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Abstract—Background: Cerebrovascular diseases, which often
involve a disruption in blood flow in the Circle of Willis (CoW)
and its branching arteries, pose a major global health risk. Com-
putational fluid dynamics (CFD) analyses present an opportunity
to study their pathophysiology but require high-quality vessel
segmentations. Methods: To generate pseudo-labeled training
data, computed tomography angiography (CTA) images were
preprocessed and inference was run using two pretrained models:
an nnU-Net for multi-class CoW segmentation and a DTUNet
for binary cerebral vessel segmentation. These outputs were
combined using a region-growing approach; the resulting pseudo-
labels were used to train an nnU-Net V2 with a topology-
aware loss function. CFD analyses were performed on both a
model-generated segmentation and a ground truth segmentation
derived from a CTA scan which had been expert-labeled by a
neuroradiologist. The resulting velocity, pressure and wall shear
stress (WSS) profiles for both segmentations were compared
across 10 cross-sections of the middle cerebral artery (MCA).
Results: After filtering out inaccurate labels, 1,709 of 2,201
pseudo-labeled images were retained for training and testing.
Common errors included over-segmentation of small vessels,
under-segmentation of large vessels and poor separation of the
anterior cerebral arteries when compared to expert-annotated
ground truth segmentations. The proposed segmentation model
was evaluated on the test set, which used pseudo-labels as a
reference standard, and achieved a mean Dice score of 62%,
clDice of 40%, IoU of 51%, a HD of 16.9 voxels and an ASD of 3.9
voxels. In terms of centerline-based metrics, the model achieved
a mean overlap (OV) of 72% and an average ASCD of 4.26
voxels. In CFD simulations, the predicted segmentation yielded
absolute errors of 48.96 ± 30.69 mm/s, 7.47 ± 6.07 Pa and 1.22 ±
0.81 Pa for blood flow velocity, pressure and WSS, respectively,
compared to the expert-annotated reference (p < 0.05 for all).
Conclusions: This study demonstrates that a deep learning
model, trained using pseudo-labels, can successfully generate
anatomically plausible multi-class segmentations of the CoW
suitable for downstream CFD analysis. However, discrepancies
in key hemodynamic metrics compared to expert-annotated data
highlight the need for improved pseudo-label accuracy, especially
in regions of complex vascular geometry.

Keywords: Cerebrovascular disease, Circle of Willis, Com-
putational fluid dynamics, Deep learning, Medical image seg-
mentation.

1. INTRODUCTION

Cerebrovascular diseases currently pose a significant global
health burden and are one of the main contributors to rising

global morbidity and mortality rates [1, 2]. These diseases
can lead to significant changes in cerebral blood flow to
various regions of the brain [3], which can in turn cause
severe neurological damage and, in some cases, death. Stroke,
with an estimated prevalence of 1 in 4 adults affected over
the course of their lifetime [4], is one of the most common
and debilitating cerebrovascular diseases. This condition arises
when blood supply to the brain is disrupted by a patho-
logical ischemic or hemorrhagic process which affects one
or multiple cerebral arteries. Other cerebrovascular diseases
such as aneurysms [5], arteriovenous malformations [6, 7] and
arterial stenosis can further contribute to the risk of ischemic
or hemorrhagic events [8], which exemplifies the importance
of being able to accurately assess cerebral vasculature as a
part of the diagnostic and treatment processes.

The Circle of Willis (CoW) is an important cerebral arterial
structure which acts as a collateral pathway that maintains
adequate blood flow and equalizes blood pressure across
both hemispheres of the brain [9, 10]. The physiological
importance of this structure is underscored in cases where
large cerebral arteries are affected by diseases such as stroke or
arterial stenosis. In these situations, the CoW prevents large
areas of the brain from suffering neurological damage as a
result of oxygen deprivation by providing a collateral blood
flow route which bypasses the affected area [11, 12]. Due
to its crucial role in cerebral circulation and safeguarding
brain tissue against neurological damage, understanding the
structure and function of the CoW both in the presence and
absence of pathology is imperative for diagnosing and treating
cerebrovascular diseases. The ability to visualize and analyze
the CoW in detail, therefore, is essential for clinicians and
researchers alike, enabling accurate assessments of vascular
health, prediction of stroke risk and the planning of interven-
tions.

In current clinical practice, non-invasive imaging modalities
such as computed tomography angiography (CTA) and mag-
netic resonance angiography (MRA) are the most common
modalities used to visualize the CoW [14–16]. CTA is an
imaging technique which makes use of X-ray radiation and
an iodine-based contrast agent which is injected intravenously
to create detailed images of blood vessels. This fast, high-



Figure 1. Anatomical schematic of the constituent arteries of
the CoW. Adapted from the Royal College of Surgeons of
Ireland [13].

resolution imaging modality is commonly used in acute set-
tings for diagnosis and treatment planning for conditions such
as stroke or ruptured aneurysms [17]. MRA is a non-invasive
imaging technique which uses magnetic fields and radio wave
pulses to produce detailed images of blood vessels and soft
tissue structures. Unlike CTA, MRA does not require the
use of ionizing radiation, however, this modality is associated
with longer image acquisition times, higher costs and a lower
spatial resolution compared to CTA [18]. For these reasons,
the number of MRA scans conducted in clinical practice is
currently decreasing, while the number of CTA scans being
conducted is increasing at a much faster rate [14]. However,
despite the growing reliance on CTA, vessel assessment still
largely depends on manual measurements and visual inspec-
tion, which reduces efficiency and introduces variability into
clinical workflows. To meet the increasing demand for accurate
and timely analysis of cerebral vessel structure, there is a
pressing need to increase the degree of automation in CTA
image analysis for both researchers, who aim to investigate
pathological processes in the CoW, and clinicians, who require
patient-specific data.

Over the past few years, medical image analysis has experi-
enced a significant revolution in the development of automated
tools for medical image analysis. This revolution has been
largely powered by the introduction and improvement of
machine learning techniques, especially in the field of deep
learning [19, 20]. Deep learning is particularly well-suited to
medical image analysis as these models possess the capacity
to efficiently learn complex patterns and features present in
images, which lends itself well for disease detection and
diagnosis. Advancements in deep learning architectures such
as the U-Net, which was developed specifically for medical
image segmentation [21], have improved the performance

for segmentation and classification tasks. As a result, deep
learning has become a cornerstone technology for both binary
and multi-class segmentation tasks.

However, some issues still remain. First and foremost, for
almost every type of segmentation there remains the challenge
of creating or obtaining a large, accurately labeled dataset
which can be used to train segmentation models. Without a
large volume of accurate training data, it remains difficult
to achieve strong model performance and generalizability.
Furthermore, while current methods often achieve high ac-
curacy in terms of traditional evaluation metrics, they fall
short in addressing the specific needs of certain downstream
applications, particularly those that require precise topological
integrity [22].

One such critical application is in the field of computational
fluid dynamics (CFD). CFD simulations, an example of which
can be seen in Figure 2, can be used to estimate and model
physiological parameters such as vessel wall stress, flow ve-
locity and blood pressure distributions within specific vessels
under the assumption of specific boundary conditions [23].
These simulations are crucial for understanding the biological
and physiological effects caused by various cerebrovascular
diseases and could also be used for developing personalized
treatment plans for conditions such as aneurysms, stroke and
vascular malformations. Accurate CFD analyses depend fun-
damentally on the availability of high-quality, 3D segmented
models of vascular structures, as any errors or inconsisten-
cies in segmentation can propagate through simulations and
significantly affect the reliability of predicted hemodynamic
parameters [24]. This means that for this application, the seg-
mentation process of vascular networks must aim to preserve
their exact anatomical shape and topology. Additionally, the
segmentations need to be continuous, avoiding any breaks
that would split vessels into disconnected parts. Lastly, the
segmentation should capture the full extent of the vascular
structures, including small and branching vessels, in order to
ensure the accuracy of flow dynamics and pressure distribution
predictions.

It has been shown that CFD simulations can be used to
gain an insight into general cerebral hemodynamics in the
cases of intracranial arterial stenosis [25, 26], and aneurysms
[27]. However, producing models that are tailored to specific
patients remains challenging. Currently, segmentation is also
most often done using semi-automated approaches involving
region-growing, active contours, centerline-based methods or
simple intensity thresholding [28]. Some have already tried to
use deep learning to create an automatic segmentation tool for
CFD analysis for other blood vessels which showed promising
results [29–31]. It should be noted that these models focus
mainly on larger arteries, which calls for the design of an
equally accurate model tailored specifically to the CoW.

