
Computing implied volatility using
Quantum neural network

Computing implied volatility using
Quantum neural network

Thesis

for the purpose of obtaining the degree of Master of Science
in Applied Mathematics

at Delft University of Technology
to be defended publicly on Thursday 29, February 2024 at 12 o’clock

by

Zibo YUAN

Faculty of Electrical Engineering, Mathematics & Computer Science,
Delft University of Technology, Delft, the Netherlands

born in Nanchang, China

Thesis committee:
Dr. Shuaiqiang Liu, Delft University of Technology & ING Bank, supervisor
Prof. dr. Kees Vuik, Delft University of Technology
Prof. dr. Matthias Möller, Delft University of Technology
Dr. Fenghui Yu, Delft University of Technology

An electronic version of this thesis is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

So therefore I dedicate myself, to my art, my sleep, my dreams, my labors, my suffrances, my
loneliness, my unique madness, my endless absorption and hunger because I cannot dedicate

myself to any fellow being.

Jack Kerouac

vii

Contents

Abstract ix

Acknowledgments xi

1 Introduction 1
1.1 Motivation . 1
1.2 Research questions . 2
1.3 Outline . 3

2 Numerical methods to compute implied volatility 5
2.1 Option pricing model. 6

2.1.1 Black-Sholes model . 6
2.1.2 Implied volatility . 7

2.2 Iterative method . 8
2.3 ANN method . 12

2.3.1 Gradient-squashing . 12

3 Quantum neural network 15
3.1 Quantum computing . 16

3.1.1 Quantum features . 16
3.1.2 Qubit. 17
3.1.3 Quantum computers . 19
3.1.4 Quantum operations and Quantum operators 19
3.1.5 Trace and Partial trace . 20
3.1.6 Quantum circuit . 21
3.1.7 Quantum gradient . 24
3.1.8 Fidelity . 25

3.2 Quantum Neural Network . 25
3.2.1 Dissipative quantum neural network 25
3.2.2 Parameterized variational quantum neural network 29

4 Quantum neural network to compute implied volatility 35
4.1 Algorithm . 36
4.2 Model setup . 36

4.2.1 Data encoding . 37
4.2.2 DQNN . 38
4.2.3 PVQNN . 39

viii Contents

5 Results and Discussion 45
5.1 Datasets . 47
5.2 DQNN . 48
5.3 PVQNN . 50

5.3.1 Data size . 50
5.3.2 Data encoding . 53
5.3.3 Data re-uploading and Number of hidden layers 58
5.3.4 Ansatz structure . 59
5.3.5 Optimal model . 63

5.4 Summarization . 64

6 Conclusions and Future Research 67
6.1 Conclusions . 67
6.2 Future research. 68

Bibliography 69

A AppendixA 73
A.1 Data size . 73
A.2 Data encoding . 74
A.3 Ansatz structure . 74
A.4 Lager dataset . 75

ix

Abstract

Implied volatility is critical in financial markets, especially for option pricing. Traditional
methods for its calculation sometimes are not well suited to some scenarios. Recent
developments in neural networks have provided more efficient alternatives.

Leveraging advances in quantum computing, our research introduces quantum neural
networks for computing implied volatility, assessing the feasibility and characteristics of
this novel approach. We focus on two quantum neural network architectures: Dissipative
Quantum Neural Networks (DQNN) and Parameterized Variational Quantum Circuits
(PVQNN). DQNN, similar to classical neural networks in structure and training ease,
faces challenges with quantum state outputs and data decoding, impacting performance
negatively. Besides, limited by the reliance on network output states at each layer, DQNN
faces challenges in implementation with the current state of quantum hardware.

In contrast, PVQNN offers a more promising solution. Compared to DQNN, PVQNN
requires fewer qubits, can apply traditional optimizers to train the model, and can run on
NISQ devices. This research thoroughly examines various aspects influencing PVQNN’s
performance, including training data characteristics, data re-uploading technology, network
size, data encoding methods, and quantum circuit design. The selected PVQNN model can
achieve high accuracy in implied volatility computation with 𝑅2 of approximately 0.999. In
addition, we find that the PVQNN can obtain satisfactory results even with limited training
data, setting it apart from traditional neural networks.

This thesis not only adopts a new model to compute implied volatility but also deepens
the understanding of quantum neural networks in financial modeling. However, due to
resource constraints, our experiments are conducted in simulations on traditional comput-
ers, and thus our study focuses mainly on the expressive power of QNNs rather than their
operational efficiency.

xi

Acknowledgments

I would like to extend my deepest gratitude to all those who have made the completion of this
thesis possible.

First and foremost, I am profoundly thankful to my thesis advisor, Dr. Shuaiqiang Liu,
for his invaluable guidance, patience, and expertise. His insightful feedback and unwavering
support have been pivotal to my research and academic growth.

I am also grateful to the members of my thesis committee, Prof. Dr. Kees Vuik, Prof. Dr.
Matthias Möller, and Dr. Fenghui Yu, for their constructive criticism and suggestions that have
significantly enriched my work.

My heartfelt appreciation goes out tomy beloved friends, whose encouragement, intellectual
discussions, and companionship provided a much-needed respite from the demands of research.
Your support has been a pillar of strength and a source of inspiration.

To my family, especially my parents, your endless love, understanding, and support have
been my foundation. This achievement is as much yours as it is mine, for you have been my
unwavering rock throughout this journey.

I also wish to take a moment to acknowledge my own efforts and resilience. The dedication,
hard work, and perseverance I invested in this project have been a journey of personal growth
and self-discovery. Navigating through challenges and celebrating each small victory has been
an enriching experience that I will cherish forever.

This journey, filled with challenges and rewards, could not have been navigated without
the support and encouragement of each one of you, especially who I hold dear. Thank you
from the bottom of my heart for being part of this significant phase of my life.

Last but not least, when you need time to heal, try Lana Del Rey’s songs and the nature of
the Netherlands. They’ve been the Felix Felicis for me in this period.

Zibo
Delft, February 2024

1

1

1
Introduction

1.1 Motivation
Implied volatility is a crucial component in the financial markets, serving as a key attribute
in option pricing. It signifies the anticipated volatility of an option’s price and serves as an
indicator of market trends. Typically included as an essential parameter in option pricing,
the exact solution for implied volatility often remains elusive, necessitating numerical
methods for approximation.

Several iterative methods are commonly used for their distinct advantages in com-
putational. The Newton-Raphson’s method is favored for its rapid convergence when
the derivative of a function is known, making it efficient for estimating implied volatility.
Brent’s Method, merging the bisection method and inverse quadratic interpolation, excels
in more complex situations where Newton-Raphson’s method may fail. The bisection
method, known for its simplicity, is reliable but slower, and the Secant method is an alter-
native when derivatives are hard to compute. Each of these methods, while effective, has
its limitations, urging ongoing research for more efficient and accurate solutions.

Another numerical method introduced to computing implied volatility is the Artificial
Neural Networks (ANNs). Since the rise of neural networks has revolutionized many
fields, including finance. Their ability to extract features and identify patterns has led to
significant advancements. For instance, deep neural networks have been effectively utilized
in calibrating pricing models [1–3] and hedging derivative portfolios[4–6]. Notably, ANNs
have demonstrated remarkable proficiency in computing implied volatility[7]. Compared
to the previously mentioned iterative approach, not only is there a relatively high model
accuracy but also a much faster computation of the output implied volatility, stressing its
potential in complex financial computations.

Apart from these developments, quantum computing has risen, marking a new era in
computational capabilities[8]. Its application in finance, particularly in derivative pricing
through amplitude estimation, has shown a quadratic speed-up compared to traditional
Monte Carlo methods[9, 10]. This up-and-coming field offers a new perspective on financial
problem-solving, its potential has been highlighted in a comprehensive overview of its
applications in mathematical finance[11].

1

2 1 Introduction

Besides, a frontier of research that combines the principles of quantum computing
with deep learning is particularly intriguing. For example, networks like quantum neural
networks[12–14] and quantum convolutional neural networks[15, 16] represent a fusion
of deep neural networks’ robust generalization capabilities with the unique computational
advantages of quantum computing. Moreover, research into quantum neural networks
has sparked considerable interest due to their potential applications in real-world issues.
Such as solving nonlinear differential equations, a foundational element in many scientific
and engineering problems[17]. Additionally, their application in predicting drug responses
showcases the potential of quantum neural networks in the field of biomedicine and
pharmaceuticals[18].

It is worth mentioning here that some researchers are also exploring the use of quantum
neural networks (QNNs) in areas closely aligned with our research focus, as demonstrated
in the work by Sakuma [19] and Eric et al. [20]. In the work of Sakuma, he used a type
of quantum neural network to approximate the relationship between the strike price and
implied volatility, demonstrating that using a QNN to compute implied volatility is a
viable pathway. Other than that, in the work of Eric et al., they successfully utilized the
unique characteristics of QNNs in data encoding to convert financial time series data into
a sequence of density matrices and used them as inputs to a quantum neural network for
stock price prediction.

However, despite these advancements, quantum neural networks are still in a newborn
stage of development. Many aspects of their operational paradigms and characteristics
remain under-explored. While their potential to surpass traditional computing methods in
certain aspects is promising, there are still many difficulties in empirical validation and
confirmation of this superiority.

Given the proven efficacy of artificial neural networks in addressing the challenge of
implied volatility, the related successful applications of quantum computing in finance,
and the rapid advances in the development of quantum neural networks, our research is
motivated by these very techniques. We aim to explore the advantages of quantum neural
networks in tackling the complexities of implied volatility.

Our research is driven by the demonstrated effectiveness of ANNs in addressing the
challenge of implied volatility. This, coupled with the explorations of quantum computing
within the finance sector, and the speedy progress in the development of quantum neural
networks, forms the foundation of our investigation. We are particularly interested in
exploring how quantum neural networks might enhance the calculation of implied volatility.
Our goal is to unravel the potential benefits and efficiencies that quantum neural networks
could bring to the domain of financial modeling, especially in the computation of implied
volatility.

1.2 Researchqestions
In our research, we have investigated two distinct architectures of quantumneural networks,
Dissipative Quantum Neural Networks (DQNNs) and Parameterized Variational Quantum
Neural Networks (PVQNNs), conducting a thorough exploration to identify key factors
that influence the performance of these quantum models in computing implied volatility.
This investigation is guided by two primary objectives:

1.3 Outline

1

3

1. To assess the feasibility of quantum neural networks for managing the complexities in
implied volatility calculations. This includes an exploration of their unique properties
and how these distinguish them from conventional computational methods.

2. To identify and analyze the factors that impact the effectiveness of quantum neural
networks in the specific context of implied volatility. This involves a deeper exami-
nation of network architecture, training methodologies, and the adaptation of these
networks to solve related financial problems.

It is worth noting that due to the practical implementation challenges associated with
DQNN, our investigation primarily focuses on PVQNN for the second research question.
These models, while being at the forefront of quantum computing research, present a
unique set of challenges and opportunities in the field of financial modeling. We aim to
explore how the intrinsic characteristics of PVQNN models, such as their parameterization
and quantum circuit design, impact their applicability and performance in modeling and
predicting implied volatility. By doing so, we hope to contribute valuable insights into the
practical applications of quantum neural networks in solving complex financial problems,
paving the way for more advanced and efficient computational approaches in finance.

1.3 Outline
Our paper is organized as follows: Chapter 2 and Chapter 3 provide a detailed background
for our work. Chapter 2 begins with an overview of the Black-Scholes asset pricing model,
setting the stage for our investigation into implied volatility computation. We then describe
how this problem can be solved using iterative and ANN methods. This is followed by
an introduction to the fundamentals of quantum computing in Chapter 3, providing the
necessary quantum background for understanding our approach. Subsequently, we delve
into a comprehensive discussion of the two quantum neural network architectures under
study, detailing their structures and training processes.

In Chapter 4, we outline the algorithmic framework of our research, including the
settings and variables relevant to our model. This chapter focuses on examining how
different factors influence the model’s output, leading to the selection of the optimal model
configuration for our problem. The results of these numerical experiments, along with
in-depth analyses, are presented in Chapter 5.

The final section of our paper offers a summary of our research findings and insights.
It also casts a forward-looking perspective, discussing potential future research directions
in the field, thereby framing our work within the broader context of quantum computing
and financial modeling.

2

5

2
Numerical methods to

compute implied volatility

In this chapter, we provide detailed background information for our research question, com-
puting implied volatility. First, the introduction of implied volatility is given in Section 2.1.
Then, in Section 2.2, some iterative numerical methods for computing implied volatility are
introduced. Lastly, in Section 2.3, we briefly describe how to use ANN to solve our research
question.

2

6 2 Numerical methods to compute implied volatility

2.1 Option pricing model
Options, as significant derivative assets in financial markets, play a crucial role in enhancing
market dynamics. They not only facilitate increased participation by offering diverse
investment strategies but also contribute to the expansion of capital availability. By hedging
and speculation, options encourage a broader spectrum of investors to engage in financial
markets. Moreover, options help improve the liquidity of other less active contracts, making
the overall market more efficient and responsive.

Given their importance, the accurate pricing of options has emerged as a pivotal area
of research in financial economics. Accurate option pricing models are essential for both
investors and issuers to assess risk, make informed decisions, and ensure fair value trading.
In this section, we will focus on the Black-Scholes model, one of the most famous and
widely used models for pricing European options. The model particularly highlights the
significance of implied volatility in option pricing. Furthermore, we will also briefly discuss
some traditional numerical methods which are important for calculating implied volatility.

2.1.1 Black-Sholes model
The Black-Scholes model, established by Fischer Black and Myron Scholes in 1973 [21],
stands as a cornerstone in the realm of financial economics, particularly for pricing Euro-
pean options. This model introduced a systematic approach to option valuation, containing
various market factors into a coherent theoretical framework.

In financial markets, the return of an asset over a short interval can be expressed as,

Return =
asset price at future − asset price at present

Stock at present =
𝑆(𝑡 +Δ𝑡)− 𝑆(𝑡)

𝑆(𝑡)
.

Here, 𝑆(𝑡) represents the price of the asset at time 𝑡, and 𝑆(𝑡 +Δ) is the price at a future
time. However, it’s crucial to note that in reality, the daily return 𝑑𝑆(𝑡) often behaves
unpredictably, like noise, which corresponds to a stochastic process. This observation is
crucial for understanding the foundation of the Black-Scholes model.

The most commonly used stochastic process for modeling the price of a non-dividend-
paying asset, 𝑆(𝑡), is the Geometric Brownian Motion (GBM),

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 +𝜎𝑆𝑡𝑑𝑊 𝑃
𝑡 . (2.1)

In this equation, 𝑊 𝑃
𝑡 represents a Wiener process (also known as Brownian motion) under

the real-world probability measure 𝑃 , which captures the random movement in asset prices.
The term 𝜇 is the drift coefficient, while 𝜎 represents the implied volatility of the asset, a
measure of how much the asset’s price is expected to fluctuate.

Therefore, in a friction-free market, the price of a European option’s underlying stock
can be modeled using the stochastic differential equation described by GBM as mentioned
in Equation (2.1). If this process begins with the construction of a risk-neutral portfolio,
characterized by the Wiener process under the risk-neutral measure 𝑄. Accordingly,
Equation (2.1) can be reformulated as:

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 +𝜎𝑆𝑡𝑑𝑊
𝑄
𝑡 . (2.2)

2.1 Option pricing model

2

7

Subsequently, utilizing Itô’s Lemma allows for the derivation of an arbitrage-free option
pricing model. This is represented by a partial differential equation (PDE), known as the
Black-Scholes equation,

𝜕𝑉
𝜕𝑡

+
1
2
𝜎2𝑆2

𝜕2𝑉
𝜕𝑆2

+ 𝑟𝑆
𝜕𝑉
𝜕𝑆

− 𝑟𝑉 = 0. (2.3)

Here, 𝑡 denotes time, 𝑆 is the stock price, 𝑉 is the option price, 𝑟 is the risk-free interest
rate, and 𝜎 represents the volatility of the stock. Given that we are dealing with European
options, which can only be exercised at maturity, there is an associated boundary condition.
For instance, a vanilla European call option with a strike price 𝐾 and expiry date 𝑇 will
have the following condition at maturity,

𝑉 (𝑡 = 𝑇 ,𝑆) = (𝑆−𝐾)+ = max{0, 𝑆−𝐾 } =

{
𝑆−𝐾, 𝑆 > 𝐾
0, 𝑆 ⩽ 𝐾

Accordingly, for a vanilla European call option, the Black-Scholes equation becomes,
{
𝜕𝑉
𝜕𝑡 +

1
2𝜎

2𝑆2 𝜕
2𝑉
𝜕𝑆2 + 𝑟𝑆

𝜕𝑉
𝜕𝑆 − 𝑟𝑉 = 0 0 ≤ 𝑆 ≤∞,0 ≤ 𝑡 ≤ 𝑇

𝑉 |𝑡=𝑇 = (𝑆−𝐾)+
(2.4)

This equation can be transformed into the form of a heat equation, and yielding an
analytical solution,

𝑉 (𝑡, 𝑆) = 𝑆𝑁 (𝑑1)−𝐾𝑒−𝑟𝜏𝑁 (𝑑2) ,

𝑑1 =
log(𝑆/𝐾)+(𝑟 −0.5𝜎2)𝜏

𝜎
√
𝜏

,𝑑2 = 𝑑1−𝜎
√
𝜏,

(2.5)

where 𝜏 ∶= 𝑇 − 𝑡 is the time to expiration, and 𝑁 (⋅) denotes the cumulative distribution
function of the standard normal distribution. This solution is commonly represented as
𝑉 = 𝐵𝑆(𝜎, 𝑟, 𝜏,𝐾 ,𝑆), indicating the formula of the Black-Scholes model for a European call
option’s value.

2.1.2 Implied volatility
Black-Scholes formula contains the strike price 𝐾 and expiry date 𝑇 , which are specified
in the option contract, while the interest rate 𝑟 and stock price 𝑆 are observable in the
market. The remaining variable to determine is the implied volatility 𝜎. Therefore, implied
volatility is a central factor in options trading and is crucial for pricing, trading strategies,
and risk assessment. This is a key parameter that reflects the market’s estimate of how
volatile an asset will be in the future

A similar concept to implied volatility is historical(or realized) volatility, whichmeasures
the degree of variation in the price of a financial instrument over time. It’s typically
calculated by taking the standard deviation of daily logarithmic returns over a specific
historical period.

Historical volatility reflects the volatility of a stock in the past, while implied volatility
captures future volatility. Therefore, implied volatility is often more relevant for options
traders, as it helps in assessing the likelihood of a stock reaching a specific price by the
option’s expiry.

2

8 2 Numerical methods to compute implied volatility

2.2 Iterative method
In the Black-Scholes model, the implied volatility of an option is assumed to be constant.
This assumption allows for estimating the implied volatility based on historical market
data. The market option price 𝑉𝑚𝑘𝑡 can be used to calculate an option’s implied volatility
by solving the inverse of the Black-Scholes formula,

𝜎 = 𝐵𝑆−1(𝑉𝑚𝑘𝑡 , 𝜏, 𝑆, 𝑟 , 𝑘). (2.6)

There is no analytical solution for this equation; however, it can be solved using various
iterative root-finding algorithms to solve this,

𝑓 (𝜎) = 𝐵𝑆(𝜎)−𝑉𝑚𝑘𝑡 = 0. (2.7)

Here are some of the most frequently used numerical methods:

1. Newton-Raphson’s method
This method is favored for its rapid convergence. It utilizes the derivative of the
Black-Scholes formula with respect to volatility and iteratively adjusts the volatility
estimate to match the market price. A good initial estimate is crucial, as a poor
estimate can slow the convergence.

Algorithm 1 Newton-Raphson Method for Implied Volatility
Input: Initial estimate 𝜎0, tolerance 𝜖
Output: Implied Volatility 𝜎
while |𝑓 (𝜎𝑛)| > 𝜖 do

𝜎𝑛+1 ← 𝜎𝑛−
𝑓 (𝜎𝑛)
𝑓 ′(𝜎𝑛)

end while
return 𝜎𝑛+1

𝑓 ′(𝜎) is the derivative of 𝑓 (𝜎) with respect to 𝜎.

2. Bisection Method
It starts with two initial estimates that bracket the true implied volatility and then
iteratively narrows down the range. It is guaranteed to converge but may take more
iterations.

3. Secant Method
This is a derivative-free method and can be seen as a variant of the Newton-Raphson
method. It replaces the derivative in the Newton-Raphson formula with an ap-
proximation based on the function values at two points. It’s more robust than
Newton-Raphson but is less robust than the bisection method.

