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ABSTRACT

Many engineering problems require some objective to be optimized subject to certain constraints. For linear
and convex optimization problems, techniques exist that can find the global minimum. For problems that
have local minima or complex constraints, finding the global minimum is more difficult. An example of such
a problem can be found in Lansingerland, where heat needs to be supplied by greenhouses.

In this work a heat generation problem that has a local objective but complex constraints is solved using
simulated annealing. The problem has the form of a demand supply problem and is applied in the context
of generating heat for greenhouses in the region of Lansingerland. The objective is the costs that we want
to keep as low as possible. The constraints arise from the network used to transport the heat, because the
pressure in the pipes and valves of this network needs to be kept under control.

Prior to coming up with a solution, the patterns of the heat demand are studied to decide what conditions
the solutions should take into account. It was found that days follow a similar pattern and that the demand is
higher in winter than in summer months. Furthermore the distribution of the heat demand over the different
greenhouses is roughly equal for each day.

Then, a look is taken at how a heat control can be solved using a stochastic optimization technique with-
out considering variations during the day. Instead the problem is solved as if the heat demand for a single day
is constant. We improve on canonical simulated annealing by making our mutations more intelligent than
random. Two better approaches are shown to accomplish this. One starts by an analysis of trying different
solutions to see what works best under what circumstances. This will be referred to as a smart mutation. The
other approach varies the type of mutation based on earlier iterations. This will be referred to as an adap-
tive mutation. Both approaches show similar results, but since the adaptive mutation doesn’t require much
domain knowledge, this one is easier to apply to other problems. The influence of the starting point is also
explored. In our setup it mattered a lot whether the initial point was already located in the feasible domain
or not, for how quickly a solution can be found. We found that a good initial scenario should be one that
already starts in the feasible domain. The best result was obtained by creating an initial scenario that for each
greenhouse randomly decides to use the CHP or the RoCa. The mutation that gave best results in our case
was the adaptive mutation, but it is expected that if more domain knowledge is added the smart mutation
would be the best one.

Finally, we will demonstrate how a heat control problem can be solved if the heat demand varies over time.
In order to do so, a new way is introduced to segment time-series. This segmentation will be used to cluster
the heat demand for a single day and to solve the problem for each segment individually. This improves the
solution considerably, because it enables us to generate more heat at cold moments of the day like midnight,
but to save on costs during the hot parts of the day.
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1
INTRODUCTION

Figure 1.1: The old situation with the pipeline of RoCa in black and
the pipelines to the greenhouses in red. (Arcadis, 2012).

This work is dedicated to finding an algorithm that
produces a cost-efficient produce scheme to gen-
erate heat for greenhouses in Lansingerland given
the energy demands over the day within the im-
posed constraints. Lansingerland is an area in Rot-
terdam consisting of the municipalities Bergschen-
hoek, Bleiswijk and Berkel and Rodenrijs. In this
area greenhouses are located that are supplied heat
by means of a thermal grid network. In the old sit-
uation, heat used to be generated centrally and pro-
vided through the network to the greenhouses. A
picture of this network can be found in Figure 1.1.
Because of economical reasons, the network is be-
ing transformed into a so called smart thermal grid.
Unlike the old situation, this new grid will be decen-
tralized and most of the heat will be produced at the
individual greenhouses and be shared over the net-
work.

Energy provider Eneco has started a project to
investigate the situation and this project is divided
in the following parts:

1. Development of a ‘dynamic netmodel’. Un-
like the old model, which was centralized, this
new model can have multiple energy sources.

2. Greenhouse growers need to be able to supply
and receive heat to the network.

3. Supply and demand of heat need to be
matched in an optimal way, while satisfy-
ing the physical constraints of the netmodel.
To evaluate the physical feasibility, a model
called Drukval is used that comes in the form
of a Fortran program written by Stephan Mes,
who is an employee of Eneco.

In this thesis we explore how optimizing the en-
ergy production for production costs can be done
as quickly and accurately as possible. The Drukval
model can be used directly in the optimization process or indirectly by training an aggregate, a simplified
model that can be optimized more efficiently. This will be explained further in Section 2.5.
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4 1. INTRODUCTION

MAIN CONTRIBUTIONS
This work tackles a practical optimization problem with an objective and constraints using simulated anneal-
ing. It explores the choices that work well in the context of a constrained heat supply and demand problem.
An initial heat generation scenario and a mutation need to be chosen for simulated annealing to work with.
Although we apply our solution to the heat generation problem, some of the principles can also be used in
other contexts like deciding the next best decision depending on what situation you are. Furthermore, a
method is provided to cluster a linear time series that has some useful theoretical properties.

THESIS OUTLINE
In Chapter 2, the problem will be explained in greater detail and the research question will be formulated. In
Chapter 3, the data of our problem will be analysed in great detail. In Chapter 4, the problem will be tackled
by simulated annealing. Ultimately, in Chapter 5 the contribution of this thesis and future work is discussed.



2
PROBLEM DESCRIPTION

The goal of this project is to find a method such that given the heat demands over a given day, a cost efficient
heat production scheme can be found in reasonable time that satisfies these demands subject to constraints.

2.1. PROBLEM SKETCH
In Lansingerland, 104 greenhouses are growing crops. Each of the greenhouses needs to operate on a fixed
temperature. Due to warmth transmission, infiltration, ventilation and warmth used for the preparation of
tap water, some of the heat gets lost. The amount of heat lost by these influences, linearly depends on the
difference between the temperature in the greenhouses (which will from now on be referred to as the indoor
temperature) and the outdoor temperature. This creates a heat demand for each greenhouse that varies
during the time of day.

2.1.1. TRANSITION TO THE SMART GRID
In the old situation which is depicted in Figure 2.1a, heat was mainly produced by the RoCa from E.ON, which
got transported through a unidirectional grid of heat pipes to the greenhouse owners, who need it for crop
production. When the maximum production capacity of the RoCa was reached, the heat production would
be supplemented by CHPs or boilers, but the heat produced by the CHPs was not shared through the network.
In the network heat exchangers can be found. These are devices that can be used to transport heat from the
grid to the individual greenhouses. There are two streams of water. One stream flowing forward from the
RoCa to the greenhouses that has hot water and one flowing back from the greenhouses to the RoCa that has
cold water.

In the new situation, which is depicted in Figure 2.1b, some of the heat will still be produced centrally, but
in addition heat produced by the RoCa of individual greenhouse owners can be put on the network as well
and be used by other greenhouse owners. It can be said that in the new situation the greenhouses with a CHP
have changed from consumers into prosumers, greenhouse that occasionally consumers and occasionally
produce heat themselves. Software is needed to manage the supply and demand of heat in this new decen-
tralized thermal grid and to prepare a heat plan for a single day. In this new situation the heat exchangers are
also used to transport heat from the producing greenhouses to the grid.

2.2. HEAT SOURCES
The available sources for generating heat are the RoCa, CHPs and the boilers. The buffers are available for
temporary heat storage.

RoCa A huge powerplant owned by Eneco for centralized heat production. This heat will be put on the net-
work and be transported to the individual greenhouses through the pipeline. This power plant pro-
duces gas and steam at the same time and has a maximum power of 200 MW. The RoCa has a start-up
time of 4 hours, but is flexible in its heat production.

CHP Units that produce heat and electricity at the same time. Most greenhouse owners have one. They can
choose to generate heat for their own usage or share it with the other greenhouses through the same
pipeline. Hence these provide for decentralized heat production.

5



6 2. PROBLEM DESCRIPTION
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(a) The old situation. Heat was produced centrally by the RoCa and transported to the individual greenhouses.
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(b) New situation. There will still be a RoCa, but the individual greenhouses can optionally temporarily become producers
too.

Figure 2.1: The old and new situation of the heat grid.



2.3. DESCRIPTION OF THE DEMAND DATASETS 7

Their production is linear, but when the CHPs deliver to the network, their outgoing debits are fixed to a
contractual value. For each greenhouse, a fixed debit value is provided for the winter months (January,
February and March) and the spring months (March, April and June).

Boiler Each greenhouse owner has a boiler. They are not used a lot since heat from the network is cheaper.
It mainly serves as a backup heat source or when the heat demand is higher than the maximum heat
generation of the other sources combined. They are only used for private usage so heat produced this
way is not shared through the network. Because for this thesis infinite production capacity is assumed
for the RoCa and the CHPs, the boilers are not considered. If production capacities were considered,
it is not certain these would be reached, but in case they are, the result would be higher costs, but no
extra pressure on the network.

Buffer Most of the greenhouses have a buffer unit in which heat can be stored for later usage. Each of these
buffers has a different maximum capacity. When stored in the buffer the heat will have a slow decay
that will be neglected. When the day ends, the amount of heat stored in the buffer should be the same
as at the beginning, so all heat generated should be used within 24 hours. The buffers are not taken
into account in this research. If they were taken into account, the buffer could be used to save up some
of the heat during the afternoon hours, during which the demand is low and be used at night when it’s
colder. It would thus smoothen the demand curve, which will be discussed in more detail in Chapter 3.

The costs of each heat source will be discussed in detail in Section 2.6. A heat source that is not used yet
but might become relevant in the future is geothermal energy. This heat source will be discussed in Para-
graph 5.2.1.

2.3. DESCRIPTION OF THE DEMAND DATASETS
The heat demand for the months January to June (180 days) has been provided by Eneco which contains the
heat demand for each of the individual greenhouse owners for every interval of 5 minutes of the day in MWh
(that means 288 moments per day) for 104 greenhouses. There were some inconsistencies in the formatting
of the date and for some months some of the intervals are missing. This has been solved by converting the
date format to YYYY-MM-DD hh:mm and by linear interpolation of the missing data. The time intervals
over which data was missing were never larger than 10 minutes, so it is expected that the resulting data after
interpolation is still accurate. The months January to March will be considered to be winter months and
the months April to June will be considered spring months. The system is going to be used for day-ahead
planning, so each day, which starts and ends at midnight, will be considered a separate problem. These heat
demands will be studied in detail in Chapter 3.

2.4. SCENARIO REPRESENTATION
The heat demand that is supplied to us is divided in intervals of 5 minutes for which the heat demand needs
to be fulfilled. A solution is specified by the heat production of the RoCa and the 15 greenhouse CHPs for each
interval. The simplest representation of a scenario is to indicate for each greenhouse for each point in time
whether the greenhouse is producing or consuming and if they are producing, how much is being produced.
The production and consumption per source depend on this in the following way:

• If a greenhouse is producing, it will deliver a fixed amount to the network. Technically, it takes 10
minutes for a CHP to run on its full potential. The greenhouse will produce slightly more than it delivers
to the network, because it also needs to fulfil its own production. If a greenhouse is consuming, it will
request heat from the network to fulfil its heat demand.

• If more heat is demanded by the greenhouses than the total production of all CHP’s, the remaining heat
is produced by the RoCa. This will create an ingoing flow at the greenhouse that are consuming.

• If more heat is demanded than the total production of all CHP’s and the maximum RoCa production,
the remaining heat is produced by the individual boilers. This will have no effect on the heat trans-
portation network. Since no maximum production of the RoCa is known, this heat source is ignored.

The boilers are used to supplement the heat when the other heat sources are not fulfilling the demand
and can be calculated by calculating how much of the demand d(t ) is unfulfilled by the heat delivery of the
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CHPs and the RoCa:

Hboilers =
∑

d(t )−HCHP −HRoCa (2.1)

The boilers are only used for a greenhouse’s own consumption and its heat is not put on the network. If the
CHP produces, it produces both for the greenhouse itself and for the network. It is assumed there is no limit
on the amount of heat CHP can produce, but its production is still limited, because the heat is distributed on
the network on a fixed value, so the maximum it would produce is the debit of the greenhouse it belongs to
and the maximum it can put on the network.

2.4.1. FEASIBILITY OF SCENARIOS
The problem is further complicated by the fact that in the new situation, the pressure on the pipes is much
higher.

There are two kinds of constraints that would make a scenario infeasible:

• The heat demand consumption of a specific greenhouse at a specific time interval is lower than de-
manded. This problem is easily handled by employing private heaters, which are assumed to have
unlimited capacity and high costs whenever the heat at a greenhouse is unfulfilled. This is the most
expensive heat source, though.

• The pressure on the valves is too high. The physics are described by Van der Mes [1], but a summary of
the relevant parts is given in Section 2.5.

2.5. TECHNICAL AND PHYSICAL CONSTRAINTS ON PIPES
When water flows through a pipe, there needs to be a pressure difference between both end points of that
pipe. Water will flow from a point where the pressure is high to a point where the pressure is low. To calcu-
late how much pressure is needed, first the pressure that gets lost through the pipes, the so called pressure
drop, has to be calculated. The pressure loss δP (measured in bar) in pipes depends linearly on the aver-
age streaming speed of the water through that pipe v (measured in m/s) and the density of water ρ (about
1000kg/m3, depending on how pure the water is). Furthermore, for straight pipes this pressure difference
depends linearly on the length of that pipe L (measured in m) and the resistance factor λ and is inversely
proportional to the diameter di (measured in m) of that pipe. For a curved pipe i , the pressure loss depends
linearly on a coefficient ζi which is the resistance coefficient for that pipe, a value which is supplied by the
pipe manufacturer. So for a straight pipe without any curves, the dynamic pressure loss follows the following
formula:

δPi =λ
L

di
· 1

2
ρv2 (2.2)

For a curved pipe, the dynamic pressure loss follows the following formula:

δPi = ζi · 1

2
ρv2 (2.3)

The liquid speed v can be calculated using:

v = Qv
π
4 d 2

i

(2.4)

Furthermore, valves might be of influence on the pressure loss. It is assumed that the effect of these valves
is negligible.

The total dynamic pressure loss of the net can be calculated from those of the individual pipes and valves
in the network:

δPtotal =
∑

i
δPi (2.5)

To realize a heat flow Φth[kW ], water is used. Furthermore, heat can be transported faster when the
temperature difference ∆T [K ] is small. The volume stream or debit Qv [m3/h] can be calculated by:

Qv = 3600 ·Φth

c ·ρ ·∆T
(2.6)
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Figure 2.2: Temperature difference depending on the outdoor temperature

depending on the density of water ρ = 1000kgm−3, the specific heat c = 4.19kJkg−1 K−1 and the temperature
difference ∆T [K] between the temperature at which heat is supplied and the return temperature.

The supply temperature is the temperature at which water goes into the greenhouse and the return tem-
perature the temperature at which the water returns. The supply should be such that the required tempera-
ture in the greenhouse is achieved. The colder it is outside, the higher the supply temperature should be to
compensate. This difference∆T [K] can be calculated by the following formula using the outdoor temperature
To[◦C ], the supply temperature Ts [◦C ] and the return temperature Tr [◦C ]:

Ts = 35

25
(15◦C −To)+80◦C (2.7)

Tr = 10

18
(8◦C −To)+60◦C (2.8)

∆T = max(Ts −Tr ,0) (2.9)

The result of these formulas is a linear dependency between the outdoor temperature and the temperature
difference between the supply and return temperature as depicted in Figure 2.2. According to the KNMI[2]
the average temperature in the Netherlands is 10◦C , thus on average ∆T = 30◦C .

The pressure difference that needs to be created should not just compensate for the pressure loss, but also
needs to take the vertical distance H between the liquid heights, the difference in height between where the
liquid is put on the network and where it is removed, into account. This required pressure difference is called
the discharge pressure and its formula is:

P = ρ · g ·H +δP (2.10)

where g is the gravity acceleration (9.81ms−2) and ρ is the density of water 1000kg/m3.
However, the pressure can not be too high and there is a so called pump curve. A violation of this pump

curve occurs when:

P > Plimit = Pmax

(
1−

(
Qv

Qvmax

)2)
(2.11)

Where P [bar] is the pressure of a pump, Pmax = 8bar, Qv (m3/h) is the debit of the CHP and Qvmax is the
maximum debit which depends on the size of the pump which that CHP is using. This pump curve is plotted
in Figure 2.3.