Furthermore, despite significant advances in medical im-
age segmentation, most binary and multi-class models have
not been validated in application-specific contexts like CFD,
where preserving vascular topology is essential. Although
several studies report high Dice scores for CoW segmentation



Figure 2. Example of CFD analysis of hemodynamic param-
eters in the CoW. Simulations can be performed to estimate
various parameters, such as blood pressure in mm Hg (a)
and velocity in cm/s (b), to analyze their magnitude and
distribution throughout different vessel regions. In some cases,
specific sections of the CoW may need to be examined
individually, and flow dynamics can be assessed over time
for parameters such as velocity (c). Adapted from Yankova et
al. [32].

[22, 33–35], only the models from Yang et al.’s TopCoW
2023 challenge explicitly focus on topological accuracy [22].
Additionally, systematic evaluation of segmentation outputs
for their suitability in CFD simulations, particularly at the
CoW or individual vessel segment level, is rare. This gap is
exacerbated by the limited availability of large, labeled CTA or
MRA datasets needed for effective model training. As a result,
the potential advantages of applying deep learning to multi-
class CoW segmentation for CFD remain largely unexplored.
Therefore, the main purpose of this study is to investigate
whether deep learning models trained using pseudo-labels can
produce anatomically accurate, multi-class segmentations of
the CoW that are suitable for downstream CFD analysis. The
main contributions of the study are therefore threefold:

• This article presents a novel preprocessing pipeline which
generates a large volume of pseudo-labeled images that
can be used for training segmentation models, thereby
aiming to reduce the need for extensive manual annota-
tions.

• A topology-aware deep learning framework is trained
and evaluated, with an emphasis on topological and

anatomical accuracy and consistency, to provide more
precise and reliable results for downstream analyses at
both the whole-network and individual vessel levels.

• The segmentation model is validated for CFD applica-
tions by comparing blood flow velocity, pressure and wall
shear stress (WSS) in the middle cerebral artery (MCA)
against expert-annotated ground truth, demonstrating its
potential for clinical and research use.

By combining pseudo-labeling with topology-aware learn-
ing, this work aims to streamline CFD workflows, reduce
manual annotation and vessel analysis burdens and enhance
reproducibility in vascular analysis.

2. METHODS AND MATERIALS

A. Dataset

The CTA dataset used in this study was compiled retrospec-
tively using four different sources, including both public and
private sources, as can be seen in Table 1. The dataset includes
130 CTA images which were made publicly available by the
organizers of the Topology-Aware Anatomical Segmentation
of the Circle of Willis for CTA and MRA grand challenge in
2024, also known as the TopCoW grand challenge [22]. The
subjects in this dataset are patients which were admitted to the
Stroke Center of the University Hospital Zurich between 2018
and 2019 for a stroke-related neurological disorder. These CTA
images had a voxel size of 0.45 mm in the x- and y-dimensions
and 0.7 mm in the z-dimension.

A further 143 CTA images were sourced from the publicly
available Clinical, Morphological, Hemodynamic Data for
Aneurysms (CMHA) dataset [36]. This dataset includes scans
of patients who received a CTA scan between 2012 and 2018 at
the Second Affiliated Hospital of Anhui Medical University in
China. The dataset contains 44 CTA images of healthy adults
and 99 CTA images of patients diagnosed with an intracranial
aneurysm. These images have varying voxel sizes which are
all comparable to those of the TopCoW CTA images.

A third publicly available dataset, the Large Intracranial
Aneurysm Segmentation Dataset (LIASD), was used as an
additional source of imaging data [37]. This dataset includes
1,476 CTA images of patients diagnosed with either a ruptured
or non-ruptured intracranial aneurysm, gathered from eight
separate institutions across China. These images also have
varying voxel sizes similar to those of the TopCoW CTA
images.

Lastly, 458 CTA images were obtained from the Multicenter
Randomized Clinical Trial of Endovascular Treatment for
Acute Ischemic Stroke in the Netherlands (MR CLEAN) NO-
IV trial [38], which is stored and curated by the Collaboration
for New Treatments for Acute Stroke (CONTRAST) consor-
tium. This is a private dataset which includes CTA images
from patients that underwent endovascular stroke treatment
across multiple hospitals in the Netherlands, Belgium and
France between March 2014 and December 2018. These
images have varying voxel sizes, with mean voxel dimensions
of 0.45x0.45x1.35 mm in the x-, y- and z-dimensions respec-
tively.



Table 1. An overview of the different sources and patient
populations included in the dataset.

B. Preprocessing

To prepare the CTA images for the semi-automatic gen-
eration of pseudo-labels and subsequent model training, the
images underwent a standardized preprocessing pipeline to
ensure anonymization and compatibility with pretrained seg-
mentation models. All CTA images in the LIASD and MR
CLEAN datasets were first defaced using TotalSegmentator
in order to anonymize the images [39]. CTA images in the
TopCoW and and CMHA datasets had already been defaced
and were therefore not subjected to this preprocessing step.
The anonymized dataset was further preprocessed using two
similar but separate approaches to generate suitable input data
for two pretrained segmentation models, a DTUNet and an
nnU-Net, as can be seen in Figure 3.

For the nnU-Net, input images were clipped and their inten-
sity values thresholded in order to address memory constraints
and ensure consistency across all CTA images. The images
were clipped starting from the cranial region of the skull,
extending 20 cm in the caudal direction. Subsequently, the
intensity values were thresholded to fall within the range of
-1024 to 1600.

For the DTUNet, clipping and thresholding were performed
as described above. Following these steps, atlas-based reg-
istration was conducted using the ANTs toolbox in order
to facilitate skull-stripping of the images [40]. The input
images were registered to a template CTA image in atlas-
space using an affine transformation. The decision was made
to avoid using deformable transformations since these can
stretch, warp, or bend structures. This could possibly introduce
artificial connections, alter the shape of vessels or remove
small vessels, which could lead to topological errors in the
resulting images. Following the atlas-based registration, skull-
stripping of the CTA images was conducted. However, this
process resulted in the internal carotid arteries (ICAs) and the
basilar artery (BA) being truncated prematurely, limiting the
ability to follow these vessels along their full course. For this
reason, prior to skull-stripping a partial dilation of the brain
mask was performed in this region for all images in order to
preserve the ICAs and BA, at the expense of retaining a small
amount of skull tissue in this region.

Figure 3. A schematic representation of the preprocessing
steps required to produce input images suitable for both the
nnU-Net and the DTUNet.

Figure 4. An example of the segmentation output produced by
the pretrained models. (a) The nnU-Net produces a multi-class
segmentation of the CoW which segments up to 12 distinct
arteries. (b) The DTUNet produces a binary segmentation of
all cerebral vessels, including both arteries and veins.

C. Pretrained segmentation models

Once the CTA images had been preprocessed, inference was
run using two separate deep learning models. The first model
was developed by the Charité Lab for Artificial Intelligence
in Medicine (CLAIM) research group [22, 41, 42]. This
makes use of the Residual Encoder Medium (ResEnc M)
architecture, which is a variation of the nnU-Net V2 [43].
The nnU-Net is a special variant of the U-Net that is able
to automatically determine the best configuration, including
preprocessing steps, network architecture and postprocessing
steps in order to optimize the model for a specific task. This
model uses skeleton recall and cross-entropy in its loss func-
tion to produce a multi-class segmentation of the CoW using
raw CTA images as input. The network classifies each voxel
into one of 14 different classes, with 0 being the background
and 1-13 being different arterial segments associated with the
CoW. The segments which the model classifies can be found
in Table 2. An example of the output produced by this model
can be seen in Figure 4a.

The second deep learning network which was utilized was
a Dual-branch Topology-aware U-Net (DTUNet) model [44].
This model is based on the 3D U-Net and contains two main
branches, as can be seen in Figure A1 (Appendix A). One



Table 2. The labels and classes segmented by the pretrained
nnU-Net.

branch is responsible for segmentation of the lumen of a blood
vessel, while the other branch predicts the vessel centerline.
The model also contains a fusion path which integrates the
features identified in the two main branches and passes these
through spatial and channel attention modules. This model
makes use of a topology-aware loss function which employs
the Dice loss for lumen segmentation and a combination
of both the Dice loss and the centerline-Dice loss for the
vessel centerline prediction. This model produces a binary
segmentation of cerebral blood vessels, including both cerebral
arteries and veins. An example of the output produced by this
model can be seen in Figure 4b.