4. Inverse interpolation Method
This method involves interpolating the inverse of the function to avoid complex
values, resulting in inverse quadratic interpolation. While it converges faster asymp-
totically than the secant method, it can be less reliable when the initial estimates are
not close to the root.

2.2 Iterative method

2

9

Algorithm 2 Bisection Method for Implied Volatility
Input: Initial brackets 𝜎𝑙𝑜𝑤 , 𝜎ℎ𝑖𝑔ℎ, tolerance 𝜖
Output: Implied Volatility 𝜎
while |𝜎ℎ𝑖𝑔ℎ−𝜎𝑙𝑜𝑤 | > 𝜖 do

𝜎𝑚𝑖𝑑 ←
𝜎𝑙𝑜𝑤+𝜎ℎ𝑖𝑔ℎ

2
if 𝑓 (𝜎𝑚𝑖𝑑) ⋅ 𝑓 (𝜎𝑙𝑜𝑤) < 0 then

𝜎ℎ𝑖𝑔ℎ ← 𝜎𝑚𝑖𝑑
else

𝜎𝑙𝑜𝑤 ← 𝜎𝑚𝑖𝑑
end if

end while
return 𝜎𝑚𝑖𝑑

Algorithm 3 Secant Method for Implied Volatility
1: Input: Initial estimate 𝜎0, 𝜎1, tolerance 𝜖
2: Output: Implied Volatility 𝜎
3: while |𝑓 (𝜎𝑛)| > 𝜖 do
4: 𝜎𝑛+1 ← 𝜎𝑛− 𝑓 (𝜎𝑛) 𝜎𝑛−𝜎𝑛−1

𝑓 (𝜎𝑛)−𝑓 (𝜎𝑛−1)
5: end while
6: return 𝜎𝑛+1

5. Brent’s Method
A combination of bisection, secant, and inverse quadratic interpolation, Brent’s
method is often preferred for its balance between robustness and speed. It adjusts
its strategy based on the situation and usually converges faster than the bisection
method.

These methods often present a trade-off between speed, robustness, and computa-
tional complexity. For example, while the Bisection Method is robust enough, it tends to
have a longer convergence time. The choice of method typically depends on the specific
requirements and constraints of the given problem.

2

10 2 Numerical methods to compute implied volatility

Algorithm 4 Inverse Interpolation Method for Implied Volatility
1: Input: Initial estimate 𝜎0, 𝜎1, 𝜎2, tolerance 𝜖
2: Output: Implied Volatility 𝜎
3: while |𝑓 (𝜎0)| > 𝜖 do
4: 𝑓0, 𝑓1, 𝑓2 ← 𝑓 (𝜎0), 𝑓 (𝜎1), 𝑓 (𝜎2)
5: 𝜎𝑛𝑒𝑤 ← InverseQuadratic Interpolation(𝜎0,𝜎1,𝜎2, 𝑓0, 𝑓1, 𝑓2)
6: Sort 𝜎0, 𝜎1, 𝜎2 based on |𝑓0|, |𝑓1|, |𝑓2|
7: 𝜎0 ← 𝜎𝑛𝑒𝑤
8: 𝜎1 ← 𝜎0
9: 𝜎2 ← 𝜎1
10: end while
11: return 𝜎0
12: procedure InverseQuadratic Interpolation(𝜎0,𝜎1,𝜎2, 𝑓0, 𝑓1, 𝑓2)
13: 𝑞0 ←

𝑓0
𝑓1 ; 𝑞1 ←

𝑓2
𝑓1 ; 𝑟0 ←

𝑓0
𝑓2 ; 𝑟1 ←

𝑓1
𝑓2

14: 𝑠0 ← 𝜎0 ⋅ 𝑞0 ⋅ (𝑞0− 𝑞1) ⋅ (𝑞0− 𝑟0)
15: 𝑠1 ← 𝜎1 ⋅ 𝑟0 ⋅ (𝑟0− 𝑞1) ⋅ (𝑟0− 𝑞0)
16: 𝑠2 ← 𝜎2 ⋅ 𝑞1 ⋅ (𝑞1− 𝑞0) ⋅ (𝑞1− 𝑟0)
17: 𝑃 ← 𝑠0+ 𝑠1+ 𝑠2
18: 𝑄← (𝑞0− 𝑞1) ⋅ (𝑞0− 𝑟0) ⋅ (𝑟0− 𝑞1)
19: 𝜎𝑛𝑒𝑤 ← 𝑃/𝑄
20: return 𝜎𝑛𝑒𝑤
21: end procedure

2.2 Iterative method

2

11

Algorithm 5 Brent’s Method for Implied Volatility
1: Input: Initial Bracketing interval [𝜎𝑎,𝜎𝑏], tolerance 𝜖
2: Output: Implied Volatility 𝜎
3: 𝜎𝑐 ← 𝜎𝑎
4: 𝑓𝑎, 𝑓𝑏 ← 𝑓 (𝜎𝑎), 𝑓 (𝜎𝑏)
5: 𝑓𝑐 ← 𝑓𝑎
6: flag 𝑚𝑓 𝑙𝑎𝑔 ← True
7: while |𝑓𝑏| > 𝜖 and |𝑏−𝑎| > 𝜖 do ⊳ Check for convergence
8: if 𝑓𝑎 ≠ 𝑓𝑐 and 𝑓𝑏 ≠ 𝑓𝑐 then
9: 𝑠← InverseQuadratic Interpolation(𝜎𝑎,𝜎𝑏,𝜎𝑐 , 𝑓𝑎, 𝑓𝑏, 𝑓𝑐)
10: else
11: 𝑠← 𝜎𝑏− 𝑓𝑏 ⋅

𝜎𝑏−𝜎𝑎
𝑓𝑏−𝑓𝑎

⊳ Use secant method
12: end if
13: Condition 1: 𝑠 not between (3𝜎𝑎+𝜎𝑏)/4 and 𝜎𝑏
14: Condition 2: (𝑚𝑓 𝑙𝑎𝑔 is True and |𝑠−𝜎𝑏| ≥ |𝜎𝑏−𝜎𝑐 |/2)
15: Condition 3: (𝑚𝑓 𝑙𝑎𝑔 is False and |𝑠−𝜎𝑏| ≥ |𝜎𝑐 −𝜎𝑑 |/2)
16: Condition 4: (𝑚𝑓 𝑙𝑎𝑔 is True and |𝜎𝑏−𝜎𝑐 | < 𝜖)
17: Condition 5: (𝑚𝑓 𝑙𝑎𝑔 is False and |𝜎𝑐 −𝜎𝑑 | < 𝜖)
18: if Condition 1 or Condition 2 or Condition 3 or Condition 4 or Condition 5 then
19: 𝑠← (𝜎𝑎+𝜎𝑏)/2 ⊳ Use bisection method
20: 𝑚𝑓 𝑙𝑎𝑔 ← True
21: else
22: 𝑚𝑓 𝑙𝑎𝑔 ← False
23: end if
24: 𝜎𝑑 ← 𝜎𝑐 , 𝜎𝑐 ← 𝜎𝑏
25: if 𝑓𝑎 ⋅ 𝑓𝑠 < 0 then
26: 𝜎𝑏 ← 𝑠
27: else
28: 𝜎𝑎 ← 𝑠
29: end if
30: if |𝑓𝑎| < |𝑓𝑏| then
31: Swap 𝜎𝑎 and 𝜎𝑏
32: end if
33: end while
34: return 𝜎𝑏

2

12 2 Numerical methods to compute implied volatility

2.3 ANN method
The recent advancements in machine learning, particularly in artificial neural networks
(ANNs), have opened new avenues for addressing complex financial problems, such as the
calculation of implied volatility. The study by Liu et al. [7] is a testament to the potential
of neural networks in this specialized domain. Their work demonstrates the efficacy of
neural networks in providing solutions to computing the implied volatility.

Using ANN to compute implied volatility first starts with data collection and prepro-
cessing, input data such as the stock price 𝑆, strike price 𝐾 , option price 𝑉 , interstate 𝑟 ,
and expiry time 𝑇 from the Black-Scholes formula are fed into the network. The neural
network’s output is the implied volatility 𝜎.

Then we need to design the ANN with multiple layers, including input, hidden, and
output layers. Each layer is made up of numerous neurons. A neuron, which involves
learnable weights and biases, is the fundamental unit of ANNs, providing the linearity
to the model. The number of hidden layers and neurons in each layer can vary based on
the complexity of the task. Besides, choosing appropriate activation functions (like ReLU,
sigmoid, or tanh) for the neurons is also very important, particularly in the hidden layers,
to introduce non-linearity.

After that, the ANN is trained to learn the relationship, which is the Equation (2.6),
between inputs (𝑆, 𝐾 , 𝑉 , 𝑇 , 𝑟) and the target output 𝜎 by optimization algorithms (like
stochastic gradient descent). It can update the weights in the network through back-
propagation, minimizing the difference between the ANN’s predictions and actual target
implied volatilities.

In Liu’s work [7], the ANN method not only ensures the accuracy of the model but
also provides a significant improvement in the time used to output the implied volatility
compared to the iterative approach. It highlights the potential for more accurate and
efficient computation methods in the field. As machine learning technology continues to
advance, its integration into financial models like the Black-Scholes framework is likely
to yield increasingly sophisticated and reliable tools for financial analysis and decision-
making.

2.3.1 Gradient-sqashing
In practical scenarios, the sensitivity of an option’s price to changes in volatility, known
as Vega, 𝜕𝑉𝜕𝜎 , can be exceedingly small. This characteristic poses a significant challenge
during the optimization process. Specifically, when computing the gradient of ANN model
output 𝜎 with respect to the model input 𝑉 , it is inversely related to the Vega. This inverse
relationship can lead to a phenomenon known as gradient explosion, where the gradient
values become excessively large. Such gradient explosions can induce significant prediction
errors and cause convergence issues in the model, undermining its predictive accuracy and
stability.

To mitigate this issue, we can adopt the gradient-squash approach proposed by Liu
et al. [7]. This technique is particularly used for in-the-money (ITM) call options, where
the market price 𝑉 exceeds the strike price 𝑆. An ITM call option’s price comprises two
components: the intrinsic value and the time value. The intrinsic value, calculated as
max(𝑆−𝐾𝑒−𝑟𝜏 ,0), represents the profit that could be realized if the option were exercised
immediately. We modify the option’s price by subtracting this intrinsic value, as follows,

2.3 ANN method

2

13

�̃� = 𝑉 −max(𝑆−𝐾𝑒−𝑟𝜏 ,0) .

This adjustment effectively isolates the time value of the option, which is more sensitive to
changes in volatility and other market factors. Furthermore, to address the steepness of the
gradient that still might be present after this initial modification, we apply a logarithmic
transformation. This transformation effectively ’flattens’ the gradient, reducing the risk of
gradient explosion by smoothing out sharp changes in the gradient values.

3

15

3
Quantum neural network

In this chapter, we provide some background information for quantum neural networks. First,
in Section 3.1, some basic knowledge of quantum computing is introduced. Then, in Section
3.2, we detail the structure and training process of DQNN and PVQNN respectively.

3

16 3Quantum neural network

3.1Quantum computing
Ever since the establishment of the modern theory of quantum mechanics in the early
1920s, generations of scientists have been diligently engaged in the mysterious realm
of quantum phenomena, striving to refine and advance the foundational theories. This
relentless pursuit has led to the birth of quantum computing, a remarkable field with the
primary objective of harnessing mathematical tools to explore and comprehend quantum
mechanics at a level of precision that transcends human intuition. The aspiration is to
bridge the gap between the profoundly counterintuitive nature of quantum mechanics and
our logical comprehension of the universe [22].

For example, the state of a quantummechanical system can be described by a vector |Ψ⟩,
known as the state vector, belonging to a Hilbert space , and the change in a quantum
state over time follows a linear differential equation, Schrödinger equation [23]. This
equation, as formalized by Erwin Schrödinger, takes the form,

𝑖ℏ
𝑑
𝑑𝑡
|Ψ(𝑡)⟩ = �̂� |Ψ(𝑡)⟩, (3.1)

where ℏ is a constant and �̂� represents the Hamiltonian operator. It’s a Hamiltonian matrix
mathematically, describing the total energy of the quantum system, which contributes
significantly to understanding and predicting the behavior of quantum systems in diverse
physical scenarios.

In addition, quantum computing has a wider range of applications in quantum mechan-
ics, which we will describe in detail in the following part.

3.1.1Quantum features
Unlike classical computation, quantum computing can be seen as a paradigm that follows
the laws of quantum mechanics to govern quantum information units for computation,
which brings some unique features to quantum computing.

Quantum superposition
One of the core features of quantum computing is the superposition, a fundamental principle
of quantum mechanics. In a quantum system, the mode of motion for a quantum system is
called a state. Unlike classical systems, where the states of systems are precisely determined,
in the microscopic realm, quantum states of motion remain indeterminate and inherently
probabilistic. This fundamental property enables particles to exist in a superposition of
multiple states simultaneously, vastly expanding the computational potential of quantum
computers.

Quantum entanglement
Another remarkable attribute of quantum computing is quantum entanglement. When two
particles become entangled, their properties become interconnected in such a way that
the behavior of one particle influences the state of the other, regardless of the physical
distance that separates them. This phenomenon defies classical intuitions, as changes
in one particle’s state instantaneously affect the other, no matter how far apart they are.
Quantum entanglement not only gives rise to correlations between particles that are
impossible to achieve in classical systems but also enhances the complexity of quantum

3.1Quantum computing

3

17

states. This property empowers quantum algorithms to exploit the structural characteristics
of problems and inputs, possibly outperforming classical counterparts.

Quantum parallelism
Quantum parallelism is a striking advantage offered by quantum computing, rooted in the
superposition and entanglement properties of qubits. In practical terms, this means that
quantum computers can represent numbers in an exponential form and execute unitary
operations on all these numbers simultaneously. This innate parallelism grants quantum
computers the potential to tackle complex problems at a pace exponentially faster than
classical counterparts, offering breakthroughs in fields such as cryptography, optimization,
and simulations.

Essentially, quantum computing leverages properties such as superposition, entan-
glement, and parallelism to usher in another era of computation, opening the door to
solving problems that were once deemed intractable and revolutionizing fields such as
cryptography, optimization, and simulation.

3.1.2Qubit
In classical computation, the ’bit’ stands as both a fundamental unit of information and
the building block of binary numbers, functioning as the ultimate measure of information
granularity. Drawing from Shannon’s information theory, a ’bit’ can be used to describe a
signal’s potential states as 0 and 1.

Similarly, in quantum computing, we have the ’qubit’ as the foundational component.
For a qubit, it can be in a pure state, representing a superposition of possibilities, or in a
mixed state, which characterizes a statistical ensemble of pure states. This mixed state
often arises when qubits are entangled with one another, allowing for the description of
their joint quantum state.

Bra-ket notation
We often use Bra-ket notation, also known as Dirac notation, for describing quantum states.
Here the |𝜓⟩ is the ket notation for 𝜓 state, and the complex conjugate of 𝜓 state ⟨𝜓| is the
corresponding bra notation.

As we use 0 or 1 to represent bits’ states, we use |0⟩ and |1⟩ to denote the computational
basis states for qubits. When describing the pure state of a qubit |𝜓⟩, we often refer to it as
being in a superposition, represented as,

|𝜓⟩ = 𝛼|0⟩+𝛽|1⟩, (3.2)

where the coefficient numbers 𝛼 and 𝛽, which we call amplitude, are normally complex
numbers.

In classical computation, we can easily check a bit to determine whether it is in the
state ’0’ or ’1’. On the contrary, It is significant to note that we cannot examine a qubit
to determine its amplitude. Instead, when we measure a qubit, we obtain a |0⟩ state with
probability 𝛼2 or a |1⟩ state with probability 𝛽2. Therefore, these probabilities must sum to
1: 𝛼2+𝛽2 = 1.

3

18 3Quantum neural network

eratHowever, it is also possible for a quantum system to be in a statistical ensemble of
different pure states, a mixed state 𝜌. We use an operator, also called the density matrix 𝜌,
to express it,

𝜌 =∑
𝑖
𝑝𝑖 |𝜓𝑖⟩ ⟨𝜓𝑖| , (3.3)

where 𝑝𝑖 is the probability associated with each pure state |𝜓𝑖⟩, indicating the likelihood
that the system will be observed in a different state.

Vector form
Mathematically, we define the quantum computational basis states as a vector in a two-
dimensional Hilbert space,

|0⟩ ∶=(
1
0) ; |1⟩ ∶=(

0
1).

Therefore, according to the Equation (3.2), we can define the pure state of a qubit as a
vector,

|𝜓⟩ =(
𝛼
𝛽) ,𝛼2+𝛽2 = 1.

More generally, for an n-qubit system, we use the notation |𝑥1𝑥2...𝑥𝑛⟩, where each 𝑥𝑖
can be either ’0’ or ’1’, as the computational basis state. The state of this system can also
be represented as a vector in a 2𝑛 dimensional Hilbert space.

Bloch sphere
Geometrically, a qubit’s state can be effectively visualized using the Bloch sphere, as
depicted in Figure 3.1. The Bloch sphere is a spherical representation of a qubit’s state,
providing an intuitive way to grasp its properties.

qubit
|0>

|1>

bit

0 or 1

Figure 3.1: Bloch Sphere.

The pure state of a qubit, |𝜓⟩, can also be expressed in terms of two angles, 𝜃 and 𝜙, as
follows,

|𝜓⟩ = cos(
𝜃
2
)|0⟩+ 𝑒𝑖𝜙 sin(

𝜃
2
)|1⟩. (3.4)

Here, 𝜃 lies in the range of 0 ≤ 𝜃 ≤ 𝜋, and 𝜙 ranges from 0 to 2𝜋. These angles correspond
to points on the surface of the Bloch sphere.

3.1Quantum computing

3

19

The points on the surface of the Bloch sphere represent the pure states of a single qubit
system. In contrast, the interior of the sphere corresponds to mixed states. The Bloch
sphere provides a geometric visualization that greatly simplifies the understanding of qubit
states and their dynamics.

3.1.3Quantum computers
Quantum computers are designed with different physical implementations and use qubits
to perform quantum computing, each with unique characteristics and applications.

1. Superconducting quantum computer
Superconducting quantum computers are a leading type of quantum device that
harness superconducting qubits, artificial atoms capable of existing in multiple
quantum states simultaneously. These qubits are manipulated using microwave
pulses, and they are celebrated for their scalability. Companies like IBM and Google
are actively developing superconducting quantum computers, aiming to enhance
their performance and unlock their potential for a wide range of applications.

2. Photonic quantum computers
In these Photonic quantum computers, information is encoded and processed using
photons, the particles of light. Photonic quantum computers have the advantage
of extremely low error rates and can be more robust against certain types of errors.
They are particularly promising for applications in quantum communication and
quantum cryptography.

3. Quantum annealers
Quantum annealers represent a distinct category. These machines, such as those
developed by D-Wave, are optimized for solving specific optimization problems.
They employ quantum annealing to find the global minimum of a cost function,
which has applications in fields like finance, logistics, and artificial intelligence.

The current state of quantum computers is referred to as the noisy intermediate-scale
quantum (NISQ) devices and can be seen as the first working models of quantum computers.
They are called ’noisy’ because they suffer from errors and decoherence, limiting their
performance and reliability. NISQ devices typically have a moderate number of qubits, on
the order of tens to hundreds. While they are not yet capable of running fault-tolerant
quantum algorithms, they hold great promise for practical applications, including quantum
optimization, quantum machine learning, and quantum simulations.

3.1.4Quantum operations andQuantum operators
In quantum mechanics, operators are mathematical entities that play a crucial role in
representing physical processes and observables associated with quantum systems. Unlike
their counterparts in classical mathematics, quantum operators capture the dynamic evolu-
tion and measurable properties of quantum systems, like position, momentum, or energy.
One fundamental application of quantum operators is describing changes in the state of a
quantum system induced by physical processes.

