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the formation of bandgaps in three-dimensional elastic metamaterials
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lands

Abstract: Elastic metamaterials — man-made resonant structures exhibiting unusual functionalities — have shown promis-
ing results for controlling structural vibration, specially at a low frequency regime. Such functionalities rely on the
presence of resonant bandgaps, which consists of a frequency band where waves cannot propagate in response to the
out-of-phase motion of the local resonators. Usually, the contrast between the properties of different material phases in
such resonators results on the resonant effect, however, the manufacturing of such multi-phase structures is challenging
and can be a high-cost process. This work proposes a parametric investigation of an elastic metamaterial constituted
by single-phase local resonators. The bandgap formation in such structure depends on the geometrical properties of the
resonators, instead of the material parameters. This analysis allows us to understand which geometrical features are
sensitive to the position of the resonant bandgaps and its width. Designing such single-phase resonators provides an
alternative to manufacture low-cost structures for engineering application.
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INTRODUCTION

The extensive studies in acoustic/elastic metamaterials (A/E MMs) have highlight their feasibility in reducing low-
frequency noise/vibration, which emerged to overcome the limitation of phononic crystals (PnCs) with respect to their
wave control mechanism. Different from PnCs, which rely on their lattice size to create the destructive interference be-
tween waves, A/E MMs relies on the formation of subwavelength bandgaps — frequency regions where waves cannot
propagate — due to the presence of periodically arranged internal resonators. In the local resonance (LR) mechanism, the
energy of the incident wave is absorbed at the resonant frequency of the unit cell, which prevents the wave transmission
through the domain. The first concept of a LR metamaterial was reported by Liu et al. (2000), in which they obtained
negative elastic parameters at specific frequencies by using a unit cell containing a stiff core material covered by a soft
material. Mass-spring systems realize negative mass density when the resonator moves out-of-phase with the income
wave (Milton and Willis, 2007). This phenomenon has been named as dipolar resonance. Researchers have investigated
variations of mass-spring systems, such as dual-resonator system (Tan, Huang and Sun, 2014), cantilever-in-mass meta-
materials (Qureshi, Li and Tan, 2016) and mass-spring systems to reach negative Young’s modulus (Huang and Sun,
2011).

The resonant bandgap has been reached by the combination of two or more materials, so that the core of the resonator
is formed by a stiffer material while the coating is made of a soft material. An acoustic MM formed by rubber-coated
gold spheres immersed in epoxy was designed to achieve simultaneously negative mass density and modulus (Deng et
al., 2009). Popa and Cummer (2014) proposed a metamaterail-based structure formed by Helmholtz resonators that
provide specific behaviors for different directions of wave propagation. Although this is a straightforward strategy to
guarantee a resonant phenomenon, manufacturing resonators with discontinuous distribution of material properties can
require complex processes (Bandyopadhyay and Heer, 2018).

Single-phase resonant unit cells have been investigated to address the issue regarding to the manufacturing com-
plexity. The topology of such structures usually consists of holes with a certain profile that can generate the resonance
phenomenon. Such profiles can also be fabricated by using cutting techniques, which is a low-cost and less complex
process. Gao et al. (2019) theoretically designed a single-phase platonic crystal, a type of metamaterial-based thin plate.
The resonator of such crystal is made of beam-type structures distributed over a cavity. The geometrical parameters of the
beam and the cavity are strictly related to the resonance of the system. Various numerical examples of single-phase meta-
materials have also been reported. Sang, Sandgren and Wang (2018) explored analytically and numerically the influence
of translational and rotational resonances in periodic chiral local resonators. They noticed that the translational resonator
was responsible for obtaining negative effective mass density, whereas the rotational resonance leads to negative effec-
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tive modulus. The combination of both resonances resulted in double-negative effective material properties. Warmuth,
Wormser and Korner (2017) proposed a single-phase phononic crystal which reproduces the dynamic characteristic of a
dual phase crystal by combining soft and stiff struts. For the first time, they experimentally exhibited the predicted band
gaps. Jiang et al (2021) explored a single-phase structure that generates both Bragg scattering and locally resonant band
gaps. They also fabricated the metamaterial by using additive manufacturing and validated experimentally the numerical
results. Due to the reduction in the design parameters, especially the ones related to the materials properties, optimization
techniques have been applied to design the single-phase A/E MMs. Genetic Algorithm (GA) has been employed by Dong
et al. (2018) to design single-phase metallic structures to achieve super resolution imaging. Lin et al. (2021) used shape
optimization to achieve the design of double negativity of chiral elastic MMs.

