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Summary 
 
Small UAVs and in particular the class of micro-UAVs, whose mass is below 2 kg, are constantly 
rising in popularity for personal as well as professional use, since they are beneficial in many fields 
such as defense, transportation, monitoring and agriculture. In spite of their advantages, UAVs 
can be used for terrorist attacks to fly over restricted areas, transport illegal materials or cause 
an accident in crowded areas. Thus, in the event of non-cooperative drone users, radars can be 
ideal detection devices, due to their capability to operate day and night in all-weather conditions. 
However, due to birds and UAVs having similar altitude, speed and radar cross section, many 
false alarms can occur. For this reason, it is urgent to develop techniques to distinguish UAVs and 
birds amongst other radar contacts that may be present. 
 
The classification of drones and birds is not unprecedented. Plenty of acoustic, camera and radar 
solutions are available in the market today. Radar applications frequently rely specifically on the 
differences in micro-Doppler signature between these two classes. However, limited solutions 
exist based on the differences in flight behavior, which is referred as "track behavior" in the radar 
domain. Assuming that drones and birds have different kinematic characteristics, the question 
arises, whether these can be tracked by surveillance radars in such a way that radar processing 
can recognize either or both, based on a given tracking time interval. In particular, possible 
methods include the exploration of the flights of drones and birds, the kinematic features 
extraction from tracking their trajectories, their implementation to machine learning models in 
order to classify these two flying objects, as well as the evaluation of their classification accuracy. 
 
The methodology of this thesis project is divided into two parts. First, a 6-Degree-of-Freedom 
quadcopter simulator is used to generate drone trajectories, while the bird data are created from 
real bird GPS tracks. These simulated drone and real bird trajectories are compared to distinguish 
them in an initial feasibility study, by examining observations such as feature importance, the 
total trajectory observation time and the time between two continuous tracks. The classification 
accuracy is more than 95%, as it is observed that birds and drones have different track behaviors. 
 
The second part of the work classifies real bird and drone trajectories tracked by a man-portable 
scanning surveillance radar. In this way, the kinematic features that are reliable for the 
classification of the flying object have been identified. The raw data include pedestrians, cars and 
ocean waves targets that are not useful for that classification problem. So, data filtering is applied 
to remove all different to bird and drone targets. Moreover, as the labels are missing, 
unsupervised learning techniques are used to create bird and drone clusters. 
 
In conclusion, it is derived that birds and UAVs have different flight behaviors. The current 
research can provide valuable information for the development of classification algorithms for 
existing radars, and fill the gaps for future efforts to improve the classification of birds and 
drones. 
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1 Introduction 
 
In this chapter, the research problem of this thesis is introduced and the relevant research 
questions are formulated and discussed. Section 1.1 describes the problem definition of the 
classification of drones and birds, considering the gaps in the literature and the existing research 
studies. Section 1.2 indicates the contribution of this thesis and formulates the research question. 
Finally, section 1.3 presents the structure of the report. 
 

1.1 Problem Definition 
 
The operational flexibility and variety of applications in which drones can be beneficial have 
increased their use remarkably. In particular, some of these examples include filming, 
environmental monitoring, materials transportation and agriculture. However, their increased 
popularity comes with associated safety risks to the public and their properties. Such possible 
risks involve privacy violations, transport of illegal materials and the risk of collisions with 
obstacles or other low-flying objects, such as birds [1] [2]. 
 
An occasion where micro-UAVs, both hobby type as well as military are used, is the Ukraine-
Russia war. Micro-UAVs mass is below 2 kilograms, their maximum operational altitude and 
radius are 70 meters and 5 kilometers, respectively. Micro-UAVs are used by both sides for 
surveillance, reconnaissance, but also to attack targets, as Figure 1 shows [3]. For example, on 
March 18, 2022, a modified commercial drone dropped a grenade on a civilian car in Ukraine, 
causing an explosion [4].  
 

 
Figure 1: Modified drone carrying a grenade [4]. 

In addition, two unwanted civilian drone usages are presented in the following examples. On 
April 23, 2020, a tourist crashed his drone into the Pisa landmark, as Figure 2 shows. Fortunately, 
no one was injured and the monument remained unscathed [5]. Another unwanted drone flight 
occurred on December 10, 2018, when a drone appeared near the runway of Gatwick Airport 
near London, England. It flew for a while, then disappeared and when the runway was about to 
open, it reappeared. The drone in Figure 3 caused disruption for nearly 33 hours, affecting 
140.000 passengers and 1.000 flights, with fears of a possible terrorist attack causing additional 
problems [6] 
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As Figure 4 presents, the radar detection threshold has to decrease, in order to detect flying 
objects which are small and fly with low speed. In the same area on the size-speed plot, birds are 
also observed. As the different types of UAVs and birds are confused by radars, the importance 
of their distinction is examined. 
 
 

 
Figure 4: Radar detection threshold [courtesy of TNL]: here it can be seen that UAVs and birds detection is overlapped, therefore 

there is a problem to classify them.  
 
While the detection of birds and UAVs has been studied and analyzed at a high level in the 
literature through radar technology and the micro-Doppler signature, the classification of them 
relative to the invention of radar is fairly new, as it is analyzed in more detail in the literature 
review of Chapter 2. Specifically, many studies in the literature use the micro-Doppler signatures 
for the classification of drones, as the rotation of their blades provides additional frequency 
modulation to the constant Doppler frequency shift induced by the bulk motion [7] [8]. 
 
Thus, the existing technologies are proven and operate with sufficient performance in most 
situations, but the classification of Low-Slow-Short (LSS) targets, such as birds and drones at large 
radar distances, is not assured. Therefore, it is important to explore and analyze a different 
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Figure 2: Drone crashed into the Pisa 
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Figure 3: Drone appearance at Gatwick 
airport [6]. 
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approach to fill this gap and recognize the type of flight targets before applying the micro-Doppler 
effect. Analyzing the birds and drones flight behaviors, by tracking them and observing if they 
change their flight direction in different ways, is the approach that will be researched in this 
master thesis. 
 

1.2 Contribution of the thesis research 
 
Existing technologies for detecting and classifying birds and drones rely on radar technology, 
acoustics and visual methods. All of these proven methods have specific situations in which the 
classification of birds and drones is not guaranteed. In particular, the radars have a large 
detection range and use the micro-Doppler effect to distinguish drones and birds. The 
disadvantage of this method is that in long detection distances, the reflected signal from the 
drone rotor blades and the bird wings is weak. In addition, the non-conducting materials of the 
drone rotor blades and the fact that birds do not always flap their wings to fly, provide very less 
micro-Doppler information. Thus, the spectrograms that are generated by applying Short Time 
Fourier Transform (STFT) to the received signal do not assure the presence of the birds and 
drones micro-movements. Moreover, acoustic methods do not require line of sight detection and 
work well in environments with poor visibility. However, they are very sensitive to ambient noise. 
Finally, visual methods have the advantage of using cameras with high angular resolution that 
visualize the flying object type. A major problem is though, that their performance depends on 
weather conditions and degrades in fog and rain as the visibility decreases, while they do not 
provide range or Doppler information [1] [9] [10]. The advantages and disadvantages of the small 
flying object detection technologies are summarized in Table 1. 
 

Technology Advantages Disadvantages 

Radar 

-Scan large volumes in less time 
-Independent on: 

weather conditions 
visibility 

noise 
-Spectrograms 

classification features 
-Simulated drone data 
accurate classification 

-Plastic rotor blades 
weak reflected signal 

-Detection range 
multiple targets 

drones and birds swarms 
-Real birds and drones data 

inaccurate classification in long 
detection ranges 

Acoustics 
- Work well in environments with poor 

visibility 
-Sensitive to ambient noise 

Visual -Visualize the flying object -Weather conditions 

Table 1: Drones and birds detection technologies with advantages and disadvantages. 

 
The analysis of birds and drones flight behavior by tracking their trajectories and extracting 
kinematic features represents an approach that could benefit this classification problem. The 
kinematic features should be applied as input to machine learning models, in order to classify 
birds and drones [11] [2]. Thus, the main research question that arises is the following. 
 
How can birds and drones tracking provide kinematic features that contribute to the 
classification of birds and drones and provide additional information to the existing radar 
classification methods? 
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Besides the above main question, the following sub-questions are derived: 
 
1. Is the classification of birds and drones using radars entirely explored, by the existing proven 
methods? 
 
2. What observations can be examined from the classification of drones and birds, using 
simulated trajectories data by applying supervised learning and how can they be used in real case 
scenarios? 
 
3. What are the kinematic features that provide enough information to distinguish drones and 
birds? 
 
4. What are the limitations of using kinematic properties to classify drones and birds?  
 

1.3 Structure of the thesis 
 
The remainder of this report is organized as follows. Chapter 2 presents the background 
information, about UAVs, birds, surveillance radars and the existing birds versus UAVs 
classification techniques. A literature review, on the state-of-the-art publications about the 
classification of birds and drones using their kinematic properties is also provided. Additionally, 
in Chapter 2, the machine learning application in these flying targets classification case, as well 
as the gaps in the literature and the novelty of this master thesis research are examined. The 
following Chapter 3 presents the extracted kinematic features of Low-Slow-Short (LSS) targets, 
that are tracked by surveillance radars and their preprocessing. Furthermore, Chapter 4 analyzes 
the classification between a 6-DoF quadcopter simulation model and real bird GPS flight tracks. 
Chapter 5 investigates the classification of real bird and drone data received from a TNL 
surveillance radar. The missing labels lead to the usage of unsupervised machine learning models 
to generate bird and drone clusters, while the created clusters and the evaluation of which of 
them contain bird and which drone trajectories are also presented in Chapter 5. The final Chapter 
6 provides the conclusion and recommendations for future research. 
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2 Background Information 
 
In this chapter, the background information is presented. Sections 2.1 and 2.2 present the UAVs and birds 
flight behaviour. Sections 2.3 and 2.4 examine the theory of surveillance radars and the existing flying 
targets classification techniques. The next Section 2.5 analyses the existing publications of bird and drone 
classification using their kinematic signature, while Section 2.6 provides the machine learning applicability 
in this classification case. The last Section 2.7 shows the novelty and gaps in the literature that motivated 
the implementation of this master thesis. 
 

2.1 Unmanned Aerial Vehicles (UAVs) 
 
According to NATO, UAVs can be divided into three main classes in terms of weight, with each 
class containing sub-classes. UAVs are informally known as drones and include all of the aircrafts 
shown in Table 2. In this master thesis, both real and simulated UAVs belong to the category of 
MICRO and CLASS I because their weight is less than 2 kg. Therefore, drones are defined as these 
UAV types for this research [12]. In Table 2 the NATO 2.1 Unmanned Aerial Systems (UAS) 
classification system is implemented for military UAVs, whereas all other types of commercial or 
personal UAVs are also considered drones. The Above Ground Level (AGL) is the height measured 
from the underlying ground surface. The Line of Sight (LOS) is the distance between the 
transmitting and receiving antenna at which they can see each other and the Beyond Line of Sight 
(BLOS) is the propagation that occurs outside of the typical LOS between the transmitter and 
receiver. 
 