Consider a quantum system that is initially in a state 𝜌, then entangle it with its
environment 𝜌env, and the whole quantum system can be represented as an outer product

3

20 3Quantum neural network

state 𝜌 ⊗ 𝜌env. After a series of quantum transformations, we obtain a new quantum
system, and this change can be expressed in terms of the quantum operator 𝑈 . To extract
the reduced quantum state of the evolved system, we perform a partial trace over the
environment, see the detail of the partial trace in Section 3.1.5,

(𝜌) = trenv [𝑈 (𝜌⊗𝜌env)𝑈†] . (3.5)

Here, denotes the quantum operation, providing a comprehensive description of quantum
system evolution in various scenarios [22]. The expression can be further elaborated using
the Kraus decomposition,

(𝜌) =∑
𝑘
⟨𝑒𝑘

|||𝑈 [𝜌⊗ |𝑒0⟩ ⟨𝑒0|]𝑈†|||𝑒𝑘⟩

=∑
𝑘
𝐴𝑘𝜌𝐴

†
𝑘 .

(3.6)

Here, let 𝜌env = |𝑒0⟩⟨𝑒0| be the initial state of the environment and 𝐴𝑘 = ⟨𝑒𝑘 |𝑈 |𝑒0⟩, with
|𝑒𝑘⟩ forming an orthonormal basis for the environment’s state space. This representa-
tion is known as the Kraus decomposition, where 𝐴𝑘 are Kraus operators satisfying the
completeness condition,

∑
𝑘
𝐴𝑘𝐴

†
𝑘 = 1,

3.1.5 Trace and Partial trace
1. Trace for quantum computing

The trace of a matrix, denoted as 𝑡𝑟(𝐴), is defined as the sum of its diagonal elements.
This mathematical operation exhibits several essential properties:

• Cyclicity: The trace is cyclic, meaning that for any matrices 𝐴 and 𝐵, 𝑡𝑟(𝐴𝐵) =
𝑡𝑟(𝐵𝐴).

• Linearity: The trace is linear, which implies that for matrices 𝐴 and 𝐵 and a
complex number 𝑧, 𝑡𝑟(𝐴+𝐵) = 𝑡𝑟(𝐴)+ 𝑡𝑟(𝐵) and 𝑡𝑟(𝑧𝐴) = 𝑧 × 𝑡𝑟(𝐴).

If |𝜓⟩ is a state vector and A is an arbitrary quantum operator, we can extend |𝜓⟩ to
create an orthonormal basis |𝑖⟩, with |𝜓⟩ as the first element. The trace of the product
𝐴|𝜓⟩⟨𝜓| can be calculated as:

tr(𝐴|𝜓⟩⟨𝜓|) =∑
𝑖
⟨𝑖|𝐴|𝜓⟩⟨𝜓|𝑖⟩

= ⟨𝜓|𝐴|𝜓⟩

2. Partial trace for quantum computing
In mixed quantum systems involving components A and B, described by a density
matrix 𝜌𝐴𝐵, the reduced density matrix for system A is defined as:

3.1Quantum computing

3

21

𝜌𝐴 ≡ tr𝐵(𝜌𝐴𝐵) = tr𝐵 (|𝑎1⟩ ⟨𝑎2|⊗ |𝑏1⟩ ⟨𝑏2|) ≡ |𝑎1⟩ ⟨𝑎2| tr (|𝑏1⟩ ⟨𝑏2|)

tr𝐵 represents the partial trace over system B. |𝑎1⟩ and |𝑎2⟩ are any two vectors in
the state space of A, while |𝑏1⟩ and |𝑏2⟩ are any two vectors in the state space of B.

In fact, trace and partial trace are quantum operations and can be used to describe the
outcome of measurement for a quantum circuit[22].

3.1.6Quantum circuit
Similar to classical computer circuits, quantum computing also relies on circuits to process
and manipulate information. However, quantum circuits fundamentally differ from their
classical counterparts.

Quantum circuits consist of two essential operation components: quantum logic gates
and measurements. These components serve as the foundation for quantum algorithms,
giving them the potential to solve complex problems with greater efficiency and precision
than classical computers.

Quantum gate
Just as classical logic gates are used to change information, quantum logic gates serve
a similar role but with distinct properties. Quantum logic gates facilitate quantum state
transitions and manipulations of qubits, effectively transforming one quantum state into
another, therefore, all the quantum gates are unitary quantum operators on a Hilbert space.

Quantum gates can be mathematically represented as unitary matrices of size 2𝑛 ×2𝑛,
where 𝑛 is the number of qubits in a quantum system. For instance, consider the quantum
NOT gate, analogous to the classical NOT gate,

𝑁𝑂𝑇 (𝛼|0⟩+𝛽|1⟩) = 𝛼|1⟩+𝛽|0⟩. (3.7)
It interchanges the roles of |0⟩ and |1⟩, and this transformation can be expressed using

a matrix, denoted as 𝑋 ,

𝑋 ∶=(
0 1
1 0) ;𝑋(

𝛼
𝛽) =(

0 1
1 0)(

𝛼
𝛽) =(

𝛽
𝛼).

It is important to highlight that the sole constraint on a quantum gate is its unitarity,
denoted as 𝑈†𝑈 = 𝐼 , where 𝑈† represents the adjoint (conjugate transpose) of 𝑈 . This
unitarity constraint endows quantum gates with two crucial attributes: linearity and
reversibility, thanks to the unique properties of the unitary matrix. Consequently, quantum
gates can effectively maintain the probability of a quantum system’s state. Moreover, this
constraint underscores the reversibility of all operations on quantum bits, providing a
robust foundation for quantum computation [22].

As for the properties of the quantum gate, according to the Pauli Decomposition, all
1-qubit unitary gates can be decomposed into rotations about the z-axis and the y-axis
[22, 24], which represented by U3 gate in Qiskit and Pennylane.

𝑈 = 𝑒𝑖𝛼 [
𝑒−𝑖𝛽/2 0
0 𝑒𝑖𝛽/2][

cos 𝛾2 −sin 𝛾
2

sin 𝛾
2 cos 𝛾2][

𝑒−𝑖𝛿/2 0
0 𝑒𝑖𝛿/2] = 𝑒𝑖𝛼𝑅𝑧(𝛽)𝑅𝑦(𝛾)𝑅𝑧(𝛿)

3

22 3Quantum neural network

Gate Notation Gate’s qubit count Matrix Circuit

Pauli X gate X, NOT, 𝜎1, 𝜎𝑥 1 (
0 1
1 0)

Pauli Y gate Y, 𝜎2, 𝜎𝑦 1 (
0 −𝑖
𝑖 0)

Pauli Z gate Z, 𝜎3, 𝜎𝑧 1 (
1 0
0 −1)

X rotation gate 𝑅𝑥(𝜙) 1
𝑒−𝑖𝜙𝜎𝑥/2 =

(
cos(𝜙/2) −𝑖sin(𝜙/2)
−𝑖sin(𝜙/2) cos(𝜙/2))

Y rotation gate 𝑅𝑦(𝜙) 1
𝑒−𝑖𝜙𝜎𝑦/2 =

(
cos(𝜙/2) −sin(𝜙/2)
sin(𝜙/2) cos(𝜙/2))

Z rotation gate 𝑅𝑧(𝜙) 1
𝑒−𝑖𝜙𝜎𝑧/2 =

(
𝑒−𝑖𝜙/2 0
0 𝑒𝑖𝜙/2)

Arbitrary single-qubit
unitary gate 𝑈3(𝜃,𝜙,𝜆) 1 (

cos(𝜃2) −𝑒𝑖𝜆 sin(𝜃2)
𝑒𝑖𝜙 sin(𝜃2) 𝑒𝑖(𝜙+𝜆) cos(𝜃2))

Hadamard H 1 1√
2 (

1 1
1 −1)

Controlled-NOT gate CNOT; CX 2
⎛
⎜
⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟
⎟
⎟
⎠

Controlled-Y gate CY 2
⎛
⎜
⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 −𝑖
0 0 𝑖 0

⎞
⎟
⎟
⎟
⎠

Controlled-Z gate CZ 2
⎛
⎜
⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟
⎟
⎟
⎠

Controlled-RX gate CRX 2
⎛
⎜
⎜
⎜
⎝

1 0 0 0
0 cos(𝜃2) 0 −𝑖sin(𝜃2)
0 0 1 0
0 −𝑖sin(𝜃2) 0 cos(𝜃2)

⎞
⎟
⎟
⎟
⎠

Controlled-RY gate CRY 2
⎛
⎜
⎜
⎜
⎝

1 0 0 0
0 cos(𝜃2) 0 −sin(𝜃2)
0 0 1 0
0 sin(𝜃2) 0 cos(𝜃2)

⎞
⎟
⎟
⎟
⎠

Controlled-RZ gate CRZ 2
⎛
⎜
⎜
⎜
⎝

1 0 0 0
0 𝑒−𝑖

𝜃
2 0 0

0 0 1 0
0 0 0 𝑒𝑖

𝜃
2

⎞
⎟
⎟
⎟
⎠

XX Rotation gate RXX 2

𝑒−𝑖
𝜃
2𝑋⊗𝑋 =

⎛
⎜
⎜
⎜
⎜
⎝

cos(𝜃2) 0 0 −𝑖sin(𝜃2)
0 cos(𝜃2) −𝑖sin(𝜃2) 0
0 −𝑖sin(𝜃2) cos(𝜃2) 0

−𝑖sin(𝜃2) 0 0 cos(𝜃2)

⎞
⎟
⎟
⎟
⎟
⎠

YY Rotation gate RYY 2

𝑒−𝑖
𝜃
2 𝑌⊗𝑌 =

⎛
⎜
⎜
⎜
⎜
⎝

cos(𝜃2) 0 0 𝑖sin(𝜃2)
0 cos(𝜃2) −𝑖sin(𝜃2) 0
0 −𝑖sin(𝜃2) cos(𝜃2) 0

𝑖sin(𝜃2) 0 0 cos(𝜃2)

⎞
⎟
⎟
⎟
⎟
⎠

ZZ Rotation gate RZZ 2

𝑒−𝑖
𝜃
2𝑍⊗𝑍 =

⎛
⎜
⎜
⎜
⎜
⎝

𝑒−𝑖
𝜃
2 0 0 0

0 𝑒𝑖
𝜃
2 0 0

0 0 𝑒𝑖
𝜃
2 0

0 0 0 𝑒−𝑖
𝜃
2

⎞
⎟
⎟
⎟
⎟
⎠

Table 3.1: Quantum gates (draw from PennyLane and Qiskit)

3.1Quantum computing

3

23

Besides, if we define the canonical gate as,

CAN(𝑡1, 𝑡2, 𝑡3) = RXX(𝑡1𝜋)RYY(𝑡2𝜋)RZZ(𝑡3𝜋)

= 𝑒−𝑖
𝜋
2 𝑡1𝑋⊗𝑋 𝑒−𝑖

𝜋
2 𝑡2𝑌⊗𝑌 𝑒−𝑖

𝜋
2 𝑡3𝑍⊗𝑍 .

Then, following the Krauss and Cirac decomposition described in [24], any two-qubit
gate can be decomposed into a canonical gate with two 1-qubit gates[25–27], see in the
Figure 3.2.

RZ(t1) RZ(t3)RY(t2)

RZ(t4) RZ(t6)RY(t5)

RZ(t10) RZ(t12)RY(t11)

RZ(t13) RZ(t15)RY(t14)

CAN
(t7,t8,t9)U =

Figure 3.2: Random two-qubit gate decomposition.

It also can be written in this mathematical form,

𝑈 ≡ (𝐴1⊗𝐴2) ⋅ 𝑒𝑖(𝑎𝑋⊗𝑋+𝑏𝑌⊗𝑌+𝑐𝑍⊗𝑍) ⋅ (𝐴3⊗𝐴4) .

Here, 𝑎, 𝑏, and 𝑐 are real numbers, and 𝐴1, 𝐴2, 𝐴3, and 𝐴4 represent single-qubit gates. It is
noteworthy that such decompositions are universally applicable, irrespective of the specific
forms of these single-qubit gates since they also have universal decomposition forms.

One crucial metric for evaluating quantum gate impact is the Entangling Power, which
quantifies the extent to which various gates generate entanglement when applied to initially
unentangled inputs. Notably, the CNOT gate is among those with the highest entangling
power [28], underscoring its significance in quantum circuit design.

For the quantum gates employed in our work, as presented in Table 3.1.

Measurement
In quantum circuits, the process of extracting data is known as measurement. There are
two types of measurement outcomes have been used in our project:

1. Expectation value of an observable

• In quantum mechanics, an observable, representing a property of an n-qubit
system, is described by a quantum operator of dimensions 2𝑛 ×2𝑛

• If the quantum state before measurement is denoted as |𝜓⟩, the expectation
value of this observable is defined as:

⟨⟩𝜓 = tr(|𝜓⟩⟨𝜓|) = ⟨𝜓||𝜓⟩

2. Computational basis state probabilities

• When measuring a qubit, we determine whether it’s in the |0⟩ or |1⟩ state.
• The outcome of multiple measurements results in probabilities associated with
these computational basis states, which correspond to the amplitudes of the
qubit 𝛼 and 𝛽.

Overall, the properties of quantum gates discussed above play a key role in determining
how we design our quantum circuits.

3

24 3Quantum neural network

3.1.7Quantum gradient
In quantum computing, the computation of gradients holds climactic significance, particu-
larly in quantum machine learning-related quantum algorithms. In our paper, we employ
two widely recognized methods for computing gradients.

Let’s first consider a quantummodel represented by the state |𝜓(𝜃)⟩, where 𝜃 denotes the
model parameter vector. The circuit output, obtained using the observable 𝑀 , is expressed
as ⟨𝜓(𝜃)|𝑀 |𝜓(𝜃)⟩.

1. Finite-Difference Method
The Finite-Difference Method is a numerical technique used to approximate deriva-
tives by introducing small variations, denoted as 𝜖, to each parameter in a quantum
circuit and observing the resulting changes. Rooted in the principle of finite dif-
ferences, this method calculates the finite differences between the perturbed and
unperturbed quantum circuit outputs.
In the context of the central finite difference method, the quantum gradient is ap-
proximated as follows,

𝜕⟨𝜓(𝜃)|𝑀 |𝜓(𝜃)⟩
𝜕𝜃

≈
1
2𝜖

(⟨𝜓(𝜃+ 𝜖)|𝑀 |𝜓(𝜃+ 𝜖)⟩− ⟨𝜓(𝜃− 𝜖)|𝑀 |𝜓(𝜃− 𝜖)⟩) . (3.8)

Theoretically, reducing 𝜖 as much as possible brings the approximations closer to the
true gradient. However, it is crucial to strike a balance, as excessively small 𝜖 values
can lead to numerical instability. Hence, selecting an appropriate 𝜖 is essential for
the reliability and efficiency of the Finite-Difference Method in quantum gradient
computations.

2. Parameter Shift Rule
In 2018, the parameter shift rule outlined by Mitarai et al. [29] started to join the field
of quantum computing, marking a pivotal advance in quantum gradient computation.
Since its introduction, this rule has developed into a sophisticated and highly efficient
tool, providing a systematic methodology for obtaining precise gradients within
quantum circuits.
At the very heart of the parameter shift rule is a comprehensive guide on how to
utilize the same quantum circuit architecture to compute the partial derivatives of
the circuit results. The mathematical expression is,

𝜕⟨𝜓(𝜃)|𝑀 |𝜓(𝜃)⟩
𝜕𝜃

= 𝑐 (⟨𝜓(𝜃+ 𝑠)|𝑀 |𝜓(𝜃+ 𝑠)⟩− ⟨𝜓(𝜃− 𝑠)|𝑀 |𝜓(𝜃− 𝑠)⟩) . (3.9)

Here, the constants c and s are fully determined by the specific gates used in the
quantum circuit [30]. This formula concisely captures the essence of the parameter
shift rule, demonstrating its ability to facilitate gradient computation efficiently.
One notable feature of the parameter shift rule is its ability to leverage the same
circuit for both computing the quantum function and its gradient. This characteristic
significantly simplifies the computational complexity, reduces the complexity associ-
ated with separate computations, and marks a considerable advantage in quantum
gradient computations.

3.2Quantum Neural Network

3

25

3.1.8 Fidelity
The concept of fidelity holds significant importance in the realm of quantum information
[31], providing a mathematical framework for quantifying the similarity between two
quantum states. Various fidelity measures exist, each taking different forms depending on
the nature of the quantum states involved.

For a pair of arbitrary mixed quantum states, denoted as 𝜌 and 𝜎, the fidelity between
them can be defined based on the closeness of these states in the standard geometry of
Hilbert space. We can use Uhlmann-Jozsa (U-J) fidelity[32], denoted as (𝜌,𝜎), to describe
it,

(𝜌,𝜎) = (tr
√√𝜌𝜎√𝜌)2. (3.10)

When dealing with a pair of pure quantum states, expressed as 𝜌 = |𝜙⟩⟨𝜙| and 𝜎 = |𝜓⟩⟨𝜓|.
Then its fidelity is mathematically expressed as follows,

(𝜌,𝜎) = (|𝜙⟩⟨𝜙|, |𝜓⟩⟨𝜓|) ∶= |⟨𝜓 ∣ 𝜙⟩|2. (3.11)

Furthermore, when 𝜌 represents a mixed state, this formulation can be extended to,

(𝜌,𝜎) = (𝜌, |𝜓⟩⟨𝜓|) ∶= ⟨𝜓|𝜌|𝜓⟩. (3.12)

This form generalizes fidelity as the transition probability between two quantum states.
Essentially, it quantifies the likelihood of transitioning from one state to another, providing
a probabilistic measure of their similarity. By studying the overlap of states in Hilbert
space, fidelity captures the degree of consistency of quantum systems in their respective
descriptions, providing valuable insight into their mutual similarity.

3.2Quantum Neural Network
As the problems solved with machine learning become more complex and the model sizes
continue to grow, a significant challenge arises in the form of insufficient computational
power in machine learning. Researchers are actively investigating ways to address this
problem, and one possible direction is to integrate quantum computing with machine
learning. This integration aims to enhance the efficiency of processing classical data and
has emerged as a hot research topic in recent years.

Leveraging the considerable success of neural networks, there has been a strong interest
in exploring the potential advantages between quantum computing and neural networks,
leading to the concept of quantum neural networks. Some innovative ideas have been
proposed by researchers, each showcasing varying degrees of similarity to classical neural
networks. In this section, we will introduce two types of quantum neural networks which
are the basis of our study. The models under consideration, namely dissipative quantum
neural networks and parameterized variational quantum neural networks, will be presented
and thoroughly discussed in the following part.

3.2.1 Dissipativeqantum neural network
TheDissipative QuantumNeural Network (DQNN)was initially introduced by Beer [12] and
has been applied by several researchers in the field of finance [19, 20]. This quantum neural

3

26 3Quantum neural network

network shares a lot of similarities with classical neural networks, as both frameworks
consist of multiple perceptrons to process information. Furthermore, they employ back-
propagation to iteratively update model parameters.

Quantum perceptrons
Quantum perceptrons within this framework are prepared as arbitrary quantum gates,
each accompanied by an ancilla qubit. A Quantum perceptron operates on a total of m +
1 qubits, where m qubits are from the preceding layer or input, denoted as 𝜌𝑖𝑛, and the
additional qubit is the ancilla qubit initialized in the state |0⟩. The perceptron operation
involves applying the quantum gate, and subsequently, partial tracing over the m input
qubits, resulting in an outcome state of that single ancilla qubit, denoted as 𝜌𝑜𝑢𝑡 . For a
visual illustration, refer to the example presented in Figure 3.3.

ρin

Quantum perceptrons

U

Ancilla qubit

ρout

ρin

ρout

Figure 3.3: Quantum perceptron.

The structure of DissipativeQuantum Neural Network
Similar to classical neural networks, DQNN also consists of three types of layers: one input
layer, one output layer, and 𝐿 hidden layers between the input layer and the output layer,
as depicted in Figure 3.4. The input layer consists only of qubits, while the hidden and
output layers are constructed by quantum perceptrons.

Feed-forward and Back-propagation
For data processing and network optimization, DQNN utilizes similar feed-forward and
back-propagation schemes that are tightly integrated with classical neural networks. These
parallel strategies facilitate the seamless flow of data through the network, leading to
efficient processing and subsequent fine-tuning of the entire system. In the next sec-
tions, a comprehensive exploration of the intrinsic complexity of feed-forward and back-
propagation will clarify their key role in the DQNN framework. The integration of classical
methods with quantum networks highlights the versatility and adaptability of DQNN in
dealing with complex information-processing tasks.

3.2Quantum Neural Network

3

27

Inputs Outputs

Figure 3.4: The structure of a 2-3-4-3-2 Dissipative Quantum Neural Network.