A program called Drukval exists that calculates the pressures of each pump from the debits at each green-
house. As input to this program debits are specified for each greenhouse for every 5 minutes of a day. Those
debits have positive values when a greenhouse is consuming heat from the network. When a greenhouse is
supplying heat to the network, the debits have negative values.

There are two setups in which Drukval can be used. The straightforward way is to use the setup in Fig-
ure 2.4a, where we feed the program a scenario to figure out whether it is feasible or not. An alternative to
speed up evaluation is shown in Figure 2.4b, where the choice is made to first learn a simplified linear model
that behaves just like Drukval and to use the simplified model instead. Such an approach has been used be-
fore for auction problems[3]. Such an approach has the advantage that a linear model is easy to optimize.
The disadvantage is that it is difficult to find a model that represents Drukval well. Our trained model might
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Figure 2.3: Pump curve

Heat source Marginal heat costs per GJ

CHP ¤ 6.37
RoCa ¤ 8.30
Boiler ¤ 9.89

Table 2.1: Costs by heat source according to Van den Ende [4]

erroneously report correct scenarios as incorrect (false negatives) or incorrect scenario as correct (false pos-
itives) and might therefore not be able to find the optimum scenario. The choice was made to use Drukval
directly, but the alternative will be discussed again in Section 5.2.5.

2.6. COSTS
When dealing with the costs for each greenhouse there are fixed costs, variable costs and earnings as can be
seen in Equation 2.12. Fixed costs include deprecation, maintenance and heat losses. However, as these costs
have no influence on the optimization routine, they will be ignored for the rest of this thesis. Technically heat
losses are not fixed costs as they depend on the temperature difference between the heated water and its
surroundings. As they are independent from the amount of heat transported through the network, they will
be treated as fixed costs in this thesis.

Heat cost = Fixed costs+Variable costs−Earnings (2.12)

Production costs For the production costs, two prices play a role: the gas price and the electricity price.
The gas price is stable and is treated as a fixed price per day. The electricity price is irregular and depends
on the current rate on the APX, an energy exchange active in the Netherlands. Producing electricity saves the
companies from buying it and a surplus can even be sold on the market. Electricity is produced by the CHPs
and the RoCa. The consequence is that a low electricity price could make the boilers more profitable, whereas
a high electricity price makes the CHPs and the Roca become the efficient option. This price will be treated as
fixed per hour. The CHPs also produce CO2, but according to the report of Samira [5] this CO2 "is not directly
applicable".

In Figure 2.5, graphs by Van der Ende [4] illustrate how the electricity and gas price influence the heat
cost per MWh of heat produced. As can be seen both the production costs of the CHP and RoCa decline
linearly when the electricity price increases. When the electricity price weakens, it becomes more profitable
to use boilers. Because gas is needed for production, a higher gas price results in higher production costs.
CHPs and the RoCa need more gas per unit of heat produced than boilers and hence their production costs
are slightly more sensitive to fluctuations in gas price (which does not fluctuate as much as the electricity
price). The figure also shows geothermal plants. Geothermal plants are not used yet, but if they were used, its
production costs would be relatively cheap because of government subsidy.
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(a) Heat cost depending on electricity price (b) Heat cost depending on gas price

Figure 2.5: Heat cost graphs (created by Mark van den Ende [4])

Transportation costs There are also costs related to pumping the heat through the network. These costs
depend linearly on the amount of heat pumped through the network and the pressure difference. In the
thesis by Mark van den Ende[4], the following table of estimates for the pumping cost Tcost are given. Values
in-between can be estimated by interpolation, e.g. linear interpolation.

Pressure loss(bar) Pumping cost (per MWh)
4 ¤0.33
7 ¤0.57

10 ¤0.81
13 ¤1.06

These costs only need to be paid when heat needs to be transported, which only happens when a green-
house does not produce enough heat on its own, i.e. when the generated heat HG i j is lower than the de-
manded heat HD i j at time i for greenhouse j :

CT i j =
{

(HDi j −HGi j )×Tcost if HGi j ≤ HDi j

0 else
(2.13)

2.6.1. SIMPLIFIED COST MODEL
In our optimization, only the production costs will be taken into account, because these costs are expected
to be the dominant ones. For the different heat sources, the prices from Table 2.1 will be used. In reality,
the prices are varied throughout the day, but these patterns are unknown to us. So for calculating the costs
Equation (2.14) is used.

C = 6.37 ·PCHP +8.30 ·PRoCa +9.89 ·Pboiler (2.14)

2.7. OPTIMIZATION
Figure 2.6 shows how a single scenario is ranked. For a demand, the CHP production PRoCai for each green-
house is decided using a method that will be discussed in Chapter 4. The additional demand is satisfied using
the RoCa, which will produce PRoCa, and the boiler, which will produce Pboileri , as long as it’s unfulfilled. Now
the production costs can be calculated per heat source.

PCHP =
15∑

i=1
PCHPi (2.15)

The costs are given by:

CRoCa = 6.37 ·PRoCa (2.16)

CCHP = 8.30 ·PCHP (2.17)

Cboiler = 9.89 ·Pboiler (2.18)
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From the RoCa and CHP production the debits are calculated using Equation (2.6) and given to the Druk-
val program to calculate the pressure in the valves. The pump curve between these pressures and debits
are checked for feasibility using Equation (2.11). Now the costs and pump curve are known for this single
scenario.

Our goal is to minimize the total production costs throughout the day.

min
24∑

t=1
(CRoCa(t )+CCHP(t )+Cboiler(t )) (2.19)

2.7.1. MATCHING SUPPLY AND DEMAND
Given a heat demand throughout the day of D(t ) and the total production at time t is given by:

Ptotal(t ) = PRoCa(t )+PCHP(t )+Pboiler(t ) (2.20)

For there to be enough heat, we want supply and demand to match during each time of the day such that:

Ptotal(t ) ≥ D(t )∀t (2.21)

2.7.2. INCLUDING PHYSICAL AND TECHNICAL CONSTRAINTS
In addition to buffer constraints, we will also need to include physical and technical constraints from Sec-
tion 2.5.

For this, the Drukval program needs to be run first to calculate the pressures for every greenhouse g ∈G :

DPg∀g ∈G (2.22)

And make sure that:

fg = dPg

Plimit
(2.23)

= dPg

dPmax ·
(
1−

(
Qvg

Qvmax

)2
) < 1 (2.24)

for all greenhouses g as discussed in Section 2.5.

2.8. EXAMPLE CALCULATION
In Section 2.8 the heat demands HD and heat production HG are given of a small network with three green-
houses. For each of the greenhouses the heat demand HD and generated heat HG during a specific hour are
given in MWh. Greenhouses WAS51 and WAS52 are both supplying heat to the network, whereas greenhouse
WAS54 is only extracting heat.

In an 1-hour interval the demanded heat is 1257 + 21998 + 0 = 23225 MWh and the generated heat is
0+21998+9428 = 31426 MWh.

The role of buffers is ignored for now. When the demanded heat is larger than the generated heat for a
greenhouse, heat is extracted from the network and when the demanded heat is smaller than the generated
heat for a greenhouse, heat is put on the network. Furthermore, it is assumed that the outdoor temperature
is 10◦C anytime anywhere, which according to Figure 2.2 means that ∆T = 30K . So in this example filling in
Equation (2.6) the debit can be calculated as Q = HD−HG

1000·4.19·30 .
Now for calculating the pressure difference DP , the Drukval program by Stephan Mes is used, which only

needs the debit as input.
To decide its feasibility, the following helper variable is created:

Plimit = dPmax ·
(
1−

(
Qv

Qvmax

)2)
(2.25)

Another view of the feasibility is given by the variable f defined as follows:

f = dP

Plimit
(2.26)

= dP

dPmax ·
(
1−

(
Qv

Qvmax

)2
) (2.27)
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RoCa WAS052 WAS054 WAS051
HD HG HD HG HD HG HD HG

12:00:00 0 1.06e+08 1201.4 25.1 781.5 8.8 2.8 19.9
13:00:00 0 1.06e+08 0.3 25.1 85.0 8.8 2.9 19.9
14:00:00 0 1.06e+08 0.2 25.1 3160.0 8.8 2.9 19.9
15:00:00 0 1.06e+08 0.2 25.1 69.9 8.8 3.0 19.9
16:00:00 0 1.06e+08 891.5 25.1 3157.3 8.8 3.0 19.9

Table 2.2: Example problem heat demands HD and heat production HG

Production Costs

RoCa 1.06e+08 876.8
CHP 1.06e+06 6.8

Boiler 0 0.0

Table 2.3: Example problem costs per heat source

WAS52 WAS51

Qv 0.0 0.0
dP 0.0 0.0

Plimit 8.0 8.0
f 0.0 0.0

Table 2.4: Example calculation of debit Qv , pressure dP , pressure limit Plimit and feasibility metric f

A solution is feasible if and only if f ≤ 1 for all greenhouses at all times. The formula for f will henceforth be
referred to as the feasibility metric.

2.9. DEALING WITH VARIATIONS OF THE HEAT DEMAND DURING THE DAY
As can be seen Figure 2.7 and as will be discussed in detail in Chapter 3, the heat demand varies over the
day. There are different solutions to this problem, but there are two requirements that should be taken into
account:

• Scenarios should be continuous. For this research the choice has been made to not vary the state of a
CHP more than once an hour.

• A CHP can only be turned on twice a day.

Taking the maximum demand The easiest solution is to ignore the daily variations and optimize for a single
point. Such a single point can be found by taking the peak demand for each individual greenhouse and
finding a static solution that produces enough heat for those peaks and not violate any physical constraints.
If a stable solution can be found for this extreme case, this solution will work for the complete day. This
approach is taken initially in Chapter 4 and it would be a waste or energy to produce the same amount of
heat during when at night little heat is needed.

Optimizing for each time moment separately subject to constraints The most flexible solution would be
to solve the problem separately for each individual moment. There are 104 greenhouses and 288 moments
during a day. However the found solution needs to be continuous and satisfy the requirements mentioned
above. This can be solved by introducing penalties for any discontinuity, but this makes optimization diffi-
cult. If this solution is implemented, varying the value of a heat source requires changing the value of the
surrounding time moments too to prevent discontinuities from being introduced. The resulting scenarios
will also needs more cooperation between the different actors and each of the actors needs to operate at a
different time. It is also needed for all the greenhouses to stick to this plan.
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Figure 2.7: The heat demand varies over the day

Time interval CHP 1 CHP 2 CHP 3

1 on on on
2 on off on
3 on on on
4 on off off

Table 2.5: Example of turning CHP’s on and off over four time intervals

Segmenting the heat demand Another way to deal with time is by dividing the day up in segments and
solving for each segment separately. This solution is followed in Section 4.5. The same segmentation will
be used for everyone, so all of the actors will have to operate at roughly the same time. Then for each of
these segments, the peak demand is taken for each individual greenhouse and a static solution is found that
produces enough heat for those peaks and not violate any physical constraints. Limiting the number of seg-
ments to 4 makes sure no CHP is turned on and off more than once a day, because for turning it on thrice at
least 5 points of switching are needed. Handling continuity will have to be done, by having short transitions
periods between the segments. In the experiments continuity is ignored, but dealing with these transitions
is expected to be a simple problem and some of the ways these transitions can be done will be discussed in
Section 5.2.3. An example of how a CHP can be turned on and off over multiple time intervals is given in
Table 2.5.

2.10. OBJECTIVE AND RESEARCH QUESTIONS
The main research question of this thesis is:

How can stochastic optimization algorithms be used to solve a heat control optimization problem
that has a linear objective and black-box constraints for which a simulator exists?

We have a linear objective, which is to minimize the costs which depend linearly on the heat sources that
are used. The RoCa is a linear heat source, which means that the costs depend on the state of this source. The
CHPs are heat sources that can be on or off, so their production can be considered to be linear as well. The
constraints are not linear and require an optimization method that can deal with non-linear constraints.

We have a general understanding of what the simulator is doing, but some of the information is unknown
to us, like the positions and topology of the individual greenhouses and the thermic influences on the pres-
sure that is currently not considered. A program has been supplied to us that can be used to evaluate the
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physical constraints by calculating the pressure and comparing this to the maximum pressure that is tolera-
ble. Since we have little knowledge about the network itself, we are going to use a stochastic method.

This problem will mainly be applied in the context of the Eneco heat grid, where heat needs to be provided
to the greenhouses as cheaply as possible, but without causing physical constraints, while making sure every
greenhouse has its demand satisfied.

Research question 1 What are the patterns that should be taken into account?

Since the heat demands of the different days are used as the input for our problem, there are a few patterns
that we want to investigate. The heat demand is specified as the need for heat per greenhouse per 5 minutes.
This makes us wonder if the heat demand is actually different. If the heat demand remains more or less
constant over the day, the heat demand can be averaged and we can solve the problem once for the average.
Otherwise, it is needed to somehow adapt the amount of heat that is generated. If the demand remains
constant over the year, the problem only needs to be solved once, but if the demand varies greatly from day
to day, a single solution does not suffice. Therefore, we want to know if the demand differs over the days. Even
if the demand differs over the day, it might be possible to divide the days into temperature groups, therefore
the correlation between the heat demand and outdoor temperature is studied. If either the heat demand
remains constant or the days can be divided into groups that have a constant temperature, we do need to
know if the distribution remains equal. Two days might have a similar total demand, but have a different
structure, for example on one day greenhouse A might have a high demand and greenhouse B a low one,
whereas on another day greenhouse A has a low demand and greenhouse B a high one. The total demands of
these days can be similar, but both problems need different solutions.

This results in the following subquestions:

1. What does the demand over the average day look like? Is there a fixed pattern?

2. What does the demand over the look like over the year?

3. Is there a correlation between temperature and demand?

4. How is the demand spread over the greenhouses?

Subquestion 1 will help us to answer Research Question 3.

Research question 2 How can a stochastic optimization algorithm solve a heat control problem if the heat
demand does not vary over time?

Therefore we need to start by choosing an optimization method. This is done in Chapter 4.
We will first see how this program can be solved if the assumption is made that the heat demand does not

vary over the day. An easy way to do this is to take the maximum demand for each greenhouse for each time
over the day. If we can solve this problem we have a scenario that always works but is probably overproducing
for the times of the day when the demand is low.

Research question 3 How can a heat control problem be solved if the heat demand varies over time?

The heat demand is not fixed and would vary over time. Once Research Question 2 has been answered,
a way needs to be found to vary the pattern over the day to deal with these variations. This will be done by
making use of segmentation to split the day in segments and solving the problems for each of these segments
separately. This is done in Section 4.5.





3
ANALYSIS OF DEMAND PATTERNS

In this chapter, a look is taken at the data to see which patterns need to be taken into account. In Section 3.2
the change of the heat over the day is investigated. This result gives us insight into how best to split the prob-
lem in segments, which will be done in Section 4.5. In Section 3.3, the demand between the different days
is compared. The result of this investigation has resulted in the decision to run the final solution on at least
one summer month and one winter month. In Section 3.4 the correspondence between temperature and de-
mand is investigated and in Section 3.5 the homogeneity of the demand patterns is investigated. This results
of these investigations are not used in the Chapter 4, but could be used in future work. For example, the deci-
sion can be made to split the demand data sets into groups that are similar in structure and to find optimized
solutions for these cases that can be used as a basis for the individual days, for example an optimized solution
for winter months.

