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Modelling the cyclic ratcheting of sands
through memory-enhanced bounding surface plasticity

H.Y. LIU∗, J.A. ABELL†, A. DIAMBRA‡, F. PISANÒ∗

The modelling and simulation of cyclic sand ratcheting is tackled via a plasticity model formulated within
the well-known critical state, bounding surface SANISAND framework. For this purpose, a third locus –
termed ‘memory surface’ – is cast into the constitutive formulation, so as to phenomenologically capture
micro-mechanical, fabric-related processes directly relevant to the cyclic response. The predictive capability
of the model under numerous loading cycles (‘high-cyclic’ loading) is explored with focus on drained
loading conditions, and validated against experimental test results from the literature – including triaxial,
simple shear and oedometer cyclic loading. The model proves capable of reproducing the transition from
ratcheting to shakedown response, in combination with a single set of soil parameters for different initial,
boundary and loading conditions. This work contributes to the analysis of soil-structure interaction under
high-cyclic loading events, such as those induced by environmental and/or traffic loads.

KEYWORDS: sands, stiffness, constitutive relations, plasticity, numerical modelling, offshore engineering

INTRODUCTION
Predicting the cyclic response of sands is relevant to
numerous geotechnical applications, for instance in the
fields of earthquake, offshore and railway engineering.
Such a response emerges from complex micro-mechanical
processes that give rise to a highly non-linear hydro-
mechanical behaviour at the macro-scale, featuring
irreversible deformation, hysteresis, pore pressure build-
up, etc. (di Prisco & Muir Wood, 2012). The engineering
analysis of these phenomena proves even more challenging
for long-lasting cyclic loading events (‘high-cyclic’ loading),
such as those experienced by soils and foundations under
operating offshore structures (e.g. offshore drilling rigs,
pipelines, wind turbines) (Andersen, 2009, 2015; Randolph
& Gourvenec, 2011). A typical example is given at present
by monopile foundations for offshore wind turbines, whose
design must assure full functionality of the structure during
its whole operational life – 108-109 loading cycles with
alternating sequences of small-amplitude vibrations and
severe storm loading (LeBlanc et al., 2010; Abadie, 2015).

Despite the current ferment around offshore wind
geotechnics (Pisanò & Gavin, 2017), frustrating uncertain-
ties still affect the engineering analyses performed to assess
the capacity, serviceability and fatigue resistance of wind
turbine foundations. In this context, a major role is played
by the phenomenon of ‘sand ratcheting’: this term denotes
the gradual accumulation of plastic strains under many
loading cycles, as opposed to the occurrence of ‘shakedown’
(long-term response with no plastic strain accumulation)
(Houlsby et al., 2017). While micromechanical studies aim
to describe the occurrence and modes of sand ratcheting at
the granular level (Alonso-Marroquin & Herrmann, 2004;
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McNamara et al., 2008; O’Sullivan & Cui, 2009; Calvetti
& di Prisco, 2010), usable engineering methods are cur-
rently being devised for predictions at the soil-foundation-
structure scale. Serious challenges arise in this area for at
least two reasons: (i) the time-domain, step-by-step analysis
of high-cyclic soil-structure interaction (‘implicit analysis’,
in the terminology of Niemunis et al. (2005)) is computa-
tionally prohibitive and challenging accuracy-wise; (ii) even
with viable implicit computations (e.g. through intensive
parallel computing), the literature still lacks constitutive
models reproducing cyclic sand ratcheting with satisfactory
accuracy.

To mitigate the above difficulties, alternative ‘explicit’
methods have been proposed, including some recent
applications to offshore wind turbine foundations (Suiker
& de Borst, 2003; Niemunis et al., 2005; Achmus et al.,
2009; Wichtmann et al., 2010; Andresen et al., 2010;
Pasten et al., 2013; Jostad et al., 2014, 2015; Triantafyllidis
et al., 2016; Chong, 2017). In this framework, sand
cyclic straining is directly linked to the number of
loading cycles N – hence the term ‘explicit’. Accordingly,
the relationship between accumulated strains and N
emerges from empirical relationships accounting for micro-
structural/mechanical properties (void ratio, grain size
distribution, shear strength, etc.) and loading parameters
(stress or strain amplitude, confining pressure, deviatoric
obliquity, etc.), to be calibrated based on rare high-cyclic
laboratory tests – see e.g. Lekarp et al. (2000); Suiker
et al. (2005); Wichtmann (2005); Wichtmann et al. (2005);
Wichtmann & Triantafyllidis (2015); Wichtmann et al.
(2015); Escribano et al. (2018). Most often, explicit high-
cyclic methods are used in combination with implicit
calculation stages: the latter provide the space distribution
of cyclic stress/strain increments via the time-domain
simulation of one/two loading cycles; the former feed
such information to empirical strain accumulation models
and derive global high-cyclic deformations at increasing
N (Niemunis et al., 2005; Andresen et al., 2010; Pasten
et al., 2013). Although significantly faster than implicit time
marching, stability and accuracy issues may be experienced
in explicit N−stepping (Pasten et al., 2013).

The present work tackles the modelling of sand ratcheting
within the phenomenological framework of bounding surface
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2 MODELLING THE CYCLIC RATCHETING OF SANDS

plasticity. For this purpose, the critical state SANISAND04
model by Dafalias & Manzari (2004) is enriched with a
third locus – termed ‘memory surface’ – to reproduce fabric
effects relevant to cyclic ratcheting. The suitability of the
memory surface approach has been recently shown by Corti
(2016) and Corti et al. (2016) in combination with the
bounding surface model by Gajo & Muir Wood (1999b,a).
The resulting model has been successfully applied to the
cyclic analysis of certain offshore soil-structure interaction
problems, involving e.g. mudmat foundations (Corti et al.,
2017) and plate anchors (Chow et al., 2015). In this work,
the SANISAND conceptual platform has been preferred
also in light of the several open-source implementations
already available (Mazzoni et al., 2007; Gudehus et al., 2008;
Ghofrani & Arduino, 2017), which will enable to move faster
towards the analysis of relevant boundary value problems.

With main focus on drained loading conditions,
the model described in the following improves the
achievements of Corti et al. in several respects: (i) general
multiaxial formulation, with pressure-sensitive hardening
rules suitable to accommodate the different backbone
model (SANISAND04) under monotonic and cyclic loading;
(ii) improved analytical “workability” achieved through a
formulation based on the “true” stress tensor, and the use
of a memory locus with circular deviatoric section; (iii)
modified plastic flow rule to refine the simulation of volume
changes under cyclic loading conditions. Importantly, the
ratcheting performance of the model has been tested up
to 104 loading cycles, and validated against a wider set of
literature results, including triaxial (both standard and non-
standard), simple shear and oedometer high-cyclic tests.

The ultimate goal of this paper is to help bridge
implicit and explicit approaches through the proposed
plasticity model. Its ‘implicit’ use will enable more accurate
time-domain simulations of cyclic/dynamic soil-structure
interaction under relatively short-lasting loading (e.g.
storms, earthquakes, etc.) (Corciulo et al., 2017). As more
experimental data become available and further calibration
exercises carried out, it will also contribute to explicit high-
cyclic procedures by supporting the prediction of strain
accumulation trends with lower demand of laboratory test
results.

TOWARDS A SANISAND MODEL WITH
RATCHETING CONTROL
While massive efforts have been devoted to modelling the
undrained cyclic behaviour of sands, the cyclic performance
under drained loading conditions has received far less
attention. A few works tackled this issue by enhancing the
bounding surface framework with fabric-related modelling
concepts, such as Khalili et al. (2005); Kan et al. (2013);
Gao & Zhao (2015); outside traditional bounding surface
plasticity, the contributions by Wan & Guo (2001);
Di Benedetto et al. (2014); Liu et al. (2014); Tasiopoulou
& Gerolymos (2016) are also worth citing. However, none
of the mentioned works focused explicitly on drained strain
accumulation under a large number of loading cycles.

