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The struggle itself toward the heights is enough to fill a man’s heart.
One must imagine Sisyphus happy.

— Albert Camus, <The Myth of Sisyphus>

向高峰的拼搏本身足以充盈人心；我们必须设想西西弗是幸福的。

—阿尔贝·加缪，《西西弗神话》

Though not every fragment of existence is touched by significance,
we humans ceaselessly chase meaning in the unnoticed and unseen.

Whether Sisyphus was happy remains a glimpse I can no longer discern.
I dedicate this book to the most significant glimmers in my life:

my dearest mom and dad, my beloved Mark, and my cutest paw friend, Tuoba.

纵然世间万物未必尽含深意，
吾众生人心无休，恒于纤毫寸芒处追寻真谛。

西西弗是否幸福早已化作我不复辨析的惝恍残象。

谨以此书献给我生命中至深至远的微光：
我最亲爱的妈妈爸爸，心爱的波尼，以及我最可爱的爪友，拖把。





Contents
Summary xi

Samenvatting xiii

中文总结 xv

1 Introduction 1
1.1 In the pursuit of sustainability, a systematic solution is needed . . . . . . . 1
1.2 Research scope and objectives . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis outline and key research offerings . . . . . . . . . . . . . . . . . . . 4

2 EV-Grid integration – A backdrop sketch 7
2.1 What unregulated EV charging brings to the current grids . . . . . . . . . 7
2.2 Basic practices of EV smart charging . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 SC design dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 The key players and the communication protocols . . . . . . . . . 10

2.3 EV smart charging algorithm invention — A step by step journey . . . . . 11
2.3.1 Seeking balance in intricacy . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 From conceptualisation to actual implementation . . . . . . . . . . 13

3 Prospects and pitfalls of the mass EV deployment in distribution grids 15
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.3 Structure of the chapter . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Methodology: Data-Driven Approach for Realistic Grid Impact Evaluation 18
3.2.1 Grid Specific Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Load and Photo-Voltaic (PV) profiles . . . . . . . . . . . . . . . . . 21
3.2.3 EV penetration representation . . . . . . . . . . . . . . . . . . . . . 22
3.2.4 Historical measurement-based EV fleet and demand profile gener-

ation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.5 Methodology and simulation data . . . . . . . . . . . . . . . . . . . 26

3.3 Simulation Results and impact factor discussion . . . . . . . . . . . . . . . 26
3.3.1 Results of different grid types and countries . . . . . . . . . . . . . 30
3.3.2 Impact factor discussion . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Comparison of Different Grid Behaviour with Key Indicators . . . . . . . . 34
3.4.1 The magnitude of grid congestion . . . . . . . . . . . . . . . . . . . 34
3.4.2 Duration and scale of the grid congestion . . . . . . . . . . . . . . 36
3.4.3 Key takeaway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Conclusion and recommendation . . . . . . . . . . . . . . . . . . . . . . . 38

VII



CONTENTS

4 Benchmark study of heuristic EV charging tactics 47
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Background on Advanced Smart EV Charging Algorithms . . . . . 48
4.1.2 Simple and Practical Charging Scheduling Approach . . . . . . . . 49
4.1.3 Contributions and the chapter Structure . . . . . . . . . . . . . . . 53

4.2 EV Charging Scheduling Methods . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.1 Price Signal Method . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.2 Voltage Droop Method . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.3 Average Rate Method . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Simulation Methodology and System Information . . . . . . . . . . . . . . 58
4.4 Comparative Simulation Results for Grid PerformancewithDifferent Char-

ging Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.1 Grid Congestion Alleviation and Charging Session Feature Correl-

ations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.2 Loading Value Distribution Exploration . . . . . . . . . . . . . . . 62
4.4.3 Overloading Assessment on Individual element . . . . . . . . . . . 64
4.4.4 Key Takeaways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 PSM Scheme Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.6 Charging Process Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6.1 Charging Completion . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.6.2 Charging Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Centralised EV charge management schemes aiming grid congestion as-
suagement 75
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.1 Phase 1: Grid congestion detection . . . . . . . . . . . . . . . . . . 80
5.2.2 Phase 2: Congestion diagnosis and target EVSE detection . . . . . 81
5.2.3 Phase 3: EV charging scheme execution . . . . . . . . . . . . . . . 82

5.3 Modelling of elements and scenarios . . . . . . . . . . . . . . . . . . . . . . 85
5.3.1 Grid features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3.2 PV and load profiles . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.3 EV data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.4 Simulation setups and scenarios . . . . . . . . . . . . . . . . . . . . 87

5.4 Simulations Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.4.1 Grid congestion mitigation . . . . . . . . . . . . . . . . . . . . . . 87
5.4.2 User satisfaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4.3 Overcompensation of grid overloading . . . . . . . . . . . . . . . . 91

5.5 Conclusion and recommendations . . . . . . . . . . . . . . . . . . . . . . . 92

6 Hierarchical EV smart charging algorithm development withHIL exper-
imental evaluation 95
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

VIII



CONTENTS

6.2 Architecture of system model and algorithm . . . . . . . . . . . . . . . . . 99
6.2.1 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2.2 Smart charging algorithm description . . . . . . . . . . . . . . . . 100
6.2.3 Algorithm execution and the Flexible receding horizon scheme . . 102

6.3 Hardware-Software configuration . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.1 HIL setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.2 Testbed/Algorithm interface . . . . . . . . . . . . . . . . . . . . . . 106

6.4 Assumptions and test scenarios . . . . . . . . . . . . . . . . . . . . . . . . 107
6.4.1 Grid model and input data . . . . . . . . . . . . . . . . . . . . . . . 107
6.4.2 Simulation scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.5 Results and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.5.1 Base case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.5.2 Impact of stochasticity . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.5.3 Efficacy of incorporating grid limitation . . . . . . . . . . . . . . . 116
6.5.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.6 Conclusions and recommendations . . . . . . . . . . . . . . . . . . . . . . 119

7 Smart charging algorithm advancement addressing experiment results
and visioning implementations 121
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.2 Algorithm mathematical build explained . . . . . . . . . . . . . . . . . . . 123

7.2.1 System structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.2.2 Smart charging algorithm . . . . . . . . . . . . . . . . . . . . . . . 124

7.3 Algorithm implementational practice . . . . . . . . . . . . . . . . . . . . . 129
7.3.1 Future EV inclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.3.2 Passive stochasticity coping mechanism . . . . . . . . . . . . . . . 130

7.4 Simulation setup, input data and assumptions . . . . . . . . . . . . . . . . 133
7.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.5.1 Smart charging performance evaluation . . . . . . . . . . . . . . . 135
7.5.2 Stochasticity management validation . . . . . . . . . . . . . . . . . 144
7.5.3 Pursuing optimality . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8 Key insights 155

Bibliography 161

Acknowledgements 175

Author profile 177

IX





Summary
The rapid growth in EV market share aligns with the EU’s push for transportation elec-

trification, presenting challenges to power grids alongside the rise of distributed renewable
energy. Successful execution of charging sessions relies on the seamless operation of key
players and components in the complex EV charging ecosystem. Therefore, addressing
the EV-grid integration challenges requires a comprehensive, implementational and hol-
istic approach.

This thesis exhibits a systematic study on integrating Electric Vehicles (EVs) with Low
Voltage (LV) distribution grids, divided into two main parts. The first part delves into an
extensive analysis of the potential issues the grids may encounter, exploring the what,
how, and to what extent these challenges arise. The second part focuses on offering empir-
ical solutions to the observed challenges viewed from the Distribution System Operators
(DSOs) standpoint and aggregators’ perspectives, respectively.

Mass EV deployment in distribution grids —
Uncontrolled charging and heuristic benchmarks

In the first part of this thesis, a comprehensive study is conducted on the mass deploy-
ment of EVs in distribution grids through grid load flow analysis. This is followed by
a comparative investigation of representative heuristic EV charging strategies, assessing
their effectiveness in alleviating grid congestion, reducing costs, and fulfilling charging
requests.

The EV uncontrolled charging study investigates grid congestion and its influencing
factors across twenty-one grids in three EU countries, covering three grid types. The ana-
lysis spans winter and summer and considers weekday/weekend variations with four EV
penetration levels. The scrutiny of the magnitude, scale, and duration of grid congestion
reveals several key insights. A coinciding overloading trend is generally exhibited among
all grid components, with the grid’s intrinsic characteristics being the primary factors con-
tributing to congestion risks. It is also perceived that the voltage issues may surface well
before line overloading becomes evident, and severe overloading predominantly occurs at
main buses and in local pockets with high consumption loads. Overall, Most grids can
accommodate up to 50% EV penetration without experiencing significant congestion.

Then, the trade-offs among three heuristic EV charging tactics — considering grid per-
formance, charging demand fulfilment, and economic benefits — are perused across three
different grid types and four increasing EV penetration levels during both summer and
winter. The research outcome indicates that even though the heuristic EV charging meth-
ods evince acceptable outcomes, their imperfections, which stem from the narrow spe-
cialities and limited system information, can result in unbalanced or even biased results.
This is notably apparent when grid congestion, charging cost and user satisfaction, includ-
ing both charging fulfilment and fairness, are competing for the finite system resources.
Therefore, the logic design and the selection of reference parameters for heuristic methods
must be carefully evaluated to lay the groundwork for the development of smart charging
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SUMMARY

algorithms in the second part of this thesis.

Grid congestion management and EV smart charging
algorithm development

The second major topic of this thesis is to provide feasible systematic solutions to the
current and anticipated challenges confronted by grids while serving other key stakehold-
ers’ interests in the EV charging ecosystem. This effort is demonstrated through two crit-
ical approaches in this thesis. First, developing a Power Transfer Distribution Factors
(PTDF) based grid congestion prevention/mitigation mechanism from the DSO perspect-
ive. Second, designing, advancing and validating a flexible and reliable hierarchical mixed
integer programming (MIP) EV smart charging algorithm from the aggregator prospect.

The formulated PTDF-based LV grid congestion management algorithm is embedded
with three centralised EV charging management schemes. These schemes alleviate the
congestion by targeting the elements that are pivotal to overloading, pursuing imparti-
ality among all users concerning charging management and maximising overall energy
transfer to the EVs, respectively. This algorithm integrates the full grid information and
solves the problem through linear programming (LP) and iterative calculations. The al-
gorithm demonstrates its success in completely preventing or alleviating congestion with
50% and 100% EV penetration across two grids respectively. It achieves this with high ef-
ficacy through: prioritising efficiency, fairness among EV users, and charging priorities,
in accordance with the design of each scheme. On the other hand, the core mechanism of
the algorithm — suspending charging until the EV is fully charged or departs — leads to
extended EV charging queuing size and duration, and results in an overcompensation phe-
nomenon in overloading reduction, when coupled with the grid’s voltage deviation. This
advocates that grid congestion mitigation could be more efficiently pursued in tandem
with distributed EV smart charging.

The smart charging algorithm development consists of the following key steps: 1⃝ A
primary version of the hierarchical MIP algorithm, featuring a passive stochasticity pro-
cessing function and adhering to the tech specifications of protocols such as IEC/ISO 15118
and IEC 61851-1, is proposed. 2⃝ The primary-version algorithm is verified and assessed
in a Power Hardware-In-the-Loop (PHIL) testbed adapting real LV grid across 8 scenarios.
These scenarios address practical challenges of inaccuracy in PV and Load Prediction, EV
charging information mismatch and grid restriction incorporation. 3⃝ Based on the ex-
perimental results, the algorithm’s effectiveness is further enhanced in: levelling charging
current command for a steadier charging process, upgrading grid balancing services and
acquiring a higher level of proximity to optimality. Additionally, the stochasticity man-
aging function is strengthened for ad hoc admittance of (future) erratic charging events
and self-correction of charging parameters.

The algorithm’s functionalities, effectiveness are proven to be viable and can converge
to proxi-optimality. It is discovered that asset aggregation and optimisation improvement
are remarkably beneficial in FCR service provision, while heuristic charging methods hold
great potential to further advance the algorithm’s outcome towards optimality.
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Samenvatting
De snelle groei van het marktaandeel van elektrische voertuigen sluit aan bij de EU-

stimulans voor de elektrificatie van transport, wat nieuwe uitdagingenmet zichmeebrengt
voor elektriciteitsnetten, met name door de toename van decentrale hernieuwbare energie-
bronnen. Het succesvol uitvoeren van laadsessies vereist een naadloze samenwerking tus-
sen belangrijke actoren en componenten binnen het complexe ecosysteem van EV-laden.
Het aanpakken van de uitdagingen rond de integratie van elektrische voertuigen en het
elektriciteitsnet vereist daarom een uitgebreide, uitvoerbare en holistische benadering.

Deze scriptie presenteert een systematische studie naar de integratie van elektrische
voertuigen (EV’s) in laagspanningsnetten en is opgesplitst in twee hoofdonderdelen. Het
eerste deel biedt een uitgebreide analyse van demogelijke problemenwaarmee deze netten
geconfronteerd kunnenworden, waarbij de aard, oorzaak en omvang van deze uitdagingen
worden onderzocht. Het tweede deel richt zich op het aanbieden van empirische oplossin-
gen voor de geconstateerde uitdagingen, vanuit het perspectief van zowel netbeheerders
(DSO’s) als aggregatoren.

Grootschalige integratie van EV’s in distributienetten:
Ongecontroleerd laden en heuristische benchmarks

In het eerste deel van deze scriptie wordt een uitgebreide studie uitgevoerd naar de groot-
schalige inzet van EV’s in distributienetten, gebaseerd op een analyse van de netbelasting.
Dit wordt gevolgd door een vergelijkend onderzoek naar representatieve heuristische laad-
strategieën voor EV’s, waarbij hun effectiviteit wordt beoordeeld op het verlichten van
netcongestie, het verlagen van kosten en het vervullen van laadverzoeken.

De studie naar ongecontroleerd laden van EV’s onderzoekt netcongestie in eenentwin-
tig netten in drie EU-landen, rekening houdend met seizoens- en weekvariaties en vier
niveaus van EV-penetratie. De analyse toont aan dat overbelasting vaak samenvalt in alle
netcomponenten, waarbij de intrinsieke kenmerken van het net de belangrijkste factoren
zijn. Spanningsproblemen kunnen optreden voordat kabels overbelast raken, en ernstige
overbelasting komt vooral voor bij hoofdverdelers en in gebieden met hoge belasting. De
meeste netten kunnen tot 50% EV-marktaandeel aan zonder significante congestie.

Vervolgens wordt een vergelijking gemaakt tussen drie heuristische laadmethoden voor
EV’s �met betrekking tot netprestaties, het vervullen van de laadvraag en economische
voordelen �voor drie verschillende nettypes voor vier toenemende niveaus in het markt-
aandeel van EV’s, gedurende zowel zomer als winter. Hoewel de methoden bevredigende
resultaten opleveren, kunnen hun beperkte specialisaties in de algoritmes en onvolledi-
ge systeeminformatie leiden tot ongebalanceerde resultaten, vooral wanneer netcongestie,
laadtarieven en gebruikerstevredenheid concurreren om schaarse middelen. Daarom moe-
ten het logische ontwerp en de selectie van referentieparameters voor heuristische me-
thoden zorgvuldig worden geëvalueerd om de basis te leggen voor de ontwikkeling van
slimme laadalgoritmen in het tweede deel van deze scriptie.
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SAMENVATTING

Congestiebeheer en de ontwikkeling van slimme
EV-laadalgoritmen

Het tweede hoofdonderwerp van deze scriptie richt is het bieden van haalbare syste-
matische oplossingen voor de huidige en verwachte uitdagingen waarmee netten worden
geconfronteerd, terwijl tegelijkertijd rekening wordt gehouden met de belangen van ande-
re belangrijke stakeholders binnen het EV-laadecosysteem. Dit wordt gedaanmiddels twee
benaderingen. Ten eerste, het ontwikkelen van een op Power Transfer Distribution Factors
(PTDF) gebaseerd mechanisme voor voorkomen van netcongestie vanuit het perspectief
van de netbeheerder. Ten tweede, het ontwerpen en verbeteren van een hierarchical mixed
integer programming(MIP) slim EV laadalgoritme vanuit het oogpunt van de aggregator.

Het geformuleerde PTDF-gebaseerde algoritme voor congestiemanagement in laagspan-
ningsnetten is voorzien van drie gecentraliseerde laadbeheerschema’s voor elektrische
voertuigen. Deze schema’s verlichten de congestie door zich te richten op de elementen die
cruciaal zijn voor overbelasting, door onpartijdigheid tussen alle gebruikers te waarborgen
met betrekking tot laadbeheer en door het maximaliseren van de totale energieoverdracht
naar de EV’s, respectievelijk. Het algoritme maakt gebruik van alle netinformatie en lost
het probleem op door middel van mixed integer lineair programming (MILP) iteratieve be-
rekeningen. Het algoritme toont zijn succes aan door volledige preventie of verlichting
van congestie te realiseren bij respectievelijk 50% en 100% EV-marktaandeel in twee ver-
schillende netten. Dit wordt bereikt met hoge doeltreffendheid door prioriteit te geven
aan efficiëntie, eerlijkheid tussen EV-gebruikers en laadprioriteiten, in overeenstemming
met het ontwerp van elk schema. Aan de andere kant leidt het kernmechanisme van het
algoritme — het opschorten van het laden tot de EV volledig is opgeladen of vertrekt —
tot langere wachttijden en een overcompensatiegenomeen in een poging overbelasting
te verminderen. Dit suggereert dat congestiemitigatie efficiënter kan worden bereikt met
gedistribueerd slim laden van EV’s.

Het slimme laadalgoritme wordt ontwikkeld in drie stappen: 1⃝ Een eerste versie van
het hiërarchischeMIP-algoritme, met een passieve functie voor het verwerken van stochas-
tische processen, wordt voorgesteld. Dit algoritme voldoet aan de technische specificaties
van protocollen zoals IEC/ISO 15118 en IEC 61851-1. 2⃝Deze versie wordt getest in een Po-
wer Hardware-In-the-Loop (PHIL) omgeving. Dit gebeurt aan de hand van met 8 scenario’s
die praktische uitdagingen zoals PV-voorspellingsfouten, netbeperkingen en mismatch in
EV-informatie aanpakken. 3⃝ Op basis van de experimentele resultaten is de effectiviteit
van het algoritme verder verbeterd op verschillende gebieden: het uitvlakken van het laad-
stroomcommando voor een stabieler laadproces, het verbeteren van netbalanceringsdien-
sten en het bereiken van een hogere mate van nabijheid tot optimaliteit. Daarnaast is de
functie voor het beheren van stochastische variabiliteit versterkt, zodat het algoritme beter
kan inspelen op onregelmatige laadmomenten in de toekomst en zelf de laad parameters
kan aanpassen.

De functionaliteiten en effectiviteit van het algoritme zijn bewezen haalbaar en kunnen
dicht bij optimaliteit komen. Het blijkt dat asset-aggregatie en optimalisatieverbeteringen
opvallend gunstig zijn voor het leveren van FCR-diensten, terwijl heuristische laadmetho-
den veel potentie hebben om het resultaat van het algoritme verder richting optimaliteit
te brengen.
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中文总结

电动汽车的市场份额以和欧盟推动交通电气化相契合的步调迅速增长，这和分布
式可再生能源的兴起一并给电网带来了挑战。在复杂的电动汽车充电生态系统中，
关键参与者和组件之间的无缝运行，决定了充电过程能否顺利进行。因此，应对电
动汽车的并网挑战，需要一个详尽的，可执行的，且整体性的解决方案。

这篇论文分两个主要部分对电动汽车（EV）与低压（LV）配电网的集成进行了系
统性的研究。第一部分深入分析了电网可能面临的潜在问题，并探讨这些挑战的性
质、成因及影响程度。第二部分则从配电系统运营商（DSO）和聚合商的角度，分别
提出了应对这些挑战的实际解决方案。

配电网中大规模电动汽车的部署—无序充电与启发式基准
本论文的第一部分通过电网潮流分析，对电动汽车在配电网中的大规模部署进行

了全面研究。随后，对几种具有代表性的启发式电动汽车充电策略进行了比较分析，
评估它们在缓解电网拥堵、降低成本和满足充电需求方面的有效性。

针对电动汽车无序充电的研究调查了三个欧盟国家的二十一个电网的拥塞情况及
其影响因素，三种电网类型涵盖其中。研究范围不仅包含冬季和夏季对比，考虑工
作日和周末的变化，还统括了四种电动汽车的应用渗透率。本论文通过对电网拥塞
的规模、程度和持续时间的深入探讨揭示了若干关键推论。研究表明，所有电网组
件普遍表现出一致的过载趋势，而电网的固有特性是导致拥堵风险的主要原因。此
外，电压问题往往在线路过载变得急迫之前就开始出现，而严重过载通常发生在主
母线和高负荷消耗的局部区域。总体而言，大多数电网可以在不出现明显拥堵的情
况下，容纳高达50%的电动汽车渗透率。
接下来，论文对三种启发式电动汽车充电策略进行了权衡分析—并重点考察电网

性能、充电需求的满足以及经济效益—这些分析覆盖了三种不同的电网类型和四个
逐步提升的电动汽车渗透水平，并探索了冬夏的季节影响。研究结果表明，尽管采
用启发式电动汽车充电策略的结果尚可，但其狭窄的适用面和有限的系统信息可能
会导致结果偏颇甚至产生较大偏差。当电网拥塞、充电成本和用户满意度（包括充
电满足率和公平性）等指标在有限的系统资源中相互竞争时，策略的局限性尤为明
显。因此，启发式充电方法的逻辑设计和参考参数的选择必须谨慎评估，以为智能
充电算法的开发奠定坚实的基础—这将在论文的第二部分详细阐述。

电网拥塞管理与电动汽车智能充电算法的开发
本论文的第二大主题是为电网当前及预期面临的挑战提供可行的系统解决方案，

并同时兼顾电动汽车充电生态系统中其他关键利益相关者的需求。这一努力通过论
文中的两个核心方法得以体现。首先，从配电系统运营商（DSO）的角度开发了基
于功率传输分布因子（PTDF）的电网拥塞预防和缓解机制。其次，从聚合商的角度
设计了一种灵活且可靠的分层混合整数规划（MIP）电动汽车智能充电算法，并对其
进行了改进升级和验证。

本论文提出的基于 PTDF的低压电网拥塞管理算法结合了三种集中式电动汽车充
电管理程式。各程式分别通过：针对关键过载元件、确保所有用户的充电公平性以
及最大化电动汽车能量传输，来缓解电网拥堵。该算法融合了电网的完整信息，并
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中文总结

通过线性规划（LP）和迭代计算解决问题。该算法分别在两个有50%和100%电动汽
车渗透率的电网中成功地验证了其预防和缓解拥堵的功能。根据三个程式的设计，
该算法分别通过以下方式高效地实现了这一目标：优先专注拥塞解决效率，确保电
动汽车用户之间的公平性，以及合理分配充电优先级。然而，该算法的核心机制——
暂停充电直至电动汽车充满或离开—导致了电动汽车充电排队规模的扩大和等待时
间的延长，并在电网电压偏差的影响下，在减缓电网过载时出现了过度补偿现象。
这表明，电网拥塞的缓解可以通过与分布式电动汽车智能充电结合更有效地实现。
智能充电算法开发包括以下关键步骤： 1⃝首先提出一个初始版本的分层 MIP算

法，该算法具有被动随机性处理功能，并遵循 IEC/ISO 15118和 IEC 61851-1等协议的
技术规范。 2⃝对初始版本算法在搭载有真实低压电网的电力硬件在环（PHIL）测试
平台上进行验证和评估。该测试涉及8种不用应用场景，这些场景对应了光伏和用户
端负载预测不准确、电动汽车充电信息不匹配以及叠加电网限额等的实际应用制约。
3⃝基于实验结果，我们对初始版本算法进行了全盘升级，这包括平整充电电流以实
现更稳定的充电过程，改良电网辅助服务，并进一步逼近最优解。此外，算法的随
机性管理功能也得到了加强，以便更好地处理未来的充电突发事件，充电过程中的
参数自我校准功能也添加其中。
该算法在功能性和有效性方面得到了验证，并且能够逐步收敛至近似最优解。研

究表明，资产聚合与优化改进在提供频率控制储备（FCR）服务方面极具优势，而启
发式算法也在助力进一步逼近优化算法最优解方面潜力巨大。
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1
Introduction

1.1. In the pursuit of sustainability, a systematic
solution is needed

As sustainability has become one of the hottest topics around the world, the European
Union has set an ambitious target of ”Striving to be the first climate-neutral continent”
with the European Green Deal [1]. Transportation serves as a cornerstone of the energy
transition, with the European Green Deal aiming to reduce care emissions by 55% by 2030.
Achieving a 90% emission reduction from the overall transportation sector is plausible with
tenacious aspiration. Establishing a reliable emission-neutral refuelling network across
Europe is indispensable to succeed in this ambition. The initial milestone towards the
primary goal — to construct three million public charging stations by 2030 — is to have one
million public charging stations available by 2025 [2]. Transitioning a larger proportion
of current energy sources into Renewable Energy (RE) resources is another vital composi-
tion of the European Green Deal, which inevitably requests more power grid connections,
especially since solar and wind power plants are going to be more abundant. Therefore,
a reliable and durable pan-European power network is the foundation for realising the
Green Deal.

With the rapid pace of the electrifying industry, businesses and households, it is ex-
pected that the electricity demand will grow 60% at the latest 2030 [3]. On top of that,
a substantial portion of sporadic RE is installed in decentralised locations, which adds
uncertainty to the grid and challenges the grid’s stability. At the distribution grid level,
the congestion takes place on an intermittent basis. For example, the public service info
provided by the Dutch Distribution System Operator (DSO) association shows that there
were at least eleven congestion incidents that happened in October 2023 [4]. As about 40%
of the running distribution grids are older than 40 years and because the grid upgrade per-
mit waiting time varies between 4-10 years due to cost constraints as well as material and
personnel shortages, congestion is expected to increase in the future [3]. The compounded
factors above present DSOswith a critical challenge: coordinating between generation and
consumption amidst increasing demand, all within a tight timeline for grid revamp.

Anticipating the imbalance between grid capacity availability and new connection re-
quests will only escalate in the coming years, non-firm contracts are suggested as a pro-
visional solution as the full capacity will only be available under certain conditions. Al-
though the grid’s physical limits may be reached during peak hours, there are still ample
capacities during off-peak hours, and this available capacity is offered to users through
non-firm connections without the need to add extra physical connections. An adequate
non-firm connection method can ease the urgency for grid reinforcement and conceivably
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1. INTRODUCTION

become a long-term solution [5]. In the realm of Electrical Vehicle (EV) and distribution
grid integration, scheduled charging and/or smart uni/bi-directional charging can offer
magnified flexibility, and help exploit the available capacity to its fullest instead of adding
extra burden to the grid. Considering the potential benefits to the grids and the economic
advantages, enabling smart charging and bidirectional charging while encouraging the in-
stallation of new chargers are specially promoted by the European Commission [6]. Con-
clusively, a systematic EV and distribution grid integration solution is urgently needed to
bolster up the grid upgrade, and ultimately, this solution becomes part of the grid modern-
isation.
Research gap and solutions offered by this thesis
Thedevelopment of an effective and feasible solution is based on a profound understanding
of the problem and its origin, a comprehensive investigation of the performance-altering
criteria, followed by a complete recognition of the implementational requirements. Though
numerous studies in the EV and grid integration field comprise topics like grid congestion
analysis and management, charging algorithm design, and experimental validation, a sys-
tematic solution is yet to be provided. Duly, this thesis presents a systematic EV and Low
Voltage (LV) distribution grid integration research, starting with a thorough study of EV
mass deployment in the distribution grid, then extending to grid congestion management
exploration, and concludes with the design, validation and advancement of a flexible and
prudent EV smart charging algorithm.

1.2. Research scope and objectives
The objective of this thesis is:

Design a multi-functional, flexible and reliable systematic solution enabling EV
mass deployment in distribution grids.

To achieve this objective, the following sub-objectives together with their constituent
research actions, are the vital intermediate steps. Each objective is reflected in at least one
thesis chapter, which is highlighted at the end of each objective.
O1 - Quantify the grid congestion caused by vast EV connections, analyse the factors that
induce and/or alter the congestion, and investigate the level of the congestion in magnitude,
scale, duration, as well as temporal and geographical perspectives. Ch. 3

1. Identify the major elements that cause and influence the severity of grid congestion.
2. Assess which of the observed congestion issues are of particular concern and the reasons

behind these concerns.
3. Estimate the level of EV penetration that the grids can sustain in their current state.
4. Pinpoint the key differences between grid types concerning the above subjects.

With the understanding of the above-investigated grid congestion issues, it is intriguing
to check the effectiveness and restraint of the existing practical heuristic EV charging
regulating methods (e.g. in pilot projects), and benchmark their performance to serve
as the inspiration and reference for advanced smart charging algorithm development.
O2 - Inspect representative heuristic EV charging scheduling tactics, and appraise their abilit-
ies in serving the development of the advanced smart charging algorithm. Ch. 4

1. Rioanlise the selection on the target heuristic EV charging methods.

1
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1.2. RESEARCH SCOPE AND OBJECTIVES

2. Assess to what extent can these heuristics reconcile the grid congestion.
3. Explore traits other than grid congestion that shall be inspected.
4. Identify the characteristics of the chosen charging practices that favour the EV smart

charging design.

Then the next objective is to develop a distribution grid level tool which can identify
the EV charging induced grid issues and compose a counter technique from the DSO per-
spective.
O3 - Contrive an EV chargingmanagement mechanism that aims to minimise or even forestall
grid congestion from the DSO point of view. Ch. 5

1. Establish methods for identifying the location, components, and degree of grid conges-
tion.

2. Compute the minimal proportion of active grid loading that must be managed to restore
the grid to its rated operating range.

3. Devise strategies for managing EV charging to efficiently mitigate the grid congestion.
4. Coincide the charging request fulfilment with fairness in charging management amidst

all EVs.

The actualisation of mass EV smart charging requires the Charging StationManagement
System, which is often operated by aggregators, and the next key objective is to formulate
the algorithm from the aggregator’s point of view. Moreover, an imperial verification of
such algorithm is a vital quality control step, thus the following two complementary ob-
jectives, O4 and O5, are determined. The invented algorithm can be verified by the experi-
ments and the testing results can, in turn, signify the upgrade potentials in the algorithm.
O4 - Design a multi-functional and flexible smart charging algorithm from the aggregator’s
prospect, with an augment based on the experimental evaluation. Ch. 6, Ch. 7

1. Formulate the smart charging algorithm, define its objective(s) and constraints.
2. Deliberate on the suitable control structure and algorithm type for implementation.
3. Compose a way to facilitate the real-time capability of the algorithm.
4. Seek the balance between computational complexity and algorithmic performance.
5. Design a mechanism to address and manage the system uncertainties.
6. Outline the implementational requirements that must be accommodated for successful

deployment.

The experiments can not only validate and assess the algorithm performance, but most
importantly, can also disclose which feature can be improved

7. Identify the functions of the algorithm that can be improved and determine how to
achieve them.

O5 - Validate and assess the proposed smart charging algorithm through simulation and
Hardware-In-the-Loop (HIL) experiments. Ch. 6

1. Construct the HIL setup and incorporate the implementational components (Hardware).
2. Integrate the grid model and algorithm into the HIL setup, ensuring its real-time attrib-

ute (Software).
3. Conduct both simulation and empirical assessments, evaluating the algorithm’s per-

formance.
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1. INTRODUCTION

4. Establish criteria for evaluating the algorithm and determine the appropriate methods
of comparison.

5. Appraise the performance of the proposed algorithm across different scenarios and dis-
tinguish areas for enhancement.

6. Scrutinise the pros and cons of the proposed algorithm compared to benchmarkmethods.

Based on the insight obtained from the HIL experimental exploration, what elements of
the algorithm could be upgraded is condensed.

7. Recognise the feasible upgrades to the algorithm and actualise them.

1.3. Thesis outline and key research offerings
Ch. 2 The background information

In Chapter 2, the general background information concerning the smart charging al-
gorithm development is presented from ”What, Why and How” three dimensions.
Ch. 3The impact of uncontrolled EV charging on distribution grids is studied in Chapter 3.

An extensive analysis of congestion was conducted on 21 actual grids of three types
(Urban, Sub-urban and Rural) from three European countries (Austria, Germany and the
Netherlands) covering the grid performance impact factors including grid type, EV penet-
ration level, seasonal changes in load, PV and EV demand, weekday-weekend alteration
in EV demand, location of charging sessions (home, semi-public and public) as well as EV
charger accessibility. Grid performance is evaluated based on the magnitude, duration
and scale of the impact for node voltage drop, transformer and line loading as a function
of increased EV penetration. The interrelation between the impact and the grid feature is
also inspected.
Ch. 4 In Chapter 4, the investigation of heuristic EV charging tactics is presented.

Three simple heuristic charging methods are compared vertically with each other and
with uncontrolled charging from the perspectives of grid congestion prevention, charging
cost minimisation and EV charging completion through simulations on six real LV dis-
tribution grids jointly with four EV penetration levels in two representative seasons. By
studying the fundamental impact of every single factor, including different charging price
schemes, of the chosen three charging methods, the benchmark criteria are then provided
for the reference of future smart charging evaluation. The practical requirements of exer-
cising charging protocol IEC61851 is also deliberated.
Ch. 5 Chapter 5 introduces centralised EV charging management schemes aiming at grid
congestion mitigation.

A high-efficacy, centralised grid congestion recognition and mitigation algorithm with
the Direct Load Control (DLC) mechanism involving Power Transfer Distribution Factors
(PTDF) is developed. The congestion management algorithm is combined with three pro-
posed EV Charging Management Schemes (CMSs) where congestion alleviation efficiency,
EV user fairness and EV charging priority are selected as the primary targets, respect-
ively. The over-compensation of the grid congestion mitigation phenomenon is also dis-
cussed. The algorithm’s efficacy is analysed from both DSO and user perspectives, includ-
ing branch overloading, voltage dip and EV charging demand satisfaction.

The computed grid supply allocation could serve as an input – grid capacity constraint
for local energy system optimisation.
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Ch. 6 The composition of the EV smart charging algorithm from the aggregator’s stand-
point and the follow-up Hardware-In-the-Loop (HIL) experiments validation are explained
in Chapter 6.

A hierarchical Mixed-Integer Programming (MIP) EV smart charging algorithm is de-
signed for LV distribution grid applications, in which a flexible receding horizon scheme
is equipped as a passive mechanism to handle stochasticity within the algorithm. The im-
plementational constraints arising from EVSE-EV communication protocols are integrated
into the proposed algorithm. A comprehensive assessment utilising a Real-Time Digital
Twin (RTDT)-based HIL setup encompassing eight scenarios is performed. The scenarios
explore the algorithm’s performance considering input information stochasticity, user be-
haviour uncertainty and the integration of grid limitations. Finally, detailed guidance for
upgrading the proposed algorithm, drawn from the results obtained through HIL simula-
tions, is offered.
Ch. 7 The formulation and assessment of the enhanced smart charging algorithm which
is built on the foundation — the primary version introduced in Chapter 6 — is explicated
in Chapter 7.

The algorithm advancement emphasises two aspects: effectuality and operability. The
improvement in effectuality incorporates charging current setpoint levelling, upscale grid
balancing service provision and optimality pursuing. The operability enhancement focuses
on the ability to process unforeseen changes in charging sessions, synchronise EV states,
and dynamically rectify charging control following the charging relevant parameters. The
algorithm functional appraisal features the stochasticity management function validation,
quantification of the charging cost savings, offering grid balancing service and assessing
the degree of propinquity towards optimality. The results substantiate the accurate func-
tioning of the upgraded smart charging algorithm. Additionally, a heuristic-inspired ap-
proach in gaining proximity to optimality is established.
Ch. 8 Finally, the conclusion obtained and the recommendations observed from this thesis
are offered in Chapter 8.

The flow chart of the thesis structure is illustrated in Fig. 1.1.
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Figure 1.1: Thesis outline

1

6



2
EV-Grid integration – A

backdrop sketch
2.1. What unregulated EV charging brings to the

current grids
Mass deployment of Electric Vehicles (EVs) can have a detrimental effect on the Low

Voltage (LV) distribution networks due to the increased peak demand and unpredictable
charging behaviours. The increased number of EVs increases the total demand for power
and energy, which can lead to an overload of system assets like transformers and lines [7, 8].
With the growing quantity of EV owners, the increased peak load can be much higher than
the percentage of increased EV share. This is because the new charging demand of EVs will
most likely stack on top of the existing peak demand. The transformer is thereby under
high risk of increased loading, resulting in a decreased lifetime, eventual overloading and
ultimately the destruction of the transformer [9, 10]. Furthermore, higher EV penetration
levels can aggravate system power losses and voltage deviation, especially at the far end
of the lines [11, 12]. It has been found that even with a low level of EV penetration, the
furthest nodes already experienced measurable voltage deviations [13].

Assessment of the impact of uncontrolled EV charging on grids has been widely con-
ducted in numerous studies. These studies explored assorted grid types and sizes from
standard testing feeders [14, 15] to real Medium Voltage (MV) [16, 17] and LV [18, 19]
grids. The topics discussed in these works include the temporal pattern of grid congestion
occurrence, the degree of peak demand escalation, the cumulative impact on grids with in-
cremental EV penetration, the highest bearable EV penetration level, and the progression
of grid overloading issues and the strained components. It is found that usually between
3:00 and 9:00 a.m. is a congestion-free time window where barely any excessive power
loading is sourced from EV charging [14, 20]. A range of 10-40% grid peak load growth
can be expected from 20-45% EV penetration levels [14, 15]. The EV penetration level
that can be accommodated without causing significant grid problems varies from 20-50%
[16, 19, 21, 22] and this range is comparably observed in MV as well as LV grids. Regarding
the grid components that are more susceptible to grid overloading, the transformer and
line capacities are worth concern [17, 21] in MV grids, while in LV grids the voltage drop
is a noticeable issue besides the branch overloading [23, 24].

Although the presence of grid congestion depends on many determinants such as: grid
inherent features, problematic components, tolerable EV penetration levels, base load level,
distributed energy resources (DRE) installation, and EV driving and charging habits. The
electricity grid in its current state would not be able to host the full scale transportation
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electrification that is expected without intervention. Apart from hardware reinforcement,
grid overloading can be reduced with the use of decentralised generation such as Photo-
voltaic (PV) [25]. However, power mismatch arising due to the uncertain nature of these
resources can lead to local pockets of network congestion that can be avoided if PV to
EV charging is integrated [26]. Given the existing physical limitations of the grid, up-
grading the infrastructure or implementing smart charging solutions are viable options.
Although EV smart charging cannot completely circumvent the need for substantial in-
vestments in grid infrastructure upgrades, it still emerges as a cost-effective choice for the
time being.[27] The utilisation of EV smart charging is a fast applicable approach for grid
congestion prevention, in contrast to the more time-consuming process of upgrading the
grid [28, 29].

2.2. Basic practices of EV smart charging
2.2.1. SC design dimensions

The design of a smart charging algorithm considers at least three fundamental dimen-
sions, The optimisation objectives, the selection of suitable algorithms and the control
scheme. The characteristic composition of each dimension is subject to the target user,
the involved stakeholders, the system architecture and the information availability.
Popular objectives

Figure 2.1: Summary of major objectives of smart charging

The set objective(s) of EV smart charging algorithms can be categorised into four groups,
namely technical, environmental, financial and other aspects. It is established that the vast
integration of EVs into the grid will possibly be accompanied by considerable pressure ad-
ded to the grid. The primary goal of many algorithms is then to ensure a smooth operation
of the EV-connected system. Another compelling drive of the algorithm is its potential fin-
ancial profits for the user, like saving electricity costs or even yielding extra income by
trading on the relevant market, such as providing auxiliary services to the grid. The imple-
mentation of a smart charging algorithm can also benefit the environment by decreasing
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2.2. BASIC PRACTICES OF EV SMART CHARGING

emissions from combustion cars and supporting further installation of RES [30–33]. A
summary of potential smart charging objectives is plotted in Fig. 2.1.
Algorithm types

Figure 2.2: Summary of common optimisation algorithms

The route to achieve the set objective is through the design and execution of algorithms.
The algorithms that are applied in energy systems can usually be divided into two groups:
one is heuristic, and the other one is optimisation-based.

The heuristic algorithm operates on a straightforward and efficient principle, in that EV
charging scheduling and energy system regulation can be obtained in short time and with
low cost. Albeit optimality cannot be promised in the acquired outcome, good results can
always be expected in its designated implementation scenarios [34]. Solving an optimisa-
tion problem is fundamentally searching for the best possible solution out of all feasible
candidates. If the user aims to find the precise solution through calculus-based search or
enumerative search methods, then the conventional optimisation algorithm is the suitable
approach. On the other hand, if the optimisation problem is considerable in size and may
contain multiple local optimals, then the nature-inspired guided random search technique
— meta-heuristic — should be chosen. Ultimately, the determination of algorithm type is
rooted in the characteristics of the to-be-solved optimisation problem [35–37]. The sum-
mary of common algorithm types that are used in energy systems is exhibited in Fig. 2.2
Algorithm control structures

There are three common control structures that are used in actualising smart charging
algorithms, they are: centralised, decentralised and hierarchical control. Centralised con-
trol, also called direct control, is solely carried out by the central EV aggregator in its re-
gion. Centralised control requests smooth and rapid communication to obtain each EV’s
information, and it also needs a stable computational capacity to optimise all EVs’ charging
processes at once. The decentralised control is also known as indirect, distributed or local
control scheme. This control structure is oriented by individual local units such as house-
holds and EV owners. The employment of this control scheme implies that the local unit
holds a degree of intelligence, like a home energy management system or a self-embedded
EV charge scheduling function. The hierarchical or hybrid control structure is the hybrid
version of both centralised and decentralised control. This scheme shares a centralised
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Figure 2.3: Example of common Control structure

control mechanism, but not on a system-wide scale. Instead, this scheme partitions the
system into smaller groups and assigns sub-aggregators in between [38–41]. The three
control schemes and their common examples can be found in Fig. 2.3.

2.2.2. The key players and the communication protocols
In the field of integrating EVs into the distribution grid, if only consider the operational

aspects without worrying about roaming and financial settlement, there are four key play-
ers that are essential. They are the (Distribution) System Operators (SO), the EVSE, the
EV, and the middle level entity(ies) between SO and EVSE. Multiple layers and players
could co-exist between the SO and the EVSE such as different levels of aggregators. For
simplification, one general middleman — Charge Point Operator (CPO) and/or aggregator
(Aggr.) — is used. CPO operates and maintains the chargers while the Aggr. aggregates
and manages the charging process of large amount of EVs, and the CPO can take the role
of an Aggr. Currently, there are five smart charging relevant communication protocols
that bridge the information exchange between key players. The illustrative summary is
shown in Fig. 2.4.

• CPO
• Aggr.(s) EVSE EV

▪ IEC 61851 
▪ ISO 15118(D)SO OCPP▪ OSCP

▪ OpenADR
• CPO
• Aggr.(s) EVSE EV

▪ IEC 61851 
▪ ISO 15118(D)SO OCPP▪ OSCP

▪ OpenADR

Figure 2.4: The smart charging applicational key players and protocols

Protocol Open Smart Charging Protocol (OSCP) is used to communicate the available
capacity of energy/power for consumption or production from the Capacity Provider, for
example power system operator, to the Flexibility Provider, which is the entity that man-
ages the Flexibility resource — a controllable prosumer device like stand-alone batteries.
The OSCP can be applied to an expanded range of devices in energy systems although it
was initially designed for EV smart charging [42].

The Open Automated Demand Response (OpenADR) Communications Specification, as
its name suggests, is drafted with the purpose of automating the Demand Response (DR)
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actions. This specification is a communication model that enables two-way communic-
ation between the energy service provider, the aggregator and the end user. OpenADR
translates and communicates the demand response signal like DR event requests or price
information from the Virtual Top Node (VTN), such as energy service provider or aggreg-
ator, to the Virtual End Node (VEN), like aggregator or end user. The end-use recipient of
the DR signal takes actions according to the DR signal through its automated DR program,
and OpenADR communicates this response back to its VTN [43].

