracy comparable, even when keeping the training set at the same size. As seen

in the case of the glider, where a database of only 36 points is enough to train an MOGP that presents

an MRE of under 3%. For context, works such as [81] perform more than two orders of magnitude more

CFD simulations to characterize the thermal loads of a reentry vehicle with a similar parameter space.

Nonetheless, in order to fully answer this last research question, future work would be required. Mainly,

a more rigorous definition of what constitutes an accurate simulation and a study varying the number of

data points to precisely establish when predictions start to become accurate. The next and final chapter

addresses further improvements and recommendations that were identified for this work.



7
Recommendations

Building on the findings of this work, the following recommendations are identified for further research and

applications.

Multi-Fidelity
Another method that tries to use data as efficiently as possible is the multi-fidelity architecture for Gaussian

Processes. This allows the integration of multiple sources of data while taking into account their level of

accuracy. In this way, low-fidelity CFD simulation can be integrated alongside higher fidelity ones, further

reducing the overall design process. It is believed that if integrated alongside an active sampling and

MOGP architecture, the overall method could become more data-efficient.

Active Sampling
A more rigorous test regarding the active sampling strategies would greatly help quantify their benefit

over other methods. This would be especially helpful to answer Research Question 3. Therefore, it is

recommended to conduct a systematic study where two parallel databases (with the same parameter

space) are generated with different strategy and their convergence in generating an accurate prediction is

studied, where the accuracy of the prediction is further established through a more robust definition.

Furthermore, implementing an active sampling method that favors points within a realistic trajectory

corridor might be beneficial to the efficiency of the data used. Although sampling points in the extremes of

the domain improve the global accuracy, in the interest of data efficiency, we also need to consider what

the most likely trajectory points are for a reentry vehicle.

Systematic Study of Output Dependencies
The observed benefit of including Cm as a secondary output highlights the importance of understanding

cross-output correlations. However, the results presented here do not allow for strong conclusions, and

further testing is required. A natural next step would be to repeat the experiments conducted in this work

(training GPs with different combinations of outputs) but using a sufficiently large database so that changes

in performance can be attributed solely to the number and type of outputs.

It is likely that the database used in this study was too small to accurately assess the effect of the

number of outputs. In fact, no strong trend was observed, and results fluctuated greatly. The intention

here was to simulate an extremely data-scarce scenario to explore the limits of a GP. Nevertheless, to

properly study the interconnections between outputs for a reentry vehicle, additional data points should be

included until clear trends emerge and more definitive conclusions can be drawn.

Furthermore, a broader investigation spanning different vehicle typologies and flow regimes would

provide stronger guidance for multi-output surrogate design. This would involve applying the same

testing methodology to multiple vehicle configurations and considering a range of domains (e.g., subsonic,

supersonic, hypersonic). In the present work, constraints led to differing tests and validation criteria for the

capsule and the glider. For a more accurate quantification of geometric effects, a more consistent and

rigorous testing campaign should be implemented. Moreover, varying the flow regime would also change

the underlying physics of the problem, providing an opportunity to test the hypothesis that the benefit of

including certain outputs is closely tied to the governing physical phenomena.
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Moreover, an aspect that was not addressed in this work was the study of the optimized hyperparameters

of the multi-output architecture. It was previously found that for the single-output cases, this was a powerful

method to learn about the physics behind the model. Analyzing their value ranges could be a useful

indication of whether the model is approximating a physical solution or perhaps overfitting. Given that the

results of the MOGP were not very conclusive, this could be addressed in the future.

Uncertainty distribution
The data used to train surrogate models rarely comes without uncertainty by itself. This is especially true

when using CFD simulation, which inherently comes with both numerical and physical uncertainties. For

example, previous works [22] show that surface heat flux values for a retro-propulsive launcher change

greatly depending on the turbulence model used. Ideally, the surrogate model would be able to integrate

this uncertainty into the predictions made. This way, a more complete and robust assessment of the

problem can be made. The multi-fidelity architecture previously described could be a way to account for

this inherent uncertainty.
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A
Capsule GP results

Table A.1: Result comparison for AoA = 0◦

Altitude (Km) CD (TAU) CD (GP) ReE (%)

50.63 1.429693321 1.43697847 0.509560277

46.54 1.451131553 1.45601983 0.336859678

45.75 1.468041281 1.46541639 0.178802267

44.44 1.492813759 1.49359469 0.052312689

43.24 1.490036426 1.498326 0.556333671

41.6 1.482112617 1.48167965 0.029212844

Table A.2: Result comparison for AoA = 5◦

Altitude (Km) CD (TAU) CD (GP) ReE (%)

50.63 1.417086969 1.41974626 0.187659001

46.54 1.436833228 1.43857666 0.121338504

45.75 1.449417087 1.45234744 0.202174602

44.44 1.457785307 1.45992471 0.146757084

43.24 1.453348494 1.45892993 0.384039778

41.6 1.455408882 1.45378201 0.111781087

Table A.3: Result comparison for AoA = 10◦

Altitude (Km) CD (TAU) CD (GP) ReE (%)