1. Feed-forward
For each layer within the DQNN, it can be seen as a quantum operation that trans-
forms the output from the preceding layer into the input for the subsequent layer.
Notably distinct from classical networks, the implementation of quantum perceptron
units in each layer follows a sequential order, from the top perceptron to the bottom
perceptron.
Therefore, by the definition from Equation (3.5), we have

𝜌𝑙 = 𝑙 (𝜌𝑙−1) ≡ tr𝑙−1(

1
∏
𝑗=𝑚𝑙

𝑈 𝑙𝑗 (𝜌
𝑙−1⊗ |0…0⟩𝑙⟨0…0|)

𝑚𝑙
∏
𝑗=1

𝑈 𝑙†𝑗)
. (3.13)

The quantum gate corresponding to the 𝑗 𝑡ℎ perceptron in the 𝑙𝑡ℎ layer is denoted as
𝑈 𝑙𝑗 , where 𝑗 = 1,… ,𝑚𝑙 and 𝑙 = 1,… ,𝐿,𝐿+1, with 𝑙 = 1 representing the first hidden
layer and 𝑙 = 𝐿+1 denoting the output layer.
The output from the 𝑙𝑡ℎ layer during the feed forward process, designated as 𝜌𝑙+1,
with initial state 𝜌0 = 𝜌in and final state 𝜌𝐿+1 = 𝜌out , contains the joint outcomes of
all 𝑚𝑙 perceptrons within that layer. Moreover, considering the entire network, we
can succinctly formulate the output state of the DQNN 𝜌𝑜𝑢𝑡 using Equation (3.14).

𝜌out = (𝜌in) = 𝐿+1 (𝐿 (…2 (1 (𝜌in))…)) (3.14)

2. Back-propagation
The adjoint form of Equation (3.13), which can be derived by using Kraus decom-
position, plays a crucial role in representing the quantum operation during DQNN
back-propagation, and it can be expressed as,

3

28 3Quantum neural network

𝜎𝑙−1 = P𝑙(𝜎𝑙) = tr𝑙((1𝑙−1⊗ |0…0⟩𝑙⟨0…0|𝑙)
𝑚𝑙
∏
𝑗=1

𝑈 𝑙†(1𝑙−1⊗𝜎𝑙)
1

∏
𝑗=𝑚𝑙

𝑈 𝑙𝑗). (3.15)

This equation represents the quantum state evolution throughout the back-propagation
process. During backpropagation, the quantum state labeled as 𝜌label initially serves
as the input to the output layer of the DQNN. Subsequently, 𝜌label is propagated
backward through the layers until it reaches the input layer of the network. The
outcomes at each layer during the backpropagation process can be computed using
Equation (3.15).

Training process
Nowwe train aDQNNwith𝑁 training data pairs, each ofwhich is structured as [|𝜙𝑖𝑛𝑖 ⟩,|𝜙𝑙𝑎𝑏𝑒𝑙𝑖 ⟩],
i=1… 𝑁 . The entire training process is shown in the Figure 3.5. The initial step involves the
random initialization of all quantum gates within the quantum perceptrons. Subsequently,
the feed-forward and back-propagation processes are performed simultaneously. For each

Figure 3.5: Training process of DQNN

training data pair, 𝜌𝑖𝑛𝑖 = |𝜙𝑖𝑛𝑖 ⟩⟨𝜙𝑖𝑛𝑖 |, i=1, …, 𝑁 , serves as the input to the first hidden layer for
the feed-forward, Afterward, the feed-forward transformations are sequentially applied

3.2Quantum Neural Network

3

29

layer by layer until reaching the output layer. The resulting quantum states denoted 𝜌1𝑖 ,
𝜌2𝑖 , …, 𝜌𝐿𝑖 and 𝜌𝐿+1𝑖 (corresponding to 𝜌𝑜𝑢𝑡𝑖), are obtained through this process and can be
calculated by Equation (3.13). Concurrently, 𝜎𝑙𝑎𝑏𝑒𝑙𝑖 = |𝜙𝑙𝑎𝑏𝑒𝑙𝑖 ⟩⟨𝜙𝑙𝑎𝑏𝑒𝑙𝑖 |(also seen as 𝜎𝐿+1𝑖) is
used as the input for the output layer, initiating the back-propagation transformation from
the output layer to the first hidden layer. The outcomes, 𝜎𝐿𝑖 , 𝜎𝐿−1𝑖 , …, 𝜎0𝑖 , are preserved
according to Equation (3.15).

Next, the obtained quantum states 𝜌𝑜𝑢𝑡𝑖 and label quantum states 𝜎𝑙𝑎𝑏𝑒𝑙𝑖 can be used to
compute the training loss for our DQNN model. For the loss function, we use the mean
fidelity value between 𝜌𝑜𝑢𝑡𝑖 and 𝜎𝑙𝑎𝑏𝑒𝑙𝑖 , i=1,…, 𝑁 , providing a measure of how well the output
state aligns with the labeled target state. The fidelity, denoted as (𝜌𝑜𝑢𝑡𝑖 ,𝜎𝑙𝑎𝑏𝑒𝑙𝑖), yields a
value of 1 when the output and label are identical.

Given that 𝜌𝑜𝑢𝑡𝑖 is a mixed quantum state and 𝜎𝑙𝑎𝑏𝑒𝑙𝑖 is a pure quantum state, we formulate
the loss using the fidelity definition from Equation (3.12) as follows,

 =
1
𝑁

𝑁
∑
𝑖=1

𝐹(𝜎𝑙𝑎𝑏𝑒𝑙𝑖 ,𝜌𝑜𝑢𝑡𝑖) =
1
𝑁

𝑁
∑
𝑖=1

𝐹 (
|||𝜙
𝑙𝑎𝑏𝑒𝑙
𝑖 ⟩⟨𝜙𝑙𝑎𝑏𝑒𝑙𝑖

||| ,𝜌
𝑜𝑢𝑡
𝑖) =

1
𝑁

𝑁
∑
𝑥=1

⟨𝜙𝑙𝑎𝑏𝑒𝑙𝑥
||𝜌
𝑜𝑢𝑡
𝑥

||𝜙
𝑙𝑎𝑏𝑒𝑙
𝑥 ⟩ .

(3.16)
Furthermore, the update process involves modifying the quantum perceptrons based

on the computed gradients and the collected results from the feed-forward and back-
propagation phases, see the details in [12]. Equation (3.17) captures this evolution, where
the quantum states at each layer, 𝜌0𝑖 (which is 𝜌𝑖𝑛𝑖), 𝜌1𝑖 , 𝜌2𝑖 , . . . , 𝜌𝐿𝑖 , 𝜎𝐿+1𝑖 , 𝜎𝐿𝑖 , . . . , 𝜎1𝑖 are utilized
to adjust the respective unitary operators 𝑈 𝑙𝑗 .

𝑒𝑖𝜖𝐾
𝑙
𝑗𝑈 𝑙𝑗 → 𝑈 𝑙𝑗 (new), (3.17)

where

𝐾 𝑙
𝑗 =

𝜂2𝑚𝑙−1 𝑖
𝑁

𝑁
∑
𝑥=1

tr𝑟𝑒𝑠𝑡 (𝑀 𝑙
𝑗 (𝑖)) ,

and

𝑀 𝑙
𝑗 (𝑖) = [𝑈 𝑙𝑗 …𝑈 1

𝑙 (𝜌
𝑙−1
𝑖 ⊗ |0…0⟩⟨0…0|)𝑈 1†

𝑙 …𝑈 𝑙†𝑗 ,𝑈 𝑙
𝑗+1…𝑈 𝑙𝑚𝑙 (1𝑖𝑛,ℎ𝑖𝑑 ⊗𝜎

𝑙
𝑖)𝑈

𝑙
𝑚𝑙 …𝑈 𝑙𝑗+1].

𝜖 is an adjustable parameter and the parameter matrix 𝐾 𝑙
𝑗 is instrumental in this adjustment

and is determined by the trace operation on the remaining degrees of freedom, all the
qubits that are not affected by 𝑈 𝑙𝑗 , and the learning rate 𝜂, as quantified by 𝑀 𝑙

𝑗 (𝑖).
The process of updating is iterated until the obtained loss function converges to 1.

Essentially, this update mechanism ensures that the quantum neural network adapts its
internal representations, which are enclosed in the quantum perceptron, to optimize overall
performance based on the feedback received during training.

3.2.2 Parameterized variationalqantum neural network
The Parameterized Variational Quantum Neural Network (PVQNN), also known as Varia-
tional Quantum Circuits (VQC), Quantum Circuit Learning (QCL) [29], and Parameterized
Quantum Circuits (PQCs) [13], represents a powerful quantum-classical hybrid model.

3

30 3Quantum neural network

This model consists of a quantum circuit containing trainable parameters connected with a
classical optimizer. Usually, PVQNN is regarded as a quantum neural network model, since
emphasizes the modular structure of quantum gates within a circuit, drawing parallels
with classical neural networks. Besides, the utilization of optimization techniques derived
from classical neural network training is also a notable characteristic of PVQNN [33].

PVQNN serves as a versatile framework with applications in solving classical problems
in finance, chemistry simulations, and other optimization tasks. Research and developments
in PVQNN are actively pursued by well-known organizations, including PennyLane, IBM,
and various research institutions. This widespread adoption emphasizes the significance
and potential of PVQNN in advancing quantum computing applications.

The structure of Parameterized VariationalQuantum Neural Network
PVQNNs typically initiate their computation with several qubits prepared in the computa-
tional basis state, often |0⟩, and undergo a sequence of operations before being measured
at the end. The PVQNN architecture comprises three distinctive layers: the Data Encoding
Layer (or Feature Mapping Layer), the Hidden Layer (Data Processing Layer), and the
Measurement Layer, as illustrated in Figure 3.6.

Therefore, the output of the PVQNN can be described by the expression,

𝑓𝜽(𝑥) = ⟨0|𝑈†
𝑒 (𝑥)𝑈

†
ℎ (𝜽)𝑀𝑈ℎ(𝜽)𝑈𝑒(𝑥)|0⟩. (3.18)

Ue(x) Uh(θ)

Data Encoding layer Hidden layer Measurement layer

Figure 3.6: The structure of PVQNN.

For detailed information on each layer, see below,

1. Data Encoding Layer
The data encoding layer serves as the initial stage, responsible for embedding classical
information 𝑥 into the quantum circuits using diverse data encoding methods. This
layer is crucial for preparing the classical data for subsequent quantum processing.
Mathematically, this process can be briefly described by a unitary matrix 𝑈𝑒(𝑥).

3.2Quantum Neural Network

3

31

2. Hidden Layer
The hidden layer acts as the core data processing unit within the PVQNN. Each
hidden layer can be viewed as a "block" formed of quantum gates. These gates
include quantum gates with variable parameters 𝜃 (e.g., rotation gates) and other
gates (e.g., gates that increase the degree of entanglement like CNOT gates). These
parameters are initially unknown but are continuously updated during training.
The repetition of the parameterization layer enhances the expressiveness of the
model and allows for complex quantum operations. The operations in this layer are
mathematically represented by a unitary matrix 𝑈ℎ(𝜃).

3. Measurement Layer
The measurement layer in a PVQNN serves the crucial function of extracting classi-
cal information from the quantum states resulting from the previous layers’ com-
putations. This layer plays a pivotal role in subsequent optimization procedures.
Specifically, the outcomes of the measurements are usually obtained by taking the
expectation values of certain chosen observables, commonly involving the subset of
Pauli gates, namely I (Identity), X, Y, Z.

Fourier Perspective
To enhance comprehension of the PVQNNmodel, researchers have explored it from various
perspectives. In this section, we provide an in-depth understanding of PVQNN through
the lens of the Fourier series.

When considering the data encoding layer as a transition of quantum states in time,
it can be represented by a unitary operator 𝑈𝑒(𝑋) = 𝑒−𝑖𝑋𝐻 , 𝑋 ∈R𝑁 , also known as a time
evolution operator. Here, 𝐻 is a time-independent Hamiltonian operator [34], and

𝑈𝑒(𝑋) ∶= 𝑒−𝑖𝑥1𝐻1 ⊗…⊗𝑒−𝑖𝑥𝑁𝐻𝑁

For the Hamiltonian operator 𝐻 , which is a Hamiltonian matrix, the finite-dimensional
spectral theorem allows us to express 𝐻 = 𝑉 †Σ𝑉 through Schur decomposition, where 𝑉 is
a unitary matrix and the eigenvalues of 𝐻 are the diagonal entries of diagonal matrix Σ.

Since 𝑉 is a unitary matrix, transformations |Γ⟩ = 𝑉 |0⟩ and 𝑈ℎ = 𝑈ℎ𝑉 † preserve the
unitary property of 𝑀 and 𝑈ℎ. Consequently, Equation (3.18) can be reformulated as,

𝑓𝜽(𝑋) = ⟨0|𝑒𝑖𝑋𝐻
†
𝑈†
ℎ (𝜽)𝑀𝑈ℎ(𝜽)𝑒−𝑖𝑋𝐻 |0⟩

= ⟨0|𝑉 †𝑒𝑖𝑋Σ𝑉𝑈†
ℎ (𝜽)𝑀𝑈ℎ(𝜽)𝑉 †𝑒−𝑖𝑋Σ𝑉 |0⟩

= ⟨Γ|𝑒𝑖𝑋Σ𝑈ℎ
†
𝑀𝑈ℎ𝑒−𝑖𝑋Σ|Γ⟩.

(3.19)

If we denote the eigenvalues of the Hamiltonian 𝐻𝑘 as 𝜆𝑘1 ,… , 𝜆𝑘𝑑 , 𝑑 is the dimension of
the Hilbert space and 𝑘 ∈ 1,… ,𝑁 . Then,

(𝑒−𝑖𝑥𝑘Σ𝑘)𝑗 ,𝑗 = 𝑒−𝑖𝑥𝑘𝜆
𝑘
𝑗

Since the presence of 𝑒𝑖𝑋Σ in the Equation (3.19), so there are factors 𝑒𝑖𝑥𝑘𝜆𝑘𝑠 𝑒−𝑖𝑥𝑘𝜆𝑘𝑡 =
𝑒−𝑖𝑥𝑘(𝜆𝑘𝑠−𝜆𝑘𝑡) in the 𝑓𝜽(𝑋). Now, let’s define the frequency spectrum Ω𝑖 as,

Ω𝑖 = 𝜆𝑘𝑠 −𝜆
𝑘
𝑡 ,

3

32 3Quantum neural network

where 𝑠, 𝑡 ∈ 1,… , 𝑑. This leads us to a more compact expression,

𝑓𝜽(𝑥) = ∑
𝜔1∈Ω1

… ∑
𝜔𝑁 ∈Ω𝑁

𝐶(𝜃)𝑒𝑖𝜔1𝑥1 …𝑒𝑖𝜔𝑁 𝑥𝑁 . (3.20)

Here, the coefficients 𝐶(𝜃) incorporates terms arising from 𝑈ℎ and measurement layer
𝑀 , see [35] for more details.

Notably, in Equation (3.20), considering that 𝜆𝑠 and 𝜆𝑡 are any two eigenvalues from
the same Hamiltonian matrix, it leads to two key conclusions: firstly, 0 is an element
of Ω, and secondly, there exists a symmetry property whereby −𝜔 is in Ω whenever 𝜔
is. These factors collectively suggest that 𝑓𝜽(𝑥) can appropriately be conceptualized as a
multi-dimensional Fourier series.

From above, the frequencies 𝜔, as delineated in 𝑓𝜽(𝑥), exhibit a direct correlation with
the spectra of the encoding Hamiltonians 𝐻 . These Hamiltonians, integral to the encoding
layer, are crucial in determining the specific frequencies that characterize the behavior
of the quantum neural network. On the other hand, the Fourier coefficients 𝐶 are mainly
shaped by the network’s overall architecture and the design decisions involved in its
construction. This encompasses factors such as the configuration of the encoding layer,
the structural design of the hidden layers, and the selection of observables.

In essence, the encoding Hamiltonians determine the fundamental frequencies. Mean-
while, the network’s architecture, including the design of the encoding and hidden layers,
as well as the choice of observables, collectively influences the Fourier coefficients in
Equation (3.20). This correlation between the network’s structural design and its Fourier
series representation allows researchers to adeptly customize the quantum neural network,
enhancing its sensitivity and expressibility to specific data features or targeted tasks.

Training process
The training process of a PVQNN model shares many similarities with classical neural
networks, particularly because it operates as a hybrid model. When training a PVQNN
with N classical training data pairs [𝑥𝑖,𝑦𝑖], 𝑖 = 1,… ,𝑁 , the overall process, as illustrated in
Figure 3.7, can be outlined as follows,

1. Initialization
The training begins by preparing qubits in the computational basis state |0⟩. The
initialization phase also involves critical decisions like selecting the data encoding
method and the way the hidden layers are constructed, such as the selection and
arrangement of quantum gates contained within them. These quantum gates are
initially set with random values, similar to the initialization of weights in a classical
neural network. An observable for the measurement layer is also chosen, which is
key to translating the quantum computations into classical outputs.

2. Data Encoding
This step involves converting classical input data into a quantum format that the
PVQNN can process. It’s done by applying a set of unitary gates 𝑈𝑒(𝑥𝑖) to the
initialized qubits. This transformation encodes the classical data 𝑥𝑖 into a quantum
state |𝜙𝑖𝑛(𝑥𝑖)⟩ = 𝑈𝑒(𝑥𝑖)|0⟩, effectively bridging the gap between classical and quantum
information.

3.2Quantum Neural Network

3

33

Figure 3.7: Training process of PVQNN.

3. Data Processing
This step passes the encoded qubits obtained from the data coding layer through the
hidden layer. This involves applying parameterized unitary gates 𝑈ℎ(𝜃) to the input
quantum state|𝜙𝑖𝑛(𝑥𝑖)⟩ and generate an output state 𝜙𝑜𝑢𝑡(𝑥𝑖)⟩ = 𝑈ℎ(𝜃)|𝜙𝑖𝑛(𝑥𝑖)⟩. These
gates manipulate the quantum state in a way that’s determined by the network’s
current parameters 𝜃, thus performing the quantum equivalent of data processing.

4. Measurement
After processing, the quantum state is measured. This step is crucial in quantum
computing as it converts the quantum information back into a classical form. The
measurement is performed using predefined observables 𝑀 , and the outcome 𝑦𝑜𝑢𝑡𝑖 =
⟨𝜙𝑜𝑢𝑡(𝑥𝑖)|𝑀 |𝜙𝑜𝑢𝑡(𝑥𝑖)⟩ provides the classical data needed for further steps. This is where
the quantum computation results become accessible for classical analysis.

5. Optimization
The final step reproduces the optimization process in classical neural networks.
It involves selecting a loss function 𝐿(𝑦𝑜𝑢𝑡𝑖 , 𝑦𝑖) and a classical optimizer. The loss
function measures the difference between the network’s output and the actual desired
output. In the case of a gradient-based optimizer, a unique aspect is the computation
of quantum gradients, which presents both challenges and advantages compared to
classical methods. The network is iteratively improved through this optimization
process, refining the parameters to reduce the loss function, thereby enhancing the
network’s performance.

3

34 3Quantum neural network

This process leverages the principles of quantum mechanics, potentially offering com-
putational advantages over classical approaches in certain scenarios.

4

35

4
Quantum neural network to
compute implied volatility

In this chapter, we introduce the algorithmic framework and the experimental setup for our
work. Section 4.1 outlines the model’s general procedure, customized for our specific task. In
Section 4.2, we explore the comprehensive configuration of our selected models. This includes
everything from data encoding to the detailed settings of each model type. We pay special
attention to the setting of PVQNN, including the data re-uploading technique, the architecture
of the quantum circuit, the choice of observables, and the key optimization parameters essential
for the effective training of the model.

4

36 4Quantum neural network to compute implied volatility

4.1 Algorithm
In our study, we introduce two different quantum neural network models, DQNN and
PVQNN, designed to approximate the inverse of the Black-Scholes formula, 𝜎 =𝐵𝑆−1(𝑉 ,𝐾,𝜏,𝑆, 𝑟),
for calculating implied volatility. These models utilize the unique computational capabilities
of quantum computing, aiming to investigate the distinct features and potential benefits of
quantum neural networks in addressing this problem.

The process we adopt for these quantum neural network models is detailed in a struc-
tured format in Table 4.1. This table comprehensively delineates each step of the process,
which is broadly categorized into two primary phases: data preparation and model train-
ing & evaluation. The structured layout provides a clear and methodical guide for the
implementation and assessment of the DQNN and PVQNN models in related fields.

