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Abstract — This paper discusses a constructive solution of the problem
of the realization of a given (strictly) contractive time-varying system
as the partial transfer operator of a lossless system. The construction
is done in a state space context and gives rise to a time-varying
Ricatti-type equation. It is the generalization to the time-varying case
of the time-invariant Darlington synthesis.

1. INTRODUCTION

The orthogonal embedding problem is, given a causal bounded trans-
fer operator T, to extend this system by adding more inputs and out-
puts to it such that the resulting system X,

s = [ Zn In ] ’
Ty Iz

is lossless: =*X =1,ZZ* =1, and has T as its partial transfer when the
extra inputs are forced to zero: T = %;1. See figure 1. This problem
is also known as the Darlington problem in classical network theory
{1, 2]. Since unitarity of £ implies T°T + T; T, = I, (where T, = 221),
it will be possible to find solutions to the embedding problem only if
T is contractive: /- T"T 2 0.

We will solve the lossless embedding problem for strictly contractive
time-varying systems in a state space context, under the assumption
that the number of states of 7 is finite at any moment. Such an ap-
proach is discussed in {2] for continuous-time time-invariant systems,
and hinges on what is called the Bounded Real Lemma. This lemma
states that T is contractive if and only if certain conditions on the
state space realization matrices are fulfilled. If this is the case, the
conditions imply the existence of a realization for T, that has the
same A and C matrices as the realization of T, and which can be
determined by solving a Ricatti equation. The Bounded Real Lemma
can without much effort be translated to the discrete time context, as
the idea behind it is based on the conservation of energy. Using this
law, a first version of this appears in [3], a resulting Ricatti equation
is stated in [4]. :

While it is clear that, also in the time-varying context, contractivity

| T
244

Te 0

Figure 1. Embedding of a contractive TV system T.
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of T is a necessary condition, it will be shown in the sequel that
strict contractivity of T is sufficient to construct a solution to the
embedding problem. The extension to the boundary case invokes
some mathematical complications (and is omitted here), but results in
almost the same algorithm. The solution to the embedding problem
is shown to depend at each time instant k on the positivity of some
quantity My, which can be computed recursively from the given state
space realization as

M = A;MkAk + B;Bk +
+ [AJMiCic + ByDy) (I - DDy - CMCO™! DB+ CIMIAY -

This recursion is not unlike the recursive solution of the Ricatti equa-
tion that occurs in the time-invariant embedding problem, but now
with time-varying coefficients. In this respect, note that in a Ri-
catti equation as it occurs in e.g., optimal control problems, the term
that is inverted is typically positive automatically, while here we have
(-DyDy—C M «Cr), which can potentially become negative and cause
Mj.1 to become negative (or indefinite) too. The main contribution
of the paper is to show that this recursion does not break down (i.e.,
all M, are uniformly positive), under the condition that T is strictly
contractive and the given realization for T is uniformly controllable.

II. NOTATION AND PRELIMINARIES

The notation in this paper is mostly as in[5], see also [6, 7]. We are in-
terested in bounded causal (“‘upper”) operators that map £2-sequences
u to £y-sequences y via y = uT. With u = (o0 @ w up -0l
and y likewise, we will identify T with its (doubly-infinite) matrix
representation

T Tao T-n T2

T= ;m Tz
11

T2
0 T

(The square identifies the 00-th entry of the matrix.) If T is viewed
as the transfer operator of a non-stationary causal linear system with
input u and corresponding output y then the i-th row of T corresponds
to the impulse response of the system when it is excited at time
instant i. A time-varying state space realization of T has traditionally
the form

Xis1 = XiAi + wiBi
yi = xCi+ wibi
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for all time instances i. Let A; have dimensions N; X Ni;1. The above
indexed time varying description can be collected into one expression
in which is operated on sequences rather than entries, by defining

x = [ x1 @ X X2 ety W
xZ1l = [ x X3 X3 Sle &Y.