50.63 1.381167864 1.38217678 0.073048029

46.54 1.384621853 1.38294611 0.121025354

45.75 1.386727219 1.38407047 0.191584138

44.44 1.387982487 1.3855542 0.174950861

43.24 1.38075287 1.38390539 0.228318881

41.6 1.390032929 1.39015785 0.008986874
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Table A.4: Result comparison for AoA = 5◦

Altitude (Km) CL (TAU) CL (GP) ReE (%)

50.63 0.0459629099134 0.04574092 0.482976194976031

46.54 0.045308525746 0.04620134 1.97052152834353

45.75 0.0421999655346 0.04029293 4.51904524195977

44.44 0.0322213888082 0.0323524 0.406596973767517

43.24 0.024651580186 0.02537679 2.94183905667783

41.6 0.0206746583752 0.02061708 0.278497347598592

Table A.5: Result comparison for AoA = 10◦

Altitude (Km) CL (TAU) CL (GP) ReE (%)

50.63 0.0881779269708 0.08553221 3.00042999613285

46.54 0.0816590789104 0.08006123 1.95673148867285

45.75 0.0740585461176 0.07203163 2.73691049022404

44.44 0.0666683198774 0.06601016 0.987215334975189

43.24 0.0618522611328 0.06024231 2.60289778144626

41.6 0.0562099263336 0.05305037 5.62099354987297



B
X-38 Trajectory data
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Table B.1: X-38 Trajectory data

t (s) H(km) Pdyn (kPa) Flux SP (kW/m2) Mach Vrel (m/s) AoA (°) rho (kg/m3) T (K) p (Pa)