The cyclic sand model proposed in this study builds
upon two main pillars, namely the SANISAND04 model
by Dafalias & Manzari (2004) and the addition of a
memory locus accounting for fabric effects during cyclic
loading (Corti, 2016; Corti et al., 2016). Since its first
introduction in 1997 (Manzari & Dafalias, 1997), the
family of SANISAND models has expanded with new
members improving certain limitations of the original
formulation, regarding e.g. dilatancy and fabric effects,

hysteretic small-strain behaviour, response to radial stress
paths, incremental non-linearity (Papadimitriou et al., 2001;
Papadimitriou & Bouckovalas, 2002; Dafalias & Manzari,
2004; Taiebat & Dafalias, 2008; Loukidis & Salgado, 2009;
Pisanò & Jeremić, 2014; Dafalias & Taiebat, 2016). In
particular, the SANISAND04 formulation includes a fabric-
related tensor improving the phenomenological simulation
of post-dilation fabric changes upon load reversals, with
beneficial impact on the prediction of pore pressure build-up
during undrained cyclic loading.

Unfortunately, the set of modelling ingradients as con-
jugated in SANISAND04 cannot quantitatively reproduce
high-cyclic ratcheting, nor its dependence on relevant load-
ing parameters (especially stress obliquity, symmetry and
amplitude of the loading programme). In SANISAND04, (i)
the use of the (phenomenological) fabric tensor z is only
suitable to capture the effects of initial inherent anisotropy,
as explained in detail by Li & Dafalias (2011); (ii) fabric
evolution is solely activated for denser-than-critical condi-
tions, after the stress path crosses the phase transformation
line. This latter strategy has proven not sufficient to capture
fabric effects occurring during (drained) cyclic loading, for
instance related to the evolving distributions of voids and
particle contacts (Oda et al., 1985; O’Sullivan et al., 2008;
Zhao & Guo, 2013). A significant impact of these facts
on numerical simulations is that the SANISAND04 model
produces only slight soil stiffening under drained (high-
)cyclic shear loading, resulting in exaggerated strain accu-
mulation. While acknowledging the benefits of improved
fabric tensor formulations (Papadimitriou & Bouckovalas,
2002), a different path based on the memory surface concept
will be followed in the remainder of this work.

The plasticity modelling of ratcheting phenomena has
received a few valuable contributions (di Prisco & Mortara,
2013), originally regarding metals and alloys. These
contributions have been reviewed by Houlsby et al. (2017),
and generalised into a hyper-plastic multi-surface framework
for the macro-element analysis of offshore monopiles.

The present paper proposes an alternative approach
based on bounding surface plasticity and the use of an
additional memory surface to keep track of fabric changes
relevant to the ratcheting response. The concept of memory
surface (or history surface) was first proposed by Stallebrass
& Taylor (1997) for overconsolidated clays, then applied to
sands within different modelling frameworks by Jafarzadeh
et al. (2008); Maleki et al. (2009); Di Benedetto et al. (2014).
Herein, the latest version by Corti et al. (2016) and Corti
(2016) is adopted and enhanced within the SANISAND
family. Accordingly, the regions of the stress-space that
have already experienced cyclic loading are represented
by an evolving memory locus, within which cyclic strain
accumulation occurs at a lower rate than under virgin
loading conditions.

MODEL FORMULATION
This section presents the main analytical features of
the proposed model, with focus on embedding the
memory surface concept into the SANISAND04 backbone
formulation. Similarly to SANISAND04, the new model
is based on a bounding surface, kinematic hardening
formulation to capture cyclic, rate-independent behaviour.
The model links to the well-established Critical State theory
through the notion of ‘state parameter’ (Been & Jefferies,
1985), which enables to span the behaviour of a given sand
over the loose-to-dense range with a single set of parameters.
Overall, the new model uses three relevant loci – yield,
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LIU, ABELL, DIAMBRA, PISANÒ 3

bounding and memory surface (Figure 1). All constitutive
equations are presented by first summarising the features
inherited from Dafalias & Manzari (2004), then focusing on
the latest memory surface developments.
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Fig. 1. Relevant loci/tensors in the normalised π plane.

Notation Tensor quantities are denoted by bold-face
characters in a direct notation. The symbols :, tr and 〈〉
stand for tensor inner product, trace operator and Macauley
brackets, respectively.
σσσ and εεε denote effective stress∗ and strain tensor. Usual

decompositions into deviatoric and isotropic components
are used throughout, namely σσσ = sss+ pIII (sss – deviatoric
stress tensor, p = (trσσσ)/3 – isotropic mean stress) and
εεε = eee+ (εvol/3)III (eee – deviatoric strain tensor, εvol = trεεε –
volumetric strain). III is the second-order identity tensor, the
deviatoric stress ratio rrr = sss/p is also widely employed in
the formulation. The superscripts e and p are used with the
meaning of ‘elastic’ and ‘plastic’.

Model features from SANISAND04
For the sake of brevity, a multi-axial formulation is
directly provided, while conceptual discussions in a simpler
triaxial environment may be found in the aforementioned
publications. For the same reason, model details shared with
SANISAND04 are only briefly recalled, whereas Table 1
provides a synopsis of all equations and material parameters
(Dafalias & Manzari, 2004).

Similarly to most SANISAND formulations, the proposed
model relies on the assumption that plastic stains only occur
upon variations in stress ratio rrr, so that all plastic loci
and hardening mechanisms can be effectively described in
the normalised π plane (Figure 1). Importantly, the overall
formulation remains based on ‘true’ stress ratio variables,
while Gajo & Muir Wood (1999a,b); Corti et al. (2016)
used stress normalised with respect to the current state
parameter.

Elastic relationship Sand behaviour is assumed to be
(hypo)elastic inside the yield locus, with constant Poisson
ratio ν and pressure-dependent shear modulus defined as

∗As this work focuses on drained tests/simulations, the notation σσσ
(instead of usual σσσ′) is used for the effective stress tensor with no
ambiguity.

per Richart et al. (1970); Li & Dafalias (2000):

G = G0patm[(2.97− e)2/(1 + e)]
√
p/patm (1)

in which patm is the reference atmospheric pressure, G0 a
dimensionless shear stiffness parameter, and e the current
void ratio.

Yield locus An open conical yield locus f = 0 is used,
whose axis rotation and (constant) small opening are
governed by the evolution of the back-stress ratio ααα and
the parameter m:

f =
√

(sss− pααα) : (sss− pααα)−
√

2/3mp = 0 (2)

Critical state locus A unique critical state locus is
assumed and defined in the multidimensional e− σσσ space.
Its projection on the e− p plane, i.e. the critical state line,
reads as (the subscript c stands for ‘critical’):

ec = e0 − λc(pc/patm)ξ (3)

and requires the identification of three material parameters
– e0, λc and ξ (Li & Wang, 1998). The aforementioned state
parameter Ψ(e, p) = e− ec quantifies the distance between
current and critical void ratios (Been & Jefferies, 1985; Muir
Wood & Belkheir, 1994), which is key to modelling sand
behaviour at varying relative density.

The projection of the critical state locus on the
normalised π plane can be conveniently expressed as a
deviatoric tensor rrrcθ:

rrrcθ =
√

2/3g(θ)Mnnn (4)

providing the critical state stress ratio associated with the
current stress ratio rrr through the unit tensor, normal to the
yield locus (Figure 1):

nnn = (rrr −ααα)/
√

2/3m (5)

The function g describes the Argyris-type shape of the
critical locus depending on the ‘relative’ Lode angle θ† (see
Table 1 and Dafalias & Manzari (2004)). The parameter
M appears in its traditional meaning of critical stress ratio
under triaxial compression (directly related to the constant-
volume friction angle).

It should also be recalled that the assumption of unique
critical state locus is still a matter of scientific debate,
and certainly not the only option available – nonetheless,
a several theoretical studies may be cited in its support (Li
& Dafalias, 2011; Zhao & Guo, 2013; Gao & Zhao, 2015). An
evolving version of the locus (Equation(3)) could be adopted
in the future upon conclusive consensus on the subject – for
instance, according to the path followed by Papadimitriou
et al. (2005).