D. Pseudo-labels

1) Pseudo-label generation: Pseudo-labels were created
by first conducting inference using the pretrained nnU-Net
and DTUNet on the preprocessed CTA images. Two separate
segmentation outputs were therefore obtained for each input
image: the nnU-Net model produced a multi-class segmen-
tation of the CoW, while the DTUNet produced a binary
segmentation of the intracranial arteries and veins present
in the image. To isolate and generate pseudo-labels for the
individual CoW segments along with their branching arteries,
a series of operations was performed, as outlined in Figure 5.

First, the inverse of the transformation matrix used to
register the DTUNet input images to the atlas space, A−1,
was applied to the DTUNet output using linear interpolation.
This ensured that the outputs of both the nnU-Net and DTUNet
models were spatially aligned in the original image space.

Following this, a binary mask of each of the segments
present in the output of the multi-class nnU-Net model was
created. Subsequently, multiple binary masks were generated
from the full multi-class nnU-Net output, with each mask ex-
cluding one specific class. Each of these masks was subtracted
from a new, binary mask of the DTUNet output, creating
multiple binary images of the DTUNet output which were each

missing the whole CoW except for a single, unique segment.
This volume was then used for region-growing, where the
remaining segment of the CoW was used as the seed. Region-
growing was performed only for the major arteries present in
the CoW: the basilar artery, the right and left posterior cerebral
arteries, the right and left middle cerebral arteries and the right
and left anterior cerebral arteries.

The resulting images after region-growing for each indi-
vidual segment were binary images with a background value
of 0 and a foreground value corresponding to the segment
number as seen in Table 2. Segment 13 was excluded due
to its rare occurrence and limited clinical relevance. Finally,
the binary output images from the region-growing process
were combined by taking the maximum voxel value between
the combined image and each individual segment image. The
remaining segments that were not used for region-growing
were then added into the combined image to complete the
pseudo-labeled image.

2) Analysis of the accuracy of the pseudo-labels: To assess
the accuracy of the assigned labels, the total number of seg-
ments and volume of individual segments were analyzed for
each pseudo-labeled image. Following this, the mean number
of segments per image and the mean volume per segment
class were calculated, along with their corresponding standard
deviations (STD). Pseudo-labeled images containing outliers,
either in terms of segment count or segment volume, were
excluded from the training and test sets under the assumption
that these cases likely reflected segmentation or classification
errors. Outliers were defined as images containing four or
fewer segments, or those in which one or more segment
volumes deviated more than 1.96 times the SD from the class-
specific mean volume.

To quantitatively estimate the accuracy of the pseudo-
labels, the Dice score was computed between the binarized
pseudo-labeled output and the corresponding original CTA
images. For this, aggressive skull-stripping was performed on
both the pseudo-labeled and the original images in order to
ensure that no skull tissue remained in any images. This was
achieved by eroding the original brain mask and applying
this to all images. Following this, the images were binarized
by applying a threshold. For the pseudo-labeled images, a
fixed threshold of 1 was applied. For the CTA images, a
percentile-based thresholding approach was applied in which
only values above the 99.8th percentile were retained. Dice
scores were calculated for each image to evaluate how well
the pseudo-label generation pipeline segmented and labeled
the arteries present in the original CTA images. A qualitative
assessment was also performed to compare the pseudo-labels
to the thresholded images.

To provide stronger validation, the first author manually
created a voxel-wise multi-class segmentation of the CoW
and its branching arteries for a single, randomly selected
CTA image. This segmentation was reviewed and corrected by
an experienced neuroradiologist. The corresponding pseudo-
labeled image was then quantitatively and qualitatively com-
pared to this ground truth segmentation.



Figure 5. A schematic representation of the creation of the pseudo-labeled images. This outlines the step-by-step process for
generating pseudo-labeled images using operations such as transformations, binarization, subtraction and region-growing.

3) Dataset split: The pseudo-labeled images were split into
training and test sets using a stratified split. Stratification
was done by ensuring that pseudo-labeled images with nine
segments or less, and pseudo-labeled images with 10 segments
or more, were evenly distributed between the training and test
sets. This cut-off point was chosen as prior research suggests
that the expected mean number of CoW segments present in
the pseudo-labeled images should be between 10-11 [22, 45],
which places images with nine segments or less at risk of
being poor quality due to missing segments. This cut-off was
also supported by the distribution of segment counts across
all images. Since the CoW is notorious for its anatomical
variation, images with segment counts below nine could not
be discarded but were divided evenly in case errors were
present. In this way, it was ensured that an equal distribution of
high and poor quality images was achieved across both sets.
Since there is no standardized dataset split for this dataset,
a standard split of 80/20 for the training and test sets was
applied. An analysis of the demographic statistics of both
sets was conducted to ensure that there were no significant
differences between the training and test sets. The organizers
of the TopCoW grand challenge did not provide demographic
statistics for their data which meant that these images were left
out of this analysis. Five-fold cross-validation was applied.

E. Segmentation model

The decision was made to use an nnU-Net V2 due to the
high performance of the nnU-Net in medical image segmenta-
tion applications. In order to ensure that the network produced
a segmentation output that was suitable for CFD simulations,
a custom loss function was created. The first component of the
loss function is the multi-class Dice loss, which was computed
using the following formula:

(1)

where C is the total number of classes, V is the total number
of voxels present in the image, Spred is the segmentation
prediction and Sgt is the ground truth segmentation, which
in this case is the pseudo-labeled image. This component is a
measure of similarity that prioritizes overlap between predicted
and ground truth masks for each class.

The second component of the loss function is cross-entropy
(CE), which is calculated as follows:

(2)

This component ensures that the model prioritizes voxel-
wise prediction accuracy and can combat class-imbalance
present in the images.

The final component of the loss function is skeleton recall.
This is a recent development designed to promote the preser-
vation of connectivity, which is a crucial factor for accurately
segmenting thin, tubular structures such as blood vessels [41].
It offers a computationally efficient alternative to centerline-
Dice (clDice) and is calculated as follows:

(3)

Where SKpred is the skeleton of the predicted segmentation
and SKgt is the skeleton of the ground truth segmentation. The
final and complete loss function can therefore be given as:



(4)

Where ωDice, ωCE and ωSRec are the weights of the
respective loss components. Each loss component was given
an equal weight of one. A soft skeletonization algorithm was
used to extract vessel centerlines from the segmented volumes.
These were then used to compute a memory-efficient soft
skeleton recall loss, which scales well to large 3D image
inputs. The initial learning rate was set to 1 × 10−4 and
was determined in later epochs by a polynomial learning
rate scheduler. Optimization was performed using AdamW.
A foreground oversampling percentage of 75% was chosen in
order to ensure that the model was able to successfully learn
all classes, including the smaller and underrepresented classes.
The model was trained until convergence.

F. CFD experiment

In order to be able to validate the output of the model for
CFD, the ground truth segmentation created by the neuroradi-
ologist was used to provide a comparison independent of the
pseudo-labeling step which could be used for further analysis.
Inference of the proposed segmentation model was run on
the corresponding original CTA image to produce a second
segmentation for comparison. To minimize the risk of setup or
execution errors, postprocessing of both segmentations and the
simulation itself were carried out by an experienced researcher
specialized in CFD. First, the MCA and its three branching
arteries were isolated. The surfaces of the segmentations were
smoothed, small defects were removed and any holes present
were filled in using Autodesk Meshmixer [46]. To generate
a finite element model, both smoothed segmentations were
remeshed, extremities were cut and extensions of 5 mm
were added. Five boundary layers of a maximum thickness
of 0.2 mm were added. The rest of the fluid domain was
meshed with 0.3 mm elements. All surfaces were identified
for boundary condition definition. These steps were performed
using MatLab [47]. Following this, a CFD simulation was run
using three specific boundary conditions: a no-slip boundary
condition on the external surface, a fluid normal velocity with
parabolic profile and a fixed fluid pressure of 0.00144 MPa
at the outlets. A dynamic viscosity of 3.5 × 10−9 MPa was
applied. The simulation was run for 3000 time steps with a step
size of 0.001 s using MatLab and FEBio solver [48]. The blood
flow velocity and blood pressure data were extracted directly
from the simulation output. The WSS was calculated manually
using a standard traction decomposition formula, following
the same method implemented in an in-house postprocessing
tool developed by researchers at the same affiliated institution.
Specifically, the WSS magnitude was computed as:

(5)

Where τ is the WSS vector, Tn is the traction tensor
and σn is the normal stress. A derivation of this formula

can be found in Appendix C. A rough, rigid registration of
both meshes was performed using the iterative closest point
algorithm to improve spatial alignment of the two models prior
to evaluation of the results. This was necessary as the models
can become misaligned in the postprocessing steps when
models are transformed and remeshed in order to identify the
in- and outlets.