UNMANNED AIRCRAFT CLASSIFICATION TABLE 

Class Category Normal 

Employment 

Normal 

Operating 

Altitude 

Normal 

Mission 

Radius 

Civil 

Category 

(UK CAA) 

Example 

Platform(s) 

Class I 

< 150 kg 

Nano 

< 250 gr 

Platoon / Squad, 

Sect, Individual 

(hand launch) 

Up to 

200 ft AGL 
< 2 km 

(LOS) 

WCG 1 

Small 

Unmanned 

Aircraft 

(< 20 kg) 

 

Black Hornet 

Micro 

< 2 kg 

Tactical Platoon, 

Sect, Individual 

(single operator) 

Up to 

200 ft AGL 
5 km 

(LOS) 

 

Black Widow 

 

Mini 

2-20 kg 

 

Tactical Sub- 

Unit (manual 

launch) 

 

Up to 

3000 ft AGL 

 

25 km 

(LOS) 

 

Scan Eagle, 

Skylark, 

Raven, DH3 

Small 

> 20 kg 

Tactical Unit 

(employs launch 

system) 

Up to 

5000 ft AGL 

50 km 

(LOS) 

WCG 2 

Light UAV 

(20 >< 150 kg) 

Luna, 

Hermes 90 
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Class II 

150 to 

600 kg 

 

Tactical 

 

Tactical 

Formation 

Up to 

10,000 ft  

AGL 

 

200 km 

(LOS) 

WCG 3 

UAV 

(> 150 kg) 

Sperwer, 

Iview 250, 

Hermes 450, 

Aerostar, 

Watchkeeper 

Class III 

> 600 kg 

Medium-

Altitude Long-

Endurance 

(MALE) 

Operational/ 

Theatre 

Up to 

45,000 ft 

AGL 

Unlimited 

(BLOS) 

Predator A & 

B, Heron, 

Hermes 900 

High-Altitude 

Long-

Endurance 

(HALE) 

Strategic/ 

National 

Up to 

65,000 ft 

AGL 

Unlimited 

(BLOS) 

 

Global Hawk 

Strike / 

Combat 

Strategic/ 

National 

Up to 

65,000 ft 

AGL 

Unlimited 

(BLOS) 

 

Table 2: Unmanned Aircraft Classification Guide (WCG: Weight Classification Group, AGL: Above Ground Level, (B)LOS: (Beyond) 
Line-of-Sight) [13]. 

 
Multicopters use their blade rotors to obtain lift and control their various maneuvers, such as 
hovering, moving in a specific direction and accelerating or decelerating. In addition, the 
aerodynamics of drones with fixed wings are affected by their shape and design, while the copter 
aerodynamics are not necessarily affected by their shape, because they have more degrees of 
freedom [14]. Quadcopters can be precisely navigated and remotely controlled over long 
distances. They are electronic and mechanical flying machines that follow the principles of 
aviation, while their precise automatic control is achieved by PID controllers. Modeling and 
trajectory generation is developed using kinematic equations. In this way, UAV tracking is also 
efficiently and accurately achieved through a set of nonlinear equations that can be transformed 
into linear equations. Thus, the PID controllers can design a linear approximate model describing 
the quadcopter trajectories. This dynamic model is described by the variation of the torque and 
thrust of the quadcopter. Thee 6-DoF quadcopter consists of four DC motors with fixed 
dimensions [15] [16]. 
 
Finally, since drone trajectories are based on their kinematic properties, it is possible to create 
drone trajectories simulations derived from their mathematical equations that explain their 
physical meaning. The derivation of drone flights kinematic equations is out of the scope of this 
master thesis. 
 

2.2 Birds 
 
There are about 11000 species of birds [17]. Birds are vertebrates with wings and feathers that 
vary greatly in anatomy, physiology and behavior, depending on the species. Most birds fly, while 
each bird flight is unique and adapted to a specific habit. Birds fly to migrate, to prey, to survive, 
or to find a place to nest. Their flight modes can be passive, as they do not flap their wings. Such 
types of flights include gliding, in which birds exchange altitude to maintain forward speed and 
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soaring, in which birds use the wind to maintain or gain altitude. The second type of flight is called 
active because the birds flap their wings to fly. In addition, there is a combination of passive and 
active flights called interval flight, in which birds combine their wing flapping with passive flight 
[18]. All of these flight types are shown in Figure 5 and in Figure 6 [19]. There are many different 
types of birds with many flight behaviors and it is difficult to categorize them. Thus, in this master 
thesis, all types of birds will be referred to as ‘birds’. 
 
Furthermore, the physical and mathematical explanation of bird flights is a crucial topic, the 
modelling and simulation of which present many difficulties. One approach to representing how 
birds fly is based on the Newtonian mechanism. During their flight, birds flap their wings through 
a mass of air and as this air is accelerated backward and downward, a force is created. According 
to Newton, this motion creates an opposing and equal force that causes both the forward motion 
of the bird and the vertical lift. As the wings push the air backward and downward, the bird is 
pushed forward and upward by the reaction of the air force [19]. 
 

 
Figure 5: Birds passive and active flight modes [19]. 

 

 
Figure 6: Birds movement forces [19]. 

 
According to the following publications, the physics of bird flights is controversial and unproven, 
as there are no conclusive experiments that prove a theory or equation. Specifically, Landell-Mills 
[19] supports that it is still unknown how birds fly exactly. William [20] examines that there are 
still many unresolved questions about how birds fly with flapping wings. Diana and David [21] 
also claim that flapping flight is not fully understood. Finally, Kristen and Brett [22] support that 
evidence that flapping contributes to force production is increasing, but the aerodynamic and 
kinematic mechanisms are still unknown. As current theories and studies are unable to explain 
how birds fly, simulation models that exist today cannot sufficiently generate trajectories of 
birds. Specifically, the bird simulations are not accurate enough because they do not approach 
the aerodynamic and kinematic characteristics of real birds [23] [24]. 
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Bird real flight datasets are frequently used to create an accurate trajectory of a bird, as the 
simulated bird data are not similar enough to the real ones. Therefore, in research [11] the 
received bird data are from real bird trajectories. In that way, it is decided to use trajectories and 
kinematics of birds from real GPS data in Chapter 4 of this master thesis. In particular, the 
MOVEBANK [25] dataset contains many different types of bird trajectories. 
 

2.3 Surveillance Radar 
 

Radar, short for Radio Detection and Ranging is a measuring principle based on echo location 
using EM waves (or ‘radio waves’).  
 
The following equation (2.1), that provides the distance between the radar and the object, is 
called range [m]. Additionally, 𝑡𝑑 is the time delay [s] until receiving the backscattered signal and 
c [m/s] is the propagation speed of the EM transmission, which approaches the speed of light in 
a vacuum. 
 

R =  
tdc

2
  (2.1) 

 
The power of the received signal is provided in the following equation (2.2) 
 

𝑃𝑟 =
𝑃𝑡𝐺𝑡𝐴𝑒𝜎

(4𝜋)2𝑅4  (2.2) 

 
where 𝑃𝑡 is the transmitted power, 𝐺𝑡 is the antenna gain factor on transmit, 𝐴𝑒 is the antennas 
effective area on receive, R is the maximum detection range and 𝜎 is the average radar cross 
section [26]. 
 
Surveillance radars scan a large volume and have limited dwell time on the target because they 
scan the field with a narrow beam [27]. These radars are used to detect targets and measure 
their range and velocity indirectly through tracking or directly through Doppler, while the 
presence of the target and its reflected signal at the antenna is called detection. Space is scanned 
mechanically by rotating a fixed antenna or electronically with a phased array antenna. 
Surveillance radars detect targets, while other echoes such as ground or precipitation echoes are 
also present [28]. Tracking moving targets with surveillance radars is called ‘Track while scan’ 
(TWS). Tracks are consecutive target detections that are combined and provide the total target 
trajectory. The trajectory is defined as the path that a moving target has followed during the 
period that is detected from the radar. The observation time of the target is the total duration in 
which the target is detected until tracking is terminated as no more target detection is provided 
[29]. So, surveillance radars are used for tracking targets and not for examining the micro-
Doppler signature of the flying objects, as they have a limited dwell time. 
 
The Doppler effect is the basis for detecting the velocity of moving targets and is presented first. 
The Doppler effect is the change in frequency of a wave as the source moves. The transmitted 
electromagnetic waves reflect a shifted frequency signal when the detected object moves. The 
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frequency change of the backscattered signal is used to measure radial velocity. Equation (2.3) 
gives the received signal frequency. The Doppler frequency shift is the frequency difference 
between the transmitted signal and the received signal, "𝑓𝑑 =  𝑓𝑡 −  𝑓𝑟" . The received velocity is 
positive when the object moves away from the radar [30]. 
 

𝑓𝑟 =  𝑓𝑡

1+
𝑣𝑟
𝑐

1−
𝑣𝑟
𝑐

  (2.3) 

 

𝑓𝑑 =  −
2𝑣𝑟

𝜆
  (2.4) 

 
In the equations (2.3) and (2.4) 𝑓𝑟, 𝑓𝑡 and 𝑓𝑑 are the received, the transmitted and the Doppler 
frequencies in Hz, whereas 𝑣𝑟 is the radial velocity of the target in m/s. 
 
When a single target has additional rotational or vibratory motion besides the main bulk, 
additional frequency modulation is observed. These motions are referred to as micromotions and 
the additional Doppler modulation is referred to, as the micro-Doppler component [31]. The 
micro-Doppler signature is associated with the micro-Doppler effect for a specific target and is 
visualized from the spectrogram. The micro-Doppler signature of a helicopter rotor with two 
blades is presented in the Figure 7. 
 

 
Figure 7: Micro-Doppler signature of a helicopter rotor with two blades [7]. 

 
Spectrogram is the visualization of the spectral density of a signal that varies over time and it is 
calculated from the squared absolute value of the Short-Time Fourier Transform (STFT). STFT is 
the application of Fourier transform on a short-time window that shifts on the entire signal [30]. 
 

2.4 Existing Flying Targets Classification Techniques and their Limitations  
 
There are proven operational products, which use surveillance radars that scan an area to track 
flying targets in combination with other sensors, such as the Electro-Optical (EO) cameras, in 
order to classify them. For example, as Figure 8 shows, the ‘‘Black Knight UAV detection radar’ 
from the company IDS in Italy is a radar-based system, that incorporates an optimal EO camera 
and is used for the detection and classification of unmanned aerial vehicles [32].  
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Figure 8: Black knight UAV detection radar. A surveillance radar from the company IDS in Italy in combination with an Electro-

Optical sensor (camera) [32]. 

Despite the existing solutions that surveillance radars with integrated sensors provide in the 
classification of flying targets, this master thesis focuses on a single surveillance radar solution 
by researching the possibility of classifying flying targets only by tracking them. 
 
In the radar domain, the techniques that are used to classify targets are called Non-Cooperative 
Target Recognition (NCTR). Some of these NCTR aircraft recognition existing techniques for 
ground-to-air or air-to-air activities are the Jet Engine Modulation (JEM), the HERM (Helicopter 
Rotation Modulation) line, the micro-Doppler signature and the RCS.  
 
JEM is one type of NCTR technique that recognizes the jet engine type and is based on the 
spectrum analysis from the reflected signal. JEM is used for air targets identification due to their 
rotating compressor blades, through the modulation imposed on the radar echo. The 
contribution of rotors provides a unique spectrum that is able to recognize the engine type and 
thus the aircraft. This technique is applied to recognize a helicopter due to the rotation of the 
main and the tail rotor [33]. 
 

 
Figure 9: Jet engine: The front of the engine contains the compression stage rotor blades, which generate the jet engine 

modulation spectrum when illuminated by radar [33]. 
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HERM is a technique used to find the blade flashes from a large manned helicopter. The plot of 
the reflected signal from the helicopter rotors by applying FT visualizes the blade flashes when 
there is a specular reflection at the approaching and receding points of the blades Figure 10. The 
micro-Doppler of the helicopter with one blade is provided in Figure 11 . 
 

 
Figure 10: Helicopter main rotor blade flashes - Time domain data (pulse-to-pulse) [33]. 

 

 
Figure 11: Spectrogram of 1 helicopter blade [34]. 

 
Multicopters fly using multiple blades, which create overlapping in their signature and they are 
less reflective than helicopter blades, because they are made from plastic materials. By 
examining the spectrogram of drone blades using a short window, vertical lines similar to the 
helicopter flashes are provided in Figure 12. However, by increasing the spectrogram window, 
the signature of the blades consists of horizontal lines that are called HERM (Helicopter Rotation 
Modulation) lines as Figure 13 shows.  
 

 
Figure 12: Drone spectrogram with 5ms window [34]. 
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Figure 13: Drone spectrogram with 100ms window [34]. 

 
As drone blades rotate faster than the helicopter ones, they are visualized as HERM lines rather 
than clear blade flashes in the micro-Doppler. Thus, the classification of drones from helicopters 
can be achieved [34]. 
 