The Open Charge Point Protocol 2.0 (OCPP) is equipped to support the communication
needed for EV smart charging between the Charging Station Management System (CSMS),
for example, the back-office of the Charge Point Operator (CPO) which serves as an ag-
gregator, and the Electric Vehicle Supply Equipment (EVSE). The smart charging related
information like identification information, charging session timing, metering data, char-
ging profile and so on, is exchanged through OCPP. Similar to OSCP, OCPP also expands
its applicable use cases beyond EV smart charging. A new module called Device Model al-
lows the activity-monitoring of devices other than EVSE like transformer, and stand-alone
battery in the system [44].

When it comes to communication between the EVSE and the EV, protocol IEC 61851-1
and ISO 15118 are the most commonly applied ones. IEC 61851-1 comprises the electrical
safety matters and the operation conditions of the EVSE, and the EVSE-EV communica-
tion which serves both AC and DC charging involving charging Mode 1-4. Physical sig-
nals that indicate the vehicle states, charging process initialisation, and maximum allowed
charging current are transmitted through the control pilot [45]. ISO 15118 compliance
with basic signalling specified by IEC 61851-1 and extends to High Level Communication
(HLC) which facilitates attributes like identification, load levelling, value-added services as
well as payment. These advanced features hence capacitate bi-directional power transfer,
plug-and-play, and wireless charging proficiencies through ISO 15118 [46–48].

2.3. EV smart charging algorithm invention — A step by
step journey

2.3.1. Seeking balance in intricacy
The sizable EV-integrated distribution grid is a complex system consisting of diverse key

players whose interests intertwine or even compete with each other, like market platform,
system operator, aggregator, e-mobility service provider, charge point operator and user.
Like any other complex system, the primitive challenge for EV smart charging algorithm
design is the availability of system information and the consonance among controversial
interests/inclinations/predilections of enclosed parties.
Follow the holistic angle

Incomplete information or oversight of relevant aspects of the system could lead to non-
optimal or even biased results. For example, study [49] highlights that the chargingmethod
that heavily relies on price signalling can lead to a second peak in demand on the service
transformer, whose severity and time of occurrence are sensitive to the number of users,
the considered price signal as well as its correlation with the base load. Similarly, [50]
suggests that even though the charging cost are reduced by 11-16 % with the price-signal-
relied optimisation method, an increase in energy loss of 4.3 % relative to uncontrolled
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charging is observed. Accessible grid information is essential in helping ease the grid
impact induced by EV charging, while the charger and EV driving information are vital
to the charging experience. The decentralised charging method combining node voltage
data and the EV SOC information introduced by [51] proves that both under-voltage and
transformer overloading probability drops significantly as compared with uncontrolled
charging while saving 11.5 %in charging cost. The outcomes of EV charging scheduling
methods involving voltage-droop mechanisms tend to be sensitive to the charge point loc-
ation in the grid, especially their branch distance from the substation. That is because
downstream nodes opposite to the substation have a relatively greater voltage drop due to
the higher impedance of the distribution branch [52]. Awareness of load demand distribu-
tion, grid components’ specification as well as their geographic information is helpful in
compensating for the potential discrimination[53] EV user habit information such as car
arrival time, parking duration and charging preferences like priority, price etc., can not
only benefit the performance of the charging algorithm, but also improve the user experi-
ence. The enhanced EV user experience includes reduced charging cost and comes with a
fulfilled charging request [54], preserved battery lifespan [55, 56], less queuing time [57],
and equitable power division when the grid is at risk of overloading [58].

There is no doubt that the availability of data is the precondition for many function-
alities in EV charging algorithms, and it is built upon the accuracy and rapidity of the
data transfer among included parties. The EV charging management system proposed in
paper [59] suggests a bidding process within a transactive energy market in which the
EV fleet information is requested beforehand, as well as the EV users’ preference towards
the clearing price. On top of that, the EV users who choose to participate in this trad-
ing are expected to provide their power limit and price-power response curve every time
interval. Similarly, study [60] incorporated several aspects other than EV scheduling in
its optimisation problem including systematic supply-demand balancing, PV power gener-
ation, energy storage as well as V2G performance. To facilitate all these capabilities, the
predictive data of the system in the time scale of day-ahead, hourly till real-time is required.
Therefore, high-quality and stable communication serves as the backbone of the complex
system.
Trade-off between objectives

As introduced in Chapter 2.2, Most of the controlled charging of EVs share one or more
of the four prevailing primary targets[61–64]: (i) grid impact mitigation, (ii) profit max-
imisation, (iii) enhance service to EV users, and (iv) improved renewable energy resource
utilisation.

To achieve multiple targets with one single smart charging scheme, multi-objective
or multi-level optimisations are often used, which in turn increase the requirement for
the amount, accuracy and speed of the communication. A good example is that the EV
smart charging method proposed in research [56] not only incorporates battery lifetime
protection and PV power generation into the stochastic dynamic programming but also
integrates grid capacity as well as energy storage optimisation in its objective function.
However, the primary targets can become competitive towards each other under certain
operational conditions. For instance, iresearch suggests in [62] that prioritising peak shav-
ing can half the maximum demand, albeit at the cost of 5-10 % increase in average energy
costs. Further, while the method proposed in [63] successfully satisfies load congestion
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and voltage drop constraints relative to 70 % exceeded constraints in uncontrolled scen-
ario’s, it is noted that location-specific customer demands may lead to a fairness challenge,
warranting further investigation. An interesting approach in [64] attempts to include fair-
ness in imposing grid limitations by setting priority criteria for coordinated EV charging
depending on available parking time and energy demand of the connected cars. Study
[51] compares two decentralised charging algorithms of which one takes the user’s pri-
ority into consideration and the other one doesn’t. The results show that with the user
priority-infused method, an average of 15% charging cost reduction is obtained at a cost of
up to 26 % increased transformer overloading probability and a rise of supply failure rate.

These leading algorithms highlight the importance of multi-objective optimisation in
addressing the underlying trade-offs using accurate information and fast communication
between different agents.
Complexity in system design

Realising advanced functionalities in a complex system is challenging. Complex hier-
archical control structures are often employed to incorporate multiple functions in ad-
vanced EV charging algorithms. Paper [65] proposes a two-level hierarchical charging co-
ordination algorithm where the upper-level controller is in charge of grid power dispatch
and the station-level controller manages the local charging scheduling. The algorithm in
[66] has three levels of actions and each of which shares different functionalities. The first
level participates in the day-ahead (DA) or real-time (RT) market and obtains the quantity
of cleared energy, the second level aims to optimally dispatch the energy budget obtained
from level one to the EVs in the system and finally, the objective of the third level is to
respond to the up and down regulation requests. Apart from compound structures associ-
ated withmulti-objective optimisation, smart charging algorithms also deal with uncertain
load demand forecasting, renewable energy generation and arrival/departure time of the
EVs, usually by employing a multi-timescale optimisation scheme. In [67], building oper-
ational cost reduction of approximately 6 % was achieved using a two-stage algorithm for
DA scheduling and RT operation as compared to the baseline case where only prediction
of PV output was considered. Similarly, an algorithm developed in [60] optimises the sys-
tem in four stages along the time scale from prediction to DA, hourly-ahead and finally to
RT to show that even though EV energy consumption is the same, the overall cost with
an hour-ahead schedule is 1.55 times higher than RT control mainly due to uncertainty in
PV generation.

All the above-mentioned challenges would become exponentially harder in the real-
environment applications, in which practical constraints are taking place. Thenceforth,
the imperial validation is the next exercise in line.

2.3.2. From conceptualisation to actual implementation
The feasibility and functionality of practical EV charging scheduling methods have been

successfully validated using several pilot projects [68–71]. It is pivotal to broaden this ini-
tiative for the practical verification, enhancement and eventual demployment of smart
charging algorithms. Other than the variety of configurations applied such as diverse EV
charging behaviours, different grid topologies and scales, varying local loads and renew-
able energy generations, as well as fluctuating electricity prices, the main challenge in
implementing smart charging in real applications lies in coordinating the entire system.
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From a technical point of view, the supporting system that facilitates EV charging covers
the physical components like the grid connection, the EVSE, EV and their accessories; the
information and communication systems including both the developed smart charging al-
gorithm and the control system embedded in EVSE and EV, along with communication
protocols linking these discrete components together [72, 73].

A working intact EV smart charging system requests the proper function of each com-
ponent, and indispensably, the compatibility and coordination among individual compon-
ents[74], protocol interoperability [75] and communication reliability and synchronicity
[76]. Whether the SC algorithm works as expected is determined by how harmonious
the rest of the information and communication part of the system functions. A rightful
communication protocol is a must for a successful interface between components and the
realisation of specific functions [77]. Therefore, conducting a system integrity examination
is essential to ensure a smooth implementation of the EV smart charging algorithm. Due
to the complex nature of the system, conducting exhaustive validations of the system in-
tegrity and evaluating its performance in real systems is formidable. Exploiting the Power
Hardware-In-the-Loop (PHIL) setup as an experiment platform has become a popular in-
termediate solution, thanks to its flexibility in providing quasi-real testing environments
as well as modular testing components [78].

Nevertheless, even if the system operates as expected, inevitable errors may still present
during EV charging due to intrinsic characteristics of the system components. For example,
the communication latency from the CPO to the EV is expected and the duration could be
up to 60 s [79]. Given that the EVSE only sets the maximum charging current and the EV
determines the actual charging current, the disparity between the setpoint and the real
charging current can be up to 53% [80]. It is therefore essential to consider the aforemen-
tioned complexities in smart charging algorithm design. By doing so, the algorithm can
be better equipped to handle complex implementation obstacles, ultimately achieving a
flexible and reliable charging experience for users.
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3
Prospects and pitfalls of the

mass EV deployment in
distribution grids

In this chapter, the impact of Electric Vehicle (EV) uncontrolled charging with four levels of
EV penetration in overall 21 real low voltage distribution grids in two seasons is analysed.
The employed real grid data is provided by distribution system operators from three European
countries: Austria, Germany and the Netherlands. At least six grids in each country were
considered and they are categorised into three types, namely rural grids, suburban grids and
urban grids. The EV charging data used in this study is based on real measurements or surveys.
The seasonal and the weekday-weekend factors are also considered in the EV charging impact
research. Three key congestion indicators, the transformer loading, line loading and node
voltage as well as several other evaluation indexes are studied. The results reveal that the
majority of the simulated grids had no or minor moments of mild overloading while a few
rest grids have critical issues. Among all the grids, suburban grids are the most vulnerable
to massive EV integration. Out of the evaluated grids, those who are located in Germany
have the highest redundancy for high EV penetration accommodation. Overall, the impact of
uncontrolled EV charging depends on the combination of EV charging demand as well as the
grid’s inherent features.

3.1. Introduction
It is well established that the market penetration of Electrical Vehicles (EVs) is rapidly

growing and consequentially, the technological impact of this mass deployment has attrac-
ted considerable research attention [14, 20, 81–83]. The grid impact is particularly relevant
because the conventional uncontrolled charging strategy, in which the EVs start to draw
the rated power at the instant of connection, can result in numerous simultaneous char-
ging events [84]. The widely implemented level 2 AC charging has a rated power that can
be high as 22 kW (3 phase 32A) [45]. Such charging requirements due to an anticipated
increase in EV penetration levels can stress the facilitating distribution grid infrastructure,
such that it can cause transformer overloading and lifetime reduction [14, 20, 82, 85, 86],
line overloading [20, 82, 87], voltage drop below acceptable limits at the far-end of the
feeder [14, 20, 82, 86], higher distribution losses [14, 20, 82], power mismatch between

⁰This chapter is based on paper: Y. Yu, D. Reihs, S. Wagh, A. Shekhar, D. Stahleder, G. R. C. Mouli, F. Lehfuss,
and P. Bauer, Data-driven study of low voltage distribution grid behaviour with increasing electric vehicle
penetration. IEEE Access, vol. 10, pp. 6053�6070, 2022
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supply and demand, phase imbalance [20, 86], as well as harmonic distortion [88]. It is
suggested in [83] that future work investigating the grid impact with increased EV penet-
ration can be scaled up when real-world transportation and power data becomes available.
The specific aim of this chapter is to contribute towards this goal and provide realistic
insight based on the acquired on-field data sets.
3.1.1. Literature review

The influence of data-driven uncertainties in driver behaviour and energy demand of the
EVs toward the grid impact of uncontrolled charging is considered in [14–16, 20]. For ex-
ample, [14] uses data of the daily miles driven and the arrival times to show that the load
demand for a 34-node IEEE test feeder has no noticeable change from 3:00 a.m to 11:00
a.m even with 45 % EV penetration level, resulting in approximately 11 % (in summer) and
15% (in winter) increased peak from the average loading ratio. In [20] the IEEE RTS load
profile data was clustered into representative curves to show there is no loading variation
for IEEE 123-node test feeder substation in 3:00 a.m to 9:00 a.m window even considering
100 % EV penetration, but the probability of overloading the 50 kVA transformer increased
to 35 % with the peak demand increasing linearly by 2-3 % for every 10 % increase in EV
penetration. Study [16] tested four charging methods with several scenarios including the
uncontrolled method with a 33-buses sample grid and assess the impact on the distribu-
tion system. It is found that EV penetration levels of 28.1-46.5% can be accommodated in
the system without violating the grid constraints. An 11 kV 38-node typical UK sample
distribution system was used in [15] to test three representative uncontrolled EV charging
scenarios and one ”smart” charging scenario. The results indicate a 35.8% peak load growth
with 20% EV penetration in the worst uncontrolled charging case. However, these papers
consider standard test grids in the study and therefore, extending the insight with real
distribution grid data can be useful.

Research [89] studies the charging impact of 0 to 500 EVs in a modified IEEE 13-bus
system as well as a 25-bus real Taiwan distribution system. One thousand iterative Monte
Carlo simulations were conducted to study the stochastic effect of both the feeder load and
EV charging while using measured data at two large charging stations. It appears in the
results that for the real grid there is no voltage drop violation even with the worst scenario,
but for the IEEE standard grid the congestion problems are already present with 200 EVs
and the under-voltage problem develops earlier than the line congestion. Two distribution
systems located at a residential-urban area and an industrial-residential area with 35, 51,
62% EV penetration levels were modelled in [90]. This study examines the impact of two
charging patterns (valley and peak hours) and found that a maximum of 19% total actual
network cost is required to increase the capacity and accommodate all charging requests.
Paper [21] investigates three real distribution grids (urban, rural and commercial) with
20, 40, 60, 80 % EV penetration levels. The result shows that transformer overloading can
already be observed for 20% EV penetration in the urban grid, but in the rural grid, the
EV penetration can increase to 40%. None of the grids has under-voltage problems, and
line loading is not discussed in the paper. Study [17] investigates EV integration into a
cluster of real distribution grids with 39-feeders in the USA. The examined network con-
tains a mix of area types, where half of the feeders supply residential areas and the rest are
distributed among industrial, commercial and agricultural areas. The EV charging data is
modelled based on real vehicle itineraries and only one EV penetration level (one EV per
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household) is analysed. The study concludes that 58% of the feeders reach their power
capacity limit and 47% of the grids have shown line overloading problem, yet none of the
grid’s experiences voltage drop to lower than 0.9 p.u.. What is the maximum number of
EVs that can be integrated into the grid is explored in [91]; the mobility of EVs are also
considered. Two Swedish distribution networks where one residential network with 3
feeders and 26 substations and one commercial network with 4 feeders and 9 substations
are employed. When the system runs in normal conditions, only in one case which all
EVs only charge at home in the residential area can the grid accommodate less than 100%
EV penetration. However, if any feeder is disconnected due to maintenance, the grid can
experience overloading even without any EV charging. Besides, none of the grids has any
under-voltage problem in the simulations. Study [18] considers an even larger area in the
Netherlands where the simulated network contains 55 distribution systems that consist
of a total of 12,000 substations. It is assumed in this study that EVs only charge at home
with two fixed power levels, and the charging profile is generated based on a big dataset
of Dutch driving patterns. An increase EV penetration trend along with time up to 75%
in the year 2040 was assumed and 49% of the transformers experience overloading issues
at the worst scenario. All the works mentioned above focus on the big scale in which the
grid performance of MV distribution systems is evaluated as a whole, a closer insight into
each LV distribution grid would be beneficial.

While [23] investigates a real LV distribution grid in Norway to suggest an overload and
under-voltage tolerance up to 20% and 50% EV penetration level respectively, the paper
highlights the limitation that the charging profile is derived from a single household load
profile and thereby neglecting the uncertainties in arrival and departure time as well as
energy demand that can occur with mass deployment of EVs. The results suggest a 20%
EV penetration tolerance boundary with no grid limitation violation.

In paper [24], historical driving datawas used to generate home EV charging profiles and
four EV penetration levels from 25% to 100% were tested on a real Danish LV distribution
grid model. The paper explores grid loading and phase unbalance caused by EV charging.
It is found in this study that the loading induced by EV charging at home is not high
as expected due to a relatively low simultaneous factor (45%). It’s also concluded that
a 30-50% EV penetration is the maximum acceptable uncontrolled charging integration
rate, depending on the characteristics of the grid. Researchers of [19, 22] ran a plentiful
of Monte Carlo simulations to investigate the EV charging impact of 0-100% penetration
levels on two real British LV distribution grids whose grid types are not specified. The EV
data implemented for simulation is originally from a one-year-long site trial. The main
discovery regarding uncontrolled EV charging impact is: the transformer overloading is
the main issue in network 1 while voltage drop is the main challenge of network 2. The
upper limit of EV accommodation without grid congestion problem is 40% for network1
(thermal limit) and 20% for network 2 (voltage limit). Another study inspects both real
transmission and distribution grids performance with 0-100% EV penetration with real
EV charging data [92]. In the paper, three LV distribution grids were investigated, rural,
suburban and urban. It is found that with 100% EV penetration, there is voltage drop
violation and possible transformer overloading. However, the results might still vary a lot
and strongly depend on the local EV, households and grid features. Besides, it is predicted
that by 2030, 10% of the distribution grids will suffer from transformer overloading issues
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and 5% of the distribution grids will have under-voltage problems. In total, 28% of grids
would require upgrades.

Therefore, it is extremely compelling to investigate what might be the influence factors
of the outcome and if there is any internal trend we can summarise when studying the
grid performance with massive EV integration.

3.1.2. Contributions
The focus of this chapter is to use measured probabilistic data pertaining to energy de-

mand, arrival and departure time of EVs to investigate the impact of uncontrolled charging
for several actual grids in Europe. The findings are useful and add to the body of knowledge
in the following aspects:

• We show that Suburban grids have relatively higher congestion issues compared to
rural and urban grids.

• We also investigate how the type of grid in different countries affects the grid impact
of uncontrolled EV charging. Austrian distribution grids are most vulnerable to grid
congestion, followed by the Netherlands, while German grids are most robust seeing
no overloads even with the highest modelled EV penetration.

• The grid performance impact factors including seasonal changes in load, PV and EV
demand, weekday-weekend changes in EV demand, location of charging sessions
(home, semi-public and public) as well as EV charger accessibility are investigated
and discussed. All the above factors have not been dealt with together in previous
works

• Grid performance is evaluated based on magnitude, duration and scale of the im-
pact for node voltage drop, transformer and line loading as a function of increased
EV penetration. The interrelation between the impact and the grid feature is also
inspected.

The numerical results for these key observations are comparatively quantified using grid
simulations and presented in the subsequent sections.

3.1.3. Structure of the chapter
The simulation setup and the data-driven approach is in-detailed explained in Section 3.2.

The simulation results of three countries and three grid types are analysed in Section 3.3.
The study of grid performance impact factors includingwinter-summer, weekday-weekends,
plus EV charger accessibility is also placed in Section 3.3. The detailed interpretation over
several grid performance key indicators is given in Section 3.4. Finally, Section 3.5 reports
on the studies conclusions and recommendations for future work.

3.2. Methodology: Data-Driven Approach for Realistic
Grid Impact Evaluation

In this section, three layers of data-driven considerations of simulation input data are
described, followed by the depiction of the simulation methodology as well as the output
data.

1. Actual Grids segregated by (a) geography (b) function. (Section 3.2.1)
2. Historical power profiles in the corresponding grid. (Section 3.2.2)
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3. Measured EV charger data and survey-based car driving data pertaining to charging
energy demand, arrival and departure time based on different charger types. (Sec-
tion 3.2.3, 3.2.4 )

In each subsection, how the raw data was acquired and pre-processed are explained re-
spectively.
3.2.1. Grid Specific Data

Actual representative grids from three countries, namely, the Netherlands (NL), Ger-
many (DE) and Austria (AT) are obtained from the Distribution System Operators (DSO).
Further, three different functional grid types; rural (RR), suburban (SUB) and urban (UB);
are considered. For each of these 9 categories, at least two test grid data per type per
country is acquired, as summarised in Chapter Appx. 3.5.
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Figure 3.1: Comparison of basic grid features based on the 9 categories defined for the country and
functional type (a) total number of households (b) yearly energy consumption (c) length
of the longest feeder (d) the ratio of average baseload power with the total transformer
capacity

Fig. 3.1 compares the average values of the listed basic features based on 3x3 defined cat-
egories. The compared basic features are: total number of households (𝑁hh); yearly energy
consumption (𝐸yr); length of the longest feeder, which is the length of the feeder from the
transformer to the farthest end of the grid (𝐿f,max), and the ratio (𝜏normb,avg = 𝑃 trafo

avg /𝐶trafo
tot ) of

average base load power (𝑃 trafo
avg ) with the total transformer capacity (𝐶trafo

tot ). 𝜏normb,avg value
is related to minimum reserve capacity and it can be used to identify which grids are rel-
atively more vulnerable to overloading. In Fig. 3.2, all grids are clustered into two groups
based on their number of households and yearly energy consumption. Cluster 2 grids have
both high 𝑁hh and 𝐸yr values and Cluster 1 grids have relatively low 𝑁hh and 𝐸yr values.
Most of the SUB grids and AT grids fall in Cluster 2 while the majority of RR grids, as well
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Figure 3.2: Clusters for base energy consumption as a function of the number of households for
different category combinations of grid types and countries.

as DE grids, are in Cluster 1. The line features of each grid type in every country are also
plotted and compared, which can be found in Fig. 3.3. Each dot in this box plot represents
a line (cable) in the grids. Fig. 3.3 (a) shows the line rated current and it is clear that DE
grids have a greater number of high-capacity lines compared to other countries. Similarly,
the length of every line in each country is plotted in Fig. 3.3 (b). It can be observed that
AT grids have relatively long lines and NL grids have shorter lines implemented.
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Figure 3.3: Grid line feature comparison between countries and grid types. (a) Line rated capacity in
ampere (b) Line length in meter

Fig. 3.1-3.3 show that in general SUB grids have the highest 𝑁hh, 𝐸yr and 𝜏normb,avg relative
to other functional categories for the given country. An out-liner to this trend are the
𝑁hh and 𝐸yr values of AT-UB grids, which are both slightly higher than the AT-SUB grids.
Since EV penetration is assumed proportional to the 𝑁hh in this chapter, it can be inferred
that an increase in serviced EVs for the given penetration level will be maximum for the
SUB functional category. RR grids have the lowest 𝑁hh, 𝐸yr and 𝜏normb,avg across functional
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categories for any given country. Therefore, it is least prone to increase in EV penetration.
However, RR grids have relatively high 𝐿f,max (NL grid is an out-liner). Therefore it is
important to determine the minimum node voltage levels in these grids.

It can be inferred that for all functional category types, DE grids havemaximum country-
specific reserve capacity as indicated by lowest 𝑁hh, 𝐸yr and 𝜏normb,avg . Furthermore, the
number of serviced EVs per grid is lowest inDE for a given penetration level. In general, AT
grids have the highest 𝑁hh, 𝐸yr and 𝜏normb,avg across functional categories, indicating lowest
reserve capacity and a high number of serviced EVs for the given penetration. NL-SUB
grids have the highest 𝑁hh and therefore suggesting the highest increment in number of
serviced EVs for the given penetration. At the same time, relatively high 𝜏normb,avg indicates a
low reserve capacity in NL-SUB grids, making them vulnerable to transformer overloads.
Furthermore, a significantly higher 𝐿f,max value for AT-RR grids suggests a wider spread
of service area in these grids, thereby suggesting issues related to low node voltages are
more likely in the former.

3.2.2. Load and Photo-Voltaic (PV) profiles
In this study, the load and PV profiles were generated based on historical measurements

or standardised profiles and the information of the unit, i.e. the each load’s yearly energy
consumption and the PV installation capacity.

The load energy consumption information of all three countries was provided together
with the gridmodels byDSOs. The standardised load profile for Austria is available through
AT Power Clearing & Settlement group [93], the standardised load profile for DE grids was
obtained through the German Association of Energy andWater Industries, BDEW [94] and
the standardised load profile for NL can be acquired from the Dutch Energy Data Exchange
Association [95]. The standardised profiles are available for different load categories in
each of the original data sources. For this study, three different categories are employed
to model the baseload profiles. In Fig. 3.4, the load profiles of a load with 1000 kWh/yr en-
ergy consumption are presented for all three countries. For AT andDE grids, the three used
profile types are household, business and agriculture. The load categorisation is slightly
different for NL grids in that they are distinguished by connection capacities, namely E1,
E2 and E3 type groups. E1 types are small size connections that can be considered as
households. E2 types are medium size connections with a different peak time compared
to E1 types, and this type group is usually seen in small businesses like shops and com-
panies. The E3 type group are other big capacity connections, for example, manufactures,
farms. Fig. 3.4 not only compares the seasonal difference between different profiles but
also shows the variations during weekdays and weekends. Almost all summer profiles are
slightly smaller than the winter profiles except the business profile in AT. We can also see
from this figure that business profiles in AT, DE and E2, E3 profiles in NL drop during the
weekend. Therefore, the summer baseload is lower than the winter baseload for a certain
grid. For a grid with more small business loads, a decreased weekend baseload could be
expected.

For AT grids, the information of the installed PV is available in the grid models provided
by Austrian DSO. The standardised PV profile was derived from weather data using the
Python package PVwatts from NREL [96]. The raw standardised PV profile is in an hourly
resolution, but an interpolation method was applied and the fluctuation of the per-minute
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Figure 3.4: Standardised base load profiles with 1000 kWh yearly energy consumption of three coun-
tries, (a) AT, (b) DE, (c) NL

PV power is introduced in the profile during the simulation. Similarly, the PV information
including the location and capacity of installed PV systems is included in the DE grid
models. The PV standard profile was generated by Meteonorm software, where ambient
temperature and wind speed were considered and an optimal azimuth and tilt angle was
assumed [26]. The PV installation information was not available via Dutch DSOs, thus an
assumption was made based on the PV installation [97, 98] and the Dutch households [99]
statistics. The PV installation assumption for NL grids is 25% PV penetration in RR grids,
15% PV penetration in SUB grid, and 5% PV penetration in UB grid where each installation
has a 2.5 kW rated power. The PV penetration is calculated based on the number of loads
in the grid. The standardised PV profile of NL is generated based on previous work [100].
The standard PV profile of all three countries with a 1 kW capacity installation in one
summer week and one winter week is shown in Fig. 3.5.
3.2.3. EV penetration representation

In this study, the EV penetration levels 0%, 20%, 50% and 80% were simulated, where
the EV penetration is defined as the percentage of total cars in a certain grid. The EV
penetration level in simulations is handled in the form of the total number of charging
sessions. The number of EVs in a certain grid is calculated as the product of the total
number of households (𝑁hh), the car ownership distribution (car per household, 𝛼car,hh)
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Figure 3.5: Standardised PV generation profiles with a 1kW peak rate of three countries (a) One
sample winter week (b) One sample summer week

and the EV penetration level (𝛾EV), as shown in Eq. (3.1).

𝑁EV = 𝑁hh × 𝛼car,hh × 𝛾EV (3.1)

For all three countries, the number of households in the grid was provided by the DSOs.
In AT models, car ownership is calculated based on the data of population, household size
and the car per-capita registration data [101]. For NL, the car ownership data is assumed
based on [102] and for DE the car ownership assumption data is provided by the German
DSO. The summary of EV ownership distribution is shown in Table 3.1.

Table 3.1: EV ownership distribution

Car ownership distribution
( 𝛼car,hh )

Grid type
RR SUB UB

Country
AT 1.5 1.35 0.75
DE 1.6
NL 1.25 0.9 0.5

To simulate the impact of excessive charging demand caused by massive connected EVs,
the total number of EVs in a certain grid needs to be converted to the corresponding EV
charging sessions. The total EV charging sessions in a grid is calculated by its total number
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of EVs (𝑁EV) times the charging frequency (𝛽sess,EV), which is the average charging sessions
per EV during a certain time period, as presented in Eq. (3.2).

𝑁sess = 𝑁EV × 𝛽sess,EV (3.2)

In addition, the charging sessions are categorised into three types namely home, semi-
public and public, based on their features like location of charging, time of arrival and
duration of parking, as described in a previous study [103]. The charging sessions are then
translated into different types of chargers to integrate into the grid simulation. Similar to
local load and PV generation modelling, several data resources were used for EV charging
demand modelling as well. Half of the EV demand data is based on the real measurement
from EV chargers, so they are easy to be processed and ready to use. However, the other
half of the raw EV demand data is based on real car driving statistics. This means extra
steps are requested to convert these mobility data into EV charging demand. How these
data were processed and implemented is explained in detail in the next section.

Table 3.2: EV charging session distribution

Approach 1 Approach 2
Raw data feature Car mobility based Charger measurement based

Charge frequency (𝛽sess,EV) 0.9 per day 4 per week
Grid type RR SUB UB RR SUB UB

Charging session
distribution

Home 90% 98% 74% 70% 50% 25%
Semi-public 5% 1% 15% 15% 25% 12.5%

Public 5% 1% 11% 15% 25% 12.5%

Due to the nature of the raw EV charging demand data, there were two approaches
implemented to model the increasing EV penetrations in the grid. For car mobility based
data, approach 1 is applied. In this approach, the chargers are placed at every household,
workplace and shop node and the total number of chargers is fixed for all EV penetrations.
The higher the EV penetration level is, the more charging sessions will occur, hence more
chargers will be used. The average EV charging frequency of this approach is an outcome
of the EV trip modelling, and the value is 0.9 times per day. With charger measurement
based data, approach 2 is employed. Unlike approach 1, the number of chargers increases
along with the EV penetrations in approach 2, but the location of the chargers in lower
EV penetrations will not change for higher EV penetrations. This means the higher EV
penetration scenarios are modelled by only adding new chargers on top of lower EV pen-
etration scenarios. The average EV charging frequency of this approach is assumed to be
4 sessions per week per EV [104]. For both approaches, the charging sessions in lower EV
penetration scenarios are preserved and the new charging sessions are added for higher EV
penetration levels in a different format. This makes sure the only difference between dif-
ferent EV penetrations is the added new charging sessions for a certain grid. The summary
of EV charging session distributions of both approaches is shown in Table 3.2. How the
charging profile of each charging session was modelled is introduced in the next section.
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3.2.4. Historical measurement-based EV fleet and demand profile
generation

The EV charging profile data consists of two parts, the EV fleet composition and the
featured data of every charging session. Six to ten top-selling EVs in each country were
selected to compose the EV fleet based on their market data in 2018 separately [101, 105,
106]. As introduced in the previous section, the two raw EV data resources lead to two
approaches of charging session modelling as well. Approach one needs extra steps to
convert EV trip data into charging session data including EV arrival/departure time, EV
arrival SOC and charging energy requests. While approach 2 models EV charging sessions
directly from charger point of view based on the real charger measurements. Approach
onewas applied to all the AT grids and half of the DE grids while approach twowas applied
to the rest of the grids.
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Figure 3.6: EV fleet demand probability distributions

For approach 1, the mobility survey ”Österreich Unterwegs 2013/2014” [107] conducted
by the Austrian ministry of transportation serves as a good base for the probabilistic mod-
elling of typical driving behaviour observed in rural, suburban and urban areas in Austria.
This survey contains information on 196,604 trips which offers the time, frequency and
distance distribution of the trips throughout the week. A Monte Carlo Approach as de-
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scribed in [108] was applied to generate specific trip data for each of the simulated electric
vehicles by using the aforementioned EV fleet and trip data. In the end, these trip data were
translated into time, location, duration and charging energy information at the chargers.

Approach 2 simulates the charging sessions from the charger perspective and the em-
ployed data is based on a study conducted by ElaadNL[104, 109]. In this study, more than
1.5 million charging sessions were recorded and analysed, and the probability distribution
of featured information of charging sessions including EV arrival time, parking duration
and charged energy were provided. A Monte Carlo Approach was implemented to gener-
ate the charging session data based on the EV fleet as well as the charging session featured
data. For both methods, several boundaries were set to ensure there are no anomalies in
the generated data.

The probability distributions of EV charging session’s arrival time, parking time and the
energy demand/driven distance are presented in Fig. 3.6. All data is distinguished between
weekdays and weekends except the EV parking and energy demand data in the Nether-
lands. The plot of NL EV arrival time distributions indicates that every type of charging
session presents at least one of the morning/evening arrival peaks during the week, while
the weekends’ arrival times are mainly accumulated in the latter half of the day. Apart
from that, there is only minor weekday-weekends differences appeared in other distribu-
tion curves. Besides, the CC-CV charging stages of the battery were also considered in the
charging profile modelling.
3.2.5. Methodology and simulation data

Thesimulations of this studywere carried outwith Python interfacedDIgSILENTPower-
Factory load flow simulations. A Python script was written to read input and modify the
parameters in PowerFactory, then to initiate the load flow calculation at every time step.
After every step of load flow analysis, the results were read and stored by this script as well.
The input data for simulations are the aforementioned profiles. The raw output data of the
load flow contains the loading/power/losses information of all the branches (including the
transformer, the cables as well as the other link elements like fuses, impedance), and the
voltage information of every node at every time step. All the EV chargers are modelled
as constant power loads since it is our intention to see the consequence of all EVs being
charged with their rated power without the influence of voltage drop at the end of the
feeders. In this study, the overloading limit of transformer and lines are set to be 100% of
their ratings and the under-voltage threshold is set as 0.9 p.u. [110]. The raw data was
then processed and analysed referring to these limits.

It should be noted that even though the input information used for simulation is based
on real data, it cannot cover all the possible situations in real life. The local load, PV gen-
erations and EV charging patterns are uncertain naturally. This study picked one possible
combination and executed deterministic simulations to give an insight into the distribu-
tion grid performance under the influence of uncontrolled EV charging. Based on the
there-layer data-driven considerations, the derived results of our work are close to reality,
and therefore the presented insight is useful.

3.3. Simulation Results and impact factor discussion
In this section, the simulation results are presented and compared. The possible impact

factors of the results are analysed and discussed as well.
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Fig. 3.7-3.9 show the results of transformer loading (top row), maximum line loading
(middle row) and minimal node voltage (bottom row) versus time for three grid types in
winter. The summer results can be found in Chapter Appx. 3.5. The maximum line loading
is the loading value of the most loaded line among the whole grid at each time step, and
similarly, the minimal node voltage plot shows the voltage value of the lowest voltage
node among the whole grid at every moment. For maximum line loading and minimal
node voltage plots, the presented results are not from a specific line or node, but the worst
recorded value among all the relevant elements of the grid as a whole.

From Fig. 3.7-3.9 we can see that transformer, line and node results show a similar trend
in most cases. When the transformers experience high loading, the maximum line loading
also has the tendency to increase while the minimal node voltage is more likely to have
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deep dips. These high loading moments usually occur on top of existing peaks that even
without any charging EVs. This outcome is intuitive that the most uncontrolled charging
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moments occur during morning peaks when people charge their cars at work or evening
peaks when the users charge their cars once they are home. There are few occasions when
the line loading or the node voltage do not share the same trend, for example, voltage drop
in AT-RR grids, line loading in NL-RR2 and line loading in AT-UB2 grid. These phenomena
were caused by local line overloading and regional voltage drop in remote areas of the grid.
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3.3.1. Results of different grid types and countries

From Fig. 3.7 it can be noticed that none of the RR grids’ transformers nor the lines
are getting close to the overloading threshold. However, severe under-voltage problems
already appear at some moment in both AT-RR1 and AT-RR2 grids with only 20% EV pen-
etration. This under-voltage problem is purely caused by extremely long feeder length to
the far-end of the grid, which is 1134 m and 1312 m separately. Besides, the EV charging
adds a high level of extra loading to the RR grids that the transformer or line loading is
doubled at some point even though the overall loading is within the limit.

The plots of SUB grids in Fig. 3.8 present dissimilar results in comparison to the RR grids.
Half of the SUB grids bear different forms, magnitudes and duration of overloading. There
are several reasons behind this effect. On average, the SUB grids especially AT and NL
SUB grids, have high household numbers as well as a high baseload demand. On top of
that, the car ownership per household is also considerable for SUB grids, which induces a
high absolute number of EVs in SUB grids. In the end, the exorbitant overall load demand
passes beyond the grid limits, which suggest that the potential of SUB grids for a high EV
penetration is very restricted.

In Fig. 3.9, the simulation results of UB grids are displayed. The plots show that except
for AT-UB2, all the other grids are within the congestion boundaries with very few mo-
ments being on the verge of the limit. The line congestion that occurs in the AT-UB2 grid
is not because of EV charging, but due to the high grid baseload and the limit of the partial
grid facility. A few cables in the grid are already overloaded with only baseload consump-
tion, which strongly suggests an upgrade for these cables. It can be also seen from this
plot that the EV charging does not add extensively extra loading to the grid. The near
breach moments are largely due to the high baseload. There are two possible reasons for
this outcome. In our simulation settings, urban grids do not have many households, thus
the absolute number of EVs are not as high. Secondly, urban grids tend to have a compact
layout where the line lengths are shorter in comparison to other grid types, as introduced
in Fig. 3.3. With a compact layout, the node voltages are less likely to drop dramatically.
Both factors lead to relatively less problematic results in urban grids. In all simulations,
none of the DE grids had any congestion problem while a considerable ratio of AT grids
experienced transformer, line overloading and under-voltage problems. For NL grids, the
overloading and voltage drop issues only develop in SUB grids. The simulation results
confirm with the inference in Section 3.2.1.

One dominant reason of this outcome is the simulatedDE grids have a relatively oversize-
designed capacity compared to the other grids. This is signified by low 𝑁hh, 𝐸yr and 𝜏normb,avg
values of DE grids, whilst more lines with higher capacity are possessed by DE grids as
displayed in Fig. 3.1 to 3.3. The same mechanism falls on AT grids. Features of AT grids
including high 𝑁hh, 𝐸yr values, long 𝐿f,max and high ling length, suggesting they are more
likely to encounter grid congestion issues in comparison with DE and NL grids. The sim-
ulation results show the corresponding tendency that a considerable ratio of AT grids
experienced transformer (AT SUB1, SUB3, SUB4), line overloading (AT SUB4, UB2) and
under-voltage problems (AT RR1, RR2, SUB1, SUB4, UB3).
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3.3.2. Impact factor discussion
To investigate factors that influence the EV integrated grid performance is also an ob-

jective of this chapter. The impact of seasons, time of the week (weekday/weekends) as
well as charger accessibility are discussed in this section.
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Seasonal and time of the week results variations
The combination of PV generation, baseload and EV charging load affects the grid per-

formance. Among these three inputs, baseload and EV charging load haveweekday-weekend
variations while PV generation and baseload deviate in different seasons.

The distribution analysis of all grid elements’ loading values was performed and com-
pared between the weekdays and the weekends. One analysis example is visualised in
Fig. 3.10. The first two rows of this figure show the daily loading/voltage distribution of
every element in this grid where the first row exhibits the weekday variations and the
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second row represents the weekend fluctuations. The weekday-weekends loading per-
centage difference distribution is illustrated in the last row of the figure. The colour of the
curves in this figure depicts various quantile values of this distribution. For example, q1.5-
q98.5 lines mean 1.5% and 98.5% quantile, and these two lines signify the 97% confidence
interval. The min-max values are not plotted in this graph since they are already included
in the previous results section.

For all three categories of AT and NL grids, the percentage difference between weekend-
weekday loading shows a similar sinusoidal trend for all grid elements: the weekend load-
ing is higher than the weekday loading in two time periods (during post-midnight hours
before 6:00 and during the mid-day between 9:00 and 18:00), and the weekend loading is
lower than the weekdays’ during the rest of the day. The exact time windows as well as the
magnitude of the weekend-weekday loading difference varies between countries and grid
categories. The weekend-weekday percentage difference of DE grids deviates during the
day but it still shares the same early morning trend where the weekend loading is lower.

This weekday-weekend loading difference is an outcome of a temporal and scale shif-
ted demand in the weekend, especially for AT and NL grids. The daily morning demand
starts to increase significantly from 6:00 during the weekdays, but this situation is allevi-
ated during the weekends. The rising of morning demand is delayed to a later moment
of the day and a higher morning peak is observed in the meantime. As a result, a higher
loading during the day in comparison to the weekdays has developed. Concurrently, the
evening demand peak of the weekend appears slightly earlier than on the weekdays, but
the duration of the high evening load lasts longer than on the weekdays. This explains the
shrink of the evening peak as well as the increment of the post-midnight loading. The load-
ing shift shows a different pattern in DE grids that the weekend loading subsides around
9:00 - 18:00 in comparison to the weekday loading. Apart from that, there are no other
conspicuous disparities between weekdays and weekends that can be summarised.

This shifted demand is contributed by the baseload oscillation and the diverted EV ar-
rival time. From the baseload comparison graph Fig. 3.4 we can see that the household
baseload (household profile for AT/DE grids and E1 profile for NL grids) has a delayed
rising trend yet an elevated morning peak in the weekend. On the other hand, the business
profiles (E2 profile for NL grids) encounter a considerable decline in weekends to differ-
ent degrees during various time windows for all three countries. The EV arrival time PDF
plots in Fig. 3.6 (a) & (b) clearly signify the EV start charging time discrepancy between
the weekdays and weekends. Since this study investigates an uncontrolled EV charging
scheme, the EV arrival time equals the EV charging start time. The weekend EV arrival
time in NL congregates with a mild ramp between 9:00 and 23:00 instead of clustering
around morning and evening peaks at 9:00 and 18:00 respectively. Similarly, the weekend
charging start time of AT and DE EVs happen less in both morning and evening peaks but
more during the day between 9:00 and 18:00.

As introduced in Section 3.2.2, grids with more business/factory/agriculture types of
loads have the tendency of experiencing less loading during the weekend. It is also sug-
gested in Section 3.2.4 that there are lower EV charging peaks at weekends thanks to the
spread-out arrival time distributions with a smoother ramp during the weekend. Even
though some grids for instance AT-RR2, NL-SUB1, AT-SUB1 and DE-UB1 indeed have less
severe loading during the weekend, the congestion level difference between weekdays and
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weekends is inconsequential.
In this study, only a one-week length of simulation was conducted thus the observed

weekday-weekends differences have their limitations. It is encouraged to explore more
weeks throughout the whole year in future research.

For the difference between seasons, it is not surprising to see that all grids bear notably
fewer congestion issues in Summer than in Winter. This change is caused by a lower load
demand and a higher PV generation in summer along with a nonseasonal distinguished
EV demand, which is indicated in Fig. 3.4-3.6. The employed EV input data in this chapter
does not characterise seasonal deviations, but it is interesting to consider in future studies.
Impact of charger accessibility

There is one interesting effect that can be noticed in the simulation results, which is
the branch loading and the voltage drop for 20% and 50% EV penetrations are worse than
the 80% penetration case of some grids. For example, the last day of transformer loading
in AT-SUB3, the second day of node voltage and line loading in DE-SUB2 and the node
voltage of AT-RR2.