Table 4.1: Quantum Neural Network Model Framework

Step Description
1 Data Generation and Dataset Division: To generate training data,

instead of generating training data through root-finding algorithm
𝜎 = 𝐵𝑆−1(𝑉𝑚𝑘𝑡 ,𝐾 ,𝜏,𝑆, 𝑟), we initially sample values for 𝑆,𝐾,𝜏, 𝑟 ,𝜎 and
then compute the option price 𝑉 using the Black-Scholes formula 𝑉 =
𝐵𝑆(𝑆,𝐾,𝜏, 𝑟 ,𝜎). The input 𝑥 = (𝑆,𝐾,𝜏, 𝑟 ,𝑉) is fed into the quantum
neural network with sampled data 𝜎 serving as the label data 𝑦 = 𝜎.
Subsequently, we divide the complete dataset into two subsets: one
for training and the other for testing the performance of the quantum
neural network.

2 Data Encoding: Transform the classical dataset into a quantum-
computable format, normally the state of qubits, using various data
encoding techniques. In the case of PVQNN, this conversion is per-
formed within the Data Encoding Layer.

3 Model Training: Continuously train the quantum neural network
using the training dataset, focusing on minimizing the loss function L
until it converges to a satisfied value.

4 Model Evaluation: Once the training is complete and the loss function
is optimized, assess the quantum neural network’s performance using
the testing dataset.

4.2 Model setup
Just like their classical counterparts, the configuration and settings of quantum neural
networks are key in determining their performance. In this section, we delve into the
specific settings of the DQNN and PVQNN models based on their characteristics.

We will examine key aspects such as the architecture of the quantum circuits, the
choice and arrangement of quantum gates, and the methods of data encoding and decoding
specific to quantum computing. The role of hyperparameters, including the number of
qubits and layers, and their optimization strategies will also be explored.

4.2 Model setup

4

37

Furthermore, we aim to investigate how these settings affect the models’ ability to
handle financial data, particularly in terms of scalability, accuracy, and computational cost.
By understanding and fine-tuning these parameters, we can enhance the QNNs’ capacity
to model complex financial instruments and predict market dynamics, paving the way for
more advanced applications in quantum finance. This exploration will not only provide
deeper insights into the operational complexities of DQNN and PVQNN but also guide
future developments in quantum neural network design and application.

4.2.1 Data encoding
To effectively implement a quantum machine learning algorithm for solving classical
problems, a primary challenge is the conversion of classical data into quantum information
that quantum devices can process. Typically, this is achieved by embedding classical data
into the quantum states of qubits through various data encoding methods. These methods,
outlined below, are essential for ensuring that the quantum algorithm can interpret and
manipulate the classical data effectively. It not only bridges the gap between classical
and quantum computing but also leverages the unique properties of quantum systems to
enhance computational capabilities.

1. Basis encoding
Basis encoding, a straightforward and intuitive method, involves the transformation
of binary data x of length 𝑛 into a quantum state |𝜓⟩ = |𝑥𝑖⟩⊗𝑛 with 𝑛 qubits. Here,
each |𝑥𝑖⟩ represents a quantum computational basis state, existing either as |0⟩ or |1⟩.
For instance, consider a classical data 𝑥 = 2 with its binary equivalent being 10. In
this case, the corresponding quantum state is |01⟩.

This method is particularly well-suited for datasets comprised of small integers.
This suitability arises from the limitations of current quantum computing devices,
which are only capable of supporting quantum networks of a certain size. Encoding
large or decimal numbers would require a significantly higher number of qubits,
making the process more complex and resource-intensive. Additionally, this method
benefits from the straightforward relationship between quantum bit representation
and classical binary representation. This direct correlation allows for a more efficient
and less complicated conversion of classical data into quantum information.

2. Amplitude encoding
Amplitude encoding encodes classical data, denoted as 𝑥 ∈ 𝐑𝐍, into a quantum state
|𝜓⟩ using n qubits, where 𝑛 = 𝑙𝑜𝑔2(𝑁). This process involves normalizing the classical
data through a function 𝑓𝑖, resulting in the quantum state,

|𝜓⟩ =
𝑁
∑
𝑖=1

𝑓𝑖(𝑥)|𝑖⟩.

In this expression, ∑𝑖 |𝑓𝑖|
2 = 1 ensures that the sum of the squares of the amplitudes

equals one, following the principles of quantum mechanics. Each |𝑖⟩ represents a
computational basis in the Hilbert space, such as |01⟩, |11⟩, etc.

4

38 4Quantum neural network to compute implied volatility

Amplitude encoding allows the representation of an exponentially large amount of
classical data with a relatively small number of qubits. This method is particularly
useful for complex datasets or when dealing with high-dimensional data, as it can
encode a large volume of information in a compact quantum form. However, the
requirement for normalization and the maintenance of the quantum state’s validity
can pose challenges, particularly in ensuring that the transformed data accurately
reflects the features of the original dataset. Moreover, amplitude encoding can be
highly sensitive to errors, as small changes in amplitude can significantly alter
the encoded information. This sensitivity necessitates precise control and error
correction mechanisms in quantum algorithms employing this encoding technique.
Besides, amplitude coding cannot simply be represented as a circuit form. In fact,
the implementation of amplitude coding requires using a method called arbitrary
state preparation which requires a large number of quantum gates [36].

3. Time-evolution Encoding
Time-evolution encoding generally refers to an encoding method represented by
the evolution time of a specific Hamiltonian, �̂� . This process can be mathematically
expressed as,

𝜙(𝑥) = 𝑒−𝑖�̂�𝑥 |0⟩.

In this method, the initial quantum state |0⟩ is evolved through the action of the
Hamiltonian operator, which is modulated by the classical data x. This evolution
effectively encodes the classical data into the quantum state.

A commonly employed variant of Time-evolution Encoding is angle encoding, which
utilizes rotation gates to encode the classical data x. In this approach, the angles
through which these gates rotate are directly determined by the classical data. In
our study, we primarily focus on angle encoding due to its ease of implementation
in quantum circuits and its compatibility with the characteristics of our dataset. The
specifics of these features are elaborated in Section 5.1.

4.2.2 DQNN
In our implementation of the DQNN, we considered the time-intensive nature of training
such networks on classical simulators. Drawing from Beer et al.’s research [25], we noted
that a training session for a 2-3-4-3-2 DQNN architecture with 100 data points over 300
rounds requires approximately 80 minutes for simulation. Besides, the size of the DQNN
significantly influences the duration of the training process. Hence, we selected a 2-3-4-3-2
structure DQNN to approximate the function.

Our implementation process begins with encoding the input features x (suppose we
have four features) into two qubits. These qubits are initially in the |0⟩ state and are encoded
using the Dense Angle Encoding method 𝑒4, see the detail in Section 5.3.2, resulting in the
input quantum state 𝜙𝑖𝑛. The data then passes through the network. Specifically, the first
hidden layer contains three quantum perceptrons, followed by a second hidden layer with
four quantum perceptrons, and a third hidden layer with three quantum perceptrons. The

4.2 Model setup

4

39

network ends in the output layer, comprising two quantum perceptrons, which yield the
output quantum state 𝜌𝑜𝑢𝑡 .

The label training data y, containing the implied volatility 𝜎, is encoded into a quantum
state 𝜙𝑙𝑎𝑏𝑙𝑒 using a single Ry rotation gate, represented by 𝑒2, see Section 5.3.2. This encoded
state is then entangled with a qubit in the |0⟩ state to match the size of the output state 𝜌𝑜𝑢𝑡 .
This entanglement is critical for computing the fidelity between the predicted and actual
outputs, a key step in the training process. Based on the label training data, we iteratively
update the perceptrons in both the hidden and output layers. For this process, we set the
learning rate 𝜆 to 1, and the adjustable parameter (𝜖) is established at 0.1, aligning with the
parameters used in Sakuma’s study [19]. The total number of iterations for this update
process is fixed at 1000, allowing the network sufficient time to converge, as detailed in
Table 4.2.

Table 4.2: The setting of DQNN.

Setting Option
Structure 2-3-4-3-2
Data size training:160 testing:40

Data encoding method 𝜙𝑙𝑎𝑏𝑙𝑒 : 𝑒2 𝜙𝑖𝑛: 𝑒4
Loss function Fidelity
Learning rate 𝜆 1

Adjustable parameter 𝜖 0.1
Iterations number 1000

4.2.3 PVQNN
As the PVQNN is currently in its developmental stages, established norms and best practices
have yet to be solidified, presenting both challenges and opportunities for innovation.

In the data encoding layer of the PVQNN, there is no requirement for ancilla qubits in
its structure. As a result, each input feature can be efficiently encoded into a single qubit.
This direct encoding means that the total number of qubits, N, matches the number of
input features.

Besides, the efficacy of the PVQNN is significantly influenced by its structural design
and the optimization of various factors. This section aims to methodically study these
elements to better understand their impact, particularly in their application to implied
volatility prediction.

Initially, we focus on the design of the ansatz structure. Central to this is the data
re-uploading technique, a method important to the model’s operation. Subsequently, the
selection of observables for measurement is explored. We consider various observables
and their influence on the parameters’ gradients.

Finally, we discuss the hyperparameters in the classical optimizer and the settings in
the training. The choice and tuning of these hyperparameters are pivotal in optimizing
the model’s learning process and ultimately its predictive performance. By comparing
different optimization strategies and training settings, we aim to identify configurations
that enhance the PVQNN’s efficiency and accuracy for implied volatility prediction.

4

40 4Quantum neural network to compute implied volatility

This comprehensive examination is designed to clarify the pivotal factors that influence
the PVQNN’s performance, providing some insight for future research and development in
similar applications.

Data Re-uploading
The data re-uploading technique, as highlighted in the work of Pérez-Salinas et al. [37],
plays a crucial role in the functionality of the model. This method involves encoding
classical information multiple times, enabling the model to adaptively process and integrate
data, just like the Residual network (ResNet). It appears to offer a solution to the challenges
posed by the no-clone rule in quantum computing. In classical neural networks, the same
input is processed repeatedly to the neurons in the later hidden layer. However, in PVQNN,
each input data can be used only once. Therefore, re-uploading data becomes a practical
approach to achieve the same effect within the quantum circuit framework.

For PVQNN, data re-uploading introduces input redundancy, which can be used to
enhance model performance, as suggested by Vidal and Theis [38]. This technique has also
been widely adopted in related studies [39–42]. Consequently, the utility and effectiveness
of data re-uploading in improving the model’s capability to manage complex financial
datasets deserve a thorough examination.

There are two primary methods for data re-uploading for PVQNN: within the encoding
layer and the hidden layers. When data re-uploading occurs in the encoding layer, the
PVQNN can be described by the following equation,

𝑓𝜽(𝑥) = ⟨0|𝑈†
𝑒 …𝑈†

𝑒 (𝑥)𝑈
†
ℎ (𝜽)𝑀𝑈ℎ(𝜽)𝑈𝑒(𝑥)…𝑈𝑒(𝑥)|0⟩. (4.1)

In this approach, the data is repeatedly encoded at the beginning, processing the information
before it is passed through the hidden layers.

Alternatively, data re-uploading within the hidden layers involves starting each hidden
layer with an encoding layer. In this scenario, the PVQNN is represented as,

𝑓𝜽(𝑥) = ⟨0|𝑈†
𝑒 𝑈

†
ℎ (𝜽)…𝑈†

𝑒 (𝑥)𝑈
†
ℎ (𝜽)𝑀𝑈ℎ(𝜽)𝑈𝑒(𝑥)…𝑈ℎ(𝜽)𝑈𝑒(𝑥)|0⟩. (4.2)

Here, the data is re-uploaded at the beginning of each hidden layer. The frequency of data
re-uploading corresponds to the number of hidden layers in the model. In our study, we
will focus primarily on this second method of re-uploading. This decision is informed by
the observation that some encoding strategies, such as simple angle rotation, may not be
effective in the first approach. Specifically, rotating the data multiple times within the
Encoding Layer might not significantly alter the outcomes, thus making the second method
more suitable for our analysis.

Ansatz structure
The structure of the hidden layer, also known as the ansatz, is intrinsically related to how
the model processes data. Viewing each layer of the hidden layer as a modular component,
the entire hidden layer is constructed using these modules.

The construction of these modules typically involves two key components: parameter-
ized gates and gates for entanglement. In designing the ansatz, we aim for it to represent
several critical features:

4.2 Model setup

4

41

1. Universality
It is essential for the gates to have the capability to represent any arbitrary quantum
gates. This universality is crucial in enhancing the expressibility of the model,
allowing it to effectively capture and represent a wide range of quantum states and
transformations.

2. Trainability
The modules must include parameterized gates to facilitate subsequent training.
To optimize for efficiency in gradient-based training methods, the total number of
parameters in the hidden layer should be kept below 100, as a higher parameter
number can significantly increase training time.

Observables
Once the data encoding methods and ansatz structure for the quantum circuits have been
established, the remaining variable for circuits to consider is the choice of observables. For
a four qubits quantum circuit, and is designed to produce a single output, the potential
choices for observables amount to 256, which is because the observable for each qubit can
be selected from four different single-qubit Pauli operations: 𝜎𝑥 ,𝜎𝑦 ,𝜎𝑧 , 𝐼 . Our empirical
investigations have shown that varying the type of observables significantly impacts the
gradient values. This finding is critical as it can influence the efficiency and effectiveness
of the training process.

Figure 4.1: Example circuit for Observables, draw from PennyLane.

Consider a quantum circuit using 𝑒2 as the encoding layer and one ℎ6, see the details in
Section 5.3.4, as the hidden layer, which contains 12 parameters. This circuit configuration
is illustrated in Figure 4.1. When conducting experiments, we maintained consistent four
inputs and initial parameters which were chosen randomly while computing the gradient
of each parameter using the parameter shift rule under several different observables. The
results of this experiment are detailed in Table 4.3.

The data presented in Table 4.3 highlight a crucial aspect: the choice of observable can
lead to the gradient of a parameter converging to zero prematurely, even before training

4

42 4Quantum neural network to compute implied volatility

Table 4.3: The influence of observable on the parameter gradient.

Observable Gradient Number of 0

𝜎𝑥 ⊗𝐼 ⊗𝜎𝑦 ⊗𝐼
-0.001, -0.045, -0.028, -0.004, -0.012, -0.003,
-0.008, -0.011, -0.010, -0.033, 0.012, 0.009 0

𝜎𝑧⊗𝜎𝑧⊗𝜎𝑧⊗𝜎𝑦
0.002, 0.099, 0.062, 0.009, -0.013, -0.003,
-0.019, 0.000, 0.000, 0.071, -0.027, -0.019 2

𝜎𝑧⊗𝜎𝑧⊗𝜎𝑦 ⊗𝜎𝑧
-0.089, 0.000, 0.005, 0.000, 0.000, 0.000,
0.024, 0.032, 0.029, 0.099, -0.037, -0.027 4

𝜎𝑦 ⊗𝜎𝑧⊗𝜎𝑦 ⊗𝜎𝑦
0.430, 0.000, -0.026, 0.000, 0.000, 0.000,
-0.118, -0.159, -0.143, 0.000, 0.000, 0.000 7

𝜎𝑧⊗𝜎𝑧⊗𝜎𝑧⊗𝜎𝑧
-0.656, 0.000, 0.040, 0.000, 0.000, 0.000,
-0.202, 0.000, 0.001, 0.000, 0.000, 0.000, 8

has occurred. Such a scenario is generally undesirable as it may hinder the model’s ability
to learn and adapt effectively during the training phase.

Therefore, careful consideration and selection of observations are important in the
design of quantum circuits for PVQNN. This choice not only influences the initial gradient
values but also plays a vital role in the overall learning trajectory and performance of the
model.

Optimization hyper-parameter
The optimization procedure in PVQNN is the same as that of classical neural networks. In
formulating our approach, we draw inspiration from the strategies outlined in the work of
Liu et al. [7]. The key components of our optimization strategy are as follows:

1. Loss function
The loss function for PVQNN is fundamentally a measure of the distance between
the network’s predictions and the actual data, which is quantified by the norm of
their difference. In this context, we have selected the Euclidean norm, commonly
referred to as the 𝐿2 norm, which is equivalent to the mean squared error (MSE). The
𝐿2 norm is highly regarded and extensively utilized as a loss function in regression
problems. Its popularity stems from its proven efficacy in mitigating overfitting,
thereby contributing to better generalization of the model across various datasets.
As such, the loss function we utilize is expressed as follows,

𝐿2 =MSE =
1
𝑛
∑(𝑦𝑜𝑢𝑡𝑖 −𝑦𝑖)

2 . (4.3)

Here, 𝑦𝑜𝑢𝑡𝑖 represents the predicted output of the network for the 𝑖𝑡ℎ data point, and
𝑦𝑖 is the corresponding actual value. The summation runs over all n data points in

4.2 Model setup

4

43

the dataset, providing a comprehensive measure of the model’s performance across
the entire data spectrum.
Moreover, the choice of the 𝐿2 norm is not arbitrary but is informed by its mathemat-
ical properties. The squaring of errors in the MSE formulation inherently gives more
weight to larger errors. This characteristic ensures that the model pays particular
attention to data points where the prediction deviates significantly from the actual
value, driving the model to achieve a more accurate fit overall.
Additionally, the 𝐿2 norm’s differentiability is a critical aspect that facilitates efficient
gradient-based optimization methods, which gives a great benefit to the optimization
step of the model.

2. Optimizer
The training process for the PVQNN can be conceptualized as an optimization
problem, with the primary goal being to minimize the 𝐿2 loss by fine-tuning the
model parameters, denoted as 𝜃. This objective can be mathematically represented
as,

argmin
𝜽
𝐿2(𝜽 ∣ (𝐱,𝐲)). (4.4)

Following the methodology presented in Liu et al.’s study [7], we employ the Adaptive
Moment Estimation (Adam) optimizer for this optimization task. Adam is particularly
effective due to its dynamic adjustment of learning rates and its incorporation of
moment-based updates, which are associated with the momentum and velocity of a
particle. The update formula for Adam is given by,

𝜃(𝑡+1) = 𝜃(𝑡)− 𝜂(𝑡+1)
𝑚(𝑡+1)

√
𝑣(𝑡+1)+ 𝜖

,

where 𝜂 represents the learning rate, and 𝑚 and 𝑣 are the first and second moment
estimates, respectively. The update rules for these moments and the learning rate
are as follows,

𝑚(𝑡+1) = 𝛽1𝑚(𝑡)+(1−𝛽1)∇𝐿(𝜃(𝑡)) ,

𝑣(𝑡+1) = 𝛽2𝑣(𝑡)+(1−𝛽2)(∇2𝐿(𝜃(𝑡))) ,

𝜂(𝑡+1) = 𝜂𝑡

√
(1−𝛽𝑡+12)

(1−𝛽𝑡+11)
.

For our implementation, the hyperparameters 𝛽1, 𝛽2, and 𝜖 are set to their default
values of 0.9, 0.99, and 1× 𝑒−8, respectively. The gradient of the loss function, crucial
for the optimization process, is computed as,

∇𝐿 = ∇𝐿2(𝜃) =
𝜕𝐿2(𝑦𝑜𝑢𝑡 , 𝑦)

𝜕𝑦𝑜𝑢𝑡
𝜕𝑦𝑜𝑢𝑡

𝜕𝜃
. (4.5)

4

44 4Quantum neural network to compute implied volatility

Table 4.4: The training setting of PVQNN

Setting Option
Loss function 𝐿2 loss
Optimizer Adam

learning rate 𝜂 0.01
𝛽1 0.9
𝛽2 0.99
𝜖 1× 𝑒−8

The computation of 𝜕𝑦𝑜𝑢𝑡
𝜕𝜃 is achieved through the parameter shift rule. We have

selected a learning rate of 0.01 for the Adam optimizer, in line with the recommen-
dations from Liu et al. [7], as this rate has been identified as optimal for problems
similar to ours.

Further details about the training dataset size and batch size will be discussed in Chapter
5. It is also noteworthy to mention that, in the study by Hubregtsen et al. [43], it was
found that the Adam optimizer paired with an 𝐿2 loss function yields the best results for
PVQNN. This aligns with our approach and further reinforces the suitability of our chosen
optimization strategy.

5

45

5
Results and Discussion

In this chapter, we begin by outlining the evaluation metrics applied in our experiments and
describing the dataset utilized for our research. Following this, we present the experimental
results in a subsequent section. Specifically, Section 5.1 details the construction of our dataset.
In Section 5.2, we discuss the results obtained from the DQNN model. Section 5.3 explores how
various settings influence the performance of the PVQNN and the outcomes of the optimally
tuned model.

