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Preface

During the coursework of my master, I found out that I was very interested in
the mathematics courses related to physics. Although I found these courses very
difficult, I was very motivated, and I appreciated the beauty of the models. This
also applied to the Quantum Cryptography course given by Stephanie, which really
excited me. In this course, it was the first time for me that the complex mathemat-
ical models used in quantum mechanics were translated to applications in future
technologies. I realised that I was very interested in learning more about this field,
although I also found it very difficult. This challenged me to find a thesis project in
quantum information.

Soon after I started my thesis, I realised that this would be a really challenging
project. In the first few weeks, I learned about stabiliser states, graph theory and
complexity theory which were new topics for me. However, I have always focussed
on topics relevant for the project. This lead to the first results after about 3 months,
the brute-force algorithm and the conjecture (basically chapter 4). Then, I spent
some time trying to prove the conjecture. To do this, I first tried to understand
Bouchet’s result used in the single qubit case. The proof was only about 6 pages,
so this should be do-able right? However, this work is so dense and mathematical
that I never found a way to extend these results. This was an experience that I
learned a lot from.

Quickly after leaving Bouchet’s work, Axel came up with the idea of using gate
teleportation to study the multi-qubit operations on ancilla states. Approximately
the last 5 months of my thesis I have spent realizing this idea and finding out what
it is useful for. This resulted in the extensive chapter 5. Working out the details of
this really frustrated me, but I am delighted with the result. I learned a lot from
debugging my code and my calculations, and this is definitely something that I can
take with me for my next challenge.

To conclude, I am very proud of the report that you are reading right now. I
hope that you learn something from it, just as I did when reading the work of
my predecessors. Furthermore, I am very proud to have been part of QINC (and
Qutech in general) for the last 12 months.
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1
Introduction

The goal of this chapter is to motivate, introduce and summarize the research done
in this thesis. And finally, also present a few remaining research questions in this
field. Section 1.1 starts by introducing quantum internet research from a society
perspective before introducing the research question of this thesis. In section 1.2
it is summarized how this work contributes to the research question. In the third
section of this chapter the outline of this thesis is discussed. Finally, in section 1.4
we shortly discuss a few open questions related to the topic of this thesis. Hopefully,
this chapter sparks the interest in the subject of this thesis and provides directions
for where to find more on the specific results.

1
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1.1. Motivation

Computers and the internet as we know it today have drastically changed the way
we live, the way we communicate and the way we interact with the world around us.
However, there are still things that the current computers and internet can not do.
Therefore, new computing technologies exploiting the laws of quantum mechanics
are actively being investigated in order to open a range of new applications. Such a
computer - a quantum computer - promises to solve certain problems much faster
than the best super computers to date. A network of (small) quantum devices, a
quantum internet, has its own range of applications [1]. The most prominent is
quantum key distribution (QKD), which enables fundamentally secure communica-
tion [2]. Other applications include secure access to a remote quantum computer
[3] and improving observations of distant telescopes [4]. Two key phenomena of
quantum mechanics which make these applications possible are superposition and
entanglement. The superposition principle tells us that a binary system can not
only be in one of the two states of the system, but also in a superposition of the
two. Quantum systems can also be entangled, meaning that a description of one
system also involves describing the other systems.

Currently, there is a race towards realizing the first scalable fault tolerant quantum
computer. Even though a quantum computer outperforms a classical computer in
only a few areas, the impact on society would be huge if suddenly a large quantum
computer would appear today. For example, by using Shor’s algorithm [5] one could
break the encryption we (mostly) use nowadays for our digital communication and
bank transactions. However, the encryption used in QKD can not be broken by
quantum computers. Therefore, when preparing for the era of quantum computers
a quantum internet would be very useful.

Often, quantum protocols ask for a specific input state before starting the actual
calculations. A challenge is to determine how this specific input state, the target
state, is generated. For a quantum internet, the target state could be a highly
entangled state shared between multiple nodes in the network. Then, a network
protocol consumes the target state in order to achieve the goal of the protocol. In
general there are two ways to generate a target state. The first approach is very
straight forward, the target state is generated after the protocol requests the target
state. However, generating remote entanglement is a process which is costly, both
in resources and in time, and quantum memories have relatively short life times.
Therefore, part of the state might be lost before the target state is reached and the
protocol is executed.

The second approach is based on the network generating entanglement in the back-
ground, independent of a specific target state. When a protocol requests the target
state, the network already has some shared entanglement which we call the source
state. When the target state is requested, the source state is then transformed to
the target state by doing local operations. Local operations are typically easier to
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realize and have a smaller error rate compared to non-local operations, especially
in a network setting. However, it is not always possible to transform the source
state to the target state by doing local operations. To determine if this transfor-
mation is possible, an entanglement routing protocol is needed. The goal of this
protocol is to decide which operations are needed to perform the transformation, if
it is possible. When the transformation is non-destructive, i.e. the source state can
be transformed to the target state and vice versa, we will call the source state and
target state equivalent. Furthermore, the protocol should ideally have the following
properties:

• Property 1 (General); The protocol should work for any target state demanded
by the user.

• Property 2 (Compatible): The protocol should be independent of the under-
lying hardware.

• Property 3 (Efficient): As quantum states are short lived the protocol should
be completed quickly, otherwise the quantum state will be lost.