This phenomenon is specific to the way the simulation was set up and how the EV char-
ging demand was modelled. EV charging demand modelling Approach 1 fixes the number
of chargers in the grids and models the EVs charging sessions proportional to the EV pen-
etration as explained in Section 3.2.3 and 3.2.4. This EV penetration increment modelling
method introduces a situation when a new earlier charging session in a higher EV pen-
etration scenario is added on top of an existing later charging session in the lower EV
penetration scenario. If these two charging sessions happen to occur at the same location
and within the same time window, a charging request overlap situation happens. Under
this circumstance, the later session from the lower EV penetration scenario can no longer
take place as planned when the earlier session from the higher EV penetration scenario
occupies the charging slot. This leads to two outcomes, one is the later arrived EV waits in
the queue for the already connected EV to finish. Alternatively, if there is a nearby avail-
able charging slot, the later arrived EV should move to a different slot. Hence, if the later
charging session causes the overloading in lower penetration scenario could not happen
due to an earlier session in higher EV penetration scenario, the worse overloading in lower
EV penetration phenomenon occurs. This overlapping situation appeared several times in
the simulation and it led to a slightly different EV charging profile even for the exact same
charging session and eventually reflected in the grid loading results.

This queue mechanism induced by charging session overlap has a two-edged effect. It
can passively reduce the potential congestion that new peaks will not be added infinitely
to the existing peaks thanks to the physical limitation of available charging points. On the
other hand, the queue effect can also increase the peak loading, if the delayed EV charging
moves into another peak period or is connected to another slot located at the overloaded
region. EV charging demand modelling Approach 1 mimics a situation where there is
limited charger accessibility to the number of EVs. Differently, the EV demand modelling
Approach 2 imitates another situation where there are enough charge points and they are
always available for any EV to be charged whenever and wherever there is a request. This
situation can lead to a circumstance where the charging demand happens during the peak
time stack on each otherwithout any limitation, resulting in an extremely high grid loading
peak. One typical example is the transformer loading of day one in NL-SUB1 (Fig. 3.8).
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This difference in the loading peaks is an outcome of how the EV demand is modelled,
showing that whether there are enough chargers to the corresponding number of EVs can
affect problems occurring at the node level for a very realistic setup.

3.4. Comparison of Different Grid Behaviour with Key
Indicators

To better understand to what degree the grid congestion problems occur and what the
influential factors are, several evaluation indexes are used to analyse the results.
3.4.1. The magnitude of grid congestion
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Figure 3.11: Heat map of minimal node voltage in both seasons

Fig. 3.12 and Fig. 3.11 show the amplitude of grid congestion with maximum loading
values in descending order and minimum voltage values in an ascending order together
with relevant grid features. The values in both figures are sorted based on the 80% EV
penetration winter results, which are indicated by the black dash boxes. The common grid
features for both plots are total yearly energy consumption (𝐸yr) and number of households
(𝑁hh). Larger or higher density grids (higher 𝐸yr and 𝑁hh) have a tendency to experience
more grid congestion issues. Apart from grid dimension, the ratio of average baseload
power and the total transformer capacity (𝜏normb,avg ) also relate to higher transformer and
line loading. The average line ratings (𝑟l,avg) instead do not show a strong connection with
the line loading trend. However, for minimal node voltage, a clear association appears
between the decreased minimal node voltage and the combination of average line length
(𝐿l.avg) and the longest feeder length (𝐿f,max). The winter and summer results comparison
has an expected effect that the grid congestion problem is milder in summer.

NL-SUB1 grid has the highest transformer and line peak loading and the highest loading
growth caused by EV charging for two possible reasons. One is the grid feature, that NL-
SUB1 has the highest 𝑁hh, the lowest 𝐿l.avg and the second highest 𝜏normb,avg values among
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all the grids. Another reason is related to how the EV charging profile is modelled, as
previously mentioned in Section 3.3.2. The EV charging demand in NL grids was modelled
with Approach 2 (charger approach), and the increased EV penetration is reflected as the
increasing number of chargers. Any newly added EV in the grids has a guaranteed char-
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ging spot without having to wait in the queue during the busy time, unlike in the AT grids.
This induces that all the EV charging requests will take place without delaying and leading
to an extremely high loading peak.

The results where congestion problems present are circulated with red lines and it shows
the ratio of problematic grids caused by EV uncontrolled charging is moderate, but the
magnitude of overloading is significant for two SUB grids. Besides, there are more grids
that have under-voltage problems than the number of grids with transformer and line
overloading issues. Moreover, two out of seven under-voltage risk grids already suffer
from under-voltage problems in winter even without EV charging and clearly, excessive
EV demand does not help with the situation.

3.4.2. Duration and scale of the grid congestion

To study the duration and scale of the congestion issues, Fig. 3.13b and 3.14 are displayed.
In Fig. 3.13b, the ratio of overloaded energy (𝐸ol,xmer) and overloaded time (𝑡ol,xmer) are
presented and how they are calculated is explained in Fig. 3.13a. Two SUB grids experience
up to 30% of transformer overloading duration as well as overloaded energy, which indic-
ates these two grids request immediate attention, for example, charging scheduling or grid
facility upgrades with even low EV penetration levels. Similarly, the scale of line conges-
tion and node under voltage is presented in the format of percentage length of overloaded
lines (𝐿ol,line) and percentage number of under-voltage nodes (𝑁uv,node) respectively.

𝐿ol,line =

𝑀tot,l
∑
𝑖=1

𝑙i,ol
𝑀tot,l
∑
𝑖=1

𝑙𝑖
, 𝑙i,ol = { 𝑙𝑖

0
if line i is overloaded
otherwise (3.3)
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Figure 3.13: Duration and quantity of transformer overloading visualisation
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∑
𝑖=1

𝑛i,uv
𝑁tot,n
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0

if node i under-voltage
otherwise

(3.4)

How 𝐿ol,line and 𝑁uv,node are calculated are described by Eq. (3.3) and Eq. (3.4) respect-
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ively, where 𝑀tot,l is the total number of lines, 𝑁tot,n is the total number of nodes and 𝑙i is
the length of line 𝑖. The variation of 𝐿ol,line and 𝑁uv,node versus time is shown in Fig. 3.14
with an ascending order in y axis.

A maximum less than 3% 𝐿ol,line value reveals the scale of line overloading is rather
small that it only occurs at several featured lines. These lines are either central lines con-
nected close to the transformer or local lines connected to high consumption loads. On
the contrary, AT-SUB1 and AT-SUB4 have significantly high𝑁uv,node values. Especially for
AT-SUB4, at least one-fifth of the grid is having under-voltage problems during almost half
of the simulation time in 80% EV penetration scenario. This outcome pinpoints again that
voltage drop is a fierce issue that needs to be solved in distribution grids. A small improve-
ment on the facility, for example, a reconfiguration of the tap positions of the transformer,
might already help with the situation.
3.4.3. Key takeaway

With the in-depth index comparison and analysis, it can be concluded that the majority
of the grids do not face major congestion when penetrated with 50% EVs. Most of the
problematic grids have a small scale and short duration of grid limit breaching. However,
under-voltage is a problem worthy of attention, not only because more grids have higher
magnitude, longer duration and bigger scale of voltage drop, but also because the voltage
drop has a high vacillation rate on many occasions. Besides, a study [111] found that up-
grade grid facilities, for example, the transformer capacity has very limited improvement
on the voltage drop caused by a large amount of EV charging. That leaves less option for
accommodating massive EV charging in LV grids, but on the other hand, it opens the op-
portunity to look into alternative methods, for example, smart charging scheduling, apart
from the grid facility upgrades. It is an interesting aspect to research in future work.

3.5. Conclusion and recommendation
In this research work, the performance of 21 grids from three countries (Austria, Ger-

many, Netherlands) with four EV penetration levels (0, 20, 50, 80%) in two seasons (Winter,
Summer) are analysed and several interesting points are discussed. This chapter focuses
on the grid performance comparison along with EV penetration levels, between countries,
and of different grid types. The other impact factors including seasons, time of the week
(weekdays or weekends) and charger accessibility are also studied. Several key indicators
of the magnitude, duration and scale of the grid congestion aree examined. The overall
performance of all grids is summarised in Table 3.3.

The grids from all three countries share a few similarities. First, the loading of trans-
former and lines, as well as minimal node voltage, share similar trends and the extra load-
ing contributed by EV uncontrolled charging are predominantly added on top of the ex-
isting peaks. This phenomenon is rather apparent as most of charging events occur when
the users come to work (morning peak) or get back home (evening peak). Secondly, the
SUB grids in all three countries tend to endure more congestion issues in comparison to
other grid types. This is because all SUB grids in the simulation have the highest household
numbers as well as a relatively high car ownership ratio. This leads to a higher baseload
consumption as well as an increased number of EVs which causes a higher total demand
in comparison to RR and UB grids. Thirdly, partial loading of the grid shifts from early
morning and evening towards the middle of the day on weekends. Even though some
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Table 3.3: Summary of grid performance

Transformer loading Line loading Node voltage
Mag. Dur. Mag. Dur. Scale Mag. Dur. Scale

AT-RR *** ** **
AT-SUB ** *** *** ** * *** *** ***
AT-UB ** * * * * *
DE-RR
DE-SUB
DE-UB
NL-RR
NL-SUB *** *** *** *** * ** ** *
NL-UB
Higher number of ”*” means the problem is more severe. Mag.: Magnitude; Dur.: Duration

grids like AT-RR2 do encounter a slightly reduced loading during the weekends, the dis-
parity of congestion level between weekdays and weekends is insignificant. Finally, all
grids have fewer overloading issues in the summer compared to the winter because of a
lower baseload consumption while receiving a higher PV generation.

The grid performance in each country also has its own characteristics. All simulated
DE grids are designed with higher redundant capacities, therefore none of them had any
issue in all the simulations. AT grids have the most incidence of congestion problems.
Apart from SUB grids, AT-RR grids which have both transformer and lines operating well
within the safe range still confront the risk of voltage drop below 0.9 p.u., with even 20%
EV penetration, due to their excessively long longest feeder’s length. NL-SUB1 grid has
the highest transformer and line peak loading problem not only because of the grid fea-
tures and the EV penetration level but also related to how the EV charging demand were
modelled. The difference in simulation results due to two EV charging session modelling
approaches regarding ”EV penetration versus the available number of charging points in
the grid” inspires future research ideas. Whether charging points should be installed or not
and how many are in view of increasing EV penetrations is critical to investigate further.

Thirteen out of twenty-one simulated grids encounter no congestion in any form even
with an 80% EV penetration level. Most of the congestion has a relatively short duration
on a small scale, where smart charging scheduling is needed, and a good result can be
expected. However, one NL-SUB grid and two AT-SUB grids showed massive transformer
loading and voltage drop problems in both amplitude and scale manner, indicating a pos-
sible hard violation on the grid facility upper limit. Regarding the severe problematic grids,
two possible solutions are desirable to investigate in future work. One is to develop a smart
charging method to reschedule the crowded charging process and optimise the grid capa-
city usage. Another one is to identify the most susceptible point in the grid and upgrade
the related facility.

Even though this uncontrolled EV charging impact study advocate a rather optimistic
outcome regarding distribution grids integrated with high EV penetration levels, there are
a few things shall be noted. All the baseloads implemented in the study are standardised
load profiles, which are averaged and smoothed from real measurements. These stand-
ardised load profiles do not contain high-frequency power spikes and therefore do not
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accurately reflect the real baseload fluctuations. Because of this, grids might face the risk
of higher congestion in situ, especially since short moments of grid limits breach might
occur more readily when the same level of EV penetration as in the simulations is accom-
modated. Besides, all the EV penetration calculations were based on the car ownership
registration but not the actual car parking information. In reality, the location of car re-
gistration might be far removed from regular charging spots. Therefore, the EV commute
and how the commute alters the EV distribution between different LV grids are worth
investigating in the future.

Despite the simplification during themodelling and the data pre-processing, this chapter
provides an insight into the uncontrolled EV influenced grid performance from different
angles. The results of this study reflect what degree the EV uncontrolled charging over-
burdened the grids and what are the relevant impact factors, thus offering a valuable ref-
erence concerning future planning for DSOs.
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Chapter Appendix
Grid characteristics

Table 3.4: Summary of all grids’ characteristics

Grid No.
households

Yearly energy
consumption

[Mwh]

Avg. line
length [m]

Longest feeder
length [m]

No. transformer
& capacity [kVA]

AT-RR1 280 1121.0 51.0 1134.0 1×630 kVA
AT-RR2 77 384.0 49.0 1312.0 1×250 kVA
AT-SUB1 410 1651.0 37.0 590.0 2×400 kVA
AT-SUB2 321 1213.0 34.0 280.0 1×400+1×630 kVA
AT-SUB3 345 760.0 22.0 457.0 1×400 kVA
AT-SUB4 319 1222.0 31.0 678.0 1×400 kVA
AT-UB1 451 1379.0 27.0 491.0 2×630 kVA
AT-UB2 344 1532.0 27.0 314.0 2×630 kVA
AT-UB3 274 1052.0 31.0 431.0 1×400 kVA
DE-RR1 32 213.5 18.9 1087.0 1×400 kVA
DE-RR2 12 42.0 10.0 499.987 1×250 kVA
DE-SUB1 277 1414.0 15.8 962.4 1×630 kVA
DE-SUB2 82 287.0 11.0 471.545 1×400 kVA
DE-UB1 50 518.0 9.5 436.672 1×400 kVA
DE-UB2 116 406 10 312.2 1×400 kVA
NL-RR1 3 98.0 22.8 367.8 1×400 kVA
NL-RR2 133 486.8 7.9 452.2 1×400 kVA
NL-SUB1 475 1394.1 7.3 566.0 1×400 kVA
NL-SUB2 266 800.8 8.1 546.6 1×400 kVA
NL-UB1 283 1680.2 4.4 332.5 1×400 kVA
NL-UB2 122 261.0 10.3 360.4 1×400 kVA
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4
Benchmark study of heuristic

EV charging tactics
This chapter benchmarks the performance of three practical heuristic electric vehicle (EV) char-
ging scheduling methods relative to uncontrolled charging (UNC) in low-voltage (LV) distri-
bution grids. The charging methods compared are the voltage droop method (VDM), price-
signal-based method (PSM) and average rate method (ARM). Trade-offs associated with the
grid performance, charging demand fulfilment and economic benefits are explored for three
different grid types and four increasing levels of EV penetration for summer and winter. This
study was carried out using grid simulations of six existing Dutch distribution grids, and the
EV charging demand was generated based on 1.5M EV charging sessions; therefore, the find-
ings of this research are relevant for actual case studies. The results suggest that the PSM can
be a preferred strategy for achieving a charging cost reduction of 6–11% when the grid per-
formance is not a bottleneck for the given EV penetration. However, it can lead to an increased
peak loading of the grid under certain operational conditions, resulting in a charging energy
deficiency ratio of 4–8%. The VDM should be preferred if user information on the parking
time and energy demand is not consistently available, and if the mitigation of grid congestion
is critical. However, both unfinished charging events and charging costs increase with the
VDM. The ARM provides the best balance in the trade-offs associated with the mitigation of
grid congestion and price reduction, as well as charging completion. This research provides a
perception of how to select the most appropriate practical charging strategy based on the given
system requirements. The outcome of this study can also serve as a benchmark for advanced
smart charging algorithm evaluation in the future.

4.1. Introduction
The electrification of transport has increased in the past years, leading to a fast increase

in the electricity demand over the distribution grid. To study the integration of a massive
amount of EVs into the distribution grids, the impact of uncontrolled EV charging on the
grid utilities was explored in several benchmarking studies [23, 24, 26, 92, 103, 112]. Based
on these benchmark studies, ample smart chargingmethods have been developed and stud-
ied in recent years [113, 114]. These algorithms in general are challenging to implement
and have a trade-off between operating functionalities, input information and computa-
tional power. There are plentiful simpler and easier-to-implement EV charging methods

⁰This chapter is based on paper: Y. Yu, A. Shekhar, G. R. Chandra Mouli, and P. Bauer, Comparative impact of
three practical electric vehicle charging scheduling schemes on low voltage distribution grids. Energies, vol.
15, no. 22, 2022.
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that require much less communication and computation. Some of the methods are applic-
able for a broader spectrum of scenarios or offer a competitive, or even superior, perform-
ance [51, 115, 116]

It is our interest to explore what minimalism can bring to EV charging scheduling meth-
ods and to evaluate their effectiveness. In addition, it is also vital to assess the short-term
EV charging methods before the innovative charging algorithms are ready to be launched
with the support of relevant protocols and regulations [117].

In this chapter, three representative pragmatic rule-based EV charging scheduling meth-
ods are selected or proposed based on existing popular heuristic EV charging scheduling
methods. The generic fundamental mechanism of the three methods is to control the EV
charging power based on different criteria. A systematic analysis and comparison of their
efficacy, including grid congestion mitigation, economic benefits and charging demand ful-
filment, were carried out. In addition, this study provides an elementary reference point
for the assessment of future-developed algorithms. It must be noted that different char-
ging schemes can have diverse impacts on other factors, such as battery lifetime. However,
the focus of our study is the above-mentioned three aspects, and therefore, the influence
on the battery performance is beyond the scope of this research.
4.1.1. Background on Advanced Smart EV Charging Algorithms

Most of the controlled charging of electric vehicles (EVs) shares one or more of the four
prevailing primary targets [61–64]: (i) grid impact mitigation, (ii) profit maximisation, (iii)
enhancing the service to EV users and (iv) increasing the utilisation of renewable energy
resources. To achieve multiple targets with one charging method, EV charging power is
usually not the only parameter that must be tuned, especially in complex systems where
other relevant parties are involved [56, 59–61]. On top of that, complex structures, such
as hierarchical control schemes and multi-level optimisations, are composed [60, 65–67],
which, in turn, increase the requirement for the amount, accuracy and speed of the com-
munication [59, 61, 63]. For example, the EV charging management system proposed in
paper [59] suggests a bidding process within a transactive market in which the EV fleet
information, as well as the EV users’ preference towards the clearing price, is requested
beforehand. Similarly, study [60] investigates a systematic supply–demand balance, PV
power generation and energy storage, as well as the V2G performance, within its EV char-
ging optimisation problem using both hourly and day-ahead predictive data. The EV smart
charging method proposed in research [56] not only incorporates battery lifetime protec-
tion and PV power generation into the stochastic dynamic programming but also integ-
rates grid capacity, as well as energy storage optimisation, in its objective function.

The above-mentioned primary targets become competitive towards each other under
some operational conditions. For example, it is suggested in [62] that prioritizing peak
shaving can approximately half the maximum demand but leads to a 5–10% increase in
average energy costs as a trade-off. Further, while the method proposed in [63] success-
fully satisfies the load congestion and voltage droop constraints relative to 70% of exceeded
constraints in the uncontrolled method, it is suggested that location-specific customer de-
mands may lead to a fairness challenge that needs further investigation. An interesting
approach in [64] attempts to include fairness in imposing grid limitations by setting pri-
ority criteria for coordinated EV charging depending on the available parking time and
energy demand of the connected cars. These leading algorithms highlight the importance
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of multi-objective optimisation for minimizing a defined system cost function to address
the underlying trade-offs using accurate information and fast communication between dif-
ferent agents.

Complex hierarchical control structures are often employed to incorporate multiple
functions in advanced EV charging algorithms. Paper [65] proposes a two-level hierarch-
ical charging coordination algorithm where the upper-level controller is in charge of the
grid power dispatch and the station-level controller manages the local charging schedul-
ing. The algorithm in [66] has three levels of actions, and each has different functionalities.
The first level participates in the day-ahead (DA) or real-time (RT) market and obtains the
quantity of cleared energy, the second level aims to optimally dispatch the energy budget
obtained from level one to the EVs in the system and, finally, the objective of the third
level is to respond to the up and down regulation requests.

Apart from trade-offs and compound structures associated with multi-objective optim-
isation, smart charging algorithms also deal with uncertain load demand forecasting, re-
newable energy generation and the arrival/departure time of the EVs, usually by employ-
ing a multi-timescale optimisation scheme. In [67], a building operational cost reduction
of approximately 6% was achieved using a two-stage algorithm for DA scheduling and
RT operation compared to the baseline case, where only a prediction of the PV output
was considered. Similarly, an algorithm developed in [60] optimises the system in four
stages along the time scale from the prediction to DA, hourly ahead and, finally, to RT, to
show that even though the EV energy consumption is the same, the overall cost with an
hour-ahead schedule is 1.55 times higher than RT control, mainly due to uncertainty in PV
generation.

All of the above-mentioned challenges would become exponentially difficult in real-
environment applications, which consecutively makes simple charging methods compel-
ling.

4.1.2. Simple and Practical Charging Scheduling Approach
Meanwhile, simple yet pragmatic heuristic EV charging algorithms have been sugges-

ted and tested in preceding works. Simple heuristic charging algorithms usually focus on
regulating the EV charging procedure with three common approaches: reducing the char-
ging cost, alleviating the grid impact and tuning the charging power from the user’s point
of view. This section gives an overview of simple heuristic charging methods.
Charging Cost Reduction Methods

The most popular reason for EV charge scheduling is cost reduction. The electricity
price, such as the DA price or time of use (TOU) price, can reflect the grid loading level to
some degree and is often selected as the price signal.

The objective of [118] is to minimise the EV charging cost based on the TOU price from
a regulated market. This heuristic algorithm sorts the charging power from both temporal
and magnitude perspectives and the expected outcome is that the charging requests of
EV users are fulfilled with a lower cost in contrast to uncontrolled charging. In the end,
52.92% to 61.19% of the energy demand shifted from the highest to the lowest loaded time
window (peak → flat → valley time), with a 39.67% to 51.52% cost reduction in contrast
to uncontrolled charging. Similarly, a linear optimisation problem is formulated in [54]
to minimise the EV charging cost from an aggregator’s point of view. This method was
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implemented in combination with three charging power adjustment programs with cost
incentives, among which the users can pick in their own favour. The hourly price used
in [54] was calculated based on the real-time cost of electricity generation, transmission
and distribution. It was observed that, with a 50% EV penetration level, the charging peak
power at midnight is reduced to around 50% relative to uncontrolled charging. In addition,
the EV aggregator saves at least 5% in charging cost compared to the uncontrolled charging
scenario and the savings increase further with increasing levels of EV penetration.

However, a deficiency of the price signal as the sole dependent charging control method
is that it could cause a second load peak that can sometimes overtake the uncontrolled char-
ging load peak; this negative side effect should not be overlooked. This is due to the sim-
ultaneous charging stimulated by the unified off-peak tariff in the system. Study [49] im-
plemented a TOU price-based time-control EV charging method where different off-peak
tariff starting moments in combination with various begin-to-charge schemes were invest-
igated. It was found that this method could shift the EV charging demand into off-peak
hours andmitigate the under-voltage violation in comparison to the uncontrolled charging
method. Although the second peak in the load demand on the service transformer was ob-
served starting between 11 p.m. to 12 a.m, this value did not exceed the peak observed
for uncontrolled charging that occurred between 8 p.m-10 p.m. A similar trend in the min-
imal voltage was also encountered. It was concluded that the beginning moment of the
off-peak tariff needs to be carefully demonstrated so that the balance between grid loading
and charging completion can be obtained. The TOU price-based EV start charging time
control method was also tested in [119] and it was noticed that a secondary peak appeared
due to the simultaneous EV charging, but the peak was still around 20% less than the peak
induced by uncontrolled charging. In addition to the time control charging method indu-
cing the second peak issue, optimisation programming could also produce the same side
effect. Study [50] proposed an EV charging optimisation method with the objective to
minimise the charging price by referring to the DA spot market price. The results suggest
that even though the charging cost is reduced by 11–16% with the proposed method, using
only hourly price information is not sufficient. Simulations on actual grid data revealed
the highest increment in system energy loss of 4.3% relative to uncontrolled charging in a
residential area, whereas no significant difference in the commercial area was observed.

The employment of extra constraints might effectively balance out the second peak is-
sue. For instance, study [120] presents a cost minimisation charging method based on
a time-varying electricity price that reflects the net system demand, including the wind
generation, as well as the EV demand. The results indicate that, as opposed to uncon-
trolled charging, the average peak loading of the grid reduces up to 8%, whereas the net
present value of the grid investments increases by 25% in the low-wind-generation scen-
ario. Incorporating the grid-related constraints directly into the model produces a more
adequate effect. The charging profile of two TOU tariff-based delayed charging methods—
concurrent or with Poisson distribution—was studied in [121], and it was found that both
methods lead to a narrower peak time window with a higher peak value. However, with
the grid condition limitation being considered in the form of a distribution system loading
margin, the maximum EV penetration level was improved from the worst case of 8.5% to
the best case of 142.6%. A loss-optimal charge strategy was used in helping to defer the in-
frastructure reinforcement of the distribution network in [50], and a 100% EV penetration
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was achieved as opposed to 49% in the price-optimal case. The network peak load minim-
isation method proposed in [120] not only decreases the average peak grid loading by at
least 5% compared to the cost minimisation method, but also helps to reduce the future
grid component reinforcement requirement on MV distribution cables by 49.9% relative to
the 29.5% of the cost minimisation method.
Grid Impact Mitigation Methods

Aside from the electricity price, the grid performance is often selected as the primary
goal of the EV charging regulation method, considering the potential grid limitation vi-
olation caused by the massive EV charging demand as well as the competition between
primary goals. In doing so, the grid characteristics are frequently integrated into the sys-
tem model.

For example, the grid loss optimisation method developed in [50] adapts grid congestion
indicators, such as the transformer and the line loading, as well as the voltage variations,
into constraints. Alternatively, grid power limitation in a half-hour step was used in [64]
to prevent overloading, but this method requires communication with the system operator
for the grid power limit, as well as the load demandwith prediction. Incorporating grid fea-
tures into the optimisation is the most straightforward way to mitigate overloading issues.
However, it also means that strong nonlinear features are introduced into the optimisation
problem, which leads to complex non-linear (NL) programming solutions that increase the
solving time. In addition, these methods often use centralised control schemes and request
a high-level knowledge of the grid, which means a high requirement in communication
and computational power [122, 123].

Decentralised control methods using locally available information such as node voltage
as a reference is another common direct approach. The premise is that the node voltage
measured at any given time is a function of grid loading in the associated branch and, there-
fore, the information on grid congestion can be extracted locally without communication.
Study [49] formed a distributed optimisation problem, with its objective to minimise the
local voltage deviation at every EV connection node. The results reveal that the peak load
demand is largely shifted to the off-peak hours and the voltage droop issue is significantly
improved with at least a 4.26% increased minimal voltage. Another popular method is the
well-known voltage droop method, where the power drawn by the EV varies in propor-
tion to the measured node voltage according to a heuristically set droop gain. A simple
voltage droop charging method was studied in research [124]. The simulation results of a
real urban residential LV grid revealed that the voltage droop charging method improves
the minimal voltage by 14.7% and lowers the voltage unbalance factor by 32% as opposed
to the uncontrolled charging. Nevertheless, the minimum voltage value of the grid is still
under 0.9 p.u. with a maximum of 10.4% of the time duration in one week. This is probably
related to a relatively low voltage droop response range being selected (0.85 to 0.9 p.u.).
Study [125] proposed a phase-wise voltage-droop-based reactive power control algorithm.
The phase-to-neutral voltage unbalance was alleviated by up to 56% and the minimum
voltage was also improved by up to 6.3% with a negligible energy loss in contrast to the
reference scenario.

Despite the persuasive grid overloading prevention ability, this strategy may lead to
an unfair energy transfer to EVs connected at downstream nodes. This is because such
locations are further away from the substation and have a relatively greater drop in voltage
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due to the higher impedance of the distribution branch [52].
To establish a fair utilisation of grid resources among vehicle owners while simultan-

eously alleviating the grid congestion, [53] adapted the threshold voltage at each node
in accordance with its distance from the substation based on a learning algorithm using
measured data. The peak power drawn increases by approximately 10–20% as the charging
power of all houses reaches its equilibrium point compared to its initial status. However,
this method requests the full information of the whole grid, including geographic inform-
ation, as well as the grid local profile. A fair control scheme was proposed in paper [126]
by using an exponential voltage droop curve, and the charging rate was altered based on
the state of charge (SoC) of the EVs. This method successfully decreased the peak in the
system load by 10–15%. Furthermore, the difference in time to fully charge between EVs
connected at different nodes was scaled down to 60–70% with the SoC-involved adjust-
ment in comparison with the SoC-free adjustment. This control method is only effective
with a maximum of 50% EV penetration, and EVs at the far end will not be able to be fully
charged if the EV penetration keeps growing. An EV SoC and local voltage-dependent
fuzzy logic communication-free charging method was developed in [127]. Additionally,
a zero membership function was assigned to the voltage range 0.95–1.025 p.u. to avoid
the extensive voltage-reliant sensitivity of the charging rate. The performance compar-
ison between the proposed method versus the traditional voltage droop method suggested
a similar capability of grid overloading reduction, where the difference in the minimum
voltage at the same far-end node was only 0.0023 p.u. Nevertheless, the proposed method
has an outstanding strength in unfair charging realignment. The difference in the time
until full charge between the upstream and downstream node-connected EV decreased
by almost three hours relative to the traditional voltage droop charging method. Paper
[51] introduced a rule-based decentralised charging method using historical node voltage
data, as well as EV SoC information, to determine the charging rate. Both under-voltage
and transformer overloading probability decreased significantly in comparison to uncon-
trolled charging. The results also imply that embedding extra information such as the EV
arrival/departure time, urgency and charging energy demand into the algorithmwould not
certainly enhance the after-effect. Although an 11.5% charging cost saving was obtained,
the transformer loading probability was up to 26% higher with a 0.42% higher failure to
the supply rate.

As we can conclude from the above-reviewed papers, extra efforts, such as a sophist-
icated control scheme and additional information, are always requested to reconcile grid
congestion and charging fairness.
EV User-Centric Charging Methods

Third-party information is not always a necessity in EV charging coordination. The
EV charging impact alleviation in LV distribution grids can be attained by flattening or
staggering the high EV charging powers from each other and from the base load demand.
This can be achieved based solely on the charging-demand-related information, which
makes this method EV-user-centric, as its primary constraint is the accomplishment of EV
charging demand. Examples of popular EV-user-centric charging methods are: reduced
power charging (also called average rate charging or individual peak shaving), delayed
charging and random charging (with a random rate and/or at random times).

Charging by departure and individual peak shaving methods are investigated in [128].
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In this study, the individual peak shaving presents a significant improvement in load peak
reduction (up to 60%) while enhancing the PV self-consumption by 3.9% points. How-
ever, individual peak shaving is not as effective in grid impact mitigation during the night.
Moreover, the charging by departure method could cause a slightly higher evening peak
compared to the uncontrolled charging and has an insignificant increase in the PV self-
consumption rate.

Four charging methods that fall into random charging or delayed charging categories
were studied in [115]: random-in-window with fixed (RIW-FR) or varying rates (RIW-VR),
pure-random charging and charging by departure. Among all methods, RIW-VR charging
has the best efficacy in both charging peak reduction and load valley filling and RIW-FR
is the runner-up, followed by the pure-random charging method. Nevertheless, similar
to other research, the charging by departure method shifts the charging load to a later
moment with the side effect of creating a second peak, even though this peak is lower
than the one with uncontrolled charging.

User participation was included in [54], where three charging programs could be selec-
ted by users before the charging starts. The charging programs were allocated by differ-
ent average charging speeds and matching charging prices. Depending on the program
selection and the charging energy request, the charging time for each user varies. The
simulation results of a distribution feeder in Ecuador prove that, with a user-selected aver-
age power charging method, the peak charging demand was reduced to around 38% of the
uncontrolled charging peak power. If the minimal possible charging power is applied, the
charging peak demand reduction can be up to half of the peak caused by uncontrolled char-
ging [55]. It was also reported that the reduced charging power method with a charging
rate depending on price could save an 11.8% cost per EV per day in Winter [129].
4.1.3. Contributions and the chapter Structure

To what extent the individual criterion is effective in EV charging scheduling and how
it influences the system performance is essential and interesting. In this chapter, one
method from each approach introduced in the previous section was selected and investig-
ated. They are the price-signal-based method (PSM) for charging cost reduction, voltage
droop method (VDM) for grid impact mitigation and the average rate method (ARM) for a
user-centric charging approach. Each method only utilises single and specific information
as a control reference, where PSM only uses the price signal, VDM solely employs the local
voltage value and ARM just exploits user-provided charging session knowledge.

Since each charge scheduling method only considers one factor, the pros and cons of
each method are magnified while the trade-offs between them are pronounced. Node
voltages correlate well with the loading patterns of the local grid; thus, VDM discrimin-
ates against the chargers located downstream of the central substation. On the other hand,
PSM can eliminate this location-specific charging behaviour, but communication for price
signals is necessary. Furthermore, both VDM and PSM aim to postpone the EV charging
demand based on heuristically chosen slopes independent of the user information; hence,
these methods are vulnerable to the possibility of incomplete charging events. The ARM
takes into account only the EV user input data, which contain the parking time and energy
demand information to guarantee that the EV charging requirements are met. However,
the charging method is unaware of the grid operating conditions and its performance be-
comes user dependent.
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It is important to benchmark the advanced smart EV charging algorithms using simpli-
fiedmethods targeting either a single objective or ones that are structurally less complex in
their implementation to ensure scalability. By studying the fundamental impact of every
single factor with our chosen three charging methods, the benchmark criteria are then
provided for the reference of future smart charging evaluation. The contributions of our
work are listed as follows:

• Three heuristic charging methods were compared vertically with each other and
with uncontrolled charging from several perspectives: grid congestion prevention,
charging cost minimisation and EV charging completion.

• The comparison was accomplished by means of grid simulations. The simulations
on six real LV distribution grids jointly with four EV penetration levels (0, 20, 50,
80%) were investigated in two representative seasons (winter, summer).

• The practical limitation of charging protocol IEC61851 was deliberated, where the
charging current has a minimum value of 6A with discrete incremental steps.

• An in-depth analysis with respect to different charging price schemes is carried out
In Section 4.2, the mathematical principles for the considered charge scheduling meth-

ods (PSM, ARM and VDM) are described in detail. The system description of six grid types
in the Netherlands, simulation methodology, key assumptions and measured statistical
data pertaining to the energy demand, arrival and departure time of EVs is discussed in
Section 4.3. Simulation results related to the grid performance in terms of transformer and
line loading and the node voltage droop with the considered charging schemes are com-
pared with UNC in Section 4.4. In Section 4.5, the impact of the PSM scheme is explored in
more detail. The trade-offs associated with charging demand fulfilment and charging costs
are quantified in Section 4.6 and, finally, the key conclusions are highlighted in Section 4.7.

4.2. EV Charging Scheduling Methods
In this chapter, the per-unit format of charging power/current is presented since the

rated charging power/current differs for every EV and charger brand. The base EV char-
ging power/current (𝑝basej /𝑖basej ) per unit calculation of each EV and charger combination is
introduced in Eq. (4.1), wherein 𝑝max

j /𝑖max
j represent themaximum charging power/current

of EV 𝑗, and 𝑝EVrj /𝑖EVrj is the maximum charging power/current of the charger at which EV
𝑗 is connected to it. Therefore, the base EV charging power/current means the maximum
allowable charging power/current for a particular EV–charger pair.

𝑝basej = 𝑀𝑖𝑛. {𝑝max
j , 𝑝EVrj } , 𝑖basej = 𝑀𝑖𝑛. {𝑖max

j , 𝑖EVrj } (4.1)

One of the most commonly applied AC charger with EV communication protocols in
Europe is IEC61851. The charger gives an upper limit of charging current via a pulse-width
modulation (PWM) signal through the control pilot (CP) of the connector. According to
this protocol, the lowest non-zero charging current set-point is 6 A [45]. Even though the
EV is themaster in the negotiation, it was assumed in this chapter that the EV charging cur-
rent always follows the set-point given by the chargers [130]. The constant-voltage (CV)
battery charging stage was not considered in the control scheme in this chapter. There-
fore, 6 A was set as the minimum charging current in this study. In addition, the charging
current/power of the EVs and the set-point given by the charger are not continuous [45].
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A discrete charging scheme was then applied and the resolution of the charging current
set-point was set to be 1A.Three charging methods are explained in the following context,
and their control scheme illustrations are presented in Fig. 4.1
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Figure 4.1: Illustration of three charging methods’ control mechanism: (a) PSM, (b) VDM, (c) ARM.

4.2.1. Price Signal Method
The idea of the PSM is inspired by the commonly applied TOU-tariff-based time control

charging method introduced in Section 4.1 and a field implemented in the pilot project
”Flexpower” in Amsterdam, The Netherlands [68]. The TOU method controls the on and
off charging status based on the peak–valley price time window and the Flexpower pro-
ject increases or decreases the charging current limit based on the time of day. The PSM
combines two approaches, and the idea is to limit the EV charging current solely based on
the electricity price. This price signal could be a predicted intra-day market (IDM) price,
a day-ahead market (DAM) price, a predicted market price that reflects the grid conges-
tion or a different type of market price that is available prior to the activation moment of
the charging scheduler. In the European market, the DAM price for the next whole day
is released one day ahead at 12:00 noon, and the price is fixed for every hour [131]. The
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APX Dutch DAM price is then selected as the price signal for PSM due to its advantages
of having an early accessibility and a long duration that lasts for 24 h [132]. Without the
necessity of collecting local information such as local voltage or the user departure time
and charging energy demand, the maximum allowable per unit charging rate of all of the
connected EVs is tuned by referring to the DAM price signals.

𝑖𝑃𝑆𝑀𝑡,𝑗 =
⎧
⎨
⎩

1 × 𝑖𝑏𝑎𝑠𝑒𝑗 , if 𝑐𝑡,𝑗 ∈ 𝐶𝑙𝑜𝑤
0.5 × 𝑖𝑏𝑎𝑠𝑒𝑗 , if 𝑐𝑡,𝑗 ∈ 𝐶𝑚𝑒𝑑𝑖𝑢𝑚
𝑀𝑖𝑛. (6A), if 𝑐𝑡,𝑗 ∈ 𝐶ℎ𝑖𝑔ℎ

(4.2)

In this study, we propose a three-price-segment scheme where the price of the next
day is divided into three high (𝐶ℎ𝑖𝑔ℎ), medium (𝐶𝑚𝑒𝑑𝑖𝑢𝑚) and low (𝐶𝑙𝑜𝑤 ) segments and
each segment corresponds to one charging current level. An hourly DAM price signal
means that the charging power adjustment is also in a step of one hour. The hourly PSM
charging current (𝑖𝑃𝑆𝑀𝑡,𝑗 ) for EV 𝑗 is limited based on the hourly DAM price (𝑐𝑡,𝑗 ), which is
demonstrated in Eq. (4.2).
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Figure 4.2: Normalised baseloads of six grids compare with two price signals.

Energy prices such as DAM or IDM prices only reflect the supply–demand relation from
an energy production–consumption balance perspective but not from a power transmis-
sion and distribution perspective. Hence, a separate congestionmarket is required to factor
in the grid loading conditions or to adjust the energy prices in such a way that it can reflect
grid congestion as well. To compare how close the DAM price reflects the grid congestion,
the normalised grid total baseloads of all six grids and the DAM price of the same time
period are plotted in Fig. 4.2. From this plot, it can be observed that even though the DAM
price shows a day-and-night price fluctuation and there are two peak hours during the
day, the load variation is not well replicated by the price signal. Unfortunately, there is no
mature congestionmarket available in the Netherlands [133] that contains the grid loading
information. Hence, a modified DAM price signal is proposed based on the Dutch DAM
price. The new price signal is modified by referring to the average base power consump-
tion trend of all six grids, and it shares the same daily mean values as the original DAM
price. The curve of the modified price signal can be seen in Fig. 4.2.
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Moreover, how the price segment division impacts the effectiveness of PSM is also ap-
pealing to study. Two price segment division methods were thus explored. One method is
to divide the daily 24 h price into three parts: the top three prices as 𝐶ℎ𝑖𝑔ℎ, all prices below
the daily average price as 𝐶𝑙𝑜𝑤 and the rest of the prices in between, which are categor-
ised as 𝐶𝑚𝑒𝑑𝑖𝑢𝑚 . This method inhibits the time window, during which, the EV charge has
a minimal current in order to reduce the limitation on the charging demand as much as
possible. The second segment division method is to simply divide the 24 h into three equal
parts that are each 8 h long. This division method means that the EVs can be charged with
full current for only 8 h of a day, and, in another 8 h, the EV can only be charged with its
lowest possible current.

To cover two price signals and two price segment division methods, three PSM schemes
are proposed and studied in this chapter. The scheme detail is summarised in Table 4.1 and
the schematic of three PSM control schemes is shown in Fig. 4.1 (a).

Table 4.1: PSM methods explanation.

Method PSM1 PSM2 PSM3

Price signal DAM price DAM price Modified DAM price

Price segment
division

𝐶ℎ𝑖𝑔ℎ: Top 3 prices
𝐶𝑙𝑜𝑤 : Below daily average
𝐶𝑚𝑒𝑑𝑖𝑢𝑚 : The rest

Equally divided
into 8 h

𝐶ℎ𝑖𝑔ℎ: Top 3
𝐶𝑙𝑜𝑤 : Below daily average
𝐶𝑚𝑒𝑑𝑖𝑢𝑚 : The rest

4.2.2. Voltage Droop Method
The VDM tested in this chapter is simply the traditional voltage droop method [52].

A voltage droop response range of 0.95–1.05 p.u., within which, the charging current in-
creases proportionally, was selected to confine the voltage fluctuation within the allowable
range as much as possible [110]. When the voltage surpasses the droop response range, the
charging current was set to its min/max value. The regulation rules are listed in Eq. (4.3).

𝑖𝑉𝐷𝑀𝑡,𝑗
⎧
⎨
⎩

= 1 × 𝑖𝑏𝑎𝑠𝑒𝑗 , if 𝑣𝑡,𝑗 ≥ 1.05 p.u.
∝ 𝑣𝑡,𝑗 , if 𝑣𝑡,𝑗 ∈ (0.95, 1.05)
= 𝑀𝑖𝑛.(6A), if 𝑣𝑡,𝑗 ≤ 0.95 p.u.

(4.3)

The VDM was set to only take actions at every fixed time step to prevent the massive
oscillations of the current. The trigger timing of the VDM can be adjusted and is synchron-
ised with the simulation time steps. The charging current alteration versus node voltage
is plotted in Fig. 4.1 (b).
4.2.3. Average Rate Method

The ARM is relatively simple yet fairly effective for grid congestion prevention, and it
was selected from existing work [55]. The ARM reduces the charging impact on the grid
while acknowledging the user’s requirement and will ensure the full charge of the EV if
the user indeed departs as indicated. The ARM spreads out the charging process along the
whole EV parking duration, which is only possible if each of the EV users’ arrival time 𝑇 a

j ,
departure time 𝑇 d

j and required energy demand 𝑑j are known. The diagram of the ARM is
shown in Fig. 4.1 (c).
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𝑝ARM
j = 𝑀𝑖𝑛. {𝑀𝑎𝑥. {𝑝arj , 𝑝min

j } , 𝑝basej } ,where 𝑝arj = 𝑑j
(𝑇 d

j − 𝑇 a
j )

(4.4)

Eq. (4.4) depicts how the charging power of EV 𝑗 (𝑝ARM
j ) is determined. The 𝑝arj was

calculated and compared with the base power of the EV and charger combination (𝑝basej ) as
well as theminimal charging power 𝑝min

j , whichwas determined by theminimum charging
current of 6A. Afterwards, the ARM charging power was rounded so that the charging
current is an integer.

The effectiveness of the ARM is directly related to the duration of the EV parking time
within a certain range: the longer the EV parks, the more likely the charging power is
to get lower. However, the charging power cannot be infinitely small due to the 𝑝min

j
constraint. This constraint leads to the EV parking duration and energy demand being no
longer important after a certain threshold. All EVs will be charged with the minimal power
𝑝min
j in that situation. On the contrary, a very short parking time could deteriorate the

efficacy of the ARM when the value of 𝑝arj is close to 𝑝basej . Additionally, the performance
of the ARM is also sensitive to the arrival time; for example, if an EV arrives 1–2 h before
the peak hour and leaves after the peak hour. Compared to the UNC, with which, the
charging process would have been finished before the peak hour, the ARM prolongs the
charging process starting from the valley moment and unnecessarily extends the whole
charging process to the peak hours. This might lead to an elevated peak loading in the
grid.

4.3. Simulation Methodology and System Information

Table 4.2: Summary of grids’ characteristics.