3.1. EXPECTED PATTERNS
As discussed in Chapter 2, the indoor temperature of the greenhouses needs to be kept constant and this
indoor temperature is influenced by the outdoor temperature by transmission, infiltration and ventilation. So
the more cold gets in, the more heat is needed for compensation. It is expected that the relation between the
outdoor temperature and demand is a linear one: We expect that a linear increase of the outdoor temperature,
results in a linear increase of the demand.

Hypothesis 1 There is a linear correlation between the outdoor temperature and the heat demand.

Because of day and night and season patterns, the outdoor temperature in turn depends on the time of
day and the time of year. This understanding is depicted in Figure 3.3. During the average day, the lowest
outdoor temperature is reached at 3:00 and the highest at 12:00. Therefore it is expected that the demand is
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Figure 3.1: Heat demand and outdoor temperature over the day and over the year
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highest at 3:00 and lowest at 12:00. Our expectations for differences between summer and winter are similar.
During the winter it’s colder outside, so more heat needs to be produced to keep the temperature in the
greenhouse constant and so the expected demand is higher for these months.

Hypothesis 2 The time of the day and time of the year influence the heat demand.

Although we expect the heat demand to vary depending on time, it is expected that some greenhouses
will always need more heat than others.

Hypothesis 3 Irrespective of time, the heat demand is distributed equally over the greenhouses.

The implication of these hypotheses combined would be that if two days have similar temperatures and
similar spread, that they might be able to share a similar scenario. For the rest of this chapter, we will refer to
the outdoor temperature simply as temperature.

To find the temperatures in 2013 near Lansingerland, temperature data has been obtained from the near-
est KNMI weather station (number 344) [2], which is located in Zestienhoven in Rotterdam. This contains
the average temperature measured during each hour with a resolution of 0.1 °C. These data will be used in
our analysis. The temperature and heat demand over the day can be found in Figure 3.1a. The tempera-
ture and heat demand over the year can be found in Figure 3.1b. The distribution of the heat demand and
temperatures are plotted in Figure 3.2.
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3.2. DEMAND OVER THE AVERAGE DAY
In this section, a look will be taken to the average day and describe what the demand looks like during a
day. Finding such a pattern is useful for deciding how the data should be split in segments which is done in
Section 4.5.

The heat demand in J/h over the average day (based on the months January to June) is depicted in Fig-
ure 3.1a. As expected, the demand is high during the night but decreases during the afternoon. However, the
times at which the peaks occur are different from our expectations; the demand is highest around 6:00 and
lowest around 13:00, but these extremes were expected at 3:00 and 12:00 respectively similar to the temper-
ature peaks. The temperature is about twice as high during 6:00 as it is during 12:00. A likely explanation is
that a change in outside temperature slowly affects the indoor temperature and thus does not immediately
change the demand. In other words, there is a reaction time between the action, a change of outside temper-
ature, and the reaction, a change of inside temperature and thus a change of heat demand. This reaction time
is not by a constant offset, which can be explained by the observation that the outdoor temperature increase
in the daytime is faster around noon than the outdoor temperature decrease during the night. If buffers were
included in our model, they could be used to equalize the heat production. For example, heat can be stored
in the buffers when the heat demand is low and released again when the heat demand is high. This would
make the problem easier to optimize because it reduces the variation over the day,

3.3. DEMAND OVER THE YEAR AVERAGED PER DAY
We have averaged over the day to ignore daily variations and see the variation over the year in Figure 3.1b. As
can be seen, there is a valley from 15 to 18 January. It is expected that during this period something special
might have happened like maintenance or that something went wrong with the measurement instruments.
This period will be ignored for the experiments and for the rest of this analysis. As expected, the colder months
like January have a higher heat demand than a summer month like June, although we have only looked at the
year 2013. The graphs in Figure 3.1b show that an increase in temperature corresponds to a decrease in
demand. Generally, temperature peaks correspond to heat demand valleys and vice versa. The correlation
between temperature and demand is investigated in Section 3.4.

Per month, the energy demand over each day is depicted in Figure 4.10. The intuition that a winter month
requires less energy seems to fit this data. Another thing that can be noticed is that during January and June
the heat demand during the day is less varied than during March or April.
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3.4. CORRELATION BETWEEN THE TEMPERATURE AND HEAT DEMAND

The temperatures of each time of each day of each month have been plotted in Figure 3.5. From the figure
it appears that there is a strong linear correlation between temperature and heat demand. The graph also
shows the anomaly in January that was also observed in Figure 3.1b.

Testing the linear correlation is a bit tricky. Because we are dealing with a time series, the data are not
independent. From Figure 3.1a and Figure 3.1b, two dependencies are known to us. Consecutive days tend
to be similar and the same time moment on different days tends to be similar. If we take the temperature
and the demand of two consecutive moments on a specific day, they would be similar because of continuity,
but that doesn’t mean they are correlated. It’s not possible to achieve complete independence because all the
data are from the year 2013. Because of this any test for correlation is likely to overestimate the strength of
the correlation. If we test the statistical significance of the data as is, the Pearson coefficient turns out to be
−0.72 with a tiny p-value for non-linear correlation. This correlation means that days of similar temperature,
have a similar total heat demand. It does not mean the data sets are similar because the distribution of the
demand might be different. This will be explored in Section 3.5.

3.5. SPREAD OF HEAT DEMAND OVER THE GREENHOUSES

In Figure 3.7 the heat demand per greenhouse is shown during each month. Visually some recurring patterns
can be seen. For instance, greenhouses 116, 125, 139 and 147 are always peaking, whereas there is usually
little demand from greenhouse 64. It is expected that the distributions are more or less the same if they are
scaled. If this is so, the normal distribution of heat demand is shown in Figure 3.6.

To test that these distributions are actually similar, Pearson’s chi-squared test for homogeneity [6] will be
used. A contingency table dt (g ) is created that has for each 5 minutes from January to June the demand for
greenhouse g . Then we want to test if for different values of t , the distributions of dt (g ) are similar.
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Figure 3.6: Total average distribution

First, the distribution of heat demand is scaled such that its values sum to 1.

D t (g ) = dt (g )∑T
h=1 dt (h)

(3.1)

Under the assumption that the distribution is the same for every moment the expected distribution of
heat demand at a time t can empirically be estimated to be:

E [D t (g )] =
∑52122

u=1 Du(g )

52122
for different t

Then the chi-squared coefficient is calculated the following way:

χ2 =
52122∑

t=1

104∑
g=1

(
D t (g )−E [D t (g )]

)2

E [D t (g )]
= 97389 (3.2)

For the chi-squared test of homogeneity, the degrees of freedom are the number of greenhouses minus 1
times the number of moments minus 1, so

k = (104−1) · (52122−1) = 5368463 (3.3)

The p-value of the test turns out to be close to one, which implies that with high probability the distribu-
tions are correlated.

3.6. CONCLUSION ON DEMAND PATTERNS
In conclusion, it can be said that a linear correlation between the temperature and the demand is probable,
although we can’t be sure if this correlation still holds if the dependency on time is removed. This manifests
itself both in a regular demand pattern over the day as a regular demand pattern over the year. During the
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Figure 3.7: Average heat demand per greenhouse per month
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day the heat demand is lower than during the cold night and during the summer the demand is lower than
during the winter. During a day a change in outside temperature does not immediately affect the demand,
which is most likely the result of heat transmission taking place slowly. And it can be observed that during
spring (from June 21 to September 22) the heat demand varies more over the day than during the summer or
the winter. Furthermore, we observed that the spread is more or less the same for every day, so we think that
the demand will mainly depend on the outside temperature.





4
SOLUTION WITH SIMULATED ANNEALING

In this chapter an optimization technique is described to solve the heat supply problem. The problem will
first be solved without looking at time (thus we will solve the problem under the assumption that the de-
mand doesn’t vary over time), which will answer Research Question 2. In Section 4.5 we will consider how to
incorporate time and have the demand vary over the day. This will answer Research Question 3.

We start by comparing different optimization techniques from literature in Section 4.1. The choice has
been made to use simulated annealing and we will describe some of the high-level design decisions in Sec-
tion 4.2. This optimization technique requires an initial scenario to be chosen, which is done in Section 4.3
and a mutation which is done in Section 4.4.

4.1. CHOICE OF OPTIMIZATION TECHNIQUE
As will be shown in Subsection 4.4.1, the problem of this thesis has multiple local optima, due to the phys-
ical constraints that can occur in multiple places and the many degrees of freedom to control the scenario
(One RoCa, several CHPs and several boilers can be varied). When there is a shortage of heat at a particular
greenhouse, the algorithm could increase the usage of a particular heat source to resolve it, but perhaps it can
find a more economical solution by using a different heat source or a combination of heat sources instead.
Therefore, using a method that can avoid getting stuck in local optima is desirable.

There are several methods that can deal with global minima. The most primitive one is random search,
that tries many points to find the lowest, but this method requires a lot of sampling and doesn’t guarantee that
the solution found is a local minimum. Some other methods are multi-start local optimization, simulated
annealing and genetic algorithms [7].

4.1.1. MULTI-START LOCAL OPTIMIZATION
Local start optimization is a widely used method, which follows the same process as local optimization, but
repeats this process from different starting points. It has the advantage over random sampling that its solu-
tions converge to a local minimum. The disadvantage is that it needs to be run multiple times and therefore
requires many evaluations.

The number of evaluations could be reduced, if a good starting point or a region of good starting points
can be found. Although multi-start local optimization will not be used for solving the heat generation prob-
lem, the problem of finding a good starting point, will be explored in Section 4.3.

If multi-start local optimization were used for our problem, two local optimization methods that could be
used are Powell’s perpendicular method [8] or the Nelder-Mead method [9]. The Levenberg-Marquardt and
Newton algorithm for local optimization converge faster[7], but need the gradient and Hessian to be com-
puted of our evaluation function, including the Drukval model. For the Drukval model, these functions are
not known. They can be estimated by multiple evaluations of the Drukval model, but this is computationally
expensive.

4.1.2. SIMULATED ANNEALING
Simulated annealing [10]is based on the process of physical annealing in metallurgy. Like downhill search
the method iteratively tries to finds solutions that are closer to the optimum, but unlike downhill search the

27
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solution will sometimes accept slightly worse solutions. During the early stages of simulated annealing the
algorithm is free to accept slightly worse solutions, but during the later stages the algorithm becomes similar
to a downhill search and will only accept better solutions. This transformation takes gradually place as the
temperature drops.

Simulated annealing starts by choosing a random solution s. On each iteration, a mutation s′ is proposed
produced by a mutation function. If s′ is better than the original solution s according to evaluation function
v , it replaces the original. Otherwise, the new solution is accepted with probability p(s, s

′
, i ) which depends

on the difference in quality between the current solution and the mutated one and on how for how many
iterations the algorithm has been running: During the first few iterations of the algorithm, the algorithm is
flexible and the probability of accepting a slightly worse solution is high. This makes it possible for the algo-
rithm to escape from local minima and to explore the domain. Later on the probability of accepting a worse
solution decreases and the algorithm starts converging. Eventually the solution that has had the highest score
(minimum costs while satisfying constraints) throughout the algorithm is returned. Pseudocode is shown in
Algorithm 1. In this code, s is the solution that is being worked with, s′ is a proposed improvement and s∗ is
the best solution encountered so far.

Algorithm 1 Simulated annealing

s is the current solution.
s′ is a proposed mutation.
s∗ is the best solution encountered so far.
m(s) is the mutation function
v(s) is the evaluation function
p(s, s′) is the acceptance function for accepting s′

s ← s∗ = initial scenario
for i ← 1. . .n do

s′ ← m(s)
if v(s′) < v(s) or p(s, s′, i ) > random(0. . .1) then . New state better than old state or small probability

s ← s′
end if
if v(s′) < v(s∗) then . New state is best state seen so far

s∗ ← s′
end if

end for
return s∗

Compared to downhill search, simulated annealing is able to escape from local minima so it can explore
the domain before converging to a single solution. Another advantage of simulated annealing is that it is
flexible, because it can work with any objective and constraints even when little domain knowledge is avail-
able (we don’t know the topology of the network or the thermic influences on the pressure), whereas gradient
descent requires the gradient of the function to be known or to be estimated. typography, we don’t know

The disadvantage of simulated annealing is that the occasional step to accept a worse solution (an uphill
move) makes the process converge slowlier, but in return for that it is less likely to get stuck in local minima.
Another disadvantage is that although it is statistically likely that a good solution is found, there is no per-
formance guarantee for the final solution other than that it is at least as good as the initial one. Finally, this
method requires many choices to be made such as the decay rate of the temperature function, the number of
iterations, and the mutation rate.

4.1.3. GENETIC ALGORITHMS

Another class of stochastic algorithms are genetic algorithms [11]. A genetic algorithm starts from a pool of
random solutions. Each of the solutions in the pool is evaluated by an evaluation function v(x), which is an
indication of how good the solution is. Constraints are handled by including a penalty function (positive or
negative) to punish bad solutions.

Every iteration, a new generation is formed by repetitively selecting 2 solutions from the old generation.
Each solution is chosen with probability:
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p(xi ) = v(xi )∑n
j=1 v(x j )

(4.1)

These solutions are combined by a crossover function f (xi , x j ), which combines two existing solutions to
construct a new one, and a mutation function, m(xi ), which makes a small change to a solution xi to create a
solution x ′

i .

Algorithm 2 Genetic algorithm

N is the size of the pool
T is the numer of iterations
P = {P1 . . .Pn} is the pool of solutions
v(x) is the evaluation function
c(x, y) is the cross-over function
m(x) is the mutation function

for n ← 1. . . N do
Pn = random initial solution

end for

for t = 1. . .T do
for n ← 1. . . N do . Create distribution p from the scores of the solution pool.

pn ← v(Pn )∑
m v(Pm )

end for

for n ← 1. . . N do . Create a new pool
Let Pi and P j be randomly selected from P according to distribution p
cn ← c(Pi ,P j ) . Apply crossover function on solutions to create a new one
mn ← m(cn) . Apply mutation on new solution
P ′

n ← mn . Store solution in new generation
end for

P = P ′
end for
return best solution currently in P

In the context of our problem, a mutation function that operates on solutions xi and x j can iterate
through all heat sources. With a probability of 50% the state of solution xi is copied and with a probability of
50% the state of the second solution is taken. The mutation function can take a random CHP and randomly
turn it on or off or change how much it produces.

Like simulated annealing, genetic algorithms work well with local minima and large sets of parameters.
The disadvantage of genetic algorithms is that it needs many iterations and requires many evaluations per
round. Like simulated annealing, it also requires tuning a lot of parameters and has no performance guaran-
tee other than that the final solution is statistically likely to be at least as good as the initial solution and that
the solution generally improves during each step.

4.2. OVERVIEW OF DESIGN DECISIONS
A flow diagram of the whole program is shown in Figure 4.1. Solutions are generated by a mutator and have its
costs and physical constraints evaluated on each iteration. The best solution encountered during the process
is remembered and used as the final answer.

Initial solution Simulated annealing needs to start from an initial scenario before it starts mutating. It can
be random, but it is expected to be better to start from a scenario that is already good, so that subsequent
mutations can spend more time on improving the current solution than on finding a lead to a good solution.
Three different initial solutions will be introduced and compared against each other in Section 4.3.
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Greenhouses Simulated
Annealing

Heat demands

Mutated solution Cost
evaluatorProposed solution

Physics
evaluator

Proposed solution

Best
solution

Calculate
score

Price

Violation score

Score

Figure 4.1: Program structure. The input are the heat demands provided by the greenhouses. The output is a best solution which takes
the form of the heat production per heat source for every moment of the day (every 5 minutes).