In these expressions, x is a generalization of an £; sequence in which
each of the entries x; is an element of a (row) vector space CN‘,
with varying dimensions N; € N, and such that the total energy
1|8 = =% [} is bounded. We say that the above x is an
element of l’q,(CN ), or Z’z" for brevity. We adopt the shorthand “.n” for
the index sequence N with all N; equal to the same integer . The
k-th index shift N® is defined by (N®); = Ni. The shift operator
AR & is defined by (12); = i1 in equation (1), xZ is the
‘next state” sequence. The resulting state space description is

(5 las)

in which A = diag(A)) is a “diagonal” mapping of £} sequences to l’{‘ -
sequences. An equivalent description is obtained via a state space
(ransformation x — ¥'R by an invertible operator R which results in

e[l s ]

Following [6], we denote by &' (8}, €8) the class of bounded operators
& - ). Standard subsets of X are the space of upper (causal),
lower and diagonal operators:

XA +uB
xC +uD

a realization

U = {AeX:AU=0,i>j}
L = {AeX: A;=0i<j}
D =UNL.

E.g., a causal system transfer operator T with n; input ports and no
output ports is an operator in U, 6°). Let F e X. The k-th
diagonal shift on F is F® = Z*kFZk: it shifis F down over k positions
along the direction of the main diagonal. We define the j-th diagonal
Fyj) € D of Fby (Fij)i = F._j; . Hence Fig is the main diagonal of the
operator F, and for positive j, Fy; is the j-th subdiagonal above Fyo).
With this notation, F can formally be written in terms of its diagonals
as F= Y=, ZIF|;), although this expression need not converge at all.
A class of operators that do allow this representation is the sct of
Hilbert-Schmidt operators [6]:

Xy={Fe X: ||Flks= T lIFil3 <=} -

Standard subspaces in A2 are Uy = UANNy, L2 =LKy, D =
L, N, and standard projectors onto these spaces are denoted by P.
In particular, we define Py = Pp,, which maps to the main diagonal.
We typically take inputs and outputs in subspaces of A2, because, €.8.,
an output ¥ in U has rows y; in ¢, that start at time i (for the i-th
row) and thus plays the role of an output in the “future”, with respect
to each time instant i. This collection of outputs {y;} can also be
thought of as an instance of a generalized output sequence which is
isomorphic to Y and which has entries in D: for Y € Uz the diagonal
expansion of Y is ¥, defined by

7=[ro ¥ Yo Sp
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Figure 2. X; and V; matrices are submatrices of T.
This definition keeps entries of Y that are on the same row in Y
also on the same row in ¥, and is useful because it synchronizes the
“future”” to start collectively at the first diagonal entry of the sequence
¥. Analogously, for U € £2Z” 1, the diagonal expansion of U is also
designated by U/, now defined by

U Z'IU[_1]+Z"2U[_2]+~~
i [Uﬁi}} ) ]
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IIL. DIAGONAL EXPANSIONS

In the sequel, we will need the notion of a “top left” part of an
operator T in I/ in the sense of that part of T that maps inputs in the
“past”, £2Z"1, to outputs in the past, £,Z7!, which will be shown to
correspond to the top left part of the matrix representation of T. To
this end, define the operators K and V7 in the following way.

Kt sz_lﬁﬁzz_l,
Vr: ﬁzZ"—)Dz,

UKT =P, 72(UD)
UVy = Po(UT).

We can define operators Kr and Vr that act on diagonal expansions 7
and ¥ of U and Y. Unlike X7 and Vi, these operators have a matrix
representation, which is obtained by reverting to diagonal expansions:
if Y = UKr € L2271 and D = UV € Dy, with U e L3Z7, then the
matrix representations of the operators Kr and Vr such that ¥=0kr
and D = UVt is given by

7(51) 0 Ty
B ]
= 3 =
T S U U =\ T

It is clear from the above that Kr satisfies the relation

T 00---
o= .
Vr Kr

There is a useful connection of 7' with &y and Vr, obtained by select-
ing the i-th entry of each diagonal in Kr and using these to construct
(infinite size) submatrices K; (—oo < i < o) of I?T. The K; are double-
mirrored “top-left” submatrices of T (see figure 2), and can be viewed
as a sequence of time-varying matrices that would be Toeplitz in the
time-invariant case. In the same way, V; is the vector representation
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of the operator Vr, obtained by selecting the i-th entry of the diago-
nal representation of VT. (This technique was used in [5] to construct
time-varying Hankel operators.)