G. Metrics

The complete pipeline was evaluated at several distinct
locations. First of all, the accuracy of the pseudo-labels was
estimated using the Dice score calculated between the bina-
rized pseudo-labeled images and the skull-stripped original
CTA images using:

(6)

where TP is the amount of true positives, FP is the number
of false positives and FN is the number of false negatives.

After evaluating the accuracy of the pseudo-labels, the
segmentation accuracy of the proposed model was evaluated.
For this, the Dice score was calculated for each segment class.
The clDice was also calculated for each class by performing
skeletonization of the lumen segmentation and applying the
Dice formula to the centerline points. Besides this, the Inter-
section over Union (IoU) was calculated for each class using:

(7)

The Hausdorff Distance (HD) was calculated for each class
using:

(8)
The Average Surface Distance (ASD) was also calculated

for each segment using:

(9)
The precision and recall were calculated for each class

using:

(10)

(11)



The overlap (OV) was calculated using:

(12)

The Average Symmetric Centerline Distance (ASCD) was
calculated using:

(13)

In order to evaluate the proposed model output following
the CFD experiments, 10 cross-sections perpendicular to the
centerline of the MCA were selected, an example of which can
be seen in Figure 6. Corresponding cross-sections from both
the predicted and ground truth models were compared. The
mean absolute error was then calculated for blood velocity,
blood pressure and WSS for each cross-section. The mean ab-
solute error and its corresponding standard deviation across all
10 cross-sections was then calculated. Paired T-tests were con-
ducted to ascertain whether there were statistical differences
present between the ground truth and the predicted values.
Bland-Altman plots were created in order to analyze the error
distribution and determine whether there was a systematic bias
present. In addition, Pearson’s correlation coefficient (r) and
the coefficient of determination (R²) were calculated to assess
the strength and linearity of the relationship between predicted
and ground truth values.

Figure 6. Example workflow for cross-sectional analysis of the
MCA. A number of centerline points were randomly selected,
at which point a cross-section was made perpendicular to the
centerline at that location. Velocity, pressure and WSS were
then compared across these slices for corresponding points
from the ground truth and predicted models.

H. Implementation details
Training, testing and inference of models were conducted

using PyTorch v2.4.1 with CUDA v12.4. All processes were
executed on an NVIDIA Tesla A100 80GB GPU offered by
the Delft High Performance Computing Centre (DHPC) [49].

3. RESULTS

A. Pseudo-label generation
A total of 2,207 CTA images were processed for pseudo-

label generation. The complete pseudo-labeling pipeline re-

quired approximately five minutes per image, which amounted
to a total processing time of around 184 hours for the full
dataset. The pipeline failed in six instances: three during
preprocessing due to corrupted image data, and three during
nnU-Net inference. This left 2,201 pseudo-labeled images for
further analysis.

To filter out low-quality pseudo-labels, images were eval-
uated for outliers in terms of segment count and segment
volume. The majority of images contained nine or more
segments, as shown in Figure B1 in Appendix B. A total of 165
images were identified as outliers for having four segments or
less. Segment volume analysis showed expected mean values
across all classes, with the exception of segments 11 and 12,
corresponding to the right and left anterior cerebral artery (R-
ACA and L-ACA), respectively. In overlapping cases, the R-
ACA was consistently under-segmented, while the L-ACA was
consistently over-segmented. As this effect was systematic,
it was not considered grounds for exclusion. In total, 351
scans contained at least one segment with an outlier volume.
Lastly, 24 images were marked as outliers due to both segment
count and segment volume. After the filtering process, a
total of 1,709 pseudo-labeled images were deemed to be of
acceptable quality for use in training, validation and testing of
the proposed model.

B. Pseudo-label evaluation

To assess the reliability of the filtered pseudo-labels, both
quantitative and qualitative evaluations were conducted. The
mean Dice score between the filtered, binarized, pseudo-
labeled images and the original, thresholded CTA images was
found to be 48%. To further evaluate pseudo-label quality,
a visual assessment was performed on 20 images selected
to represent a range of Dice scores when compared to their
thresholded counterparts. All selected images passed the initial
filtering criteria for segment count and volume. The subset
intentionally included 14 failure cases with Dice scores below
10% and six successful cases with scores above 50%. In
most failure cases, low Dice scores were attributed to poor
original CTA scan quality (n=5), registration or transformation
errors (n=5), incomplete skull-stripping (n=2), or failure in
the region-growing process (n=2). It was noted that seg-
mentations with nine classes or less often contained more
labeling inaccuracies, which resulted in lower Dice scores.
In all successful cases, the pseudo-labeled images effectively
captured the vast majority of the vessels segmented in the
original image. However, it should be noted that the pseudo-
labeled images tended to slightly under-segment larger vessels
and over-segment smaller ones compared to the thresholded
images, which serve only as a rough approximation and may
not reflect anatomically accurate segmentation. An example of
one of the successful cases can be seen in Figure 7.

To provide further insight into pseudo-label quality, an addi-
tional comparison was performed for a single image between
the expert-annotated ground truth segmentation and the cor-
responding pseudo-labeled image, as shown in Figures 8 and
9. The class-averaged Dice score between the two binarized



Figure 7. A comparison of the eroded and thresholded CTA
image (a) and the eroded pseudo-labeled output (b). In (c), a
substantial overlap is observed, however, the pseudo-labeled
output exhibits a small degree of over-segmentation, particu-
larly in smaller vessels.

images seen in Figure 8 is approximately 40%. Visual analysis
of the multi-class segmentations in Figure 9 yielded three main
observations. First, as highlighted in red, the ICAs appear
prematurely truncated in the pseudo-labeled image, despite
the use of a partially dilated mask during skull-stripping
intended to prevent this. Second, as indicated by the yellow
circles, the pseudo-labeled image fails to clearly distinguish
the ACAs. In nearly all pseudo-labeled images, there is overlap
between the region-grown volumes of the R-ACA and L-
ACA (segments 11 and 12, respectively). The pseudo-labeling
pipeline retains the maximum segment value in overlapping
voxels, resulting in consistent under-segmentation of segment
11 and over-segmentation of segment 12. This overlap also
posed challenges during expert annotation, where the close
proximity of the ACAs often made voxel-level classification
difficult. Close proximity of different vascular structures also
led, in this pseudo-labeled image as well as in a large number
of other pseudo-labeled images, to venous structures being
segmented and classified as a neighboring artery. Finally,
as marked in blue, there appears to be over-segmentation
of smaller arteries in the pseudo-labeled image. Conversely,
larger arteries tended to be slightly under-segmented, though
to a lesser extent. Close-up illustrations of these findings are
provided in Figures B2–B4 in Appendix B.

C. Internal test set performance

There were no significant differences in age, gender or the
mean number of segments present in the images between
the training and test sets, as can be seen in Table 3. The
model was initially trained for 1000 epochs while continuously
monitoring the learning curve to stop model training prior to
overfitting. After 1000 epochs the model had not yet clearly
converged, as can be seen in Figure B6 in Appendix B.
Training was therefore resumed for a further 1000 epochs.
After 2000 epochs, no clear pattern of overfitting was visible,
but the model was considered to have converged as perfor-
mance seemed to have reached a plateau and did not appear
to improve significantly as training progressed. Total training
time was approximately 28 hours.

Figure 8. A comparison of the binarized pseudo-labeled image
(a) and the expert-labeled ground truth image (b). In (c), it is
evident that there is over-segmentation of the smaller vessels
and under-segmentation of the larger vessels in the pseudo-
labeled image compared to the expert-labeled image.

Figure 9. A comparison of the multi-class ground truth
segmentation (a) and corresponding pseudo-labeled image (b).
The three main differences between the pseudo-labeled image
and the ground truth scan are failure to segment the entire
length of the R-ICA and L-ICA (red), failure to separate the
R-ACA and L-ACA (yellow) and over-segmentation of smaller
vessels (blue).

Table 3. The demographic characteristics of the training and
test sets. The mean age and gender ratios do not take the 130
TopCoW CTA scans into consideration, since no demographic
characteristics were made available for this dataset.