Grid No.
HH

Yearly
Energy
Consum.
[MWh]

PV
Installation

[kWp]

Avg. Line
Length
[m]

Longest
Feeder

Length [m]

No.
Transformer
and Capacity

[kVA]

RR1 3 98.0 2.5 22.8 367.8 1 × 400 kVA
RR2 133 486.8 87.5 7.9 452.2 1 × 400 kVA
SUB1 475 1394.1 180 7.3 566.0 1 × 400 kVA
SUB2 266 800.8 100 8.1 546.6 1 × 400 kVA
UB1 283 1680.2 37.5 4.4 332.5 1 × 400 kVA
UB2 122 261.0 17.5 10.3 360.4 1 × 400 kVA

The comparison of three different EV charging scheduling methods was accomplished
by PowerFactory simulations and Python data analysis. The simulations of six grids with
four EV penetration levels in one winter week and one summer week were conducted
with 10 min resolution. Three charging methods were compared with each other, as well
as compared to the UNCmethod from grid performance and charging cost perspectives, as
well as charging completion perspective. UNC method was designated in this chapter as
immediate EV charging with its rated power as soon as the EV is plugged into the charger.
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4.3. SIMULATION METHODOLOGY AND SYSTEM INFORMATION

The six tested grids were real Dutch LV distribution grids provided by the Dutch Distri-
bution system operator (DSO). The tested grids were categorised into three types based on
their geographical and functional features, namely rural (RR) grids, suburban (SUB) grids
and urban (UB) grids, with two grids per type being considered. The detailed grid features
can be found in Table 4.2.
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Figure 4.3: Sample load profile for a 1000 kWh yearly energy consumption in both seasons.
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Figure 4.4: Sample PV profile for a 1 kW installation in (a) winter, (b) summer.

The grid baseload profile was modelled based on the load features that were contained
in the grid models and the Dutch standardised load profiles [95]. The standard profiles for
a 1000 kWh yearly energy consumption load is presented in Fig. 4.3. The profile name in
the figure depicts the electrical load type in various scales and patterns. The PV profile
modelling was based on a previous study [100]. The one-minute resolution sample profile
of a 1 kWp PV installation is shown in Fig. 4.4. It was assumed in this study that RR grids
have 25% PV penetration, SUB grids contain a 15% PV penetration and, in UB grid, there is
only 5% PV penetration. It was also assumed that, for each installation, the PV peak power
is 2.5 kW [97, 98].

In this study, the EV data consisted of two parts: one part is the EV fleet composition
and the other part is the EV users’ charging habits, including EV arrival time, EV parking
time, energy requests and the EV charging frequency.
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The EV fleet selection was based on the
Dutch market data [105]. Top 10 EV mod-
els whose battery capacities vary from 35.8
to 90 kWh were modelled in the simula-
tion. The EV charging behaviour data are
based on a study that contains 1.5M real
EV charging sessions from charger meas-
urements [104, 109]. The charging sessions
can be classified into three typical groups
subject to their temporal–spatial features,
such as charging location, time of arrival
and parking duration. These three groups
were identified as home, semi-public and
public charging session types, as explained
in [103]. The share of charging session
groups per grid type is as follows: 70%
of the total charging sessions in RR grids
are home typ,e and this value is 50% for
SUB grid and 25% for UB grids. The rest
of the charging sessions were equally di-
vided into semi-public and public types
[105]. The probability distribution curves
of EV arrival time, EV connection time and
charging energy requests of three charging
session types are shown in Fig. 4.5.

Finally, the modelling of EV charging
profile was accomplished by combining
the EV fleet data and the EV charging beha-
viour. The EV chargers were modelled as
LV loads in the grid, and they were all as-
sumed to be three-phase AC chargers with
a 32A max per phase connection. The in-
crease in EV penetration was modelled as
the growth in EV charging sessions, and,
subsequently, the rising charger numbers.
The EV charging sessions, the location and

the capacity of the chargers in the lower EV penetration level were retained. This model-
ling method also ensures that the only difference between a higher and a lower EV penet-
ration level in a particular grid is the additional EV charging sessions. In addition, all of
the charging sessions, including arrival–departure time, arrival SoC and energy demand,
were exactly the same for the four charging methods. A detailed description of the grid
models and how the simulation data were generated can be found in our previous work
[134].
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4.4. COMPARATIVE SIMULATION RESULTS FOR GRID PERFORMANCE WITH DIFFERENT
CHARGING SCHEMES

4.4. Comparative Simulation Results for Grid
Performance with Different Charging Schemes

In this section, the impact of ARM, VDM and PSM1 on the grid performance in terms of
grid congestion alleviation, loading value distribution and overloading on each element is
assessed and compared with UNC.
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4.4.1. Grid Congestion Alleviation and Charging Session Feature
Correlations

In Fig. 4.6, the transformer loading of four charging methods in an EV 80% scenario in
winter is presented, with time as the x-axis. It can be observed that the peak transformer
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loading is reducedwith the ARMandVDM relative to UNC,whereas it is higherwith PSM1.
This tendency is particularly relevant for both SUB grids as well as UB2 and RR2 with a
high EV penetration, posing a risk of higher overloads if the PSM is used. For example, in
the SUB1 grid with EV80 scenario, the topmost transformer loading value of the PSM is
28.7% higher than the UNC and 59.71% higher than the VDM highest transformer loading
value.

However, while the PSM mitigates the morning peaks and partial evening peaks that
are spotted in UNC, shifted new spikes arise later in the evening between 19:00 and 24:00.
This is because the PSM curtails the EV charging power and restricts the energy being
delivered during the high-energy-price period. When the energy price drops so that the
power restriction is lifted, the stockpiled charging demand of yet-connected EVs is released
simultaneously, resulting in an abrupt power spike. It can be inferred that this shifted
excessive peak demand phenomenon is exacerbated when the most frequent EV arrival
time coincides with the peak of the baseload. This is especially the case when a long
parking time is expected in the arrived EVs, which is typical for home charging sessions,
as shown in the arrival distribution curve exhibited in Fig. 4.5. On the other hand, semi-
public and public charging sessions have relatively short parking times and the EVs arrive
less frequently in the evening, which coincides with the base-load peak moment. It is also
less likely to have a public or semi-public charging session with a duration that extends
beyond the evening peak hours and, therefore, most charging events are expected to be
completed before the peak hour restriction imposed by the PSM is lifted. Consequently, the
shifted peak phenomenon induced by the PSM is significant for SUB grids, in which, home
chargers are dominant, and is not observable in UB grids where a higher proportion of
public and semi-public charging sessions occur. Based on these inferences, it is suggested
that grids with a higher proportion of home chargers are more sensitive to the worsening
of the peak load due to PSM charging. At the same time, the expected benefit in terms of
cost minimisation and charging demand fulfilment can be lower where short parking times
and uniform arrival times dominate, as is the case with public and semi-public chargers;
this shall be explored in subsequent sections. Additionally, the profile in Fig. 4.6 shows
a peak loading shifting phenomenon between weekdays and weekends, but no essential
charging method performance change is observed.
4.4.2. Loading Value Distribution Exploration

The numerical distribution analysis on loading values was performed in our study and
the maximum line loading among all lines at every moment in one winter week is shown
in Fig. 4.7. The bottom and top edge of the box indicate the 25–75% quantile of the data
distribution and the top and the bottom of the I-shape line mark the 1.5–98.5% quantile of
the data distribution. The short dashed line in the middle of the colour box signifies the
median of all of the data points and the white dot points out the average value of this data
group. From this plot, one can recognise that the PSM still exacerbates the line overloading
issue, yet it does lower the 25–75% quantile range relative to the UNC results. It is further
observed that a slight reduction in the average value of maximum line loading is achieved
with the PSM, ARM and VDM-based charging relative to the UNCmethod, except for three
cases in the PSM (RR1 with EV20 and 50, UB1 with EV20) and two cases in the VDM (RR1
with EV20 and 50). The highest reduction in the mean value of the maximum line loading
of 7.74% is reached by the VDM in the SUB1 grid with the EV80 scenario. This result
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hints that all three charging methods are useful in reducing line loading in the majority of
cases. Regarding transformer loading, the margin of the mean and median loading value
among all cases is less than 3.5%. In addition, the 25–75% quantile range of the PSM is
enlarged in comparison to UNCwhereas both the ARM and VDM have a narrower 25–75%
quantile range. This implies that the ARM and VDM are effective in not only lowering the
peak loading but also in smoothing the loading curve, which makes the data points more
concentrated around their median values. This can be clearly pinpointed in Fig. 4.6 as well.
The distribution analysis of the minimum node voltage delivers a consistent conclusion,
as can be observed in Fig. 4.8. Additionally, the VDM charging scheme performs the best
in limiting the greatest voltage drop in the grid, even compared to the ARM.
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4.4.3. Overloading Assessment on Individual element
A spatial examination of line loading and node voltage distribution along the course of

the branch reveals how four charging methods diverge the congestion level of each line
and each node.

A scatter plot of the minimum voltage of each EV-connected node versus their distance
toward the transformer is presented in Fig. 4.9. The minimal node voltage decreases pro-
portionally to their distance to the transformer. The VDM successfully brings the lowest
node voltage back from 0.8506 p.u. with UNC to above 0.9 p.u.. Moreover, the percentage
of nodes that ever encountered under-voltage with the VDM reaches 0% instead of 23.53%
for UNC. The ARM also has a considerable under-voltage avoidance ability, where, in the
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SUB1 grid, the minimum voltage is improved to 0.8695 p.u., whereas the percentage of
nodes that have under-voltage problems drops to 5.27% Even though the PSM aggravates
the voltage droop problem,
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ThePSM aggravates themaximum loading of a large number of lines, especially the lines
that are closer to the transformer in SUB and UB grids. Many of these lines are part of the
main branches; this implies that a simultaneous load growth happens in their downstream
sub-branches. The raised loadings that are developed in the sub-branches are passed on to
the upper stream main feeders and thus cause this excessive and aggregated main feeder
overloading. One example can be seen in Fig. 4.10, in which, the grid loading heatmap
of the SUB1 grid with the PSM1 charging method with EV 80% penetration in winter is
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exhibited. This heatmap is captured at the highest line loading moment, and the yellow
circle denotes the location of the transformer.

Figure 4.10: Grid loading heatmap of SUB1 grid with PSMwith EV 80% penetration in winter, highest
line loading moment.

In addition, for every charging method in a particular grid, the maximum line load-
ing has a tendency to decline when its distance to the transformer increases. This trend
is clearly shown in the loading distribution plot (Fig. 4.11) of all lines during the whole
simulation period. The ARM has the smallest slope of line loading versus distance to the
transformer in comparison with other charging methods. That is due to the ARM being the
only method that curtails the charging power at every possible moment, and the charging
power is constant once the procedure starts. As for the VDM, it curtails the maximum
loading of every line the most among all charging methods.

After all, the ARM successfully restrains the charging current of every charging session
at every moment within a very low range. A total of 92.61% of the charging current is
lower than 10 A for the ARM, whereas this value is 46.49% for UNC, 60.33% for PSM1 and
82.79% for VDM.
4.4.4. Key Takeaways

TheVDM functions the best in mitigating the grid loading in all grids from three aspects,
and the ARM is the runner-up. Although a previous study [65] obtained a non-ideal grid
congestion relief effect using a droop response range lower than 0.9 p.u, our results suggest
that the VDM is a parameter-sensitive method. If the voltage boundary is set properly, the
grid congestion mitigation could be improved considerably. At the same time, the VDM
achieves the given performance solely based on local node voltage measurement, which
can be preferable when user information regarding the parking time and energy demand
is not available consistently, which is an essential requirement for the ARM.

Despite the fact that the PSM exacerbates the grid peak loading magnitude in SUB and
RR grids, it still contributes to shortening the overloading duration even in the most over-
loaded SUB1 grid with an 80% EV penetration. The grid, 69.74% of the time, does not have
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any kind of grid limitation violation, and the PSM improves it to 70.54% of the time. This
value is 72.22% for the ARM and 73.81% for the VDM. The PSM causes worse overloading
spikes in grids with a large portion of home charging sessions, but it works well to allevi-
ate the loading in UB grids by shifting the charging demand peak to a later less congested
moment. Therefore, the proposed PSM is still a good choice for grids with lower EV penet-
ration levels and with a lower portion of home charging sessions, particularly considering
the benefits related to charging costs, as shall be later explored.
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Figure 4.12: Comparison of total charging power under the three PSM study schemes for three grids
(top three plots), with the corresponding price signals (bottom three plots).

4.5. PSM Scheme Analysis
To further explore the grid performance deterioration due to the shifted higher peak

caused by the PSM, the total EV charging power per grid with three PSM schemes of
the EV 80% scenario are compared in this section. The purpose is to see the grid impact
when different heuristic restrictions are imposed by using different price signals and vari-
ous price segment division methods. The sum of all EV charging power with three PSM
schemes in three grids (one each type) for four days in winter (two weekdays and two
weekends) with an EV 80% penetration level is shown in Fig. 4.12. The sum EV charging
power of UNC, as well as the total baseload power, are also presented for reference. The
daily price segment schematics of three PSM schemes are displayed in the same plot.
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From this graph, it can be spotted that the evening peaks of the EV charging power
are postponed and substantially boosted by all PSM schemes in comparison with UNC.
This transition happens when the price segment switches from medium to low, causing
the charging current limit to shift from 50% to no limit. PSM2 delays the evening peaks
further and it decreases the peak amplitude compared to PSM1. This is because PSM2
has a longer duration of low and medium price segments than PSM1, and the EVs have
less time to charge with a higher power during the day. On Saturday afternoon at 14:00,
PSM2 causes an extremely high power spike in comparison to PSM1 and PSM3. The reason
behind this can be found in the PSM2 price segment plot. On Saturday at 14:00, the price
jumped from the high segment to the low segment, which means that the charging current
limit leaps directly from the minimum level to the maximum level. All of the connected
EVs that were charging with minimum current were all tuned to their maximum charging
current simultaneously, leading to this high peak value. Comparatively, PSM3 has the best
relative performance regarding delaying the power peak as close to the valley moment as
possible and lowering the peak power values with the help of the baseload trend adapted
price signal. For the overnight charging EVs, the switch to the maximum charging current
moment can be further delayed to between 2 abd 6 a.m. the next day when the baseload
hits its lowest point.

The natural limitation of the PSM is that, for every round of the price division segment
update, it only looks at the 24 h time window from 00:00 to 00:00 the next day, thoughmost
home charging sessions with EVs arriving at night would stay overnight. Nonetheless,
the renewed price segment starts at 00:00, making the overnight charging control lack
continuity. There are two approaches that could potentially resolve this problem. One is
to diminish the length of the low price segment and, additionally, to force the medium–
maximum charging current transitionmoment to occur only between 2 and 6 a.m. Another
approach is to renew the price segment with a higher frequency and shorten the total
control length from 24 h to, for example, 12 h. Because the DAM price of the next day
releases at 12:00, the price of the next day can be involved in the new price segment division
after 12:00. A potential beneficial point at which to renew the price segment is 18:00, when
the evening peak starts. Once the price segment division plan and update frequency are
improved as recommended, we believe that the PSM can also be quite effective in lowering
the grid loading.

4.6. Charging Process Evaluation
In this section, how the charging process is influenced by three methods is evaluated

from charging cost and charging satisfaction perspectives.
4.6.1. Charging Completion

It is assumed that, with UNC, the charging process is terminated when the EV battery
is full or when the charged energy reaches the user’s expectation. For the exact same
charging session, the energy charged with UNC is set as a target for comparison. Due to
the nature of the ARM, all of the charging requests input by users in advance are fulfilled,
but this is not the case for the PSM and VDM. This is primarily due to the fact that these
techniques do not factor in the information related to the energy demand or the parking
time of the EV.The comparison of the charging demand completion of EV 80% in onewinter
week is displayed in Fig. 4.13. In this figure, (a) shows the percentage events of total events
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whose charged energy is less than the UNCmethod, whereas (b) shows, among all of these
deficient charging events, the distribution of per-session incomplete charging energy.
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From Fig. 4.13, it can be noticed that
the charging completion of the VDM is
similar to or better than the PSM, except
for SUB grids. This is correlated with
the grid congestion levels. The VDM dir-
ectly responds to the grid condition and,
in the simulations of this research, the
node voltage value is strongly synchron-
ised with the overall grid congestion. For
SUB grids, there are more occasions with a
longer duration of grid overloading in com-
parison with the other two types of grids
as shown in Section 4.4. The VDM limits
the charging current, especially when the
voltage is low, whereas SUB1 grids have
the highest duration and scale of voltage
drops, leading to a strict charging current
limitation. As a result, the energy demand
of 20.04% of sessions in SUB1 grids is not
fulfilled because of the limitation in com-
parison with the PSM (on average 17.07%)
and ARM (0%).

For all grids, all PSM schemes have a
similar and stable influence regarding char-
ging completion in both percentages of the
deficient session and deficient energy per
session. It is easy to interpret that all EVs
in all grids use the same centralised con-
trol rule and that no other variables are in-
volved in this charging tuning procedure,
unlike the VDM, which uses varying local
voltages. However, among the three PSM
charging schemes, PSM2 has the highest
charging demand incomplete rate. As ex-
plained in Section 4.5, the control scheme
of PSM2 extends the duration of maximum

and medium price segments, which correspond to the minimum and 50% of the full char-
ging current. This means that more EVs have to charge with a lower power for a longer
time, whichmight be even longer than the EV parking time, eventually causing this highest
unfinished charging ratio.
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4.6.2. Charging Cost
How three charging methods influence the charging cost in comparison with UNC is

studied in this section. Both absolute and relative costs were analysed considering the
charging demand completion rate as diverse between methods, even with the exact same
charging session. The total charging cost (𝐶𝑐ℎ

𝑡𝑜𝑡𝑎𝑙 ) and the total charging energy (𝐸𝑐ℎ𝑡𝑜𝑡𝑎𝑙 )
from all six grids, as well as the ratio of total savings (𝛾 𝑠𝑎𝑣𝑒𝑡𝑜𝑡𝑎𝑙 ) and the total energy-deficient
ratio (𝜖𝑑𝑒𝑓𝑡𝑜𝑡𝑎𝑙 ) of all charging methods with respect to UNC with 80% EV in winter are sum-
marised in Table 4.3.

Table 4.3: Total charging cost and energy failed to deliver comparison.

Season Compare
Items UNC PSM1 PSM2 PSM3 ARM VDM

Winter

𝐶𝑐ℎ
𝑡𝑜𝑡𝑎𝑙 [€] 1900.79 1766.25 1701.88 1737.29 1834.32 1902.00s

𝛾 𝑠𝑎𝑣𝑒
𝑡𝑜𝑡𝑎𝑙 [%] - 7.08 10.46 8.60 3.50 −0.06
𝐸𝑐ℎ
𝑡𝑜𝑡𝑎𝑙 [kWh] 45,664.63 43,671.41 42,576.50 43,137.44 45,763.09 43,711.11

𝜖𝑑𝑒𝑓𝑡𝑜𝑡𝑎𝑙 [%] - 4.36 6.76 5.53 0 4.28

Summer

𝐶𝑐ℎ
𝑡𝑜𝑡𝑎𝑙 [€] 2789.20 2599.73 2510.90 2617.83 2721.22 2844.47

𝛾 𝑠𝑎𝑣𝑒
𝑡𝑜𝑡𝑎𝑙 [%] - 6.79 9.98 6.14 2.44 −1.98
𝐸𝑐ℎ
𝑡𝑜𝑡𝑎𝑙 [kWh] 45,664.63 43,666.40 42,368.90 43,205.43 45,763.09 44,119.27

𝜖𝑑𝑒𝑓𝑡𝑜𝑡𝑎𝑙 [%] - 4.38 7.22 5.39 0 3.38

It should be noted that the total energy charged with the ARM being higher than UNC
is due to the simulation setup and the data resolution. For every time step (10min in the
simulation), the charging current of the ARM is constant and the minimum value is 6A;
thus, theminimum chargeable energy for a three-phase connection EV per step is 0.69 kWh.
If the energy to be charged by referring to UNC is less than this value, the higher charged
energy situation happens. In the meantime, there is an overcharge prevention mechanism
to ensure that SoC never exceeds 1. From this table, it can be perceived that both the PSM
and ARM reduce the charging cost and that PSM2 saves the most expenses. For the PSM,
the value of the saved cost is correlated with the energy-deficient ratio, whereas the ARM
does not compromise the energy being delivered. On the other hand, the VDM is the only
method that costs more to charge but obtains less energy for EV users.

Every charging session has various energy demands and uses divergent price values.
Hence, a comparative charging cost factor (𝐶xM

k,norm) is introduced for a fair comparison,
with the charging sessions of UNC as the benchmark.

For every charging session, the relative charging cost of method 𝑥𝑀 (one of PSM, ARM
and VDM) is first calculated by 𝐶xM

k /𝐶UNC
k , where 𝐶xM

k is the charging cost of session 𝑘
with method 𝑥𝑀 and 𝐶UNC

k is the charging cost of the same session but charged with UNC.
Since not all of the energy demand is fulfilled in every charging session, especially with
methods PSM and VDM, a charging fulfilment correction factor is introduced to correct
the charging cost reduction due to the charging energy deficiency. The correction factor is
calculated by 𝐸xM

k /𝐸UNC
k , where 𝐸UNC

k is the delivered energy with method UNC and 𝐸xM
k

is the charging energy delivered with method 𝑥𝑀 . The equation of the 𝐶xM
k,norm calculation
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is shown in Eq. (4.5).

𝐶xM
k,norm = 𝐶xM

k /𝐶UNC
k

𝐸xM
k /𝐸UNC

k
(4.5)

The comparative charging cost factor 𝐶xM
k,norm of every charging session with all char-

ging schedule methods is visualised in the box plot in Fig. 4.14. From this figure, it can
be concluded that both the ARM and PSM can reduce the charging price decently. Aside
from the ARM in RR1, the PSM and ARM both have a mean 𝐶xM

k,norm value lower than 1 in
all of the other grids. On average, 31.63% of PSM charging sessions have a 𝐶xM

k,norm value
higher than 1 and they are solely caused by unfulfilled charging energy requests. With the
ARM, this value is 30.83%. On the contrary, on average, 83.12% of VDM sessions have a
significantly higher 𝐶xM

k,norm value because of both the high charging cost and unfinished
charging requests. On the other hand, the VDM is excellent from a grid congestion per-
spective as seen in the previous section. The 𝐶xM

k,norm difference among PSM1, PSM2 and
PSM3 is negligible. PSM2 has the lowest minimum 𝐶xM

k,norm value, as it has prolonged half
and minimum charging limit time windows, where many EVs are charged more during
the low price window.

RR1 RR2 SUB1 SUB2 UB1 UB2
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50

Co
m

pa
ra

tiv
e

 c
ha

rg
in

g 
co

st
 fa

ct
or

Comparative charging cost factor: Winter_EV80

PSM1 PSM2 PSM3 ARM VDM Mean

Figure 4.14: Comparative charging cost factor of EV 80% scenario in winter.

4.7. Conclusions
Heuristic charging techniques such as the PSM, ARM and VDM were compared with

UNC in terms of the grid performance, charging demand fulfilment and economic benefits.
These trends were quantified for different grid types with an increasing EV penetration for
summer and winter, and the following are the main observations:

• The VDM is the most effective in improving the grid performance peak and median
loading, as well as the node voltage drops relative to UNC, whereas the PSM can
worsen the performance, particularly for suburban grids, where the percentage of
home chargers is high.

• The ARM is most effective in simultaneously improving the grid performance and
meeting the user energy demand. On the contrary, both the PSM and VDM lead to
10–20% unfinished charging sessions, with a total energy deficiency ratio of 4–8%.

• The PSM can reduce the total charging cost by 6–11% relative to UNC and the ARM
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leading to cost savings of 2–4%. On the other hand, the VDM increases the charging
cost by 0–2%.

Table 4.4: Performance comparison.

Benchmark
Index

Grid
Performance

Charging
Cost

Unfinished
Charging Fairness Comm. Forecasting

PSM − ++ − O − −
VDM + + O − −− O
ARM ++ − − −− − O

’O’ Same,’−’ Worse and ’+’ Better

From the study results, we can conclude that the PSM can be a preferred strategy for
achieving a charging cost reduction where the grid performance is not a bottleneck for the
given EV penetration. We also have confidence in the PSM concerning grid congestion alle-
viation if (1) the price signal can reflect the base load fluctuating and (2) the price segment
division is updated so that the beginning moment of full power charging for overnight
EVs can be shifted to 2–6 a.m. At the same time, the VDM should be preferred if user in-
formation on the parking time and energy demand is not consistently available. The ARM
provides the best balance in the trade-offs associatedwith themitigation of grid congestion
and price reduction, as well as charging completion. However, user information related to
the EV parking time and energy demand is necessary. The qualitative benefits and opera-
tional requirements of the explored charging schemes are summarised in Table 4.4.

For future work, several points can be covered further. Sensitivity analyses on more
PSM price signal sources, as well as price segment division methods, can be beneficial.
It could be appealing to investigate how the voltage droop response range impacts the
VDM performance. In addition, it is worth inspecting how the node voltage fluctuates
in between voltage droop command signal intervals. Last but not the least, the EV bat-
tery lifetime is a critical aspect that must be investigated in future work to compare the
performance of these different charging methods.
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5
Centralised EV charge

management schemes aiming
grid congestion assuagement

To tackle the potential grid overloading issue induced by excessive EV charging demand, a
Low Voltage (LV) grid congestion management algorithm with three centralised EV charging
management schemes is proposed in this study. The developed algorithm integrates grid in-
formation and – through linear programming (LP) or iterative calculations – aims at tackling
the foreseen congestion issues by operating on the EV charging processes. While the first char-
ging scheme aims at managing the congestion by only affecting the elements with the greatest
influence on the congestion, the other two aim at maximising the social welfare and the over-
all energy transfer to the EVs, respectively. The simulated results are compared in terms of
performance criteria such as grid impact, user satisfaction and fulfilment of charging energy
demand. Overall, this study shows that the first scheme brings the best results from a grid
perspective. On the other hand, the last scheme leads to competitive results from a grid point
of view and the best overall results from a user perspective.

5.1. Introduction
The global constant growth in the number of EVs has led to the necessity of finding solu-

tions to the technical issues that are expected to arise. One of these issues is the formation
of overloads in the electrical grid due to the simultaneous charge of many EVs [103, 134].
To study this phenomenon and to alleviate grid congestion problems, a centralised EV
charging control algorithm is proposed in this study. Within this algorithm, one out of
three different developed Charging Management Schemes (CMS) – the logic according to
which the charging stations where the charging power is adjusted are selected – can be
integrated. These three schemes have been developed focusing on three different object-
ives. The first one aims at relieving the congestion by reducing the least total amount of
power, the second one aims at distributing the power fairly among all charging stations,
while the third option aims at optimising the success of the EV charging processes. These
three CMSs are carried out via LP or iterative calculations. The algorithm is tested on
two sub-urban LV distribution grid models with real grid data. In each grid, four different
scenarios are simulated. In the first scenario, no CMS is applied. This is a reference case to

⁰This chapter is based on paper: D. Dreucci, Y. Yu, G. RamChandraMouli, A. Shekhar, and P. Bauer,“Centralised
distribution grid congestion management through ev charging control considering fairness and priority.”,
Submitted.
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assess the effects of uncontrolled EV charging. In the remaining scenarios, the algorithm
is implemented by integrating one of the CMSs for each scenario. The results of these sim-
ulations are studied and compared in terms of performance criteria such as grid impact,
user satisfaction and fulfilment of charging energy demand.

5.1.1. Literature review
In literature, the methods to tackle grid congestion are generally categorised into two

major groups: Distribution Network Reconfiguration (DNR) [135, 136] and Demand Re-
sponse (DR) programs. Among DR, Direct Load Control (DLC) [137, 138], economic mech-
anisms [139], or the combination of both [140] are commonly applied. The economic mech-
anism based DR has a time scale from monthly, day-ahead to intra-day, while DLC aims at
a very short term in the unit of minutes [141]. Moreover, DLC is more direct and accurate
than the economic mechanism [142], making DLC a better candidate for the last-minute
congestion management. To achieve the ideal congestion mitigation outcome, grid fea-
tures often need to be incorporated in both the economic and the DLC approaches. For
this reason, Distribution System Operators (DSO) usually play a key role in the process of
grid congestion alleviation.

The economic mechanism-based grid congestion methods are always implemented first
as they can plan ahead to prevent congestion and they have fewer hardware as well as
regulation restraints in comparison with DLC. For precise, efficient, and thorough grid
congestion alleviation, DSOs are usually heavily involved as the grid information is often
requested.

In paper [143], a grid congestion mitigation method with a transactive control approach
is proposed. In the proposed method, EV aggregators first submit the optimal charging
schedule aiming at minimising the charging cost while ensuring the charging requests
being fulfilled. On the other hand, DSO also uploads its optimise requests focusing on
minimising the system loss while retaining the aggregator’s charging schedule as much as
possible. In the end, a third-party price coordinator was introduced, and it updates the con-
gestion price to the aggregator and the DSO and coordinates both parties’ schedules until
the price converges. The proposed method reduces a maximum of 38.8% energy loss with
EV 100% penetration and improved theminimal voltage by amaximum of 14% compared to
the uncontrolled method. However, the more function it contains (e.g. considering trans-
former overloading and voltage drop), the more iteration thus the longer computational
time is requested till the price value reaches equilibrium.
Economical based grid congestion management mechanism

To avoid excessively burdening the aggregator’s computational power, new solutions
to include grid congestion information in the electricity market mechanism are becoming
more popular among economic-based DR mechanisms. Among these are Dynamic Tariff
(DT) [140, 144], Dynamic Power Tariff (DPT) [139, 140] and Distribution Locational Mar-
ginal Price (DLMP) [145, 146]. DLMP is the marginal cost of energy, grid congestion and
losses, DT is the energy tariff which synchronises with the load demand magnitude, and
DPT is the power tariff with which the peak demand power of the customer is charged.

DLMP can be obtained at each node by solving a DC optimal power flow (DCOPF) prob-
lem in which the Power Transfer Distribution Factor (PTDF) concept is often used to es-
tablish the relation between the node injection power and the line power flow [145, 146].
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With the help of PDTF, the location and scale of grid congestion can be easily obtained.
The DCOPF solution can also be used to calculate the DT. In [140] the DT is calculated
by the DSO for market-based congestion management. Through DT the energy tariff is
synchronised with the load demand magnitude and so does the grid congestion trend re-
flected in the energy tariff. The congestion mitigation method proposed in [139] uses DPT,
which is obtained by iterative transactions between the DSO and the aggregator, as a con-
gestion signal. The OPF is executed at DSO side to check the network limitations in which
the PTDF is calculated. In order to calculate the aforementioned congestion-coupled elec-
tricity price/tariff, the DSO needs to predict the spot market price as well as possess the
whole knowledge of the load demand of the coming period [140, 144, 146].

Nevertheless, the results obtained in [139, 140, 144, 146] suggest that none of the conges-
tion adapted market methods solely can guarantee a stable congestion alleviation outcome,
due to the stochasticity from the spot market price, the load demand and the behaviour of
aggregators. To stabilise and improve the performance, the market-based method is usu-
ally combined with a different market mechanism [140], a grid reconfiguration [144, 145]
or another load response method to procure extra flexibility through the DSO interven-
tion [144, 147]. For example, authors of [147] proposed a grid power flow denotation mat-
rix in which binary values are used to mark whether current flow is detected in certain
branches due to power injection happening at a specific bus. This matrix is then used to
identify the congested regions in the grid, and then a decentralised sub-market (DSM) can
be formed with responsible parties at the designated area. When occasional unsolved con-
gestion appears, the DSO steps in to facilitate extra support via an optimisation program
aims at relieve the grid capacity as much as possible while doing the power re-location as
little and as locally as possible. A similar situation is found in [144] that a congestion mit-
igation method combining DT, DNR, as well as re-profiling, is proposed. The re-profiling
part is the backup solution when the market method is not sufficient, and the DSO is in
need of request extra capacity from the flexibility providers.
DLC-based congestion management

DLC methods could be a potential solution to the congestion issues. In [148] a decent-
ralised Additive Increase and Multiplicative Decrease (AIMD) based EV charging method
is proposed, in which EV charging currents are controlled locally by referring to the local
voltage fluctuations. The results showed that the AIMD-based method maintained the grid
operation within the allowed constraints. The case studies show that, even though none
of the household’s voltage value is lower than the critical threshold (0.9 p.u.) at 100% EV
penetration level, there is still roughly 2 hours of power overload out of 8 hours of total
simulation time. On the other hand, the results of the centralised baseline AIMD case show
that none of the grid constraints was violated while the grid capacity usage was maximised
for EV charging. A similar observation is concluded in [149], where the adaptive AIMD
(A-AIMD) algorithm developed has excellent performance regarding transformer loading,
charging fairness and user satisfaction. The centralised convex optimisation – whose ob-
jective is to maximise the EV charging power within the grid limits – outperforms the
A-AIMD algorithm slightly, but it is computationally heavy due to the grid power flow in
its optimisation procedure. Thereupon, a centralised grid congestion mitigation approach
– where a central entity (e.g. DSO) oversees the grid operational condition and another
entity like an EV aggregator executes the DLC command – is more favourable regarding
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effectiveness and computational power saving.
The multi-objective congestion management algorithm developed in [150] focuses on

both cost saving and valley-filling. The DSO is in charge of relieving any grid congestion
through an interactive approach with the aggregators. During the interactive operation,
the DSO uses PTDF to update the grid congestion level dependent Pareto weight, then
the aggregator uses this weight to solve the multi-objective function. This interactive pro-
cess operates continuously until no more congestion is detected. The proposed algorithm
showed a balance between the charging cost reduction and the peak load decrease. On the
contrary, the Distributed Dynamic Tariff (DDT) method with which the algorithm was
compared, led to grid congestion due to low price driven vast synchronised charging.

The algorithm proposed in [151] uses sparse grid measurement to extract grid inform-
ation and estimate the grid congestion status. The DSO not only owns and operates
the sparse measurement equipment, but also in charge with giving grid loading limits.
Whenever congestion is detected, a signal is sent out from the DSO suggesting a pause
or start of the charging process. The proposed method has a congestion detection accur-
acy between 73.07%-100%. The results also signify that the EV charging time could be
prolonged up to 1.8 times in exchange for a congestion-free grid operation condition.

PTDF is a very efficient and effective way to identify the most congested branch as well
as to recognise the power injection through which buses has the highest impact on the
congestion [152, 153]. Besides, as stated in previous paragraphs, the DLC is a good can-
didate for accurate real-time grid congestion management. Therefore the PTDF involved
DLC congestion management algorithm is an appealing option to oversees and alters the
grid operation.
EV charging scheduling methods

EV user satisfaction is another key objective to consider while alleviating grid con-
gestion through charging management. How to ensure the safety grid operation while
balancing the capacity allocation efficiency, charging demand fulfilment and fairness is
prominently challenging. EV expected connecting time and their requested departure SOC
are usually used to calculate the charging urgency and by referring to this urgency, the
charging order and power magnitude are sorted and allocated [154, 155]. However, only
considering charging urgency could cause discrimination, especially for long-parking EVs
with large battery capacity. How different priority criteria vary the fairness in EV smart
charging are extensively discussed in [58, 64, 156]. Study [58] developed a fluid model
to approximate the user behaviour under four charge queuing policies: Earliest Deadline
First, Least Laxity First, Least Laxity Ratio (LLR) and Processor Sharing. The indices of
attended versus requested service and the fairness show that the LLR method has the best
performance. Paper [64] compares the power and time-coordinated charging methods in
combination with three priority factors: SOC, slack time, and allotted time/energy. The
charging accomplish results such as the probability of EVs not being charged, indicate that
the combination of multiple priority criteria would achieve higher flexibility as well as fair-
ness with different EV types. The fairness of EV smart charging is extended to the vehicle
to grid (V2G) in research [156], where three EV management criteria are considered: the
SOC level, the contribution to the V2G and the local load level. It is concluded that the
contribution-based charging priority method can flatten the peak load while also shorten-
ing the EV charging time. The fairness of six EV charging queuing policies is compared

5

78



5.2. METHODOLOGY

with the quality of service/experience index in paper [157]. Besides, the performance of
all six policies regarding node voltage drop and grid losses are compared.

Although the assessment of charging sequence policies are covered in multiple past
works, there is not yet a study about charging capacity allocation-consolidated advanced
grid congestion management being conducted coherently. The dominant motivation to
deploy EV charging scheduling is limited resources like constrained grid capacity after all.
It is hence our profound interest to explore how different priority criteria impact the effic-
acy of grid mitigation performance. Nevertheless, this chapter covers the research gap of
developing the grid management algorithm with EV charging scheduling considering pri-
ority and fairness, thorough analysis w.r.b. to grid congestion mitigation, user satisfaction,
load shifting over-compensation and so forth.

Following the above review and discussion, DLC appears to be a good candidate for ac-
curate real-time grid congestion management, while PTDF is a great tool for identifying
overloaded branches and their level of congestion. Instead of using PTDF to calculate the
Available Transfer Capability (ATC) or to select the suitable branch for DR as most studies
do, this chapter uses PTDF to obtain information regarding how to adjust the excessive
EV charging demand to restore the overloaded elements back to their normal operational
range. Besides, the above-reviewed EV-charging management research often concentrates
on one main objective, which is to minimise EV user dissatisfaction or to improve the use
of the grid. Conversely, this chapter developed a PTDF-involved DLC congestion manage-
ment algorithm combining with three EV CMSs focusing on efficacy, fairness and priority,
respectively. Therefore, the main contributions of this chapter can be summarised as fol-
lows:

• Developed a high-efficacy, centralised grid congestion recognition and mitigation
algorithm with DLC mechanism involving PTDF

• The congestion management algorithm is combined with three proposed EV CMSs
where the congestion alleviation efficiency, EV user fairness and EV charging prior-
ity are selected as the primary target, respectively. Their performances have been
compared

• Case studies were accomplished through grid simulation with two real grid models
as well as real measurement-based EV charging data

• Simulation results were analysed from both DSO and user perspectives, including:
branch overloading, voltage dip, EV charging demand satisfaction

• The over-compensation of grid congestion mitigation phenomenon was also dis-
cussed

The chapter is organised as follows: methodology in Section 5.2; grid modelling and
input data explanation, as well as scenario description are in Section 5.3; simulation results
and analyses are presented in Section 5.4; while conclusion and recommendations are in
Section 5.5.

5.2. Methodology
The proposed centralised algorithm shown in Fig. 5.1 adjusts the charging power at

Electric Vehicle Supply Equipment (EVSE) to mitigate the grid congestion considering
three possible schemes that are described in subsequent subsections: (i) PTDF-based Char-
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ging management Scheme (PCS) (ii) Egalitarian Charging management Scheme (ECS) (iii)
Priority-based Charging management Scheme (PrCS).
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In the proposed algorithm architecture, the
DSO detects whether grid congestions are
bound to happen as a result of EV charging
requests and sends the signal to the aggregat-
ors. The aggregators and, in turn, the EV users
would be compensated for their charging ad-
justments through agreements such as flexibil-
ity contracts. The PTDF matrix is built by ac-
tivating all EVSEs one at a time and registering
the effects on all the other elements of the grid
to indicate the variation in real power that oc-
curs on all lines [158].

This is necessary to determine all EVSEs
whose charging processes have an influence
on the overloaded grid elements. It should be
noted that only the nodes where an EVSE is
connected have been included in the construc-
tion of the PTDF matrix. A fixed PTDF is con-
sidered consistent throughout the simulation,
based on the assumption that the grid condi-
tion is stable and the node voltages can bemain-
tained within expected boundaries [159]. Once
the grid-specific PTDF matrix is built, the char-
ging control algorithm is ready to be launched.

5.2.1. Phase 1:
Grid congestion detection

The algorithm evaluates whether the current
grid status, in conjunction with the EV char-
ging requests, leads to congestion issues at a
fixed time step in the scale of minutes. In a real
operational environment, this could be done
by checking the smart meter readings, commu-
nicating with the EV aggregators in combina-
tion with the background system simulation or
distribution system estimation run by the DSO
[160].

All EVs’ default charging requests at any given moment are set as uncontrolled, which
is to charge immediately after plug-in at rated power. In this study, congestion detection
is realised through load flow analyses.
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5.2.2. Phase 2: Congestion diagnosis and target EVSE detection
Themain characteristics of the overloading issue, corresponding to the problematic grid

components such as the charging stations involved along with their location and the mag-
nitude of the issue, are identified. This phase consists of two main mechanisms that are
discussed in the following subsections.
Calculation of excess power through congested elements

ForM overloaded grid elements – 𝑒1, 𝑒2, ..., 𝑒m, ..., 𝑒M – the excess power 𝑃em of each over-
loaded element is estimated. The calculations shown here refer to the case of a congested
line 𝑒m, but the same logic applies in case the element is a transformer. The line loading
percentage 𝜆 is given by Eq. (5.1).

𝜆 = |𝐼line|
𝐼r

⋅ 100 (5.1)

where, 𝐼line is the current registered at the line, while 𝐼𝑟 is the rated current of the line. The
apparent phase power 𝑆𝑝 – at any phase p – corresponding to the active (𝑃p) and reactive
(𝑄p) powers is given by Eq. (5.2).

𝑆p = 𝑈p ⋅ 𝐼p∗ = 𝑃p + 𝑗𝑄p (5.2)

Where, the phase voltage 𝑈𝑝 and the current 𝐼𝑝 are written in terms of their complex
representation in Eq. (5.3) and Eq. (5.4), respectively.

𝑈p = 𝑈base(𝑢p,real + 𝑗𝑢p,imm) (5.3)

𝐼p∗ = 𝐼base(𝑖p,real − 𝑗𝑖p,imm) = 𝐼p(𝑐𝑜𝑠𝜙𝑖 − 𝑗𝑠𝑖𝑛𝜙𝑖) (5.4)

Here 𝑈base (in V) and 𝐼base (in A) are the base voltage and current, respectively, while the
term 𝐼p (in A) refers to the magnitude of the current and the term 𝜙𝑖 to the current angle.
The terms 𝑢𝑝 and 𝑖𝑝 are expressed in p.u. . Combining Eq. (5.3) and (5.4) with Eq. (5.2) and
considering only the real part, 𝑃p can be written as shown in Eq. (5.5).

𝑃𝑝 = 𝑈𝑏𝑎𝑠𝑒(𝑢𝑝,𝑟𝑒𝑎𝑙𝑐𝑜𝑠𝜙𝑖 + 𝑢𝑝,𝑖𝑚𝑚𝑠𝑖𝑛𝜙𝑖)𝐼𝑝 = 𝐾𝑙𝑜𝑎𝑑 𝐼𝑝 (5.5)

𝑃p can be rewritten in terms of 𝜆 in Eq. (5.6).

𝑃𝑝 = 𝜆
100𝐾𝑙𝑜𝑎𝑑 𝐼𝑟 (5.6)

For the maximum permitted power 𝑃 ′p, the difference Δ𝑃 = 𝑃p − 𝑃 ′p should be reduced to
resolve the overloading issue in phase p. Considering balanced operation, the three phase
excess power is calculated as 𝑃e𝑚 = 3 ⋅ Δ𝑃 for each overloaded element 𝑒m.
Detection of downstream charging stations

The second part of the process consists in collecting data regarding N EVSEs potentially
available to have their charging power managed (labelled as 𝑠1, 𝑠2, ..., 𝑠n, ..., 𝑠N) and their
influence on the congested elements of the network in a matrix 𝐴̃M,N of size 𝑀 × 𝑁 . The
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indices 𝑎m,n of matrix 𝐴̃M,N are directly derived from the PTDF matrix, and they indicate
the percentage of power asked by charger 𝑠n that flows through element 𝑒m. The index 𝑎𝑚,𝑛
in the matrix 𝐴̃𝑀,𝑁 corresponds to the absolute value of the element at the intersection
between charger 𝑠𝑛 and the element 𝑒𝑚 in the PTDF matrix. This case applies only if all
the following conditions apply.