Plastic flow rule Plastic strain increments – deviatoric
and volumetric – are obtained as:

deeep = 〈L〉RRR′ dεpvol = 〈L〉D (6)

where RRR′ and D are the tensor of deviatoric plastic flow
direction (Dafalias & Manzari, 2004) and the dilatancy
coefficient, respectively. The plastic multiplier L (or loading

†cos 3θ =
√
6trnnn3 (Manzari & Dafalias, 1997)
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4 MODELLING THE CYCLIC RATCHETING OF SANDS

index) results from the enforcement of plastic consistency
and can be expressed in the following form:

L =
1

Kp

∂f

∂σσσ
: dσσσ (7)

with Kp commonly referred to as plastic modulus.

Kinematic hardening and bounding surface The
back-stress ratio ααα (axis of the yield locus) is assumed to
evolve according to the following hardening law:

dααα =
2

3
〈L〉h(rrrbθ − rrr) ⇒ Kp =

2

3
ph(rrrbθ − rrr) : nnn (8)

which in turn implies the expression of Kp reported beside
(Dafalias & Manzari, 2004). According to Equation (8), the
centre of the yield locus translates in the π plane along the
rrrbθ − rrr direction, with magnitude governed by the hardening
factor h. rrrbθ represents the projection of the current stress
ratio onto the so-called bounding surface:

rrrbθ =
√

2/3g(θ)M exp(−nbΨ)nnn (9)

The size of the bounding surface is modulated by the
state parameter Ψ and the corresponding material constant
nb. At critical state Ψ = 0 and the bounding surface
coincides with the critical locus. It is worth noting that,
for better compatibility with memory surface developments,
the present formulation reappraises projection rules based
on the stress ratio rrr rather than the back-stress ratio ααα –
compare e.g. Dafalias (1986) to Manzari & Dafalias (1997).

Additional memory surface for ratcheting control
Novel developments related to the memory surface concept
are detailed in this subsection, with direct impact on the
factors h and D in Equations (8) and (6).

Meaning and definition

Figure 1 illustrates in the normalised π plane the three main
loci involved in the model formulation:

– yield surface, distinguishes stress states associated
with either negligible or significant plastic straining;

– memory surface, distinguishes stress states associated
with either vanishing or severe changes in granular
fabric;

– bounding surface, separates admissible/pre-failure
and ultimate stress states;

Although the above transitions may not be as sharp in
nature, the above idealisation provides conceptual input to
phenomenological constitutive modelling.

The memory locus is deployed to track the global
(re)orientation of particle contacts, and in turn the degree of
loading-induced anisotropy. Accordingly, it will be possible
to describe weak fabric changes induced by moderate high-
cyclic loads, possibly ‘overwritten’ by more severe loading
afterwards – henceforth termed ‘virgin loading’ (Nemat-
Nasser, 2000; Jafarzadeh et al., 2008).

From an analytical standpoint, the memory locus fM = 0
is represented by an additional conical surface:

fM =

√(
sss− pαααM

)
:
(
sss− pαααM

)
−
√

2/3mMp = 0 (10)

endowed with its own (memory) back-stress ratio and
opening variable αααM and mM . As shown in the following,

the choice of a conical memory locus with circular deviatoric
section results in simpler projection rules and evolution
laws (no lengthy algebra from the differentiation of the
third stress invariant). Nevertheless, keeping the typical
Argyris-shape for the outer bounding surface (Equation (9))
preserves a dependence of both stiffness and strength on the
Lode angle θ.

It is postulated that, during plastic straining, (i) the
stress point on the yield surface can never lies outside
the memory surface, (ii) the memory surface can only be
larger than the elastic domain, or at most coincident. These
requisites are compatible with the following reformulation
of the hardening coefficient h in Kp:

h =
b0

(rrr − rrrin) : nnn
exp

[
µ0

(
p

patm

)n=0.5(
bM

bref

)w=2
]
(11)

in which
bM = (rrrM − rrr) : nnn

bref = (rrrbθ − rrr
b
θ+π) : nnn

(12)

and rrrbθ+π is the opposite projection onto the bounding
surface, along the direction −nnn with relative Lode angle
θ + π (Equation (9), Figure 1 – therefore, bref > 0 always).
The SANISAND04 definition of the hardening factor b0 is
recalled in Table 1. The above definitions include the image
stress point rrrM on the memory surface, pointed by the unit
tensor nnn defined above (Equation (5)):

rrrM = αααM +
√

2/3mMnnn (13)

The left factor in Equation (11) coincides with the
h coefficient in Dafalias & Manzari (2004) (with b0
model parameter and rrrin load-reversal tensor‡), whilst the
right factor introduces the memory surface concept into
SANISAND04 with the additional material parameter µ0
(Corti et al., 2016, 2017). In essence, h receives additional
influence from the yield-to-memory surface distance bM :
as a consequence, higher Kp and soil stiffness result at
increasing distance bM (see evolution laws later on), but
a virgin SANISAND04 response is recovered when the yield
and the memory loci are tangent at the current stress point
σσσ ≡ σσσM (→ bM = 0).

The two material parameters, n and w, have been pre-
set in Equation (11) to mitigate calibration efforts. In
particular, extensive comparisons to experimental data (see
next sections) confirmed the need for a pressure-dependent
memory surface term (Corti et al., 2017), along with
a quadratic dependence on the distance bM . Additional
experimental evidence may support in the future more
flexibility about n and w, as well as other fundamental
dependences (for instance on the void ratio e).

The following subsections introduce the evolution laws
for the size and position of the memory surface, as well its
effect on sand dilatancy.

Memory surface size

The expansion of the memory surface (isotropic hardening)
aims to capture phenomenologically the experimental link
between gradual change in fabric and sand stiffening.§ This
evidence is translated into an increasing size mM of the

‡rrrin is the value of rrr at the onset of load reversal. It is updated to
current rrr each time the condition (rrr − rrrin) : nnn < 0 is fulfilled.
§The effects of a varying void ratio are already accounted for as
inheritance from SANISAND04.
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LIU, ABELL, DIAMBRA, PISANÒ 5

Table 1. Model synopsis: constitutive equations and material parameters.

Constitutive equations Material parameters

Elastic moduli G = G0patm[(2.97− e)2/(1 + e)](p/patm)1/2 G0 dimensionless shear modulus
K = 2(1 + ν)G/[3(1− 2ν)] ν Poisson’s ratio

Critical state line ec = e0 − λc(pc/patm)ξ
e0 reference critical void ratio
λc, ξ critical state line shape parameters

Yield function f =
√

(sss− pααα) : (sss− pααα)−
√

2/3pm m yield locus opening parameter

Memory function fM =
√(

sss− pαααM
)

:
(
sss− pαααM

)
−
√

2/3pmM

Deviatoric plastic flow deeep = 〈L〉RRR′

RRR′ = Bnnn− C
[
nnn2 − (1/3)III

]
nnn = (rrr −ααα)/

√
2/3m

B = 1 + 3(1− c)/(2c)g(θ) cos 3θ

C = 3
√

3/2(1− c)g(θ)/c
g(θ) = 2c/[(1 + c)− (1− c) cos 3θ]

Volumetric plastic flow dεpvol = 〈L〉D

D =
[
A0 exp

(
β
〈
b̃Md

〉
/bref

)]
(rrrdθ − rrr) : nnn

A0 ‘intrinsic’ dilatancy parameter
β dilatancy memory parameter

rrrdθ =
√

2/3g(θ)M exp(ndΨ)nnn nd void ratio dependence parameter
b̃Md = (r̃rrdθ − r̃rr

M ) : nnn

bref = (rrrbθ − rrr
b
θ+π) : nnn

rrrbθ+π =
√

2/3g(θ + π)M exp(−nbΨ)(−nnn)