The cross-validated model was used to perform inference
on the internal test set and its predictions were subsequently
evaluated, the results of which can be found in Table 4. The
proposed model achieved a mean Dice score of 62% across all
classes, with scores ranging from 51% for the left posterior
cerebral artery to 78% for the right internal carotid artery.
The mean clDice score was 40% and the mean IoU was
approximately 51%. The model also yielded a mean HD of 17
voxels and a mean ASD of 4 voxels. Mean precision and recall
were 61% and 71%, respectively. Centerline metrics presented
a mean OV of 72%, a mean ASCD of 4.26 voxels and FP and



FN rates of 31% and 21%, respectively, as can be seen in
Table 5.

Table 4. Performance segmentation metrics after evaluation of
the model on the internal test set.

Table 5. Performance centerline and structural metrics after
evaluation of the model on the internal test set.

Finally, a qualitative analysis was conducted by comparing
the predicted segmentation with the expert-annotated ground
truth. First, both were binarized in order to compare whether
the predicted segmentation contained the correct number of
arteries and whether the topology of the predicted segmenta-
tion matched that of the ground truth. This comparison can
be seen in Figure 10. Here, it became clear that the model
correctly segmented the majority of arteries, but that larger
arteries appeared to be under-segmented and smaller arteries
appeared to be over-segmented, as was also the case for the
pseudo-labeled images when compared to the ground truth.

A qualitative analysis was also performed for the multi-class
segmentation, as can be seen in Figure 11. It is apparent that
the model suffers from the same limitations that the pseudo-
labeled images also suffered from. The ICAs were truncated
prematurely, resulting in the model failing to segment the
aneurysm in the R-ICA. The model also failed to correctly
separate the L-ACA and R-ACA. Despite these issues, the
overall segmentation appeared visually consistent with the
expected anatomy.

Figure 10. A comparison of the binarized predicted segmenta-
tion (a) and the expert-labeled ground truth segmentation (b).
In (c), the predicted segmentation shows a similar pattern of
over- and under-segmentation relative to the manual segmen-
tation as was observed in the pseudo-labeled images.

Figure 11. A comparison of the multi-class predicted segmen-
tation (a) and the expert-labeled ground truth segmentation
(b) for three different orientations. Notable are the same three
main issues identified in the pseudo-labeled image for the same
case.

D. CFD results

The ground truth segmentation required more manual post-
processing than the predicted segmentation, as the predicted
segmentation contained less defects and extrusions. Conse-
quently, the additional effort needed to prepare it for CFD sim-
ulation led to longer overall preparation times for the ground
truth segmentation compared to the predicted segmentation.
Postprocessing of the predicted model required approximately
10 minutes, as opposed to 25 minutes for the ground truth
segmentation.

Velocity, pressure and WSS were analyzed across 10 cor-
responding cross-sections in the predicted and ground truth
models as shown in Figure B7 in Appendix B. The model’s
predictive performance varied across these parameters, as can
be seen in Figures 12, 13 and 14. For velocity, the scatterplot
demonstrated a weak correlation between the values predicted
for the automated and ground truth models (Pearson’s r =
0.25, R² = -0.99), with many points near the identity line and



a noticeable cluster of over-predictions in the lower velocity
range (100–125 mm/s). The corresponding Bland-Altman plot
indicated a slight positive bias and a uniform distribution
of differences within the 95% limits of agreement. Pressure
predictions showed a strong correlation (Pearson’s r = 0.91,
R² = 0.72) with predicted values closely aligned to the identity
line in the scatterplot. The Bland-Altman plot for pressure
revealed minimal bias and narrow 95% limits of agreement,
with most data points near zero difference. WSS predictions
displayed poor correlation (Pearson’s r = 0.04, R² = -1.84),
with the scatterplot showing wide dispersion away from the
identity line. The Bland-Altman plot for WSS indicated a near-
zero mean bias but broad limits of agreement, reflecting high
variability. Mean absolute errors were 48.96 ± 30.69 mm/s
for velocity, 7.47 ± 6.07 Pa for pressure and 1.22 ± 0.81 Pa
for WSS (all p < 0.05). Plots of pressure and WSS over the
full meshes are shown in Figure 12, while Figure 13 displays
velocity profiles and associated error heatmaps.

Figure 12. Qualitative comparison of the pressure (a and b)
and WSS (c and d) for the ground truth (a and c) and predicted
segmentations (b and d). Overall patterns are similar for both
parameters, but subtle discrepancies are observed between
the predicted and ground truth segmentations, particularly in
terms of WSS. These differences are most noticeable in the
M2 region, where deviations occur in multiple localized areas
along the superior and inferior branches.

4. DISCUSSION

The primary aim of this study was to develop a deep
learning segmentation model capable of producing cerebral
vessel segmentations suitable for CFD analysis of the CoW
and its branching arteries. An accurate vessel segmentation is
a key requirement for CFD, as even small anatomical errors
can significantly affect downstream simulations. The main
challenge in training such a model was the lack of a large,

Figure 13. Qualitative comparison of the velocity for the
ground truth (a) and predicted (b) segmentations. A heatmap
(c) shows the magnitude and location of errors in the predicted
segmentation compared to the ground truth. Velocity profiles
appear to be relatively similar, with larger absolute errors in
the center of the vessel lumen.

expert-annotated CTA dataset for this application. Given the
technical, ethical and practical difficulties of obtaining high-
quality labeled data in medical imaging [50, 51], a pseudo-
labeling strategy was used in order to leverage a large dataset
of unlabeled CTA images. An nnU-Net V2 model with a
topology-aware loss function was trained and its predictions
were evaluated against expert-labeled ground truth segmen-
tations for a single case, with additional CFD validation
performed by comparing velocity, pressure and WSS in the
MCA.

In this study, pseudo-labels were generated using a region-
growing approach to combine binary and multi-class segmen-
tations produced by pretrained models. While this strategy
was efficient, it introduced a number of errors which impacted
label quality. Quantitative and qualitative evaluations revealed
that pseudo-label quality varied, with a mean Dice score of
48% against thresholded CTA images and under- and over-
segmentation in large and small vessels, respectively. Visual
inspection also revealed that segmentations with fewer than
nine labeled classes often suffered from labeling inaccuracies,
especially in complex vascular regions such as the ACAs,
where spatial proximity and image resolution limitations led
to overlap errors, as can be seen in Figure 15. While some
errors were filtered out by discarding pseudo-labeled images
with outliers in terms of segment volume and segment count,
the remaining errors in the dataset may have contributed to
the model converging to a suboptimal solution.

Evaluation of the model on the internal test set revealed a
nuanced picture. The mean Dice score of 62% and IoU of
51% suggest moderate overlap with the pseudo-labeled test
set but substantial class-wise variability was observed. Smaller
vessels and the posterior cerebral arteries generally displayed
reduced segmentation accuracy, likely due to a combination of
anatomical complexity and the higher sensitivity of overlap-



Figure 14. Scatter plots comparing (a) velocity, (b) pressure and (c) WSS values between the ground truth and predicted
models. The corresponding Bland–Altman plots are shown in (d) for velocity, (e) for pressure, and (f) for WSS, in order
to assess error distributions and identify potential systematic biases. The 95% limits of agreement are shown to indicate the
magnitude of the spread of the errors for each parameter.

Figure 15. An example of how the L-ACA and R-ACA appear
to merge in (a) the original CTA scan, and (b) the DTUNet
segmentation. In (c) the voxel-wise overlap of the L-ACA and
R-ACA in the DTUNet segmentation is overlaid ontop of the
original CTA image.

based metrics to small absolute errors in small volumes.
Topological accuracy, as measured by a clDice of 40%, was
also limited when compared to the pseudo-labeled images,
potentially indicating discontinuities or misaligned centerlines
in the predicted vessel trees. Interestingly, visual analysis did
not suggest obvious disconnections, which implies that the low
clDice score is more likely explained by a centerline mismatch
rather than actual structural breaks. A key consideration is
whether the predicted centerline is, in fact, more accurate than
its pseudo-labeled counterpart; an outcome that is plausible if
the segmentation model successfully learned to smooth out

noise present in the training data, thereby producing higher-
quality results compared to the labels it was trained with. This
is possible if noise or errors present in the training data were
completely random and did not contain a systematic bias [52].