5

46 5 Results and Discussion

In this chapter, we present the performance evaluation of the DQNN and PVQNN in
addressing the inverse problem of Black-Scholes models. The primary metric utilized for
this assessment is the Mean Squared Error (MSE), defined as,

MSE =
1
𝑛
∑(𝑦𝑖−𝑦𝑜𝑢𝑡𝑖)

2 .

Here, 𝑦𝑖 represents the actual value, and 𝑦𝑜𝑢𝑡𝑖 denotes the predicted value generated by the
model. To provide a comprehensive evaluation, additional widely recognized metrics are
also employed to further gauge the models’ performance. These include the Root Mean
Squared Error (RMSE), the Mean Absolute Error (MAE), the Mean Absolute Percentage
Error (MAPE), and the Coefficient of Determination (𝑅2),

1. Root Mean Squared Error:
This is the square root of MSE, offering a measure of the standard deviation of
the prediction errors. RMSE is sensitive to large errors, making it a crucial metric
for understanding the performance of our models in scenarios where accuracy is
paramount.

RMSE =
√
MSE

2. Mean Absolute Error:
Representing the average of the absolute differences between the predicted and actual
values, MAE provides an intuitive measure of prediction accuracy. Unlike RMSE, it
does not penalize large errors as severely, thus offering a different perspective on
model performance.

MAE =
1
𝑛
∑||𝑦𝑖−𝑦

𝑜𝑢𝑡
𝑖

||

3. Mean Absolute Percentage Error:
MAPE relates the error to the actual values, offering a relative measure of accuracy.
This metric is particularly useful in providing a scale-independent assessment of
error magnitude.

MAPE =
1
𝑛
∑

||𝑦𝑖−𝑦
𝑜𝑢𝑡
𝑖

||
𝑦𝑖

4. Coefficient of Determination:
𝑅2 reflects the proportion of the variance in the dependent variable explained by
the independent variables in a regression model. It ranges from 0 to 1, where values
closer to 1 (normally larger than 0.99) indicate a better fit of the model to the data.

𝑅2 = 1−
1
𝑛
∑

||𝑦𝑖−𝑦
𝑜𝑢𝑡
𝑖

||
2

|𝑦𝑖− �̄� |2

where �̄� is the mean value of 𝑦𝑖.

These metrics collectively form a comprehensive framework for evaluating the accuracy
and reliability of the DQNN and PVQNN models in their application to computing implied
volatility.

5.1 Datasets

5

47

5.1 Datasets
For the Black-Scholes formula, a common technique in this process is the use of moneyness
𝑚, a term describing the intrinsic value of an option in its current state, defined as 𝑚 = 𝑆

𝐾 .
This metric relates the strike price to the price of the underlying asset and allows for a
reformulation of the Black-Scholes formula as follows,

𝑉 (𝑡, 𝑆)
𝐾

=
𝑆
𝐾
𝑁 (𝑑1)− 𝑒−𝑟𝜏𝑁 (𝑑2) ,

𝑑1 =
log(𝑆𝐾)+(𝑟 −0.5𝜎2)𝜏

𝜎
√
𝜏

,𝑑2 = 𝑑1−𝜎
√
𝜏.

(5.1)

Consequently, the inverse Black-Scholes formula can be redefined as 𝜎 =𝐵𝑆−1(𝑉𝐾 , 𝜏,
𝑆
𝐾 , 𝑟).

This modification reduces the number of input features required for the neural network
model, potentially simplifying the model’s architecture and enhancing its efficiency.

In our research, we specifically focus on European call options. To construct a robust
dataset for this instrument, we adopted the sampling methodology detailed in the study by
Liu et al. [7]. This approach involves the strategic sampling of key variables: moneyness
(𝑆/𝐾), the risk-free interest rate (𝑟), the time to maturity (𝜏), and the volatility (𝜎). These
variables are sampled from their joint multidimensional distribution to reflect realistic
market scenarios accurately.

For effective sampling, we employed the Latin Hypercube Sampling (LHS) method.
Renowned for its efficiency in multidimensional spaces, LHS ensures a more representative
and evenly distributed sample from the underlying distributions compared to traditional
random sampling methods. This is achieved by dividing the range of each variable into
intervals of equal probability and sampling once from each interval. Such a sampling
strategy is crucial in reducing biases and over-aggregation of data, which often occur with
simpler random sampling methods. This enhanced representation of the data distribution
in the sampling space is pivotal in ensuring the generalizability of our models, thereby
minimizing potential biases that could arise from unrepresentative or clustered samples.

Following the sampling process, we utilized the Black-Scholes formula, as indicated in
Equation (5.1), to compute the scaled call price 𝑉/𝐾 . As a result, each data sample in our
dataset encompasses a set of five variables: 𝑆/𝐾 , 𝑟 , 𝜏, 𝜎, 𝑉/𝐾 . Among them, we select 𝑆/𝐾 ,
𝑟 , 𝜏, 𝑉/𝐾 as the feature set 𝑥 for the input to the DQNN and PVQNN. The volatility 𝜎 is
designated as the label 𝑦. The detailed composition and structure of the dataset are further
elucidated in Table 5.1, providing a clear overview of the data used in our analysis.

Table 5.1: Data set

QNN Parameters Range Unit

Input

moneyness 𝑆/𝐾 [0.98, 1.02] -
Time to Maturity 𝜏 [0.5, 0.6] year
Risk free rate 𝑟 [0.03, 0.08] -

Scaled call price 𝑉/𝐾 (0.10, 0.22) -
Output Volatility 𝜎 [0.3, 0.7] -

5

48 5 Results and Discussion

Another dataset, which incorporates gradient-squashing adjustment, is detailed in
Table 5.2.

Table 5.2: Data set after scaling.

QNN Parameters Range Unit

Input

moneyness 𝑆/𝐾 [0.98, 1.02] -
Time to Maturity 𝜏 [0.5, 0.6] year
Risk free rate 𝑟 [0.03, 0.08] -

Scaled time value 𝑙𝑜𝑔(�̃�/𝐾) (-2.7,-1.7) -
Output Volatility 𝜎 [0.3, 0.7] -

5.2 DQNN
Building upon the experimental settings detailed in Section 4.2.2 and the dataset setup in
Table 5.2, we examine the model performance in computing the implied volatility based
on the model in [44]. The graph in Figure 5.1 illustrates the trajectory of the training loss
against the number of training steps.

Figure 5.1: Training loss over training steps for computing the implied volatility

The training loss here is the transformation of one minus fidelity value after a logarith-
mic adjustment 𝑙𝑜𝑔(1−𝐿). For visual clarity, the training steps are scaled down by a factor
of 10. This rescaling makes the graphical representation more comprehensible without

5.2 DQNN

5

49

altering the underlying trend. Furthermore, the model’s performance can be quantitatively
assessed through the metrics presented in Table 5.3.

Table 5.3: The performance for the trained DQNN.

Fidelity MSE RMSE MAE MAPE 𝑅2

Train (160) 0.99016 0.00503 0.07093 0.05569 0.07452 0.47026
Test (40) - 0.00511 0.07093 0.05551 0.07532 0.46261

As depicted in the table, the model achieves commendable performance on the fidelity
loss function, exceeding 0.99 on the training set. However, there appears to be a discrepancy
when it comes to the classical metrics of MSE, RMSE, MAE, MAPE, and 𝑅2. The decoding
process of the output quantum state 𝜌𝑜𝑢𝑡 to classical data 𝑦𝑜𝑢𝑡 , necessary to compute these
metrics, has introduced discrepancies.

Since in our practice, the label data 𝜎, representing volatility, is encoded into a quantum
state 𝜌𝑙𝑎𝑏𝑒𝑙 using a rotation gate Ry. This operation translates the classical information into
the quantum state as follows,

𝜌𝑙𝑎𝑏𝑒𝑙 = |𝜙𝑙𝑎𝑏𝑒𝑙⟩⟨𝜙𝑙𝑎𝑏𝑒𝑙 | = [cos(𝜎)
sin(𝜎)][cos(𝜎) sin(𝜎)] = [

cos2(𝜎) cos(𝜎)sin(𝜎)
cos(𝜎)sin(𝜎) cos2(𝜎)] .

The resulting quantum state 𝜌𝑙𝑎𝑏𝑒𝑙 is a pure state represented in the density matrix form,
which corresponds to the output quantum state from the DQNN 𝜌𝑜𝑢𝑡 . The process of
decoding 𝜌𝑜𝑢𝑡 involves extracting the classical information 𝜎𝑜𝑢𝑡 . This is achieved by taking
the real part of the first entry of 𝜌𝑜𝑢𝑡 , cos2𝜎, then computing its square root to obtain cos𝜎,
and finally applying the arccos function to retrieve the estimated volatility 𝜎𝑜𝑢𝑡 .

This decoding process, however, comes with these limitations:

1. Imaginary Component Disregard: By taking only the real part of the first entry of 𝜌𝑜𝑢𝑡 ,
the process neglects any imaginary components, which could contain information
in the quantum state.

2. Information Loss: The decoding uses only one element of the density matrix, thus
discarding information from the other elements.

3. Precision Loss: The extraction of 𝜌𝑜𝑢𝑡 from cos2(𝜎) is subject to computational
precision limits. The arccos function, particularly near its bounds, can be sensitive
to small changes in its argument, potentially amplifying any prior computational
errors.

This phenomenon is also evident in the work of Sakuma [19]. In his study, he designates
the strike price𝐾 as the input variable, while keeping the other four parameters as constants.
The model’s output is the implied volatility 𝜎. Notably, one of his models, which is a 1-2-1
DQNN attained a high fidelity loss score of 0.998 after training. However, it exhibited
an MSE of approximately 0.003 on the testing data set. This outcome aligns with the
limitations previously discussed in our analysis.

5

50 5 Results and Discussion

These factors highlight the complicated balance in quantum-classical interfaces, where
information-rich quantum representations are translated back into classical outputs. The
precision and accuracy of this decoding are important, as they directly affect the model’s
performance metrics. Future improvements may involve exploring alternative decoding
schemes that can capture more information from the quantum state or employing error
mitigation techniques to enhance the fidelity of the decoding process.

Furthermore, the training time of this DQNN model on a classical CPU simulator was
18,359 seconds in total on the CPU (Intel i7-10750H, 2.60GHz), which suggests that quantum
simulation requires more computational intensity compared to classical neural networks.

Another important consideration in our study is the optimization process of DQNN.
This process necessitates the retrieval of the quantum state after each layer to update
parameters accordingly. However, with current NISQ devices, this step presents a non-
trivial challenge. The act of measurement in quantum systems inherently alters the state
of the qubits, which is a phenomenon known as quantum collapse. This characteristic
of quantum measurement prevents the direct observation of intermediate states without
disrupting the computation, making the DQNN optimization process incompatible with the
current device. Given these limitations, our implementations are more toward the PVQNN.

5.3 PVQNN
In this section, we assess the PVQNN model, initially examining the effect of training data
size on performance. This is followed by an exploration of key structural elements that
impact its efficiency, including data encoding strategies, the architecture of hidden layers,
and the application of data re-uploading techniques. Our objective is to refine the model
for effective computation of implied volatility.

5.3.1 Data size
To explore the relationship between prediction accuracy and training set size, our study
examined a range of training data set sizes: 4, 8, 12, 16, 20, 40, 100, 200, 400, 800, 1600,
4000, 8000, and 16000 samples. These sets were used to train a specifically designed
PVQNN model. This model featured an 𝑒2 data encoding layer, see Table 5.7, three hidden
layers utilizing the ℎ6 strategy, see Table 5.13, and the implementation of data-reuploading
techniques. In the measurement layer, 𝜎𝑧⊗𝜎𝑧⊗𝜎𝑧⊗𝜎𝑧 observables were employed.

Table 5.4: Data set for data size experiments.

QNN Parameters Range Unit

Input

moneyness 𝑆/𝐾 [0.95, 1.05] -
Time to Maturity 𝜏 [0.5, 0.6] year
Risk free rate 𝑟 [0.02, 0.05] -

Scaled time value 𝑙𝑜𝑔(�̃�/𝐾) (-2.8,-1.6) -
Output Volatility 𝜎 [0.3, 0.7] -

Regarding the data parameters, slight adjustments were made as outlined in Table 5.4.
For training data sizes larger than or equal to 100 samples, a batch size of 64 was used,

5.3 PVQNN

5

51

while a smaller batch size of 4 was chosen for fewer samples. When dealing with larger
data sets (sizes greater than 100), training was halted after 150 epochs, a point at which
sufficient model convergence was typically achieved. Conversely, for training sets less than
100 samples, a different training duration was adopted. Post-training, the effectiveness of
each model was assessed using the same testing data set comprising 4000 samples. These
samples were selected from the same distribution as that of the training data sets.

Table 5.5: Experimental settings for data size

Parameter Value

Training Data Sizes 4, 8, 12, 16, 20, 40, 100, 200, 400, 800, 1600, 4000, 8000, 16000
Testing Data Size 4000

PVQNN Configuration

Encoding Layer 𝑒2
Ansatz Strategy ℎ6
Hidden Layers 3
Measurement 𝜎⊗4𝑧

Training Details

Epochs More than 1000 for training sizes under 100
150 for other

Batch Size 64 for training sizes above 100
4 for other

4 8 12 16 20 40 10
0

20
0

40
0

80
0

16
00

40
00

80
00

16
00

0

Data Size

0.001

0.002

0.003

0.004

0.005

M
SE

MSE
R2

0.65

0.70

0.75

0.80

0.85

0.90

0.95

R
2

Out-of-Sample PVQNN Performance on Different Training Data Sizes

Figure 5.2: Out-of-Sample PVQNN performance on different training data sizes

The comprehensive experimental setup, including all parameters and configurations
used, can be found in Table 5.5. The outcomes of these experiments, highlighting the

5

52 5 Results and Discussion

relationship between training data size and model accuracy, are depicted in Figure 5.2, and
more details can be found in Appendix A. This structured approach allowed for a nuanced
understanding of how varying training data volumes impact the predictive capabilities of
the PVQNN model.

The analysis of different training data sizes reveals interesting insights into the model’s
performance. With just 16 training data, the model demonstrates promising results. How-
ever, as we reduce the training data size to less than 40, we observe clear signs of different
levels of overfitting during the training process. This phenomenon is particularly pro-
nounced with a training data size of 5. As we increase the amount of training data, the
model’s performance on the training set improves, but simultaneously, its performance on
the testing set degenerates.

To mitigate the potential influence of initial parameter settings, we conducted a system-
atic exploration of random seed values. The default random seed, set at 95, was retained as a
baseline. Four additional seed values of 12, 27, 66, and 88 were selected for experimentation.
The primary objective was to investigate the impact of these different random seed values
on model performance. Each training run consisted of 20 data. The training procedure was
conducted over 1000 epochs, ensuring the model converges. See the result in Table 5.6.

Table 5.6: Out-of-Sample PVQNN performance for different initialization seeds.

Random Seed MSE 𝑅2

95 0.000627 0.953397
12 0.000586 0.956449
27 0.000486 0.963865
66 0.000583 0.956662
88 0.000540 0.959846

Upon analyzing the results, it is evident that all configurations yielded satisfactory
outcomes, all the 𝑅2 are above 0.95. Furthermore, it is worth noting that by fine-tuning the
initial parameters, some enhancements in the model’s performance can be achieved, for
example, by choosing the random seed as 27, the MSE decreases by about 22.5% and 𝑅2

increases by 0.01 compared with the baseline setting.
In the study by Matthias et al. [45], a similar observation was made concerning the

training data size required for achieving desirable performance in PVQNNs. Their work
also suggests that the amount of training data only needs to be similar to the total number
of parameters in the PVQNN model to achieve an efficient generalization performance.
In our research, we employ an ℎ6 ansatz structure, repeated three times, resulting in 36
parameters. Consequently, our findings align with their work, indicating that a training
dataset exceeding 36 mitigates the risk of overfitting, a hypothesis corroborated by our
results where datasets smaller than 40 exhibited overfitting issues.

The potential for QNNs to successfully train complex models with substantially smaller
datasets compared to classical neural networks may be attributed to the unique data
encoding methods. In classical computing, a single feature of input data is typically
represented in a one-dimensional format. However, in QNNs, This feature undergoes data
coding, a process that maps it into a qubit, whose Hilbert space is the 𝐂2.

5.3 PVQNN

5

53

In this Hilbert space, operations occur in a multidimensional context, which contrasts
with the linear, one-dimensional operations in classical neural networks. This increased
dimensionality in feature space could theoretically enable more complex patterns to be
identified and learned from a smaller dataset, as the quantum system can encapsulate and
process information more densely and efficiently, like the kernel methods that have been
widely applied in classical machine learning [36].

Future research should focus on validating this explanation that the efficacy of train-
ing PVQNN networks with reduced data correlates with the increasing of feature space
dimensions through quantum coding. Additionally, exploring the limits and capabilities of
quantum data encoding, and comparing its efficacy directly with traditional methods in
various scenarios is also needed.

In summary, for PVQNN, we are able to train our model with a much smaller amount of
training data compared to that used for traditional neural networks without experiencing
overfitting. This observation has important implications for our ability to train models at a
fast pace and in situations where there is a lack of training data.

5.3.2 Data encoding
To examine how different encoding methods affect the prediction accuracy of PVQNN, we
conducted a series of experiments using various encoding techniques.

Encoding strategies
In our research, we experimented with nine different types, 𝑒1, . . . , 𝑒9, of Time-evolution
encoding methods to ascertain the most suitable one for our specific application. The
input data �̄� is encoded based on these nine strategies. Here we use four input features
𝑥1, 𝑥2, 𝑥3, 𝑥4 to construct these strategies. Among them, all strategies encode data to four
qubits except 𝑒4 which uses only two qubits for data encoding, which has been applied in
DQNN. This alignment of qubits with input features simplifies the encoding process and
allows for the exploration of various ansatz structures. Additionally, it ensures that the
size of the model remains within the limits that current quantum computing devices can
support.

Based on the characteristics of these strategies we classify them into three categories,
as detailed in Table 5.7.

These methods were chosen based on their potential compatibility with the nature
of our data and the constraints of current quantum computing technology. The detailed
analysis and comparison of these encoding techniques are provided in the subsequent part.
This comprehensive exploration allows us to identify the most effective encoding strategy
for optimizing the performance of quantum neural network algorithms in handling decimal,
small-size feature datasets.

1. Simple Angle Encoding
Here we employed three primary quantum rotation gates: Rx, Ry, and Rz. These
gates are associated with rotations around the x, y, and z axes, respectively, and can
be expressed as the evolution time of some specific Hamiltonians 𝜎𝑥 , 𝜎𝑦 , and 𝜎𝑧 , see
Table 3.1. For detailed implementations, the input data �̄�(𝑥1, 𝑥2, 𝑥3, 𝑥4) will be directly
used as input angles passing to the rotation gates, see Table 5.7 part1 which outlines
the correspondence between each gate and the input.

5

54 5 Results and Discussion

For example, for 𝑒2, the state of encoded qubits can be expressed in this form,

|�̄�⟩ =
4

⨂
𝑖=1

𝑅𝑦(𝑥𝑖)|0⟩

=
4

⨂
𝑖=1 [

cos(𝑥𝑖/2) −sin(𝑥𝑖/2)
sin(𝑥𝑖/2) cos(𝑥𝑖/2)][

1
0]

=
4

⨂
𝑖=1

cos(𝑥𝑖/2) |0⟩+sin(𝑥𝑖/2) |1⟩.

Table 5.7: Encoding strategies (draw from PennyLane)

Part 1:
Strategy Number 𝑒1 𝑒2 𝑒3 𝑒4

Circuit

Part 2:
Strategy Number 𝑒5 𝑒6 𝑒7

Circuit

Part 3:
Strategy Number 𝑒8 𝑒9

Circuit

5.3 PVQNN

5

55

2. Dense Angle Encoding
Dense angle encoding represents an advanced development of simple angle encoding.
Its primary advantage lies in its efficiency in qubit usage. Specifically, it reduces the
number of required qubits to half (𝑁/2) for encoding an equivalent number of input
features compared to other methods. This reduction is particularly beneficial in the
NISQ applications, as it allows for more compact neural network architectures and
potentially reduces quantum error rates, as noted by LaRose [46].
The mathematical formulation of dense angle encoding is given by,

|�̄�⟩ =
[𝑁/2]

⨂
𝑘=1

cos(𝜋�̄�2𝑘−1) |0⟩+ 𝑒2𝜋𝑖𝑥𝑘 sin(𝜋�̄�2𝑘−1) |1⟩.