Yield surface evolution dααα = (2/3) 〈L〉h(rrrbθ − rrr)

rrrbθ =
√

2/3g(θ)M exp(−nbΨ)]nnn

M critical stress ratio (triaxial compression)
nb void ratio dependence parameter
c compression-to-extension strength ratio

h =
b0

(rrr − rrrin) : nnn
exp

[
µ0

(
p

patm

)0.5(
bM

bref

)2
]

µ0 ratcheting parameter

b0 = G0h0(1− che)/
√

(p/patm) h0, ch hardening parameters
bM = (rrrM − rrr) : nnn

Memory surface evolution dmM =
√

3/2dαααM : nnn− (mM/ζ)fshr
〈
−dεpvol

〉
ζ memory surface shrinkage parameter

dαααM = (2/3)
〈
LM

〉
hM (rrrbθ − rrr

M )

hM =
1

2

[
b0

(rrrM − rrrin) : nnn
+

√
3

2

mMfshr 〈−D〉
ζ(rrrbθ − rrrM ) : nnn

]

memory surface and a larger distance between rrr and rrrM in
Equations (11)–(12). As clarified in the following, variations
in size and position of the memory surface cannot be
independent, but it is convenient to address the former
aspect prior to the latter. For this purpose, the evolution
of mM is established on a geometrical basis starting from
a situation of incipient virgin loading – memory surface
coincident or tangent to the yield locus (Figure 2).

Specifically, plastic loading starting from σσσ ≡ σσσM is
assumed to produce a uniform expansion of the memory
surface around the pivot stress point rrrMA , diametrically
opposite to rrrM and kept fixed throughout the process. From
an analytical standpoint, this coincides with enforcing the
incremental nullity of the memory function fM at the fixed
stress point A (i.e. dσσσMA = 0):

dfM
(
σσσMA

)
=
∂fM

∂σσσMA
: dσσσMA +

∂fM

∂αααM
: dαααM +

∂fM

∂mM
dmM = 0

(14)

rM=r

rb

r
1

r
2

r
3

αM

α

n

θθ

Bounding surface

Memory surface

after expansion

Coinciding memory 

and yield surfaces 

before expansion

Translated yield

surface

α

rM
A

θ

Fig. 2. Memory surface expansion during virgin loading.

Trivial manipulations (see Appendix I) lead to the following
relationship:

dmM =

√
3

2
dαααM : nnn (15)
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6 MODELLING THE CYCLIC RATCHETING OF SANDS

which is significantly simpler than what obtained by Corti
(2016) for a memory surface with non-circular π-section.
It is further assumed by analogy that Equation (15)
determines the relationship between expansion (dmM ) and
translation (dαααM ) of the memory locus under any loading
conditions, not only virgin.

While dmM > 0 (expansion) underlies ‘fabric reinforce-
ment’ and sand stiffening within the expanded memory
locus, an opposite effect is usually induced by dilative
deformation stages and increase in void ratio (Nemat-Nasser
& Tobita, 1982). Such a ‘damage’ to the fabric configuration
results in lower sand stiffness. Here, the suggestion by Corti
(2016) is followed, and an additional contraction term is
cast into Equation (15) to let the memory surface shrink
only during dilation (negative dεvol):

dmM =

√
3

2
dαααM : nnn− mM

ζ
fshr

〈
−dεpvol

〉
(16)

in which the contraction term on the right is proportional
to the current locus size mM and plastic volumetric
strain increment dεpvol, with a purely geometrical factor
fshr described with more detail in the Appendix I. The
contraction rate during dilation is governed by the material
parameter ζ, assumed for simplicity not to depend on any
stress/state variables (e.g. p, e, etc.).

Memory surface translation

In analogy with the translation rule for the yield locus, the
centre of the memory surface is assumed to translate along
the direction of rrrbθ − rrr

M (Figure 1):

dαααM =
2

3

〈
LM

〉
hM (rrrbθ − rrr

M ) (17)

The hardening law (17) shares the same structure with
Equation (8), and requires a method to derive the ‘memory-
counterparts’ of the plastic multiplier and the hardening
coefficient, namely LM and hM . The same approach
used for the isotropic memory hardening is re-adopted:
the translation rule for αααM is rigorously specified for
virgin loading and then extended to any other conditions.
Accordingly, analytical derivations and material parameters
are substantially reduced in a way proven successful by the
the results in the following.

It is assumed that during virgin loading (σσσ ≡ σσσM ) the
same magnitude of the incremental plastic strain can be
derived by using the yield or memory loci indifferently. The
equalities below follow directly (see relevant derivations in
the Appendix I):

LM = L

hM =
1

2

[
b0

(rrrM − rrrin) : nnn
+

√
3

2

mMfshr 〈−D〉
ζ(rrrbθ − rrrM ) : nnn

] (18)

and are then extended by analogy to non-virgin loading.

Memory surface: effect on the sand dilation

As a phenomenological recorder of fabric effects, the
memory surface is also exploited to enhance the dilatancy
factor D in Equation (6), in a new way different from
SANISAND04. The goal is to use the memory surface to
obtain increased dilatancy (or pore pressure build-up in
undrained conditions) upon load reversals following dilative
deformation (Dafalias & Manzari, 2004). For this purpose,

the memory surface is handled in combination with the
same dilatancy locus defined by Dafalias & Manzari (2004),
responsible for the transition from contractive to dilative
response:

n

αM

α
r

rd

r MrM

Memory surface

Yield surfaceYield surface

r d

Dilatancy surface

θ

Fig. 3. Geometrical definitions for the enhancement of
the dilatancy coefficient.

rrrdθ =
√

2/3g(θ)M exp(ndΨ)nnn (19)

where the positive parameter nd governs its evolution
towards critical state (Ψ = 0). For the sake of clarity, Figure
3 displays certain geometrical quantities associated with the
relative position of the memory and dilatancy surfaces. The
distance b̃Md is first defined as:

b̃Md = (r̃rrd − r̃rrM ) : nnn (20)

with r̃rrM and r̃rrd projections of rrr on the memory and
dilatancy surfaces along the −nnn direction. When b̃Md > 0
the post-dilation contractancy produced by D in Equation
(6) is enhanced as follows:

D =
[
A0 exp

(
β
〈
b̃Md

〉
/bref

)]
(rrrdθ − rrr) : nnn (21)

where A0 and β are two material parameters. In Equation
(21) the exponential term is deactivated by b̃Md < 0,
that is when the image stress ratio r̃rrM lies outside the
dilatancy surface (i.e. after dilative deformation prior to
load reversal). Conversely, additional contractancy arises
in the opposite case b̃Md > 0 with r̃rrM lying inside the
memory surface. Compared to SANISAND04, the dilatancy
coefficient accounts for fabric effects through the same
memory locus employed to enhance the plastic modulus
coefficient in Equation (11).

CALIBRATION OF CONSTITUTIVE PARAMETERS
The new model requires the calibration of sixteen
constitutive parameters, only one more than SANISAND04.
Two subsets parameters may be distinguished: the first
includes material parameters already present in the original
SANISAND04 formulation – namely, from G0 to nd

in Table 2; the remaining parameters govern directly
the (high-)cyclic performance under both drained and
undrained loading. The calibration of material parameters
is discussed hereafter with reference to the monotonic
and cyclic laboratory tests performed by Wichtmann
(2005) on a quartz sand – D50 = 0.55 mm, D10 = 0.29
mm, Cu = D60/D10 = 1.8 (non-uniformity index), emax =
0.874, emin = 0.577. Numerical simulations are executed
with yield and memory surfaces initially coincident.
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Table 2. Model parameters for the quartz sand tested by Wichtmann (2005)

Elasticity Critical state Yield surface Plastic modulus Dilatancy Memory surface
G0 ν M c λc e0 ξ m h0 ch nb A0 nd µ0 ζ β
110 0.05 1.27 0.712 0.049 0.845 0.27 0.01 5.95 1.01 2.0 1.06 1.17 260 0.0005 1