The Radar Cross Section (RCS) of the target is a measure of power reflected back to the radar. 
The definition of the Radar Cross Section of a target is the area intercepting that amount of power 
which, when scattered equally in all directions, produces an echo at the Radar equal to that from 
the target [35]. RCS can be used as a feature for the classification of flying objects, as the larger 
shape ones have higher RCS values [33]. 
 
However, the only proven radar technique mentioned in the literature that has been used to 
classify birds and drones utilizes the micro-Doppler signature. The micro-Doppler signature of a 
drones rotating blades is provided in Figure 14, whereas the micro-Doppler signature of a barn 
owl bird flapping its wings is seen in Figure 15 [34]. 
 
 
  

 

 
 
 
 
 
 
 
 
 
Despite the functionality of the micro-Doppler effect to classify birds and drones, it has its 
limitations. The first constraint is the range dependency. The drone blades are smaller than the 
UAV, as a whole. Therefore, as a function of increasing range, the micro-Doppler will not be 
detectable anymore earlier than the complete aircraft at long detection ranges [1] [36]. Another 
restriction can occur when in certain drones, blades are placed on the back side of the aircraft or 

Figure 15: Spectrogram of a barn owl [34]. Figure 14: Spectrogram of a DJI Phantom drone [34]. 
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the blades are covered by conducting materials, through which EM waves hardly penetrate, as 
Figure 16 shows. Thus, the rotation of their blades is not visible from the radars. In addition, birds 
also provide passive flights without moving their wings. In that way, they do not fly by flapping 
their wings and their micro-Doppler signature is not examined. Finally, surveillance radars also 
introduce several downsides in examining the micro-Doppler effect, as their time on target (TOT) 
is limited, hence the bird wingbeats and the drone blades rotation movements are not assured 
[37]. In the above cases, the Doppler effect is visible but the micro-Doppler information is 
missing. 

 
Figure 16: Ducted fan design drone [38]. The blades are covered by conducting materials and the micro-Doppler effect is not 

examined. 

 

Apart from the micro-Doppler proven method to classify birds and drones, there is the kinematic 
signature approach that is used by surveillance radars to track the flying targets, by extracting 
differences in their flight behavior.  
 
The subfield of physics that describes the motion of a system, a body or a point without 
considering the forces that cause them to move, is called kinematics. In order to analyze motion, 
kinematic quantities such as position, velocity and acceleration are used [39]. The body motion 
is represented using a coordinate system, which is used as a basis for all the kinematic quantities. 
The coordinate vector from the origin of the reference coordinate system is the position of the 
body. 
 
Velocity of a body is the vector quantity that indicates the magnitude and the direction of its 
motion. Velocity is defined as the rate of change of position as the equation (2.5) indicates. In 
addition, the absolute value of velocity is called speed.  
 

�⃗� =  
𝛥𝑟

𝛥𝑡
 (2.5) 

 

Where 𝛥𝑟 is the change in the position of the radius vector 𝑟 = 𝑂𝑃⃗⃗⃗⃗ ⃗⃗ , that represents the position 
point P(x, y, z) with respect to the origin 0. 
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The state-of-the-art existing publications about the classification of birds and drones using their 
kinematic signatures are presented in the following literature review Section 2.5. The kinematic 
features that are used in these researches will be analyzed in Section 3.1.  
 

2.5 Existing Publications in Kinematic Signatures to Classify Birds and Drones 

 
The classification of birds and drones, by tracking their trajectories and creating kinematic 
features from their speed and position data, is an approach in which research is at early stages 
and publications are very few. The already implemented researches existing in the literature [1], 
[2], [11], [40], [41], [42] and [43] are discussed below. 
 
As part of the research [11], the Hybrid Digital Radar Twin, which is a radar simulator that 
generates Doppler signatures for different types of UAVs, was developed. In this way, many 
kinematic simulation data for different types of drones were used to generate realistic drone 
trajectories. In addition, drone flight trajectories were created using the autopilot software tool 
PAPARAZZI UAV. All these simulated drone flight data were compared with the flight trajectories 
of real birds from the MOVEBANK database [25]. The MOVEBANK datasets contain the 
timestamped position and speed of real bird flights recorded using GPS recorders. Thus, in this 
research the drone data were simulated, while the bird data were received from GPS. The 
classification of birds and drones using their kinematic features was implemented using the 
decision tree and random forest algorithms, while the research purpose was to enhance the 
classification of the flying target, based on the micro-Doppler signature. 
 
J. Liu et al. [43] present a bird surveillance radar system working at S-band frequencies (2 to 4 
GHz), whereas the rotational speed is 2.4 seconds/scan. The data for this experimental research 
collected in the FuCheng airport in BeiHai city, where many local birds fly and during hours at 
which no airplanes fly were scheduled to avoid receiving signal from such big aircrafts. In 
addition, after 6 radar tracks for a drone hovering over 15 seconds in the air, the drone tracking 
stopped. This research uses the PCA technique to reduce the number of features and the 
supervised machine learning random forest model to classify birds and drones, while the 
accuracy level of the classification is around 85%. According to J. Liu et al., the RCS maybe is the 
missing feature that can be considered in such false alarm cases in order to make a difference 
and increase the classification accuracy. 
 
Another research implemented to classify birds and drones from the kinematic properties was 
implemented by N. Mohajerin et al. [40]. The Raytheon Digital Airport Surveillance Radar, the 
Standard Terminal Automation Replacement System and simulated drone trajectories combined 
in order to classify birds and drones. The Raytheon Digital Airport Surveillance Radar operates at 
S-band with 2.5 GHz, while the pulse repetition frequency is 800 Hz. The received data is a 
mixture of birds, aircraft and simulated UAV tracks. So, statistical kinematic features are applied 
as input to a standard Multilayer Perceptron (MLP) Neural Network to classify birds and UAVs. 
Similarly, to the previously discussed publications, the data of drones are not only based on real 
UAVs trajectories, but they are simulated data. The ML classification accuracy is 99%. So, the 
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authors claim that experimental flights should be performed to create more representative 
datasets for future work. 
 
The literature of the next study [2] shows that the trajectory-based kinematic features and target 
RCS features provide classification results with an accuracy of 99.3%. The drone flights generated 
data are simulated with a model following constant speed and acceleration, while the drone 
directions change, based on only two-dimensional x-y space. The kinematic features of speed and 
acceleration are used as input to the Recurrent Neural Network (RNN) model to classify birds and 
drones. Zhang Xu et al. support that the classification results on simulated data-set provide 
enough evidence to apply this method on real radar tracks. The classification evaluation is almost 
perfect but, in this scenario the data are simulated and not real. 
 
The next publication implemented dealing with tracking and classifying drones and birds using 
their kinematic features was presented by V. Mehta et al. [1]. In this research, the combination 
of real and simulated data was used, whereas the real drone trajectories had a flight duration of 
5 seconds. The statistical kinematic features of speed, acceleration, turn rate, curvature and 
heading are used as input to the Bayesian, SVM and Decision Tree classifiers to evaluate the 
performance of the classification of birds and drones. The decision tree model classification 
accuracy is 83.33%. The trajectories data are synthetic as both real and simulated data are used. 
Mehta Varun et al. support that both real data and simulations show promising results in terms 
of classification accuracy, but to further validate this conclusion, it is important in the near future 
to use only real track data and increase the different flying targets trajectories scenarios. 
 
Another research on drone and bird classification which is generally related to the combination 
of micro-Doppler and kinematic features was implemented by T. B. Sarikaya et al. [41]. In this 
publication, SVM supervised learning and the PCA technique are used to reduce the features in 
order to separate in classes the flying objects. The classification accuracy is more than 90%. 
Moreover, the data collection for this literature review approach is implemented using a Ku-band 
(12–18 GHz) surveillance radar. The kinematic features are extracted from velocity, acceleration 
and turn rate, whereas the RF characteristic are extracted from the received signal, but they are 
not further analysed and presented in the publication.  
 

2.6 Classification using Machine Learning  

 
The classification of birds and drones from their kinematic features is implemented with machine 
learning techniques. The need to classify data in order to create patterns, that can provide 
important information about the structure of the data and the features that they represent, has 
driven the development of machine learning technology. Machine learning is the scientific study 
and development of algorithms and statistical models, that perform a specific task without being 
explicitly programmed, while they are used in many applications. These types of algorithms 
improve computer systems and use the known data to create patterns and predict information 
from unknown received data after training the model [44] [45]. 
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Data types differ on many different occasions and there is no specific algorithm for all types that 
is capable of solving every problem. Therefore, the nature of the problem and the known data 
determine the type of algorithm that can be used on that particular occasion. Consequently, 
machine learning is divided into three main categories: supervised, unsupervised and 
reinforcement learning [46]. 
 
The first category of machine learning is supervised learning, which uses functions that map an 
input to a specific output, based on the input-output pairs used to train the ML model. The 
supervised machine learning category uses data that is tagged with a set of labels. Labels can be 
defined as a target variable that is numeric, and each label characterizes a class. More specifically, 
labels are defined based on a feature that is different for each class. The patterns learned from 
the training dataset are applied to the test dataset to make a classification or prediction, as Figure 
17 shows. Certain supervised ML models are the Decision Tree and the KNN [44].  
 

 
Figure 17: Supervised Learning: the system sees the feature, that indicates if the flying object is either a bird or a drone (label), 

and learns how to classify an unknown object. 

 
Decision tree is a machine learning algorithm that explores decisions, choices and outcomes in a 
tree representation. The nodes and edges in the graph represent the decision tree, which are the 
events or choices and the decision rules or conditions. In this way, the classification is 
implemented and the model is trained to classify new unknown feature data into each class [46]. 
 
The KNN classifier is a supervised machine learning method that uses distance metrics to classify 
the new unknown object class. The Euclidean distance between the new data and the neighbors 
is calculated, while the K neighbors with the smallest distance are selected. The new data is 
assigned to the class in which the majority of the neighbors belong. The number of neighbors is 
selected with respect to the study case. The KNN classifier can be applied to multi-class problems, 
and predict to which of these classes a new unknown object belongs to [47]. 
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In most cases, datasets do not have predefined labels, so supervised learning is not applicable. In 
this case, unsupervised learning is used because the data are first classified into different groups 
and then labels are assigned to these groups. Unsupervised learning is the second category of 
machine learning and there are no feature labels or input-output relationships to extract 
classification patterns and train the model. However, the unsupervised learning algorithms 
discover and create structures from the dataset and create clusters based on these discovered 
patterns. The division into different clusters is achieved by metrics, such as the distance to the 
classes, i.e. how close the features data are to the data of each class. In this way, the data is 
assumed to belong to the class, whose data have the smallest distance. Clustering is then 
implemented by separating the different classes presented [44] [48]. 
 

 
Figure 18: Unsupervised Learning: a training set with birds and drones. The clustering algorithm aims to group them into 
categories based on certain criteria (e.g. RCS; velocity; altitude flight etc.). The algorithm creates boundaries between the 

clusters. 

 
K-means is an unsupervised learning technique that uses the training dataset to classify the data, 
into a specified number of clusters. The K-means algorithm predefines the k centers and a 
different class will be created around each center. The best classification is achieved when the 
centers are far from each other to avoid overlapping. As the number of clusters is defined in 
advance and their centers are randomly selected, the data are assigned to the closest center. The 
center is moved to the new center of the newly created cluster. This process continues until the 
clusters and their centers are no longer reassigned. In this way, the final clusters are created using 
distance metrics and contain data with similar characteristics [44] [49]. 
 
A machine learning technique that imitates the way humans naturally learn by example is called 
deep learning. Deep learning models are trained to perform the classification directly from 
images, sound and text by using a broad set of unstructured data and multilayer neural network 
architectures. Two significant categories of neural networks that lay the foundation for most pre-
trained models in deep learning are the Convolution Neural Networks (CNN) and Recurrent 
Neural Networks (RNN) [50]. 
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Deep learning models are not fully interpreted and are often referred to as ‘black boxes’. For this 
reason, when the importance of features needs to be examined, classic machine learning 
algorithms are used. Furthermore, in cases where the data amount is small, deep learning is also 
not so effective, because it requires extremely large data sets to accomplish high performance. 
Such enormous datasets are not easily collected [51]. On the other hand, classical ML algorithms 
such as KNN and random forest often outperform deep networks for smaller datasets. Thus, in 
the classification of birds and drones, where the dataset is limited and the importance of feature 
have to be observed, classic machine learning techniques are preferred. 
 