In terms of circuit implementation, this encoding strategy is facilitated by the U3
rotation gate. An illustrative example of this implementation can be seen in the
encoding strategy 𝑒4.

3. Simple Angle Encoding Variation
Here, we explored three distinct encoding strategies derived from the simple angle
encoding method. The first strategy, labeled 𝑒5, involves encoding the input data 2𝜋�̄�
directly into the Rx rotation gate. This method interests the relationship between
the size of input data and the model output, facilitating a straightforward encoding
process.
The second strategy, 𝑒6, is a more complex encoding approach. Initially, it encodes the
input data �̄� into the Rx rotation gate. Subsequently, the qubit undergoes additional
rotations around the y and z axes, each by an angle of 𝜋

4 . This particular strategy
was employed in the study conducted by Hubregtsen et al. [43], which ensures
the encoded data maintains a consistent range across different computational bases.
Such uniformity is pivotal for achieving an unbiased embedding when using the
simple angle encoding method.
The third strategy, 𝑒7, combines the Hadamard gate with the Rx rotation gate, using
�̄� as the input. This combination introduces a superposition state before the rotation,
potentially enhancing the ability to encode representations.

4. ZZFeature Map
The ZZFeature Map, also known as Instantaneous Quantum Polynomial (IQP) Encod-
ing, was proposed by Havlíček et al. [47]. This method has demonstrated significant
efficacy in classification problems within quantum computing. The process initi-
ates with a series of Hadamard gates applied to all qubits, creating a superposition.
Subsequently, Rz rotation gates are applied, with the input data �̄� as the rotation
angles. The distinctive feature of this method is the sequential entanglement of all
qubits, employing controlled-NOT gates and Rz rotation gates. The mathematical
expression of this encoding is,

|�̄�⟩ = (U𝑍 (𝜙(�̄�))𝐻⊗𝑛)
𝑟 |0𝑛⟩ .

5

56 5 Results and Discussion

Here, U𝑍 (�̄�) represents the unitary operation combining pairwise Z rotations and
individual Z rotations,

U𝑍 (�̄�) = ∏
[𝑖,𝑗]∈𝑆

𝑅𝑍𝑖𝑍𝑗 (𝜙(𝑥𝑖, 𝑥𝑗))
𝑛

⨂
𝑘=1

𝑅𝑧 (𝜙(𝑥𝑘)) ,

where the non-linear function 𝜙(�̄�) is defined as,

𝜙(�̄�) =

{
𝑥𝑖 �̄� = 𝑥𝑖
(𝜋 −𝑥𝑖)(𝜋 −𝑥𝑗) �̄� = 𝑥𝑖, 𝑥𝑗

In this formulation, 𝑟 denotes the depth of the encoding circuit, indicating the number
of repetitions, and 𝑛 represents the number of qubits involved. The set 𝑆 defines the
entanglement pattern; for instance, in encoding strategy 𝑒8, the entangling gates
connect neighboring qubit pairs.

Furthermore, the work of Du et al. [40] introduces a variation of the ZZFeature
Map. This variant, illustrated in encoding strategy 𝑒9, starts with Hadamard gates
followed by Ry rotation gates, using �̄� as the input. The entanglement process
then involves sequentially entangling qubits with controlled rotation y gates, each
gate’s rotation angle determined by (𝜋 −𝑥1)(𝜋 −𝑥2)(𝜋 −𝑥3)(𝜋 −𝑥4). This adaptation
demonstrates the flexibility and potential for customization inherent in the ZZFeature
Map approach.

Experiments
Specifically 𝑒1, 𝑒2, 𝑒3, 𝑒5, 𝑒6, 𝑒7, 𝑒8, and 𝑒9 are used for PVQNN. Each PVQNN model was
configured with the same hidden layer (ℎ6, see in Section 5.3.4) and used identical observ-
ables (𝜎𝑥 ⊗𝐼 ⊗𝜎𝑦 ⊗𝐼) in the measurement layer. This uniformity across models allowed
for a controlled comparison of the encoding methods’ effectiveness.

Our experimental procedure involved training each model with a dataset of 80 data
points, followed by testing on a distinct set of 20 data points, since this amount number
training data is enough to train a satisfied model from the previous experiments. This
process was replicated across 300 epochs, maintaining a consistent batch size of 20 for each
epoch.

Furthermore, acknowledging the unique aspect of 𝑒5 encoding as a scaling mechanism
for input data, we introduced an additional encoding strategy, 𝑒10. This strategy omits the
gradient-squash approach during the input data processing, as outlined in Table 5.1. Subse-
quently, 𝑒10 encoding was employed to convert the data into quantum states. This variation
aims to assess the impact of the gradient-squash approach on the model’s performance.

Details of the experimental setup, including the PVQNN model configurations and the
characteristics of each encoding method, are comprehensively documented in Table 5.8.

5.3 PVQNN

5

57

Table 5.8: Experimental settings for data encoding methods.

Parameter Value

Dataset Training: 80, Testing: 20
PVQNN Configuration

Encoding Layer 𝑒1, 𝑒2, 𝑒3, 𝑒5, 𝑒6, 𝑒7, 𝑒8, 𝑒9, 𝑒10
Hidden Layer ℎ6
Observables 𝜎𝑥 ⊗𝐼 ⊗𝜎𝑦 ⊗𝐼

Training Details

Epochs 300
Batch Size 20

Themain outcomes of these experiments, demonstrating how encoding strategy impacts
the accuracy of PVQNN models, are presented in Table 5.9, and full results can be found in
Appendix A.

Table 5.9: Out-of-Sample PVQNN performance with different data encoding methods.

Data Encoding MSE 𝑅2

𝑒1 0.001139 0.91578
𝑒2 0.001139 0.91577
𝑒5 0.223 -15.44
𝑒10 0.00802 0.409
𝑒6 0.001138 0.91612
𝑒8 0.0007478 0.94490

Analyzing the data from Table 5.9, it is evident that encoding methods 𝑒1, 𝑒2, 𝑒6, and 𝑒8
demonstrate exceptional performance characterized by low MSE and high 𝑅2 values. This
pattern suggests that these methods are particularly adept at minimizing predictive errors
and effectively capturing the variance in our PVQNN model.

Noteworthy, a comparison of 𝑒5 and 𝑒10 with 𝑒1 — all of which utilize the Rx gate
for encoding — reveals a significant impact of input data scaling on the model’s output.
Notably, encoding 𝑒5, which scales the input data by a factor of 2𝜋 relative to 𝑒1, exhibits
markedly inferior performance in the model. Moreover, incorporating gradient-squash
techniques enhances predictive accuracy, aligning with findings by Liu et al. [7]. This
highlights the fact that the size of the input values has a significant impact on the model.
Therefore, we need to choose the appropriate data scaling methods to preprocess the input
data. Additionally, this phenomenon could also be attributed to the nature of quantum
encoding in projecting data into a higher dimensional feature space, thereby influencing
the relative distances among differently sized data points.

In conclusion, the findings from Table 5.9 not only underscore the significance of
selecting appropriate encoding methods for optimal PVQNN performance but also shed

5

58 5 Results and Discussion

light on the unique characteristics of these quantum neural networks.

5.3.3 Data re-uploading and Number of hidden layers
To explore how Data Re-uploading and the variation in the number of hidden layers affect
the prediction accuracy of PVQNN,we designed an experimentwith a specific focus on these
two parameters. Our approach involved employing the 𝑒2 encoding method across different
PVQNN models. Each model varied only in the number of hidden layers and whether to
adopt data re-uploading while maintaining a consistent layer construction strategy (ℎ6, see
in Section 5.3.4) and the same observables (𝜎𝑥 ⊗𝐼 ⊗𝜎𝑦 ⊗𝐼) in the measurement layer.

The experimental setup, which is clearly outlined in Table 5.10, included training each
PVQNN model with a dataset comprising 40 data points, followed by testing the model’s
performance on a distinct set of 10 data points. This process was iteratively conducted for
500 epochs, with a batch size of 20. The aim was to ensure comprehensive and reliable
insights into the models’ performance under different hidden layer configurations.

Table 5.10: Experimental settings for PVQNN with varying hidden layers.

Setting Value

Dataset Training: 40, Testing: 10
PVQNN Configuration

Encoding Layer 𝑒2
Hidden Layer Type ℎ6
Number of Hidden Layers 1, 2, 3, 4, 5
Observables 𝜎𝑥 ⊗𝐼 ⊗𝜎𝑦 ⊗𝐼

Training Details

Epochs 500
Batch Size 20

Results from this experiment, providing insights into the impact of hidden layer varia-
tions and Data Re-uploading on the prediction accuracy of PVQNN models, are compiled
in Table 5.11.

Notably, there is a general improvement in the model’s performance with an increasing
number of hidden layers. However, it is observed that beyond two layers, the extent of this
enhancement becomes less pronounced. This suggests a potential point of diminishing
returns in adding more hidden layers, indicating that beyond a certain level, additional
complexity does not substantially contribute to performance improvements.

Furthermore, the inclusion of data re-uploading stands out as a significant factor
in enhancing the model’s performance. For each given number of hidden layers, the
incorporation of data re-uploading consistently results in lower MSE and higher 𝑅2 values
compared to models without data re-uploading. This improvement in 𝑅2 is quantified
at an average of approximately 2.77%. This figure highlights the effectiveness of data
re-uploading in refining the model’s predictive accuracy and its capability to account for
variance within the data.

5.3 PVQNN

5

59

Table 5.11: Out-of-Sample PVQNN performance based on Hidden Layer number and Data Re-uploading

Hidden Layer number Data Re-uploading MSE 𝑅2

1 No 0.001404 0.90249
2 No 4.978×10−4 0.96544
2 Yes 1.852×10−4 0.98714
3 No 4.288×10−4 0.97023
3 Yes 1.667×10−5 0.99884
4 No 4.439×10−4 0.96918
4 Yes 8.226×10−6 0.99943
5 No 3.366×10−4 0.97662

These findings are in concordance with the conclusions drawn by Schuld et al. [39].
Specifically, they indicate that merely increasing the number of hidden layers has a neg-
ligible impact on the distribution of Fourier coefficients delineated in Equation (3.20).
Consequently, this augmentation does not significantly influence the model’s performance.
In contrast, employing data re-uploading techniques can linearly expand the frequency
spectrum Ω. Such expansion enhances the expressivity of the PVQNN model, thereby
contributing to an improvement in its predictive performance.

In extending this analysis, it’s important to consider the implications of these find-
ings for practical applications of PVQNN. The optimal number of hidden layers and the
decision to include data re-uploading should be tailored to the specific requirements and
constraints of the application in question. More hidden layers and data re-uploading can
boost performance but also increase computational complexity. In particular, additional
hidden layers usually mean more training parameters, leading to longer training times in
simulators. Therefore, these factors should be carefully weighed against the computational
resources available and the specific needs of the application, such as the level of predictive
accuracy required and the complexity of the data being modeled.

In summary, Table 5.11 provides valuable insights into the architectural optimization
of PVQNN models. It highlights the importance of a balanced approach that considers both
the structural complexity of the model and the advanced data processing techniques to
achieve optimal performance.

5.3.4 Ansatz structure
For this part, our investigation focused on understanding the impact of ansatz structures
on prediction accuracy within PVQNN. A comprehensive study was conducted using a
specific encoding method and varying ansatz structure.

ansatz designs
In our study, we have proposed 15 distinct module designs. These designs vary in terms of
entanglement strategies and the universality of gates. The details of these designs are as
follows:

1. Entanglement Type
We have devised ansatz modules that incorporate U3 gates, capable of represent-

5

60 5 Results and Discussion

ing any arbitrary single-qubit gates. By altering the number and arrangement of
CNOT gates, we investigate how different entanglement approaches affect model
performance. Specific variations (ℎ1, ℎ2, ℎ3, ℎ4, ℎ6, ℎ9) differ in the number of CNOT
gates used. Furthermore, designs ℎ4 and ℎ5; ℎ6, ℎ7, and ℎ8 vary in the entanglement
pattern between qubits. Each module in this category has 12 parameters. The detailed
configurations are presented in Tables 5.12 and 5.13.

Table 5.12: Ansatz strategies (part 1, draw from PennyLane)

strategy number ℎ1 ℎ2 ℎ3 ℎ4 ℎ5
entanglement type none single Two chain pyramid

circuit

Table 5.13: Ansatz strategies (part 2, draw from PennyLane)

strategy number ℎ6 ℎ7 ℎ8 ℎ9
entanglement type ring inverse ring random all-to-all

circuit

2. Number of Parameters
This aspect focuses on modifying gates with parameters, such as replacing the U3
gate with Ry and Rz gates. We also explore the effects of altering the sequence
between parameterized gates and entanglement gates.

5.3 PVQNN

5

61

Table 5.14: Ansatz strategies (part 3, draw from PennyLane)

strategy number ℎ10 ℎ11 ℎ12
parameter number 4 8 8

circuit

3. Other considerations
We have also contained three circuit templates from the work of Sim et al. [48]. These
templates (circuits 6, 9, and 14 from their works) are recognized for their potential to
achieve high expressibility and improve model performance. The structures of these
templates are detailed in Table 5.15.

Table 5.15: Ansatz strategies (part 4, draw from PennyLane)

strategy
number

parameter
number circuit

ℎ13 28

ℎ14 4

ℎ15 20

5

62 5 Results and Discussion

Experiments
Primarily, we employed the encoding method 𝑒2 across our experiments. However, for the
ℎ10 ansatz structure, we opted for 𝑒1 as the encoding strategy due to a limitation with 𝑒2
causing gradients to become zero, rendering the model untrainable.

Our experimental design involved configuring PVQNN models with a two-layer hidden
layer setup and testing 15 distinct ansatz structures. Also, considering the parameters
number and their performance in [48], ℎ13 and ℎ15 only repeated once, and ℎ14 repeated
five times.

Despite the variation in ansatz structures, we maintained consistency in the measure-
ment layer by using the same observables (𝜎𝑥 ⊗𝐼 ⊗𝜎𝑦 ⊗𝐼) for all models. For each model
configuration, we trained the network with 40 data and then tested its performance with
10 data. This process was replicated for 300 epochs for each model, with a batch size of 20,
to ensure a robust evaluation of the model’s predictive capabilities. Details of this elaborate
experimental setup can be found in Table 5.16.

Table 5.16: Experimental settings for PVQNN ansatz structure

Settings Value

Dataset Split Training: 40, Testing: 10
PVQNN Configuration

Encoding Layer 𝑒2 (𝑒1 for ℎ10)
Hidden Layer Type ℎ1, ℎ2, ℎ3, ..., ℎ15
Number of Hidden Layers 2 (5 for ℎ14; 1 for ℎ13, ℎ15)
Observables 𝜎𝑥 ⊗𝐼 ⊗𝜎𝑦 ⊗𝐼

Training Details

Epochs 300
Batch Size 20

The main findings, as detailed in Table 5.17, provide insightful observations regarding
the impact of ansatz structure on the performance of PVQNN. In the table, ’G’ represents
the count of parameters whose gradients are zero before the start of training. This metric
offers a preliminary indication of the model’s potential expressibility and trainability.

Analysis of the results reveals a significant influence of the chosen ansatz structure on
the model’s accuracy and fit. A majority of the models achieve an 𝑅2 value greater than
0.9, with structures ℎ7, ℎ9, and ℎ11 standing out for their particularly promising outcomes.
This high 𝑅2 value indicates a strong explanatory power and fit to the data.

From the perspective of entanglement, the ansatz structures ℎ1, ℎ2, ℎ3, ℎ4, ℎ7, and ℎ9
differ in their number of CNOT gates, which affects their expressibility. Structures ℎ1 and
ℎ2, with fewer than two CNOT gates, exhibit poor expressibility, as evidenced by their
relatively high MSE values (greater than 0.01). In contrast, other structures, particularly ℎ9,
which boasts the highest entangling power, demonstrate more favorable results.

Comparing specific pairs of structures, such as ℎ4 and ℎ5; ℎ6, ℎ7, and ℎ8; and ℎ11 and
ℎ12, it becomes apparent that the sequence of entangling specific qubits is not as critical as

5.3 PVQNN

5

63

Table 5.17: Out-of-Sample PVQNN performance across different ansatz structures

Ansatz Structure Parameters G MSE 𝑅2

ℎ1 24 12 0.01412 0.01977
ℎ2 24 7 0.01413 0.01856
ℎ3 24 0 7.212×10−4 0.94992
ℎ4 24 0 0.00111 0.92259
ℎ5 24 0 7.443×10−4 0.94831
ℎ6 24 0 7.428×10−4 0.94841
ℎ7 24 2 6.608×10−4 0.95411
ℎ8 24 1 8.761×10−4 0.93916
ℎ9 24 4 5.357×10−4 0.96280

ℎ10 (𝑒1) 24 12 0.00413 0.71299
ℎ10 (𝑒2) 24 24 - -
ℎ11 16 0 6.779×10−4 0.95293
ℎ12 16 4 8.720×10−4 0.93945

the number of CNOT gates. This insight suggests that while the depth of entanglement
is important, the specific order of entanglement operations has a lesser impact on model
performance.

A comparison of ℎ10 and ℎ4; ℎ6 and ℎ11indicates that the choice of parameterized gates,
while relevant, is not the most crucial factor. However, the number of trainable parameters
(total parameters number minus G) seems to be significantly important, as seen in the
results for ℎ1, ℎ2, and ℎ10.

In summary, to achieve the desired model performance, a PVQNN’s ansatz must ensure
sufficient entanglement among qubits and possess an adequate number of trainable param-
eters. This combination is essential for enhancing the model’s expressibility and ensuring
its effective training and performance. Therefore, careful selection and optimization of
the ansatz structure, focusing on entanglement depth and trainable parameters, are key to
developing efficient and accurate PVQNN models.

5.3.5 Optimal model
In this section, we concentrate on identifying the optimal model for our research problem.

Based on the outcomes of our previous experiments and considering factors such as
training time, we have selected a combination of strategies to establish the most effective
model structure. Our first approach integrates the superior encoding strategy (𝑒8) with
the most effective hidden layer ansatz (ℎ9). The second strategy employs a relatively
efficient encoding strategy (𝑒6) with a hidden layer ansatz (ℎ11), which has fewer trainable
parameters. For this approach, we have modified the entanglement strategy of ℎ11 from a
ring pattern to an all-to-all pattern, as this has shown improved performance. The third
strategy is based on achieving the best results from our previous experiments, detailed in
Table 5.18.

To adapt to the convergence situation and training needs, we have set varying numbers
of training epochs and sizes of training data(200 for models 1 and 2, 50 for model 3) for

5

64 5 Results and Discussion

Table 5.18: Configuration settings of three PVQNN models

Number Circuit Encoding Ansatz Observable Hidden Layer Count G Parameter Count

1 (𝑒8+ℎ9) × 3 𝑒8 ℎ9 𝜎𝑥 ⊗𝐼 ⊗𝜎𝑦 ⊗𝐼 3 4 36
2 (𝑒6+ℎ11*) × 3 𝑒6 ℎ11* 𝜎𝑥 ⊗𝐼 ⊗𝜎𝑦 ⊗𝐼 3 3 24
3 (𝑒2+ℎ6) × 4 𝑒2 ℎ6 𝜎𝑥 ⊗𝐼 ⊗𝜎𝑦 ⊗𝐼 4 0 48

these three models. All models are trained using the same data range, as specified in Table
5.2, and are tested on a dataset comprising 5000 data points generated from the same
distribution. We employed the Adam optimizer with a learning rate 𝜆 of 0.1 over 500
epochs. The outcomes of these experiments are presented in Table 5.19.

Table 5.19: Out-of-Sample performance of three PVQNN models

Model Number Training Data Size Batch Size MSE RMSE MAE MAPE 𝑅2

1 160 64 0.0002599 0.01612 0.01145 0.023626 0.98063
2 160 64 0.0001528 0.01236 0.01011 0.020973 0.98862
3 40 20 1.503×10−5 3.88×10−3 3.02×10−3 6.36×10−3 0.99888

Analysis of the data presented in Table 5.19 reveals that all three PVQNN models
achieved notable results, yet there are distinct differences in their performance levels.
The third model, with its lowest values in error metrics and a higher 𝑅2 0.99888, clearly
outperforms the others.