The calibration of the first subset against monotonic tests
is based on the procedure detailed in Dafalias & Manzari
(2004). The shear modulus G0 can be derived from the
small-strain branch of experimental stress-strain curves, or
alternatively from well-established empirical relationships
(e.g. Richart et al. (1970); Hardin & Black (1966)). A
Poisson’s ratio equal to 0.05 was assumed following the
suggestion of Dafalias & Manzari (2004) for an open-wedge
yield surface. Opening of yield surface m = 0.01 is also
consistent with the SANISAND04 model. The parameters
governing the shape of critical state line in the e− lnp plane
(e0, λc and ξ) and the critical state shear strength (M and c)
have been identified by fitting both strength and volumetric
strain trends at ultimate conditions for different void ratios
and stress levels, as illustrated in Figure 4 by means of
deviatoric stress – axial strain (q − εa) and volumetric strain
– axial strain (εvol − εa) plots. More details about the
calibration of the remaining plastic modulus (h0, ch and
nb) and dilatancy (A0 and nd) parameters are available
in Dafalias & Manzari (2004) and Taiebat & Dafalias
(2008). Due to the limited availability of monotonic tests
for the considered quartz sand, these parameters have been
determined by fitting the available stress – strain (q − εa)
and volumetric strain – axial strain (εvol − εa) trends
as shown in Figure 4. All calibrated soil parameters are
reported in Table 2.

The new parameters linked to the proposed memory
surface (µ0, ζ and β) can be identified by best-fitting cyclic
test results, possibly from both drained and undrained
triaxial cyclic tests. Here, only the drained triaxial cyclic
tests documented in Wichtmann (2005) are exploited
for calibration purposes, while their impact on the
undrained response is qualitatively discussed. In particular,
Wichtmann’s experiments concern one-way asymmetric
cyclic loading performed in two stages (Figure 5): after
the initial isotropic consolidation up to p = pin, p-constant
shearing is first performed to reach the target average
stress ratio ηave = qave/pin; then, cyclic axial loading at
constant radial stress is applied to obtain cyclic variations
in deviatoric stress q about the average value qave, i.e.
q = qave ± qampl (Figure 5b). High-cyclic sand parameters
are tuned to match the evolution during regular cycles of
the accumulated total strain norm εacc defined as:

εacc =

√
(εacca )2 + 2 (εaccr )2 =

√
1

3

(
εaccvol

)2
+

3

2

(
εaccq

)2
(22)

where εacca , εaccr , εaccq and εaccvol stand for axial, radial,
deviatoric and volumetric accumulated strain, respectively.

As illustrated in Figure 6, the ratcheting response of the
soil under drained loading is governed by the µ0 parameter
in Equation (11). Figure 6a proves the superior capability of
the memory surface formulation to reproduce the transition
from ratcheting to shakedown. The gradual sand stiffening
occurs in combination with reduced plastic dissipation, as
denoted by the decreasing area enclosed by subsequent
stress-strain loops. The sensitivity of εacc to µ0 is visualised
in Figure 6b and exploited to reproduce the experimental
data from Wichtmann (2005). µ0 is in this case set to 260
by fitting the trend of εacc against number of loading cycles.

Dilative deformation tend to ‘damage’ the granular fabric
and thus erase ‘sand memory’. This granular process is
phenomenologically reproduced by the shrinkage of the
memory surface, at a rate governed by the parameter ζ in
Equation (16). However, the effect of ζ – only relevant to
stress paths beyond the dilative threshold Equation (19) – is
most apparent under undrained conditions: larger ζ values
reduce the contraction rate of the memory surface and
postpone the build-up of positive pore pressure in the post-
dilation unloading regime (Figure 7a). Under drained high-
cyclic loading, increasing ζ still promote the aforementioned
memory surface contraction, and affect soil ratcheting in the
dilative regime. For the quartz sand tested by Wichtmann
(2005), a drained high-cyclic triaxial test with stress path
crossing the phase transformation line is selected for the
calibration of the memory surface shrinkage parameter ζ.
Influence of ζ on the accumulation of the total strain εacc

in Equation (22) is presented in Figure 7b. ζ = 0.0005 has
been selected to reproduce the results of high-cyclic drained
tests mobilising sand dilation, – see Figure 7b.

The last parameter β appears in the new definition of
the dilatancy coefficient D in Equation (21), and mainly
controls the post-dilation reduction of the mean effective
stress in undrained tests. Larger β values allow for larger
reductions in effective mean pressure, possibly up to full
liquefaction (Figure 8a). Since the considered set of drained
test results does not support the calibration of β, β = 1
has been set judiciously with negligible influence on the
strain accumulation predicted during drained cyclic tests
(see Figure 8b). Although beyond the scope of this work on
drained strain accumulation, the marked influence of β on
the undrained response is briefly illustrated in Appendix II.

MODEL PREDICTIONS OF DRAINED RATCHETING
UNDER DIFFERENT LOADING PATHS
This section overviews the predictive capability of the model
against drained high-cyclic test results from the literature.
The parameter set in Table 2 is used to simulate sand
ratcheting under different cyclic loading conditions, namely
triaxial, simple shear and oedometer. All model results
have been obtained via single-element FE simulations
performed on the OpenSees simulation platform (Mazzoni
et al., 2007). The new model with ratcheting control has
been implemented starting from the existing SANISAND04
implementation developed at the University of Washington
(Ghofrani & Arduino, 2017).

Cyclic triaxial tests
This section considers triaxial test results from Wichtmann
(2005), not previously used for parameter calibration. The
experimental data concern the same quartz sand and both
standard and non-standard triaxial loading.

Standard triaxial loading

The model is first validated against standard triaxial tests
of the kind sketched in Figure 5, i.e. with constant radial
stress during axial cyclic loading. The drained ratcheting
response is predicted at varying pin, ein, ηave and qampl.
Importantly, a large number of cyclesN = 104 is considered,
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Fig. 4. Calibration of model parameters against the monotonic drained triaxial test results by Wichtmann (2005) –
experimental data denoted by markers.
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Fig. 5. Stress paths and shear loading sequence in the tests considered for simulation (Wichtmann, 2005).
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(b) Influence of µ0 on the accumulated total strain
norm

Fig. 6. Influence of µ0 (Equation (11)) on sand response. The comparison to the experimental data by Wichtmann
(2005) refers to the following test/simulation settings: ein = 0.702, qampl = 60 kPa, pin = 200 kPa, ηave = 0.75.

and a very satisfactory agreement with experimental data
is obtained in most cases.

Influence of initial confining pressure pin The
experimental data by Wichtmann (2005) show a quite
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Fig. 7. Influence of ζ (Equation (16)) on sand response. Simulation settings: (a) pin=500 kPa, ein = 0.6, load reversal
at εa = 0.07; (b) pin = 200 kPa, ηave=1.125, ein = 0.68, qampl = 60 kPa.
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(b) Drained high-cyclic strain accumulation

Fig. 8. Influence of β (Equation (21)) on sand response.
Simulation settings: (a) the quartz sand, pin=500 kPa,
ein = 0.6, load reversal at εa = 0.07; (b) the quartz sand,
pin=200 kPa, ηave=1.125, ein = 0.68, qampl = 60 kPa.

low influence of pin on the εacc −N curves, especially
for N < 104 (Figure 9a). This is clearly in contrast with
what the new model predicts if no pressure-dependence is
incorporated in the hardening coefficient h (Equation (11)),
i.e. if the exponent n of the p/patm factor is set to zero
(Figure 9b). Conversely, the intrinsic pressure-dependence
of SANISAND models can be counterbalanced through a
pressure factor (p/patm)n in h. To avoid a burst in the
number of free parameters, a default exponent n = 1/2 is
adopted, also in agreement with the pressure-dependence
typically found for sand stiffness. The comparison between
Figures 9a and 9c proves the quantitative suitability of
Equation (11).