As discussed in Chapter 2, the CHPs deliver a fixed amount m3/h to the network when they are in use.
The maximum amount of heat that can be exported for a certain debit is calculated using formula 2.6. Fur-
thermore, the assumption is made that the greenhouses with CHPs are self-sufficient when they produce (the
production is their own demand plus the demand for the debit they are delivering to the network). Details
about the generation of the initial solution are discussed in Section 4.3.

Mutation function The mutation function will be used to propose new scenarios. It can be random, but
better results might be achieved if a mutation function is used that tries to turn infeasible scenarios into
feasible ones and expensive feasible scenarios into ones scenarios that are cheaper but still feasible. Three
different mutation methods will be introduced and compared to each other in Section 4.4.

Evaluation function In Chapter 2, we have described how the costs and constraints can be calculated. An
overview of the procedure can be found in Figure 2.6. For the final result, a result is desired that has no
constraints and low costs. As has been explained in Section 2.5, a constraint occurs when the pressure in a
pipe is higher than allowed. This will be tested by calculating the debits and running the Drukval program to
test the pressures that correspond to these debits. For the evaluation function, we want the costs to be as low
as possible while not having any constraints. To do this, we make use of a penalty function[12] that depends
on how much violations we have and how big these violations are.

Initially it was tried to make a penalty function that simply counts the number of violations, without
regard to how big they are. So for each valve i , a variable Pi was introduced such that Pi = 1 when a violation
occurred in valve i and Pi = 0 when no violation occurred. Because having a solution free of violations is
more important than having an economical solution, the violations were weighted with a big constant C to
make the algorithm prioritize feasible solutions over ones that are economical The evaluation function was:

v = total costs+C ·∑Pi (4.2)

This has been tried in an experiment setup with a random day of every month (6 months) and been run for
1000 iterations. The mutation step was a random mutation, which will be introduced in Section 4.4. An initial
solution was chosen that would enable 50% of all CHP’s, but the demands of the individual greenhouses were
inflated to 500% of their normal values to introduce a lot of overproduction. The result showed that although
the costs improved, no progress was made in getting rid of the violations.

As an alternative, a soft penalty function was tried that depends on how much the violation is. A constant
of 1 is still added to make sure constraints are solved completely instead of letting small violations pass. The
shape of this formula depends on the extent to which dP exceeds dPlimit, which it should not do according to
Equation (2.11). The new penalty function still has values in the range between 0 and 1.

Pi =
{

0.5 ·
(
1+ dP−dPlimit

dP

)
if dP > dPlimit

0 else (no violation)
(4.3)
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Crashes in Drukval are resolved by setting the penalty to infinite, a so called ‘death penalty’. This is needed
because mutations of a scenario that makes Drukval crash tend to make Drukval crash too. Giving such
scenarios, a penalty of infinity makes sure that it is never selected, because it is not an improvement and
because putting infinity in Equation 4.6 (that will be discussed in paragraph Probability function) makes the
transition probability 0.

For example, if the pressure at some point in the valves is 700 bar, but the maximum pressure allowed is
500 bar, the penalty becomes:

0.5 ·
(
1+ 700−500

500

)
= 0.7 (4.4)

Different values for C can be chosen. One option is to choose C >> total costs; which guarantees that
avoiding the constraints is prioritized over cost efficiency. On the other hand, choosing lower values for
C might make it easier for the algorithm to escape from local minima to find cost optimal solutions while
temporarily tolerating some constraints violations, as long as the final solution is feasible. Values of 1×105,
1×106 and 1×107 have been tried on 3 different scenarios with a random mutation each running for 100
iterations and 1×106 gave the best results.

Probability function When the mutated solution is worse than the current one, it is accepted with a prob-
ability P (s, s′, i ) This formula is described by Goffe e.a. [13]. The smaller the difference between the current
solution and the mutation, the higher the probability that the mutation is accepted. Solutions are also more
likely to be accepted at the beginning when the temperature is still high. Later on when the temperature
drops, the probability of accepting a worse solution drops as well.

Goffe [13] used the following:

P (s, s′, i ) = e(v(s′)−v(s))/T (4.5)

This formula has been tested on a summer and a winter day. My experience with this formula is that it
worked well when trying to get rid of constraints, but less so in trying to reduce the costs. It was my intuition
that the penalty function had a large impact compared to the costs, which makes it hard to balance the pa-
rameters of the temperature function. Therefore, it was decided to change the probability formula to measure
the improvement relative to the old value.

P (s, s′, i ) = e(v(s′)−v(s))/(T ·v(s)) (4.6)

There is a trade-off between different temperature functions. Different temperature functions can be
chosen, but they should always have a value between 0 and 1. If the temperature decreases quickly (fast
cooling), the algorithm will converge faster and be less explorative. If the temperature decreases slowly, it will
explore more solutions but converge at a slower rate.

One temperature function used by Goffe e.a. [13] that is expected to converge quickly is

Ta(t ) = T0 · r t
t (4.7)

For T0, no parameters other than T0 = 1 have been tried. In hindsight, a lower value may have been better,
because it will speed up the initial exploration phase. Because evaluations take long, I wanted the process to
converge in at most 1000 iterations at most. Experiments have been done with a = 0.5, a = 0.95 and a = 0.995.
Most processes converged in about 300 iterations when a = 0.95, so this value had been chosen.

Another temperature function has been proposed by Szu and Hartley [14]

Ta(t ) = T0

1+ t
(4.8)

It has not been tried, because the evaluation of a single scenario is slow and this formula is expected to
converge more slowly than Goffe’s requiring more evaluations.

4.3. INITIAL SCENARIO
Simulated annealing starts with an initial solution, explores the solution space to find a basin as deep as
possible and eventually converges to the local minimum in that basin. It is assumed that finding an already
good solution as a starting point will work better than starting from a random point. Of course this depends
on what mutations are used, because if the mutations were directed in a certain direction, it would be wise
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to position the initial position at some position such that the mutations are most likely to bring the solution
towards the global minimum. For example, if the mutations are such that they create a more decentralized
scenario, it might be better to start from a scenario that is centralized than one that is already decentralized.
Ideally, the mutations should be able to find the right direction from any initial situation, in which case a
scenario close to the optimum would mean that fewer mutations are necessary.

A minimum guarantee that an initial solution will bring is that the eventual solution will at least be as
good as that initial solution, because there is always the possibility to fall back on it. Preferably, we even want
to find the best basin to converge in. If we are able to start in the best basin, even a downhill search can be
used instead. A secondary goal of this research is that it provides us insight into what kind of solutions work
well in general.

4.3.1. PROPOSED METHODS
Random approach This will generate a random solution in the feasible domain. A solution is generated by
considering each greenhouse. If the greenhouse has a boiler, then there is 50% probability that the green-
house will produce heat using that boiler and 50% that the greenhouse won’t. As mentioned in Paragraph 2.2,
the CHPs produce a fixed contractual debit. The amount of heat produced will be within the minimum and
maximum production values allowed. If the greenhouse doesn’t have a boiler or doesn’t use its boiler, it will
subtract the amount it needs. To ensure there is enough heat, all heat consumed but not produced will be
supplemented by a RoCa and all heat required but not consumed by a greenhouse is supplemented by boil-
ers. If as much or more heat is produced than consumed,the RoCa will not be used. The guarantees of this
solution are that at least the demand is fulfilled. It does not guarantee a cheap solution or a solution that is
physically feasible.

• Greenhouses that don’t have a CHP will always be consuming.

• Greenhouses that have a CHP have a 50% chance that they produce heat. If they produce, they will
produce for their own demand and deliver a fixed amount to the network; otherwise they will consume
from the network.

• The RoCa will be used to deliver all heat that is consumed from the network but not delivered to the
network by any of the greenhouses.

In the example in Section 4.3.1, the random scenario solves the heat production problem partly by using
the RoCa and partly by making greenhouses A and D produce. Greenhouse A produces for its own consump-
tion and partly for the demand of B and C. Greenhouse D produces for its own consumption only and doesn’t
export to the network.

Centralized production This reflects the old situation in the network. The total heat demand is calculated
and everything is produced by a RoCa. The greenhouses will each extract the exact amount of heat that is
required from the network. No CHPs nor boilers will be used. Because this solution reflects the old situation,
it has the advantage that the solutions it creates are feasible. Due to its heavy reliance on the RoCa, it might
be an expensive solution.

• The CHPs are not used.

• The RoCa produces enough for everyone.

In the example in Section 4.3.1, the centralized scenario solves the heat production problem by making
the Roca produce for all other greenhouses. The other greenhouses consume from the network and don’t
produce anything themselves.

Greedy CHP production This initializes the heat production scenario such that as few sources are used as
possible. The greenhouses that have a CHP are sorted by the capacity of their CHPs. While the demand is
unsatisfied, the greenhouse with the most productive CHP is selected to use its full production capacity to
produce heat until everyone’s demand is satisfied. For small greenhouses with a CHP, it might happen that
another greenhouse with a bigger CHP fulfils their demand.

• The greenhouses with CHPs are ordered by their production capacity.
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Actor Demand
Centralized Greedy Random

Production Ex/import Production Ex/import Production Ex/import

RoCa – 2000 2000 0 0 500 500
A 500 0 -500 1000 500 1000 500
B 500 0 -500 1000 500 0 -500
C 500 0 -500 0 -500 0 -500
D 500 0 -500 0 -500 500 0

Table 4.1: Example initial scenarios for the different initial methods. A positive value for export/import means heat is transported from
the greenhouse to the network. A negative value means heat is transported from the network to the greenhouse. The value of export can
be lower than the value for production if the greenhouse is producing for its own consumption.

• The greenhouse with the largest CHP is selected as a producer until the total demand is satisfied.

• The remaining greenhouses will consume heat.

• The RoCa is not used.

In the example in Section 4.3.1, the greedy scenario solves the heat production problem by by making
greenhouses A and B produce enough for themselves and for greenhouses C and D. The RoCa isn’t needed
here and the production is completely decentralized.

4.3.2. HYPOTHESES ABOUT INITIAL SCENARIOS
The randomized program is deemed to be too simple. It doesn’t take the heat demand into account and is
therefore not expected to work well.

Hypothesis 4 The centralized and greedy scenario work better than the random one.

It is expected that the resulting scenario produces much more than is needed. Because a centralized
scenario reflects the original scenario, this one should always be feasible.

Hypothesis 5 A centralized scenario is always feasible.

The greedy scenario seems like a cheap solution, because it heavily utilizes the CHPs which are cheaper
than the RoCa and only produces what is needed. It might however end up with a scenario that isn’t feasible.

Hypothesis 6 The greedy scenario creates cheap scenario regardless of their feasibility.

Because in Figure 3.1a the maximum demand on the average day is about twice as high as the minimum
demand and because our initial generation methods take make enough for the point of the day where the
demand is highest, it is expected that the surplus for centralized is not more than a 100 %.

Hypothesis 7 The overproduction for centralized is at most 100%. And within the ratio between the maximum
and minimum peaks of the demand.

4.3.3. EXPERIMENTAL SET-UP FOR TESTING INITIAL SCENARIOS
For evaluation we will look at the quality of the scenario produced without doing simulated annealing. For
each scenario the following metrics are stored:

Stability

stability = number of scenarios on which Drukval didn’t crash

number of scenarios tested
(4.9)

How often Drukval doesn’t hang on a scenario. In case Drukval does hang on a scenario, the scenario
is unusable and can not be used for further optimization. This will be measured as the percentage of
problems on which a method doesn’t crash.

Costs The costs of feasible solutions. The lower the better. Only feasible solutions are considered for this
metric.
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Method Stability

Centralized 100 %
Greedy 100 %
Random 99.37 %

Table 4.2: Stability of initial scenarios

Surplus percentage

surplus = 100% · heat generated−heat required

heat required
(4.10)

The percentage of heat produced more than the amount of heat that gets actually used.

Feasibility metric

f = dP

dPmax ·
(
1−

(
Qv

Qvmax

)2
) (4.11)

The feasibility metric has been defined in Equation (2.27). A solution is feasible as long as its value is
between 0 and 1. A feasibility of 0.1 is not necessarily better than a value of 0.9 because both values are
feasible as long as the value is below 1.

4.3.4. RESULTING INITIAL SCENARIOS
The initial scenario generators have been tested for every day between 1 January and 30 June (180 days).

For each initial scenario generation method, a summer day and a winter day have been plotted in Fig-
ure 4.2 using the metrics from Subsection 4.3.3.

An example of the generated initial scenarios for a summer and a winter can be found in Figure 4.2. The
debit graph shows the debit m3/h that is transported to or from the greenhouse. A negative debit for a green-
house means that it is delivering to the network; a positive value means that the greenhouse has no CHP or
that is not active and that the greenhouse is consuming from the network. In the centralized scenario in Fig-
ure 4.2a all debits are positive, because the greenhouses are receiving from but not delivering to the network.
In the randomized and greedy scenario, the greenhouses are delivering heat to and receiving heat from the
network.

The pressure graph contains the pressure. As discussed in Chapter 2, these pressures are a result of the
debits. High pressures are usually a result of high debits from greenhouse to network or from network to
greenhouse. The centralized scenario manages to keep the pressure in the network low to a level of 1.6 bar.
The greedy and centralized scenarios have higher pressures reaching 6 bar.

The feasibility graph contains the feasibility metric, which depends on the pressure and the debit at the
node of an individual (< 100 means feasible). The graphs are normalized so that a value above 100 indicates a
violation at some point in the network. For the winter day, a greedy scenario has been picked where a physical
violation occurs at the 45th greenhouse. The other scenarios are free of violations.

Stability Unfortunately, the Drukval program would hang on some of the generated scenarios, but most of
them work. This is likely to be a Drukval bug. The scenarios on which this bug occurs are ignored. In my final
experiment the centralized and greedy one always succeeded. The random one failed 1% of the time. Future
work on the Drukval program might make the scenarios stable at all times.

Costs The costs are listed in Table 4.3. As can be observed, the random approach is cheaper than the cen-
tralized one. The random method has an average cost of¤548.85, but the centralized method has an average
cost of¤614. The greedy approach is the most expensive one and has an average cost of¤978.58.

Surplus percentage The surplus in production is listed in Table 4.4. The greedy approach performs poorly
(490% overload on average) and has much more overload than the random and centralized approaches. The
random and centralized approaches (187% and 215% respectively) are close to each other, but the central-
ized approach has more overproduction than the random one on average. Even in their minimum cases,
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(a) Centralized scenario for winter day
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(b) Centralized scenario for summer day
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(c) Greedy scenario for winter day

150
100
50

0
50

100

D
eb

it

0.0
0.5
1.0
1.5
2.0
2.5

P
re

ss
ur

e

0 20 40 60 80 100 120
Greenhouse

0
20
40
60
80

100
120

F
ea

si
bi

lit
y

(d) Greedy scenario for summer day
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(e) Random scenario for winter day
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(f) Random scenario for summer day

Figure 4.2: Initial scenarios with the debits, the resulting pressures and the resulting feasibility scores. The debit m3/h shows the quantity
of heat transported to (positive value) or from (negative value) the greenhouse. The pressures are a result of the debits. The feasibility
violation depends on the pressure and the debit. A value above 100 indicates a violation at some point in the network.