Comparatively, the second model also shows an improvement over the first, evidenced
by its lower error metrics and a higher 𝑅2 value of 0.98862. This suggests that the model’s
efficient encoding strategy coupled with a less complex hidden layer ansatz can be more
effective than merely using the best individual components, as was the case in the first
model.

These findings highlight a crucial insight: the combination of individually high-performing
layers does not automatically translate into the most effective overall model. The synergy
between different components of a model plays a significant role in its overall performance.
This is particularly evident in the case of Model 3, where a balanced approach to both
structure and training parameters has yielded the most accurate and reliable results.

Therefore, it is crucial to adopt an integrative approach when selecting a model for
a specific problem. A model must have high-performing individual components and
demonstrate an optimized structure and parameter setting that aligns with the problem’s
unique requirements. Future explorations could benefit from this understanding, focusing
on the fine-tuning of model structures and parameters to achieve the most effective and
efficient solutions.

In addition, our model also performs well on a larger range dataset, see the Appendix
A for more details.

5.4 Summarization
Our numerical result research explores the performance of DQNN and PVQNN for com-
puting implied volatility in various contexts. Key findings include:

5.4 Summarization

5

65

1. DQNN Performance and Challenges:
The DQNN model exhibits good performance in terms of the fidelity loss function,
achieving a score exceeding 0.99 in the training dataset. However, challenges arise
when evaluating the model using classical metrics such as MSE, RMSE, MAE, MAPE,
and 𝑅2. These difficulties stem from the complex task of decoding the output quantum
state 𝜌𝑜𝑢𝑡 into classical data 𝑦𝑜𝑢𝑡 . This situation underscores the intricate balance
required in quantum-classical interfaces, where precision in decoding significantly
influences the performance metrics. To address these issues, future enhancements
may include investigating alternative decoding schemes or implementing error
mitigation techniques. Additionally, optimization in DQNN poses challenges with
current NISQ devices due to the necessity of extracting the quantum state from each
layer. This complexity has shifted the focus towards developing and implementing
PVQNN models.

2. PVQNN Performance and Challenges:
Analysis of PVQNN models reveals that they can be effectively trained with smaller
datasets compared to traditional neural networks. Besides, the performance of these
models is significantly influenced by the encoding methods employed, and the choice
of ansatz structure. The effectiveness of a model relies not only on the performance of
individual components but also on their synergistic integration. Besides, using data
re-uploading has emerged as an important technique to enhance model performance,
but the computational cost associated with increasing the number of hidden layers
must be considered. Therefore, we should consider the whole picture when choosing
a network structure. The best out-of-sample performance of our model, achieving an
𝑅2 of 0.99888, demonstrates the reliability of PVQNN in computing implied volatility.

6

67

6
Conclusions and Future

Research

6.1 Conclusions
In this thesis, our primary focus has been on the computation of implied volatility using
two distinct architectures of quantum neural networks: DQNN and PVQNN.

Our analysis of DQNN highlighted its effective model fitting and capability to minimize
loss functions. However, a key challenge with DQNN is its quantum state output, which
requires a data decoding process. This process can lead to the loss of certain data features,
adversely impacting the model’s overall performance, and leading to a poor performance in
the evaluation matrix. Therefore, selecting an appropriate data encoding method is crucial
in this context. Additionally, DQNN’s reliance on the output of network states at each layer
poses implementation challenges on current quantum hardware, apart from that, training
DQNN models on a classical simulator is time-consuming, and for these reasons, we have
not conducted an in-depth study of this model.

In contrast, PVQNN showed more promise in addressing our research problem. With
its classical data outputs, PVQNN allows for the application of traditional neural network
optimization techniques. Our research looked into various aspects affecting PVQNN’s
performance, such as training data characteristics, the use of data re-uploading technology,
network size, data encoding methods, quantum circuit construction, and the choice of
observables. Through these investigations, we successfully developed a PVQNN model
with an MSE of approximately 1.5×10−5 and an 𝑅2 around 0.999 in test sets on the classical
simulator, demonstrating its efficacy in computing implied volatility.

The in-depth examination of the PVQNN model uncovered that the model required a
relatively small dataset to achieve satisfied results, a characteristic that could be beneficial
in practical applications where data availability is limited. Besides, the application of
the data re-uploading technique greatly enhances model accuracy. This improvement is
attributed to the property that PVQNN can be expressed in terms of partial Fourier series.
Furthermore, the network’s architecture, including encoding, hidden, and measurement
layers, plays a vital role in its effectiveness. It suggests that each component of the network

6

68 6 Conclusions and Future Research

does not operate in isolation but contributes to the overall model performance. Therefore,
an integrated approach to network design and optimization is necessary.

Our experiments were primarily focused on assessing the model’s expressive capabili-
ties, rather than its training and computational efficiency. This focus stems from the fact
that our simulations were conducted on classical computing systems. Consequently, the
time metrics observed in our study were influenced by the limitations of classical simula-
tions and do not reflect the performance in a true quantum computing environment. This
distinction highlights the need for future research to evaluate the operational efficiency of
these models on actual quantum hardware.

6.2 Future research
Future research in this field can be strategically directed towards three key areas to further
advance our understanding and practical application of quantum neural networks in
financial modeling:

1. Advanced Exploration of DQNN:
For DQNN, a deeper exploration of data encoding strategies is needed. This includes
developing methods to ensure that crucial data characteristics are preserved during
the decoding process. Additionally, investigating the impact of various network
architectures on DQNN’s modeling capabilities could yield insights into optimizing
its structure for better performance. Such research would help in fine-tuning DQNN
for specific financial applications, potentially enhancing its effectiveness in complex
computations like implied volatility.

2. Understanding PVQNN’s Generalization Ability:
Another promising research direction is to provide a deep analysis of the strong
generalization ability observed in PVQNN. This entails a comprehensive examina-
tion of how different aspects of the model’s architecture contribute to its overall
performance. By studying the underlying mechanisms of PVQNN’s generalization
capabilities, future research can guide the development of more robust and efficient
quantum neural network models, tailored to manage a broader range of financial
modeling challenges.

3. Testing on NISQ Devices:
Perhaps the most critical avenue for future exploration is the practical application of
PVQNN models on NISQ devices. Testing these models in a real quantum computing
environment will provide valuable insights into their performance under realistic
conditions, including the effectiveness of various noise reduction and optimization
techniques. Such empirical studies are critical to determine the practical feasibil-
ity and scalability of quantum neural networks, especially in real-world financial
environments where speed, efficiency, and accuracy are critical. This will not only
validate the findings from simulated environments but also pave the way for the
deployment of quantum computing solutions in the financial industry.

69

Bibliography

References
[1] Christian Bayer, Blanka Horvath, Aitor Muguruza, Benjamin Stemper, and Mehdi

Tomas. On deep calibration of (rough) stochastic volatility models, 2019.

[2] Andres Hernandez. Model calibration with neural networks. Available at SSRN
2812140, 2016.

[3] Shuaiqiang Liu, Anastasia Borovykh, Lech A. Grzelak, and Cornelis W. Oosterlee. A
neural network-based framework for financial model calibration. Journal of Mathe-
matics in Industry, 9(1), September 2019.

[4] Hans Buehler, Lukas Gonon, Josef Teichmann, and Ben Wood. Deep hedging. Quan-
titative Finance, 19(8):1271–1291, 2019.

[5] Johannes Ruf and Weiguan Wang. Neural networks for option pricing and hedging: a
literature review. arXiv preprint arXiv:1911.05620, 2019.

[6] Christa Cuchiero, Wahid Khosrawi, and Josef Teichmann. A generative adversarial
network approach to calibration of local stochastic volatility models. Risks, 8(4):101,
September 2020.

[7] Shuaiqiang Liu, Cornelis Oosterlee, and Sander Bohte. Pricing options and computing
implied volatilities using neural networks. Risks, 7(1):16, February 2019.

[8] Matthias Möller and Cornelis Vuik. On the impact of quantum computing technol-
ogy on future developments in high-performance scientific computing. Ethics and
Information Technology, 19(4):253–269, August 2017.

[9] Nikitas Stamatopoulos, Daniel J. Egger, Yue Sun, Christa Zoufal, Raban Iten, Ning
Shen, and Stefan Woerner. Option pricing using quantum computers. Quantum, 4:291,
July 2020.

[10] Daniel J. Egger, Claudio Gambella, Jakub Marecek, Scott McFaddin, Martin Mevissen,
Rudy Raymond, Andrea Simonetto, Stefan Woerner, and Elena Yndurain. Quantum
computing for finance: State-of-the-art and future prospects. IEEE Transactions on
Quantum Engineering, 1:1–24, 2020.

[11] Dylan Herman, Cody Googin, Xiaoyuan Liu, Alexey Galda, Ilya Safro, Yue Sun, Marco
Pistoia, and Yuri Alexeev. A survey of quantum computing for finance. arXiv preprint
arXiv:2201.02773, 2022.

[12] Kerstin Beer. Quantum neural networks. arXiv preprint arXiv:2205.08154, 2022.

70 Bibliography

[13] Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mattia Fiorentini. Parameterized
quantum circuits as machine learning models. Quantum Science and Technology,
4(4):043001, November 2019.

[14] Min-Gang Zhou, Zhi-Ping Liu, Hua-Lei Yin, Chen-Long Li, Tong-Kai Xu, and Zeng-
Bing Chen. Quantum neural network for quantum neural computing. Research, 6:0134,
2023.

[15] Iris Cong, Soonwon Choi, and Mikhail D. Lukin. Quantum convolutional neural
networks. Nature Physics, 15(12):1273–1278, August 2019.

[16] ShiJie Wei, YanHu Chen, ZengRong Zhou, and GuiLu Long. A quantum convolutional
neural network on nisq devices. AAPPS Bulletin, 32:1–11, 2022.

[17] Oleksandr Kyriienko, Annie E. Paine, and Vincent E. Elfving. Solving nonlinear
differential equations with differentiable quantum circuits. Physical Review A, 103(5),
May 2021.

[18] Asel Sagingalieva, Mohammad Kordzanganeh, Nurbolat Kenbayev, Daria Kosichkina,
Tatiana Tomashuk, and Alexey Melnikov. Hybrid quantum neural network for drug
response prediction. Cancers, 15(10):2705, May 2023.

[19] Takayuki Sakuma. Application of deep quantum neural networks to finance. arXiv
preprint arXiv:2011.07319, 2020.

[20] Eric Paquet and Farzan Soleymani. Quantumleap: Hybrid quantum neural network
for financial predictions. Expert Systems with Applications, 195:116583, 2022.

[21] Fischer Black and Myron Scholes. The pricing of options and corporate liabilities.
Journal of Political Economy, 81(3):637–654, 1973.

[22] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Infor-
mation: 10th Anniversary Edition. Cambridge University Press, 2010.

[23] E. Schrödinger. An undulatory theory of the mechanics of atoms and molecules. Phys.
Rev., 28:1049–1070, Dec 1926.

[24] C.P. Williams. Explorations in Quantum Computing. Texts in Computer Science.
Springer London, 2010.

[25] Kerstin Beer, Daniel List, Gabriel Müller, Tobias J Osborne, and Christian Struckmann.
Training quantum neural networks on nisq devices. arXiv preprint arXiv:2104.06081,
2021.

[26] Gavin E Crooks. Gradients of parameterized quantum gates using the parameter-shift
rule and gate decomposition. arXiv preprint arXiv:1905.13311, 2019.

[27] Jun Zhang, Jiri Vala, Shankar Sastry, and K. Birgitta Whaley. Optimal quantum circuit
synthesis from controlled-unitary gates. Physical Review A, 69(4), apr 2004.

References 71

[28] Paolo Zanardi, Christof Zalka, and Lara Faoro. Entangling power of quantum evolu-
tions. Physical Review A, 62(3), August 2000.

[29] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii. Quantum circuit learning. Physical
Review A, 98(3), September 2018.

[30] Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, and Nathan Killoran.
Evaluating analytic gradients on quantum hardware. Physical Review A, 99(3), mar
2019.

[31] Yeong-Cherng Liang, Yu-Hao Yeh, Paulo E M F Mendonça, Run Yan Teh, Margaret D
Reid, and Peter D Drummond. Quantum fidelity measures for mixed states. Reports
on Progress in Physics, 82(7):076001, June 2019.

[32] A. Uhlmann. The “transition probability” in the state space of a -algebra. Reports on
Mathematical Physics, 9(2):273–279, 1976.

[33] Edward Farhi and Hartmut Neven. Classification with quantum neural networks on
near term processors. arXiv preprint arXiv:1802.06002, 2018.

[34] A. Bohm, P. Kielanowski, and G.B. Mainland. Quantum Physics: States, Observables
and Their Time Evolution. Springer Netherlands, 2019.

[35] Maria Schuld and Francesco Petruccione. Machine learning with quantum computers.
Springer, 2021.

[36] Maria Schuld. Supervised quantum machine learning models are kernel methods.
arXiv preprint arXiv:2101.11020, 2021.

[37] Adrián Pérez-Salinas, Alba Cervera-Lierta, Elies Gil-Fuster, and José I. Latorre. Data
re-uploading for a universal quantum classifier. Quantum, 4:226, February 2020.

[38] Francisco Javier Gil Vidal and Dirk Oliver Theis. Input redundancy for parameterized
quantum circuits. Frontiers in Physics, 8:297, 2020.

[39] Maria Schuld, Ryan Sweke, and Johannes Jakob Meyer. Effect of data encoding on the
expressive power of variational quantum-machine-learning models. Physical Review
A, 103(3), March 2021.

[40] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Shan You, and Dacheng Tao. Learnability
of quantum neural networks. PRX Quantum, 2:040337, Nov 2021.

[41] Charles Moussa, Jan N. van Rijn, Thomas Bäck, and Vedran Dunjko. Hyperparameter
Importance of Quantum Neural Networks Across Small Datasets, page 32–46. Springer
Nature Switzerland, 2022.

[42] Amira Abbas, David Sutter, Christa Zoufal, Aurelien Lucchi, Alessio Figalli, and Stefan
Woerner. The power of quantum neural networks. Nature Computational Science,
1(6):403–409, June 2021.

72 Bibliography

[43] Thomas Hubregtsen, Josef Pichlmeier, Patrick Stecher, and Koen Bertels. Evaluation
of parameterized quantum circuits: on the relation between classification accuracy,
expressibility, and entangling capability. Quantum Machine Intelligence, 3:1–19, 2021.

[44] Kerstin Beer, Dmytro Bondarenko, Terry Farrelly, Tobias J. Osborne, Robert Salzmann,
Daniel Scheiermann, and Ramona Wolf. Training deep quantum neural networks.
Nature Communications, 11, 2019.

[45] Matthias C. Caro, Hsin-Yuan Huang, M. Cerezo, Kunal Sharma, Andrew Sornborger,
Lukasz Cincio, and Patrick J. Coles. Generalization in quantum machine learning
from few training data. Nature Communications, 13(1), August 2022.

[46] Ryan LaRose and Brian Coyle. Robust data encodings for quantum classifiers. Physical
Review A, 102(3), September 2020.

[47] Vojtěch Havlíček, Antonio D. Córcoles, Kristan Temme, Aram W. Harrow, Abhinav
Kandala, Jerry M. Chow, and Jay M. Gambetta. Supervised learning with quantum-
enhanced feature spaces. Nature, 567(7747):209–212, March 2019.

[48] Sukin Sim, Peter D. Johnson, and Alán Aspuru-Guzik. Expressibility and entangling
capability of parameterized quantum circuits for hybrid quantum-classical algorithms.
Advanced Quantum Technologies, 2(12), October 2019.

73

A
AppendixA

A.1 Data size

Table A.1: Out-of-Sample PVQNN performance on different training data sizes.

Data Size MSE 𝑅2

4 0.004858 0.638954
8 0.001168 0.913144
12 0.000956 0.928929
16 0.000627 0.953397
20 0.000473 0.964838
40 0.000571 0.957552
100 0.000558 0.95846
200 0.000507 0.96228
400 0.000452 0.96637
800 0.000391 0.97091
1600 0.000373 0.97221
4000 0.000362 0.97306
8000 0.000347 0.97419
16000 0.00035 0.97397

We expanded the range of the moneyness 𝑆/𝐾 , from [0.95, 1.05] to a broader interval
of [0.9, 1.1], and then repeated the experiments. This was done to assess the universality of
our conclusions. The results are as follows,

As it shows, the training results follow the same pattern as before, even on a wider
range of data. The results for 160 training data are similar to the results for 800 training
data.

74 A AppendixA

Table A.2: Out-of-Sample PVQNN performance on different training data sizes in a wider range dataset.

Data Size MSE 𝑅2

40 0.002112 0.84232
80 0.002011 0.84984
160 0.001733 0.87054
400 0.001695 0.87338
800 0.001587 0.88146

A.2 Data encoding

Table A.3: Out-of-Sample PVQNN performance with different data encoding methods.

Data Encoding MSE 𝑅2

𝑒1 0.001139 0.91578
𝑒2 0.001139 0.91577
𝑒3 0.01357 -1.374×10−5
𝑒5 0.223 -15.44
𝑒10 0.00802 0.409
𝑒6 0.001138 0.91612
𝑒7 0.01357 -2.387×10−5
𝑒8 0.0007478 0.94490
𝑒9 0.06872 -4.063

A.3 Ansatz structure

A.4 Lager dataset 75

Table A.4: Out-of-Sample PVQNN performance across different ansatz structures

Ansatz Structure Parameters G MSE 𝑅2

ℎ1 24 12 0.01412 0.01977
ℎ2 24 7 0.01413 0.01856
ℎ3 24 0 7.212×10−4 0.94992
ℎ4 24 0 0.00111 0.92259
ℎ5 24 0 7.443×10−4 0.94831
ℎ6 24 0 7.428×10−4 0.94841
ℎ7 24 2 6.608×10−4 0.95411
ℎ8 24 1 8.761×10−4 0.93916
ℎ9 24 4 5.357×10−4 0.96280

ℎ10 (𝑒1) 24 12 0.00413 0.71299
ℎ10 (𝑒2) 24 24 - -
ℎ11 16 0 6.779×10−4 0.95293
ℎ12 16 4 8.720×10−4 0.93945
ℎ13 28 4 8.969×10−4 0.93772
ℎ14 16 0 0.00125 0.91306
ℎ15 20 5 8.424×10−4 0.94151

A.4 Lager dataset
We expanded the range of the key parameter in our problem, the moneyness 𝑆/𝐾 , from
[0.98, 1.02] to a broader interval of [0.9, 1.1]. This was done to assess the adaptability of our
model to a wider range of scenarios. For this purpose, we employed the third model, which
previously showed the best performance. This model was trained on 160 data points with
a batch size of 64 over 200 epochs, keeping other parameters consistent with the initial
setup.

However, the expanded test presented challenges. The out-of-sample performance
of the model, particularly the 𝑅2 value, dropped to around 0.89. This was a significant
deviation from the earlier high performance. One potential solution to improve the model’s
performance on this broader data range could be to increase the number of hidden layers
or the size of the training dataset. However, such adjustments would demand substantially
more computational resources and time, which might not be feasible or efficient.

To address these challenges, we proposed another approach: dividing the larger interval
into smaller sub-intervals and training separate models for each. This strategy aimed to
mitigate the issues of poor training results and extended training time associated with the
larger data range. Models A, B, and C were structured identically to Model 3 and were
each tested on a dataset of 5000 points, distributed as the training data.

The results of this segmented approach, as detailed in Table A.5, indicate positive
outcomes. The method of dividing the data into smaller intervals appears to be effective
for the problem at hand. By training separate models on smaller intervals, we were able to
maintain high accuracy and reliability in predictions across a broader range of moneyness
values. This strategy not only preserved the high 𝑅2 values, around 0.999 but also ensured
efficiency in training. These outcomes suggest that this approach offers a feasible solution

76 A AppendixA

to the challenges encountered due to the expanded data range. The effectiveness of this
method highlights the potential benefits of adaptable and innovative strategies in model
training, especially in the context of complex and diverse data sets.

Table A.5: Out-of-Sample performance of PVQNN models on extended Moneyness range dataset

Model Moneyness 𝑆/𝐾 Training Data Size Batch Size Epochs MSE RMSE MAE MAPE 𝑅2

A [0.9,1.1] 160 64 200 0.0014897 0.038597 0.031877 0.067713 0.88899
B [0.9,0.95] 80 20 500 1.750×10−5 0.00418 0.00346 0.00726 0.99870
C [1.05,1.1] 80 20 500 1.097×10−5 0.00331 0.00222 0.00466 0.99918