Influence of initial void ratio ein The experimental
evidence from Wichtmann (2005) confirms the intuitive
expectation of higher strain accumulation at increasing ein
(looser sand specimens). Figure 10 illustrates the potential
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(b) Model simulations: n = 0
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Fig. 9. Influence of the initial mean pressure pin on
cyclic strain accumulation. Test/simulation settings:
ein=0.684, ηave=0.75, stress amplitude ratio ςampl =
qampl/pin=0.3.

of the new model to capture void ratio effects, though
with slight overestimation of εacc for very dense and
very loose specimens. It is worth recalling, however, that
the parameters in Table 2 have been calibrated in the
remarkable effort to capture relevant response features with
a single set of parameters.
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Fig. 10. Influence of the initial void ratio ein on cyclic strain accumulation. Test/simulation settings: pin= 200 kPa,
ηave= 0.75, qampl= 60 kPa.

Influence of cyclic stress amplitude qampl The
experimental and numerical results in Figure 11 agree on
the higher strain accumulation produced by increasing cyclic
stress amplitude qampl. In particular, satisfactory model
predictions are shown for medium-dense sand specimens
associated with ein = 0.702.

Influence of average stress ratio ηave The dependence
of sand ratcheting on the average stress obliquity
about which stress cycles occur is extremely relevant to
practical applications. Indeed, soil elements under/around a
foundation experience cyclic loading starting from different
stress obliquities, implying different distance from the value
related to shear failure.

Figure 12 presents another set of experimental-numerical
comparisons at varying average stress ratio ηave. The
model can reproduce the experimental increase in strain
accumulation rate for larger ηave values, although less
accurately as ηave > 1. Specifically, the simulation with
ηave = 1.125 overestimates εacc significantly when N >
1000: high-cyclic loading at large ηave jeopardises the
effectiveness of the memory surface concept, as the model
tends again towards the SANISAND04 limit. While near-
failure high-cyclic loading seems not too relevant to
operational conditions in the field, some concerns could
also be raised about the reliability of test measurements
performed under such conditions, may be due to strain
localisation phenomena (Escribano et al., 2018).

Non-standard triaxial loading

Alternative triaxial loading conditions can be generated
by varying both axial and radial stresses during the test.
As discussed by Wichtmann (2005), this can produce
‘polarised’ stress-strain cyclic paths, which seem to enhance
the tendency to strain accumulation. Unlike most modelling
exercises, the model performance is here assessed also in
relation to polarised triaxial loading. For this purpose, the
following polarisation angle αPQ and amplitude are first
defined in the Q− P plane (Figure 13) for direct comparison
with Wichtmann’s data:

tanαPQ =
Qampl

Pampl

Sampl =
√

(Pampl)2 + (Qampl)2

(23)

where Q =
√

2/3q and P =
√

3p are isomorphic transfor-
mations of the stress invariants p and q, and the superscript
ampl denotes cyclic variations about the initial values pave ≡
pin and qave.

The model response to non-standard triaxial loading is
compared to Wichtmann et al.’s experimental data in Figure
14 at varying polarisation angle αPQ, and Figure 15 at
varying loading amplitude Sampl. The results in Figure
14 span polarisation angles in the range from 0◦ to 90◦,
and show very satisfactory εacc −N trends in most cases.
The only exception is the case αPQ = 10◦, in which the
model underpredicts the corresponding strain accumulation.
This singular outcome is directly caused by the analytical
expression (2) of the yield locus, conical and open-ended: in
fact, triaxial stress paths at αPQ = 10◦ happen to be mostly
oriented along the uncapped zone of the elastic domain,
resulting in underestimated plastic strains.

The effect of the cyclic stress amplitude Sampl at finite
polarisation angle (αPQ = 75◦) can be observed in Figure
15. Strain accumulation is accelerated by increasing Sampl,
as testified by simulation results in good agreement with all
laboratory data.

Cyclic simple shear tests
Simple shear tests are also well-established in the geo-
experimental practice, and allow to explore the soil response
to loading paths implying rotation of the principal stress
axes. Simple shear loading closely represents conditions
relevant to many soil sliding problems, e.g. in the triggering
of landslides or in the mobilisation of the shaft capacity of
piles.

The experimental work of Wichtmann (2005) also
included high-cyclic simple shear tests on the same quartz
sand previously tested in the triaxial apparatus – the
validity of the same sand parameters in Table 2 can
be thus assumed. Two types of cyclic simple shear tests
were performed: (i) cyclic shear loading applied along a
single direction; (ii) so-called cyclic multidimensional simple
shear (CMDSS) tests, in which the direction of shear
loading is shifted by 90◦ in the horizontal plane after, in
this case, N = 1000 cycles. As all tests were performed
under controlled shear strain amplitude, the experimental
results were visualised in terms of residual (plastic) strain
accumulation – following the definition (22), the residual
strain in strain-controlled simple shear tests coincides with
the permanent vertical strain.

Experimental and numerical curves corresponding
with cyclic shear strain amplitude γampl = 5.8× 10−3

are compared in Figure 16, where the dashed lines
denote the shift in shear loading direction at N =
1000 – relevant to CMDSS tests. Despite unavoidable
stress/strain inhomogeneities in simple shear experiments
(Dounias & Potts, 1993), reasonably similar residual strain
accumulations are displayed in Figures 16a–16b. The
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(a) Experimental data (Wichtmann, 2005)
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(b) Model simulations

Fig. 11. Influence of the cyclic stress amplitude qampl on cyclic strain accumulation. Test/simulation settings: pin=
200 kPa, ηave= 0.75, ein= 0.702.
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(b) Model simulations

Fig. 12. Influence of the average stress ratio ηave on cyclic strain accumulation. Test/simulation settings: pin= 200
kPa, ein= 0.684, qampl= 60 kPa.
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Fig. 13. Non-standard triaxial stress paths in the Q− P
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model is also able to capture the temporary increase in
accumulation rate produced by the sudden change in shear
loading direction.

Cyclic oedometer tests
Cyclic oedometer test results are more rare in the literature,
nonetheless a recent instance is reported by Chong &
Santamarina (2016) for three different sands (a blasting
sand, Ottawa F110 and Ottawa 50–70). The following
simulations regard oedometer tests on Ottawa 50–70
specimens (D10 = 0.26 mm, D50 = 0.33 mm, Cu = 1.43,
emax = 0.87, emin = 0.55) prepared at two different void
ratios, ein = 0.765 and ein = 0.645. Both loose and dense

specimens were subjected to stages of monotonic-cyclic-
monotonic loading, at either low or high vertical static stress
(Figure 17a): (i) low static load – monotonic compression
up to 100 kPa → cyclic vertical loading in the range 200–
100 kPa (100 cycles) → monotonic re-compression up to
1.4 MPa; (ii) high static load : monotonic compression up
to 1 MPa → cyclic vertical loading in the range 1.1–1
MPa (100 cycles) → monotonic re-compression up to 1.4
MPa. Regarding the data set in Chong & Santamarina
(2016), a slightly different calibration approach had to be
followed: first, the thirteen SANISAND04 parameters (from
G0 to nd) have been identified based on drained monotonic
triaxial tests on Ottawa sand from the literature (Lin et al.,
2015); then, the oedometer high-cyclic response has been
simulated by either (i) keeping the same (µ0, ζ, β) set in
Table (Figure 17b), or adjusting the three parameters for
best-fit purposes (Figure 17c). Experimental and numerical
results are compared in Figure 17 in terms of void ratio vs
vertical stress curves, for consistency with the original plots
in Chong & Santamarina (2016).