Method Min Max Mean Std dev

Centralized 332.85 729.73 589.96 94.90
Greedy 820.22 984.20 902.06 39.71
Random 287.82 660.45 524.60 89.27

Table 4.3: Costs of the heat production of a single day in Euros
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Method Min Max Mean Std dev

Centralized 55.41 1637.28 215.92 155.47
Greedy 142.05 4591.93 490.56 443.43
Random 45.48 583.39 187.00 99.49

Table 4.4: Surplus (= 100% · (generated− required)/required) as a percentage

Method Min Max Mean Std dev Percentage feasibile

Centralized 0.00 0.00 0.00 0.00 100
Greedy 0.41 1.86 1.15 0.72 48.73
Random 0.80 0.81 0.80 0.00 100

Table 4.5: Feasibility metric. The feasibility region is from 0 ≤ f ≤ 1. Percentage feasible is how often the solution lies into this region.

all the approaches still show more than 45% of overproduction. It is expected this will reduce when adding
mutations and turning the schedule in one for a complete day.

Feasibility metric The feasibility metric has been explained in Equation 2.27. A value below 1 means fea-
sible. A value above 1, means infeasible. The centralized and random approaches were constantly feasible,
because their feasibility scores are always lower than 1. The greedy one ended up in the feasible region only
half the time, so more work will need to be done by the mutation to solve these constraints.

4.3.5. CONCLUSION ON INITIAL SCENARIOS

All the generated scenarios are still producing more than is required and it is expected that this is because
these scenarios generate enough for the whole day don’t take the fluctuations into account. The greedy
scenario performs worse than was expected. The distribution of the surplus percentage isn’t normally dis-
tributed, but has a positive skew and the effectiveness of this approach varies a lot. One reason the surplus is
so high, is probably because the algorithm works for the whole day, but bases its scenario on the moment of
the day when the demand is highest. It is expected that when scenarios are created that vary over the day, the
surplus will decrease.

The random scenario performs much better than initially expected. It was expected that the random one
would not performs so well, because of the simplicity of the method, but it outperformed the other ones with
respect to costs, so Hypothesis 4 turned out to be false. The most promising one is the random approach.
From Table 4.5, the maxima for centralized are below 1 and thus Hypothesis 5 is most likely to be true. From
Table 4.4, the surpluses for centralized are below 100 and thus Hypothesis 5 appears to be true. As expected
the centralized approach usually results in a valid outcome as this reflects the old situation when physical
feasibility wasn’t a problem yet. This makes Hypothesis 5 true. The greedy approach ended up being more
expensive than expected. We expected the greedy one to produce cheap scenarios, because the CHP are
cheaper than the RoCa. The weakness of the CHPs is that they have to operate on a fixed debit, whereas the
RoCa is more flexible. This makes Hypothesis 6 false. We still think the RoCa’s can be used, but they should
not be running during the whole day. The RoCa did end up with feasible scenarios more often than expected,
but not in all cases. At this point the random one looks most promising in every region except for its stability.
The random one comes up with a reasonable solution, but due to the way it’s set up it has a chance to produce
solutions that are similar to both the centralized and the greedy one. The greedy one doesn’t look promising
at at all. Nevertheless it is interesting to keep this one because it brings the solution in another position the
mutations will have to handle. The centralized initial solution has been shown to be a good starting point and
so far all solutions it generated ended up being feasible, so Hypothesis 5 is likely to be true. The random initial
method was usually able to yield lower costs but wasn’t always stable. The advantage of the random method
is that it runs quickly and can be run again with a different seed if it fails. It’s also likely that the result is
caused by an error in the Drukval model, that makes it hang. When running the non-clustered form, all initial
generators had overproduction, so Hypothesis 7 is false. This is probably mainly the result of non-clustering,
which forces the algorithm to make a scenario that works even though some moments of the day require a
small amount of heat.
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4.4. MOST EFFECTIVE MUTATION STEPS UNDER DIFFERENT CONDITIONS
In this section the combination of mutations that works best is determined. Initially, this is done by generat-
ing different continuations to see which one works best. The stochastic search is balancing between fulfilling
the following two goals:

• Exploration: Explore as many regions as possible and find the region that is most likely to contain the
global optimum.

• Exploitation: Hill-climbing towards the global minimum

The optimal value that we are trying to find is the one that has lowest costs under the constraint that there
should be no physical constraints. Hence, when a given solution has been found a better solution is one
that has fewer violations or one that has the same costs but fewer physical violations. There is some conflict
between the steps towards the optimum, because a solution that would generate all energy purely centralized
would avoid all physical constraints but be expensive due to the high costs of the central plant. On the other
hand, a cheap solution might not be physically possible.

4.4.1. FINDING CONTINUATIONS
Initially, in order to gain a notion of what constitutes a good mutation, an experiment is run that evaluates
all possible mutations in sequence. As initial scenarios we take the methods discussed in Section 4.3 and run
them each for a random day. Only one day is tried because Figure 4.2 showed that there is little difference
between the different months. Then an algorithm is run on each of these scenarios that tries the following
1-step mutations for each greenhouse with a CHP:

• Make the greenhouse deliver a quantity between 0 and the maximum amount that can be produced
using their fixed debit according to Formula 2.6.

• Make the greenhouse produce for own usage either. If not enough is produced the remaining amount
is complemented by the RoCa.

RESULTING CONTINUATIONS

The results of the initial scenarios can be found in Figure 4.3. These graphs show the debits, the pressure and
the feasibility constraint at the valve near each of the greenhouses. The graphs on the right are the improve-
ment graphs. They show the influence on the costs and violations score if a single greenhouse changes its
heat transfer to or from the network. The costs are linear on the production, but for the violations it matters
only if the CHP is turned on or turned off at all with no regard to how much it is producing. A violation score
above 0 means that the scenario is infeasible. The graphs contain two horizontal lines. The dash-dotted line
gives the situation of the current solution and the dashed lines the situation after applying the best one-step
improvement. The feasibility is prioritized over the cost, so the best solution might sometimes be more ex-
pensive than the current one if it solves a physical violation. Although it was shown in Chapter 3 that there
is more demand in winter than in summer, the improvement graph for summer and winter were similar to
each other.

In Figure 4.2a there were no violations and the best move is to make on of the greenhouses deliver much
more to the network to reduce the costs without introducing new constraints. This results in a cost improve-
ment from¤550 to¤500. The situation in Figure 4.2a is very similar. Although it does make use of the CHPs,
it does so up to a very small degree and can be further improved by making more use of the CHP. This re-
sults in a cost improvement from ¤490 to ¤440. The situation in Figure 4.2c is different. There is exactly
one violation around greenhouse 45 as can be seen in the feasibility graph. This violation can be eliminated
completely, by stopping a single greenhouse from its consumption from the network with minimal effect on
the costs which remain stable at¤880.

In general, the direction of the best transformation depends on the context. If there are physical con-
straints are if the costs are because of CHP usage, the production should decrease. If on the other hand, there
are no constraints and the usage of the CHPs is low, the costs can be decreased by utilizing the CHPs.

4.4.2. IMPROVEMENT STRATEGY
As was clear from the results above, it makes sense to increase the CHP production when the costs are high
as happens in Figure 4.3b. On the other hand, when violations are occurring or when there is a lot of overpro-
duction the costs should be reduced again.
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(a) Centralized scenario
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(b) Improvements
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(c) Greedy scenario
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(d) Improvements
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(e) Random scenario
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(f) Improvements

Figure 4.3: Resulting initial scenarios. The debit m3/h shows the quantity of heat transported to (positive value) or from (negative value)
the greenhouse. The pressures are a result of the debits. The feasibility violation depends on the pressure and the debit. A value above
100 indicates a violation at some point in the network. Improvements show costs and violation score. A violation score above 0 means
that the scenario is infeasible. The dashdotted line gives the optimality of the current solution and the dashed lines the optimality of the
best one-step improvement. Feasibility is prioritized over costs.
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If there are no constraints and the RoCa produces more than the CHPs, it will be tried to reduce the RoCa
usage as CHPs are cheaper. This leads to the pseudo-code in Algorithm 3. It will consider each greenhouse
and with a small probably α it will decrease the greenhouse production if there are constraints or overpro-
duction and increase the greenhouse production if there aren’t.

Algorithm 3 Smart mutation

a Mutation rate

D Total heat demand

H Total heat production HRoCa +∑
HCHP, +Hboiler

HRoCa Heat production by the RoCa before mutation∑
HCHP Heat production by all greenhouses before mutation

HCHP,g Heat production by greenhouse g before mutation

H ′
RoCa Heat production by the RoCa after mutation

H ′
CHP,g Heat production by greenhouse g after mutation

for every greenhouse g with CHP do
if random(0. . .1) <α then

if (¬feasible or H > D) and
∑

HCHP > HRoCa then
h ← random(0. . . HCHP,g)
H ′

CHP,g ← HCHP,g −min(h, HCHP,g)

H ′
RoCa ← HRoCa +min(h, HCHP,g)

else
h ← random(0. . . HCHP,g)
H ′

CHP,g ← HCHP,g +min(h, HRoCa)

H ′
RoCa ← HRoCa −min(h, HCHP,g)

end if
end if

end for

This will be compared to the minimal random method in Algorithm 4, which works by considering every
greenhouse and with low probability α it will flip a coin. On heads it will increase the CHP production in
favour of the RoCa production by a random amount and on tails it will decrease the CHP production in favour
of the RoCa production.

A less transparent but more autonomous approach is followed in Algorithm 5. It would let the algorithm
itself decide in which direction it performs a step. Initially it would decrease the RoCa usage and increase CHP
usage, but if that worsens or doesn’t change the solution, it will change direction and increase the RoCa while
decreasing CHP usage. Just as in Algorithm 3 it will be possible to perform both a mutation that balances
the production towards more RoCa usage and a mutation that balances the production to using the CHPs.
However the direction is decided on by the algorithm. If for example a CHP increasing step improves the
result, it will be repeated on the next step. But if a CHP increasing step deteriorated the result or had no
effect, a decreasing CHP motion will be tried on the next turn.

Hypothesis 8 The improvement strategy in Algorithm 3 works better than a random mutation. It will converge
in fewer iterations and find a better solution.

Hypothesis 9 The mutation in Algorithm 3 converges to a local optimum.

4.4.3. SETUP OF SIMULATED ANNEALING WITH PROPOSED SOLUTIONS

Both the random mutation in Algorithm 4 and our proposed solutions in Algorithm 3 and Algorithm 5 are
compared. They will be tested on 6 days of January, a winter month; and 6 days of June, a spring month. This
is a small amount of samples, but unfortunately the experiments have a long running time. Both the initial
method and the mutation are varied.
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Algorithm 4 Random mutation

for every greenhouse g with CHP do
if random(0. . .1) <α then

if random(0. . .1) < 0.5 then
h ← random(0, HCHP,g)
H ′

CHP,g ← HCHP,g −min(h, HCHP,g)

H ′
RoCa ← HRoCa +min(h, HCHP,g)

else
h ← random(0, HCHP,g)
H ′

CHP,g ← HCHP,g min(h, HRoCa)

H ′
RoCa ← HRoCa min(h, HRoCa)

end if
end if

end for

Algorithm 5 Adaptive mutation

if previous mutation was not an improvement then . Decide on strategy s
if s=1 then

s ← 2
else if s=2 then

s ← 1
end if

end if
for every greenhouse g with CHP do . Execute selected strategy

if s = 1 then
h ← random(0, HCHP,g)
H ′

CHP,g ← HCHP,g −min(h, HCHP,g)

H ′
RoCa ← HRoCa +min(h, HCHP,g)

else if s = 2 then
h = random(0, HCHP,g)
H ′

CHP,g ← HCHP,g min(h, HRoCa)

H ′
RoCa ← HRoCa min(h, HRoCa)

end if
end for
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(a) Winter random mutation op centralized
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(b) Summer random mutation op centralized
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(c) Winter random mutation on greedy
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(d) Summer random mutation on greedy
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(e) Winter random mutation op random
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(f) Summer random mutation op random

Figure 4.4: Random mutation

Score (costs + penalty for violations) For evaluation, the score of the optimal solution as in Equation 4.2 is
taken for each month. When there are no violations (which is expected to be the typical case) this will
be equal to the costs.

Convergence rate The number of mutations until convergence. This tells us something about the efficiency
of the solution. It is calculated as the last score after which no changes have occurred. Our actual con-
vergence criterion checks if nothing has changed during the last 100 runs. Because of time constraints,
the algorithm will also terminate if it takes more than 1000 iterations.

Percentage violations The amount of scenarios that did not converge to a solution without constraints.

Violation score The violation score used by the SA algorithm as described before in Equation 4.3. A value of
0 means no physical violations. Any other (positive) value is bad.

4.4.4. RESULT OF SIMULATED ANNEALING

The result of running simulated annealing with different initial solutions and mutations is found in Table 4.6.
The raw results are also included in Appendix A.1. Because the number of trials used for this experiment
was low, an ANOVA test has been done for the equivalence of costs when starting with a random scenario
and the equivalence of costs. These p-values can be found in Table 4.7 and 4.8 respectively. On average, the
best result was achieved by combining a random initial solution with a smart mutation which resulted in an
average cost of¤351 per day. The second-best result was obtained using an adaptive mutation which resulted
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(a) Winter scenario from centralized initial solution
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(b) Summer scenario from centralized initial solution
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(c) Winter scenario from greedy initial solution
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(d) Summer scenario from greedy initial solution
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(e) Winter scenario from random initial solution
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(f) Summer scenario from random initial solution

Figure 4.5: Smart mutation
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(a) Winter scenario from centralized initial solution
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(b) Summer scenario from centralized initial solution
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(c) Winter scenario from greedy initial solution
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(d) Summer scenario from adaptive initial solution
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(e) Winter scenario from random initial solution
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(f) Summer scenario from random initial solution

Figure 4.6: Adaptive mutation



44 4. SOLUTION WITH SIMULATED ANNEALING

Centralized Greedy Random

No mutation Mean cost 517.8 876.9 457.4
Std dev cost 67.7 39.9 62.2
Mean convergence 0.0 0.0 0.0
Std dev convergence 0.0 0.0 0.0
Percentage violations 0.0 8.3 0.0
Mean violation score 0.0 209.7 0.0
Std dev violation score 0.0 0.0 0.0

Random mutation Mean cost 517.8 917.1 457.4
Std dev cost 67.7 138.6 62.2
Mean convergence 135.5 90.0 142.5
Std dev convergence 45.5 0.0 38.5
Percentage violations 0.0 0.0 0.0
Mean violation score 0.0 0.0 0.0
Std dev violation score 0.0 0.0 0.0

Adaptive mutation Mean cost 430.9 547.0 426.9
Std dev cost 46.9 30.2 41.1
Mean convergence 46.8 52.9 41.8
Std dev convergence 4.0 7.4 5.2
Percentage violations 0.0 0.0 0.0
Mean violation score 0.0 0.0 0.0
Std dev violation score 0.0 0.0 0.0

Smart mutation Mean cost 354.4 693.6 351.2
Std dev cost 35.1 43.2 32.2
Mean convergence 201.4 75.4 200.0
Std dev convergence 155.0 5.7 215.4
Percentage violations 0.0 8.3 0.0
Mean violation score 0.0 205.1 0.0
Std dev violation score 0.0 0.0 0.0

Table 4.6: Combination of initial methods and Simulated Annealing

in an average cost of ¤426. Table 4.7 shows that the difference between the adaptive and smart mutation is
significant (8.34×10−5 ¿ 0.05).

There differences between the initial scenarios are very small. The smart and centralized initial scenario
seem very close to each other and the results of the smart mutation are only slightly better. Unfortunately
table 4.8 doesn’t confirm the random scenario to be significantly better than the centralized one, because the
p-value is not below 0.05. The greedy initial scenario seems like a bad one, because it’s costs are in always
higher than the others and because it shows violations, yet the ANOVA test doesn’t confirm with high signifi-
cance that the random and the centralized are better than the greedy one. However the greedy one is the only
one that has violations.