1. The flow of power caused by the EV is in the same power direction as the overloads.
2. Charging processes with an impact greater than 5% on the congested element will

be requested to have their charging power adjusted.
3. There is an EV connected currently asking for power at charging station 𝑠𝑛 .

If any of the three options do not apply, the index 𝑎𝑚,𝑛 will be set to zero.
5.2.3. Phase 3: EV charging scheme execution

The EV charging management scheme is activated and it determines, from a uncon-
trolled charging start point, which charging process to adjust at which EVSE to relieve
the overloaded elements. Only one out of the three CMSs (PCS, ECS, PrCS) is used in this
phase.
PTDF-based Charging management Scheme (PCS)

The PCS optimally distributes the power to be reduced from relevant charging processes
considering a grid point of view only. In fact, the only parameter included in the analysis
to discern among the charging points is their influence on the overloaded elements. This
information is contained in matrix 𝐴̃𝑀,𝑁 . Therefore, this scheme aims at reducing the
minimum total amount of power possible, by operating on the chargers that contribute
the most to the overload. This is made by means of a LP algorithm with an objective to
maximise the power provided to the charging stations, as in Eq. (5.7).

𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒
𝑁
∑
𝑛=0

𝑃𝑛𝑒𝑤𝑠𝑛 (5.7)

The variables of the optimisation analysis are 𝑃𝑛𝑒𝑤𝑠1 , 𝑃𝑛𝑒𝑤𝑠2 , ..., 𝑃𝑛𝑒𝑤𝑠𝑁 , that are the charging
power at EVSEs 𝑠1, 𝑠2, ..., 𝑠𝑁 , respectively, after the optimisation algorithm is applied. For
these variables the following conditions apply:

𝑃𝑛𝑒𝑤𝑠1 , 𝑃𝑛𝑒𝑤𝑠2 , ..., 𝑃𝑛𝑒𝑤𝑠𝑁 ≥ 0 (5.8)

𝑃𝑛𝑒𝑤𝑠𝑛 ≤ 𝑃𝑜𝑟𝑖𝑠𝑛 (5.9)

Where 𝑃𝑜𝑟𝑖𝑠𝑛 represents the original power request at EVSE 𝑠𝑛 before the charging scheme
is executed.

The constraints are built so that all congestion issues are solved once the optimisa-
tion analysis is carried out. These constraints can be expressed in matrix notation as in
Eq. (5.10). In this, the vector ̄𝑝𝑠 (Eq. (5.11)) contains the difference – at all EVSEs – between
the original charging value and the new value after the optimisation (i.e. the optimisation
variables), namely the power to be reduced at each EV. On the other side of the inequality,
̄𝑝𝑒 (Eq. (5.11)) is a vector indicating the power that has to be reduced from the total power

flowing through each congested element.
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𝐴̃𝑀,𝑁 ⋅ ̄𝑝𝑠 ≥ ̄𝑝𝑒 (5.10)

where

̄𝑝𝑠 =
⎧⎪
⎨⎪⎩

𝑃𝑜𝑟𝑖𝑠1 − 𝑃𝑛𝑒𝑤𝑠1𝑃𝑜𝑟𝑖𝑠2 − 𝑃𝑛𝑒𝑤𝑠2⋮
𝑃𝑜𝑟𝑖𝑠𝑁 − 𝑃𝑛𝑒𝑤𝑠𝑁

⎫⎪
⎬⎪⎭

̄𝑝𝑒 =
⎧⎪
⎨⎪⎩

𝑃𝑒1𝑃𝑒2⋮
𝑃𝑒𝑀

⎫⎪
⎬⎪⎭

(5.11)

Egalitarian Charging management Scheme (ECS)
The ECS guarantees a fair absolute division of the burden among the chargers, disreg-

arding any other aspect related with their influence on the congested elements or their
need of power. The goal of the management scheme is to maximise the fairness of the
reserve activation process, with a mechanism comparable to the one illustrated in [161].
As proved in that study, this charging management scheme also maximises social welfare
and the Nash product of all EV users utilities.

In this case, the only variable is indicated as x (𝑥 ≥ 0) and it can be described as the
maximum charging power allowed at all EVSEs involved in the optimisation process. The
objective is to maximise the variable x. The constraints are the same indicated in Eq. (5.10),
but the vector ̄𝑝𝑠 of the variables is described in Eq. (5.12):

̄𝑝𝑠 =
⎧⎪
⎨⎪⎩

𝑃𝑜𝑟𝑖𝑠0 − 𝑚𝑖𝑛{𝑃𝑜𝑟𝑖𝑠0 , 𝑥}
𝑃𝑜𝑟𝑖𝑠1 − 𝑚𝑖𝑛{𝑃𝑜𝑟𝑖𝑠1 , 𝑥}

⋮
𝑃𝑜𝑟𝑖𝑠𝑁 − 𝑚𝑖𝑛{𝑃𝑜𝑟𝑖𝑠𝑁 , 𝑥}

⎫⎪
⎬⎪⎭

(5.12)

It should be noted that this optimisation analysis could be executed multiple times dur-
ing the same time-step. This is done in order to avoid unnecessary power adjustments. In
fact, if at the first iteration all the variables 𝑃𝑛𝑒𝑤𝑠𝑛 were set to the value x, all the overloading
problems would be solved, but more power could have been reduced at the EVSEs than
what was strictly necessary to solve the congestion.

To better explain this, it is important to consider that each constraint of the optimisa-
tion analysis represents a problem registered in the grid, namely an overloaded element.
However, these problems are strongly interconnected. The same EV charging process(es)
could be the common cause of multiple overloaded elements. Therefore, once the cause
of an overloaded element has been addressed (through the reduction of power at one or
multiple charging processes), other overloading issues could have been solved without the
need of additional charging power reduction.

In practice, this is done by means of the concept of Slack value 𝜎 . This represents the
difference between the right and the left side of an inequality constraint, when the variable
assumes a determined value. In other words, it is the value that returns an equality when
added to the inequality constraint.

Once the optimisation analysis is solved, the introduction of the Slack value 𝜎 allows to
rewrite Eq. (5.10) in the form of an equality, as 𝐴̃𝑀,𝑁 ⋅ ̄𝑝𝑠 = ̄𝑝𝑒 + ̄𝜎𝑒 . In combination with
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Eq. (5.12), these equalities can be written as in Eq. (5.13). Each line of this set of equations
is indicated as 𝐶𝑒 .

𝑎1,1 ⋅ (𝑃𝑜𝑟𝑖𝑠1 − 𝑚𝑖𝑛{𝑃𝑜𝑟𝑖𝑠1 , 𝑥}) + ...
+ 𝑎1,𝑁 ⋅ (𝑃𝑜𝑟𝑖𝑠𝑁 − 𝑚𝑖𝑛{𝑃𝑜𝑟𝑖𝑠𝑁 , 𝑥}) = 𝑃𝑒1 + 𝜎𝑒1

𝑎2,1 ⋅ (𝑃𝑜𝑟𝑖𝑠1 − 𝑚𝑖𝑛{𝑃𝑜𝑟𝑖𝑠1 , 𝑥}) + ...
+ 𝑎2,𝑁 ⋅ (𝑃𝑜𝑟𝑖𝑠𝑁 − 𝑚𝑖𝑛{𝑃𝑜𝑟𝑖𝑠𝑁 , 𝑥}) = 𝑃𝑒2 + 𝜎𝑒2

⋮
𝑎𝑀,1 ⋅ (𝑃𝑜𝑟𝑖𝑠1 − 𝑚𝑖𝑛{𝑃𝑜𝑟𝑖𝑠1 , 𝑥}) + ...

+ 𝑎𝑀,𝑁 ⋅ (𝑃𝑜𝑟𝑖𝑠𝑁 − 𝑚𝑖𝑛{𝑃𝑜𝑟𝑖𝑠𝑁 , 𝑥}) = 𝑃𝑒𝑀 + 𝜎𝑒𝑀

(5.13)

At each iteration, after the optimisation analysis is solved, the binding constraint 𝐶𝑏 , i.e.
the one with Slack value equal to zero, is taken. The charging power of all EVSEs contained
in this constraint is set to 𝑚𝑖𝑛{𝑃𝑜𝑟𝑖𝑠𝑛 , 𝑥}. This means that the overloading associated with
constraint 𝐶𝑏 is solved. Afterwards, it is checked whether also the other overloads, namely
the remaining constraints, are solved. If so, the algorithm stops. Otherwise, it proceeds
with the next iteration, where the previously binding constraint 𝐶𝑏 is not considered any-
more. The Pseudocode of the ECS scheme is listed in Algo. 1.

Algorithm 1 Egalitarian Charging management Scheme (ECS)
1: done = False
2: while not done:
3: run optimisation and get x
4: if all Slack values are different than zero:
5: done = True
6: else:
7: get constraint 𝐶𝑏 with Slack value equal to zero
8: set power at all chargers s present in 𝐶𝑏 at 𝑚𝑖𝑛{𝑃𝑜𝑟𝑖𝑠𝑛 , 𝑥}
9: remove constraint 𝐶𝑏
10: if power is set at all chargers in all constraints
11: done = True

Priority-based Charging management Scheme (PrCS)
One of the key points of this method is the definition of a priority parameter, so to trans-

late the urgency of power request of a charging session into a number. This number can
be compared with the ones of the other charging stations and, when necessary, charging
power at EVSEs will be adjusted accordingly. In particular, a priority factor – similar to one
of the priority parameters described by Kumar et al.[64] – can be defined for the charging
session of the current connecting EV at charger 𝑠𝑛 as

𝑓𝑛 = Δ𝑡𝑚𝑖𝑛,𝑛
Δ𝑡𝑛

(5.14)
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where Δ𝑡𝑛 is calculated as the difference 𝑇𝑑,𝑛 − 𝑡 , with 𝑡 representing the time of calcu-
lation and 𝑇𝑑,𝑛 the expected departure time of the vehicle connected. The term Δ𝑡𝑚𝑖𝑛,𝑛
refers instead to the minimum time necessary to complete the charging process and it is
calculated as

Δ𝑡𝑚𝑖𝑛,𝑛 = 𝑑𝑐ℎ,𝑛
𝑃𝑟 ,𝑛

(5.15)

where 𝑑𝑐ℎ,𝑛 is the remaining charging energy asked by the vehicle and 𝑃𝑟 ,𝑛 is the rated
charging power of the EV.

This priority factor 𝑓𝑛 gives an indication of how urgent is the need of power at the
studied element and the closer it gets to 1, the more urgent it needs power to charge its
EV. In case 𝑓𝑛 > 1, it will not be possible anymore to fully accomplish the original user
charging demand. This parameter is used to decide which EVSE should be managed first
to have their power reduced, in order to cause the least dissatisfaction possible. To do so,
the EVSEs with a low 𝑓𝑛 should have their charging power reduced first and the ones with
a 𝑓𝑛 close to 1 should not be reduced at all.

𝑓𝑑𝑖𝑐𝑡 is defined as the dictionary that associates all EVs involved in the charging man-
agement process with their priority factors organised in increasing order. This can be
obtained once all the output data from Phase 2 is collected. The description of this scheme
can be found in Algo. 2.

Algorithm 2 Priority-based Charging management (PrCS)
1: 𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑠 = list of all overloaded elements
2: for 𝑠𝑛 in 𝑓𝑑𝑖𝑐𝑡 :
3: 𝑠𝑢𝑏_𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑠 = sub-list of elements from overloads where corresponding value
of 𝑠𝑛

in PTDF matrix is > 5%
4: if 𝑠𝑢𝑏_𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑠 not empty:
5: 𝑃𝑛𝑒𝑤𝑠𝑛 = 0
6: create empty dictionary 𝑆𝑂𝐿𝑑𝑖𝑐𝑡
7: for elem in 𝑠𝑢𝑏_𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑠:
8: 𝑆𝑂𝐿𝑑𝑖𝑐𝑡 [𝑒𝑙𝑒𝑚] = True if elem not overloaded anymore, checked via Eq. (5.10)
9: if all elem in 𝑆𝑂𝐿𝑑𝑖𝑐𝑡 are True:
10: maximise 𝑃𝑛𝑒𝑤𝑠𝑛 such that all elem in 𝑆𝑂𝐿𝑑𝑖𝑐𝑡 are still True
11: for elem in 𝑠𝑢𝑏_𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑠:
12: if 𝑆𝑂𝐿𝑑𝑖𝑐𝑡 [𝑒𝑙𝑒𝑚] = True:
13: remove elem from overloads
14: if overloads empty:
15: break

5.3. Modelling of elements and scenarios
5.3.1. Grid features

The congestion management algorithm has been coded in Python and tested via simu-
lations on PowerFactory. The simulations have been run on two different LV grids. These
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are real Dutch sub-urban distribution grids provided by the DSO Enexis. Their main char-
acteristics can be found in Table 5.1.

All charging stations and regular loads included in the models are linked to nodes with
a 3-phase connection. This simplification has been introduced in the model to increase the
convergence ratio of the simulations, which otherwise resulted too complex to reach con-
vergence at many time-steps. This assumption is in line with the intention of the authors
not to include phase unbalance issues in the study, being it a distinct and extensive topic.

Table 5.1: Summary of grids’ characteristics

Grid
No.

households

Energy
demand

[MWh/yr]

PV
installed
[kWp]

Avg.line
length
[m]

Longest
feeder length

[m]

No.
transformer

1 475 1394.1 180 7.3 566.0 1×400 kVA
2 266 800.8 100 8.1 546.6 1×400 kVA

5.3.2. PV and load profiles
The baseload profile used for this study has been modelled on the base of the load char-

acteristics included in the grid models, in combination with the Dutch normalised profiles
[95]. These normalised profiles cover various connection types in different scales includ-
ing household, business, agriculture and industrial usages. The load type as well as their
yearly energy demand are provided in the original grid models.

To model the PV profile a previous study has been used as a base [100]. For both sub-
urban grids used in this study a 15% PV penetration has been implemented, with a peak
rated power of 2.5 kW assumed for each installation [97, 98].
5.3.3. EV data

The EV data concerns in particular two main aspects: the charging behaviour of the
EV users and the composition of the EV fleet, i.e. the electric vehicle models currently in
circulation. Such a list of the most common EV models currently in circulation has been
implemented on the base of the Dutch market data [105].

The EV charging behaviour includes all the key habits that can be registered of a EV
user, such as EV arrival and departure time, charging energy request, and the frequency of
the charging processes. This data is derived from a previous study that analyses the data
of a significant number of charging sessions [104, 109]. Based on the study, EV charging
profiles are identified as home, semi-public and public charging featured sessions. In the
case of a sub-urban grid, the percentage of home profile types represents 50% of the total
sessions. The remaining half is equally divided between public and semi-public profiles.
This is further described in [103]. The EV charging stations are modelled in PowerFactory
as LV loads with a three phase AC connections and a maximum of 32A per phase.

The EV penetration is defined for each grid as the percentage of electric vehicles with
respect to the total amount of vehicles registered. Different EV penetrations can be simu-
lated by increasing the amount of EV charging sessions and, in turn, increasing the number
of charging stations.

The detailed description of the grid models, and how the simulation data were generated
can be found in previous works [103, 134].
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5.3.4. Simulation setups and scenarios
The simulations have been run by means of load flow analyses executed on intervals of

10 minutes. For each load flow the diagram in Fig. 5.1 applies and provides an overview of
the algorithm logic, as explained more in details in Section 5.2.

All the simulations to test the different CMSs have been run on the previously described
models. In particular, eight different scenarios have been simulated, as detailed in Table 5.3.
All the scenarios simulate an entire week in Winter, as the PV generation is lower and the
EV impact on the grid was expected to be more significant.

The percentages of EV penetrations simulated in the two grids have been selected with
the objective to simulate a congested grid condition. To this end, grid 1 presented more
severe loading conditions. In fact, it has been sufficient to increase the EV percentage to
50% in order to observe overloading phenomena up to 160% in the uncontrolled charging
scenarios. On the other hand, for grid 2 it has been necessary to increase the EV penetra-
tion up to 100% in order to register significant activations of the charging schemes. In this
case, though, the maximum loading percentages observed always stayed below 120%.

Table 5.2: Parameters appeared in result analysis

Parameter Meaning

𝜆max
trf [%] Maximum transformer loading per timestep
𝜆max
ln [%] Maximum line loading per timestep
Λmax

trf [%] Peak transformer loading
Λmax

ln [%] Peak line loading
𝐽fail Number of unfinished charging sessions
𝐽tot Total number of EV charging sessions
𝑅fail [%] Percentage of unfinished charging sessions
𝐸𝑜𝑏𝑡 [kWh] Sum of delivered energy of all EV charging sessions
𝐸𝑟𝑒𝑞 [kWh] Sum of requested energy of all EV charging sessions
𝑅chr [%] Ratio of total delivered charging energy
𝐸avg
fail [kWh] Average failed to delivered energy per session

𝐸avg
req [kWh] Average requested charging energy per session

𝑟chr [%] Ratio of average failed to deliver energy per session
𝛿max [%] Index of maximum grid overloading over-compensation

5.4. Simulations Results
In this section the simulation results are presented and analysed from three points of

view: the grid congestion mitigation, the user satisfaction and the overcompensation of
grid overloading. The overview of the overall performance of the three methods are listed
in Table 5.3 while the meaning of results related parameters are summarised in Table. 5.2.
5.4.1. Grid congestion mitigation

The improvements to the grid performance brought by the three CMSs can be observed
forthrightly with two main parameters: the maximum transformer loading (𝜆max

trf ) and the
maximum line loading (𝜆max

ln ) registered at each time-step in the grid. The maximum of
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Table 5.3: Simulation scenarios and main results

CMS Λmax
trf
[%]

Λmax
ln
[%]

𝛿max
[%]

𝑅chr
[%]

𝑅fail
[%]

𝐸avg
fail

[kWh]
𝑟chr
[%]

Grid 1: 50% EV penetration

1 OFF 146.03 160.42 / 100 0 0 0
2 PCS 99.99 99.99 13.79 92.27 10.97 10.68 69.58
3 ECS 100.04 99.93 8.38 94.34 12.65 6.76 44.04
4 PrCS 100.15 99.94 18.84 99.79 4.00 0.44 2.87

Grid 2: 100% EV penetration

5 OFF 118.08 102.06 / 100 0 0 0
6 PCS 99.99 99.88 1.77 99.86 0.34 6.19 40.06
7 ECS 100.00 95.01 1.74 99.93 0.80 1.35 8.74
8 PrCS 100.00 99.56 2.54 99.99 0.11 0.02 0.13
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Figure 5.2: Scenarios 1-4: comparison of max loading percentage at (a) lines and (b) transformer

these values registered during the whole week of simulation are reported in Table 5.3 as
Λmax
trf and Λmax

ln , respectively.
It can be seen from Table 5.3 that all three CMSs managed to keep the loading percent-

ages of both transformer and lines within the desired value of 100% with a maximum
positive deviation of 0.15% in the fourth scenario.

An overview of the results can also be observed in Fig. 5.2, which reports the effects on
the maximum loading percentages registered at lines and at the transformer in grid 1. In
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particular, Fig. 5.2 (b) highlights the presence of a ”valley filling” effect. In fact, the high
loading values registered in Scenario 1 –with peaks higher than 150% – are spread through-
out the whole evening in the other 3 scenarios, with loading percentages constantly below
100%. This can be also observed in Fig. 5.4 (a), where the daily peak of EV power – greater
than 200 KW – is moved to a later moment in the night.

Figure 5.3: Scenarios 1-4: comparison of voltage distribution at the three most distant nodes from
the transformer, with a connection to: NodeA home charging station, B: public charging
station, C: semi-public charging station. NodeD is the node with the lowest average
voltage registered during the simulation of the uncontrolled scenario (Scenario 1)

The distribution of the node voltage of Scenarios 1-4 are presented in the form of box
plot in Fig. 5.3. In this graph four representative nodes are included.

From this graph it is possible to observe how the median value of the voltage decreases
with the implementation of all CMSs. All three schemes kept the voltage less spread out,
i.e. with lower inter-quartile ranges. In particular, the average value of this range for
the four points considered is around 0.029 p.u. for the uncontrolled scenario, 0.026 p.u.
for the ECS and around 0.022 p.u. for both PCS and PrCS. This can be explained as the
integration of the algorithm of Fig. 5.1 – with any of the three CMSs – allows a better use
of the available grid capacity. In contrast, in the uncontrolled scenarios very low voltages
are registered during peak hours – which lead to lower whiskers below 0.9 p.u. – while at
all other moments very stable voltage conditions are present in the network. On the other
hand, no significant effects are registered on the upper whiskers.

As expected, from a voltage point of view, the PCS is the solution that performed the
best of all three charging management schemes. In fact, next to leading to the lowest
inter-quartile range (together with PrCS), the PCS also resulted in the lowest drop in the
median value, with respect to the uncontrolled scenario. The average drop in the median
value registered at the four points considered is approximately 0.0011 p.u. for the PCS,
against the drop of 0.0019 p.u. and 0.0014 p.u. for the ECS and the PrCS, respectively.

The scheme that registered the worst voltage results is the ECS. Next to registering the
highest drop of the median value, it also shows the worst results in terms of lower whisker.
The average lower whisker improvement – of all four points with respect to Scenario 1 –
is 0.0072 p.u. for ECS, against 0.0135 p.u. for PCS and 0.0123 p.u. for PrCS.
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5.4.2. User satisfaction
All three CMSs share the same fundamentalmechanism, which is to reduce the excessive

simultaneous charging request and delay the charging process as much as possible. By
doing so the grid overloading is limited. However, the delayed charging process can also
lead in some cases to a lower departure SOC for some EVs, with respect to the uncontrolled
scenario. In fact, in the uncontrolled charging scenario the EVs get themaximum requested
amount of energy technically obtainable during the parking time, disregarding all grid
congestion issues that might occur.

In this study, the number of ”failed charging process” (𝐽fail) is defined as the absolute
number of charging sessions performed by one of the three CMSs whose departure SOC is
lower than the same session in the uncontrolled charging scenario. The charging energy
received with uncontrolled charging strategy is considered as the ideal requested energy
and is taken as a reference. In the following text, the term ”requested energy” is used.

The percentage of failed charging process (𝑅fail) is used to evaluate the user satisfaction
and is reported for each scenario in Table 5.3. This percentage is calculated as the abso-
lute number of failed charging process (𝐽fail) divided by the total number of EV charging
processes simulated (𝐽tot)

𝑅fail =
𝐽fail
𝐽tot

(5.16)

Another criteria employed for user satisfaction assessment is the total delivered char-
ging energy ratio 𝑅chr. This is calculated as

𝑅chr =
𝐸obt
𝐸req

(5.17)

where 𝐸𝑟𝑒𝑞 refers to the sum of the requested energy of all EV charging processes sim-
ulated, while 𝐸𝑜𝑏𝑡 refers to the sum of the energy that was successfully provided during
all charging processes. Therefore, it can be considered as a general indication of how the
three CMSs performed in the simulated scenarios.

Looking at this last parameter from Scenarios 2 to 4, the best results are obtained, in
order, by: the PrCS (99.79%), the ECS (94.34%) and the PCS (92.27%). The same pattern is
observed when considering Scenarios 6 to 8, with percentages of total energy delivered of
99.99%, 99.93% and 99.86% for the PrCS, ECS and PCS, respectively.

However, when looking more in details into what happens to the single charging pro-
cesses it is possible to observe the following aspect. Although the ECS scenarios (Scenarios
3 and 7) show a higher total EV energy delivered (𝑅chr) than in the PCS case (Scenarios 2
and 6), the former has a 𝑅fail higher than the latter by 1.68% (comparing Scenarios 2 and 3)
and by 0.46% (comparing Scenarios 6 and 7). In other words, the ECS has led to a higher
percentage of failed charging processes with respect to the PCS.

This can be easily explained by looking at the last two columns of the table. The first of
them reports the average failed energy of each scenario. This is calculated as

𝐸avg
fail =

𝐸req − 𝐸obt
𝐽fail

(5.18)
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In the table it can be observed that the average failed energy is significantly higher in
the PCS scenario with respect to the ECS (e.g. 10.68 kWh against 6.76 kWh for Scenarios 2
and 3, respectively). The conclusion is that the ECS leads to a higher number of failed EV
processes – which translates into a higher number of dissatisfied users – but with a lower
dissatisfaction level for each user. This observation does not come unexpected, as the main
purpose of the ECS is to distribute the burden of the charging power reduction as fairly as
possible to the EVs. On the other hand, the PCS only looks at which charging stations allow
to solve the overloading issue reducing the lowest amount of charging power possible.
Therefore, the power adjustment burden is not shared fairly among charging stations and
there is a higher chance that a smaller amount of EVs (with respect to the ECS) will see
their charging process adjusted. The PrCS instead shows overall the best results, with a
charging process failed percentage of 4.00% and an average failed energy of only 0.44 kWh
for Scenario 4. Similar observations can be made for Scenarios 6 to 8.

The last column of Table 5.3 offers a clearer perspective on the relative energy that has
been actually delivered during the failed charging processes. The parameter here reported
is the average percentage of energy that has been failed to be provided to the EV, with
respect to the energy requested (𝑟chr). This is calculated dividing the average failed energy
(𝐸avg

fail ) of each scenario by the average requested energy of all charging processes that failed
to be completed (𝐸avg

req ), as in

𝑟chr =
𝐸avg
fail

𝐸avg
req

(5.19)

The PCS scenarios show the most critical results, where this percentage reaches almost
70% in Scenario 2 and slightly over 40% in Scenario 6.
5.4.3. Overcompensation of grid overloading

The main reason behind the outstanding performance of the PrCS is the fact that the
charging stations with a more urgent need of energy – translated into the value 𝑓𝑛 of
Eq. (5.14) – are never requested to reduce their charging power if not strictly necessary.
On the other hand, the charging stations with lower 𝑓𝑛 value are kept waiting so to give
priority to the more urgent requests.

A direct consequence of this approach is the formation of longer ”waiting lines”, as it
can be observed in Fig. 5.4. The increase in the average daily peak of waiting EVs – defined
as the average of the daily maximum number of EVs simultaneously requesting charging
power, calculated over the simulated week – with respect to Scenario 1 is 64.3%, 77.2% and
127.7% for Scenarios 2, 3 and 4, respectively. The same parameter increases for Scenarios
6, 7 and 8 – with respect to Scenario 5 – by 2.3%, 4.5% and 20.2%, respectively.

When considering the area below the curve of the number of active EVs, the increase
of Scenarios 2, 3 and 4, with respect to Scenario 1 is 68.6%, 77.4% and 143.1%, respectively.
A similar pattern, although less pronounced, is registered for Scenarios 6, 7 and 8, with
respect to Scenario 5, with percentages of 1.7%, 1.9% and 7.5%, respectively.

This increase in number of waiting EVs affects directly the performance of the CMSs.
It can be observed in Fig. 5.2 (b) that the transformer loading value during peak hours of
Scenarios 2, 3 and 4 does not follow exactly the 100% line, but tends instead to create a val-
ley shape. This is due to the fact that 𝐾𝑙𝑜𝑎𝑑 (in Eq. (5.6)) is voltage dependent. The charging
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Figure 5.4: Comparison of (a) registered EV power and (b) number of EVs requesting power to charge
for Scenarios 1-4

power to be reduced is calculated under voltage conditions that improve (increase) once
the congestion issue in the network is actually solved. This improves in turn the loading
condition of lines and transformer. This effect is more relevant when a significant amount
of charging power is adjusted. This is visible in Table 5.3, where the value 𝛿max is reported
in Eq. (5.20).

𝛿max = 𝑚𝑎𝑥{100 − 𝑚𝑎𝑥{𝜆max
trf , 𝜆max

ln }}𝑤𝑒𝑒𝑘 (5.20)

This represents the maximum over-compensation phenomenon registered during the
whole week of each simulation. Table 5.3 shows that the over-compensation phenomena
in the simulations of Grid 2 is significantly lower than in Grid 1.

Similarly, in both grids there is a higher over-compensation presence in the scenarios
where higher waiting lines form. The reduction of this overcompensation phenomenon by
means of a correction factor resulted in inconsistent results depending on the magnitude
and the exact location of the overloading issues. Therefore, no correction factor has been
included in the algorithm. Another way to tackle the phenomenon is to integrate in the
algorithm a correction mechanism that considers the effect on the voltage of the charging
power adjustments. However, this is expected to add great complexity to the algorithm,
that could lead in turn to a longer computational time.

5.5. Conclusion and recommendations
Correctly managing the EV charging processes can be a key element to prevent the oc-

currence of congestion issues in the grid, while still delivering the required energy to the
vehicles. In this study, three charging management schemes have been tested and com-
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pared to maintain the loading conditions of a congested grid within the desired limits. The
activation of all three schemes was successful to solve overloading conditions at both the
transformer and the lines, with a negligible error. Their integration also led to a better
use of the available grid capacity, which affected in turn the voltage distribution in the
network. However, the different objectives of the three management schemes resulted
in different outcomes for what concerns the user satisfaction. When comparing the ECS
with the PCS, the conclusion is that the former leads to higher number of dissatisfied users
with respect to the latter, but with a lower dissatisfaction level for each user. On the other
hand, the PCS is the scheme that resulted in the highest average charging energy that was
failed to be delivered, both in absolute and relative terms. Overall, the PrCS is the scheme
that performed the best, with the lowest percentages of failed charging processes and the
greatest total delivered charging energy ratio. Finally, it was observed a significant growth
in the volume of the EV ”waiting lines” with respect to the uncontrolled scenarios. This
increase was comparable for the PCS and ECS cases, while it was significantly higher for
the PrCS. The direct consequence of the longer waiting lines is an increase in the overcom-
pensation phenomena. Although this aspect did not impede to reach the main objective
of the algorithm – i.e. to keep the loading percentages within the allowed limit – their
presence suggest that the available grid capacity has not been exploited to the fullest. The
reduction of this phenomenon will be the starting base for the future work. Furthermore,
this algorithm evaluates the charging requests of the EVs at each time-step. In future work,
a different mechanism could be implemented where EVs follow the assigned optimal char-
ging profile until a new command is sent to further save computational power. This new
signal could be sent when there is a relevant system status change. Finally, this algorithm
aims at preventing the occurrence of congestion issues before they happen, but the same
schemes could also be applied as a remedial action to solve congestion issues that have
already been registered in the grid. This aspect could also be evaluated in future work.
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6
Hierarchical EV smart charging

algorithm development with
HIL experimental evaluation

The rising demand for electric vehicles (EVs) in the face of limited grid capacity encourages
the development and implementation of smart charging (SC) algorithms. Experimental val-
idation plays a pivotal role in advancing this field. This chapter formulates a hierarchical
mixed integer programming (MIP) EV SC algorithm designed for low voltage (LV) distribu-
tion grid applications. A flexible receding horizon scheme is introduced in response to system
uncertainties. It also considers the practical constraints in protocols such as IEC/ISO 15118
and IEC 61851-1. The proposed algorithm is verified and assessed in a Power Hardware-In-
the-Loop (PHIL) testbed that incorporates models of real LV distribution grids. Furthermore,
the algorithm’s capabilities are examined through eight scenarios, out of which four focus on
the uncertainties of the input data and two address the engagement of extra grid capacity re-
strictions. The results demonstrate that the SC algorithm adequately lowers the EV charging
cost while fulfilling the charging demand, and substantially reduces the peak power as well as
the overloading duration, even when faced with input data uncertainty. The additional grid
restrictions in place are proven to improve peak demand reduction and overloading mitigation
further. Finally, the limitations and potentials of the developed algorithm are scrutinised.

6.1. Introduction
Smart Electric Vehicle (EV) charging has gathered interest due to its potential in mit-

igating grid congestion [149, 162], enhancing renewable energy utilisation [163], and im-
proving the profitability of different parties [164].

A plethora of EV smart charging algorithms have been developed in the past decade.
The comprehensive reviews of these algorithms from the angle of for example, mathemat-
ical model/algorithm, control structures and application scenarios have been addressed in
studies like [38, 165, 166]. The common EV smart charging algorithm can be categorised
into rule-based or heuristic algorithms, conventional optimisation approaches like Linear,
Quadratic, Mixed Integer and Nonlinear programming (LP, QP, MIP, NLP), and the AI-
enabled method. Centralised, decentralised and hierarchical control designs are widely

⁰This chapter is based on paper: Y. Yu, L. De Herdt, A. Shekhar, G. R. C. Mouli, and P. Bauer, Ev smart charging
in distribution grids �experimental evaluation using hardware in the loop setup. IEEE Open Journal of the
Industrial Electronics Society, vol. 5, pp. 13�27, 2024.
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adopted as control structures, while the optimisation objectives are often operational or
economic.

The goals of EV smart charging algorithms designed for distribution grid applications
regularly consist of three pillars: grid operation assurance, energy cost reduction, and the
fulfilment of EV charging requests. Set minimising the energy cost as (part of) the ob-
jective function is very standard in smart charging algorithms development, such as in
studies where MIP method are used [167–170], and in work [162] where a meta-heuristic
method is suggested. With respect to considering grid operational requirements, research-
ers hold various preferences. For example, grid constraint is out of the scope in the study
[169] while some other research embeds grid features like load flow into the algorithm’s
objective functions [167, 171]. In this case, heavy computations or a pre-linearisation
process could be needed. On the other hand, meeting the user charging demand is not
always covered in the existing research. Nevertheless, study [172] adapts the EV char-
ging flexibility in the algorithm and research [167] include EV energy demand in the
constraints. Although EV charging demand is not specifically mentioned in [170], the
fairness in scheduling EV charging is addressed. In regard to control and communication
structure design, centralised and decentralised control schemes are mixed-implemented in
the above-reviewed work. The large-scale smart charging installation in a neighbourhood-
level distribution grid introduced in [173] implies that themost flexible yet practical control
scheme for grid constraint-involved EV smart charging in the Netherlands, given involved
entities, is hierarchical control.

The practical-oriented hierarchical MIP EV Smart Charging algorithm proposed in our
work, namely SC-Alg, aims to minimise the energy cost, maximise the local renewable
energy generation self-consumption and meet the EV charging demand in the form of
weighted combined objectives, while keeping the power exchange within the grid capacity
which is reflected in the constraints.

An essential feature of the empirical EV smart charging algorithm is its capability to
cope with the stochasticity of local renewable energy generation, load consumption, EV
user behaviour, as well as grid status. The common approach for stochasticity in smart
charging algorithm development includes but is not limited to stochastic optimisation
[162] and robust optimisation [169] when at least part of the characteristics of the stochasti-
city can be adapted into the optimisation problem. Alternatively, the receding horizon
method is often picked for its passive stochasticity resolving mechanism, which is to up-
date uncertain parameters and re-optimise regularly [168, 174]. A fixed horizon length is
applied in most cases, yet when a desired optimisation duration mismatches with the hori-
zon length, a flexible horizon window size is superior [175]. The next challenge for the em-
pirical smart charging algorithm is to adapt the implementation requirements. The current
commonly employed AC charging standard IEC 61851 instructs that the minimum non-
zero EV charging current setpoint is sent to the EV via Pulse Width Modulation (PWM)
signals through Control Pilot (CP) pin in the charger is 6 A [45]. Besides, the EV charging
current can only be adjusted with discrete steps, and the step size depends on the manufac-
turing design of the EVSE and the EV [72, 176]. Most of the existing works assume the EV
charging current is continuously adjustable from zero whereas only a few research address
these two constraints. The discrete charging current is emphasized in [177, 178] while the
minimal 6A non-zero setpoint value is not mentioned. Although authors of [72, 176] ac-
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commodate both the minimum 6A limit as well as the discrete setpoint interval in their
algorithms, the discrete setpoint in their research is achieved by rounding up/down to the
nearest integer value after the optimisation.

To tackle the above-mentioned implementational challenges, SC-Alg integrates the cur-
rent setpoint constraints and the passive stochasticity handling mechanism through the
MIP approach with a flexible receding horizon technique.

To test the functionality of the proposed algorithm and its impact on the LV distribution
grid, especially the passive stochasticity handling feature, a real-time virtual representa-
tion of the system is desired. Besides, flexibility in defining test scenarios is necessary to
fulfil this goal. This can be realised by using Power Hardware-In-Loop (PHIL) containing
a Digital Real-Time Simulator (DRTS) which runs the Real-Time Digital Twin (RTDT) of
the target system. This real-time (RT) PHIL facility is especially beneficial for this type of
research because the DRTS is capable of conducting simulations of wide-ranging power
system models under numerous schemes in both transient and steady-state [78, 179, 180].
The RTDT makes the tests on large systems with diversified scenarios more flexible, scal-
able and achievable within a reasonable time span. Furthermore, the RTDT-embedded
HIL is suited for demonstrating and verifying the innovation ideas with three or higher
Technological Readiness Levels [181].

In the realm of EV and grid integration, the HIL facilities are often used to evaluate
the performance of the target hardware and their impact on the grid; and test the system
integrity including the intercommunication. A lab-scale flexible testbed for EV charging
is developed in [182], with which the operation of the Electric Vehicle Supply Equipment
(EVSE) and EV, the implementation of communication protocols are tested. In the study,
a DC charging on/off event with 960V and 95A was successfully conducted. Research
[183] explored the grid resilience during extreme EV fast charging through RT-PHIL grid
simulations. The transient dynamics of the tested grid, including branch current, nodal
voltage and frequency, are evaluated with the RT grid simulation.

EV charging algorithm-incorporated controllers are also commonly tested with HIL sim-
ulations to verify their functionalities. In study [184], an EV charging algorithm equipped
controller for EV onboard bi-directional AC/DC converter is developed and verified with
HIL simulation. The developed controller is integratedwith anAdditive Increase/Multiplicative
Decrease EV charging algorithm for voltage drop mitigation in the distribution grid. The
RT grid simulation indicates a 0.013 p.u. minimal voltage increase with the applied con-
troller, proving the effectiveness of the algorithm. Study [185] tests the RT energy man-
agement controller for EV charging via a PHIL testbed that consists of one grid-connected
micro-grid simulated by DRTS, and two EVs that are emulated by twoHIL units. The linear
convex optimisation equipped in the controller aims to minimise the cost of energy con-
sumption at the workplace, and it is proven to be capable of reducing the weekly power
consumption cost by 14%.

The application of HIL in investigating the innovative EV charging algorithm has be-
comemore popular as it bridges pure computer simulation and actual implementation. The
HIL simulation offers a flexible platform for algorithm/hardware interface testing [186].
Placing the relevant hardware components in the HIL testbed introduces factors that can
potentially alter the algorithm’s performance. These factors include but are not limited to
information flow, the refresh rate of parameter exchange, communication delay, response
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lag and grid status [187, 188]. The authors of [189] proposed an EV adaptive Charging
Characteristics Expectation algorithm with a primary objective of distributing the avail-
able capacity of the local electricity network evenly and efficiently among active EVs. The
algorithm is validated through HIL simulations in which one Nissan leaf and one BMW i3
are connected to two sockets of one 22 kW charger separately. The HIL simulation results
show that an 88-97% network capacity usage rate is achieved. Similarly, a decentralised
demand response based EV charging algorithm for residential community applications is
proposed and inspected with both software simulation and HIL simulation in research
[186]. The results not only prove the efficacy of the algorithm but also signify that the
high resolution contributed by HIL can reveal phenomena that can hardly be observed in
pure software simulations, such as power consumption difference due to hardware losses,
voltage bounce and dip caused by power variation and transient features of the grid [186].

Even while [190] emphasises the importance of the experimental study on the impact
of EVs on the distribution grids, the offered results are predominantly simulations. In our
work, we develop a laboratory test bed to showcase the highlighted aspects in real-time
HIL environment. Paper [191] uses grid voltage regulation control for a 2 kVA laboratory
EV charger to validate effectiveness up-to charging currents of 5A. Ourwork demonstrates
efficacy at much higher currents and voltages that include the practical limitations associ-
ated with 6A standard and includes a smart charging algorithm for many other variables
using the PHIL-RTDS environment.

Nevertheless, for such experimental algorithm validation with different and scalable
distribution grids and the ability of flexible testing conditions at reasonable costs, an RTDT-
based HIL setup is necessary. This chapter utilises such a setup to validate the proposed
SC-Alg experimentally; explore its impact on the LV distribution grid; test the operation
of relevant components and interfaces from both power and communication perspectives;
and scrutinise its limitations and potential with eight scenarios from the perspectives of
inaccurate PV/load prediction, EV informationmismatch and grid limitation incorporation.
The extensive guidance on how to upgrade SC-Alg as well as the testbed is subsequently
encapsulated. The major contributions of this research can be summarised as follows:

• Suggesting a hierarchical MIP EV smart charging algorithm designed for LV distribu-
tion grid applications. A flexible receding horizon scheme is introduced as a passive
mechanism to handle stochasticity within the algorithm.

• Integrating the implementational constraints arising from EVSE-EV communication
protocols into the proposed algorithm.

• Performing a comprehensive assessment utilising an RTDT-based HIL setup encom-
passing eight scenarios. The scenarios explore the algorithm’s performance consid-
ering input information stochasticity, user behaviour uncertainty and the integra-
tion of grid limitations.

• Offering detailed guidance for upgrading the proposed algorithm, drawing from the
results obtained through HIL simulations.

The structure of the chapter is as follows: the architecture of thewhole system, including
the proposed SC algorithm, is outlined in Section 6.2. The PHIL testbed introduction and
its interaction with the digital model and the SC algorithm are explained in Section 6.3.
The detailed description of the simulation setup, including input data and test scenarios,
can be found in Section 6.4. Section 6.5 presents a thorough analysis of the simulation
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results, and finally, the conclusion and recommendations on future SC-Alg improvements
are given in Section 6.6.

6.2. Architecture of system model and algorithm
6.2.1. System architecture

OpenADR

••••••Sub-aggr. 1 Sub-aggr. nSub-aggr. 2

Ctr-Aggr

DSOOSCP

IEC 61851
ISO 15118

OCPP

Algorithm

Figure 6.1: Schematic of the hierarchical algorithm structure

Our algorithm SC-Alg has a hierarchical structure with one centralised and one distri-
bution level, as shown in Fig. 6.1. The Sub-aggregator (Sub-aggr) at the distribution level is
responsible for the behind-the-meter optimisation at the grid node level. The primary goal
of Sub-aggr is to obtain the optimal EV charging plan as well as the energy usage strategy
for the local node by solving the mixed integer programming (MIP) problem. On top of
that, a Central-aggregator (Ctr-aggr) is responsible for communicating the grid condition
with the Distribution System Operator (DSO) and coordinates with the Sub-aggrs to en-
sure the grid capacity limitation is not violated. The Sub-aggr can be placed at a company
campus, a household, or a public charging station connected to a node in the distribution
grid.

The SC-Alg fits multiple control structures in different actual application scenarios. A
possible control and communication structure used in this chapter is illustrated in Fig. 6.1.
The grid status can be monitored by the grid estimations operated by the DSOs [160]. The
obtained available grid capacity is then sent by the Capacity Provider – DSO, to the Flex-
ibility Provider – Ctr-aggr, over the Open Smart Charging Protocol (OSCP) [42]. Then the
Ctr-aggr, which serves as a Virtual Top Node, shares this grid status information with the
Sub-aggr, which acts as a Virtual End Node, through Open Automated Demand Response
(OpenADR) standard [43]. And finally at the distribution level, the optimal EV charging
current, which is the maximum allowed phase current that the EV can draw from the char-
ger namely setpoint, is calculated and sent from the Sub-aggr to the EVSE through the
Open Charge Point Protocol (OCPP) [44]. Note that the OSCP and OpenADR can largely
cover the same scenarios and are interchangeable in many EV smart charging contexts
depending on which party presents as Capacity/Flexibility Provider and Virtual Top/End
Node. Further discussion on the protocol implementation is out of scope for this chapter.