As apparent in Figure 17, most experimental-numerical
mismatch is produced during monotonic loading stages,
which a model with an open conical yield surface is
not suited to reproduce. As for cyclic compaction, the
parameters calibrated from Wichtmann’s tests tend to
underpredict the reduction in void ratio. In contrast,
satisfactory numerical results are displayed in Figure 17c
after re-calibrating µ0 and ζ as well (Table 3, same β).
There are two steps in re-calibrating µ0 and ζ: (1) the loose
specimen is selected to calibrate µ0 parameter under the
loading condition that cyclic vertical loading in the range
200–100 kPa, since under this condition the parameters ζ
and β have no impact on the cyclic behaviour; (2) the dense
sample under the same cyclic loading conditions is selected
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(b) Model simulations

Fig. 14. Influence of the polarisation angle αPQ on cyclic strain accumulation. Test/simulation settings: pin= 200
kPa, ein= 0.69, ηave= 0.5, stress amplitude in the Q− P plane Sampl= 60 kPa.
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Fig. 15. Influence of the stress amplitude Sampl in the Q− P plane on cyclic strain accumulation. Test/simulation
settings: pin= 200 kPa, ein= 0.69, ηave= 0.5, αPQ = 75◦.
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(b) Simulation results

Fig. 16. Cyclic simple shear tests (single loading direction and CMDSS) – comparison between experimental results
and model predictions. Test/simulation settings: σa= 24 kPa (initial vertical stress), ein= 0.69, γampl = 5.8× 10−3.

Table 3. Model parameters for the Ottawa sand tested by Chong & Santamarina (2016)

Elasticity Critical state Yield surface Plastic modulus Dilatancy Memory surface
G0 ν M c λc e0 ξ m h0 ch nb A0 nd µ0 ζ β
90 0.05 1.28 0.8 0.012 0.898 0.7 0.01 5.25 1.01 1.2 0.4 1.35 44 0.005 1

to calibrate ζ with the µ0 determined in step (1). Other
simulations are conducted with the same parameters. The
model captures two expected, yet relevant, aspects:

– at given initial vertical stress, the looser sand compact
more than the dense sand; for a given initial void
ratio, higher initial compression level results in lower
cyclic compaction;

– after cyclic loading, the void ratio evolves during re-
compression towards the initial virgin compression
line (Figure 17c).

The results in Figure 17 confirm the remarkable predictive
potential of new model. It could also be shown that fully
realistic values of the horizontal-to-vertical stress ratio are
obtained, owing to the rotational mechanism of the narrow
yield surface (and regardless of the low Poisson’s ratio
selected – Table 3). The predictions of the monotonic
oedometer response could be improved by introducing a
capped yield surface as proposed by Taiebat & Dafalias
(2008).
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(c) Model simulations – all param-
eters from Table 3

Fig. 17. Cyclic oedometer tests – comparison between experimental results and model predictions.

COMPLIANCE WITH THE CONCEPT OF
‘TERMINAL DENSITY’
While experimental and numerical results were compared
above in terms of strain norm εacc (Equation (22)), it is also
interesting to inspect the accumulation of volumetric (εaccvol )
and deviatoric (εaccq ) strains individually – as exemplified in
Figure 18. Based on experimental observations, Wichtmann
(2005) concluded that the εaccvol/ε

acc
q ratio mainly depends

on the average stress ratio ηave held during cyclic loading.
Other factors like void ratio, confining pressure and
stress amplitude seemed to play limited roles. The new
model is found to reproduce such a ratio correctly in
the medium/high strain range, although with an overall
underestimation of εaccvol (Figure 18 – note that the
experimental and predicted trend lines become parallel for
εaccq > 0.4).
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Fig. 18. High-cyclic evolution of deviatoric and volumet-
ric strain under drained triaxial loading. Test/simulation
settings: pin= 200 kPa, ein = 0.7, ηave= 0.75, qampl = 60
kPa, N = 104.

It is believed that these inaccuracies relate mostly to the
assumed modelling of sand dilatancy, future efforts will be
spent to remedy this shortcoming. However, it is also worth
reflecting here on the link between Wichtmann’s results and

other related published results. In particular, Narsilio &
Santamarina (2008) postulated on an experimental basis the
existence of a so-called ‘terminal density’, that is a state of
constant void ratio and steady fabric – including critical
state as a particular instance. Every sand appears to attain
a specific terminal density depending on initial, boundary
and loading conditions (Narsilio & Santamarina, 2008;
Chong & Santamarina, 2016), with direct influence on the
observed accumulation of all strain components. However,
the experimental trend in Figure 18 fromWichtmann (2005)
does not seem to evolve towards such a terminal state.
Further studies about such a discrepancy and, more widely,
about the existence and the properties of terminal density
loci will positively affect future modelling efforts on the
high-cyclic response of soils.

CONCLUSIONS
The critical state, bounding surface SANISAND04 model
was endowed with an additional locus in the stress space
(memory surface) to improve the simulation of high-cyclic
sand ratcheting under a variety of initial, boundary and
loading conditions. The constitutive equations, directly
presented in a multi-axial framework, were implemented
in the finite element code OpenSees, based on an existing,
open-source implementation of SANISAND04. Compared to
previous formulations, the proposed models proved more
reliable in capturing the dependence of sand ratcheting,
as well as potentially more flexible in terms of mean
effective pressure decay under undrained loading. Extensive
validation against experimental results was performed with
regard to triaxial (standard and non-standard), simple shear
and oedometer drainded cyclic tests.

The impact of this and future work on the subject will
link to further calibration efforts against new high-cyclic
datasets, still rare in the scientific literature and usually
out of the scope of industry projects. It is anticipated
that deeper insight and more reliable empirical correlations
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14 MODELLING THE CYCLIC RATCHETING OF SANDS

may be obtained for a range of sandy materials. This will
support the use of ratcheting models, both implicit and
explicit, in the (likely) lack of specific evidence about strain
accumulation trends.

NOTATIONS
A0 ‘intrinsic’ dilatancy parameter
b̃Md relative position of the memory and the

dilatancy surfaces
bM yield-to-memory surface distance
b0 hardening factor
bref reference distance for normalisation
Cu uniformity coefficient
c compression-to-extension strength ratio
ch hardening parameter
D dilatancy coefficient
D10,50,60 the diameter in the particle-size distribu-

tion curve corresponding to 10%, 50% and
60% finer

eee deviatoric strain tensor
e void ratio
e0 reference critical void ratio in Equation 3
ec void ratio at critical state
ein initial void ratio
f yield function
fM memory function
fshr memory surface shrinkage geometrical

factor
G shear modulus
G0 dimensionless shear modulus
g(θ) interpolation function for Lode angle

dependence
h̃ virgin state hardening factor generalised

into common situations
h hardening factor
hM memory-counterpart of the hardening

coefficient
h0 hardening parameter
III second-order identity tensor
Kp plastic modulus
KM
p memory-counterpart of the plastic modu-

lus
L plastic multiplier
LM memory-counterpart of the plastic multi-

plier
M critical stress ratio in compression
m yield locus opening parameter
mM memory locus opening parameter
N number of loading cycles
nnn unit tensor normal to the yield locus
nnnM unit tensor for memory surface contraction
n pre-set material parameter
nb,d void ratio dependence parameters
P isomorphic transformation of the stress

invariant p
Pampl cyclic amplitude of P
p mean effective stress
patm atmospheric pressure
pin initial effective mean stress
Q isomorphic transformation of the stress

invariant q
Qampl cyclic amplitude of Q
q deviatoric stress
qampl cyclic deviatoric stress amplitude
qave average deviatoric stress
R′R′R′ deviatoric plastic flow direction tensor

RRR plastic strain rate direction tensor
rrr deviatoric stress ratio tensor
rrrM image deviatoric stress ratio point on the

memory locus
rrrbθ+π projection onto the bounding surface with

relative Lode angle θ + π

rrrb,c,dθ bounding, critical and dilatancy deviatoric
stress ratio tensor

rrrC,D projection of rrr along −nnnM on memory
surfaces after and before contraction

rrrin initial load-reversal tensor
r̃rr projection of rrr on the yield surface along

−nnn
r̃rrM projection of rrr on the memory surface

along −nnn
r̃rrd projection of rrr on the dilatancy surface

along −nnn
Sampl cyclic polarisation stress amplitude
sss deviatoric stress tensor
w pre-set material parameter
x1,2,3 line-segments defined to derive memory

surface contraction law
αPQ polarisation angle
ααα back-stress ratio tensor
αααM memory back-stress ratio tensor
β dilatancy memory parameter
εεε strain tensor
εacc accumulated total strain
εacca,r,q,vol accumulated axial, radial, deviatoric and

volumetric strain
εa,vol axial and volumetric strains
εpvol plastic volumetric strain
ηave average deviatoric stress ratio in triaxial

space
γampl cyclic shear strain amplitude
λc CSL shape parameter
µ0 ratcheting parameter
ν Poisson’s ratio
Ψ state parameter
σσσ stress tensor
σσσM image stress tensor on the memory locus
σσσMA stress tensor at point A
ςampl cyclic stress amplitude ratio
θ relative Lode angle
ξ CSL shape parameter
ζ memory surface shrinkage parameter
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APPENDIX I – ANALYTICAL DERIVATIONS
This appendix collects relevant analytical derivations,
skipped in the main text for better readability.