Table 4.6 includes the average costs of the solutions that ended up having no violations. In most cases
no violations occurred, with the exception of one solution obtained by taking the greedy initial solution with
no further mutations and the same scenario followed by a smart mutation. The solution not solved by smart
mutation is depicted in Figure 4.8. The adaptive mutation performs much better on this scenario.

No mutation Smart mutation Adaptive mutation Random mutation

No mutation - 4.933e-05 0.1884 1
Smart mutation 4.933e-05 - 8.342e-05 4.933e-05
Adaptive mutation 0.1884 8.342e-05 - 0.1884
Random mutation 1 4.933e-05 0.1884 -

Table 4.7: P-values for ANOVA test for the hypothesis for equivalent costs after a random initial scenario. When the value is < 0.05 we
conclude that the results are different.
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Centralized Greedy Random

Centralized - 6.198e-07 0.8309
Greedy 6.198e-07 - 8.564e-08
Random 0.8309 8.564e-08 -

Table 4.8: P-values for ANOVA test for the hypothesis for equivalent costs when performing a smart mutation. When the value is < 0.05
we conclude that the results are different
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(a) Winter month after simulated annealing
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(b) Winter improvements after simulated annealing
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(c) Summer month after simulated annealing
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(d) Summer improvements after simulated annealing

Figure 4.7: Result of simulated annealing on centralized initial scenario and improvements after optimizing

As Tables 4.6 shows, random mutations are hardly better than no mutation and it actually never improves
the costs. One thing the random mutation is capable of is getting rid of the violations as it gets rid of the
constraints generated by the greedy initial method. As a result, the average costs slightly go up, because one
extra data point is added that was excluded from "no mutation", because it had violations.

In Figure 4.5, the mutations seem to converge when Algorithm 3 is used. To check if the solution has
converged to a local optimum, the process in Subsection 4.4.1 is run on the best solution, that is some of
the solutions generated by a combination of a centralized scenario and simulated annealing with a smart
mutation. The results are in Figure 4.7b and Figure 4.7d and as can be seen the result hasn’t fully converged,
but the mutations are marginal improvements only.

4.4.5. CONCLUSION ON SIMULATED ANNEALING
The mutations have shown a lot of improvement. By using a smart mutation, the average costs have de-
creased from ¤457 to ¤351 which is an improvement of 23 %. Both the smart and the adaptive mutation
performed better than a random mutation, which seems in favour of Hypothesis 8. In fact, a random muta-
tion was only able to get rid of the constraints, but didn’t improve the solution by any significant amount. The
smart mutation performed better than an adaptive mutation

Although the results in Section 4.3.4 showed the random scenario to be better than the centralized one,
the differences between these initial scenarios mostly disappeared after the mutations. Both these scenarios
started in the feasible region in all cases. It is suspected that for the smart and adaptive mutations it doesn’t
matter what starting point is chosen as long as it’s feasible. In theory the random one can produce the same
scenarios as both the centralized and greedy one, so for most stability the centralized one is recommended.

For the smart mutation it does seem important what initial scenario is given as it’s the only mutation
that wasn’t able to get rid of the constraints introduced by the greedy scenario. It could be that the code in
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Figure 4.8: Scenario on which smart mutation fails to get rid of violations

Algorithm 3 is not very good at resolving infeasible scenarios. The algorithm could when given an infeasible
scenario be adapted to follow the same rules as the adaptive or random scenario or the rules could be changed
to better deal with infeasible scenarios.

The adaptive mutation is better at dealing with input given by the adaptive scenario. It did end up with
worse results than the smart mutation when it had to deal with solutions that started in the feasible region. It
is expected this is because the adaptive one is adaptive to different situations, it adapts more slowly than the
smart one. The smart one knows what to do in each situation. The adaptive one on the other hand is pushed
in a certain direction and the result needs to worsen before it realizes it should change its direction. It also
may end up changing direction continuously when it gets stuck in a situation where it is hard to find a nearby
region that improves the situation. If this happens, adaptive would would continuously switch strategies,
whereas the smart one sticks to a single strategy.

The final result converged to a good solution, but when seeking improvements by brute force, it still man-
aged to find an improvement, although a marginal one, so strictly speaking Hypothesis 9 turned out to be
false. It is still expected that the result converges close to the local minimum. A more definite result could be
obtained by running the scenario improver for each solution generated by SA, however this requires a lot of
evaluations and will take a long time. Much harder to tell would be if the result is close to the global optimum.

4.5. SEGMENTATION

Section 4.4 discussed how to solve the problem for a demand that doesn’t change during the day. In reality,
the demand does vary over the day and so coming up with a single scenario for the whole day is probably not
going to be optimal. On the other hand, the greenhouse owners are not willing to constantly adapt and there
is some start-up time involved for putting CHPs on and off. This problem is solved by dividing the day into
segments and solving the problem for each segment separately.

Hypothesis 10 Segmentation improves the result (lower total costs) over generating a single scenario for the
whole day compared to creating a single scenario for the whole day.

Hypothesis 11 Segmentation converges in fewer iterations compared to generating a single scenario for the
whole day.
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4.5.1. OBJECTIVE OF SEGMENTATION
Clustering should be done for each individual day. The total demand of all greenhouses during a day is a
continuous function of time, where t is time in seconds:

d(t ) ∈R+ (4.12)

This function has been sampled in intervals of 5 minutes. So during a day there are 24×60
5 = 288 intervals.

These intervals will be denoted as d(1) . . .d(288).
These intervals should be segmented into N segments such that:

• Each interval is part of exactly one segment, but a segment can contain many intervals.

• If for an interval j there exist a prior interval i and a later interval d and both intervals i and d are
assigned to a segment c, then interval j should be assigned to segment c as well.

So if the original time series is T , then the segmentation into M segments should be of the form:

C = {[d(l1) . . .d(r1)] . . . [d(lM ) . . .d(rM )]} (4.13)

where l1 = 0, rM = n and l j = r j−1 +1 for all 2 ≤ j ≤ M .
We want the elements within a segment to be as similar as possible and to minimize the variance of the

group. Mathematically, we want the following term (the sum of variances within each cluster) to be mini-
mized:

z(C ) = ∑
[d(l j )...d(r j )]∈C

(
r j∑

t=l j

∣∣∣d(t )−dc j

∣∣∣2
)

(4.14)

where dc j =
∑r j

u=l j
d(u)

r j − l j +1
(4.15)

The runtime of performing a single evaluation of a segmentation takes order O(n).

4.5.2. REQUIREMENTS
Practical constraints:

• A CHP can only be turned on twice a day

• A heat source should not change its state more than once an hour

Limiting the number of segments to 4 satisfies the first constraint. The second constraint can be satisfied by
forcing a minimum segment duration of an hour.

4.5.3. LITERATURE ON SEGMENTATION AND CLUSTERING
There are two common approaches to clustering: [15]

Hierarchical This method works bottom-up. It starts with single-element clusters and repetitively joins the
clusters that are most similar according to a (dis)similarity metric and a linkage criterion. This has a
runtime complexity of O(n3).

Divisive This method works top-down. It starts with a cluster that contains all the intervals and is repetitively
split into smaller clusters according to a splitting criterion like variance. This has a runtime complexity
of O(2n).

The similarity criterion is the function that is used to decide how close two elements are. This makes
sense if data points are multidimensional, but because the demand for our problem is in the interval R+ (1-
dimensional), the value itself can be used. Because segments consist of multiple points a linkage criterion
is needed which tells us which points of the cluster should be used for comparison. For our problem the
average would be used as this makes most sense considering Equation 4.15.
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Figure 4.9: Expected segmentation. A morning peak, afternoon drop and evening rise are expected which will have to be divided over 4
segments.

Adaptive Piecewise Constant Approximation Segmentation ACPA segmentation [16] is a technique that
produces unequal segments. In its original form it scans the data from left to right and creates a new seg-
ment whenever the total error so far has exceeded a certain threshold. Using this method in its original form
however does not give us a way to specify the number of segments in advance.

4.5.4. SOLUTION
The costs of evaluation Equation 4.15 for a clustering takes O(n) and the decision needs to be made at what
index the right borders of the clusters, r1, r2 and r3, need to be placed. If we have 4 segments at most, the
calculation costs of a bruteforce solution that tries all solutions to find the minimum are bounded by:

T (n) =
n−3∏
r1=1

(
n−2∏

r2=r1+1

(
n−1∏

r3=r2+1
n

))
∈O

((
n

3

)
·n

)
⊆O(n4) (4.16)

From the equation above it’s clear that more generally a brute-force solution takes O(n#c ) where #c is the
number of clusters. With dynamic programming, the runtime can be reduced to O(n3 ·#c). This approach is
possible, because the evaluation can be calculated for each cluster independently. The runtime can even be
reduced to O(n2 ·#c) if one realizes that the variance can be calculated as a rolling (geometric) average.

4.5.5. EXAMPLE
Looking at Figure 3.1a and Figure 4.10, segmenting the day in three parts seems like an option.

The expected segmentation (three parts) is as follows:

• Morning peak (from 0:00 to 8:59)

• Afternoon drop (from 9:00 to 15:59)

• Evening rise (from 16:00 to 23:59)

The resulting segmentation is illustrated in Figure 4.9 for the average day discussed earlier in Figure 3.1a.
Instead of three segment, it is chosen to split it up in four segments for more flexibility. When a day behaves
as expected, one of these segments might be split up into 2 segments. If the day has an atypical peak or hill,
the fourth segment can be used for that anomaly. The constraint of not having to put CHPs on and off more
than twice a day is still fulfilled.

4.5.6. RESULTING SEGMENTATION
The segmentation process is close to what was expected. The example of Figure 4.9 has been turned into
Figure 4.10a, which is almost exactly as expected but since there are 4 clusters, the fourth cluster has been split
into two parts. A typical example is shown in Figure 4.10b. In Figure 4.10c a segment is seen that according
to our intuition in subsection 4.5.5 is regarded as a single segment. However this isn’t a problem as the split
improves the representation of the individual intervals. Some less trivial examples are shown in Figure 4.10d
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Centralized Greedy Random

No mutation Mean cost 382.6 929.4 345.3
Std dev cost 74.3 25.6 63.4
Mean convergence 0.0 0.0 0.0
Std dev convergence 0.0 0.0 0.0
Percentage violations 0.0 0.0 8.3
Mean violation score 0.0 0.0 inf
Std dev violation score 0.0 0.0 0.0

Random mutation Mean cost 382.6 929.4 345.3
Std dev cost 74.3 25.6 63.4
Mean convergence 695.7 645.6 670.8
Std dev convergence 389.4 362.7 397.5
Percentage violations 0.0 0.0 8.3
Mean violation score 0.0 0.0 inf
Std dev violation score 0.0 0.0 0.0

Adaptive mutation Mean cost 301.9 702.4 297.1
Std dev cost 59.3 50.2 57.3
Mean convergence 49.8 50.5 36.7
Std dev convergence 19.1 16.6 11.9
Percentage violations 0.0 0.0 8.3
Mean violation score 0.0 0.0 inf
Std dev violation score 0.0 0.0 0.0

Smart mutation Mean cost 331.2 733.3 309.2
Std dev cost 78.5 45.6 61.8
Mean convergence 902.2 968.8 928.2
Std dev convergence 148.4 23.6 97.7
Percentage violations 0.0 0.0 8.3
Mean violation score 0.0 0.0 inf
Std dev violation score 0.0 0.0 0.0

Table 4.9: Combination of initial methods and Simulated Annealing with clustering

to Figure 4.10f where outliers make up their own segment. In Figure 4.10e the influence of a restriction of
minimum of an hour is shown, where around 9 a clock an outlier is stretched until its length is exactly an
hour.

4.5.7. INTEGRATION OF SEGMENTATION INTO MAIN ALGORITHM
The simulated annealing algorithm is run again, but this time the scenario is clustered in advance. It is ex-
pected that this will improve the performance because the generated scenarios are clustered to more specific
problems. So the steps are the following:

1. Cluster the demand into 4 partitions.

2. Generate initial solution for each cluster separately.

3. Perform the SA mutation for each cluster separately.

The transitions between the clusters are ignored, but will briefly be discussed in Contributions and Future
work.

4.5.8. RESULT OF SEGMENTATION ON SIMULATED ANNEALING
The result of running simulated annealing on the clustered data is shown is shown in Table 4.9. The raw
results are also listed in Appendix A.2. Some example results are in Figure 4.11.

For all scenarios that started from a centralized or a random one, the costs massively improved by clus-
tering. Whereas our optimal scenario without clustering had a cost of¤351, the best solution with clustering
has a cost of only¤297.1.
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(b) Typical situation
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(c) Split of afternoon drop segment
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(e) The second cluster is forced to the length of an hour
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(f) One large segment

Figure 4.10: Some particular clusterings
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No mutation Smart mutation Adaptive mutation Random mutation

No mutation - 0.2117 0.08968 1
Smart mutation 0.2117 - 0.6561 0.2117
Adaptive mutation 0.08968 0.6561 - 0.08968
Random mutation 1 0.2117 0.08968 -

Table 4.10: P-values of ANOVA test for the null hypothesis that the mutations give different results when using a random initial scenario.
If a significance level of 0.05 is used, none of these results is significant.

Centralized Greedy Random

Centralized - 3.388e-14 0.5817
Greedy 3.388e-14 - 3.459e-13
Random 0.5817 3.459e-13 -

Table 4.11: P-values of ANOVA test for the null hypothesis that the initializers give different results when using a smart mutation.

On average, the best result was obtained by combining a random initial scenario with an adaptive muta-
tion. The number of trials was similar to the number of trials used in Section 4.4.3 The difference between
the smart mutation and adaptive mutation is much smaller. When we didn’t split the data into segments,
the adaptive mutation scored 18 % better than the smart mutation when paired with a random initializer, but
when the results are segmented, the results of the smart and adaptive mutation are close to each other and
the adaptive one actually scores slightly better. It is also interesting to note that the adaptive mutation gener-
ally converged in about 50 mutations, whereas the scenarios by the smart mutation may not have converged
at all, because they were capped at 1000 iterations. Unfortunately, the number of trials is small and the results
are very close to each other, so it is not possible at this point to say whether the adaptive mutation is better
than the smart mutation if more experiments would be done.

There was one random scenario though that made Drukval crash, which is expected to be a Drukval bug,
which explains why the mean violation score is infinite. The greedy initial scenario is the only one that got
more expensive when solving the clustered version, no matter what mutation was chosen. It is not known
why this happens. An ANOVA test has been done in Table 4.10 to see if the results of the adaptive and smart
mutation are different, but the p-value of 0.6561 is not enough to reject the null hypothesis that the results
are the same. In fact, this test indicates that if we pay attention to the costs none of the mutations performs
significantly better if we start from a random initial scenario. Some other ANOVA tests have been done in
Table 4.11 to see if the initial scenarios matter. This test doesn’t show the random and centralized scenarios
to be significantly different, but both tests differ from the greedy scenario.

4.5.9. CONCLUSION ON SEGMENTATION

All results improved by clustering and the costs of the best solution decreased from ¤351 to ¤297, which
is an improvement of 15%, so Hypothesis 10 turned out to be true. We expect the improvement in results
because we are optimizing for smaller segments in which the spread of the demand is low, so we can make
better scenarios than before we clustered when we had to come up with a single scenario for the whole day,
even though the demand varies a lot throughout the day as was shown in Figure 3.1a.