720.000 70.157 1.556 386.383 20.875 6195.976 45.000 8.11E-05 219.179 5.1005E+00

725.000 69.973 1.582 386.278 20.764 6169.253 45.000 8.31E-05 219.617 5.24E+00

730.000 69.783 1.609 386.172 20.652 6142.083 45.000 8.53E-05 220.070 5.39E+00

735.000 69.589 1.638 386.067 20.537 6114.446 45.000 8.76E-05 220.539 5.55E+00

740.000 69.389 1.667 385.966 20.420 6086.325 45.000 9.00E-05 221.023 5.71E+00

745.000 69.184 1.698 385.868 20.301 6057.699 45.000 9.26E-05 221.530 5.89E+00

750.000 68.973 1.731 385.776 20.179 6028.545 45.000 9.52E-05 222.047 6.07E+00

755.000 68.757 1.764 385.687 20.055 5998.840 45.000 9.81E-05 222.594 6.26637E+00

760.000 68.534 1.800 385.600 19.929 5968.558 45.000 1.01E-04 223.156 6.47E+00

765.000 68.305 1.837 385.519 19.800 5937.673 45.000 1.04E-04 223.749 6.69E+00

770.000 68.069 1.875 385.452 19.668 5906.155 45.000 1.08E-04 224.358 6.93E+00

775.000 67.827 1.916 385.386 19.533 5873.972 45.000 1.11E-04 224.998 7.17E+00

780.000 67.577 1.959 385.308 19.395 5841.092 45.000 1.15E-04 225.655 7.44E+00

785.000 67.320 2.004 385.249 19.255 5807.478 45.000 1.19E-04 226.329 7.72E+00

790.000 67.056 2.052 385.183 19.110 5773.092 45.000 1.23E-04 227.047 8.02E+00

795.000 66.783 2.102 385.119 18.963 5737.891 45.000 1.28E-04 227.784 8.35E+00

800.000 66.502 2.155 385.054 18.812 5701.832 45.000 1.33E-04 228.550 8.70E+00

805.000 66.211 2.211 384.986 18.658 5664.864 45.000 1.38E-04 229.349 9.07E+00

810.000 65.910 2.270 384.916 18.499 5626.934 45.000 1.43E-04 230.179 9.48E+00

815.000 65.600 2.333 384.848 18.337 5587.984 45.000 1.49E-04 231.041 9.91E+00

820.000 65.278 2.400 384.770 18.170 5547.949 45.000 1.56E-04 231.948 1.04E+01

825.000 64.944 2.472 384.678 17.999 5506.763 45.000 1.63E-04 232.882 1.09E+01

830.000 64.597 2.548 384.593 17.823 5464.345 45.000 1.71E-04 233.867 1.15E+01

835.000 64.236 2.630 384.497 17.641 5420.611 45.000 1.79E-04 234.900 1.21E+01

840.000 63.861 2.718 384.354 17.455 5375.467 45.000 1.88E-04 235.970 1.27E+01

845.000 63.483 2.807 383.871 17.263 5328.827 45.000 1.98E-04 237.056 1.35E+01

850.000 63.104 2.897 382.956 17.068 5280.671 45.000 2.08E-04 238.148 1.42E+01

855.000 62.724 2.987 381.602 16.869 5230.992 45.000 2.18E-04 239.240 1.50E+01

860.000 62.344 3.078 379.800 16.666 5179.787 45.000 2.29E-04 240.328 1.58299E+01

865.000 61.962 3.168 377.542 16.459 5127.055 45.000 2.41E-04 241.423 1.67E+01

870.000 61.580 3.259 374.824 16.248 5072.802 45.000 2.53E-04 242.512 1.76E+01

875.000 61.196 3.348 371.645 16.033 5017.035 45.000 2.66E-04 243.607 1.86E+01

880.000 60.811 3.437 368.004 15.815 4959.768 45.000 2.79E-04 244.706 1.96E+01

885.000 60.424 3.526 363.912 15.593 4901.016 45.000 2.94E-04 245.793 2.07E+01

890.000 60.035 3.612 359.373 15.367 4840.802 45.000 3.08E-04 246.882 2.19E+01

895.000 59.644 3.698 354.393 15.138 4779.151 45.000 3.24E-04 247.972 2.31E+01

900.000 59.251 3.782 348.999 14.906 4716.088 45.000 3.40E-04 249.047 2.43E+01

905.000 58.855 3.864 343.194 14.670 4651.645 45.000 3.57E-04 250.136 2.56E+01

910.000 58.457 3.944 337.009 14.431 4585.854 45.000 3.75E-04 251.225 2.71E+01

915.000 58.056 4.023 330.452 14.190 4518.748 45.000 3.94E-04 252.311 2.85E+01

920.000 57.652 4.099 323.545 13.944 4450.369 45.000 4.14E-04 253.411 3.01E+01

925.000 57.254 4.168 316.121 13.697 4380.750 45.000 4.34E-04 254.498 3.17E+01

930.000 56.905 4.208 307.491 13.451 4310.145 45.000 4.53E-04 255.448 3.3224E+01

935.000 56.541 4.252 298.964 13.203 4238.925 45.000 4.73E-04 256.446 3.48E+01

940.000 56.154 4.303 290.636 12.952 4166.981 45.000 4.96E-04 257.514 3.66E+01

945.000 55.750 4.359 282.382 12.698 4094.208 45.000 5.20E-04 258.633 3.86E+01

950.000 55.331 4.416 274.106 12.442 4020.546 45.000 5.46E-04 259.791 4.08E+01

955.000 54.901 4.474 265.756 12.183 3945.972 45.000 5.75E-04 261.002 4.31E+01

960.000 54.462 4.531 257.310 11.921 3870.492 45.000 6.05E-04 262.261 4.55E+01

965.000 54.015 4.587 248.768 11.658 3794.125 45.000 6.37E-04 263.523 4.82E+01

970.000 53.562 4.640 240.134 11.393 3716.898 45.000 6.72E-04 264.787 5.11E+01

975.000 53.103 4.692 231.421 11.128 3638.849 45.000 7.09E-04 266.026 5.41E+01

980.000 52.639 4.740 222.639 10.863 3560.023 45.000 7.48E-04 267.212 5.73821E+01

985.000 52.172 4.785 213.806 10.598 3480.474 45.000 7.90E-04 268.316 6.09E+01

990.000 51.702 4.826 204.940 10.334 3400.264 45.000 8.35E-04 269.332 6.46E+01

995.000 51.229 4.863 196.066 10.072 3319.460 45.000 8.83E-04 270.223 6.85E+01

1000.000 50.753 4.896 187.196 9.812 3238.106 45.000 9.34E-04 270.971 7.26E+01

1005.000 50.278 4.922 178.329 9.554 3156.203 45.000 9.88E-04 271.544 7.70E+01

1010.000 49.802 4.944 169.520 9.297 3073.843 45.000 1.05E-03 271.949 8.17E+01

1015.000 49.326 4.962 160.802 9.044 2991.101 45.000 1.11E-03 272.136 8.67E+01

1020.000 48.850 4.976 152.213 8.793 2908.041 45.000 1.18E-03 272.124 9.19E+01

1025.000 48.408 4.965 143.463 8.545 2824.736 45.000 1.24E-03 271.901 9.7154E+01

1030.000 47.992 4.934 134.736 8.300 2741.745 45.000 1.31E-03 271.508 1.02E+02

1035.000 47.552 4.917 126.521 8.059 2659.217 45.000 1.39E-03 270.868 1.08E+02

1040.000 47.091 4.908 118.712 7.823 2576.952 45.000 1.48E-03 269.979 1.15E+02

1045.000 46.614 4.905 111.229 7.590 2494.818 45.000 1.58E-03 268.832 1.22E+02

1050.000 46.124 4.903 104.013 7.358 2412.755 45.000 1.68E-03 267.485 1.2937E+02

1055.000 45.623 4.901 97.044 7.128 2330.758 45.000 1.80E-03 265.996 1.38E+02

1060.000 45.109 4.898 90.309 6.898 2248.859 45.000 1.94E-03 264.446 1.47E+02

1065.000 44.582 4.892 83.816 6.667 2167.105 45.000 2.08E-03 262.890 1.57E+02

1070.000 44.039 4.886 77.577 6.435 2085.532 45.000 2.25E-03 261.350 1.69E+02

1075.000 43.479 4.880 71.594 6.202 2004.168 45.000 2.43E-03 259.812 1.81237E+02
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