Memory surface expansion
The expansion law for the memory surface is derived
through the consistency condition in Equation (14) applied
to the stress point A (Figure 2). Importantly, the partial
derivative ∂fM/∂αααM at point A can be expressed as follows:

∂fM

∂αααM

∣∣∣∣
A

= −p rrrMA −ααα
M√

(rrrMA −αααM ) : (rrrMA −αααM )
= pnnn (A1)

due to the position of A taken diametrically opposed to
the projection of the stress point on the memory surface
(see Figure 2, along −nnn). After computing the derivative
∂fM/∂mM and setting dσσσMA = 0, the evolution law (15)
results from Equation (14).

Memory surface contraction
The geometrical factor fshr in Equation 16 is evaluated to
prevent the memory surface from shrinking smaller than the
elastic domain.

It is assumed that the shrinkage of the memory surface
occurs at fixed image stress ratio rrrM , along the direction of
the unit tensor nnnM :

nnnM =
rrrM − rrr√

(rrrM − rrr) : (rrrM − rrr)
(A2)

The following segments along the nnnM directions are
defined in agreement with in Figure A1:
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Fig. A1. Geometrical contraction mechanism of the
memory surface.

x1 = nnnM : (rrrM − rrr)
x2 = nnnM : (rrr − rrrD) = nnnM : (rrr − r̃rr)
x3 = nnnM : (rrrM − rrrC) = nnnM : (rrrM − r̃rrM )

(A3)

where

r̃rr = ααα−
√

2/3mnnn r̃rrM = αααM −
√

2/3mMnnn (A4)

It should be recalled that, during virgin loading, rrrM = rrr and
nnnM = nnn. To avoid undesired intersections, the contraction
of the memory surface is gradually decelerated as the yield-
memory tangency is approached. For this purpose, the
factor fshr in Equation 16 is defined as per Corti (2016):

fshr = 1− x1 + x2
x3

(A5)

Under general conditions, points C and D do not
coincide, so that the segment x3 is longer than segment
x1 + x2. Therefore, (x1 + x2)/x3 < 1⇒ fshr > 0 and the
contraction mechanism is carried on until the segment CD
vanishes.

Memory surface translation
As postulated in the relevant section, it assumed that
during virgin loading (σσσ ≡ σσσM ) the same magnitude of the
incremental plastic strain can be derived by using the yield
or memory loci indifferently:

‖dεεεp‖
‖RRR‖ = L =

(
1

Kp

∂f

∂σσσ
: dσσσ

)
=

(
1

KM
p

∂fM

∂σσσM
: dσσσM

)
= LM

(A6)
where RRR = RRR′ +DIII/3 (see Equation (6)). Under virgin
loading conditions, LM = L and KM

p = Kp hold rigorously.
By enforcing plastic consistency on the memory surface,

it can be found that:

∂fM

∂σσσM
: dσσσM = −

(
∂fM

∂αααM
: dαααM +

∂fM

∂mM
dmM

)
= LMKM

p

(A7)
After setting L = LM and substituting the partial
derivatives of the memory function fM with respect to αααM

and mM , Equation A7 can be rewritten as:

LKM
p = pnnn : dαααM +

√
2

3
pdmM (A8)

Introducing Equation (17) into the above equation leads to:

KM
p =

2

3
p

[
hM (rrrbθ − rrr

M ) : nnn+

√
3

2

1

L
dmM

]
(A9)

Imposing virgin loading (rrr = rrrM ) into Equation (8) yields:

Kp =
2

3
ph(rrrbθ − rrr) : nnn =

2

3
ph̃(rrrbθ − rrr

M ) : nnn (A10)

with
h̃ =

b0
(rrrM − rrrin) : nnn

(A11)

Under virgin loading conditions, KM
p = Kp. Combining

Equation A9 with A10 results in:

h̃(rrrbθ − rrr
M ) : nnn = hM (rrrbθ − rrr

M ) : nnn+

√
3

2

1

L
dmM (A12)

The combination of Equations (6), (16) (A11) and (A12)
leads to the final Equation (18).

APPENDIX II – IMPACT ON UNDRAINED CYCLIC
RESPONSE
While the main body of the paper focused on the modelling
and simulation of drained cyclic strain accumulation, some
space is given in this appendix to compare the proposed
model and the parent SANISAND04 formulation in terms
of undrained cyclic performance. For this purpose, the
experimental results from Ishihara et al. (1975) are taken as
a reference after Dafalias & Manzari (2004) – in particular,
an undrained cyclic triaxial test performed on a Toyoura
sand specimen at constant cell pressure pin = 294 kPa,
initial void ratio ein = 0.808 and amplitude of applied
deviatoric stress qampl = 114.2 kPa. The SANISAND04
parameters shared by the proposed model are reported in
TableA1 as identified by Dafalias & Manzari (2004).

The comparison between experimental data and
SANISAND04 simulation is reported in Figure A2a.
The SANISAND04 model captures the cyclic decrease in
effective mean stress, in a way positively affected by the
enhanced post-dilation contractancy achieved through the
fabric-tensor formulation. However, the model does not
accurately predict the pore pressure build-up during each
cycle and, in turn, the number of cycles required to reach
the phase transformation line (PTL). Conversely, Figure
A2b shows the improved performance of the proposed
model, based on the memory surface concept combined
with the new dilatancy coefficient defined in Equation (21).
The proposed model accounts for the gradual stiffening
over consecutive cycles and predicts better the number
of loading cycles to phase transformation. Comforting
predictions are also obtained in terms of pore pressure
vaules beyond phase transformation, along with the nearly
nil effective mean stress reached upon unloading. Overall,
the new memory-surface-based flow rule seems a promising
alternative to the approach followed by Dafalias & Manzari
(2004).

As highlighted in Figure A2c in comparison to Figure
A2b, the proposed model offers higher flexibility in
reproducing the undrained cyclic behaviour, depending on
the set of cyclic parameters µ0, ζ and β selected. In
general, the initial pore pressure build-up prior to phase
transformation can be controlled through the parameter
µ0; the post-dilation stress path is mainly governed by the
parameter β, which affects indirectly the shrinkage of the
memory surface – the larger β, the smaller the minimum
effective stress reached upon post-dilation unloading.
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Table A1. Toyoura sand parameters shared by SANISAND04 and the new model – after tests by Ishihara et al.
(1975)

Elasticity Critical state Yield surface Plastic modulus Dilatancy
G0 ν M c λc e0 ξ m h0 ch nb A0 nd

125 0.05 1.25 0.712 0.019 0.934 0.7 0.01 7.05 0.968 1.1 0.704 3.5
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(a) Comparison between experimental result (Ishi-
hara et al., 1975) and SANISAND04 simulation
result (Dafalias & Manzari, 2004).
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(b) Comparison between experimental result (Ishi-
hara et al., 1975) and new model simulation result
(µ0 = 45, ζ = 0.00001, β = 16.5).
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(c) Influence of µ0 and β on the undrained
performance of the new model (µ0 = 150, ζ = 0.00001,
β = 0).

Fig. A2. Undrained cyclic behavior of Toyoura sand.
Test/simulation settings: pin = 294 kPa, ein = 0.808,
qampl = 114.2 kPa.
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