In general, the segmented problems took more iterations to converge than the unsegmented problems.
It was expected that solutions would converge faster, because the segmented problem should be easier, but
Hypothesis 11 turned out to be false. It is expected that the convergence takes longer, because the clustered
form gives the algorithm more room for finetuning, whereas in the clustered form the algorithm needs to be
more careful not to run into violations. The unclustered form might thus end up more often in a situation
where it is hard to find a good mutation that doesn’t introduce new constraints or requires an extra heat
source to be enabled.

Although the results in subsection 4.3.4 showed the random initial scenario to be better than the central-
ized one, the differences between these initial scenarios mostly disappeared after the mutations. Both these
scenarios started in the feasible region in all cases. Only the greedy initial scenario performed much worse.
Because of the small amount of data and the small differences in result, it can not be said if the random ini-
tial solution is a better starting point than the centralized initial one. It is suspected that for the smart and
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(a) Winter scenario from centralized initial solution
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(b) Summer scenario from centralized initial solution
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(c) Winter scenario from greedy initial solution
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(d) Summer scenario from greedy initial solution
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(e) Winter scenario from random initial solution
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(f) Summer scenario from random initial solution

Figure 4.11: Smart clustered mutation
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adaptive mutations it doesn’t matter what starting point is chosen as long as it is feasible. If a choice has to
be made between the centralized and random initial scenario, the centralized initial scenario always ends up
in the feasible domain, whereas the random initial scenario has a small probability to produce an infeasible
solution, so the centralized initial scenario is recommended for production as it produces the most stable
solutions.

The adaptive mutation is better at dealing with input given by the adaptive scenario. It did end up with
worse results than the smart mutation when it had to deal with solutions that started in the feasible region.
It is expected to be because in case the situation changes, the adaptive one first needs to adapt to the new
situation first, whereas the smart one knows what to do. The adaptive one on the other hand is pushed in a
certain direction and the result needs to worsen before it realizes it should change its direction. It also may
end up changing direction continuously when it gets stuck in a situation where it is hard to find a nearby
region that improves the situation. If this happens, adaptive would continuously switch strategies, whereas
the smart one sticks to a single strategy.

4.6. CONCLUSION ON SIMULATED ANNEALING
Different approaches have been tried to get to this result. An overview of choices can be found in Figure 4.12
Segmentation has been shown to work better than maximizing the heat and although other ways can be con-
strued to deal with time, segmentation should at least be considered an option, because it’s easy to implement
and has shown good results.

The initial solution that worked best for our experiments is the random one. Proportional is not recom-
mended, because it puts much pressure on the network and is inflexible, because the CHP’s need to operate
on a fixed debit. A better starting point is to use the RoCa and to enable a few CHP’s. Our experiment showed
slightly better results when using a random scenario than a centralized one that solely relies on the RoCa, but
the centralized one is safer, because the random one still has a small probability to end up with an infeasible
scenario from which it is more difficult to optimize.

The random mutation is not recommended, unless you have no other option. The other mutations gave
better results. Both the adaptive and smart mutation gave good results, but neither of them was significantly
better than the other. The general advantage of the adaptive is that its basic ideas can be applied in different
contexts too, whereas the smart mutation relies on our domain knowledge. If more insight into the domain is
added to the problem, it is recommended to try the smart mutation, otherwise the adaptive mutation is still
a good choice.

For the simulated annealing parameters, the choice was made to use the temperature function of Goffe,
but to change the acceptance probability to measure the change as a fraction of the total amount, which was
done to make the acceptance probability work with small differences when the step is made from a a solution
that is physically feasible to another solution that is still physically feasible but cheaper and to work with steps
from an infeasible solution to a slightly more feasible solution, which are much bigger because of the penalty
function.
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5
CONTRIBUTIONS AND FUTURE WORK

5.1. CONCLUSIONS
The focus of this thesis was the question “How can a heat control optimization problem with both linear and
non-linear constraints be solved as optimally and efficiently as possible?”. We came up with a way to solve
heat demand scheduling problems under several constraints by making use of simulated annealing and load
balancing algorithms.

We have shown that techniques such as simulated annealing and segmentation can end up with better
scenarios than can be found by simple techniques such as using a centralized scenario for the whole day,
although such simple techniques can be used as a initial scenario to optimize using simulated annealing.
Instead of using the basic form of simulated annealing that works using a random initial solution and random
mutations, we have decided to put some intelligence into the way the initial scenario and the mutations are
done. It was found that a random solution creates a better starting point for finding other solutions than
by starting from a centralized scenario or a greedy scenario that tries to use as few heat sources as possible.
For simulated annealing, we found that solutions that are in the physically feasible domain already are easier
to optimize than scenarios that need to be made feasible first. The problem with non-feasible solutions is
that two criteria need to be optimized: the solution should be physically possible and the solution should be
efficient. If given a feasible solution to start with, the algorithm only needs to optimize the costs. We found
that an easy way to get a solution in the feasible domain is to start from the centralized scenario, that makes
the RoCa responsible for all heat production. Finally, we have shown a way to solve the problem over time, by
dividing the time series into segments and solving the problem per segment.

Days follow similar patterns with a lot of variations and there is a difference between summer and winter
months In Chapter 3, we have looked at the data and found some patterns in the data. There is a strong
correlation between the outdoor temperature and the collective heat demand. Related to this, we found that
the day of the year indirectly influences the demand through temperature. Another factor of influence on the
demand is the time of the day. The demand over individual days roughly follow the same pattern: there is a
morning peak, a dip during the afternoon and a rise in the evening. However as we saw in Section 4.5, the
individual days tend to vary a bit from this general pattern. This concludes research question 1.

Simulated annealing has many advantages At the beginning of Chapter 4, the choice was made to use
simulated annealing. Advantages of this method are that it is flexible, that it still works when little domain
knowledge is available, that it can escape from local minima and that when given enough time, it is highly
probable (but not guaranteed) to find the global optimum. Disadvantages of this method are that it converges
slowly, requires choosing a temperature function and tuning the associated parameters, and that it has no
performance guarantee. The parameters that need to be chosen are the decay rate of temperature, the weight
that is given to the penalty function and the amount of change that should be done on each mutation. We
have partly avoided these choices by putting our focus on making the mutations itself as clever as possible. It
is thus expected that our solution would work well in a simulated annealing setting that performs downhill-
search only. Some work can still be performed on making better choices for these parameters. Because of the
instability of the Drukval program, it is needed to check if new solutions fail or succeed, though.

55
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Another method that was considered are genetic algorithms. The advantages of simulated annealing are
that it is able to escape from local minima and that it works with a large set of parameters. It wasn’t chosen
because it needs a huge amount of evaluations per generation and needs to run for multiple generations,
whereas for our problem evaluations are expensive. Also considered was using local optimization with or
without multiple starting points. This method was not chosen, because the problem of finding a feasible
solution was expected to be a difficult problem. Since our initial solutions end up with feasible solutions, this
method might be considered a try as well in future work. The disadvantage of this method is that it is less
flexible.

The choice for the initial scenario and the mutation are important In Section 4.3, three different methods
of generating an initial scenario were compared to each other with the intention to get an idea of what kind
of scenarios work well and to be used as an initial scenario for simulated annealing. Another reason for
experimenting with initial scenarios is that simulated annealing has no performance guarantee, except that
the final solution is at least as good as the initial one and that the solution generally improves over iterations.
The centralized initial scenario reflects the old scenario, in which all heat would be produced by a central
heat source. The greedy initial scenario tries to use as few heat sources as possible. The random scenario
randomly enables or disables each of the CHPs. Contrary to what was expected the greedy one didn’t perform
well and resulted in both a lot of pressure and overproduction. The centralized one performed well, but the
random initial scenario, which was originally considered to be too naive, performed best.

For the mutation, two approaches were observed to be successful. The smart mutation uses experimen-
tally obtained domain knowledge to make a random decision within the set of mutations that seems rea-
sonable. The adaptive mutation follows a more general idea that can also be applied in different problem
domains. It tries a random mutation and if successful, it remembers the direction of the mutation. However
if the solution doesn’t improve or deteriorates, it reverses the direction of the mutation to seek the solution
in the opposite direction. It is expected that such an approach would work in many other problem domain
contexts as well. Both the smart and adaptive approaches gave better results than random mutations.

Dealing with time can be done using a segmentation algorithm To deal with time, the choice was made
to use segmentation on the time series and to solve for the resulting segments individually. Three techniques
from literature have been considered, but since our dataset consists of 288 elements only, a dynamic pro-
gramming method was used that solves the problem in quadratic time and minimizes the variances within
each segment.

5.2. FUTURE WORK
A lot of work has been done, but the work can still be extended in some ways.

5.2.1. PROBLEM ENHANCEMENTS

In this subsection, a look is taken how additional requirements and changes to the problem can be solved.

Equal spread of heat production In the scenarios the current solution comes up with, some greenhouses
might be made to produce more heat than others. The greenhouse owners might want the solution to be such
that it equalizes the heat production over the greenhouses. This can be done in a soft way by changing the
evaluation function such that little used greenhouses yield a better score than overworked ones or in a hard
way by putting quota on the minimum and maximum amount of heat a greenhouse is allowed to produce.

Geothermal energy Geothermal energy is another energy source that is more stable in price compared to
CHP’s. The only variable source is in the price of the electricity, which influences the pomp. The temperature
that can be reached by such a geothermal heat source depends on how deep the geothermal sources are built.
There is a trade-off between the depth of the geothermal plant and the costs. The deeper the plant is built, the
higher the temperature, but the more expensive the costs will be. If these become the main source, it means
that the costs are less volatile and that the same solution can be used for multiple days. The same program
structure as in Figure 4.1 can still be used with multiple heat sources.
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Stability if a heat source stops working A solution that can be applied if a heat source stops working is to
calculate the loss(the amount of heat not produced by the heat source) and make this amount be generated
by the private boilers of the greenhouses. This solution should be safe, because private boilers don’t need the
network.

5.2.2. MODEL ENHANCEMENTS
In this subsection, a look is taken at how the current model for assigning a score to a heat generation sce-
nario can be improved. Improvements can be made to calculate the pressure more precisely or to include
additional costs that were left out of scope for our model.

More advanced Drukval model The current Drukval model only looks at hydraulic factors, but ignores ther-
modynamic ones. It is not clear if the thermodynamic constraints can safely be ignored and the model might
need to be changed to incorporate thermodynamic factors too.

Variable costs In the current cost model the costs per heat source are kept constant throughout the day.
The costs that are used per heat source can be found in Table 2.1. Although the solution is made such that it
can work with variable costs, it hasn’t been tested, because these are difficult to model without more domain
knowledge.

Transportation costs At the moment transportation costs aren’t considered. In Chapter 2, it was shown that
the transportation costs linearly depend on the quantity, which makes them comparable to the production.
For an accurate estimation of the total costs these sources would have to be included, but they don’t change
the problem or solution method.

Influence of buffers At the moment buffers are not considered, but incorporating those would improve the
solution. Research needs to be done on how best buffers can be added to the solution. The existing set-up
can be used for emptying the buffer by treating them as yet another heat source with the restriction that
they should always be filled beforehand or always be refilled afterwards. In the current clustered set-up, it
is recommended to find the time segment that has the lowest cost and use that one for filling up the buffer.
Since the prices are the same for everyone, it is expected that every greenhouse should fill their buffers at the
same time.

Delay in water streaming through pipes At the moment, it is assumed that water flowing through the pipes
will arrive at its destination instantly. In practice this is more complicated. Depending on the actual layout
of the network it will take time for the current to get from one point to another. It is assumed the network is
stable enough to deal with such fluctuations.

5.2.3. SOLUTION ENHANCEMENTS
In this subsection a look is taken at ways at improvements that can be made to the current solution as is.

Don’t always run Drukval It seems that once the constraints have been solved, the simulated annealing
algorithm is unlikely to reintroduce them. One might wonder if it’s really necessary to run Drukval every
iteration. Maybe it can be run once every 100 iterations to verify the solution is still in the feasible domain
and speed up calculations.

Transitions between time segments At the moment each time segment is solved separately. The transitions
between these clusters are very abrupt, but should be done more gradually. It is suggested to perform these
transitions gradually. A simple way to do so is by linear interpolation For example, a transition can take place
in the following way:

Time RoCa production CHP1 production CHP2 production Total production

0 100 150 0 250
5 75 75 100 250

10 50 0 200 250
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It needs to be verified that such transitions don’t cause overflows in the middle. If this turns out to be a
problem, the safest way is to perform reductions in heat production, before the increase of other heat sources.
In this case a transition would look like this:

Time RoCa production CHP1 production CHP2 production Total production

0 100 150 0 250
5 75 75 0 150

15 50 0 0 50
20 50 0 100 150
25 50 0 200 250

This latter scenario would have a brief temporary period of reduction in heat production and it is not clear
if the greenhouses would mind.

More flexible solution than segmentation At the moment, time is handled by segmenting the demand and
the scenario globally and every greenhouse will have to adjust its production at the same time. A solution
that uses a separate segmentation per greenhouse might yield better results.

Finding good model parameters Because Drukval runs slowly, not a lot of time has been spend on opti-
mizing the parameters of simulated annealing. Ideally these parameters should be optimized separately in
combination of initial solution and mutation. There are also some additional parameters that could be varied
like making the mutation step size smaller depending on the temperature function as defined in Section 4.2.

5.2.4. SOLVING THE PROBLEM BY ACTIVE LEARNING
As an alternative to simulated annealing this problem could be solved using Machine Learning. This machine
learning method would model the result of the evaluations and based on that model it would build a new so-
lution. To get a model that is easy to optimize, the model would ideally be linear or quadratic, but something
convex would work as well. The advantage of linear and quadratic problems is that there exist state of the art
solutions for solving these problems rapidly in theory [17] and in practice [18]. Optimization of linear models
has been done before using Lasso and decision tree models [3]. Convex optimization problems can be solved
using Subgradient projection and Interior point methods.

5.2.5. ACTIVE LEARNING OVERVIEW
A high-level description of how this problem can be solved using active learning is depicted in Figure 5.1. This
description leaves several details open.

Greenhouses Active
Learner

Heat demands

Update model Cost
evaluatorProposed solution

Physics
evaluator

Proposed solution

Best
solution

Calculate
score

Price

Violation score

Score

Figure 5.1: Machine learning program structure

As with simulated annealing, the input is the heat demands per greenhouse per time interval and the out-
put is the best heat production scenario. The system has access to a cost and a physics evaluator to evaluate
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proposed solutions. Internally, the system tries to build a model that can predict the outcome of the phys-
ical evaluator but that lends itself better for optimization. It does this by first generating instances to build
its model and then using that model to build instances that it predicts will test positively on the physical
evaluator.

The production costs are mostly linear, so the physical model is the thing that needs modelling. From
the heat production scenario, the debits can be calculated, whose instances are in the domain N288, because
there are 288 periods of 5 minutes in a day. From personal experience, I know machine learning works best
when there is either a lot of data or when the number of features is small. 288 features is large, but perhaps
feature reduction could be used, by taking groups of related greenhouses together at the cost of generalizing.
Fortunately, the number of instances can be reduced.

Number of models We could either learn a single model that predicts if a complete scenario is feasible or
we could train a model per greenhouse. If we train a single model that model will label a scenario (debits
per greenhouse) either as feasible or infeasible. If only a single greenhouse fails to meet the constraints, that
single model should mark the scenario as infeasible. Only if every single greenhouse meets the constraints,
the single model should predict the scenario as feasible. As failing constrains can always be traced back to a
single greenhouse, an alternative approach is to train a model per greenhouse. As input every model will get
a full scenario with the debit values for every single greenhouse, however as output it will only predict if the
constraints of a single greenhouse are met. Expected is that training will be faster in this case, as infeasible
solutions can be traced back to a single greenhouse and only the model for that single greenhouse needs to
be updated.