Additional metrics provided further insight: the HD was
relatively high at 17 voxels. Although the CTA images varied
in resolution, voxel sizes across all images were comparable
to those in the TopCoW dataset, which are all 0.45 mm in the
x- and y-directions and 0.7 mm in the z-direction. This would
indicate that the HD is between 7.8–11.9 mm. In contrast,
the ASD was only 4 voxels, corresponding to 1.8–2.8 mm,
which implies that the majority of boundary predictions were
reasonably accurate. The poor HD therefore implies that the
predictions contain a small number of large segmentation
errors when compared to the pseudo-labeled images. Addi-
tionally, the model displayed a higher recall of 71% compared
to a precision of 61%, which suggests that the model has
a tendency to successfully identify and classify the majority
of voxels in which a branch of the CoW is present at the
expense of including a higher number of false positive voxels.
This indicates that the model may produce a slight over-
segmentation of the vessels. Visual inspection of the predicted
segmentations showed smooth, plausible segmentations with
three main errors: over-segmentation of smaller vessels, under-
segmentation of larger vessels and misclassification of vessels
due to spatial proximity.

Complementing voxel-wise segmentation metrics,
centerline-based evaluation provides additional insight
into the structural fidelity of the predicted vascular trees.



The mean OV of 72% suggests that the model successfully
captures a substantial portion of the arterial network’s
topology. The ASCD of approximately 4.3 voxels, which
corresponds to 1.94-3.01 mm, aligns well with the surface-
level ASD metric, indicating reasonable spatial agreement
between predicted and reference centerlines.

Importantly, the centerline false positive and false neg-
ative rates of 31% and 21% respectively, reveal nuanced
error modes. The higher false positive rate corroborates the
voxel-level precision-recall imbalance, confirming that over-
segmentation is a key contributor to reduced accuracy. How-
ever, the presence of false negatives also highlights that
some arterial branches are missed by the model, indicating
incomplete vessel coverage.

Crucially, these segmentation errors had downstream con-
sequences in the CFD validation stage. Discrepancies between
the predicted and expert-annotated segmentations in the MCA
affected computed values of blood velocity, pressure and WSS,
though not all metrics were impacted to an equal extent.
While visual analysis showed a relatively strong similarity
between predicted and expert-annotated segmentations for all
parameters, numerical analysis of the CFD results revealed
more pronounced differences. In terms of velocity prediction,
the model demonstrates moderate accuracy, with predicted
values aligning with physiological velocity ranges reported
in existing literature [53–55]. However, the presence of over-
prediction in the lower velocity range suggests a possible bias
in the training data or model behavior in low-flow regions. The
Bland–Altman plot shows that most errors lie between –110
and +130 mm/s, and the observed homoscedasticity indicates
a consistent error magnitude across the entire velocity range.
Pressure is the most accurately and consistently predicted
variable, though the values in both simulations seem to be
lower than those reported in physiological conditions [55, 56],
which is likely due to outlet boundary condition applied where
a fixed fluid pressure of 0.00144 MPa was prescribed, which is
equivalent to 10 mmHg. This value was chosen as it has been
used in previous CFD analyses of the MCA [57], which allows
for comparison of values achieved with those from previous
literature. This comparison showed that the values for the
three hemodynamic parameters predicted for the automated
segmentation were in line with expected values given this
fixed fluid pressure. The smooth spatial behavior of pressure
and lower sensitivity to small-scale geometric variations likely
contribute to making pressure easier for the model to approxi-
mate compared to velocity and WSS. The Bland-Altman plots
shows that the absolute errors are low and that the spread of
these errors is relatively narrow, with most ranging between
-15 and +22 Pa. WSS predictions, on the other hand, seem to
be less reliable. While the values seen in both simulations
are similar to those reported in literature in physiological
conditions [58, 59], the high variability and lack of a consistent
trend suggest that WSS is particularly challenging to predict.
The Bland–Altman plot reveals heteroscedasticity, with a large
error spread ranging from –3.6 to +3.8 Pa. Given that WSS
depends on the spatial gradient of velocity near the vessel

wall, even small errors in velocity estimation or wall geometry
can lead to significant inaccuracies. This emphasizes the need
for improved model resolution or alternative techniques when
targeting local wall-level hemodynamic metrics.

A key strength of the method presented in this work lies in
its development of a scalable pipeline capable of producing
vessel segmentations suitable for downstream analysis. The
use of pseudo-labels allowed for training on a large dataset
that would otherwise have been unusable due to lack of expert
annotations. Prior research has shown that pseudo-labeling
can lead to good performance in medical image segmentation
tasks [60], likely due to the fact that effective learning is
achievable as long as the training data, pseudo-labeled or
otherwise, accurately reflects the underlying distribution of the
target anatomy [61]. It has also been shown that it is possible
for a model that has been trained using a large volume of
pseudo-labeled data to outperform a model trained on a small
amount of expert-annotated data [62]. Furthermore, it has been
determined that even in cases where training data contains
substantially more erroneous data than accurate data, it is pos-
sible for deep learning models to successfully learn underlying
patterns [52]. This shows that pseudo-labeling methods such
as the one employed in this study, even when not entirely
accurate, can be sufficiently reliable for practical segmentation
tasks. The segmentations produced by the proposed model
were also validated for CFD applications, providing a unique
application-oriented evaluation of segmentation quality.

However, limitations of the current method remain. Al-
though previous studies have shown that deep learning models
can perform well even when trained on noisy and error-prone
labels, in this case it is likely that labeling errors limited
the model’s segmentation performance. The region-growing
method, while efficient, did not always resolve overlaps cor-
rectly, especially in arteries such as the ACAs. It should,
however, be noted that even an experienced neuroradiologist
also found it challenging to successfully separate and segment
the R-ACA and the L-ACA, which indicates that this would
be a difficult aspect to improve upon. Spatial resolution of
the input CTA images may need to be improved for better
segmentation of the ACAs. However, the resolution of the
majority of CTA scans used in this study was relatively high.
This means that in order to obtain better results, a more
sophisticated region-growing approach would be necessary.
Furthermore, the pipeline’s performance is dependent on the
accuracy of each individual step; any errors in pseudo-labeling,
segmentation, or CFD simulation can propagate into subse-
quent processes and will affect the final outcome, making error
attribution difficult.

One limitation of this study was the lack of an objective
ground truth, which had several important consequences. First,
it made it difficult to reliably assess pseudo-label quality,
forcing reliance on visual inspection and indirect validation.
Having a small, manually annotated dataset would have pro-
vided a more reliable basis for assessing pseudo-label quality
and could have improved the overall training process. Second,
due to the absence of ground truth labels, all evaluation



metrics were computed against pseudo-labels that themselves
may contain noise and errors, potentially underestimating the
true performance of the model. Lastly, the absence of a
definitive ground truth posed challenges for validating the
predicted segmentation for CFD analyses. In this study, a
manual segmentation was created for a single case through
expert annotation and treated as the ground truth. However,
this reference segmentation was not necessarily the true vessel
geometry but rather the best approximation achievable by
a human expert, which may still contain inaccuracies or
inconsistencies, particularly in complex regions. For example,
the manual segmentation was somewhat coarse in parts, which
may not capture the precise vessel shape needed for realistic
flow simulations. The fact that the manual segmentation also
required more postprocessing in order to be made suitable
for CFD simulations also indicates that there were errors and
inconsistencies present in this segmentation. This uncertainty
makes it difficult to objectively assess how far the hemody-
namic parameters in the predicted MCA model were from the
genuine values. This means that the study can validate that
the segmentation model can produce segmentations suitable
for CFD but cannot confirm how accurate the predicted
segmentations are.

While pseudo-labeling offers scalability, this study rein-
forces the idea that label quality can form a key bottleneck
in achieving clinical-grade segmentation models. Future work
could therefore focus on improving pseudo-label quality, for
example by setting stricter requirements at the filtering step
or by evaluating the reliability of individual pseudo-labels and
filtering out low-confidence examples prior to training [63].
Methods should be sought which allow for better pseudo-
labeling of the ACAs, perhaps by incorporating more advanced
region-growing approaches such as marker-controlled water-
shed segmentation, graph-cut segmentation or active surfaces.
Furthermore, evaluating the trained model against a small,
expert-labeled test set could aid in establishing a more accurate
benchmark for true performance and inform future iterations
of the segmentation pipeline.