2.7 Gaps in the Literature - Novelty 
 
In the radar domain, there are many techniques that classify flying objects, such as the HERM 
and JEM, but they are not applicable to the classification of birds and drones. The only existing 
bird and drone classification methods depend on the micro-Doppler effect, but they have some 
limitations to provide the micro-Doppler signature of birds that do not flap their wings, drones 
that have covered blades and flying objects at long detection ranges.  
 
As the micromovements of birds and drones are not captured by the radar, the need to explore 
different approaches is generated. Specifically, tracking flying objects, in order to observe 
possible differences in their flight behavior, is a relatively new approach and very few researches 
are published. Moreover, the majority of these researches use simulated or hybrid and not real 
bird and drone data. The real bird and drone data have limitations, such as the labels that indicate 
the class of the objects are not provided, or the fact that many different to birds and drones data 
are involved in the raw data.  
 
Thus, the few publications on flying objects track analysis and kinematics to classify birds and 
drones are not fully explored, while the realistic cases that use real tracks from radars are also 
not examined. Further investigation of bird and drone classification using their kinematic 
signature, which is little explored, is the gap in the literature that this master thesis examines. 
 

2.8 Summary of the chapter 
 
This chapter examines an analysis of birds and drones, their tracking with surveillance radars and 
the existing flying targets classification techniques. The most relevant state-of-the-art 
publications regarding their classification are also provided and they are summarized in the 
following Table 3. The machine learning adequacy to the classification of birds and drones in 
contrast to other techniques, such as deep learning, is also presented. Finally, the gaps in the 
literature that motivated the implementation of this research are analyzed. 
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Reference Features Advantages Disadvantages 

[11] 
Kinematic Signature 

and 
Micro-Doppler Signature 

-Good classification 
performance 

-Many types of drones 
used to generate data 

-Classification with 
simulated data, while real 

case scenarios did not 
research 

-Kinematic features are 
not presented 

[43] Kinematic Signature 

-High classification 
accuracy of 85% 

-Real bird and drone data 
were used 

-Precipitation data are 
similar and overlapped 

with bird data 
-Speed and position data 
are not separated on x, y 

and z axes 
-Curvature and 

acceleration features are 
not used 

[40] 
Kinematic Signature 

and 
RCS related  

-Classification evaluation 
for each feature (indicate 
each feature importance) 
-Classification accuracy of 

100% 

– The received data is a 
mixture of bird, aircraft 

and simulated UAV 
tracks. 

[2] 
Kinematic Signature 

and 
RCS related 

-Classification accuracy of 
99.3% 

-Both kinematic and RCS 
features used for 

classification 
-Simulated data used for 

the classification 

[1] Kinematic Signature 
-Classification accuracy of 

83.33% 
-Combination of real and 

simulated data 

[41] 
Kinematic Signature 

And 
RF related 

-Classification accuracy 
higher than 90% 

-Real bird and drone data 
were used 

-Features used for the 
classification are not 

presented 
-Data cleaning process 

before applying 
unsupervised machine 
learning to generate 

clusters is not provided 
-The evaluation 

procedure of the cluster 
reliability is not 

presented 
Table 3: Summary of the most relevant existing publications that use the kinematic signature for classification of drones and 
birds with analysis of advantages and disadvantages. By kinematic features it is meant the extraction of features from the 

position and velocity radar tracks. 
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3 Problem Analysis 
 

This chapter presents an analysis of the kinematic features that are used for the classification of 
birds and drones. The extracted kinematic features of Low-Slow-Short (LSS) targets tracked by 
surveillance radars are presented in Section 3.1, while an analysis of how these features are 
processed is provided in the next Section 3.2. 
 

3.1 Extracted Kinematic Features of Low-Slow-Short (LSS) Targets Tracked by 
Surveillance Radars 

 
Tracking a target with surveillance radars can provide kinematic features, that can be created 
from position and velocity data of the target trajectory. Feature reduction techniques are applied 
since certain features can provide similar information, because they are derived from position 
and velocity measurement data. The generated kinematic features are used as input to machine 
learning classification algorithms to classify birds and drones and evaluate the accuracy of their 
discrimination [41]. 
 
Moreover, feature information is contained in each tracking point, while birds and drones have 
a flight speed of around 20m/s and they can be properly detected by radars even several 
kilometers away. In particular, according to the literature researches [1], [2], [40], [41], [42] and 
[43] the following features can provide birds and drones kinematics information. So, they can be 
used to generate kinematic features that are able to efficiently distinguish birds from drones. The 
statistical values of the mean and standard deviation parameters of the speed, acceleration and 
displacement, as well as the heading and curvature are the extracted kinematic features. These 
kinematic features are presented and analyzed below. The coordinate system in which these 
kinematic features are applied has as origin the surveillance radar. The coordinate axes are the 
x, y and z as Figure 19 shows. 
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Figure 19: A geometry of the radar plus a drone. Angles α and β are the radar azimuth and elevation angles respectively. The 

reference is (X,Y,Z=0). 

 

3.1.1 Average Speed 

 
The average speed of the selected trajectory duration time interval is one of the most important 
features because it is used as a common feature to create other ones. In this way, the average 
speed is a classification feature that provides direct information to drones and birds. Average 
speed is also fundamental and dominant [2].  
 

umean =
1

N
∑ ui  

N
i=0  (3.1) 

 
The above equation (3.1) describes the average speed of the total target observation time. N 
defines the total number of tracks and ui the measured speed at each track. 
 

3.1.2 Standard Deviation of Speed 

 
The speed deviation along the x, y and z axes, as well as the total standard deviation of the speed 
magnitude, indicate information between different flying objects and their behavior. In 
particular, the standard deviation indicates if the speed values of the trajectory tracks deviate 
from the mean speed value. The below equation (3.2) describes the standard deviation of speed 
for the selected trajectory observation time [43].  
 

ustd = √∑
(ui−umean)2

N
N
i=1   (3.2) 
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3.1.3 Average Heading 

 
The average heading is relevant to a specific flying object trajectory. The flight direction changes 
of the bird and drone trajectories can be different, especially when the flying objects deviate 
from straight line flights. According to [42] drones can have either very small or very big changes 
in their turn rate. Thus, drones heading values can be either very small or very big, whereas birds 
have smaller heading values in a wider range. Concerning the bird and drone behavior, the 
heading feature can provide important information to classify them, whereas heading can be 
applied also in the 2-dimensional x-y space. This is an important advantage, as many radars such 
as the TNL surveillance one, that was used for this master thesis, do not provide the altitude z-
axis information. The following equation (3.3) presents the average heading of the selected 
trajectory tracks i to N. 
 

hmean =
1

N
∑ tan−1 yi− yi−1

xi− xi−1
  

N

i=0
(3.3) 

 
The above equation (3.3) examines how smoothly a flying target changes its direction. In the case 
where two consecutive tracks have the same x and y position tracks, the heading takes the zero 
value. 
 

3.1.4 Standard Deviation of Heading 

 
The standard deviation of the heading indicates the spatial deviation from the average heading 
value. As a result, the behavior and purpose of each flight can lead to different heading 
deviations, which is an important feature for the classification of these two flight targets [43]. 
 

hstd = √∑
∆h(i)

N
N
i=1  (3.4) 

 
This equation (3.4) describes the standard deviation of heading, whereas ∆h is defined as: 
 

∆h(i) = {
(hi − hmean)2, |hi − hmean| ≤ δh

(|hi − hmean| − 360)2, |hi − hmean| > δh

 (3.5) 

 
hmean is the average heading whose computation considers the relationship between 0° and 360°, 
while hi is the heading value at each measurement. Moreover, δh is the threshold for heading 
deviation and it is empirically set to 90° according to [43]. 
 

3.1.5 Maneuverability Factor 

 
While the standard deviation of the heading indicates the position changes of the flight target, it 
does not provide timing information. In contrast, the speed mean value and standard deviation 
provide information in the time domain, while the spatial information is weak. Therefore, the 
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maneuverability factor is a feature that links the spatial and temporal characteristics, to 
determine whether a high-speed target can have large heading information [43]. 
 

mf =
vmean

hstd
 (3.6) 

 
Equation (3.6) presents the maneuverability factor, which unit is {m/s/deg]. 
 

3.1.6 Average Displacement 

 
Average displacement is the mean absolute value of the difference between two consecutive 
tracks. This feature can provide useful information for identifying objects, since drones and birds 
change altitude in very different ways. In particular, a drone can keep its altitude constant, 
whereas migratory birds change their position on the z-axis during long flights. In addition, drones 
can create trajectories with high maneuvers and thus change their position on the z-axis very 
quickly, or have a constant altitude when they hover. Therefore, the average displacement, 
especially on the z-axis, can provide important information for detecting flight targets. The 
following equation (3.7) presents the average displacement [40]. 

dmean =
1

N
∑ |di+1 − di|

N

i=0

 (3.7) 

 

di is defined as: di = √xi
2 + yi

2 + zi
2  

The average displacement can also be measured on each axis as the following equations (3.8), 
(3.9) and (3.10) provide: 

 

xmean =
1

N
∑ |xi+1 − xi|

N

i=0

  (3.8) 

 

ymean =
1

N
∑ |yi+1 − yi|

N

i=0

  (3.9) 

 

zmean =
1

N
∑ |zi+1 − zi|

N

i=0

  (3.10) 

 

3.1.7 Standard Deviation of Displacement  

 
The standard deviation of displacement provides the deviation of x, y and z axes position values, 
during the selected trajectory time of an object. Since drones can have very large or almost no 
changes in their altitude values, the deviation of their position can be either large or small. 
However, position changes on the z-axis for bird flights could cover a wider range.  
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dstd = √∑
(di−dmean)2

N
N
i=1  (3.11) 

 

xstd = √∑
(xi − xmean)2

N

N

i=1

 (3.12) 

 

ystd = √∑
(yi − ymean)2

N

N

i=1

 (3.13) 

 

zstd = √∑
(zi − z)2

N

N

i=1

 (3.14) 

 
The above equations (3.11), (3.12), (3.13) and (3.14) provide the standard deviation of the 
displacement on the x, y and z axes, as well as the average standard deviation of the displacement 
[40]. 
 

3.1.8 Average Acceleration 

 
The average acceleration feature provides the way a flying object changes its speed over time. 
Comparing the simulated data in Chapter 4, the acceleration values of drones are higher than 
those of birds because they change direction very quickly. Thus, this function could provide useful 
classification information about birds and drones, while the equation (3.15) represents the 
average acceleration [40]. 
 

𝑎𝑚𝑒𝑎𝑛 =
1

𝑁
∑

𝑣𝑖+1−𝑣𝑖

𝑡𝑖+1−𝑡𝑖

𝑁

𝑖=0
  (3.15) 

 

3.1.9 Standard Deviation of Acceleration 

 
The standard deviation of acceleration indicates the deviation of acceleration values from the 
mean value. The flying objects whose acceleration deviate from the mean acceleration have 
more random trajectories. Thus, the standard deviation of acceleration provides individual 
information about birds and drones when the flying objects do not fly at constant flight speed. In 
addition, this feature can also be separated along each x, y and z axes, while the equation (3.16) 
indicates the standard deviation of acceleration [40]. 
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𝑎𝑠𝑡𝑑 = √∑
(𝑎𝑖−𝑎𝑚𝑒𝑎𝑛)2

𝑁
𝑁
𝑖=1   (3.16) 

3.1.10 Average Curvature 

 
The curvature 𝜃 is a feature that measures if a flight trajectory deviates from a straight-line path. 
The trajectories that are close to straight flights or do not provide changes in their direction have 
curvature values near zero, whereas when a flying object changes its directory and deviates from 
the straight-line path, the curvature feature increases. The important advantage of this feature 
is that it can be calculated in two-dimensional space. As many radars do not provide altitude 
information on the z-axis, the curvature characteristic can be examined on the x-y plane. The 
mathematical equation (3.17) indicates the curvature of the selected trajectory tracks [42]. 
 