IV. CONTRACTIVITY

A hermitian operator A in X is said to be strictly positive definite if
there exists an £ > 0 such that, for all sequences u in {7, uAu* = euu” .
Notation: A > 0. It is a known result that an operator A is strictly
positive definite if and only if A= A" and A™! exists in X

Definition 1. Let T be a system transfer operator in U. T is strictly
contractive if | - TT* > 0.

Because of the identity I+ T*( ~TT*)'T = (/- T*T)™! it is clear that
[ —TT* > 0 implies that / - T*T > 0 also. Itis straightforward to
show that if T is strictly contractive, then K7 is strictly contractive
on its domain: [ - K7K3 > 0, I - KiKr > 0. We also have that
Ry is strictly contractive: 1 — KrKy > 0,1~ KiKr > 0, and all K;
are strictly contractive. Letting i — o it follows that T is strictly
contractive. Hence contractivity of T, Kr and Kr are equivalent.

Theorem 2. Let T e U be a system transfer operator. If T is strictly
contractive, then

I-TiyTio ~ V5 (- KeKD)™! Vr>0.

PROOF Since T is strictly contractive, Kr and 1'55,' D are also strictly
contractive. Using equation (2), we have that

Ty = [-T'yTio - V3V K
I—K( l)tK( 1) [0)] JO]N TYT T Z 3
TooT K Vr 1- KKy @

From an application of Schur’s inversion formula (see e.g., [8]), it is
seen that this expression is positive definite iff

Q) I-KKr>o0
@) I-TigTo -~ ViVr-ViKr( - KK Kivr > 0.

The first condition is satisfied because T is strictly contractive. The
second condition is equal to the result. [m}

V. CONTRACTIVITY OF A REALIZATION

Let T € U have a state space realization {A,B,C,D}, with A €
D, 512""”). We denote by C the controllability operator:

BGD
BUDAGD
C = | pis3)4 (246D

and we shall say that a realization is uniformly controllable if C*C >
0. (C is an extension of the usual controllability operator to the present
context. It is such that C* is the diagonal expansion of [BZ(I —AZ)” 1*
in £,Z7; its derivation and many related issues are discussed in (5].)
It can be derived that Vr = C - C, and by using the above structure of
C we also have

g2 [B o oen
v —[CA} ch. @

Let the hermitian operator M in DY, &) be defined by
M=cd-KKp'C. )]

M is well-defined if T is strictly contractive. It will play an important
role in the embedding theory to follow in the next section. In that
respect, the following observation is important. The contractivity
condition implies that M 2 0. If in addition the state space realization
is uniformly controllable, C*C > 0, then also M > 0 and invertible.

Theorem 3. Let T € U be a system transfer operator with state
space realization {A,B,C,D}. IfTis strictly contractive, then the
above defined M satisfies the relations |-D*D-C*MC >0, and

MY = A*"MA+B'B +
+ [A"™MC+B'D|(-D'D— C*MCY! [D*B+C*MA] .
If in addition the state space realization is uniformly controllable,
then M > 0.

PROOF The proof is straightforward but tedious, and hence omitted.
It uses the definition of M, equations (2),(4), D = Tyg), Theorem 2, and
is based on an application of Schur’s inversion formula to equation
3. o

VI. ORTHOGONAL EMBEDDING

We will construct a solution to the embedding problem as stated in
the Introduction under the following conditions.

Theorem 4. Let T be a bounded causal LTV operator with ny inputs
and ny outputs: T € UL, &), and let T be a state space realiza-
tion of T. Suppose A € DY ). A solution to the embedding
problem can be constructed if T is strictly contractive and the given
realization T is uniformly controllable. This construction will yield a
lossless realization T for the embedding system T with the following
properties.