This study uses SC-Alg as an intermediary between the DSO and the EV charger. SC-
Alg can be operated by two independent entities; for example, the Virtual Power Plant
(VPP) aggregator is the Ctr-aggr, while an EV aggregator/Charge Point Operator (CPO) or
a local Energy Management System (EMS) is the Sub-aggr. Alternatively, SC-Alg can be
administrated solely by the CPO/EMS. In some cases, the DSO itself can take the role of a
Ctr-aggr [192, 193].
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6.2.2. Smart charging algorithm description
Objective Function

The primary goal of SC-Alg is to minimise the total node cost 𝐶tot𝑛 . The objective func-
tion Eq. (6.1) has two parts:
1) The compensation cost paid to the EV user from the Sub-aggr if the actual charged en-
ergy is less than the energy target. The energy target is what would be provided to the EV
if an Uncontrolled Charging (UNC) policy was applied (𝐵UNC

𝑛,𝑗,𝑇 𝑑𝑗
);

2) The nodal net cost of buying/selling the electricity from/to the grid.
The target argument to this optimisation problem is the EV charging current setpoint 𝑖e+,Set𝑛,𝑗,𝑡
(in Eq. (6.2)).

Min. 𝐶tot𝑛 =∑𝐽
𝑗=1 (𝐵UNC

𝑛,𝑗,𝑇 𝑑𝑗
− 𝐵Set

𝑛,𝑗,𝑇 𝑑𝑗
)𝐶comp

𝑛,𝑗

+ Δ𝑇 ∑𝑇
𝑡=1 (𝑝g(imp)

𝑛,𝑡 𝐶e(buy)
𝑡 − 𝑝g(exp)𝑛,𝑡 𝐶e(sell)

𝑡 )
(6.1)

The parameters of the objective function and constraints of SC-Alg are listed in Table 6.1
and 6.2 respectively.

Table 6.1: Parameters of smart charging objective function

Parameter Meaning

𝐶 tot𝑛 [€] Total nodal costs at node 𝑛 over the whole time 𝑇
𝐵𝑛,𝑗,𝑇 𝑎𝑗 [kWh] Energy in battery of EV 𝑗 at node 𝑛 upon arrival 𝑇 𝑎𝑗

𝐵Set
𝑛,𝑗,𝑇 𝑑𝑗

[kWh] Energy in battery of EV 𝑗 at node 𝑛 when departure 𝑇 𝑑𝑗 ,
calculate from setpoint

𝐵UNC
𝑛,𝑗,𝑇 𝑑𝑗

[kWh] Energy in battery of EV 𝑗 at node 𝑛 when departure if
uncontrolled charging policy applied

𝐶comp
𝑛,𝑗 [€/kWh] Compensation for not meeting the energy demand

of EV 𝑗 at node 𝑛 by departure
𝑝g(imp)
𝑛,𝑡 [kW] Grid import power of node 𝑛 at time 𝑡
𝑖g(exp)𝑛,𝑡 [kW] Grid export power of node 𝑛 at time 𝑡
𝐶e(buy)
𝑡 [€/kWh] Electricity purchase price at time 𝑡

𝐶e(sell)
𝑡 [€/kWh] Electricity selling price at time 𝑡

Constraints
According to the current commonly employed AC charging standard IEC 61851 [45],

the EV charging current setpoint is sent to the EV via Pulse Width Modulation (PWM)
signals through the Control Pilot (CP) pin in the charger. The minimal non-zero charging
current setpoint is 6 A, and the setpoint value can only be adjusted in discrete intervals.
The charging current setpoint is set to be integer values in SC-Alg and is constrained in
the equation listed below.

(𝑖e+,Set𝑛,𝑗,𝑡 = 0)𝑂𝑅 (𝑖e+,Set𝑛,𝑗,𝑡 ≥ 6) (6.2)

The EV charging power is computed with the phase charging current setpoint, the num-
ber of phases and the node voltage.
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𝑝e+,Set𝑛,𝑗,𝑡 = 𝑖e+,Set𝑛,𝑗,𝑡 × 𝜙EV𝑛,𝑗 × 𝑣𝑛,𝑡 (6.3)

The EV battery energy is calculated by integrating the charging power with time and
multiplying the onboard charger efficiency. With the battery energy and capacity, the EV
SoC is obtained.

𝐵Set𝑛,𝑗,𝑡 = 𝐵𝑛,𝑗,𝑇 𝑎𝑗 + Δ𝑇 ∑𝑡
𝑇 𝑎𝑗 (𝑝

e+,Set
𝑛,𝑗,𝑡 × 𝜂EV𝑛,𝑗) (6.4)

𝑆Set𝑛,𝑗,𝑡 =
𝐵Set𝑛,𝑗,𝑡
𝐵max𝑛,𝑗

(6.5)

The power exchange between the grid and the local node is presented in the equation
below.

𝑝exch𝑛,𝑡 = ∑𝐽
𝑗=1 (𝑝e+,Set𝑛,𝑗,𝑡 /𝜂EVSE𝑛,𝑗,𝑡 ) + 𝑝LL,Fcst𝑛,𝑡 − 𝑝PV,Fcst𝑛,𝑡 (6.6)

Where the import/export power from/into the grid is the positive/negative part of the
node-grid exchange power respectively.

𝑝g(imp)
𝑛,𝑡 = {𝑝exch𝑛,𝑡 |𝑝exch𝑛,𝑡 ≥ 0}
𝑝g(exp)𝑛,𝑡 = −1 ∗ {𝑝exch𝑛,𝑡 |𝑝exch𝑛,𝑡 < 0}

(6.7)

The import/export node current/power 𝑖(𝑝)g(imp)/g(exp)
𝑛,𝑡 is then limited by the current/power

limit 𝑖(𝑝)G+/G-
𝑛,𝑡 . This value could be contracted between the local node and the DSO, or

given by the Ctr-aggr when the central grid congestion management function is operat-
ing.

𝑖(𝑝)g(imp)
𝑛,𝑡 ≤ 𝑖(𝑝)G+

𝑛,𝑡
𝑖(𝑝)g(exp)𝑛,𝑡 ≤ 𝑖(𝑝)G-

𝑛,𝑡
(6.8)

EV charging model
The EV Battery Management System (BMS) can run its own charging strategy within

the setpoint-defined maximum charging current. A study based on more than 10k detailed
charging session data suggests that EVs’ dominant AC charging strategy is the constant-
current-constant-voltage (CC-CV) method [104]. Hence, this chapter assumes the EV BMS
deploys a CC-CV strategy to set the EV’s actual charging current 𝑖e+,Act

𝑛,𝑗 referring to the
setpoint sent through the EVSE. The BMS charging strategies are not incorporated in SC-
Alg, and this model is only used to emulate the EV charging performance. The CC-CV
method is simplified in this chapter in that the BMS sets EV’s charging current at its rated
value 𝐼EV𝑛,𝑗 until the SoC reaches the CC-CV switch point 𝑆CV𝑛,𝑗 . After that, the charging
current decreases linearly versus SoC till the car is fully charged, as exhibited in Eq. (6.9).

𝑝e+,Act
𝑛,𝑗,𝑡 = 𝑖e+,Act

𝑛,𝑗,𝑡 × 𝜙EV𝑛,𝑗 × 𝑣𝑛,𝑡
𝑖e+,Act
𝑛,𝑗,𝑡 ≤ min (𝐼EV𝑛,𝑗 × (1−𝑆Act𝑛,𝑗,𝑡 )

1−𝑆CV𝑛,𝑗
, 𝐼EVSE𝑛,𝑗 ) (6.9)
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Table 6.2: Parameters of constraints

Parameter Meaning

𝑖e+,Set𝑛,𝑗,𝑡 [A] Charging current setpoint giving to EV 𝑗 at time 𝑡 and node 𝑛
𝑝e+,Set
𝑛,𝑗,𝑡 [kW] Charging power calculated from current setpoint of EV 𝑗 at node 𝑛 at time 𝑡
𝐵Set𝑛,𝑗,𝑡 [kWh] Energy in battery calculated from current setpoint of EV 𝑗 at node 𝑛 at time 𝑡
𝑆Set𝑛,𝑗,𝑡 SoC calculated from setpoint of EV 𝑗 at node 𝑛 at time 𝑡
𝑖e+,Act
𝑛,𝑗,𝑡 [A] Actual charging current of EV 𝑗, node 𝑛, time 𝑡
𝑝e+,Act
𝑛,𝑗,𝑡 [kW] Actual charging power of EV 𝑗, node 𝑛, time 𝑡
𝐵Act𝑛,𝑗,𝑡 [kWh] Actual battery energy of EV 𝑗, node 𝑛, time 𝑡
𝑆Act𝑛,𝑗,𝑡 Actual SoC of EV 𝑗, node 𝑛, time 𝑡
𝐵max𝑛,𝑗 [kWh] Usable battery size of EV 𝑗 at node 𝑛
𝑆CV𝑛,𝑗 SoC switch point between CC and CV stage of EV 𝑗 at node 𝑛
𝜙EV𝑛,𝑗 Number of phases EV charge with
𝜂EV𝑛,𝑗 On-board charger efficiency of EV 𝑗 at node 𝑛
𝜂EVSE𝑛,𝑗 Efficiency of charger 𝑗 at node 𝑛
𝐼 EV𝑛,𝑗 [A] Rated current of the EV 𝑗 at node 𝑛
𝐼 EVSE𝑛,𝑗 [A] Rated current of the charger EV 𝑗 plugged in at node 𝑛
𝑝PV,Fcst
𝑛,𝑡 [kW] Forecast PV generation power at node 𝑛 at time 𝑡
𝑝LL,Fcst
𝑛,𝑡 [kW] Forecast local load power at node 𝑛 at time 𝑡
𝐸LL,r𝑛 [kWh/yr] Yearly energy consumption of local load

𝑣𝑛,𝑡 [V] Voltage of node 𝑛 at time 𝑡
𝑖g(imp)
𝑛,𝑡 [A] Grid import current of node 𝑛 at time 𝑡
𝑖g(exp)𝑛,𝑡 [A] Grid export current of node 𝑛 at time 𝑡
𝑖G+𝑛,𝑡 [A] Distribution network capacity for importing current from grid at node 𝑛
𝑖G-𝑛,𝑡 [A] Distribution network capacity for exporting current to grid at node 𝑛

6.2.3. Algorithm execution and the Flexible receding horizon
scheme

SC-Alg algorithm is written in Python, and a Linear Programming, Quadratic Program-
ming and MIP specialised commercial solver Gurobi®is applied to solve the optimisation
problem.

Considering the input data uncertainty, a passive stochasticity response mechanism -
flexible receding horizon technique - is equipped in SC-Alg as introduced in Section 6.1.
This scheme is basically to re-optimise the system regularly with updated information.
The optimisation can be triggered in a fixed time interval or by events like new EV arrival,
grid constraint adjustment and the estimated-real SoC disparity.

SC-Alg uses the flexible receding horizonmethod to set its optimisation horizon, and the
length of the horizon is determined by the last future departure EV. How far to the future
SC-Alg can optimise is limited by the prediction data availability and the computational
power. To avoid an excessive optimisation horizon, long-term parking EVs can be exempt
from the ”future departure EV” list and will not be included until a certain period of time,
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Figure 6.2: Schematic of the algorithm execution and the flexible receding horizon

like 24 hours, before their departures. Upon triggering re-optimisation, the optimisation
horizon is automatically updated, and then the new optimisation results are sent to the
chargers to replace the old setpoints. A schematic of SC-Alg execution and the explana-
tion of the flexible receding horizon is presented in Fig. 6.2. In this figure, each coordinate
represents one charger while each block symbolises one car, with its length indicating
the parking duration. When a new car (Chr1-EV2) arrives at charger 1 and triggers the
re-optimisation at 𝑡𝑖 , the aggregator checks the in-use charger 1, 2 and 4, and compares
the EV parking times of the three connected EVs. The latest departure time of all EVs
(𝑇 𝑑𝑚𝑎𝑥 = max{𝑇 𝑑𝑗 |𝑗 ∈ 𝐽 }) is identified and the optimisation horizon 𝑇 𝐽

𝑖 is determined as
𝑇 𝐽
𝑖 = 𝑇 𝑑𝑚𝑎𝑥 − 𝑡𝑖 . With this flexible receding horizon method, SC-Alg can run continuously

and automatically adapt to the modification of the input parameters or the uncertainties
in them. The Sub-aggr accesses the local PV generation and load demand profile through
smart meters and obtains the dynamic energy price information published in the market
by the central price settlement entity. The EV-related information like the EV type, ar-
rival SoC, and expected departure time is provided by the user upon arrival through, for
example, a smartphone App.

6.3. Hardware-Software configuration
6.3.1. HIL setup

The schematic of the HIL setup used in this chapter and its lab photo are shown in Fig. 6.3
and 6.4 respectively [194]. The whole setup consists of four parts. The solid lines in the
plot depict the power flow while the information flows are illustrated in dotted lines.

The controller in block 1 is the brain of the whole setup; it has one target machine – a
DRTS OPAL-RT® 5700 and one host computer for the user interface. The testing model,
containing a distribution gridwith loads, PVs and EVs, is built withMATLAB®/Simulink®in
the host computer and converted to C code, then uploaded to the simulator through the
OPAL-RT interface software RT-LAB. When the model runs in DRTS, the host computer
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monitors its performance and communicates the input/output data through TCP/IP pro-
tocols. The DRTS manages the physical I/O signals and controls/communicates with the
hardware devices in the power loop part. SC-Alg written in Python script also runs on
the host computer. SC-Alg computes the optimal charging strategy and interacts with
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the model in DRTS. In block 2 sits the grid model inside the DRTS and a grid emulator
comprising three 1.5 kVA rated power California Instruments®AST1501 power amplifiers.
One node of the grid is picked and each phase is emulated by a power amplifier.

Figure 6.4: Photo of the HIL setup in the lab

The next component is the EVSE in block 3, an Alfen®EVE Single Pro-Line AC charger
that can provide power in both single and three-phase with amaximum 32A phase current.
When the smart charging is not initiated, the charger simply provides the power requested
by the EV emulator as long as it is not higher than the maximum allowed phase current.
However, when SC-Alg takes effect, the computed optimal current setpoint is sent to the
EVSE from the DRTS via Modbus TCP/IP. Conversely, the EVSE measures the voltage and
current drawn by the car and communicates them back to the DRTS.

The last part of the testbed, which is placed in block 4, is the EV emulator composed of
one signal tester and one power circulation unit. TheWalther-Werke®EV signal tester can
communicate the EV connection/ready-to-charge status to the EVSE through the Control
Pilot (CP) pin. Even though the EV signal tester has the option to send up to 63A rated
current signal to the EVSE, a maximum of 16A current is allowed to pass through due to its
hardware limitation. The power circulation unit in block 4 processes the power with two
Delta Elektronika®SM15K bidirectional AC/DC power supplies that are connected back-
to-back, forming a conventional regenerative AC load (AC-DC-AC) and then returns this
power to the connection between the power amplifier and the EVSE. The quantity of the
circulating power is controlled by manoeuvring the second power supply’s current while
keeping the DC link voltage constant. Each power supply can process up to 15 kW power
at a maximum of 500V or 90A.

The power circulation feature of the setup allows a much higher charging power with
built-in bi-directionality as compared to the AC power amplifier, which is unidirectional
and only supplies the losses of the system. More technical details about the experimental
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setup can be found in our previous work [194].
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6.3.2. Testbed/Algorithm interface
To ensure a steady data transmission between the SC-Alg in the host computer and

the model in the target machine during real-time simulation, some adaptions as well as
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an extra interface are requested (Fig. 6.5). The Python API in DRTS’s software RT-lab is
employed to allow the variables to be read and written from/to the target machine while
the RT model is operating. A one-minute re-optimisation trigger resolution ensures suf-
ficient timing for parameter exchange and optimisation computation. Besides, frequent
re-optimisation can improve the stochasticity handling ability.

SC-Alg can serve in several nodes in a distribution grid simultaneously over multiple
days. Schematic Fig. 6.5 shows how SC-Alg interacts with the model and how the simula-
tion times are synchronised.

• Once all the variables are initialised, the grid model launches in DRTS, and its sim-
ulation timestamp (𝑡rt) is read by SC-Alg

• whenever the simulation timestamp reaches the multiple of one timestep (𝑡rt = 𝑘 ×
Δ𝑡, 𝑘 ∈ ℤ), the SC-Alg checks if a new round of optimisation needs to be triggered

• If optimisation is requested, the SC-Alg would go through every relevant node and
calculate each node’s best EV charging profiles separately. This whole calculation
process is finished within one timestep

• The SC-Alg waits till the DRTS’s simulation time reaches the next timestep (𝑡rt =
(𝑘 + 1) × Δ𝑡, 𝑘 ∈ ℤ), then sends the calculated optimal charging profile to the target
node in the grid model

• Repeats the whole process until the RT simulation ends

6.4. Assumptions and test scenarios
6.4.1. Grid model and input data

The grid model used in this study is adapted from data of a Dutch rural LV distribution
grid as a representative example [195]. Therefore, only the results pertaining to SC-Alg’
s performance relative to the defined base case are relevant and the conclusion cannot be
inferred to reflect actual congestion issues in actual Dutch grids. This grid has in total 19
nodes, with loads connected at nodes 5, 15 and 19, EV chargers connected at Node 5, 15
and one PV system installed at Node 5, as illustrated in Fig. 6.6. Node 5& 15 are equipped
with one Sub-aggr each for local optimisation while the Ctr-aggr oversees the whole grid
conditions.

PV

400V 10kV

400kVA

EV1
EV2
EV3

Local load

Node 19

Node 5

Local load

EV4

Hardware

Local load

Node 15

Figure 6.6: Schematic of the simulated Dutch rural grid

Each node is assumed to have a 3×50A connection capacity. Further, Node 5& 15 are
two small businesses where employees park and charge their EVs during weekday work-
ing hours. It is also assumed that the grid is three-phase balanced, and all EVs are charged
with three phases. Considering the power limitation of individual testbed components,
the emulated EV’s maximum charging current is set as 16A per phase. This is a reason-
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able assumption as most onboard chargers are rated for 3×16A. In the simulation, each
charger serves a maximum of one EV per day. Among all four simulated EVs, only EV1 is
represented in the PHIL system while the others are virtual. The parameters of two types
of EVs (Tesla Model 3 Standard Range&Model S P100D [196, 197]) are used in the model.
All four EVs share the same arrival SoC of 40% and the expected departure SoC at 100%.

One arbitrary summer working day 9:00 - 17:00 is selected for the PHIL simulation. The
load consumption power profile is derived from Dutch standard load profiles [95] with the
yearly energy consumption value 𝐸LL,r provided in the grid model. The PV profile is gen-
erated based on the Dutch historical solar irradiation data [198]. A 25 kWp PV installation
in Node 5 is assumed.

It is found that dynamic electricity price which encloses grid loading information could
guide the consumer’s behaviour and significantly mitigate grid congestion [140, 144]. The
adoption of a variable energy tariff, combined with an EV SC algorithm is therefore pre-
ferred, in the absence of a mature congestion market incorporating grid loading inform-
ation in the Netherlands [133]. Historical Dutch Day-Ahead market (DAM) price data is
utilised as the benchmark for determining electricity purchasing prices as the DAM price
trend frequently aligns with the electricity consumption patterns during peak and off-peak
periods. A constant value of 𝐶e(sell)

𝑡 = 20 €/MWh electricity selling price, which is always
lower than the selected buying price, is set. Compensation from the Sub-aggr to the EV
user for the inadequate EV charged energy compared to the UNC scheme is set to be 𝐶comp

𝑛,𝑗
= 0.1 €/kWh. This value instead, is always higher than the selected electricity buying price.
Note here that DAM is much lower than the retail electricity price (capped at 0.4 €/kWh
in 2023 [199]) as a wholesale market price, and thus the 𝐶e(sell)

𝑡 and 𝐶comp
𝑛,𝑗 are also low.

However, the absolute value of the electricity price is not the imperative factor of the
algorithm’s performance; it is the ratio between 𝐶e(buy)

𝑡 , 𝐶e(sell)
𝑡 and 𝐶comp

𝑛,𝑗 that matters.
Other costs such as PV installation and maintenance costs are not considered.

The forecast PV and load profiles 𝑝PV,Fcst𝑛,𝑡 , 𝑝LL,Fcst𝑛,𝑡 of Node 5, and the energy price are
presented in Fig. 6.7.
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Figure 6.7: Input PV, load and price profile
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6.4.2. Simulation scenarios
The testbed has subsequently been used to study the effect of uncontrolled and con-

trolled charging on the simulated distribution grid for a total of eight different scenarios.
Apart from two scenarios that serve as a benchmark: the uncontrolled charging (Case 0)
and the proposed SC-Alg running without extra intervention (Case 1), the system was
tested with six other scenarios with different impact factors. These scenarios are categor-
ised into three groups: inaccurate PV/load prediction, EV information mismatch and grid
limitation incorporation. The first two groups focus on testing SC-Alg’s performance with
the impact of stochasticity, while the last group explores the grid congestion mitigation
potential of the SC-Alg. Each scenario only has one parameter changed with respect to
Case 1 to avoid cross-correlation issues. The input parameters for all simulation scenarios
are summarised in Table 6.3.

Table 6.3: Parameters for all simulation scenarios

Parameters Node 5 Node 15

𝑝PV,r [kW] 25 0
𝐸LL,r [kWh] 88779 3556

𝑗 EV1 EV2 EV3 EV4
𝑇 𝑎𝑗 9:00 9:00 9:30 9:00
𝑇 𝑑𝑗 16:30 16:30 17:00 16:30
𝐵max𝑛,𝑗 [kWh] 50 50 100 50
𝐼 EV𝑛,𝑗 3x16 A 3x16 A 3x24 A 3x16 A

Inaccuracy in PV and Load Prediction
Case 2 and 3 evaluate SC-Alg’s outcome when the input PV and load predict profiles are

inaccurate, respectively.
Case 2: Inaccuracy in PV Forecast

To emulate the actual PV generation profile 𝑝PV,Act𝑛,𝑡 , the forecast PV profile 𝑝PV,Fcst𝑛,𝑡 is
multiplied by a random multiplier generated by a normal distribution with its mean 𝜇 = 1.
It is reported that even though the weather forecast technique has developed significantly
nowadays, intra-hour forecast errors of solar irradiance could still be up to 30% [200].
Therefore, the standard deviation 𝜎 of the normal distribution is set to be 0.15. On top
of that, a correction factor 𝐶 is added to ensure the total PV generated energy stays the
same compared to the other cases, as stated in Eq. (6.10).

𝑝PV,Act.𝑡 = 𝑝PV,Fcst𝑡 × 𝑁𝑡 (𝜇, 𝜎2) × 𝐶
Where: 𝐶 = ∫ 𝑝PV,Fcst𝑡 𝑑𝑡

∫(𝑝PV,Fcst𝑡 ×𝑁𝑡(𝜇,𝜎2))𝑑𝑡
(6.10)

Case 3: Inaccuracy in Load Forecast
A similar process is applied to the load profile. The same random multiplier as Case 2

and a correction factor is adapted.
Both predicted and actual PV and load profiles are shown in Fig. 6.7. Note that the SC-

Alg still uses the provided forecast profiles (𝑝PV,Fcst𝑡 , 𝑝LL,Fcst𝑡 ) for the optimisation.
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EV information mismatch

Case 4: Mismatch in EV Charging Current Information
As mentioned in Section 6.2.2, the charging current setpoint is transmitted from EVSE

to EV. However, the onboard BMS decides the actual current to be drawn, ensuring it
remains below the setpoint. Even when the BMS is configured to adhere to the specified
setpoint, the actual current drawn can be up to 10% lower than the provided setpoint
[201]. If the BMS is set to run an internal charging program which only uses the provided
setpoint as the upper limit, the maximum bias between the actual current drawn and the
setpoint per phase can be anywhere between 0-100%. For example, a maximum 53% of
difference between the setpoint and real charging current in ”lowmode” is reported in [80].
This charging control mechanism poses a challenge to smart charging when an unknown
gap between the given setpoint and the actual EV charging current exists. Case 4 is then
designed to test how much the inequivalent EV charging currents can affect the SC-Alg’s
behaviour. In this case, all EVs’ BMS follow the setpoint, but the actual-drawn currents
are always 10% lower.
Case 5: Disparity in EV Battery Capacity Information

Another EV information mismatch which could hinder SC-Alg’s performance is the
disparity in EV battery capacity. Protocol IEC 61851-1 does not communicate the EV SoC
to the EVSE. Regardless, it is assumed that users can provide their EV arrival SoC to the
Sub-aggr through a mobile phone app for the SC-Alg to calculate EV SoC with a non-
guaranteed accuracy, especially when the EV battery is degraded. This potentially deviated
SoC estimation will obstruct SC-Alg’s behaviour. Case 5 is thence proposed to test the 30%
battery capacity fading scenario. For a fair comparison, the actual EV charged energy
needs to be kept the same across all cases. In order to do that, the battery capacity stated
in Table 6.3 is set as the ”actual capacity of aged battery”, and the EV battery capacity that
is read by the SC-Alg is 50

0.7 = 71 kWh for EV1, 2, 4 and 100
0.7 = 143 kWh for EV3 respectively.

Incorporation of grid restriction

When EV charging demands from multiple users appear at the same time, the grid faces
the risk of overloading. In the last two scenarios, extra constraints from the grid side,
namely Grid Restriction Incorporation (GRI), are in place to prevent potential grid conges-
tion.
Case 6: Centralised Grid Capacity Allocation (GCA)

The design idea of GCA is that the Ctr-aggr allocates the grid capacity among multiple
Sub-aggrs based on the nodal sum of the remaining EV charging energy demand. Assume
the tested grid has a total of 50A grid import current capacity for EV charging, and the Ctr-
aggr assigns this capacity among Node 5& 15 based on the energy still needed to fulfil each
node’s EV charging target. However, if one node has too small a remaining energy target
value compared to others, the allocated capacity for this node could be lower than the
minimal EV charging current setpoint 6A. To prevent this, a minimal grid import current
limit is reserved to ensure at least one EV can still charge with the minimum current.
Besides, the grid should always be able to supply the local load demand. The grid capacity
determination equation is listed in Eq. (6.11).
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𝑖G+𝑛,𝑡 = max(6 + 𝑝LL,Fcst𝑛,𝑡
𝑣𝑛,𝑡

, 50 ×
∑𝐽

𝑗=1(𝐵UNC
𝑛,𝑗,𝑇𝑑𝑗

−𝐵Act𝑛,𝑗,𝑡 )

∑𝑁
𝑛=1 ∑

𝐽
𝑗=1(𝐵UNC

𝑛,𝑗,𝑇𝑑𝑗
−𝐵Act𝑛,𝑗,𝑡 )

) (6.11)

Case 7: Decentralised Voltage Droop method (VDM)
The decentralised GRI method - local VDM, is activated in Case 7. The charging current

of each EV is tuned between 6A and 𝐼EV𝑛,𝑗 proportionally to the local node voltage [202],
when the voltage falls between 0.92 and 0.95 p.u.. The illustration of how the EV charging
setpoint is determined is in Fig. 6.8.

Charging
current

0.92 0.95

Node Voltage
[p.u.]

Max.

0

6 A

Figure 6.8: Charging current adjustment as a function of bus voltage – Case 7

6.5. Results and analysis
6.5.1. Base case

The performance of Case 0 and Case 1 regarding grid behaviour impacted by UNC and
SC is reflected in Fig. 6.9, and the EV charging behaviour comparison is presented in
Fig. 6.10.
EV charging demand fulfilment
Overall performance

First of all, it can be observed in Fig. 6.9 (a) that SC-Alg significantly flattened the grid
import power at Node 5 and it shifts the EV charging demand ∑𝐽

1 𝑝Act5,𝑗 from morning to
the afternoon when the PV generation is high and the energy price is cheaper, as shown
in Fig. 6.7. SC-Alg also improves the voltage drop provoked by simultaneous EV charging,
especially in Node 5.

However, Fig. 6.10 depicts that the calculated EV charging current setpoint 𝑖e+,Set𝑛,𝑗 oscil-
lates. This can potentially stress the hardware in the charger, especially when the setpoint
shifts between zero and non-zero too regularly which requests a too frequent open/close
of the relay in the charger, and in turn decreases the charger’s lifetime in the long run. A
function to reduce the zero/non-zero charging current alteration frequency is thus helpful.

Another thing that can be perceived in Fig. 6.10 is that none of the EVs can be charged
to 100% upon departure, and two factors cause this. The first factor is related to the nature
of the EVSE-EV communication practice. As explained in Section 6.4.2, the actual EV char-
ging current with the same given setpoint deviates from EV to EV, differences in charging
efficiency, embedded charging strategy, CV switch point and the nature of current drop-
ping in CV region. This setpoint-real charging current value discrepancy deviates the ac-
tual charging progress away from the optimal plan. Even though the periodic SoC update
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Figure 6.9: Comparison of grid impact of UNC and SC. (a) Total node power and the sum of EV
charging power in Node 5, (b) Voltage fluctuation in Node 5& 15

between EV and the Sub-aggr is supported by the SC-Alg, it is still impractical for the SC-
Alg to correct the energy deficiency in time due to the lack of actual charging power and
SoC relation. The second factor is that the optimal charging profile calculation is based on
the voltage value at the optimisation trigger moment. However, the node voltage inevit-
ably drops when the charging process starts with sudden EV power drawn. This voltage
drop in turn, leads to a lower actual EV charging power than what is calculated by the
SC-Alg. Both factors produce the same outcome: the actual charging power is lower than
what is calculated by the SC-Alg, and as a result, the EVs are not fully charged.

A potential solution for the first factor is to add a feedback loop to detect and correct
the setpoint-real charging current value discrepancy. Another simpler and more effective
solution is to accommodate this potential error in the SC-Alg, which is to set a slightly
higher charging energy goal or a sooner charging completion time limit.
Grid import power ripples

In Fig. 6.9 (a), especially between 13:00 and 16:00, the grid import power fluctuates in-
tensively around the grid input power limit.

It can be observed in Fig. 6.11 that the grid import limit is breached for approximately 5 s
due to the actual hardware (EV1) delay in response and ramp down its power following the
given setpoint. This behaviour will be missed in a pure software simulation and highlights
the importance of HIL experimental demonstration. The high-resolution RT-PHIL simula-
tion manifests another factor leading to the grid import power oscillations, that is discrete
optimisation combined with continuously evolving environmental parameters such as PV
generation, as shown in Fig. 6.12. In real applications, communication delay has a wide
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Figure 6.10: Comparison of UNC and SC profiles. (a)-(d): EV1-4 in ascending order
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Figure 6.11: Grid import current spike caused by delayed EV response

range from less than 5 s to 60 s depending on the characteristics of the transceiver, the net-
work and the protocols [45, 47, 79]. Preventing the grid power ripples caused by various
communication delays is effortful due to its unpredictability. It is thus worth exploring
the grid impact induced by discordant communication latency and how to moderate it in
the future.
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Figure 6.12: Node 5 Grid import current spike in between optimisation intervals

6.5.2. Impact of stochasticity
This section analyses the results of the SC-Alg operating with inaccurate PV/load de-

mand prediction (Case 2& 3) and mismatched EV information (Case 4& 5).
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Figure 6.13: Impact of inaccurate PV/load demand prediction: Grid import current comparison (5
min moving average)

Fig. 6.13 presents the 5-min moving average grid import current of Node 5 under the
influence of inaccurate forecasts. The dissonance of the actual and predicted PV/load pro-
file (in Fig. 6.7), is reflected in the grid import current results, even though the difference
is moderate. On the other hand, if the predicted–actual profile error of both PV and load
happens at the same time, they may cancel each other out or in reverse, add up and worsen
the situation. It is thus appealing to view the multi-variable inaccuracy as a whole and in-
vestigate the impact of joint stochasticity in the future. This investigation can be demon-
strated with the experimental testbed implementing actual PV and load conditions with
minor adaptions.

The EV charging current and their corresponding SoC values of Case 4& 5 are illustrated
in Fig. 6.14 (a), (b). The comparison of 5min moving average grid loading of Case 1, 4 and
5 are shown in Fig. 6.14 (c). It can be noticed from Fig. 6.14 (a), (c) that the 10% lower actual
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Figure 6.14: EV charging performance and grid loading results with mismatched EV information (a)
charging performance of EV1, Case 4, (b) charging performance of EV1, Case 5, (c) EV
information mismatch impact on the grid import current.

charging current 𝑖e+,Act than the setpoint 𝑖e+,Set of Case 4 leads to a reduced grid loading
at the cost of a lower departure SoC than Case 1. In Case 5, the battery degradation pro-
voked imprecise SoC estimation and leads to an unnecessarily rushed charging when the
electricity price is not the lowest relative to Case 1, as presented in Fig. 6.14 (b), (c). In other
words, battery-aged EVs require less energy to be fully charged, and the SC-Alg can use
this information to yield a better solution. Yet, this inaccurate usable battery size inform-
ation leads to a pleasant by-product that the battery is fully charged, even earlier than
expected.

Case 4& 5 advocate that the self-correction function mentioned in Section 6.5.1 is essen-
tial for the SC-Alg’s passive stochasticity handling capability. For example, a feedback loop
regularly reads the measured 𝑖e+,Act could help the SC-Alg to count the 𝑖e+,Set/𝑖e+,Act offset
value in the setpoint computation. Although it is difficult to obtain the actual battery size
information for an aged EV, regularly updated SoC information together with measured
charging power could help rectify the SC-Alg’s internal SoC tracking system. Unfortu-
nately in practice, neither the IEC 61851-1 protocol nor the High-Level Communication
Control protocol ISO 15118 supports the dynamic SoC information exchange during AC
charging[45, 47]. However, there is a possibility to work around it if both EV manufac-
turer and CPO support the direct bilateral communication between the EV and the CPO.
In summary, a closed-loop self-correction function is crucial and beneficial to add to the
future version of the SC-Alg.
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6.5.3. Efficacy of incorporating grid limitation
Finally, the results of two GRI scenarios are analysed and compared. The sum of EV

setpoint, the 5 min moving average grid import power and the node voltage of Node 5& 15
are illustrated in Fig. 6.15.
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Figure 6.15: EV charging performance and grid impact comparison between two GRI methods

Fig. 6.15 (b), (c) show that GCA decreases the grid peak power and improves the voltage
drop better than the VDM. In contrast to Case 1’s ”charge as late as possible” outcome due
to the price and PV generation trend, the EV charging processes are already initiated in
the morning in Case 6 as can be seen in Fig. 6.15 (a). That is because limited grid capacity
cannot fulfil all EV charging requests at the lowest price even when the PV generation
reaches its peak due to the employment of extra grid constraints. This spread-out charging
phenomenon is especially distinct for Node 15.

As for the VDM’s grid congestion mitigation performance, the voltage drop improve-
ment is not as good as expected. One possible explanation is the voltage droop response
range is relatively low. To achieve a better voltage increase effect, the voltage adjustment
range can be expanded to, for example 0.95-1.05 p.u.. However it also means the users
would experience a higher unfinished charging demand [202].

The centralised GCA could create an unfair situation where nodes with less total reques-
ted energy get less power and in turn, have less flexibility to shift the charging windows of
its connected EVs. For example, Node 15 has a much lower grid capacity than Node 5, caus-
ing EV4 to only charge with minimal power. This limited charging power subsequently
forces EV4 to charge almost the whole of its parking duration, which covers the high price
moment, and the user has to bear this cost. This unfairness can be alleviated by adjust-
ing the centralised capacity distribution principle. For example, equally share the power
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among all active EVs instead [203].
The averaged departure SoC of Case 6 is 97.63%, less than the 96.68% for Case 7. With

GCA, the Sub-aggr is informed about the future grid limitation through Ctr-aggr upon EV
connection. With this information, the Sub-aggr tends to expedite the charging process to
ensure a full departure SoC. However, the grid constraint information is not in place with
VDM until the high power demand - like EV charging - induced node voltage dip appears.
This gives the SC-Alg a tight schedule to plan the charging to fulfil the energy demand in
time.
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Figure 6.16: Decentralised VDM provoked low-frequency voltage oscillation

A feature of VDM worth mentioning is that it can provoke low-frequency voltage os-
cillation if the parameters of the VDM are not carefully set. Fig. 6.16 exhibits the circle of
node voltage oscillation. Three potential solutions can ease this phenomenon; the first one
is to use historical moving average voltage value as the VDM reference voltage; the second
one is to add a time threshold that activates the VDM only if the voltage dips longer than
a certain amount of time; and the third method is to adapt hysteresis control in the VDM.
6.5.4. Comparison

The key performance indexes of two EV-connected nodes with all eight simulated cases
are listed in Table. 6.4. It includes departure SoC of each EV, the per unit charging cost of all
EVs 𝐶EVch

sum , the minimal node voltage value 𝑉min
node, the peak overloading percentage 𝑃𝑙peaknode

and the overloaded import energy 𝐸ol
node of Node 5& 15. 𝐸ol

node is the energy obtained by
the node from the part of the imported current which exceeds the limit. The illustrative
explanation of 𝐸ol

node can be found in Fig.13 (i) in [134]. On top of that, the relative value
of each scenario compared to the UNC scenario (Case 0) is listed in the right part of this
table. Test cases with the best peak values are highlighted in green, and the worst ones
are indicated in red in the table.

This comparison shows that the proposed SC-Alg can significantly reduce the charging
cost and alleviate grid congestion compared to UNC. Even though inaccurate input data
lead to less optimal outcomes, the SC-Alg still outperforms the UNC in Case 2–5. Case 3
could reduce the least grid peak values, and Case 2 shares a very close outcome. This is
because PV and load profile are purely input parameters and are the ones most likely to
cause power ripples among all parameters in this study, especially when there are high
uncertainties. Regarding the charging cost reduction, Case 4 has the lowest charging cost,
although the difference among Case 1–4, 7 are negligible. The EV capacity fading issue in
Case 5 leads to a noticeable charging cost rise, and this is because the SC-Alg missed the
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optimal charging window with outdated EV capacity data. Note that the charging cost
variation impacted by the charging time shift away from the ideal time window strongly
relates to the electricity price trend. A rushed or delayed charging which falls into an
equally good or even cheaper price window would not necessarily be inferior to the op-
timal results. Therefore, a sensitivity analysis on applied input data, like electricity price
is worth exploring in future work.

Results of Case 6 and 7 suggest that incorporating grid constraints on top of the SC-Alg
further improves the grid congestion mitigation performance. Results of Case 6 suggest
GCA-incorporated SC-Alg has the best grid congestion prevention as this case gives the
highest 𝑉min

node and the lowest 𝑃𝑙peaknode, 𝐸ol
node among all cases.
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6.6. Conclusions and recommendations
This chapter introduces a hierarchical mixed integer programming (MIP) EV smart char-

ging algorithm designed for low voltage (LV) distribution grid applications. The proposed
SC-Alg incorporates the implementational constraints and is equipped with a flexible re-
ceding horizon scheme to manage the stochasticity passively. Afterwards, the SC-Alg is
verified and thoroughly assessed in an RTDT-based PHIL testbed that uses models of real
LV distribution grids. Lastly, recommendations to further upgrade the SC-Alg’s are given.

The SC-Alg presents promising and steady outcomes with or without external stress
factors. The results show that the SC-Alg reduces the per-unit charging cost by over 22% in
5 out of 7 scenarios. Even with a 30% EV capacity input error, the charging cost is still 12%
less than the UNC scenario. The SC-Alg also proves its substantial capability in alleviating
grid congestion with an average of 39.35% peak power reduction, a 1.41% average minimal
voltage increase, and a 95.32% reduction in overloaded energy for Case 2–5. Additionally,
the GRI implemented in Case 6–7 enhances the peak power reduction by 33.5% and curtails
the overloaded energy by 65.9% further than Case 2–5.

This research has identified several intriguing factors that impact the SC-Alg’s perform-
ance. These findings provide valuable insights for future studies. It is highly recommended
to conduct sensitivity analyses on how input data influences the SC-Alg’s behaviour. The
suggested input data are the joint uncertainty of multiple input parameters and the tim-
ing/geographical/seasonal variability of input profiles, especially the price volatility. Due
to the multi-protocol nature of the EV charging ecosystem, communication latency is very
common in diverse applications. Investigating how much the communication latency in-
terferes with the SC-Alg’s performance is meaningful.

Several recommendations on how the proposed SC-Alg can be upgraded in the future
are also defined in this study. Implementing the SC-Alg should not impose undue strain
on the hardware, ensuring the frequency of switching between zero/non-zero setpoint
values is within a reasonable range. A self-correction function is needed to overcome
EV information mismatch issues and to track the actual charging progress with higher
accuracy. We recommend using the actual EV charging current and the regularly updated
actual EV SoC to decipher the 𝑖e+,Set – 𝑖e+,Act – 𝑆Act correlation and revise the internal
SoC tracking system dynamically. Besides, a slightly higher charging energy or an earlier
charging completion target can always be set to suffice the EV users’ requests.

Concerning the GRI methods, the SC-Alg’s sensitivity to the grid constraint can be
lowered to reduce the grid power oscillations. One example is to selectively disclose grid
capacity information and trigger re-optimisation only when constraints experience sub-
stantial and sustained magnitude variations over a specific duration. Additionally, using
a moving-average historical record as the GRI reference and the hysteresis control can
also be added. The further development of Ctr-aggr level advanced GRI methods is worth
exploring as a separate topic in the future.

Finally, this study can be extended to encompass different grid types, using real EVs,
incorporating different chargers and adapting the latest communication protocols such as
IEC/ISO 15118 and OCPP.
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7
Smart charging algorithm
advancement addressing
experiment results and

visioning implementations
This study significantly enhances the previously developed (in Ch. 6) smart charging (SC) al-
gorithm SC-Alg in terms of both efficacy and viability. The enhancements to effectiveness
include charging current command levelling for a steadier charging process, upgrading grid
balancing services, and approaching optimality. The operative practices that are compressed
into the new SC version including future charging event inclusion, ad-hoc admittance system
for erratic charging events and self-correction of charging parameters. This work aims to pre-
pare the SC algorithm for handling practical applications and real installations by improving
its ability to process unpredictable events. This updated SC algorithm, namely SC-AlgS, is
tested through simulations and assessed by comparing it to uncontrolled charging as well as
a heuristic charging method — averaged charging method (ARM). The algorithm’s capabilit-
ies, including charging cost reduction and contribution to grid balancing services, have been
quantified. Its passive stochasticity management features have been validated through cross-
checking among a large quantity of optimisation iterations. Additionally, the algorithm’s
proximity towards optimality and how to further increase it are discussed. The study results
authenticate the advocated enhancements of the new SC version and demonstrate its improved
performance and reliability.

7.1. Introduction
It is universally acknowledged that engaging EV smart charging is advantageous for

accommodating massive EV connections to LV grids frommultiple perspectives. However,
transitioning from proof of concept to pilot demonstration is a long process, and it is vital
to take into account implementational constraints at the early design stage.

Multiple pilot projects have successfully demonstrated the feasibility and functionalities
of simple EV charging scheduling methods [68–70]. Expanding this initiative is crucial for
the practical development and validation of smart EV charging algorithms. The algorithms
need to accommodate diverse EV charging behaviours across various distribution grid
topologies with contrasting innate characteristics. Additionally, they need to connect to
different levels of baseload as well as renewable energy resources, such as wind and solar,
while also being capable of handling energy price variability. [26, 134].
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The realisation of a developed SC algorithm in the practical environment not only re-
quires the adaptation of the effectuating constraints but also demands robustness towards
the unpredictability in an operational environment. From the perspective of smart char-
ging algorithm installation and exertion, there are two major factors which directly link
to the EV charging process that alter the outcome of the algorithm.

The first one is if the charging event information shared with the SC algorithm matches
the real situation. The information often covers EV specifications and charging event time
frames. No matter how well-designed the SC algorithm is, its output is determined by the
input. It is therefore essential to implement mechanisms that focus on filtering and correct-
ing the input data. The possible approaches for SC algorithm are often either improving
the algorithm’s ability to forecast or enhancing the algorithm’s uncertainty-coping func-
tionality. For instance, measuring the elasticity in parking duration [204] and predicting
the probability of a charging event’s time and energy [205] can help to obtain refined in-
put data. Or a stochastic model involved robust optimisation [206] to achieve a higher
uncertainty resilience.