θ =
1

N
∑ cos−1 a2− b2−c2

2bc

N

i=0
 (3.17) 

 
In the above equation (3.17) a, b and 𝑐 are the Euclidian distances from (xi+1, yi+1) to 
(xi−1, yi−1), from (xi, yi) to (xi−1, yi−1) and from (xi+1, yi+1) to (xi, yi) respectively.  
 

3.2 Kinematic Features Processing 
 
The surveillance radar provides tracks, and specifically the position and velocity information, at 
each detection of the trajectory of the flying objects. The tracks of each trajectory are applied to 
the already mentioned kinematic formulas, in order to extract the kinematic features for each 
selected trajectory. By applying this procedure to all trajectories that are detected from the radar, 
the entire dataset is generated. 
 
Tracks preprocessing, is an important preliminary step for extracting the kinematic features that 
will be used to train the ML model [52]. For example, in the study case of the classification of 
birds and drones with data received from the TNL surveillance radar, targets with RCS and speeds 
values above -5dB and 40m/s respectively are removed, because the raw data includes 
pedestrians, cars and ocean waves that are not useful for that classification problem. The filtered 
data are applied to the equations of Section 3.1, in order to generate the kinematic features. 
 
Features scaling is an essential step during the pre-processing of data, before entering the ML 
model. Scaling is a process of normalizing features in the same range, since they may have data 
at different numerical scales. One of the most common techniques for features scaling is the 
normalization, which bounds the features values between two numbers such as 0 and 1. For 
example, in the case of the classification of birds and drones, the heading and the average speed 
features have different values range, as mean velocities values are from 0 to 40, whereas the 
heading values are in the range from 0 to 80. Therefore, it is urgent to scale the features in the 
same range to not affect the classification results [52]. 
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In the validation state, the entire data set is divided into a training set and a test set. In the 
training set, the features will be used to train the ML model and create different classes based 
on the features. The test data set will be used as input to the ML model, as it should predict in 
which class the test data belong to. In this way, the accuracy of the model will be estimated. The 
training and the test dataset are randomly selected to observe and evaluate the accuracy of the 
model [49]. 
 
The kinematic features for each trajectory that will be applied as input to machine learning 
classifiers are generated from the velocity and position tracks. Thus, they can be correlated, as 
their information could be overlapped. To minimize and select the useful features for classifying 
drones and birds, Sarikaya et al. [41] propose Principal Component Analysis (PCA). PCA is a 
dimensionality reduction method that transforms the data from a higher-dimensional space to a 
lower-dimensional space. Thus, PCA reduces the feature space to a smaller set that can classify 
the different objects. More specifically, the PCA space contains orthogonal and uncorrelated 
principal components. The direction of the PCA space is the variance between the given features 
data and the individual information each feature contains [53] [54]. 
 
The preprocessed kinematic features are applied to machine learning models in order to classify 
birds and drones. Their classification is divided into two parts. In the first part, simulated drone 
trajectories are generated using the 6-DoF quadcopter [55], while migratory bird trajectories GPS 
data are collected from the MOVEBANK database [25]. Both simulated quadcopter and real bird 
features have labels. Thus, the KNN and decision tree supervised machine learning algorithms 
are used in this case. This classification scenario will be analyzed in Chapter 4. The next case is to 
classify real data of birds and drones from a TNL surveillance radar. Since, a limitation in this study 
is the lack of labels, the unsupervised machine learning K-means algorithm will be applied to 
generate bird and drone clusters, as presented in Chapter 5. Figure 20 presents the block diagram 
of the data processing.  
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Figure 20: Block diagram of the data processing. The raw data are filtered from different bird and drone flying objects. These 
data are used to generate kinematic features for each trajectory of the flying objects. Scaling, division of the training and test 

sets, and the PCA technique are applied to the kinematic features before their application to ML models. 
 

3.3 Summary of the chapter 
 
In this chapter, the kinematic features that exist in the state-of-the-art publications, are collected 
and presented. Their mathematical equations are also provided, as they will be used in the bird 
and drone classification cases, in Chapters 4 and 5. The surveillance radar tracks for the 
trajectories of each flying target will be applied to the formulas of Section 3.1, in order to examine 
the kinematic features for the selected trajectory. The data preprocessing is significant, as the 
data filtering from irrelevant to the bird and drone tracks will increase the classification accuracy. 
The procedures of scaling the features in the same range, as well as splitting them into training 
and validation sets, are steps that have to be implemented before applying them to ML 
algorithms. Finally, the PCA importance is analyzed, as the features are extracted from position 
and velocity tracks. Thus, they are possible to contain overlapped information. The two 
classification scenarios, of the 6-DoF quadcopter versus the bird MOVERBANK trajectories and 
the real bird and drones tracked by a TNL surveillance radar, are also presented and will be 
further investigated in the following chapters. 
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4 Classification of Simulated Drones and Real Birds Trajectories Data 
 
In this chapter, the classification between a simulated 6-DoF quadcopter and real MOVEBANK 
bird trajectories is performed. Section 4.1 describes the methodology and design of this 
classification case, while the 6-DoF quadcopter model and the MOVEBANK bird dataset are 
presented in Sections 4.2 and 4.3. The next Section 4.4 shows the importance and applicability of 
different time intervals between two consecutive tracks and the total duration of the trajectory. 
Sections 4.5 and 4.6 present the simulations, as well as the classification of birds and drones, 
respectively. The next Section 4.7 provides the clusters generation case of drones with different 
mass values. 
 

4.1 Methodology and Design 
 
The methodology of the classification between the simulated quadcopter and real bird data is 
shown in Figure 21. The first task is to create the simulated trajectories with the 6-DoF 
quadcopter and separate the real bird data from the MOVEBANK dataset in shorter duration 
trajectories, as the whole dataset contains GPS tracks received over a long period of several days. 
The next step is to derive the umean, ustd, dmean, dstd, amean, astd, hmean and θ kinematic features 
from the trajectories data. The kinematic characteristics are also calculated separately for each 
axis, since important flight differences can be observed on each of them. These features are 
applied as input to the supervised machine learning KNN and decision tree algorithms. Finally, 
the classification evaluation indicates the importance of each feature used to classify birds and 
drones.  
 

 
Figure 21: Methodology of classification between the simulated quadcopter and real bird data. The drone simulated and real 

bird data are used to extract kinematic features, that are applied to the KKN and decision tree classifiers. The classification 
accuracy of the models and the importance of the features are evaluated. 
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4.2 6-Degree-of-Freedom Quadcopter 
 
The 6-DoF quadcopter is the simulation model used to generate drone trajectories in this chapter. 
According to Ahmed et al. [55], 6-DoF quadcopter is a drone simulation model that can perform 
similar results to a real drone. The six degrees of freedom are the movements along the x, y and 
z axes, as well as the roll, pitch and yaw rotation of a quadcopter. The 6-DoF model is 
implemented in MATLABTM and SimulinkTM. Moreover, the control of the flight maneuvers is 
achieved by a PID controller and the mass values of the rigid body can be adjusted by the model 
user [55]. 
 
The dynamics of the 6-DoF quadcopter are explained by Newtons laws. The end point of each 
drone arm has a motor, so 4 motors drive the quadcopter model. The center of gravity of the 
model is the midpoint connecting all four arms of the drone and the length of the arm is the 
distance between the center of gravity and the endpoint where the motor is located, as Figure 
22 shows. Each motor generates a thrust u and a torque t. Thus, the 4 motors generate the 
thrusts u1, u2, u3 and u4 and the torques t1, t2, t3 and t4. The following equations (4.1) and (4.2) 
describe the dynamics of the 6-DoF quadcopter, where Fb is the total force, Mb is the total 
torque, Vb is the velocity and Wb is the angular velocity on the rigid body frame [55]. 
 

Fb
⃗⃗⃗⃗⃗ = M (

dVb
⃗⃗⃗⃗⃗

dt
+ Wb

⃗⃗ ⃗⃗ ⃗⃗ + Vb
⃗⃗⃗⃗⃗ )  (4.1) 

 

Mb
⃗⃗ ⃗⃗ ⃗⃗ = I(

dWb
⃗⃗ ⃗⃗ ⃗⃗

dt
) + Wb

⃗⃗ ⃗⃗ ⃗⃗ × (IWb
⃗⃗ ⃗⃗ ⃗⃗  )  (4.2) 

 

 
Figure 22: The 6-DoF physical quadcopter model, that is used for the generation of the simulated drone trajectories [55]. 

 
Ahmed et al. [55] present the circular motion of the spacecraft which is described in equation 
(4.3). A quadcopter has to overcome its gravity and this force acts only on the z-axis. Equations 
(4.4) and (4.5) give the force and torque of the quadcopter. Equation (4.5) shows that a constant 
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torque is required along the x-axis when Iz is not equal to Iy. This torque is required to maintain 
the roll angle of the quadcopter, which in turn provides the centrifugal force for circular motion. 
In most cases, Iz is not equal to Iy for a quadcopter, since the inequality (4.6) holds for a t-shaped 
UAV object. In this way and in term of quadcopter dynamics, the 6-DoF model is implemented to 
generate drone trajectories. 

 
Fx = mRω̇ (4.3) 

 
Fy = mRω2  (4.4) 

 

Mx = ω2 sin(a) cos(a) (Iz − Iy)  (4.5) 

 
Ix < Iy < Iz  (4.6) 

 
Finally, the uniform motion in 3D space can be represented by the 3D coordinated turn model. 
The received measurements of the state space model of the trajectory are defined as the feature 
vector fi, where fi = [x, uxi

, axi
, y, uyi

, ayi
, z, uzi

, azi
, ωi], is the features target state at each track 

i. The measurements contain the position, velocity, acceleration in the x, y and z axes as well as 
the turn rate [2]. 
 
The input to the 6-DoF quadcopter model is the waypoints of the flight path at a given time. By 
simulating the model, the drone trajectory is generated while the position and velocity 
information is obtained as output. The structure of the trajectories’ generation is shown in the 
following Figure 23. For this master thesis, a script was developed to generate random trajectory 
waypoints, in order to create a user-specified number of trajectories. Since the speed of birds in 
MOVEBANK datasets is about 20m/s, the random waypoint generator examines drone 
trajectories with similar speeds, while the data are received every 0.01 seconds. The mass value 
of the rigid body can be adjusted by the model user [55]. 
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Figure 23: Block diagram for the generation of trajectories using the 6-DoF quadcopter model. The random waypoint generator 

is used to create plenty of different trajectories. 

 

4.3 Birds MOVEBANK Dataset 
 
As was concluded in Section 2.2, there is no realistic approach to generating simulated bird flight 
trajectories. The literature study [11] that classifies birds and drones uses simulated drone and 
real bird data from a bird flights MOVEBANK dataset [25]. In that way, for this chapter, the bird 
trajectories from the MOVEBANK dataset are also examined. Birds position and velocity data in 
the MOVEBANK database are collected from GPS attached to birds, while most birds are 
migratory. In addition, few datasets contain altitude axis information, as most of the data from 
GPS contain only x and y axes velocity and position information. Therefore, the flight path data 
of a pigeon bird flying over Germany was used for this master thesis, because this dataset also 
provided information about the altitude axis. The data are received every 1 second, while the 
total data from GPS are received over many days. Thus, there are enough data to create 
trajectories of shorter duration. 
 

4.4 Time Interval Between Tracks and Total Trajectory Duration 
 
The time interval between two consecutive tracks in the 6-DoF model is 0.01 and is predefined. 
In real case scenarios and specifically the received data from the TNL surveillance radar, the 
tracks data are received almost every 2 seconds. In this way, the simulations are divided into 
three different categories where the time interval between two consecutive tracks is 1, 2 and 4 
seconds. The reason for this selection is that the optimistic scenario of the time interval between 
two consecutive tracks is 1 second, which is rarely observed in real cases. The selection to 
measure a new trace every 4 seconds is a pessimistic scenario, which is also very rare, but could 
be observed in some measurements. The time interval between two consecutive measurements 
is 2 seconds in the third case, as this is a realistic scenario and it is verified from the real TNL radar 
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data. Since the simulations are intended to be as close to reality as possible, it is important to 
investigate whether all three cases provide similar results in the classification evaluation. 
 