This study sought to address a critical gap in the existing
literature by developing a segmentation model that not only
achieves high voxel-wise classification accuracy but also aims
to ensure that the resulting segmented structures are topo-
logically correct and suitable for CFD analyses. Compared
to existing approaches, particularly those relying on manual
segmentation or traditional preprocessing, this method offers
several advantages. By automating the segmentation pipeline,
it significantly reduces the time burden on clinicians and
researchers while enhancing objectivity, reproducibility and
consistency. Additionally, the proposed pseudo-labeling strat-
egy eliminates the need for labor-intensive manual annotation
of large datasets, which is both time-consuming and error-
prone. However, the results indicate that the segmentation
model requires further refinement before it can be reliably used
for CFD analysis. Notable discrepancies in blood velocity,
pressure and WSS were observed between the predicted and
ground truth MCA models, suggesting potential shortcom-

ings in the pseudo-labeling process, model training, or both.
Although it is difficult to pinpoint the primary source of
error, it is plausible that low-quality pseudo-labels contributed
to the model converging to a suboptimal solution. While
pseudo-labeling enables the training of segmentation models
in data-scarce environments, the error in these labels can
limit both segmentation accuracy and downstream utility. This
study underscores the delicate balance between dataset size,
label quality and model performance, particularly in the high-
precision context of medical imaging. Despite current limi-
tations, the development of this segmentation model tailored
for CFD analysis of the CoW represents a meaningful step
toward enabling more accurate personalized simulations and
ultimately improving clinical decision-making in the manage-
ment of cerebrovascular disease.

5. CONCLUSIONS AND RECOMMENDATIONS

This study demonstrates the potential of using pseudo-
labels to train a multi-class segmentation model of the CoW
for downstream CFD analysis. While the model successfully
generated anatomically plausible segmentations and enabled
full CFD simulation, the validation against expert-annotated
segmentations revealed significant differences in key hemody-
namic metrics, namely blood flow velocity, pressure and wall
shear stress. These discrepancies underscore the limitations
of the current pseudo-labeling approach and its impact on
downstream analysis. Improving the accuracy and consistency
of pseudo-labels, particularly in regions with complex vascular
geometry and regions where neighboring arteries are in close
proximity to one another, will be essential for advancing the
clinical utility of such models. Future work should also include
evaluation against a smaller, expert-annotated test set to better
assess model reliability.

ETHICS STATEMENT

Ethical approval for this study was obtained from the Hu-
man Research Ethics Committee of the Technical University of
Delft (HREC No. 5305). Informed consent, including consent
for re-use of imaging data, was obtained by the respective
institutions at the time of data collection.

DATA AVAILABILITY STATEMENT

The imaging datasets used in this study include three
publicly available datasets and one private dataset. Due to
restrictions on patient data privacy and agreements with data
providers, the combined imaging dataset used for this study
has not been made publicly available. Access to imaging data
from the MR CLEAN NO-IV trial can be requested directly
from the CONTRAST consortium, with details and procedures
available at https://www.contrast-consortium.nl/data-requests-
consortium-members-and-trial-collaborators. However, the
preprocessing pipeline and model code developed are
available upon request.



ACKNOWLEDGEMENTS

The author would like to express sincere gratitude towards
Dr. S. Pirola, Dr. T. van Walsum and F.G. te Nijenhuis for
their guidance, feedback and unwavering support throughout
the course of this thesis. Special thanks also go to F. Fontana,
doctoral candidate in the Department of Biomechanical Engi-
neering at TU Delft, for her assistance with the CFD simula-
tions. The author also wishes to thank Drs. S.A.P. Cornelissen,
interventional radiologist at the Department of Radiology and
Nuclear Medicine at Erasmus Medical Center, for her support
in creating the manual ground truth segmentation.

REFERENCES

[1] GBD 2021 Stroke Risk Factor Collaborators, “Global,
regional, and national burden of stroke and its risk
factors, 1990-2021: A systematic analysis for the global
burden of disease study 2021,” Lancet Neurol., vol. 23,
no. 10, pp. 973–1003, Oct. 2024.

[2] V. L. Feigin, M. Brainin, B. Norrving, S. O. Martins,
J. Pandian, et al., “World stroke organization: Global
stroke fact sheet 2025,” Int. J. Stroke, vol. 20, no. 2,
pp. 132–144, Feb. 2025.

[3] T. G. Shaw, K. F. Mortel, J. S. Meyer, R. L. Rogers,
J. Hardenberg, et al., “Cerebral blood flow changes in
benign aging and cerebrovascular disease,” Neurology,
vol. 34, no. 7, pp. 855–862, Jul. 1984.

[4] World Stroke Organization, ”Impact of Stroke”, https:
//www.world- stroke.org/world- stroke-day-campaign/
about - stroke / impact - of - stroke, 2025 (accessed Apr.
2025).

[5] G. J. Rinkel, M. Djibuti, A. Algra, and J. van
Gijn, “Prevalence and risk of rupture of intracranial
aneurysms: A systematic review,” Stroke, vol. 29, no. 1,
pp. 251–256, Jan. 1998.

[6] C. P. Derdeyn, G. J. Zipfel, F. C. Albuquerque, D. L.
Cooke, E. Feldmann, et al., “Management of brain
arteriovenous malformations: A scientific statement for
healthcare professionals from the american heart as-
sociation/american stroke association,” Stroke, vol. 48,
no. 8, e200–e224, Aug. 2017.

[7] C.-J. Chen, D. Ding, C. P. Derdeyn, G. Lanzino, R. M.
Friedlander, et al., “Brain arteriovenous malformations:
A review of natural history, pathobiology, and interven-
tions,” Neurology, vol. 95, no. 20, pp. 917–927, Nov.
2020.

[8] P. B. Gorelick, K. S. Wong, H.-J. Bae, and D. K.
Pandey, “Large artery intracranial occlusive disease:
A large worldwide burden but a relatively neglected
frontier,” Stroke, vol. 39, no. 8, pp. 2396–2399, Aug.
2008.

[9] D. Benner, B. K. Hendricks, A. Benet, and M. T.
Lawton, “Eponyms in vascular neurosurgery: Compre-
hensive review of 11 arteries,” World Neurosurgery,
vol. 151, pp. 249–257, 2021.

[10] J. Rosner, V. Reddy, and F. Lui, “Neuroanatomy,
circle of willis,” in StatPearls, Treasure Island, FL,
USA: StatPearls Publishing, Jan. 2025. Available:
https://www.ncbi.nlm.nih.gov/books/NBK534861/.

[11] R. D. Henderson, M. Eliasziw, A. J. Fox, P. M. Roth-
well, and H. J. M. Barnett, “Angiographically defined
collateral circulation and risk of stroke in patients with
severe carotid artery stenosis,” Stroke, vol. 31, no. 1,
pp. 128–132, Jan. 2000.

[12] H. Lv, K. Fu, W. Liu, Z. He, and Z. Li, “Numerical
study on the cerebral blood flow regulation in the circle
of willis with the vascular absence and internal carotid
artery stenosis,” Front. Bioeng. Biotechnol., vol. 12,
p. 1 467 257, Aug. 2024.

[13] Royal College of Surgeons of Ireland, ”RCSI - Drawing
Circle of Willis - English labels”, https://anatomytool.
org/content/rcsi- drawing- circle- willis- english- labels,
2024 (accessed Apr. 2025).

[14] J. W. Goldfarb, M. Mossa-Basha, K.-L. Nguyen, E. M.
Hecht, and J. P. Finn, “Trends in magnetic reso-
nance and computed tomography angiography utiliza-
tion among medicare beneficiaries between 2013 and
2020,” Clin. Imaging, vol. 107, p. 110 088, Mar. 2024.

[15] D. A. Katz, M. P. Marks, S. A. Napel, P. M. Bracci, and
S. L. Roberts, “Circle of willis: Evaluation with spiral
CT angiography, MR angiography, and conventional
angiography,” Radiology, vol. 195, no. 2, pp. 445–449,
May 1995.

[16] E. Kalsoum, X. Leclerc, A. Drizenko, and J.-P. Pruvo,
“Circle of Willis,” in Encyclopedia of the Neurological
Sciences (Second Edition), M. J. Aminoff and R. B.
Daroff, Eds., Second Edition, Oxford: Academic Press,
2014, pp. 803–805.

[17] S. A. Mayer, T. Viarasilpa, N. Panyavachiraporn, M.
Brady, D. Scozzari, et al., “CTA-for-all,” Stroke, vol. 51,
no. 1, pp. 331–334, Jan. 2020.

[18] A. T. Vertinsky, N. E. Schwartz, N. J. Fischbein, J.
Rosenberg, G. W. Albers, et al., “Comparison of mul-
tidetector CT angiography and MR imaging of cervical
artery dissection,” AJNR Am. J. Neuroradiol., vol. 29,
no. 9, pp. 1753–1760, Oct. 2008.

[19] G. K. Thakur, A. Thakur, S. Kulkarni, N. Khan, and
S. Khan, “Deep learning approaches for medical image
analysis and diagnosis,” Cureus, vol. 16, no. 5, e59507,
May 2024.