The second one is if the charging command is sent, received, and executed by the target
EV on time with high precision; and then the EV’s response and subsequent behaviour,
which in turn affects the accuracy of the algorithm’s outcome, falls within the algorithm’s
calculation. The command-conduct discrepancy could be rooted in the EV pre-installed
charging strategies [80, 201] and the capacity shrinks and efficiency drops due to battery
ageing [207]. It is discovered that EV fleet’s literal response concerning alternative controls
can inversely affect the system behaviour [208].

Furthermore, the compatibility of the developed algorithmwith standards and protocols
facilitating communication between the different parties influences the algorithm deploy-
ment potency. The three most relevant protocols for realising EV charging algorithms are
the Open Charge Point Protocol (OCPP) for communication between the Charge Point Op-
erator (CPO) and Electric Vehicle Supply Equipment (EVSE), and IEC/ISO 15118 and IEC
61851-1 for communication between EVSE and EV [209–211]. Using communication delay
as an example. In real applications, chargers installed at different geographical locations
or connected to different back-end offices may experience varying communication delays
depending on the network and the engaged protocols. The message delivery timing re-
quirements are not specified in OCPP since the communication timing strongly depends
on the implemented network. The CPO is responsible for setting the timeout limit, and
the guidance given by OCPP is 30 s [79]. When OCPP is employed in combination with
ISO 15118, the time limit of charging profile delivery from CPO to EVSE is 60 s, and this
is constrained by the EVSE to EV reply timeout indicated in ISO 15118 [79]. According to
IEC 61851-1, EVSE has 10 s to adjust its PWM signal responding to an AC line current ad-
justment requirement posted by the grid, with manual settings or automatic calculations
[45]. Regarding EVSE to EV communication delay, it is stated in both IEC 61851-1 and
ISO 15118 that the EV has 5 s to respond to the given setpoint [45, 47]. The communic-
ation latency is eventually reflected in the charging outcome in the form of a mismatch
between the charging setpoint and the actual charging current.

All the above-listed SC algorithm application difficulties, together with the identified de-
ficiencies of the previous SC version SC-Alg, have motivated the upgrades of the algorithm
to the new version – SC-AlgS, in this work. The primary upgrades can be briefly summar-
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ised into three major parts and they are: A stochasticity processing system where unsure
circumstances such as upcoming charging events, the mutable parking time span and char-
ging energy requests, and the unplanned insertion/cancellation of charging sessions are
treated dexterously. An error-correction service with which the disparity between the
anticipated algorithm output and the EV response is rectified, thence the actual EV opera-
tion condition and the algorithm tracking system are synchronised. And lastly, an exercise
aims to boost the algorithm’s overall convergence to optimality. This article is organised
as follows; Section 7.2 specifies the algorithm structure and themathematical formulations,
while Section 7.3 describes the operative qualities. The simulation setup and assumptions
are provided in Section 7.4, and the results analyses as well as discussions are placed in
Section 7.5. Finally, the conclusions and recommendations can be found in Section 7.6.

7.2. Algorithm mathematical build explained
The SC algorithm proposed in this study is a successor of an older version algorithm

called SC-Alg from our previous work [212]. Several insufficiencies were observed in the
antecedent version and thus the upgrades are solicited from this new version of the al-
gorithm, namely SC-AlgS. Three major inadequacies are summarised below.
Current setpoint and actual value disparity: The most conspicuous phenomenon is the

discrepancy between the current setpoint sent to the EV and the actual EV charging cur-
rent. The current setpoint sent to the EV is merely the maximum allowed current draw
from the EVSE while the actual charging current could be significantly lower than that.
The origins of this charging current value difference are twofold: one is tied to the com-
munication protocol attributes such as the minimal nonzero setpoint value, and the other
one is how well the EV can or chooses to follow the setpoint.
Current oscillation: The second deficiency that appears in the charging current setpoint

is high-frequency oscillation, especially crossing between zero and nonzero values. Not
only does this oscillation impose strains on the physical relay in the charger, but it also
breaks the continuity of the current setpoint, which prolongs the unnecessary response
time and ramp-up/ramp-down periods on the EV side, leading to non-ideal performance.
SoC and energy tracking inaccuracy:The third leading potential upgrade is the SoC track-

ing function in the optimisation. Since the communication protocols between EVSE and
EV do not support dynamic SoC value updates, the SoC estimation is internalised as a
function in the algorithm. EV-related uncertainties like the unknown charging efficiency
and battery state of health (SoH), plus the mismatch between setpoint and actual charging
current, leading a high possibility of instigating inaccurate SoC tracking, which may fail
the EV charging energy demand.

Moreover, the algorithm’s competence in enduring the charging event unpredictability
is indispensable. That is because no matter how superb the solution computed by the
algorithm is, the adjustment of the EV charging session itself hazards the feasibility of the
algorithm’s outcome fundamentally. With the algorithm enhancement aspirations being
precisely defined, the specifications of the SC-AlgS are explained in the following sections.
7.2.1. System structure

SC-AlgS inherits the hierarchical structure of the SC-Alg (in Section 6.2), which con-
sists of one central and one distributed level as shown in Fig. 7.1. The central aggregator
(Ctr-aggr) at the central level receives the grid condition information from the Distribu-
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tion System Operator (DSO) and shares the limited grid capacity among the relevant sub-
aggregators (Sub-aggrs). The Sub-aggr optimises the nodal energy usage and the EV char-
ging strategy while taking the grid limitations sent by Ctr-aggr as constraints. The detailed
system architecture and implemented protocols can be found in [212].

OpenADR

••••••Sub-aggr. 1 Sub-aggr. nSub-aggr. 2

Ctr-Aggr

DSOOSCP

IEC 61851
ISO 15118

OCPP

Algorithm

Figure 7.1: System structure

Ideally, the developed centralised congestion management algorithm, which is intro-
duced in Chapter 5, can be incorporated in Ctr-aggr. Whereas this chapter focuses on the
distributed level, a simple grid capacity division principle –which is to divide grid available
capacity based on active connecting EVs – is used.

7.2.2. Smart charging algorithm
Objective function

Table 7.1: Parameters of objective functions

Parameter Meaning

𝐶 tot𝑛 [€] Total nodal costs at node 𝑛
𝐵𝑛,𝑗,𝑇 𝑎𝑗 [kWh] Energy in battery of EV 𝑗 at node 𝑛 upon arrival 𝑇 𝑎𝑗

𝐵intl
𝑛,𝑗,𝑇 𝑑𝑗

[kWh] Energy in battery of EV 𝑗 at node 𝑛 when departure 𝑇 𝑑𝑗 ,
calculated from setpoint

𝐵UNC
𝑛,𝑗,𝑇 𝑑𝑗

[kWh] Energy in battery of EV 𝑗 at node 𝑛 when departure
if uncontrolled charging policy applied

𝐶comp
𝑛,𝑗 [€/kWh] Compensation for not meeting the energy demand

of EV 𝑗 at node 𝑛 by departure
𝑝g(imp)
𝑛,𝑡 , 𝑝g(exp)

𝑛,𝑡 [kW] Grid import/export power of node 𝑛 at time 𝑡
𝐶e(buy)
𝑡 , 𝐶e(sell)

𝑡 [€/kWh] Electricity purchase/sell price at time 𝑡
𝑝FCR,ava
𝑛,𝑡 [kW] Available power of node 𝑛 at time 𝑡 for providing FCR service
𝐶FCR𝑡 [€/kW] FCR price at time 𝑡 , up/down symmetrical, updates every 4 hours
𝑖ramp
𝑛,𝑗,𝑡 [A] Charging current ramp of EV 𝑗 at node 𝑛 between time 𝑡 − 1 and 𝑡

SC-AlgS has two objectives, one aims at minimising the total node cost 𝐶tot𝑛 while the
second objective targets improving the continuity of the charging current setpoint and
hence reducing its fluctuations. Two objectives can be found in Eq. (7.1) and (7.2) while
the meanings of relevant parameters are listed in Table 7.1. Similar to the previous chapter,
the target argument to this optimisation problem is the derived EV charging current 𝑖e+,intl𝑛,𝑗,𝑡

7

124



7.2. ALGORITHM MATHEMATICAL BUILD EXPLAINED

(see detailed explanation in Section. 7.2.2).
The node cost listed in Eq. (7.1) consists of three parts:

1) the compensation cost that the Sub-aggr pays the EV user if the charging energy target
is not met. The energy target is set to be the energy that would be provided to the EV if
the uncontrolled charging (UNC) policy was applied (𝐵UNC

𝑛,𝑗,𝑇 𝑑𝑗
).

2) The net cost of the node buying/selling the electricity from/to the grid.
3)The extra income of the node providing ancillary service to the grid. Balancing servicing,
especially Frequency Containment Reserve (FCR) service, is considered in this case.

In our previous research [212], the charging current setpoints are observed to oscillate
significantly with high-frequency zero-nonzero switching, which burdens the mechanical
relay in the charger. A supplementary condition is thence enclosed in SC-AlgS to moder-
ate the current zero-nonzero fluctuation, such so the second objective is introduced. The
second objective is simply to minimise the sum of every step’s absolute charging current
ramp value as shown in Eq. (7.2), and the current ramp value is defined in Eq. (7.5). This
can help reduce the sudden change of the current, and therefore improve its continuity.

Obj.1: Min. 𝐶tot𝑛 = ∑𝐽
𝑗=1 (𝐵UNC

𝑛,𝑗,𝑇 𝑑𝑗
− 𝐵intl

𝑛,𝑗,𝑇 𝑑𝑗
)𝐶comp

𝑛,𝑗

+ Δ𝑇 ∑𝑇
𝑡=1 (𝑝g(imp)

𝑛,𝑡 𝐶e(buy)
𝑡 − 𝑝g(exp)𝑛,𝑡 𝐶e(sell)

𝑡 )
− ∑𝑇

𝑡=1 𝑝FCR,ava𝑛,𝑡 𝐶FCR𝑡

(7.1)

Obj.2: Min. ∑𝑇
𝑡=1∑

𝐽
𝑗=1 ||𝑖ramp

𝑛,𝑗,𝑡 || (7.2)

Constraints
The constraints-related parameters are summarised in Table 7.2.

Equations per EVEquations per EVEquations per EVEquations per EVEquations per EVEquations per EVEquations per EVEquations per EVEquations per EVEquations per EVEquations per EVEquations per EVEquations per EVEquations per EVEquations per EVEquations per EVEquations per EVEquations per EVEquations per EVEquations per EVEquations per EV
The two most commonly employed communication protocols between EVSE and EV

that are considered in this study are IEC 61851 [45] and ISO 15118[46]. As elaborated in
the previous chapter (Chapter 6), IEC 61851 specifies the minimal non-zero charging cur-
rent setpoint that can be transmitted by Pulse Width Modulation (PWM) signals is 6 A.
Although ISO 15118 supports high-level communication, it has the same basic signalling
request as established in IEC 61851. Therefore, the charging current setpoint, which is
the command value calculated by the algorithm, shall cap the 6A as its minimal non-zero
value, see the equation below.

(𝑖e+,cmd
𝑛,𝑗,𝑡 = 0)𝑂𝑅 (𝑖e+,cmd

𝑛,𝑗,𝑡 ≥ 6) (7.3)

It is established in the former chapter that the current setpoint sent to the EV merely is
the maximum allowed current draw from the EVSE while the actual EV charging current
could be significantly lower than that. When a value difference is observed between the
current setpoint and the measured charging current, this mismatch shall be counted in the
optimisation to effectuate an anticipated outcome.

Therefore a dual charging ruling system —module command (cmd) and module internal
(intl) — is introduced. Using charging current as an example, in this dual system, the com-
mand module is solely responsible for adjusting the current setpoint (𝑖e+,cmd

𝑛,𝑗,𝑡 ) that is sent
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Table 7.2: Parameters of constraints

Parameter Meaning

𝑖e+,cmd
𝑛,𝑗,𝑡 [A] Charging current setpoint giving to EV 𝑗 at time 𝑡 and node 𝑛
𝑖e+,intl𝑛,𝑗,𝑡 [A] Derived EV charging current 𝑗 at time 𝑡 and node 𝑛
𝑝e+,intl
𝑛,𝑗,𝑡 [kW] Derived EV charging power of EV 𝑗 at node 𝑛 at time 𝑡
𝐵intl𝑛,𝑗,𝑡 [kWh] Energy in battery of EV 𝑗 at node 𝑛 at time 𝑡
𝑆 intl𝑛,𝑗,𝑡 SoC calculated from derived EV status 𝑗 at node 𝑛 at time 𝑡
𝑖e+,Act
𝑛,𝑗,𝑡 [A] Actual charging current of EV 𝑗, node 𝑛, time 𝑡
𝑝e+,Act
𝑛,𝑗,𝑡 [kW] Actual charging power of EV 𝑗, node 𝑛, time 𝑡
𝐵Act𝑛,𝑗,𝑡 [kWh] Actual battery energy of EV 𝑗, node 𝑛, time 𝑡
𝑆Act𝑛,𝑗,𝑡 Actual SoC of EV 𝑗, node 𝑛, time 𝑡
𝐼 EV𝑛,𝑗 [A] Rated current of the EV 𝑗 at node 𝑛
𝜙EV𝑛,𝑗 Number of EV charging phases
𝐵max𝑛,𝑗 [kWh] Usable battery size of EV 𝑗 at node 𝑛
𝑆CV𝑛,𝑗 SoC switch point between CC and CV stage of EV 𝑗 at node 𝑛
𝜂EV𝑛,𝑗 On-board charger efficiency of EV 𝑗 at node 𝑛
𝜂EVSE𝑛,𝑗 Efficiency of charger 𝑗 at node 𝑛
𝐼 EVSE𝑛,𝑗 [A] Rated current of the charger EV 𝑗 plugged in at node 𝑛
𝑝PV,Fcst
𝑛,𝑡 [kW] Forecast PV generation power at node 𝑛 at time 𝑡
𝑝LL,Fcst
𝑛,𝑡 [kW] Forecast local load power at node 𝑛 at time 𝑡
𝐸LL,r𝑛 [kWh/yr] Yearly energy consumption of local load

𝑣𝑛,𝑡 [V] Voltage of node 𝑛 at time 𝑡
𝑝FCR(up)
𝑛,𝑡 , 𝑝FCR(dn)

𝑛,𝑡
[kW]

Available up/down FCR service power of node 𝑛 at time 𝑡 ;
Also uniformly denoted as 𝑝FCR,ava

𝑛,𝑡 thanks to symmetry

𝑝G+𝑛,𝑡 , 𝑝G-𝑛,𝑡 [kW] Distribution network capacity for importing/exporting
power from grid at node 𝑛

𝑝Glim [kW] Overall grid capacity
𝐽 cnt𝑛,𝑡 Number of connecting EVs of node 𝑛 at time 𝑡

to the EV, adding the offset value (𝑖offset𝑛,𝑗,𝑡 ) calculated from the historical and measured dis-
parities. The internal module, on the other hand, reads the measured EV’s actual charging
information (𝑖e+,Act

𝑛,𝑗,𝑡 ) and derives the EV’s actual charging status (𝑖e+,intl𝑛,𝑗,𝑡 ) in the optimisation.
Besides, it is found that the constant-current-constant-voltage (CC-CV) charging strategy
is commonly implemented in AC charging [104], the CC-CV charging method is thus adap-
ted in the internal module. The derived EV actual charging current in the internal module
𝑖e+,intl𝑛,𝑗,𝑡 is constrained by both the current setpoint command 𝑖e+,cmd

𝑛,𝑗,𝑡 considering the offset
value (𝑖offset𝑛,𝑗,𝑡 ), as well as the natural CV-stage current descending, as stated in the equation
below.
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𝑖e+,intl𝑛,𝑗,𝑡 = {
𝑖e+,cmd
𝑛,𝑗,𝑡 − 𝑖offset𝑛,𝑗,𝑡 , SoC < 𝑆CV𝑛.𝑗
𝐼EV𝑛,𝑗 × (1−𝑆intl𝑛,𝑗,𝑡 )

1−𝑆CV𝑛,𝑗
, SoC ≥ 𝑆CV𝑛.𝑗

(7.4)

The current ramp is calculated from the derived EV status in the optimisation, by the
internal module, as shown in Eq. (7.5).

𝑖ramp
𝑛,𝑗,𝑡 = 𝑖e+, intl𝑛,𝑗,𝑡 − 𝑖e+, intl𝑛,𝑗,𝑡−1 (7.5)

The EV charging power, EV battery energy and its dynamic SoC calculations are listed
below.

𝑝e+,intl𝑛,𝑗,𝑡 = 𝑣𝑛,𝑡 × 𝜙EV𝑛,𝑗 × 𝑖e+,intl𝑛,𝑗,𝑡 (7.6)

𝐵intl𝑛,𝑗,𝑡 = 𝐵𝑛,𝑗,𝑇 𝑎𝑗 + Δ𝑇 ∑𝑡
𝑇 𝑎𝑗 (𝑝

e+,intl
𝑛,𝑗,𝑡 × 𝜂EV𝑛,𝑗) (7.7)

𝑆intl𝑛,𝑗,𝑡 =
𝐵intl𝑛,𝑗,𝑡
𝐵max𝑛,𝑗

(7.8)

Node level equationsNode level equationsNode level equationsNode level equationsNode level equationsNode level equationsNode level equationsNode level equationsNode level equationsNode level equationsNode level equationsNode level equationsNode level equationsNode level equationsNode level equationsNode level equationsNode level equationsNode level equationsNode level equationsNode level equationsNode level equations
Same as in SC-Alg, the node power exchange with the grid, including both the import

and export parts, is defined in the equations below.

𝑝exch𝑛,𝑡 = ∑𝐽
𝑗=1 (𝑝e+,intl𝑛,𝑗,𝑡 /𝜂EVSE𝑛,𝑗,𝑡 ) + 𝑝LL,Fcst𝑛,𝑡 − 𝑝PV,Fcst𝑛,𝑡 (7.9)

𝑝g(imp)
𝑛,𝑡 = {𝑝exch𝑛,𝑡 |𝑝exch𝑛,𝑡 ≥ 0}
𝑝g(exp)𝑛,𝑡 = −1 ∗ {𝑝exch𝑛,𝑡 |𝑝exch𝑛,𝑡 < 0}

(7.10)

Providing FCR service through EV charging is explored in SC-AlgS, and thence are the
new constraints added.

It is requested that the offered FCR power up and down be symmetrical, that means the
offered source has to be able to regulate the same amount of power in both directions or
able to increase and decrease the same power level during the contracted periods [213].

In this research, the sum of available storage devices in each node — all active EVs in this
case — is viewed as one combined unit of flexible power source for the FCR service. The
available FCR capacity of an individual EVSE and its connected EV is constrained by the
active charging power and the power upper limit of both the EVSE and EV as illustrated
in Fig. 7.2. On top of that, the maximum node available FCR power is delimited by the sum
of each EVSE&EV combination’s FCR capacity, as formulated in Eq. (7.12).

𝑝FCR(dn)𝑛,𝑡 = 𝑝FCR(up)𝑛,𝑡 ≥ 0 (7.11)

𝑝FCR(dn)𝑛,𝑡 ≤ ∑𝐽
𝑗=1 (Min.(𝑝e+,max

𝑛,𝑗,𝑡 , 𝑝EVSE,max
𝑛,𝑗 ) − 𝑝e+,intl𝑛,𝑗,𝑡 ) /𝜂𝐸𝑉𝑆𝐸𝑛,𝑗

𝑝FCR(up)𝑛,𝑡 ≤ ∑𝐽
𝑗=1𝑝e+,intl𝑛,𝑗,𝑡 /𝜂𝐸𝑉𝑆𝐸𝑛,𝑗

(7.12)
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Figure 7.2: Maximum FCR capacity of individual EVSE and its connected EV
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Figure 7.3: Node maximum symmetrical FCR capacity

The available FCR power of each node shall remain within the grid connection power
limit, as well as have to be symmetrical. Hence the available capacity is bounded by the
tighter limit between the import and export power limit, as shown in Fig. 7.3 and explicated
in Eq. (7.13). This available node FCR power value is uniformly denoted as 𝑝FCR,ava𝑛,𝑡 for
simplification, as used in Eq. (7.1).

𝑝g(imp)
𝑛,𝑡 + 𝑝FCR(dn)𝑛,𝑡 ≤ 𝑝G+𝑛,𝑡
𝑝g(exp)𝑛,𝑡 − 𝑝FCR(up)𝑛,𝑡 ≤ 𝑝G-𝑛,𝑡

(7.13)

Lastly, the overall grid capacity 𝑝Glim is dispensed to each node for EV charging using
the ratio of connecting EV numbers per node 𝐽 cnt𝑛,𝑡 .

𝑝G+𝑛,𝑡 = 𝐽 cnt𝑛,𝑡
∑𝑁

𝑛=1 𝐽 cnt𝑛,𝑡
× 𝑝Glim (7.14)
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7.3. Algorithm implementational practice
7.3.1. Future EV inclusion

In SC-Alg, the flexible receding horizon (FRH) scheme was introduced, with which the
optimisation horizon is set and is restricted by the latest departure EV among all connect-
ing EVs. Whenever the (re-)optimisation is triggered, the optimisation horizon is updated
automatically. In SC-Alg, the potential future arrival EVs are not considered, which may
cause essential information missing. The Sub-aggr is responsible for acquiring the energy
in the most economical and efficient way, and then splitting the finite resources like en-
ergy and power strategically and fairly to the local loads, as well as among all active EVs.
Any upcoming EV means future energy and power demand; therefore, as early as possible
pre-announcement of future arrival provides valuable information and grants extra time
for the Sub-aggr to adjust the charging agenda. Pre-registration is also beneficial for EV
users, since it can help secure a charger instead of risking queuing for an available charger
when the user comes to the site spontaneously.
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Figure 7.4: Schematic of the algorithm execution and the flexible receding horizon

Expanding on SC-Alg, a near-future involved flexible receding horizon (f-FRH) scheme
is introduced and its illustration is shown in Fig. 7.4. To let the upcoming EVs notify their
arrival to the Sub-aggr, the EV charging pre-registration function is enabled. The planned
EVs are requested to inform the Sub-aggr of the EV model information, including the EV
battery size and rated charging power, and the estimated time of arrival/departure. Pre-
registration is not mandatory, non-registered EVs can initiate their charging session as
usual and their charging session information is uploaded to the system upon arrival.

In Fig. 7.4, four chargers are represented by four coordinates respectively, the blocks on
them symbolise the EVs connected to the corresponding chargers, and the length of each
block specifies the parking duration of each EV. The f-FRH is basically the same as the
FRH of the SC-Alg in which the optimisation horizon is regularly updated with the latest
departure EV settles the horizon window. The difference is that future arrival EVs are
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included in f-FRH. However, not all EVs that are in the system — consisting of connected
EVs and pre-registered future arrival EVs — are considered admissible for optimisation.
That is mainly because the long-term parking EVs, especially the future arrival ones, tend
to have a distant-future departure time, which may result in an extensively prolonged
optimisation horizon. As a result, a monitoring range for f-FRH (𝑇monit) is set to confine
the involved EVs, so that any EV departs later than the monitoring range is not considered
in the pending optimisation. For example, the glow green frame in Fig. 7.4 outlines the
monitoring range and all coloured blocks depict the EVs registered in the system. Among
all the registered EVs, the planned departure time of Chr-EV3 and Chr2-EV1 are out of
the monitoring range, and so they are exempted from being included in the optimisation
triggered at time 𝑡𝑖 . The horizon window is then set to end by the planned departure of
Ch4-EV3.
7.3.2. Passive stochasticity coping mechanism

The f-FRH is particularly reliable in handling stochasticity dynamically. The re-optimisation
triggering events that are comprised in SC-AlgS are: EV fleet reformation & charging ses-
sion alterations like EV insert/removal, EV arrival/parking time modification, SC particip-
ation revisit etc.; charging power and SoC synchronisation; and grid power constraints
shift. The uncertainties that are initiated by the charging events and present throughout
the charging processes are explicated in detail in this section.
Erratic charging events coordination

Although EV pre-registration function grants the early acquisition of future EV charging
demand information, it inevitably draws more uncertainties in the meantime, especially
those related to EV charging behaviours, like EV arrival/departure time, EV arrival SoC
and EV specifications. Constructively, the charging session information is updated to the
Sub-aggr in the same manner when the EV actually arrives, whether an arrival EV is pre-
registered or not. After the charging session is successfully authenticated upon plug-in, the
precise EV specifications are assumed to be identified by the back-end office together with
their EV ID in the Session Setup stage of the Communication Setup Sequence; whilst the
charging process parameters, such as the power range, nominal voltage, energy demand,
departure time and so on, are transmitted during the Charge Parameter Discovery stage
of the Target Setting and Charge Scheduling sequence [47].

A charging event coordinator is equipped and responsible for sorting arbitrary charging
events and accommodating the charging request as much as possible. It is assumed that
the charger availability information is synchronised and visible to the users in the regis-
tration system, and there is extra buffer time added upon registration for slight early or
late arrival/departure between two consecutive charging slots.

The charging event coordinator working sequence is displayed in Fig. 7.5. As high-
lighted in yellow boxes, EV users can choose to pre-register or come to the charging station
straight away. On the other hand, the charging session could conclude in either cancella-
tion or charging completion.

1. When the user pre-registers its EV charging session in the system, the EV model,
planned arrival (𝑇 a, ori-plan

𝑛,𝑗 ) and departure time (𝑇 d, ori-plan
𝑛,𝑗 ) are requested. The SC-

AlgS uses the information in the optimisation to alter the currently active sessions,
as well as pre-plan the upcoming charging sessions.
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2. EV user can cancel its pre-registered charging session at any time prior 𝑇 a, ori-plan
𝑛,𝑗 ,

this charging session data will be erased from the system.
3. When the EV arrives, the actual arrival time, arrival EV SoC, accurate EVmodel data

and other information the user wishes to change or add, like planned departure time,
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energy demand etc, are updated in the system. Then the charging session starts.
4. If the EV has not arrived passed the 𝑇 a, ori-plan

𝑛,𝑗 , the system will add a small amount
of delay time (Δ𝑡delay) to the originally planned arrival time (𝑇 a, ori-plan

𝑛,𝑗 ). However,
the system would only hold the planned charging session for a fixed amount of time
Δ𝑇 hold, if the planned EV still has not come when the holding time passed, this
planned session will be automatically aborted.

5. For the unplanned EV charging event, the same procedure happens as stated in step
3 above.

6. When EV departs, its actual departure time updates in the system and one round
of optimisation is triggered if needed. The rest information regarding this charging
session is moved to the archive.

7. If the EV is still connected after 𝑇 d, ori-plan
𝑛,𝑗 , the systemwill add the delay time Δ𝑡delay

in a fixed frequency continuously until the EV eventually leave. There is no max-
imum overtime post the originally planned departure moment because the charging
session termination is initiated by the EV, and physical removal of the plug is neces-
sary for the charger to be available again.

Self-correction in charging processes
As briefly described at the beginning of Section 7.2, two deficiencies of SC-Alg hinder

its performance: the current setpoint - actual value discrepancy and the SoC tracking
inaccuracy. A self-correction function is embedded in SC-AlgS taking the form of feedback
loops. Two values are monitored and regularly rectified, the charging current (𝑖e+, intl𝑛,𝑗,𝑡 )
and the EV charging efficiency (𝜂EV, intl𝑛,𝑗,𝑡 ), matching the two above-mentioned deficiencies
respectively. The SC-AlgS’s dual charging ruling systemwhich is explained in Section 7.2.2
is the pillar of the self-correction function. How is the self-correction carried out through
this system is illustrated in Fig. 7.6.
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Figure 7.6: The self-correction carried out by the command and internal module of the dual charging
ruling system in the optimisation

During active charging sessions, the actual charging current (𝑖e+, Act
𝑛,𝑗,𝑡 ) and power (𝑝e+, Act

𝑛,𝑗,𝑡 )
are measured and sent to the Sub-aggr by the charger. Since the dynamic SoC value ex-
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change during AC charge is not supported by protocol ISO 15118, the actual battery SoC
(𝑆EV, Act
𝑛,𝑗,𝑡 ) is assumed to be communicated from EV to the Sub-aggr directly instead. This

function requests the EV OEM’s collaboration. When the value difference between the
actual charging status and the derived EV status in the internal module is higher than
a pre-set threshold, the value discrepancies during a fixed historical period (Δ𝑇 trace) are
calculated and compensated.

For the charging current, the offset value is simply the mean value of the charging com-
mand minus the actual charging current, as listed in Eq. (7.15).

𝑖EV, offset𝑛,𝑗,𝑡 =
∑𝑡+Δ𝑇 trace

𝑡 (𝑖e+, cmd
𝑛,𝑗,𝑡 − 𝑖e+, Act

𝑛,𝑗,𝑡 )
Δ𝑇 trace/Δ𝑡 (7.15)

The EV charging efficiency is computed from the charged energy (through the SoC value
given by the EV) and the measured charging power, as shown in Eq. (7.16).

𝜂EV, intl𝑛,𝑗,𝑡 =
(𝑆EV, Act

𝑛,𝑗,𝑡+Δ𝑇 trace − 𝑆EV, Act
𝑛,𝑗,𝑡 ) × 𝐵EV𝑛,𝑗

Δ𝑇 trace

÷
∑𝑡+Δ𝑇 trace

𝑡 𝑝e+,Act
𝑛,𝑗,𝑡

Δ𝑇 trace/Δ𝑡

(7.16)

7.4. Simulation setup, input data and assumptions
The verification and evaluation of the SC-AlgS are actualised through computer simu-

lations on an LV microgrid consisting of three nodes. Each node in this microgrid has
one local entity (Sub-aggr) that implements the SC-AlgS, and on top of that, a Ctr-aggr is
responsible for coordinating the grid capacity distribution among these three nodes.

Besides the upgraded SC algorithm SC-AlgS, two other benchmark charging strategies
that are used to set EV maximum charging current are simulated: uncontrolled charging
(UNC), which is to commence the charging as early as possible with the highest available
power; and the average-rate charging scheme (ARM), where the charging session eventu-
ates with the lowest possible power aiming at spread the charging process throughout the
whole parking duration as much as possible. The detailed description of ARM can be found
in our previous work [202]. CC-CV charging strategies are applied in all three methods
for a fair comparison base.

Although the algorithm’s passive stochasticity coping mechanism can process uncer-
tainties originated from charging events, the reliability of the system and its components
is not deliberated in this thesis. It is assumed that the tested power system, its compon-
ents, as well as the measurements and communication devices interfacing among system
components function properly throughout the simulation period.
Charging events data and assumptions

The EV charging events data is generated with the upgraded method originally intro-
duced in our previous work [134, 202], and based on the Dutchmarket data [214] combined
with large-scale actual EV charging database [215]. To explore if and how the effectiveness
of SC-AlgS varies with different charging behaviours, each node has one dedicated char-
ging event type taking place, namely Home, Semi-public and Public respectively. Several
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random events like cancelling charging reservations, delayed arrival/departure, no-shows,
and arrive without reservation are arbitrarily scattered and placed in the EV charging ses-
sions. Besides, not all charging sessions are marked as SC participants, and this is to mimic
real applications when the users choose not to join SC. In this simulation, EV charging ses-
sions with short parking duration and low arrival SoC are automatically marked as not
joining SC. The major configuration of input uncertain charging events for SC-AlgS test-
ings are summarised in Table 7.3. The values in this table are selected solely for the purpose
of functionality validation and thus do not represent any real-world applications nor carry
any specific meaning.

Table 7.3: Charging events stochasticity settings

% Sessions
on time

Erratic charging
events distribution

User SC
preferences

Monitoring range
of f-FRH (𝑇monit)

Max. reserving time
for late Arr. sessions

80%
7.5% Cancellation

7.5% ad-hoc admittance
5% no-show

25% sessions
no SC 24 [h] 60 [min]

Referring to studies which investigate charging session efficiencies [216, 217], for in-
stance, the charging event energy/power loss, charger and EV components efficiency un-
der different conditions like charging power, environmental temperature, AC/DC char-
ging, if bi-directional charging is involved etc. It is assumed in this study that both EVSE
and EV onboard charger’ efficiencies are randomly dispersed between the range 90-99 %
in normal distribution.
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Figure 7.7: Simulation input data

The PV profiles are derived from the measurement of a Dutch PV site’s generation [218]
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while the load profiles are modified from the Dutch standard load profile [219]. The Dutch
Day-Ahead Market electricity price is employed as the electricity buying price and the
selling price is set to be 30 % of the buying price. Both the DAM price and the FCR price
are available via the open pan-European electricity market platform ENTSO-E [220]. Grid
impact and performance analysis are not the focus of this study, hence no grid load flow
analysis is involved. From the previous chapter (Chapter 6), we demonstrate that the un-
certainty of PV and load profiles have relatively the least impact on the SC outcomes in
comparison to other stochasticities. Besides, this work focuses on EV charging rather than
the local energy system optimisation, plus the local loads are assumed to be non-flexible,
the PV and Load profiles are hence treated as simple input base data. Thereby, a small
magnitude of PV and load profiles are added for demonstration purposes. The input data
summary is listed in Table 7.4 and the nodal input profiles together with the global price
information are presented in Fig. 7.7.

From this figure, it can be easily seen that every day from 21:00 till the next day 8:00 is
often a good time to charge the EV due to low electricity price, low load demand and high
FCR price. The second suitable moment for charging the EV is between 11:00 and 13:00
daily, thanks to the peak PV generation and a slight dip in the electricity price as well as
the local load.

Table 7.4: Simulation settings

Node Num.
EVSE

Charging
event type

PV Inst.
[kWp]

Load Consum.
[kWh/yr]

none1 3 Home 10 8000
node2 5 Semi-public 12.5 5000
node3 3 Public 12.5 8000

Grid connection limitation

Import Two times 3 × 60𝐴 connections
Export Two times 3 × 16𝐴 connections

Simulation time setting

Season Winter
Duration Eight days (Mon — Mon)

7.5. Results
7.5.1. Smart charging performance evaluation
Overall performance

The charging current and corresponding EV SoC values of the EV charging events that
occur in node1, using three charging methods respectively, are illustrated in Fig. 7.8. Note
that three charging current and SoC simulation results obtained from three sub-systems
(Command - cmd; Internal - intl, and the emulated actual EV behaviours - Act, as explained
in Section 7.3) are all plotted in this figure, and the actual EV charging profiles are used
for the following evaluation. The normalised electricity price 𝐶DAM, buy and FCR price
𝐶FCR are placed in the background for reference. Cancelled or no-show charging events
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are crossed out with grey meshed blocks, and the charging events in which the smart
charging is not applied (UNC policy instead) are marked with red meshed blocks.
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It is clearly shown in this plot that SC-AlgS shifts the charging moment towards when
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𝐶DAM, buy is low and the 𝐶FCR is high within the EV connection window, in most of the
charging events with some exceptions present. Besides, the charging current setpoint of
the majority of charging sessions is observed to maintain a notably lower value than their
rated current value. This phenomenon is by reason of two key factors, and the first one
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is related to FCR service providing. The offered FCR product is requested to be symmet-
rical, meaning the FCR service engaged EV ought to retain its charging current within the
power range of zero to rated power, allowing both power increase (regulate down) and
decrease (regulate up). The closer the charging current is to half of the rated power, the
higher FCR capacity the EV can offer. Further elaboration on the FCR service pertained res-
ults is provided in the subsequent context. Secondly, the optimisation encompasses two
objectives as detailed in Section 7.2.2, one of which focuses on minimising the charging
current ramp value to ensure a stable charging process (Eq. (7.2)). Given the CC-CV char-
ging strategy, where the charging current gradually descends to 0 as SoC approaches 1 is
implemented, a smaller charging current value is preferable for the purpose of minimising
current ramp value.
Examine sub-optimal outcomesExamine sub-optimal outcomesExamine sub-optimal outcomesExamine sub-optimal outcomesExamine sub-optimal outcomesExamine sub-optimal outcomesExamine sub-optimal outcomesExamine sub-optimal outcomesExamine sub-optimal outcomesExamine sub-optimal outcomesExamine sub-optimal outcomesExamine sub-optimal outcomesExamine sub-optimal outcomesExamine sub-optimal outcomesExamine sub-optimal outcomesExamine sub-optimal outcomesExamine sub-optimal outcomesExamine sub-optimal outcomesExamine sub-optimal outcomesExamine sub-optimal outcomesExamine sub-optimal outcomes

The MIP optimisation performance determines how well the charging schedule is com-
puted. Take the charging event of EV 940 occurs around Fri 12:00 to Sat 23:00 at charger
Semi C4 as an example (Fig. 7.9 (d)). Since no other charging events are present at the node
during this time window, it is reasonable to conclude that the best charging moment for
this event would be 0:00-8:00 instead of the current appointed time window of 15:00-21:00.
Upon the inclusion of EV 940 to the smart charging monitoring range, which is 24 hours
prior to its departure as introduced in Section 7.3, the optimisation triggers for the first
time. However, this round of MIP calculation fails to identify the optimal option through
branch and bound searching before reaching the time limit, resulting in a 22.08% MIP gap.
Furthermore, the re-optimisation trigger conditions, including EV fleet change, charging
current/power/SoC correction, and grid limit updates, are not activated during this char-
ging event, resulting in the suboptimal outcome for this charging session.

Even when multiple opportunities for re-optimisation do arise during charging sessions,
there still remain possibilities that these opportunities emerge too late or the obtainment of
the optimal results is too late, such as after the most appealing price window has passed,
thereby limiting the MIP procedure’s ability to enhance the outcome. Charging events
that take place at node2 on the 2ⁿᵈ Monday set a befitting example (Fig. 7.9). EVs that are
connected to charger Semi C1&2, 4&5 share similar parking duration, roughly between
9:00 and 18:00, with the most economical charging time for these four EVs being around
11:00 - 14:00. Nonetheless, it is not until the 2ⁿᵈ Mon 15:00 does the MIP optimisation con-
verges within the time limit. By then, the EV connected to Semi C1 has departed while the
preferable chargingmoment for EVs that connected to Semi C2, C4 &C5 has already passed.
Hence, securing the optimal result at the outset is of utmost importance, considering the
timeliness nature of approximating optimality in this case.
Benchmark SC-AlgS with UNC and ARMBenchmark SC-AlgS with UNC and ARMBenchmark SC-AlgS with UNC and ARMBenchmark SC-AlgS with UNC and ARMBenchmark SC-AlgS with UNC and ARMBenchmark SC-AlgS with UNC and ARMBenchmark SC-AlgS with UNC and ARMBenchmark SC-AlgS with UNC and ARMBenchmark SC-AlgS with UNC and ARMBenchmark SC-AlgS with UNC and ARMBenchmark SC-AlgS with UNC and ARMBenchmark SC-AlgS with UNC and ARMBenchmark SC-AlgS with UNC and ARMBenchmark SC-AlgS with UNC and ARMBenchmark SC-AlgS with UNC and ARMBenchmark SC-AlgS with UNC and ARMBenchmark SC-AlgS with UNC and ARMBenchmark SC-AlgS with UNC and ARMBenchmark SC-AlgS with UNC and ARMBenchmark SC-AlgS with UNC and ARMBenchmark SC-AlgS with UNC and ARM

The overview of all power in each node is placed in Fig. 7.10 to illustrate the overall
performance of three tested charging methods from the node level. Note here that the
sum of EV charging power does not include the events where the user chooses not to
be included in SC. In this figure, the EV charging power of three methods alongside the
offered FCR power computed by SC-AlgS are presented. On top of that, the sum of rated
power across the EV’s parking duration ∑𝐽

𝑗=1 min(𝑝EV𝑛,𝑗 , 𝑝EVSE𝑛,𝑗 ) as well as the grid import
power limit 𝑝G+𝑛 are displayed denoting the power constraints from both the EV connection
time and the grid point of view. This plot highlights that ARM substantially flattened and
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smoothed the charging curve while the SC-AlgS shifts the charging time and peak power
towards the price-favourable period (indicated by the colour shade) in comparison to the
UNCmethod. Besides, charging sessions with UNC sometimes exceed the grid power limit
while those sessions that are managed by ARM or SC-AlgS never breach this constraint.
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Yet, the power curves of ARM and SC-AlgS do not exhibit significant differences, especially
in node2 and node3, due to the characteristics of their charging event types. Charging
events in node2 (Semi-public) and node3 (Public) typically span across the daytime or have
very short parking continuations, leaving limited room for the algorithm to adjust the
power allocations.
User experience

After the general performance of SC-AlgS is assessed, its capability to gratify the interest
of potential users is numerically analysed in detail here. The first thing to be addressed is
the charging related costs, as node cost reduction comprises a significant element of the
objective function.

𝐶X
k,norm = 𝐶X

k /𝐶UNC
k

𝐸X
k /𝐸UNC

k
,where X = ARM or SC (7.17)
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Figure 7.11: Per charging session comparative charging cost factor

It is established that the upper limit of the charging current is given by the three charging
methods while the EV charging follows the CC-CV charging strategy, resulting in disparit-
ies in actual delivered energies thanks to the divergent CV stages. Hence, the comparative
charging cost factor (𝐶X

k,norm) is employed to eliminate the discrepancy in delivered energy
for a fair evaluation as introduced in our previous research [202]. Each charging session’s
comparative charging cost factor of ARM and SC-AlgS, which is denoted by the fraction of
the charging cost ratio and the actual charged energy ratio relative to UNC, as formulated
in Eq. (7.17), is computed and depicted in Fig. 7.11.

This plot displays that aside from sessions where SC shows superior performs like the
ones in node1 and partially in node3, the rest of them share similar factor values between
ARM and SC. The underlying reason for this phenomenon mentioned in the previous sec-
tion is that Semi-public and Public charging sessions take place in these two nodes, and
these types of events usually have short parking duration, or the parking time coincides
when the electricity reaches its peak of the day. These features confine the operable range
of the SC for improving the charging cost reduction.

7

140



7.5. RESULTS

Table 7.5: Charging and node cost comparison

Node 𝐶UN
k, p.u.

[€/kWh]
𝐶ARM

k, p.u.
[€/kWh]

𝐶SC
k, p.u.

[€/kWh] 𝑟𝐶
ARM
UNC
k, p.u. 𝑟𝐶

SC
UNC
k, p.u.

𝐶 tot,UN
n
[€]

𝐶 tot,ARM
n
[€]

𝐶 tot,SC
n
[€] r𝐶 tot, ARM

UNCn r𝐶 tot, SC
UNCn

node1 0.425 0.380 0.361 10.65% 14.98% 462.42 420.81 406.40 9.00% 12.12%
node2 0.468 0.459 0.455 1.82% 2.73% 499.33 488.31 467.35 2.21% 6.41%
node3 0.430 0.414 0.404 3.74% 6.08% 591.70 573.12 549.14 3.14% 7.19%

The average per unit charging cost as well as the sum of node cost of the whole sim-
ulation period are summarised in Table 7.5. The total node cost consists of EV charging
cost and grid power exchange net cost; the FCR service offer calculation and evaluation
are discussed in the following section. The delivered energy by SC-AlgS is, on average,
8.61% less than the energy delivered by UNC, and this value is 8.98% for ARM. Charging
scheduling achieves the most effectiveness in node1, at which the home charging events
transpire. Not only do the per unit charging costs decrease the most (10.65% by ARM,
14.98% by SC) at node1, but also the delivered energy has the smallest gap relative to UNC,
which is 3.18% and 4.38% for ARM, SC-AlgS respectively. Although the total node cost is
reduced by employing ARM and SC-AlgS, a small part of it is actually from the delivered
energy gap in comparison to UNC.