Another important simulation parameter is the total trajectory time. In the real bird and drone 
classification case of Chapter 5, it is observed that the majority of trajectories duration is between 
10 seconds to 35 seconds. There are also a few trajectories, with longer or shorter duration of 
this time interval. In that way, it was decided to analyze these time intervals at the simulated and 
real bird flights in this chapter, in order to observe if the different trajectories duration affect the 
classification results. 
 
Specifically, Figure 24 shows the different flight durations of birds and drones with respect to the 
accuracy provided by the decision tree classifier. The specific observation time intervals are 4, 8, 
15, 20, and 30 seconds. It can be observed that the accuracy for all 5 different time intervals is 
around 98%. In that way, it is examined that the different trajectories duration in the time interval 
from 5 seconds to 35 seconds do not affect the classification results. The 4-seconds trajectories 
provide the highest classification accuracy but are also very similar to the other trajectories. The 
reason is that drones, as shown in Figure 25, Figure 26, Figure 27, Figure 28, Figure 29 and Figure 

30, have trajectories with high maneuverability along all x, y, and z axes, while birds have 
smoother trajectories that do not deviate along all axes, because they are migratory birds. In this 
way, the speed values are similar, but the displacement and acceleration of drones are higher as 
they change their direction and position in small time intervals, while birds have very constant 
trajectories in only 4 seconds. For this reason, the 4-seconds flight has slightly higher accuracy.  
 

 
Figure 24: Classification accuracy concerning the total flight time. The classification accuracy of the simulated quadcopter and 

the real bird flights is observed in 5 different ‘flight duration’ scenarios (4s, 8s, 15s, 20s and 30s). The accuracy of each of them is 
higher than 98%. 
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4.5 Simulations 
 
The simulations in the following Figure 25, Figure 26, Figure 27, Figure 28, Figure 29 and Figure 
30 below show the trajectories of the 6-DoF quadcopter and the trajectories of a bird from the 
MOVEBANK dataset. The simulations are divided into 3 categories in terms of the time interval 
between two consecutive tracks. The trajectories of the 6-DoF quadcopter last 34 seconds and 
the flight duration of the pigeon from the MOVEBANK dataset is 30 seconds.  
 
The time interval between two consecutive tracks for the first category is 1 second. Since the 
data from the 6-DoF quadcopters are received every 0.01 seconds, the track update rate is 
downsampled towards 1 second. For the bird data, which are received every second, all 
consecutive data are considered for the trajectory path. Thus, the drone and the birds have 34 
and 30 tracks, respectively. 
 

 
Figure 25: Drones trajectories with 1 second time interval between two consecutive tracks. 

 

 
Figure 26: Birds trajectories with 1 second time interval between two consecutive tracks. 

 
The second dataset provides a time interval of 2 seconds between two consecutive tracks. In this 
way, the tracks for the 6-DoF quadcopter are examined every 200 measurements, since the 
model provides tracks information every 0.01 seconds. The same procedure is used for the bird 
data, as the track update rate is downsampled towards 2 seconds. In this category, the total 
trajectory time is 34 seconds for the drone and 30 seconds for the bird, while the time interval 
between consecutive tracks is 2 seconds, giving 17 tracks for the drone and 15 for the bird. 
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Figure 27: Drones trajectories with 2 seconds time interval between two consecutive tracks. 

 
Figure 28: Birds trajectories with 2 seconds time interval between two consecutive tracks. 

 
The last category consists of received data from the bird and the drone every 4 seconds. In this 
way, all tracks within the time interval of 4 seconds are discarded for both 6-DoF quadcopter 
simulations and real bird data sets. In this scenario, the tracks for the drone trajectory are 8 and 
for the birds are 7, as data are received every 4 seconds for the 34 seconds drone trajectory and 
every 30 seconds for the trajectory of the bird. 

 
Figure 29: Drones trajectories with 4 seconds time interval between two consecutive tracks. 

 

 
Figure 30: Birds trajectories with 4 seconds time interval between two consecutive tracks. 
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The following Table 4 summarizes the three different categories and the time interval between 
the measurements of the trajectories, as well as the total number of different trajectories 
generated, in order to obtain a large number of trajectories for feature extraction, as input to the 
machine learning models. 
 

 

1s Time interval 
Between 2 

Consecutive Track 
updates 

2s Time interval 
Between 2 

Consecutive Track 
updates 

4s Time interval 
Between 2 

Consecutive Track 
updates 

6-DoF Quadcopter 
Simulations 

   

Total Trajectory 
Time Interval 

34 seconds 34 seconds 34 seconds 

Number of 
Generated 

Trajectories 
250 250 250 

Number of Tracks 34 17 8 

Real Bird 
MOVEBANK Dataset 

   

Total Trajectory 
Time Interval 

30 seconds 30 seconds 30 seconds 

Number of 
Generated 

Trajectories 
250 250 250 

Number of Tracks 30 15 7 
Table 4: A summary of the generated trajectories for the three different ‘time intervals between two consecutive tracks (1s, 2s 
and 4s)’ cases. The trajectory duration, the number of the generated bird and drone trajectories, and the number of tracks in 

each of them are presented.  

 

4.6 Classification and Evaluation 
 
The umean, ustd, dmean, dstd, amean, astd, hmean and θ kinematic features were extracted from the 
simulated drone and the real bird trajectories. They are summarized in the following Table 5. The 
PCA technique was also applied to these features. The maneuverability and standard deviation 
of heading features are not applied to this classification scenario, as the azimuth and elevation 
angles information is not provided by the GPS MOVEBANK dataset. 
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Kinematic Feature Symbol 

Average Speed umean 

Standard Deviation of 
Speed 

ustd 

Average Displacement dmean 

Standard Deviation of 
Displacement 

dstd 

Average Acceleration amean 

Standard Deviation of 
Acceleration 

astd 

Average Heading hmean 

Average Curvature θ 

Table 5: Summary of the extracted kinematic features, that are used for the classification of the simulated drone and the real 
bird data. 

 
The input features to the machine learning classifiers are the kinematic features presented in 
Table 5. These features are examined for each of the 250 bird and 250 drone trajectories. The 
kinematic features for the total 500 trajectories are used as input to the supervised machine 
learning KNN and Decision Tree classifiers, while the data are divided into a training and a test 
set. The training data set accounts for 80% of the total input data and the data are randomly 
selected, while the remaining 20% of the total input data are used to test the accuracy of the 
models. 
 
All classification cases, for both the decision tree and the KNN classifiers, were tested 5 times, in 
order to evaluate the precision of the classification accuracy of the models. It is observed that 



37 
  

each time the classifier provided similar classification results. Specifically, Table 6 presents the 
classification accuracy for the decision tree and the KNN models, for the 2 seconds time interval 
between two consecutive tracks. The average accuracy of the 5 times that the models were 
trained, is also estimated.   
 
 

 
2 seconds Time interval Between 2 

Consecutive Tracks 

Average 
Accuracy 

across 
Time 

2 seconds Time interval Between 2 
Consecutive Tracks 

Average 
Accuracy 

across 
Time 

Classifications 
Times 

5  5  

Classifier Decision Tree KNN 

Features 
 

    

PCA -100% -100% -100% -100% -100%- 100% -100% -100% -100% -100% -100%- 100% 

Average 
Displacement 

-77% -74% -77% -73% -76%- 75.4% -80% -79% -75% -74% -74%- 76.4% 

Standard 
Deviation of 

Displacement 
-88% -91% -88% -87% -88%- 88.4% -97% -96% -92% -91% -92%- 93.6% 

Average 
Speed 

-73% -70% -71% -70% -74%- 71.6% -82% -79% -78% -78% -84%- 80.2% 

Standard 
Deviation of 

Speed 
-99% -96% -97% -97% -99%- 97.6% -99% -100% -99% -99% -98%- 99% 

Average 
Acceleration 

-100% -100% -100% -100% -100%- 100% -100% -100% -100% -100% -100%- 100% 

Standard 
Deviation of 
Acceleration 

-100% -100% -100% -99% -100%- 99.8% -100% -100% -100% -100% -100%- 100% 

Average 
Displacement 
at each x, y, z 

axes 

-96% -97% -93% -93% -91%- 94% -91% -92% -92% -94% -89%- 91.6% 

Standard 
Deviation of 

Displacement 
at each x, y, z 

axes 

-97% -95% -97% -96% -94%- 95.8% -94% -89% -89% -86% -87%- 89% 

Curvature -95% -94% -95% -97% -94%- 95% -98% -94% -96% -97% -98%- 96.6% 

Heading -80% -84% -83% -85% -84%- 83.2% -81% -87% -84% -87% -85%- 84.8% 

Table 6: Classification of birds and drones using the decision tree and the KNN models. The time interval between two 
consecutive tracks is 2 seconds and the models are trained and tested 5 times. The classification accuracy each time and their 

average classification accuracy are also presented.  
 
Table 7 shows the results of the classification study case for the simulated quadcopter and the 
real bird flights, by applying the extracted kinematic features of Table 5 to the KNN and the 
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decision tree classifiers, in order to examine the importance of the kinematic features. As the 
accuracy of the models was examined in Table 6, this classification case will be tested once, 
because the goal is to analyze the significance of each feature for the classification of birds and 
drones. The classification accuracy is provided for all three ‘Time interval Between 2 Consecutive 
Tracks’ cases. 
 
 

Time interval 
Between 2 

Consecutive 
Tracks 

1 Second 
2 

Seconds 
4 

Seconds 
1 

Second 
2 

Seconds 
4 

Seconds 

Classifier 
Decision 

Tree 
Decision 

Tree 
Decision 

Tree 
KNN KNN KNN 

Features 
 

      

PCA 100% 100% 100% 100% 100% 100% 

Average 
Displacement 

72% 74% 69% 75% 77% 70% 

Standard 
Deviation of 

Displacement 
91% 89% 91% 95% 94% 91% 

Average 
Speed 

77% 75% 70% 83% 80% 78% 

Standard 
Deviation of 

Speed 
99% 98% 97% 98% 99% 98% 

Average 
Acceleration 

99% 100% 100% 100% 100% 100% 

Standard 
Deviation of 
Acceleration 

100% 100% 100% 99% 100% 99% 

Average 
Displacement 
at each x, y, z 

axes 

94% 95% 98% 95% 96% 98% 

Standard 
Deviation of 

Displacement 
at each x, y, z 

axes 

96% 95% 91% 98% 91% 93% 

Curvature 95% 96% 95% 96% 97% 95% 

Heading 78% 81% 84% 83% 85% 86% 

Table 7: Birds and drones classification accuracy by applying each kinematic feature separately to the Decision Tree and KNN 
classifiers. Three classification cases are presented, concerning the time interval between two consecutive tracks (e.g. 1s, 2s and 
4s). Tracks are used to generate the kinematic features of Table 5. The classification accuracy of this case is used to evaluate the 

importance of each feature. 

 

The evaluation of the classification study for the simulated 6-DoF quadcopter and the real 
MOVEBANK bird flights provided high accuracy results. By applying PCA the accuracy is 100%, 
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because the features with the important information are used to distinguish the flight targets, 
examined from a drone with high maneuverability trajectories and a migratory bird with straight 
line flights. Therefore, the reason for this high accuracy is explored by applying inverse 
engineering techniques. Specifically, the classification accuracy of each feature was presented, 
as it is possible to determine which of these features are responsible for providing classification 
information for birds and drones. As Table 7 shows, the mean and standard deviation of speed 
provide classification with an accuracy of about 70% to 99%. The reason for these results is that 
the flight speed of both birds and drones is about 20 m/s, but birds have more constant speed 
values between 16 and 19 m/s, while drones have speeds between 14 and 30 m/s. Thus, the 
standard deviation of speed provides high classification accuracy.   
 