In view of the advanced studies in single-phase A/E MMs, we evaluate the influence of the resonator’s components in
the bandgap formation. The analysis is restricted to the in-plane geometric parameters that are strictly related to the mass
and stiffness of the resonator. We identify which geometric parameter is more sensitive to change the bandgap with respect
to its bandwidth and its central frequency. The findings of this work contribute to design the bandgap of single-phase A/E
MM for applications extending from low to high frequency waves.

MODEL DESCRIPTION

The single-phase unit cell proposed in this paper consists of a cylindrical resonator attached to an external frame
through four identical beams as shown in Fig. 1. Introducing the beam’s length inside the resonator is proposed to modify
the resonant bandgap with respect to this dimension, while holding the size of the unit cell fixed. The depth of the
entire structure is kept constant so that the resonant effect is evaluated by using the in-plane dimensions. The geometric
parameters defining the topology of the unit cell are presented in Tab. 1. The constitutive material of the unit cell is nylon,
whose material properties are Young’s modulus E = 2 GPa, density p = 1050 kg/m> and Poisson’s ratio v = 0.33. No
damping is considered in the model. Due to the symmetry of the unit cell in both in-plane directions, its smallest periodic
component is represented by the green triangle I' — X — M —T, as indicated in Fig. 1. Such region, which is also named
as the Irreducible Brillouin Zone (IBZ), can be used to predict the dynamic characteristics of the unit cell.

Y

Figure 1 — Single-phase unit cell and its geometric parameters. The green triangle represents the Irreducible Brillouin Zone
(IBZ), which defines the smallest periodic component of the unit cell.

METHODS

The resonant bandgap is evaluated by obtaining the dispersion relation and the effective mass density of the unit cell.
For the former method, the wave propagation problem in an infinite periodic medium can be evaluated by enforcing
periodic boundary conditions are enforced at the unit cell’s edges through the following Bloch-Floquet relation,

u(x+r) = u(x)e ko, (1)
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Table 1 — Definition of the geometric parameters of the unit cell.

variable Description Variable Description
a Unit cell size wp Width of the beam’s path
Ry Radius of cavity I, Depth of the beam’s path
Ry Radius of resonator wp Width of the beam
t Unit cell thickness Iy Length of the beam

where u is the displacement field, x is the position vector, r is the spatial periodicity,  is the frequency, and k = ki +ky j
is the wave vector. The following eigenvalue problem is defined as

(K—0*M)® =0, )

where K and M are the stiffness and mass matrices, respectively, and @ is the eigenvector describing the wave modes of
the unit cell. Eq. 2 is solved by assigning a set of predefined wavevectors in the edges of the IBZ and then obtaining the
frequencies . Such edges are identified as the path I'(0,0,0) — X (n/a,0,0) — M(n/a,n/a,0) —'(0,0,0). The obtained
frequencies are normalized with respect to the unit cell size a, and the longitudinal wave speed c¢;, which is the square root
of the ratio between the Young’s modulus E and the density p.