[20] M. Li, Y. Jiang, Y. Zhang, and H. Zhu, “Medical image
analysis using deep learning algorithms,” Front. Public
Health, vol. 11, p. 1 273 253, Nov. 2023.

[21] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Con-
volutional networks for biomedical image segmenta-
tion,” in Proceedings of the International Conference
on Medical Image Computing and Computer-Assisted
Intervention (MICCAI), 2015, pp. 234–241.

[22] K. Yang, F. Musio, Y. Ma, N. Juchler, J. C. Paetzold,
et al., “Benchmarking the CoW with the TopCoW

https://www.world-stroke.org/world-stroke-day-campaign/about-stroke/impact-of-stroke
https://www.world-stroke.org/world-stroke-day-campaign/about-stroke/impact-of-stroke
https://www.world-stroke.org/world-stroke-day-campaign/about-stroke/impact-of-stroke
https://anatomytool.org/content/rcsi-drawing-circle-willis-english-labels
https://anatomytool.org/content/rcsi-drawing-circle-willis-english-labels


challenge: Topology-aware anatomical segmentation of
the circle of willis for CTA and MRA,” Dec. 2023.

[23] P. D. Morris, A. Narracott, H. von Tengg-Kobligk,
D. A. Silva Soto, S. Hsiao, et al., “Computational fluid
dynamics modelling in cardiovascular medicine,” Heart,
vol. 102, no. 1, pp. 18–28, Jan. 2016.

[24] M. J. Colebank, L. M. Paun, M. U. Qureshi, N. Chesler,
D. Husmeier, et al., “Influence of image segmentation
on one-dimensional fluid dynamics predictions in the
mouse pulmonary arteries,” J. R. Soc. Interface, vol. 16,
no. 159, p. 20 190 284, Oct. 2019.

[25] J. Liu, Z. Yan, Y. Pu, W.-S. Shiu, J. Wu, et al., “Func-
tional assessment of cerebral artery stenosis: A pilot
study based on computational fluid dynamics,” J. Cereb.
Blood Flow Metab., vol. 37, no. 7, pp. 2567–2576, Jul.
2017.

[26] X. Leng, F. Scalzo, H. L. Ip, M. Johnson, A. K.
Fong, et al., “Computational fluid dynamics modeling
of symptomatic intracranial atherosclerosis may predict
risk of stroke recurrence,” PLoS One, vol. 9, no. 5,
e97531, May 2014.

[27] M. Castro, C. Putman, and J. Cebral, “Computational
fluid dynamics modeling of intracranial aneurysms: Ef-
fects of parent artery segmentation on intra-aneurysmal
hemodynamics,” American Journal of Neuroradiology,
vol. 27, no. 8, pp. 1703–1709, 2006.

[28] D. Lesage, E. D. Angelini, I. Bloch, and G. Funka-Lea,
“A review of 3D vessel lumen segmentation techniques:
Models, features and extraction schemes,” Med. Image
Anal., vol. 13, no. 6, pp. 819–845, Dec. 2009.

[29] N. Mu, Z. Lyu, M. Rezaeitaleshmahalleh, J. Tang, and
J. Jiang, “An attention residual u-net with differen-
tial preprocessing and geometric postprocessing: Learn-
ing how to segment vasculature including intracranial
aneurysms,” Med. Image Anal., vol. 84, p. 102 697, Feb.
2023.

[30] M. Bertolini, G. Luraghi, I. Belicchi, F. Migliavacca,
and G. Colombo, “Evaluation of segmentation accuracy
and its impact on patient-specific CFD analysis,” Int. J.
Interact. Des. Manuf. (IJIDeM), vol. 16, no. 2, pp. 545–
556, Jun. 2022.

[31] J. Montalt-Tordera, E. Pajaziti, R. Jones, E. Sauvage,
R. Puranik, et al., “Automatic segmentation of the great
arteries for computational hemodynamic assessment,” J.
Cardiovasc. Magn. Reson., vol. 24, no. 1, p. 57, Nov.
2022.

[32] G. Yankova, D. Tur, D. Parshin, A. Cherevko, and
A. Akulov, “Cerebral arterial architectonics and cfd
simulation in mice with type 1 diabetes mellitus of
different duration,” Scientific Reports, vol. 11, Feb.
2021.

[33] F. Dumais, M. P. Caceres, F. Janelle, K. Seifeldine, N.
Arès-Bruneau, et al., “EICaB: A novel deep learning
pipeline for circle of willis multiclass segmentation and
analysis,” NeuroImage, vol. 260, p. 119 425, 2022.
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APPENDIX

A. Supplementary Methods

Figure A1. A graphical illustration of the DTUNet architecture. The figure highlights the segmentation and centerline branches,
which are subsequently integrated by a fusion branch to enable simultaneous lumen segmentation and centerline prediction
from CTA image patches. Adapted from Liu et al. [44].

B. Supplementary Results

Figure B1. Comparison of segment counts and volumes between filtered and unfiltered pseudo-labeled images. For both
metrics, data from filtered images are compared against unfiltered images which include volume and segment count outliers.
Error bars indicate the standard deviation of the measurements.



Figure B2. Pseudo-labeling discrepancies between L-ACA and R-ACA. A close-up evaluation highlights challenges in pseudo-
labeling the L- and R-ACA, with the pseudo-labels in the top pane and the expert-labeled ground truth in the bottom. The
magnified insets, corresponding to the yellow-boxed regions, visually demonstrate instances where the pseudo-labels fail to
distinguish between these two segments, indicating misclassification or an inability to maintain accurate anatomical separation.

Figure B3. Over-segmentation in distal cerebral artery segments in pseudo-labels. A close-up visual assessment of the distal
parts of the segmented cerebral arteries in the pseudo-labels in the top pane and the expert-labeled ground truth in the bottom
pane. The areas indicated by the blue boxes reveal over-segmentation of smaller vessels, highlighted by the magnified insets.
This illustrates a key challenge in accurately delineating the finer, more complex distal regions.



Figure B4. Truncation in pseudo-labeling of proximal ICA segments. A close-up evaluation of the proximal cerebral arteries
shows that both ICAs are truncated prematurely in the pseudo-labels, shown in the top pane, compared to the expert-labeled
ground truth in the bottom pane. The red-boxed insets highlight the missing portions of the segments, suggesting that the
pseudo-labels fail to capture the full extent of the ICAs in these regions.

Figure B5. The learning curve for a single fold of the proposed model. This shows training (blue) and validation (red) losses
over 2000 epochs, both decreasing over time. The pseudo dice score (green) improves overall, and appears to plateau around
a pseudo dice score of 60%.



Figure B6. The mean Dice scores achieved per class. This figure illustrates the mean Dice scores obtained for the segmentation
of each distinct anatomical vascular segment. This provides a detailed breakdown of segmentation accuracy across different
parts of the vascular network.

Figure B7. Cross-sectional analysis of the MCA. A representative cross-section is shown at a randomly selected centerline
point in the ground truth model. The zoomed-in inset displays velocity across the lumen at that location, perpendicular to the
centerline. The corresponding slice in the predicted model was identified by minimizing Euclidean distance between centerline
points, and velocity, pressure and WSS were compared across slices for corresponding data points.



C. Derivation of formula for wall shear stress

By Cauchy’s stress theorem, the traction vector Tn acting on a surface with unit normal vector n can be calculated using:

Tn = σ · n

where σ is the normal stress. This can be decomposed into two components via vector projection: one perpendicular to the
surface, and one tangential to the surface, as shown:

Tn = σnn+ τ

where τ is the shear stress vector. This decomposition step can be seen in Figure C1. Rearranging this equation gives:

τ = Tn − σnn

To find the magnitude of τ , use the dot product property:

∥v∥2 = v · v

In order to find the magnitude squared:

∥τ∥2 = (Tn − σnn) · (Tn − σnn)

And expand:

∥τ∥2 = Tn ·Tn − σn(Tn · n)− σn(n ·Tn) + σ2
n(n · n).

Then simplify using the following additional properties:

Tn · n = σn, n · n = 1,

In order to achieve:

∥τ∥2 = ∥Tn∥2 − 2σ2
n + σ2

n

= ∥Tn∥2 − σ2
n.

Therefore, the magnitude of the shear stress vector is given by:

∥τ∥ =
√

∥Tn∥2 − σ2
n

n

Tnσn

τ

45°

Figure C1. Decomposition of the traction vector Tn into normal stress σn and wall shear stress τ .
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