The next observation is that the acceleration statistics features classify birds and drones with 
100% accuracy. The reason is that drones have trajectories with high acceleration, while birds 
have smoother trajectories without changing their flight direction. Therefore, the acceleration 
related features provide higher values for drones and smaller ones for birds, which is responsible 
for the 100% classification accuracy. This difference between the acceleration related features of 
birds and drones is observed by comparing the simulated quadcopter and real bird data. The 
acceleration related features have to be explored in real case scenarios. 
 
Another observation is that separating the displacement features on each x, y and z axes 
increases the accuracy by more than 91%, since bird trajectories do not show significant 
displacement differences, especially on the altitude axis, while drones change their position along 
all axes and especially along the z-axis.  
 
In addition, the heading and curvature features provide classification accuracy from 78% to 97%, 
because birds fly close to straight lines and change smoother their direction as they are 
migratory, while drones deviate from straight trajectories and have many changes in their 
directions. The curvature feature provides a classification of around 96%, as the simulated drones 
deviate from the straight trajectory, whereas birds fly close to the straight line, as the above 
Figure 25, Figure 26, Figure 27, Figure 28, Figure 29 and Figure 30 show. The heading feature 
examines classification accuracy of around 83%, which is lower than this of the heading feature. 
The reason is that drones change their direction very often, while birds do not, but there are 
many drone direction changes, which are not as strict as the above classification results examine. 
These two features are promising to classify real birds and drones. 
 
The last observation in the classification evaluation is that the classification results are similar in 
all different time intervals between two consecutive tracks as Table 7 presents. This is useful for 
real scenarios since the time interval between two tracks is about 2 seconds for the real TNL radar 
data, while it can be observed that the time interval can sometimes take values close to 1 or 4 
seconds. Since the accuracy of the results for all 3 scenarios is in the same range, similar results 
can be expected for the real case.  
 
The average accuracy values for each kinematic feature across all ML classifiers and all time 
intervals between two consecutive tracks from Table 7 are presented in Table 8. The reason is to 
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provide an overall classification accuracy value for each kinematic feature and thus the 
significance of each one of them, in the classification of the simulated quadcopter and the real 
bird trajectories. Specifically, as it can be seen in Table 8, the average classification accuracy of 
the kinematic features of curvature and heading is 95.66% and 82.83%, respectively. Thus, these 
features will be further investigated in the real case scenarios of Chapter 5. 
 
 

Feature 
Average Classification Accuracy  

for each row of Table 7 

Average Displacement 72.83% 

Standard Deviation of Displacement 91.83% 

Average Speed 77.16% 

Standard Deviation of Speed 98.16% 

Average Acceleration 99.83% 

Standard Deviation of Acceleration 99.83% 

Average Displacement at each x, y, z axes 96% 

Standard Deviation of Displacement at 
each x, y, z axes 

94% 

Curvature 95.66% 

Heading 82.83% 

Table 8: The average accuracy of all three ‘time intervals between two consecutive tracks (1s, 2 s and 4s)’ cases, for both the 
decision tree and the KNN classifiers of Table 7. The overall accuracy for each kinematic feature presents its quantitative 

evaluation in the simulated drone and real bird classification case. 
 

4.7 Clusters Generation for Drones with different mass values 
 
The mass values of the 6-DoF quadcopter can be changed by the user. The equations (4.4) and 
(4.5) indicate that the force and torque are responsible for the motion of the quadcopter. As they 
also depend on the mass values, it is expected that drones with different mass values and the 
same waypoints will have different trajectories at certain times. The input to the 6-DoF 
quadcopter simulation model is the waypoints that the quadcopter follows in a given time. The 
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waypoints were generated using the random waypoint generator, which was presented in 
Section 4.2, by using drones with 5 different mass values for each waypoints input. The generated 
simulated data for drones with different weights are used to create the kinematic features of  
Table 5. These kinematic features are applied as input to the unsupervised learning K-means 
classifier, which was explained in Section 2.6. The output is the creation of 5 clusters, one for 
each mass class, which is visualized in Figure 31. Additionally, 5 centers were chosen to be 
generated, as the quadcopter trajectories were created for 5 different mass values. The reason 
for the unsupervised machine application is to examine the significance of the clusters generation 
when the labels are missing, because in the real case scenario in Chapter 5 the birds and drones 
labels are not provided in the raw data. The following Figure 31 shows the 5 different weight 
clusters in the weight range from 3.5kg to 3.9kg. The same waypoints were used for all 5 different 
quadcopter weights. Numerous trajectories were generated using the random waypoint 
generator. 
 

 
Figure 31: Drone clusters generation using the K-means classifier and the kinematic features of Table 5. Each cluster contains a 

drone class with different weights (3.5kg, 3.6kg, 3.7kg, 3.8kg and 3.9kg). 

 

4.8 Summary of the chapter 
 
In this chapter, the classification of simulated 6-DoF quadcopter and real MOVEBANK bird 
trajectories is analyzed. The simulated quadcopter model and bird flight dataset were presented, 
while the importance of the time interval between two consecutive tracks and the time interval 
of the whole trajectory was also analyzed. The extracted kinematic features were applied as input 
to the KNN and decision tree ML algorithms which classified the birds and drones with 100% 
accuracy. The reason for the high accuracy of the classification results is that the 6-DoF 
quadcopter simulation models produce trajectories with high maneuverability, as the 
quadcopter changes direction very quickly. On the contrary, the bird data provide straighter 
trajectories since it is a migratory bird. The importance of features and the generation of clusters 
were also examined. In the next Chapter 5 the classification of unlabeled real birds and drones 
will be investigated. 
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5 Classification of Real Drones and Birds Trajectories Tracked from TNL 
Radar 

 
In this chapter, the classification of real birds and drones tracked by a TNL surveillance radar is 
performed. Section 5.1 describes the methodology of this classification study, while Section 5.2 
provides the characteristics of the surveillance radar and the data acquisition. The next Section 
5.3 presents the data filtering from different bird and drone targets, while Section 5.4 examines 
the clusters generation and evaluation. Section 5.5 provides a discussion of the results. 
 

5.1 Methodology and Design 
 
In this chapter, the classification case of real birds and drones is analyzed using data from a 
surveillance radar. The methodology is divided into 5 different steps, as Figure 32 shows. The first 
part is the data acquisition from the surveillance radar and their conversion into usable matrices 
forms, while the second step is the data cleaning, as the raw data do not contain information 
that is entirely related to bird and drone tracks. In particular, the tracks could include various 
moving targets. The third part of the methodology is the heading and curvature features 
extraction from the cleaned data, which will be used by the unsupervised machine learning K-
means algorithm to generate bird and drone clusters. The final step is the evaluation of these 
clusters and specifically, the flying objects contained in each cluster. 
 

 
Figure 32: Methodology of the real bird and drone classification, using data that were received from a TNL surveillance radar. 
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5.2 TNL Surveillance Radar and Data Acquisition 
 
The TNL radar used for the classification of birds and drones of this master thesis is an FMCW, X-
band surveillance radar. The data that have the same track ID must be sorted from the initial to 
the final of the measured time values, to generate the trajectory in the correct order. Moreover, 
the data do not contain z-axis information, whereas the labels that indicate the class in which the 
tracks belong to are missing. These measurements were taken over a very long period of several 
days. So, it was impossible to indicate next to each track whether it was a bird or a drone, because 
this method requires a person to be present throughout the experiments, to observe the class of 
each track. 
 

5.3 Data Filtering from Different to Birds or Drones Targets 
 
The data cleaning process is a very important step, as the quality of the data used to extract the 
kinematic features, affects the classification accuracy. The tracks may be pedestrians, bicyclists, 
dogs, ocean waves or other moving objects, while the labels of the objects are missing. So, the 
filtering of birds and drones from other objects must be implemented. The cleaning procedure 
that aims to include only the bird and drone trajectories, relies on the RCS, speed, and 
interpolated tracks data. Since the RCS values of birds and drones are between -10dB and -25dB 
[56] [57], it is decided to exclude all the trajectory data with RCS values below -30dB and above 
-5dB, to have a margin of 5dB for possible radar error in RCS measurements. The next feature 
that affects the data cleaning is the speed values, as drones and birds can have a wider speed 
range from 0m/s to 40m/s. Therefore, tracks with speed values higher than 40m/s are removed 
from the raw data. The next characteristic that is responsible for data cleaning is the interpolated 
data. It is possible that certain consecutive tracks do not correspond to detected tracks, as they 
are interpolated. So, trajectories with more than 3 consecutive interpolated tracks are discarded. 
 
The last characteristic of the data cleaning process is the total observation time. The approach of 
this research is to observe tracks between the short-term and long-term analysis. Thus, the 
trajectory time interval is selected between 10 and 35 seconds. All trajectories with a total 
trajectory time of fewer than 10 seconds are removed from the raw data, while all trajectories 
with a total observation time of more than 35 seconds are split into smaller trajectories with 
different track IDs. All these cleaning procedures, that are applied to the raw data, are listed in 
Table 9. Figure 33 shows the tracks from the surveillance radar at which the above-mentioned 
filtering methods are implemented. Specifically, this figure plots the characteristics of the 
detected target cornering their track ID. These characteristics are the RCS, the average speed, 
the measured time and the internal classification of each track. 
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Characteristic Remaining Data after Filtering 

RCS -5 dB to -30 dB 

speed 0 m/s to 35 m/s 

Interpolated Tracks Number of Interpolated Tracks ≤ 4 

Time Interval between Consecutive Tracks with the Same Track 
ID 

Smaller of Equal to 6 seconds 

Total Observation Time 10 seconds to 35 seconds 

Table 9: Raw data cleaning parameters and assumptions. Objects that are different from birds and drones are removed. The 
filtering characteristics are presented in the first column and their numerical valuers in the second. 

 

 
Figure 33: The average speed, the associated plot number that indicates the interpolated tracks, the time validity which is the 

time of the measurement, and the RCS values of the tracks of the surveillance radar are presented in blue dots. These tracks are 
filtered with the average speed, RCS, time validity between consecutive tracks and interpolated tracks methods. 

 

5.4 Clusters Generation and Evaluation  
 
During data cleaning, the goal was to remove all different to bird and drone tracks. The remaining 
bird and drone data are used to generate kinematic features that are used as input to the 
unsupervised machine learning K-means algorithm. In the previous Chapter 4, the importance of 
the kinematic features due to the classification accuracy was analyzed. A very important 
observation was that birds and drones show flight behavior differences along the altitude axis in 
the simulated case. Also, the heading and curvature features indicated high accuracy 
classification results.  
 
However, in real scenarios, the received data are not as optimistic as these of the 6-DoF model 
and the MOVEBANK dataset. As the speed and position tracks are provided only on the x and y 
axes, the altitude information that could provide birds and drones classification is missing. The 
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mean and standard deviation of speed, acceleration and displacement kinematic features, that 
are used in real scenarios, cannot be separated in each of the x, y and z axes. Therefore, the 
heading and curvature features examined in Section 3.1 are two features that could provide 
classification in this case. 
 
Furthermore, as the labels are missing, unsupervised machine learning techniques are used to 
generate bird and drone clusters. The curvature and heading kinematic features are applied to 
the K-means classifier and the clusters are evaluated. Figure 34 shows the process used to create 
the bird and drone clusters, while the total number of trajectories of the flying objects is 3359. 
 

 
Figure 34: The block diagram of the bird and drone clusters generation. The heading and curvature kinematic features 

application to the K-means classifier creates the bird and drone clusters. 

 
Two clusters have to be created, as one cluster contains the drones and the other cluster the bird 
trajectories. In addition, the clusters must be labeled and accurately indicate the type of flying 
objects they contain. However, the whole dataset is divided into several smaller clusters. 
Combining these smaller clusters, a large drone cluster and a large bird cluster are examined. 
 
The evaluation of the clusters and their separation into bird and drone clusters is a procedure 
that shows the accuracy of the generated clusters. The evaluation of the reliability of the 
generated clusters is shown in Figure 35. 
 