(1) T is in UL, 6D, with n = ny + no, i.e., the embedding adds no
more inputs and ny more Outputs 1o those of T. This n cannot be
smaller unless the number of added outputs is allowed to vary in
time.

(2) £ = {Ag,Bs,Cz, Dz} has Az € D, &), where m = max;(N)).
This m cannot be smaller unless the number of added outputs is
allowed to vary in time.

To introduce the strategy to solve the embedding problem, consider
the following simplified problem. Let T & U(¢ 3, £51) be a single-input,
single-output system, with state space realization T € D, &) of
constant dimensions. Then the objective is to find a lossless embed-
ding system X, having two inputs and two outputs, and such that its
state space realization z,

R A C |G R

= 1 B D |Dn 1
1 By Dy D2 1
is unitary. X contains the given realization T, suitably state space
transformed by R (hence Zi; is equal to the given T), and is extended
by matrices Ba, C2, D21, D13, Daz corresponding to the second input
and output. The embedding problem is to find the state transformation
R, and the embedding matrices. The problem can be split into two
parts:
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1. Determine R, By, D21 to make the columns of X, orthogonal,

with
R A C
R
= I B { ! }
I By Da

That is, (Z2)*Zp = 1.

2. Add one orthogonal column X3 to %, to make T = (X, X3]
unitary. The resulting realization T is a diagonal whose entries
are square finite-dimensional matrices, hence this can always be
done.

The key step in the above construction is step 1. With proper care
on the dimensions of the embedding, it is always possible to find
the solution to step 2. In this respect, note that the condition [ is
lossless] implies that the number of inputs of Z is equal to its number
of outputs, and that the condition [Z is unitary] implies that Tisa
diagonal of square matrices and hence that the system order of the
embedding is constant. This detcrmines the minimal system order of
the embedding. The system order can be made smaller (in particular:
equal to the system order of T at any moment) only if the number
of added outputs is allowed to vary in time; we omit a discussion of
this.

We will now present the construction referred to in theorem 4 for the
general case.

Step 1. As before, find a state transformation R and matrices B2 and
D3 such that the columns of X,

R A C RD
= 1 B D ;
! B, Dn

are unitary, i.e., Z2) T =1.

Lemma 5. A solution to step 1. is obtained by putting M=R*R and
solving for M in

MED =A*MA+B*B  +
+[A*MC +B'D]| (I-D'D - C*MCY! [D*B+C*MA] .

The solution M exists under the condition [T is strictly contractive]
and is strictly positive definite if [T is uniformly controllable]. Be-
cause of Theorem 3, it is given in closed form by equation (5).
By € D, ) and Dy € D, G*) are determined as

(I-D*D - C*"MC)}
—(-D"D~C*MCy [D*B +C"MA]

Dy =
B, =

PROOF To solve step 1, compute (£2)*Z,, and put M = R*R. From
the orthogonality conditions the equations mentioned in the theorem
follow directly. At this point, recall Theorem 3, and observe that the
solution to the last equation is precisely given by

M=C'U-KiKpy'c.

Since the realization is uniformly controllable, Theorem 3 asserts that
this M > 0, so that it can be factored as M = R*R with R invertible.
It also follows that D3,D21 > 0, so that Ds cannot have less than «np
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rows, and hence no less than ng inputs must be added to T to yield a
lossless embedding. o

Step 2. Define ) 10 consist of ¥, extended by zero rows to
2/2 c ,D(é-z(mwu«mg)’ [g(—\)):
5 = [,_M_Ow =l ]
1 OKV"'QQXM_”
_ R A C R
- 1 B D 1
1 B, Dn

Find matrices £1 & D™, 5N and T3 € DL, g
in the orthogonal complement of X; such that

E=[Z1 Z/). 23]

is a diagonal of square unitary matrices of constant size (m+ 71 +no).
Put into this form, step 2. is always possible and reduces to a standard
exercise in linear algebra.
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