The latter method consists of calculating the effective mass density of the unit cell, which is performed by exciting the
unit cell external boundaries with a harmonic force and evaluating its frequency response through solving the system (Lai
etal, 2011),

(K—o0*M)u =f, (3)

where u and f represent the external force and displacement vectors. Therefore, the effective mass density is obtained by
calculating the average of the external loads with the acceleration on the unit cell boundaries as,

1|y
V(,O2|llb‘,

Peff(®) = )
where V is the volume of the unit cell, and f;, and uy, are the force and displacement evaluated at the external boundaries of
the unit cell, respectively. The influence of the geometric properties of the resonator on the bandgap formation is evaluated
in three case studies: varying the beam dimensions w;, and [, and the radius of the cylindrical mass R,. The width and
the central frequency of the bandgaps are obtained for each dimension.

RESULTS

As a reference example for the study of the geometric properties of the resonator, a single-phase unit cell with pa-
rameters Ry = 0.42a,R, = 0.4a,w;, = 0.02a,l, = 0.08a,w, = 0.05a, and t = 0.23a is investigated. Fig. 2 presents the
dispersion diagram and the effective mass density for such unit cell. A complete bandgap is observed at the frequency
range extending from the nondimensional frequency Q = 0.051 to = 0.056 (shaded area). The flat shape of the lower
band is an indicative that this bandgap is formed by the resonance of the unit cell. The effective mass density curve also
indicates the presence of a bandgap at the region with a negative value of the ratio peys/Pnyion. In this region, the resonator
has an out-of-phase motion in relation to the host medium (Milton and Willis, 2007). Notice a slight difference between
the position of both shaded areas, due to the calculation of the effective mass density requires a finite structure, while an
infinite periodic medium was assumed to evaluate the dispersion relation.

Figure 3 presents the bandgap variation with the increase of the three geometric parameters of the resonator. The
red curve and black curve represent, respectively, the upper and lower bound of the bandgap. The central frequency is
illustrated by the blue curve, while the bandwidth is highlighted by the shaded area. In the first case study, the beam’s
width varies from 0.004 m to 0.01 m, while the other dimensions remain the same. Notice that the increase in wj, results
in the enlargement of the bandgap and the increase of the central frequency value. On the other hand, the increase of the
beam’s length and the resonator’s radius causes the decrease of the central frequency. For such cases, the beam’s length
varies from 0.128 m to 0.138 m, while the mass’ radius extends from 0.14 m to 0.16 m. The upper bound of the bandgap
decreases suddenly for [, = 0.135 m, which we notice a reduction in the bandwidth of the bandgap. For lower values of
Iy and R;, the bounds overlap each other, which means that there is no bandgap at such dimensions. For these studies, we
notice that the bandgap properties is related to the resonant mechanism of the unit cell, which means that increasing the
beam’s width results in the increase of the stiffness of the resonator. Consequently, the resonance frequency will increase
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Figure 2 — Dispersion relation (left) and effective mass density (center) of the single-phase unit cell presented in Fig. 1. The
shaded area represents a complete bandgap. (right) Modes before and after the bandgap highlighted by the pentagram
markers.

and the central frequency of the bandgap will be higher. Similarly, increasing the beam’s length or the mass’ radius cause
the reduction of the unit cell’s stiffness, which drives the central frequency of the bandgap to lower levels.

CONCLUSIONS

In this paper, we presented the effect of the geometric parameters of the resonator on the bandgap formation. The
analysis was performed in the main components of the resonator, which are the width and the length of the beams and
the radius of the resonator. Since the unit cell is constituted of a single material, a nondimensional frequency was defined
to remove the dependency on the material properties, so that the geometric parameters of the resonator are investigated
separately. The case studies showed that the bandgap position is related to the resonant properties of the unit cell, which
are intrinsically dependent of the beams and mass dimensions. Also, we observed that increasing the beam’s length
without modifying the size of the unit cell guarantees the reduction of the central frequency of the bandgap. Performing

parametric studies in the resonator’s components enables designing unit cells for applications ranging from low to high
frequency wave attenuation.
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Figure 3 — Bandgap variation with alteration of the main geometric parameters of the resonator.
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