Nonetheless, the results indicate that SC-AlgS indeed improves the overall node profit
and shows better performance than ARM. Yet, to what extent the SC-AlgS can enhance the
benefits is fundamentally determined by the potential of the optimisation horizon where
the target charging events sit, i.e., whether the parking duration is sufficiently long and
if a profitable price moment is enclosed. Charging events like Semi-public and Public are
thus less favourable than the Home charging events in that regard.
FCR provision

Even though the SC-AlgS incorporates the functionality for providing FCR service, the
provision of FCR service in the actual application must adhere to several conditions. A
market participant must first be qualified as a Balancing Service Party (BSP) before en-
gaging in FCR trading activities in the electricity market and then providing balancing
services. In the Dutch electricity market, the basic FCR bidding requirements stipulate tha
bids must be up and down symmetrical and fall within the range of 1 to 25MW, with step
intervals of 0.1MW. Auctions occur over 4-hour periods, leading to six fixed bidding blocks
spanning consecutive time intervals e.g. 0:00-4:00, 4:00-8:00, and so forth, daily. Addition-
ally, once the BRP wins the FCR bid and contracts the offered capacity with the TSO, the
Reserve Providing Units/Group (RPU/RPG, which are the power sources that actualise the
balancing service) are expected to preserve the contracted capacity throughout the entire
4-hour course [213, 221].
Fulfill the FCR bidding requirementsFulfill the FCR bidding requirementsFulfill the FCR bidding requirementsFulfill the FCR bidding requirementsFulfill the FCR bidding requirementsFulfill the FCR bidding requirementsFulfill the FCR bidding requirementsFulfill the FCR bidding requirementsFulfill the FCR bidding requirementsFulfill the FCR bidding requirementsFulfill the FCR bidding requirementsFulfill the FCR bidding requirementsFulfill the FCR bidding requirementsFulfill the FCR bidding requirementsFulfill the FCR bidding requirementsFulfill the FCR bidding requirementsFulfill the FCR bidding requirementsFulfill the FCR bidding requirementsFulfill the FCR bidding requirementsFulfill the FCR bidding requirementsFulfill the FCR bidding requirements

The requirements on FCR supply post at least twomajor obstacles for the EVs to serve as
RPU/RPG. One is to guarantee a 4-hour reserve considering the high mobility and uncer-
tainty associated with EVs, and the other one is the 1MW bidding threshold, which neces-
sitates the availability of tens of thousands of EVs simultaneously. The FCR entry capacity
can be attained by aggregating EVs with other assets as also supported and promoted by
the TSO [213]. The 4-hour bidding duration can also be circumvented by aggregating into
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a large assets pool that is overseen by a BRP. On one hand, aggregated assets can substitute
each other’s asynchronous power thereby enhancing the likelihood of forming 4-hour bid-
ding windows in which power is continuously available, On the other hand, the bidding
duration limitation of each asset is ruled by the BRP, making a shorter window possible.
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From each node or even per EV level, the 4-hour bidding duration can be factored in
when scheduling the EV charging. However, incorporating the 4-hour block reserved-
capacity into optimisation constraints would exponentially increase the MIP complexity,
posing challenges to the computation process as well as the overall capability of pursuing
optimality due to the non-linearity. Consequently, the node level FCR offer 𝑝FCR, ofr𝑛 is
calculated post-optimisation by extracting the minimal power value from the selected 4-
hour blocks, whose available FCR capacity 𝑝FCR, ava𝑛 remains non-zero across the whole
4-hour window.
Benefits of aggregation on top of smart charging in FCR provisionBenefits of aggregation on top of smart charging in FCR provisionBenefits of aggregation on top of smart charging in FCR provisionBenefits of aggregation on top of smart charging in FCR provisionBenefits of aggregation on top of smart charging in FCR provisionBenefits of aggregation on top of smart charging in FCR provisionBenefits of aggregation on top of smart charging in FCR provisionBenefits of aggregation on top of smart charging in FCR provisionBenefits of aggregation on top of smart charging in FCR provisionBenefits of aggregation on top of smart charging in FCR provisionBenefits of aggregation on top of smart charging in FCR provisionBenefits of aggregation on top of smart charging in FCR provisionBenefits of aggregation on top of smart charging in FCR provisionBenefits of aggregation on top of smart charging in FCR provisionBenefits of aggregation on top of smart charging in FCR provisionBenefits of aggregation on top of smart charging in FCR provisionBenefits of aggregation on top of smart charging in FCR provisionBenefits of aggregation on top of smart charging in FCR provisionBenefits of aggregation on top of smart charging in FCR provisionBenefits of aggregation on top of smart charging in FCR provisionBenefits of aggregation on top of smart charging in FCR provision

The offerable FCR capacity is investigated for two cases, which are: 1) when each node
provides the service independently — namely Unit mode; 2) when all the assets in the mi-
crogrid are aggregated and treated as one unitary RPG — namely Group mode. In addition,
the same analysis is replicated under a different scenario in which the EVs are aggregated
by a third-party BRP and a shortened 1-hour bidding length is applied. The offerable FCR
power of all nodes’ sum∑𝑁

𝑛=1 𝑝FCR, ofr𝑛 and from aggregation across the grid 𝑝FCR, ofrGroup is de-
picted in Fig. 7.12, with the normalised FCR price plotted in the background for reference.
The 4-hour and 1-hour bidding constraint differed scenarios are named ”4h” and ”1h” re-
spectively. Specially, the extra offerable FCR capacity in Group mode than in Unit mode
is marked with a navy-coloured shade.

Table 7.6: Summary of FCR service in various modes and scenarios

Key parameters
& Scenario

Unit
mode

Group
mode

Rel. value
Group w.r.t. Unit mode

𝑇 FCR,ofr [h] 4h 108 124 14.81%
1h 157 157 0

Rel. value (1h w.r.t. 4h) 45.37% 26.61% -

𝑝FCR, ofr [kW]
4h 4.94 6.01 21.67%
1h 8.79 9.10 3.56%

Rel. value (1h w.r.t. 4h) 77.76% 51.31% -

𝐶FCR,ofr [€] 4h 6.72 8.93 32.88%
1h 17.70 18.24 3.05%

Rel. value (1h w.r.t. 4h) 163.48% 104.32% -

TheGroup mode substantially upturns the FCR offerable capacity in the 4-hour scenario
pertaining to both bidding hour length and average power, and a shortened 1-hour bidding
window amplifies this effect even further. Among the overall 192 simulation hours, three
nodes collectively provide 108 hours of FCR service in Unit mode, but the Group mode
extends 14.81% of this duration and turns it into a total of 124 biddable hours. On top
of that, the 1h scenario contrives to prolong another 26.61% of the bidding-possible time
window, reaching 157 hours in total after all. The mean offerable power during these
bidding hours also sees a considerable rise, from 4h +Unit mode’s 4.94 kW, to 4h +Group
mode’s 6.01 kW and eventually achieves 9.10 kW with 1h +Group mode, the incremental
steps are 21.67% and 51.31% respectively.

The enhanced availability of assets’ capacity ultimately serves to increase BRP’s profit
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by enabling more FCR service supply. The overall supplementary capacity of 1h +Group
mode with respect to 4h +Unit mode is 894.99 kW×hour, and it gains 11.02 € more income
than the original 6.72 € value. That is to say, the combination of the minimum bidding dura-
tion condition relaxation and the capacity-complimentary assets aggregation, contribute a
167.62% additional tradeable capacity and eventually grants a 175.51% growth in potential
profit.

The summary of FCR offerable service comparison can be found in Table 7.6. It shall be
noted that grid transient and dynamic analysis are beyond the scope of this thesis, thus
the FCR service provision focuses solely on the power capacity span the bidding window.
Nonetheless, further investigation into how EVs provide FCR services and how smart char-
ging influences FCR provision from a transient perspective, particularly in response to grid
frequency fluctuations at the seconds level, is essential.
7.5.2. Stochasticity management validation

Section 7.3 explicates the passive stochasticity coping mechanism of SC-AlgS that con-
sists of a charging event coordinator and a charging process self-correction function. One
leading process of this mechanism is the regular parameter correction and update, as well
as frequent re-optimisations. The validation of the stochasticity coping mechanism is
placed in this section.

The results of SC-AlgS that are scrutinised in the previous section are the upshot of
continual adjustments and calibrations through hundreds of MIP recursions. Several re-
optimisation cycles triggered by representative events that take place between Tue 8:00 -
Wed 12:00 are exhibited in Fig. 7.13. In this figure, the charging profiles of each charger
are displayed in separate rows and each column depicts the snapshot of the selected op-
timisation iteration. The iteration number is listed at the bottom of each column. The time
of each optimisation iteration is pointed by a purple time-index line with the correspond-
ing time annotated at the top, and the optimisation triggering factor is written next to the
time-index line.
Future EV inclusionFuture EV inclusionFuture EV inclusionFuture EV inclusionFuture EV inclusionFuture EV inclusionFuture EV inclusionFuture EV inclusionFuture EV inclusionFuture EV inclusionFuture EV inclusionFuture EV inclusionFuture EV inclusionFuture EV inclusionFuture EV inclusionFuture EV inclusionFuture EV inclusionFuture EV inclusionFuture EV inclusionFuture EV inclusionFuture EV inclusion

The evolution of the charging profiles over the course of re-optimisations is reflected
in the columns progressing from left to right. The event of a new EV (EV_569) entering
the SC monitoring range and thus joining the SC pool is illustrated in the sub-figure of
iteration 115 at charger C1 (denote as 〈iter-115, C1〉, same format applied to the following
text). The sub-plots 〈iter-114,115,126; C1〉, demonstrate how the charging profile of the at-
time-connected EV_296 is influenced by the joining of the new EV and eventually reaching
the stable state. The processing of EV charging cancellation is straightforward and the EV
discard from the SC pool is much simpler than take-in. The cancellation initiated by the
user successfully provokes the removal of EV_430’s data from the system, as demonstrated
in sub-plots 〈iter-127, 150; C3〉.
Uncertain event coordinationUncertain event coordinationUncertain event coordinationUncertain event coordinationUncertain event coordinationUncertain event coordinationUncertain event coordinationUncertain event coordinationUncertain event coordinationUncertain event coordinationUncertain event coordinationUncertain event coordinationUncertain event coordinationUncertain event coordinationUncertain event coordinationUncertain event coordinationUncertain event coordinationUncertain event coordinationUncertain event coordinationUncertain event coordinationUncertain event coordination

It is quite common that the actual arrival and departure of an EV deviate from the ori-
ginal planned schedule. By adjusting the planned and actual EV connection timetable, the
charging event coordinator of SC-AlgS can adapt to the charging event modification with
high flexibility, as introduced in Section 7.3. One example of the delayed arrival of EV_569
is exhibited in sub-figures 〈iter-171, 172; C1〉. EV_569 does not show up as planned at Wed
00:30, and thus SC-AlgS suspends the arrival record for 30min in the system database,
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leaving a narrow gap between the time-index and the start of the charging profile as de-
picted in the sub-figure 〈iter-171; C1〉. The arrival SoC is unknown to the SC-AlgS prior
to the actual connection of the EV, and the default value of 50% is used as a temporary
solution before the update of EV specifications and the user settings upon EV-EVSE hand-
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shake when plugged in. The alignment of the arrival SoC value in the SC-AlgS system is
visible from the SoC start point shifting in sub-plots 〈iter-171→172; C1〉, as well as clearly
spotted from sub-plots 〈iter-150→171; C2〉, 〈iter-150→171; C3〉 and so forth.
Charging process self-correctionCharging process self-correctionCharging process self-correctionCharging process self-correctionCharging process self-correctionCharging process self-correctionCharging process self-correctionCharging process self-correctionCharging process self-correctionCharging process self-correctionCharging process self-correctionCharging process self-correctionCharging process self-correctionCharging process self-correctionCharging process self-correctionCharging process self-correctionCharging process self-correctionCharging process self-correctionCharging process self-correctionCharging process self-correctionCharging process self-correction

The self-correction during charging processes is actuated when the disparity between
the measured current/power/Soc value and SC-AlgS internal tracking value is higher than
the pre-set threshold. Multiple instances are eventuated during the demonstration time
window in Fig. 7.13. One example showing the effect of charging process self-correction is
pinpointed and zoomed-in in sub-figure 〈iter-150; C1〉. The zoomed-in curves evince the
calibration of 𝑖e+,intl to match the measured actual EV charging current 𝑖e+,Act via the em-
ployment of the computed offset value. A minor inconvenience that the charging current
offset value stretches to the upcoming EVs can be noticed in sub-plots 〈iter-115, 126, 127;
C3〉 and 〈iter-126, 127, 150; C3〉. This phenomenon appears due to the self-correction func-
tion applying the charging command offset value to the rest of the optimisation horizon.
This incidence can be easily ironed out by limiting the offset effective duration to only the
current connecting EVs.

Conclusively, the stochasticity coping mechanism in SC-AlgS proves to perform as ex-
pected. Both the coordination of changeable charging events as well as the charging pro-
cess self-correction operate properly.

7.5.3. Pursuing optimality
Optimisation-embedded algorithms frequently encounter the challenge of achieving

and demonstrating optimality. It is often nearly implausible to mathematically prove the
optimality of an engineering solution, particularly in implementation-oriented optimisa-
tion problems. Moreover, due to real-world errors and stochasticity, the gains in solution
effectiveness through approaching optimality tend to be marginal. As a result, approx-
imate optimality is commonly defined to indicate a practically satisfactory result. In this
thesis, ”optimality” refers to proximate optimality (proxi-optimality) with a MIP gap of
less than 5%. This section then investigates the propinquity to optimality of SC-AlgS and
explores the possibility of improving it.
Appraisal of proximity to optimality

As explained in the previous content, there are numerous instances of MIP optimisation
sourced from the passive stochasticity handling mechanism. The optimisation triggering
factors include: a) EV fleet reformation like EV (delayed) arrival/departure, cancelled/no-
show reservation and arrival without reservation; b) EV charging process inconsistencies
such as charging current/power/SoC value dissonant between the measurements and SC
internal system estimations; and c) The grid capacity limitation adjustment. Based on the
optimisation triggers, the MIP iterations are categorised into two groups: prime and light.
The prime group contains events related to EV fleet change including new EVs being added
to the SC monitoring range, EV arrival/departure, cancel/no-show registration and arrival
without reservation. Basically, the prime events are those additions and removals of EVs
from the SC fleet pool, as well as the physical connection and disconnection of EVs. The
rest of the events are classified as light group.

The prime groupMIP iterations have major parameter renewal, while the light group co-
incides with most of the parameters with the prior MIP occurrence. When re-optimisation
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is initiated for the purpose of updating one parameter while a full-functional charging plan
is obtained from earlier optimisation in commission, it would be time inefficient and com-
putational resource depletion to conduct a full re-run of the MIP process without recycling
the serviceable profiles. Therefore, all MIP iterations in light group inherit the preceding
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round’s MIP results as the MIP warm start of the subsequent term. Additionally, an extra
filter mechanism is engaged after each MIP iteration in the light group to serve the para-
mount purpose of EV charging – fulfil the charging request. This filter checks the result
and dismisses the ones that deliver less energy to the EV than their predecessors. The sim-
ulation time interval is 5min, and the optimisation duration has to be shorter than that to
avoid overrun. Thus, a 3min time limit for the prime group and 2min for the light group
is set beside the 5% MIP gap stopping criteria.

To assess the convergence to optimality of all optimisation iterations, the objective value,
MIP gap and the MIP solve/stop time are visualised in Fig. 7.14. The MIP instances that
utilise warm start are marked with green shade. This plot manifests that the majority of
MIP sessions reach their optimality and the warm start does improve the optimisation per-
formance, seeing the MIP gap’s gradual decrease during, for example, node1 1ˢᵗ-Mon 20:00
- Tue 5:00, node2 2ⁿᵈ-Mon 12:00 - 16:00, node3 Sat 16:00-20:00, and so on. Overall, there
are 79.41% of iterations reached optimality, and 70.5% of the warm start sessions obtained
either a better objective value or a smaller MIP gap than its prior iteration. However, it
shall be noticed that even when the MIP gap suggests certain iterations of MIP obtained
optimality, it does not mean the SC-AlgS acquires the optimal charging solution. That is
because theMIP optimality could be obtainedwhen the favourablemoment already passed,
as showcased in Section 7.5.1.
Enhance convergence towards optimality

Results presented in Section 7.5.1 reveal that ARM possesses competitive capability in
reducing the charging cost and the total node cost. This insight inspires a theory that fur-
ther enhancement of the SC-AlgS’s propinquity to optimality can be achieved through the
help of ARM. One extra round of simulation is conducted to substantiate this hypothesis.
In this round of simulation, the ARM profiles are used as the MIP warm start for the prime
group sessions, and the MIP sessions in the light group still use its former cycle’s output
as the warm start. This ARM profile-inspired version of SC-AlgS is named SC-AlgSE and
is symbolised with ”Enh” in the plots.
SC-AlgSE shows improved results in cost-saving, energy delivery as well as FCR serviceSC-AlgSE shows improved results in cost-saving, energy delivery as well as FCR serviceSC-AlgSE shows improved results in cost-saving, energy delivery as well as FCR serviceSC-AlgSE shows improved results in cost-saving, energy delivery as well as FCR serviceSC-AlgSE shows improved results in cost-saving, energy delivery as well as FCR serviceSC-AlgSE shows improved results in cost-saving, energy delivery as well as FCR serviceSC-AlgSE shows improved results in cost-saving, energy delivery as well as FCR serviceSC-AlgSE shows improved results in cost-saving, energy delivery as well as FCR serviceSC-AlgSE shows improved results in cost-saving, energy delivery as well as FCR serviceSC-AlgSE shows improved results in cost-saving, energy delivery as well as FCR serviceSC-AlgSE shows improved results in cost-saving, energy delivery as well as FCR serviceSC-AlgSE shows improved results in cost-saving, energy delivery as well as FCR serviceSC-AlgSE shows improved results in cost-saving, energy delivery as well as FCR serviceSC-AlgSE shows improved results in cost-saving, energy delivery as well as FCR serviceSC-AlgSE shows improved results in cost-saving, energy delivery as well as FCR serviceSC-AlgSE shows improved results in cost-saving, energy delivery as well as FCR serviceSC-AlgSE shows improved results in cost-saving, energy delivery as well as FCR serviceSC-AlgSE shows improved results in cost-saving, energy delivery as well as FCR serviceSC-AlgSE shows improved results in cost-saving, energy delivery as well as FCR serviceSC-AlgSE shows improved results in cost-saving, energy delivery as well as FCR serviceSC-AlgSE shows improved results in cost-saving, energy delivery as well as FCR service

Table 7.7: Charging cost comparison between two versions of SCs

node1 node2 node3 Overall

p.u. Charging
cost [€/kWh]

SC-AlgS 0.361 0.455 0.404 0.409
SC-AlgSE 0.358 0.452 0.403 0.407

Rel. cost reduction 0.74% 0.65% 0.34% 0.55%

Thepower overview of all nodes between SC-AlgS and SC-AlgSE can be found in Fig. 7.15.
The charging profiles of the two versions of algorithms largely overlap with each other in
node2 and node3 due to the charging event types’ (Semi-public and Public) features – re-
latively short parking duration and routinely occur in the daytime. Whether SC-AlgSE is
consistently more effective in lowering the node’s cost is inconclusive solely from reading
Fig. 7.15. For example in node1, there are moments when SC-AlgSE migrates the charging
power towards the advantageous price range like the curves drawn between Sun 0:00 and
6:00 2ⁿᵈ Mon. There are also occasions where the SC-AlgSE’s profiles appear further away
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from the lower price range than the SC-AlgS’s results. As numeric analysis may provide
more insight, the per unit charging cost comparison between two SC versions can be found
in Table 7.7, through which a marginal advantage of SC-AlgSE in cost saving is suggested.

On the other hand, SC-AlgSE exhibits surprisingly solid competency in enabling FCR
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Table 7.8: Compare FCR service between two versions of SCs

Node sum Aggregated
SC-AlgS SC-AlgSE Rel. SC-AlgS SC-AlgSE Rel.

𝑇 FCR,ofr [h] 4h 108 88 -18.52% 124 112 -9.68%
1h 157 147 -6.37% 157 150 -4.46%

𝑝FCR,ofr [kW]
4h 4.94 7.62 54.20% 6.01 7.59 26.14%
1h 8.79 10.07 14.55% 9.10 10.18 11.88%

𝐶FCR,ofr [€] 4h 6.72 9.02 34.27% 8.93 10.91 22.22%
1h 17.70 19.51 10.25% 18.24 20.06 9.98%
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Figure 7.16: EV charging demand fulfillment

service provision that contributes to significant growth in income for offering FCR service.
This outcome is largely thanks to the ARM profile’s lower rate and long-lasting feature
that naturally facilitates a higher FCR service availability. The numeric comparison of
FCR service capability between SC-AlgS and SC-AlgSE is summarised in Table 7.8. It can
be observed from the table that, SC-AlgSE is slightly short in offering FCR available hours
but compensates by providing a considerably higher FCR serviceable power level relative
to SC-AlgS. The imperfection in rendering FCR hours of SC-AlgSE is connected to the
declined continuity of the computed EV charging power. It is further discussed in the
following context.

In addition, SC-AlgSE can slightly enhance the charging energy delivery rate, which is
the fraction of energy delivered by the algorithm divided by the energy delivered by UNC.
The scattered plot of every charging event’s energy delivery rate is presented in Fig. 7.16.
This figure affirms the amelioration of SC-AlgSE’s energy delivery rate. Moreover, the
SC-AlgSE in total delivers 2.27% more energy than SC-AlgS.
The effectiveness of proximity to optimality enhancement is application scenario sensitiveThe effectiveness of proximity to optimality enhancement is application scenario sensitiveThe effectiveness of proximity to optimality enhancement is application scenario sensitiveThe effectiveness of proximity to optimality enhancement is application scenario sensitiveThe effectiveness of proximity to optimality enhancement is application scenario sensitiveThe effectiveness of proximity to optimality enhancement is application scenario sensitiveThe effectiveness of proximity to optimality enhancement is application scenario sensitiveThe effectiveness of proximity to optimality enhancement is application scenario sensitiveThe effectiveness of proximity to optimality enhancement is application scenario sensitiveThe effectiveness of proximity to optimality enhancement is application scenario sensitiveThe effectiveness of proximity to optimality enhancement is application scenario sensitiveThe effectiveness of proximity to optimality enhancement is application scenario sensitiveThe effectiveness of proximity to optimality enhancement is application scenario sensitiveThe effectiveness of proximity to optimality enhancement is application scenario sensitiveThe effectiveness of proximity to optimality enhancement is application scenario sensitiveThe effectiveness of proximity to optimality enhancement is application scenario sensitiveThe effectiveness of proximity to optimality enhancement is application scenario sensitiveThe effectiveness of proximity to optimality enhancement is application scenario sensitiveThe effectiveness of proximity to optimality enhancement is application scenario sensitiveThe effectiveness of proximity to optimality enhancement is application scenario sensitiveThe effectiveness of proximity to optimality enhancement is application scenario sensitive

Last but not least, the optimality acquisition of individual MIP sessions is also examined
in the contrast between SC-AlgS and SC-AlgSE. The overall MIP performance indicators,
including averaged MIP gap (𝑔MIP), numerical mean of MIP stop/solve time (𝜏MIP

fin ), as well
as the percentage of total iterations that acquire optimum (𝛾opt

iter ), are listed in Table 7.9.
For each item per node compared between SC-AlgS and SC-AlgSE, the better results are
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coloured green.
The numbers in Table 7.9 disclose that SC-AlgSE is effective in pursuing optimality for

Semi-public and Public charging events, but less so for home charging events where long
parking duration often span a few opportune charging windows. A fully spread-out char-
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Table 7.9: Compare MIP performance between SC and enhanced SC

node1 node2 node3 Overall
SC-AlgS SC-AlgSE SC-AlgS SC-AlgSE SC-AlgS SC-AlgSE SC-AlgS SC-AlgSE

𝑔MIP [%] 6.44 11.19 12.88 11.80 10.43 9.29 10.33 10.75
𝜏MIP
fin [s] 66.48 67.59 64.94 64.98 81.49 80.58 71.30 71.20

𝛾 opt
iter [%] 82.53 78.45 77.98 78.48 78.68 79.55 79.41 78.85

ging method, like ARM, may miss the best opportunity, making it less desirable in these
scenarios. Therefore, the ARM-inspired warm start applied in Home charging events may
mislead the branch & bound process, potentially causing a counterproductive effect.

Although SC-AlgSE proves to be more effective in cost-saving, energy delivery as well
as FCR service than SC-AlgS, node profit is merely one aspect of the objectives. The other
important objective is to minimise the charging current ramp for the purpose of obtain-
ing a continuous and smooth charging current, as clarified in Section 7.2.2. The charging
current of two SC versions at node1 is portrayed in Fig. 7.17. The curves of SC-AlgS are vis-
ibly less oscillating and smoother than SC-AlgSE, especially between 12:00 Wed and 12:00
Thu. These current vacillations are not only undesirable for steady and effective char-
ging processes, but also risky in undermining the FCR service supply. Any zero-nonzero
value swap could likely interrupt a potential continuous FCR bidding time window. This
explains why the FCR offerable time window of SC-AlgSE is shorter than SC-AlgS. The
current fluctuation of SC-AlgSE perchance contributes to the minor descent in optimality
convergence.

Despite that the ARM warm start boosts the overall SC effectiveness to a certain degree,
the optimisation problem on its own is a difficult task to accomplish, seeing the unsatis-
factory value of 𝑔MIP, 𝜏MIP

fin and 𝛾opt
iter in Table 7.9. This signifies that the MIP procedure can

be refined. For example, provide further strengthened MIP start, dynamically guide and
speed up the MIP using customised heuristics and steer the branch and bound while the
MIP procedure is ongoing. Altering the MIP output utilisation can also help; for instance,
instead of terminating the MIP process when passing the time limit, extracting the best
feasible solutions at the time being as temporary solutions while keeping the MIP running
in the background and updating the results when it eventually succeeds optimum. Lastly,
accessing higher computational power is always an easy resort.

After all, the ARM warm start backed SC-AlgSE presents an adequate outcome with
major potency being superior to SC-AlgS.

7.6. Conclusion
This research presents an upgraded EV smart charging algorithm, SC-AlgS, built on our

previous work in Chapter 6.
The primary advancements concentrate on: stabilising and smoothing the charging pro-

file, upgrading grid balancing service provision, uplifting the propinquity to optimality
of MIP iterations, broadening the applicability of EV smart charging for future scenarios
through an updated flexible moving horizon mechanism, adapting to prompt change of
charging events with high pliability, and dynamically calibrating and correcting the char-
ging parameters.
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7.6. CONCLUSION

The SC-AlgS’s functionalities are validated through simulations, affirming the effective-
ness of its passive stochasticity coping mechanism and the self-correction during charging
as expected.

In terms of profit-related outcomes, the comparison between SC-AlgS, UNC and ARM,
suggests that SC-AlgS transcends both UNC and ARM across most metrics, with ARM
emerging as a strong contender. Regardless of the reduction in charging cost due to sched-
uled charging, neither SC-AlgS nor ARM accomplishes the same level of charged energy
as UNC.

Despite the activation of the 4-hour bidding window limitation, sizable capacities re-
main available for providing FCR services from EV charging. Considering the minimal
bidding entry size, participation in FCR service is unattainable without aggregation. Fur-
thermore, aggregation remarkably maximises the capacity reservoirs, enabling the conver-
sion of available capacity into usable FCR offers, far surpassing the simple summation of
individual assets. Beyond that, aggregation offers the possibility to congregate assets of
short availabilities as a grouped unit to suffice the bidding window (4-hour) requirement.
By doing so, providing FCR service is accessible to the short-term assets who participate
in FCR service supply as a single unit is otherwise inapplicable.

The investigation into optimality across allMIP iterations concludes that SC-AlgS reaches
adequate optimality with given settings. An additional test is carried out to examine
whether using ARM profile as MIP warm start can further enrich the SC-AlgS’s function-
ality. The results substantiate that SC-AlgSE indeed outperforms SC-AlgS in cost saving,
energy delivery and FCR contribution. However, a minor decline in convergence to op-
timality inspected in Home charging events signifies that how well heuristics can improve
optimality attainment is dependent on the application scenarios.

It is consequently logical to assert that a rightfully designed heuristic holds promise for
improving optimisation productivity. Aside from providing updatedwarm starts, heuristic-
guided MIP search and branch and bound represent another encouraging approach.
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8
Key insights

This thesis aims to construct a systematic framework for integrating Electric Vehicles
(EVs) into Low Voltage (LV) distribution grids. The ultimate goal is to develop a multi-
functional, flexible and reliable smart charging algorithm enabling EVmass deployment in
distribution grids. The framework for achieving the main research objective is segmented
into several key parts:

1. Conducting a thorough study on the mass deployment of EVs in distribution grids.
2. Performing a comparative investigation of representative heuristic EV charging tac-

tics to establish a foundation for a smart charging algorithm.
3. Developing a grid congestion prevention mechanism from the DSO perspective in

anticipation of widespread EV connections.
4. Designing, validating, upgrading & refining and eventually assessing a flexible, effi-

cient and reliable EV smart charging algorithm.
With the presented framework, this thesis offers systematic solutions to various key

stakeholders in the EV-grid integrated ecosystem. The PTDF-based centralised grid con-
gestion prevention and mitigation algorithm serves as a potential tool for DSOs to manage
congestion. The hierarchical EV smart charging algorithm can be incorporated in the back-
end of aggregators while the BRP can include EVs as their flexible asset by adopting the
FCR function included smart charging algorithm. Local energy users can benefit from
employing the smart charging algorithm through increasing the utilisation of their local
renewable energy generations and reducing electricity costs.

The key observations and takeaways gathered through each preceding chapter are con-
solidated and presented in this chapter. The following reflections are correspondent to the
objectives that are presented in Section 1.2. The final part of this chapter, following the
reflections on the objectives, presents the recommendations on the future work.
Reflection on O1: The thorough study of EV mass deployment in
the distribution grid
Grid congestion related to uncontrolled EV charging is highly conditional

From the uncontrolled EV charging-induced grid congestion study, it is observed that
all grid components, including transformers, lines and nodes, generally follow a similar
trend. When the transformers experience high loading, the maximum line loading also
has the tendency to increase while the minimal node voltage is more likely to have deep
dips. However, there are occasional instances of local line overloading and regional voltage
drops, particularly in rural grids of remote areas.

The inherent grid features such as its designed capacity, component specifications, in-
habited connections and their load demand, are the fundamental factors contributing to
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congestion risks. Grids of higher designed density, with a greater number of connections,
notably households (which correlate with EV penetration level), tend to experience more
grid congestion issues. Suburban grids, which fit this characterisation, experience more
frequent and higher severity of EV charging-related congestion than other grid types. In-
terestingly, while the trend in line loading does not exhibit a strong correlation with the
average line ratings, a noticeable association is observed between decreased minimal node
voltage and the combination of average line length and the longest feeder length. This
suggests that voltage issues may arise well before line overloading becomes apparent.
LV grids are more susceptible to voltage drop than other overloading issues

The simulation results show that there are more grids that have under-voltage problems
than grids with transformer and line overloading issues. During winter, two out of seven
high under-voltage risk grids suffer from voltage drop even without the presence of EVs,
the situation is exacerbated by excessive EV demand. In an 80% EV penetration scenario,
at least one-fifth of the grid experiences under-voltage problems for nearly half of the
simulation time. Conversely, a maximum of <3% of overloaded line length among all the
simulated grids reveals the scale of line overloading is relatively limited. This problem
mainly occurs at specific lines, such as the main buses near the transformer or local lines
connected to exceptionally high consumption loads.
Most grids that are not at risk of inherent overloading, can sustain a fair level of
EV penetration

It can be concluded that the majority of the grids do not face major congestion when
accommodating 50% EVs. Most of the problematic grids have a small scale and short dur-
ation of grid limit breaching. Where the grids do experience severe congestion, it opens
the opportunity to look into alternative methods beyond upgrading grid facilities. For ex-
ample, smart charging scheduling can be considered in addition to traditional grid facility
upgrades.

Reflection on O2: Comparative investigation of representative
heuristic EV charging tactics

Three representative heuristic EV charging strategies are selected and tested for their
potential and limitations in promoting EV and grid integration. They are: voltage droop
method (VDM), price-signal-based method (PSM) and average rate method (ARM). Each
method focuses on one specific aspect: PSM on charging cost reduction, VDM on grid
impact mitigation and ARM on user-centric considerations.
Heuristic EV charging scheduling outshines uncontrolled charging (UNC) under
majority situations

The effectiveness of the three tested charging methods is assessed through the perspect-
ives of cost savings, grid impact and user experience. The results conclude that VDM is
most successful in improving grid performance concerning peak branch loading reduc-
tion (reduces 7.74%), and the node voltage drops alleviation (under-voltage issue decreases
from 23.53% to 0%) relative to UNC. ARM proves to be the most reliable in simultaneously
improving the grid performance and meeting users’ charging energy demand. Both ARM
and VDM effectively flatten the loading curve while lowering the peak load. While ARM
is viable for reducing total node costs, PSM can achieve charging cost savings that are two
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to three times greater.
The restrictions of heuristic EV charging methods originate from their limited
access to system information and delegated purposes

Even though the heuristic EV charging methods evince acceptable outcomes, their im-
perfections lie in the limited system information and restricted specialities can result in
unbalanced or even biased results. For instance, unfair charging power curtailment can oc-
cur in VDM, and simultaneous charging at moments of lower prices can provoke peak load
issues in PSM. Therefore, the design logic and reference parameters for heuristic methods
must be carefully evaluated.

Reflection on O3: Constructing a centralised grid congestion
prevention mechanism

This thesis proposes a Low Voltage (LV) grid congestion management algorithm in-
corporating three centralised EV charging management schemes: PTDF-based Charging
Management Scheme (PCS), Egalitarian ChargingManagement Scheme (ECS) and Priority-
based Charging Management Scheme (PrCS). Each scheme addresses congestion manage-
ment from a different perspective:
1) The PCS focuses on the elements that have the greatest influence on congestion;
2) The ECS aims to share the congestion pressure in the fairest way;
3) The PrCS seeks to maximise the overall energy transfer to EVs.
Proposed schemes show encouraging outcomes in congestion mitigation, and
favouring their destined optimisation priorities

The activation of all three schemes successfully resolves the overloading conditions of
both the transformer and the lines with high precision. Their integration also leads to
better utilisation of the available grid capacity, which in turn promotes balanced voltage
levels throughout the network. Quantitatively, all three schemes ensure that grid branch
loading does not exceed 100.15% in all cases, while simultaneously meeting an average
of 97.7% of the charging demand. Overall, this part of the work demonstrates that PCS
provides the best results from a grid management perspective. Correspondingly, the PrCS
delivers competitive results in terms of grid performance and achieves the best overall
outcomes from a user standpoint.
Centralised congestion management principally assigns confined grid capacity
and postpones further requests, while smart charging can fundamentally
dissolve the source of congestion

This congestionmanagement-oriented charging control scheme fundamentally processes
the sustained charging request and allocates the available grid capacity in divergent or-
ders until the EV is fully charged or departs. This mechanism has a potential drawback.
A significant growth in the volume of the EV ”waiting lines” with respect to uncontrolled
charging is observed. This increase is comparable for the PCS and ECS cases, which reach
the maximum of 64.3% and 77.2% respectively, while it is significantly higher – 127.7% –
for the PrCS. The direct consequence of the longer waiting lines is an increase in over-
compensation phenomena. Although this aspect does not impede the achievement of the
main objective of the algorithm �i.e. to keep the loading percentages within the allowed
limit �their presence suggests that the available grid capacity has not been exploited to
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the fullest.
Alternatively, instead of suspending and postponing the charging request, planning the

charging events in advance with a smart charging algorithmmay intrinsically prevent grid
congestion from happening.
Reflection on O4 & O5: Design and validation of the EV smart
charging algorithm

This thesis provides a systematic EV smart charging solution in three stages.
1. First, a primary hierarchicalmixed integer programming EV smart charging algorithm

(namely SC-Alg) is formulated with the aim of maximising local system profit while
maintaining unbreached grid capacity.

2. Subsequently, this first version of the algorithm SC-Alg is verified and assessed in a
power hardware-in-the-loop (HIL) testbed that incorporates models of real LV dis-
tribution grids.

3. Finally, the algorithm is upgraded based on the HIL evaluation results and the ad-
vanced implementation requirements. The final stage is discussed in the next sub-
section.

Promising results are attained through smart charging
The SC-Alg presents promising and steady outcomes with or without external stress

factors, including uncertainties and grid restrictions, in contrast to uncontrolled charging.
The results show that the SC-Alg reduces the per-unit charging cost by over 22% in five
out of seven scenarios. Even with a 30% EV capacity input error, the charging cost is still
12% less than uncontrolled charging. The SC-Alg also proves its substantial capability in
alleviating grid congestion with an average of 39.35% peak power reduction, a 1.41% aver-
age minimal voltage increase, and a 95.32% reduction in overloaded energy when no extra
grid restraints are present. Additionally, the incorporation of grid constraints enhances
the peak power reduction by 33.5% and curtails the overloaded energy 65.9% more than
cases without added grid limitations.
Inappropriately adjusted charging schedule could potentially harm the physical
components

However, the oscillation of the EV charging current setpoint caused by unregulated MIP
calculation can potentially stress the hardware in the charger, especially when the setpoint
frequently shifts between zero and nonzero. This behaviour causes the relay in the charger
to constantly open and close, resulting in a shortened charger lifespan over time. Therefore,
a function to reduce the frequent zero to nonzero charging current alterations is valuable.
Randomness in EV charging behaviour and specifications are the predominant
uncertainty source that hinders the charging process

While input parameter-related uncertainties affect the cost-saving of the charging ses-
sion and the grid’s operational range, the unpredictable EV charging behaviour and spe-
cifications can pivot the reliability and validity of the planned charging session in regard
to charging completion. A simple example is that a 30min delayed arrival of a 30min
charging session basically invalidates the entire session. The stochasticity in charging
parameters is crucial for the algorithm’s efficacy. Such as in the HIL simulation, the 30%
of hidden battery degradation deviates 20% of the SOC estimation.
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As a result, augmenting SC-AlgS’s stochasticity management is highly recommended.
Reflection on O4 & O5: Upgrading and evaluating the EV smart
charging algorithm

The last content chapter of this thesis elaborates on the upgraded smart charging al-
gorithm, named SC-AlgS. The upgraded features are as follows:
1) an advanced EV stochastic charging events processing system;
2) a charging process uncertainly handlingmechanism through a feedback-loop-incorporated
flexible-receding-horizon method;
3) functionality-enhanced, warm-start assisted and parameter fine-tunedMIP optimisation
procedure.

The functionalities and performance of SC-AlgS are evaluated through simulations and
compared to uncontrolled charging (UNC), as well as a benchmark heuristic charging
method ARM.
The algorithm enhancement achieves its intended goals

Theresults indicate that the passive stochasticity copingmechanism and the self-correction
capabilities of SC-AlgS in the charging process are confirmed to be effective as anticip-
ated. The comparison in profit-related results, as opposed to UNC and ARM, suggests that
SC-AlgS surpasses both UNC and ARM in most perspectives, but ARM appears to be a
competitive runner-up. The optimality investigation of all MIP iterations concludes that
SC-AlgS reaches adequate proximity to optimality with the given settings.
Technology actualisation for real application is a long ladder to climb

The practical applicational obstacles include but are not limited to: power electronic
component constraints, interoperability and technical requirements of communication
protocols, and compatibility among different system parts. The communication delay and
computational requirements are the other essential factors strongly tied to the feasibility
and efficacy of the charging plan execution.
Asset aggregation as well as optimisation improvement are remarkably
beneficial in FCR service provision

The FCR service provision under various adjusted entry conditions is scrutinised in the
study. It is proved that the greater in size the EV fleet is, the higher FCR available ser-
vice can be contributed through system-level aggregation than the simple accumulation
of the same assets. The aggregation of assets can add a maximum of 32.88% more FCR
service income. Furthermore, if the minimal bidding duration (4-hour) constraint can be
circumvented and decreased to 1-hour through aggregation, the FCR service income could
potentially be 163.48% higher.

It is discovered that an increment in overall convergence to optimality can expand the
FCR serviceable reservoir. This growth is even more attractive – achieving a highest of
34.27% more FCR service income – than the offerable capacity boosts through aggregation.
Heuristic charging method has great potential in bringing the algorithm closer
to optimality

It is discovered that the heuristic charging method can be efficaciously used to raise the
propinquity towards optimality in suitable scenarios. The ARM-inspired MIP warm start
enhancement in optimisation results in a marginal decrease in p.u. EV charging cost and
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it expands the charging energy delivery by 2.27%. The most significant improvement is
reflected in the FCR service provision, which is mentioned in the above subsection. Aside
from strengthening the MIP with the heuristic-inspired warm start, another auspicious
approach is adapting the heuristic in MIP search as well as branch and bound.

Last but not lease, the recommendations for future possible work are summarised below.Last but not lease, the recommendations for future possible work are summarised below.Last but not lease, the recommendations for future possible work are summarised below.Last but not lease, the recommendations for future possible work are summarised below.Last but not lease, the recommendations for future possible work are summarised below.Last but not lease, the recommendations for future possible work are summarised below.Last but not lease, the recommendations for future possible work are summarised below.Last but not lease, the recommendations for future possible work are summarised below.Last but not lease, the recommendations for future possible work are summarised below.Last but not lease, the recommendations for future possible work are summarised below.Last but not lease, the recommendations for future possible work are summarised below.Last but not lease, the recommendations for future possible work are summarised below.Last but not lease, the recommendations for future possible work are summarised below.Last but not lease, the recommendations for future possible work are summarised below.Last but not lease, the recommendations for future possible work are summarised below.Last but not lease, the recommendations for future possible work are summarised below.Last but not lease, the recommendations for future possible work are summarised below.Last but not lease, the recommendations for future possible work are summarised below.Last but not lease, the recommendations for future possible work are summarised below.Last but not lease, the recommendations for future possible work are summarised below.Last but not lease, the recommendations for future possible work are summarised below.
It is recommended to extend the EV uncontrolled and heuristic charging impact study

to the MV grid level, in which multiple interconnected LV grids are encompassed. This
research expansion allows for the a more all-round understanding of the grid performance
with a broader range of LV grid samples, while also incorporating EV traffic patterns and
behaviours that are characteristic of interconnected grids in larger areas.

System or component reliability are beyond the scope of the thesis. However, when
developing algorithms for complex systems like EV integrated LV distribution grids, it is
vital to account for the potential failures in the power grid, the charger, the EV, as well as
the defects in measurements and communication devices.

For a solution intended for real-world implementation, it is crucial to further elevate the
Technology Readiness Level (TRL) of the testing phase. Such as assessing and adapting the
developed grid congestion prevention and mitigation algorithm in collaboration with its
potential end user — the DSO. The same principle applies to the hierarchical EV smart
charging algorithm. Its true capability cannot be demonstrated without testing in the
actual back-end systems of a CPO. On top of that, factors related to human behaviours on
both the user and service provider sides could be incorporated.
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Propositions
accompanying the dissertation

ORCHESTRATING MASS DEPLOYMENT
OF ELECTRIC VEHICLES IN

DISTRIBUTION GRIDS
A SYSTEMATIC FRAMEWORK FOR ADVANCING EV SMART CHARGING

by

Yunhe Yu

1. [This thesis] The balance between complexity and computational effort in algorithm
design involves a trade-off between the generosity of functionalities and the precision
in performance.

2. [This thesis]Themost crucial component in a smart charging algorithm is not the math-
ematical formula itself, but the surrounding factors that ensure the formula’s accurate
actualisation.

3. Optimality should not only encompass the maximum utilisation of resources, but also
their equitable distribution; otherwise limited supply can lead to autonomous allocation
by the populace – with prejudice guaranteed.

4. The biggest obstacle in popularising sustainability is its priceyness, simply because neg-
ative externalities are not embraced in its true price – it is time to concede that destroy-
ing the environment is not free.

5. Being a rigorous engineer involves not only precision in numerical accuracy but also
acceptance of the existence of nonsensical elements.

6. Global disparity in cognition, where one part of the world may lack the luxury of sym-
pathy and compassion while the other underestimates the necessity of harsh measures
for survival, reflects how far resource scarcity can drive human values apart.

7. Ironically, censorship may promote creativity more vigorously than freedom of speech.
When the birth of an expressionmust navigate through sensitive tags and dodge keywords,
the process of encoding becomes an art in itself. The preservation of essence in its
subtle and abstract form in high-context culture exemplifies the creativity in human
intelligence.

8. We are just anthrobots being piloted by the nervous system.

These propositions are regarded as opposable and defendable, and have been approved as
such by the promotor Prof. dr. P. Bauer, copromotor Dr. ir. G.R. Chandra Mouli.
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