5.2.6. OPTIMIZING THE LEARNED MODEL

Linear and quadratic programming problems A linear programming problem (LP) is a problem of the
following basic form.

Minimize~c>~x
Subject to A~x ≤ b for i = 1 · · ·m

~x ≥ 0 for i = 1. . . p

Where~x is a free variable

Where A,~b and~c are fixed

It has a linear objective function and linear constraints. The vector c = (c1 . . .cn) ∈ Rn needs to be supplied
in advance. The solution~x = (x1 . . . xn) ∈ Rn needs to be found such that the objective is as small as possible
while satisfying all constraints.

There are a couple of extensions to the linear programming problem. If some of the solutions of x lie in
the integer domain Z+ it’s an integer linear problem. This problem is NP-hard, but solvers such as CPLEX
are specialised in solving many such problems efficiently. In other extensions the objective can be quadratic,
making the problem a Quadratic Programming Problem or the problem might have quadratic constraints in
which case it becomes a Quadratically Constrained Programming Problem. An even more general problem
class is the Mixed Integer Programming class, in which the objectives and constraints of a problem can be
linear or quadratic, any of the variables can be constrained to the real of integral domain and constructs such
as Special Ordered Sets and semi-continuous variables can be included. [18] Some tools that can can solve
all these problem classes are CPLEX [18] and Gurobi [19].

Linearizing the physical constraints When optimizing over scenarios to find a cost efficient scenario, we
would like to specify the physical limitations as linear or quadratic constraints such that the problem is for-
mulated as a MIP and the efficiency of CPLEX can be utilized. Unfortunately these physical limitations aren’t
linear, but perhaps they can be approximated by a linear or quadratic model if that simplified model pre-
dicts the physical feasibility accurately enough. An attempt is made to find such a linear model by machine
learning.

5.2.7. MACHINE LEARNING MODEL
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Linear classifiers The easiest type of models that is solvable in polynomial time are linear models. Linear
models are simple and easy to optimize, but aren’t the most accurate solution because they ignore interac-
tions. If the current physical model (or an improved one that is still based on formulas) is used, we expect
not to find noise or faults in the data, so it is expected that simple methods like LDA and LASSO could work.
Otherwise, if it is decided to train on real world data, an advanced method like SVM could be used that is
more robust to noise while still trying to be as accurate as possible.

Decision tree Decision trees can be used for both classification in which case they are called classification
trees and for regression in which case they are called regression trees. As regressors can be turned into classi-
fiers by thresholding, we can consider these regression methods to be classifiers as well. In its simplest setting,
at each branch of a decision tree a single feature and a threshold is used to advance to one of the subtrees.
The leafs of a decision tree contain labels (classification) or values (regression). Unlike more advanced tech-
niques such as neural networks models created by decision trees are relatively easy to understand. A popular
method for training regression trees is M5 proposed by J.R. Quilan in 1992. [20] Instead of labels, the leafs
consist of multivariate linear models and therefore this tree based learner is called a model tree. Also prun-
ing is used for simplifying the tree and smoothing to resolve discontinuities. Wang and Witten made some
improvements to this M5 model like improved dealing with missing values. Frank, Wang, Inglis, Holmes and
Witten turn the M5 model into a classifier. [21] As a model tree in its simplest form is a combination of a
decision tree and a linear classifier, it is likely that this model can be turned into a set of MIP constraints, but
it’s not clear a this point if that will improve the modelling. Landwehr, Hall and Eibe Frank use a model tree
with a logistic classifier at the leafs and claim that this improves the modelling. [22] As shown by Sicco e.a.,
decision trees can be optimized by mapping it to an MIP problem and using a tool such as CPLEX. [3]

5.2.8. INSTANCE GENERATION
There is something to say for generating instances purely randomly. It provides the classifier with the most
unbiased sample of the data, whereas all other models favour certain instances more than others. However
having an unbiased distribution isn’t what we are interested in. As we would rather have a biased model that
works well for solutions near the optimal one, than an unbiased model that performs well for all instances.
less optimal solutions.

Active learning inspired methods In a literature survey by Burr Settles [23], different query strategies for
active learning are described. The methods discussed in his survey intend to make the classifier work well
on the whole distribution. Uncertainty sampling chooses the instances the classifier is most uncertain about
how to label. There is also a variation, query-by-committee that uses multiple classifiers and selects the label
the classifiers agree on the least.

More expensive methods are Expected model change and Expected error reduction. Expected model change
selects the instance that would change the model the most. Expected error reduction tries to reduce the gen-
eralization error, the error on unseen instances the most. This requires the classifier to be retrained at every
step. Because expected error reduction is expensive, Variance reduction can be used which is about selecting
instances that reduce the variance most and indirectly reducing the generalization error.

An advanced method is Density weighted reduction, where instances are selected that are both uncertain
as well as those that are representative for the underlying distribution.

Contextual bandit Another class of instance generation methods is Contextual bandit, which tries to bal-
ance between exploitation (trying to find a best solution in the area explored so far) and exploration (hunting
the instance space for more promising areas). This method comes from recommender systems, another field
of research, where the goal is partly to exploit what is known about the user preferences and partly to come
up with new suggestions which the user might like. Standard ε-greedy chooses with probability ε the best
solution according to the current model of the user preferences, and with probability (1−ε) a random policy.
[24] In recommender systems it is sometimes needed to keep the variable ε high to not lose the interest of the
customer, but for us this is not as relevant.

Q-learning methods Q-learning methods are used in reinforcement learning, which studies how software
agents should behave in an environment where they can perform actions and obtain rewards. Q-learning
methods are about choosing the best action in such situations.



5.3. RECOMMENDATIONS TO ENECO 61

Two common exploitation strategies often used in Q-learning are semi-uniform learning and Boltzman
exploration. Semi-uniform learning is very similar to the contextual bandit method ε-greedy. With probably
p the best solution is selected and with probability 1−p a random solution is selected. Initially p is quite low
and is gradually increased. So initially the algorithm is very explorative and slowly shifts into an exploitative
one. Another approach is Boltzman exploration that select actions with probability:

Pr (a) = eQ(s,a)/T∑
a′ eQ(s,a′)/T

(5.1)

The variable T stands for temperature and is initially assigned a high value, but is slowly decreased to
transition from exploration to exploitation. This is conceptually similar to the temperature function for Sim-
ulated Annealing used in Chapter 4. Q-learning itself can not be directly applied to our problem, because the
solution space of our problem is enormous, whereas Q-learning works with a small, discrete set of actions.

5.2.9. DIFFERENCES WITH SIMULATED ANNEALING
Both active learning (actually a combination of active learning and optimization) and simulated annealing
require multiple evaluations of the solution. The advantage of simulated annealing over active learning is
that it is easier to set up. Active learning requires training a general model first and then applying that model
to an individual day.

Simulated annealing can do without such a model and can be run directly. The difference is efficiency, the
active learning model only needs to be learned once which will take long if an accurate model is required, but
after having learned it once, it can be applied over and over again to efficiently generate a solution. Simulated
annealing takes longer to generate an individual solution, but doesn’t require a long initial learning process.
Since this initial learning only needs to be done once, active learning would be better. The initial learning
phase only needs to be done again if the underlying model changes.

Whether or not active learning will find a better solution remains unclear. Solution methods like simplex
are definitely better than simulated annealing at finding global minima in complex solution spaces; however,
the simplex method assumes the linear model is completely accurate, which might not be the case because
the active learning model might be oversimplifying the problem and might even come up with a solution that
is not actually feasible. Simulated annealing on the other hand would, given enough time, effectively do a
brute-force search, which is guaranteed to find the best solution.

It would also be possible to combine them. Active learning could be used to come up with an initial
solution, which can then in turn be fine-tuned using simulated annealing.

5.3. RECOMMENDATIONS TO ENECO
It has been shown that by changing from a centralized to a decentralized approach the costs can be decreased
by about 25 %. Potentially more costs can be saved if the costs are made variable and the solution is extended
to include buffers for which some suggestion are made in Section 5.2.2 In either case, the solution can only
improve, because even if the solution has worse performance, there is always the option to use the current
one.

The Drukval program from Eneco has been used for the evaluation of physical constraints. However, this
program is still a bit unstable, as it would freeze or even segfault on some scenarios. This makes it difficult
to use the program as part of an optimization routine and considerably slows down the evaluation time.
Furthermore, the program only pays attention to the hydraulic physical laws to calculate the pressure but
neglects the thermic ones. It is not certain that the thermic pressure can safely be ignored. It is recommended
to stabilize the program and to make it work with a modern compiler or to make the program available as a
shared library that can be used in any environment.

If the recommendations in this thesis are followed, it is expected that solutions can be created that are
better than could be found by hand. Eneco and the greenhouses need to consider what additional require-
ments they have to the system. Solutions might be biased to make use of certain heat sources more often
than others, but the system can be extended with the requirement to equalize the production over the green-
houses or to split the costs by compensating greenhouses that need to produce more. Since the total costs
decrease, an agreement can and should be made such that nobody has to lose and everybody wins.
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A
RAW DATA

The raw results of running the experiments without clustering can be found in Table A.1. The raw results of
running the experiments with clustering can be found in Table A.2.
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Centralized Greedy Random

No mutation 2013-01-0 600.957 905.828 536.539
2013-01-1 614.249 2.1e+08 548.845
2013-01-2 552.139 874.586 487.819
2013-01-3 559.900 882.235 494.320
2013-01-4 575.626 890.481 511.477
2013-01-5 569.589 883.771 499.604
2013-06-0 476.346 858.102 428.180
2013-06-1 492.982 853.860 427.125
2013-06-2 502.175 864.736 441.255
2013-06-3 438.938 833.732 387.080
2013-06-4 421.535 820.217 368.972
2013-06-5 409.344 978.585 357.246

Random mutation 2013-01-0 600.957 905.828 536.539
2013-01-1 614.249 1.36e+03 548.845
2013-01-2 552.139 874.586 487.819
2013-01-3 559.900 882.235 494.320
2013-01-4 575.626 890.481 511.477
2013-01-5 569.589 883.771 499.604
2013-06-0 476.346 858.102 428.180
2013-06-1 492.982 853.860 427.125
2013-06-2 502.175 864.736 441.255
2013-06-3 438.938 833.732 387.080
2013-06-4 421.535 820.217 368.972
2013-06-5 409.344 978.585 357.246

Adaptive mutation 2013-01-0 489.538 586.398 473.975
2013-01-1 492.864 468.762 485.248
2013-01-2 457.641 551.756 454.032
2013-01-3 464.053 557.635 457.122
2013-01-4 473.861 567.539 454.371
2013-01-5 469.884 560.451 456.480
2013-06-0 403.182 551.334 408.755
2013-06-1 404.049 546.970 412.676
2013-06-2 412.170 558.927 414.574
2013-06-3 378.891 527.031 382.183
2013-06-4 366.148 512.679 368.091
2013-06-5 358.843 574.959 354.895

Smart mutation 2013-01-0 394.634 688.396 399.314
2013-01-1 413.596 2.05e+08 397.121
2013-01-2 366.923 658.114 353.462
2013-01-3 371.390 709.149 358.286
2013-01-4 380.582 687.738 383.892
2013-01-5 365.582 711.895 360.771
2013-06-0 342.721 758.589 348.081
2013-06-1 350.268 720.368 349.274
2013-06-2 357.024 765.270 350.810
2013-06-3 320.418 627.462 315.007
2013-06-4 298.396 668.088 304.520
2013-06-5 291.428 634.463 293.815

Table A.1: Raw data
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Centralized Greedy Random

No mutation 2013-01-0 471.751 914.094 421.415
2013-01-1 488.164 902.023 430.456
2013-01-2 416.118 940.329 368.001
2013-01-3 427.168 932.861 376.314
2013-01-4 426.062 935.973 376.133
2013-01-5 431.798 888.190 381.492
2013-06-0 355.391 905.807 318.671
2013-06-1 355.250 954.693 302.454
2013-06-2 397.189 906.419 346.188
2013-06-3 314.429 932.891 272.619
2013-06-4 264.824 967.999 inf
2013-06-5 242.982 971.733 205.045

Random mutation 2013-01-0 471.751 914.094 421.415
2013-01-1 488.164 902.023 430.456
2013-01-2 416.118 940.329 368.001
2013-01-3 427.168 932.861 376.314
2013-01-4 426.062 935.973 376.133
2013-01-5 431.798 888.190 381.492
2013-06-0 355.391 905.807 318.671
2013-06-1 355.250 954.693 302.454
2013-06-2 397.189 906.419 346.188
2013-06-3 314.429 932.891 272.619
2013-06-4 264.824 967.999 inf
2013-06-5 242.982 971.733 205.045

Adaptive mutation 2013-01-0 356.395 631.441 353.974
2013-01-1 400.060 662.368 420.510
2013-01-2 317.215 670.652 308.112
2013-01-3 348.618 777.609 307.516
2013-01-4 322.537 681.740 309.821
2013-01-5 329.133 712.320 310.942
2013-06-0 325.687 687.750 273.960
2013-06-1 280.572 791.127 253.375
2013-06-2 302.966 632.037 299.282
2013-06-3 241.910 697.439 240.604
2013-06-4 201.497 750.075 inf
2013-06-5 195.745 734.642 190.468

Smart mutation 2013-01-0 405.551 671.389 374.979
2013-01-1 446.506 761.145 402.054
2013-01-2 368.604 762.988 333.706
2013-01-3 380.057 782.382 337.752
2013-01-4 374.791 781.581 336.271
2013-01-5 377.370 724.745 339.772
2013-06-0 293.859 702.284 264.635
2013-06-1 322.907 805.617 278.635
2013-06-2 359.999 733.470 320.067
2013-06-3 268.103 716.855 237.913
2013-06-4 196.562 711.312 inf
2013-06-5 179.979 645.650 175.309

Table A.2: Raw data clustered


	Abstract
	Introduction
	Problem description
	Problem sketch
	Transition to the smart grid

	Heat sources
	Description of the demand datasets
	Scenario representation
	Feasibility of scenarios

	Technical and physical constraints on pipes
	Costs
	Simplified cost model

	Optimization
	Matching supply and demand
	Including physical and technical constraints

	Example calculation
	Dealing with variations of the heat demand during the day
	Objective and research questions

	Analysis of demand patterns
	Expected patterns
	Demand over the average day
	Demand over the year averaged per day
	Correlation between the temperature and heat demand
	Spread of heat demand over the greenhouses
	Conclusion on demand patterns

	Solution with Simulated Annealing
	Choice of optimization technique
	Multi-start local optimization
	Simulated annealing
	Genetic algorithms

	Overview of design decisions
	Initial scenario
	Proposed methods
	Hypotheses about initial scenarios
	Experimental set-up for testing initial scenarios
	Resulting initial scenarios
	Conclusion on initial scenarios

	Most effective mutation steps under different conditions
	Finding continuations
	Improvement strategy
	Setup of simulated annealing with proposed solutions
	Result of simulated annealing
	Conclusion on simulated annealing

	Segmentation
	Objective of segmentation
	Requirements
	Literature on segmentation and clustering 
	Solution
	Example
	Resulting segmentation
	Integration of segmentation into main algorithm
	Result of segmentation on simulated annealing
	Conclusion on segmentation

	Conclusion on simulated annealing

	Contributions and Future work
	Conclusions
	Future work
	Problem enhancements
	Model enhancements
	Solution enhancements
	Solving the problem by active learning
	Active learning overview
	Optimizing the learned model
	Machine learning model
	Instance generation
	Differences with simulated annealing

	Recommendations to Eneco

	Bibliography
	Raw data