 
Figure 35: The block diagram for the evaluation of the drone and bird generated clusters. The known drone trajectories are 

compared with the generated clusters, in order to create the final bird and drone clusters.  
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The characteristic, which is used for the evaluation of the generated clusters of this master thesis, 
is related to whether the velocity is received from one object or a group of objects that are closely 
spaced and have multiple velocities. Drones have high blade rotation speed in addition to 
directional speed. Thus, the TNL characteristic with values higher or equal to 0.3 increase the 
probability of drone presence, since such values cannot be measured for birds. In that way, it is 
assumed that all trajectories that provide values above 0.3 for this related to wide velocity 
spectrum characteristic belong to drones. These known drone trajectories are used for the 
characterization of the drone and bird clusters, as Table 10 presents, as well as for the evaluation 
of the heading and curvature features accuracy to classify these two flying objects. 
 
The ‘Cluster Visualization’ column of the following Table 10 shows the generation of the different 
numbers of clusters using the K-means algorithm. The trajectories with the TNL characteristic 
values above 0.3, which are known as drone trajectories, are presented in the light grey color on 
the ‘Clusters and Known Drones Trajectories Visualization’ column. The class of the flying objects 
of the rest trajectories is unknown. Each dot on the plots shows the heading and curvature values 
for each trajectory for the entire data set.  
 

Number of Clusters Clusters Visualization Clusters and Known Drones 
Trajectories Visualization 

2 

  

3 

  

6 

  



47 
  

9 

  

12 

  

15 

  

16 

  

17 

  

18 

  

Table 10: Clusters generation of the trajectories of birds and drones, and their comparison with known drone trajectories. The 
second column shows the generation of the different numbers of bird and drone clusters using the K-means algorithm. The third 

column presents the known drone trajectories in the light grey color on top of the generated clusters. 
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Since the light gray trajectories belong to drones and they are contained in certain clusters, it is 
assumed that these clusters contain drone trajectories. Specifically, Figure 36 shows in red color 
the known drone trajectories, while the remaining trajectories, colored in green have no specific 
information indicating whether they represent trajectories of drones or birds. 

 
Figure 36: Known drone trajectories in red color and unknown flying object trajectories in green color. The distinction is 

implemented in regards to whether the velocity is received from one or more objects that are closely spaced and have multiple 
velocities. The probability, that the velocity of a drone is received from a group of closed spaced objects, is higher.  

 
Furthermore, instead of the creation of two clusters, one containing drone and the other bird 
trajectories, more clusters are formed. Specifically, 17 smaller clusters are generated and 
compared with the known drone trajectories. From Table 10 it is observed that 17 clusters are 
many to generate smaller bird and drone clusters. Therefore, the clusters that contain certain 
known drone trajectories are referred to as drone clusters, while the remaining clusters that do 
not have known drone trajectories are referred to as bird clusters. Figure 37 is the final clusters 
generation, in which all the smaller drone clusters are combined in one, while all the rest clusters 
are combined in one bird cluster. The drones cluster contains the trajectories in red color, while 
the green cluster contains the bird trajectories. 
 

 
Figure 37: Generation of the final clusters of drones in red and birds in green color. In the case of 17 clusters in Table 10, the 

clusters that contain known drone trajectories integrate the drone cluster (red). The rest clusters, which do not contain known 
drone trajectories, are incorporated into the bird cluster (green).  
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As Table 11 shows, the total number of trajectories is 3358, while the known drone trajectories 
are 452. After the final clustering generation, which can be seen in above Figure 37, the drone 
trajectories in red are estimated to be 2609, while the bird trajectories are shown in green and 
are 749.  
 
 

 Number of Trajectories 
Entire Dataset 3358 

Known Drones Trajectories 452 

Drones Trajectories after Cluster 
Generation 

2609 

Birds Trajectories after Cluster 
Generation 

749 

Table 11: The number of the trajectories of the whole data set and the known drone trajectories that were used for the 
evaluation of the clusters. The final birds cluster contains 749 trajectories and the drones cluster 2609 trajectories. 

 

5.5 Discussion 
 
The clusters generation and their comparison with the known drone trajectories examined the 
bird and drone clusters in Figure 37. The evaluation of the birds and drone curvature and heading 
features is that they provide information to classify birds and drones, as the known drone 
trajectories are placed in a specific area in the curvature-heading plot as Figure 36 presents. The 
flight behaviors of birds and drones and the way they change their direction place them at 
different positions in that visualization space. So, the heading and curvature information about 
how smooth or strict birds and drones change their direction, as well as how they deviate from 
the straight flight path, can be used to classify bird and drone clusters. The known drone 
trajectories are compared with the generated clusters in the ‘Clusters and Known Drones 
Trajectories Visualization’ column of Table 10. It is observed that 17 clusters are plenty to 
generate smaller bird and drone clusters, which are combined to create the two final birds and 
drone clusters. From Figure 37 it can be observed that when drone trajectories have low 
curvature values, their heading feature covers a wide range from low to high values. When the 
drone curvature values increase their heading is also rising. On the other hand, the trajectories 
of the birds with a low heading, have curvature values in the whole curvature interval, while as 
the heading increases, their curvature takes higher values. It is also observed in Figure 37 that 
drones tend to have higher heading values than birds. 
 

5.6 Summary 
 
The classification of real birds and drones using data from a TNL surveillance radar, is the main 
challenge of this master thesis. The kinematic features that can distinguish birds and drones in a 
realistic scenario were examined. The first task was the data acquisition and filtering. The 
received signal contained detection from many different bird and drone targets. Pedestrians, 
ocean waves, cars, and bicycles were included in the raw data. The kinematic features that were 
used in this classification scenario were the heading and curvature. The clusters generation was 
achieved by applying them to the K-means algorithm, while the bird and drone clusters were 
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characterized using the known drone trajectories. The heading and curvature importance and 
accuracy in classifying birds and drones were also examined, as the trajectories of these two 
flying objects have a different place in the curvature-heading plot. Their flight behavior provides 
differences in the way they change direction or deviate from the straight flight path. In that way, 
the classification of birds and drones was achieved. 
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6 Conclusion and Recommendations 

 

6.1 Conclusion 
 
This thesis goal is to investigate the classification of birds and drones using their kinematic 
features. The flying targets are tracked by a TNL surveillance radar, while the importance of the 
kinematic features that provide their classification is evaluated via an analysis of experimental 
data. These data contain information in regards to whether the velocity is received from one or 
more objects that are closely spaced and have multiple velocities. The main content is 
summarized below as a contribution to answering the research sub-questions set in the 
introduction. 
 
1. Is the classification of birds and drones using radars entirely explored, by the existing proven 
methods? 

 

• In the radar domain literature, the micro-Doppler signature is the only proven existing 
method that classifies birds and drones. Micro-Doppler signature has certain limitations, 
as it is not visible in long detection ranges, due to the weak reflected signal from the 
micromovements of the birds and drones. The covered from conducting materials rotor 
blades and the bird passive flights are additional downsides to the micro-Doppler 
extraction. A gap filler in the occasions, when the micro-Doppler is not assured, is tracking 
the flying targets with surveillance radars and observing the difference in their kinematic 
behavior. The existing publications that examine kinematic features from bird and drone 
tracks, in order to classify them are few. In addition, they use simulated or hybrid data, 
which provide very high classification accuracy. This is controversial in real data cases. In 
that way, the classification of birds and drones using their kinematic properties needs 
further investigation, in order to provide additional information when the birds and 
drones classification is not settled. 

 
2. What observations can be examined from the classification of drones and birds using 
simulated trajectories data by applying supervised learning and how can they be used in real 
case scenarios? 
 

• The simulated 6-DoF quadcopter versus the real birds MOVEBANK trajectories 
classification scenario showed that the separation of the mean and standard deviation 
values of speed and displacement at each x, y and z axes, could classify birds and drones 
with accuracy from 70% to 99%. It was observed that these flying targets change their 
altitude position in different ways. Thus, their z-axis information could be valuable to 
classify them. Furthermore, the heading and curvature features provided classification 
with accuracy from 78% to 97%. The importance of these features was observed in the 
simulated data classification scenario in Chapter 4 and was evaluated in the real data 
classification case in Chapter 5. 
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• The simulated 6-DoF quadcopter generates trajectories that have high maneuverability, 
whereas the migratory birds follow straight flight paths with almost constant speed. Thus, 
the 100% classification accuracy related to acceleration features is too optimistic, as in 
real data scenarios birds and drones have similar average acceleration. 

 

• The time interval between two tracks is about 2 seconds for the real TNL radar data, while 
that time interval can take values close to 1 or 4 seconds. Since, the accuracy of the 
simulated drone versus real bird trajectories for all these 3 scenarios examined similar 
classification results, it is expected that the time interval between consecutive tracks in 
real scenarios does not affect the classification accuracy. 

 
3. What are the kinematic features that provide enough information to distinguish drones and 
birds? 
 

• The clusters generation of the real bird and drone data in Chapter 5 was compared with 
the known drone trajectories. It was observed that these known trajectories were in a 
specific space on the heading-curvature plot in Figure 36. So, the combination of the 
drone known clusters and the generated clusters in Table 10, was used to create the 
complete bird and drone clusters in Figure 37. The features that were used for the 
generation of these clusters were the heading and the curvature, while their importance 
in classifying birds and drones was also examined. The different ways birds and drones 
change their direction, and the way their trajectories deviate from the straight line, were 
observed as well. Thus, these differences in their flight behavior which are translated in 
numbers from the heading and curvature features, were used to classify birds and drones. 

 
4. What are the limitations of using kinematic properties to classify drones and birds?  
 

• Many surveillance radars lack the capability to estimate the altitude position and the 
velocity in the vertical direction, while only the two-dimensional x and y axes data are 
received. In the absence of the altitude axis information, the average speed, displacement 
and acceleration features cannot be used to extract useful information on the two-
dimensional x-y space.  

 
By combining the sub-questions, the main research question ‘How can birds and drones tracking 
provide kinematic features that contribute to the classification of birds and drones and provide 
additional information to the existing radar classification methods?’ is also answered. 
 
Essentially, the observations from both classification study cases in Chapters 4 and 5, showed 
that tracking birds and drones with surveillance radars and extracting the kinematic features of 
curvature and heading, is a method that can classify these two flying objects. In that way, valuable 
information can be added, benefitting those cases when the classification of birds and drones 
with existing radar methods is not guaranteed. 
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6.2 Future Work 
 
Although this research examined the heading and curvature kinematic features importance to 
classify birds and drones, there are shortcomings, that are analyzed in Section 6.1. The main focus 
of the thesis is to extract the kinematic features that are able to classify birds and drones in real 
case scenarios, by tracking targets with surveillance radars. On basis of the results, specific 
directions in which the research can be taken forward are mentioned below:  
 

• The labels that indicate the class in which each track belongs to are missing in the 
available experimental data. Specifically, only a few known drone trajectories are 
provided to characterize and evaluate the birds and drones generated clusters. In 
addition, the altitude information is also not provided. Thus, the separation of the mean 
and standard deviation of speed, displacement and acceleration features on z-axis cannot 
be applied to the real case scenarios. So, the different ways birds and drones change their 
direction along the altitude axis cannot be examined in this research. Moreover, the 
dataset contains different targets from only birds and drones. The cleaning process does 
not assure the removal of all irrelevant to this classification case targets. Thus, a dataset 
with labeled data, velocity and position information on the altitude axis, that contains 
exclusively bird and drone tracks, would be significant for a more advanced study of the 
features proposed in this thesis. 

 

• This research uses classic machine learning algorithms such as the KNN, decision tree and 
K-means. A potential future approach to perform the bird and drone classification is to 
use deep learning models by using a broad set of unstructured data and multilayer neural 
network architectures. Such models are the Convolution Neural Networks (CNN) and the 
Recurrent Neural Networks (RNN). Specifically, bird and drone trajectories data could be 
applied as input to deep learning techniques in order to observe the classification 
accuracy. However, deep learning is not so effective when the data amount is small, 
because it requires extremely large data sets to accomplish high performance. Thus, 
enormous bird and drone labeled datasets need to be collected for their classification 
using deep learning techniques. 
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