These properties are not easy to satisfy. One obstacle is that the set of all quantum
states grows very rapidly in the number of qubits. This is one of the features
making quantum computing interesting. However, when trying to study properties
of quantum states this rapidly growing set is not convenient. Therefore it is common
practice in theoretical research to use a (smaller) set of states with an acceptable
scaling which still describes the underlying features of all states. For entanglement
routing, graph states turn out to be very good candidates as a subset of states.
Graph states are quantum states described by simple graphs. Therefore, in order
to describe a graph state on 𝑁 qubits only ፍ(ፍዅኻ)

ኼ
bits are needed, compared to

the 2ፍ complex numbers for a general quantum state. For example, this greatly
reduces the traffic in a quantum network from communication about the target
state. Although the set of graph states is strictly smaller than the set of quantum
states, the range of applications is not heavily reduced by only considering graph
states. This is because most quantum internet protocols have graph states as an
input state, for example in quantum secret sharing [6]. Furthermore, a subset of
graph states are a resource for universal measurement based quantum computation
(MBQC) [7]. As MBQC is able to do universal quantum computations, any quantum
protocol can be executed via MBQC. Therefore, when considering only graph states
for entanglement routing protocols, property 1 described above is still satisfied
although not all quantum states are considered. As any stabilizer state can be
transformed by single qubit operations to some graph state [8], the entanglement
routing protocol for graph states can also be used for the more general problem of
deciding whether a stabilizer state can be transformed to another stabilizer state.
Note that for a stabilizer state on 𝑁 qubits, the corresponding graph state and the
necessary operations to reach this graph state can be found in 𝒪(𝑁ኽ). Lastly, an
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entanglement routing protocol based on graph states is not hardware dependent.
Therefore, property 2 of ideal entanglement routing protocols is satisfied.

As we restrict ourselves to graph states, the goal of the protocol reduces to whether
a source graph state can be transformed to a target graph state by only doing local
operations. We will only consider local operations in the Clifford group, as the
action of single qubit Clifford operations mapping graph states to graph states is
known in terms of the underlying graph [8]. Therefore, instead of considering
quantum operations (unitary operations) on graph states, we can consider graph
operations on graphs. A long standing conjecture was that any two stabilizer states
equivalent under unitary operations were also equivalent under Clifford operations.
However, a counter example has been provided recently [9]. It has been shown
that the problem of deciding whether a source graph state can be transformed by
single qubit Clifford operations, measurements and classical communication is -
complete [10]. All these results are obtained in the regime of one-qubit-per-node
networks. The goal of this thesis is to investigate the problem of transforming graph
states when local multi-qubit Clifford operations are allowed. In other words, what
changes when multi-qubit Clifford operations are allowed between some nodes in
the network. This problem has, to our knowledge, not been studied before.

1.2. Summary of main results

In this thesis we analyse the problem whether one graph state (|𝐺⟩, source state)
can be transformed to another graph state (|𝐺ᖣ⟩, target state) by only doing local
multi-qubit Clifford (LMQC) operations, where local refers to qubits inside the same
node. This is formalized in definition 1.1. A graph state where some qubits share
the same node is visualized in figure 1.1.

Definition 1.1 (𝑇-LMQC-equivalence). Given two graph states |𝐺⟩, |𝐺ᖣ⟩ with the
same vertex set 𝑉 and a partition 𝑇 of 𝑉. Two graph states are 𝑇 local multi-
qubit Clifford (𝑇-LMQC) equivalent if and only if there exists a sequence of local
Clifford operations which transforms |𝐺⟩ to |𝐺ᖣ⟩. 𝑇-LMQC equivalent graph states
are denoted as:

|𝐺⟩ ∼ፓዅLMQC |𝐺ᖣ⟩ (1.1)

The problem of deciding whether two graph states are 𝑇-LMQC-equivalent is called
𝑇-LMQC-EQUIV. When 𝑇 consist only of single qubit nodes, this problem reduces to
the single qubit Clifford equivalence problem (SQC-EQUIV). It is known that SQC-
EQUIV can be solved in 𝒪(𝑁ኾ) [8]. On the other side, if all qubits are in the same
node, the problem can be solved in 𝒪(1) as every source state can be transformed
to any graph state on the same vertex set. The main results of this thesis are
summarized below.
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Figure 1.1: A graph ፆ  (ፕ, ፄ) where ፕ  {ኺ, ኻ, ኼ, ኽ, ኾ} and ፄ  {(ኺ, ኻ), (ኺ, ኽ), (ኺ, ኾ), (ኻ, ኼ), (ኼ, ኾ), (ኽ, ኾ)}
with partition ፓ  ({ኺ}, {ኻ}, {ኼ}, {ኽ, ኾ}).

1. We provide an algorithm (algorithm 2) that solves 𝑇-LMQC-EQUIV. This algo-
rithm is referred to as ”brute-force”. The running time of this algorithm scales
exponentially in the size of the graph and in the number of multi-qubit nodes,
but it provides a first tool to study 𝑇-LMQC-EQUIV.

2. A conjecture is presented which is inspired by the graph theory results from
Bouchet [11] for the case the number of qubits per node is bounded by 2.
If the conjecture is true, it can be used to construct an algorithm to solve 𝑇-
LMQC-EQUIV of which the running time scales linearly in the size of the graph
for a fixed number of two-qubit nodes. However, the conjecture in general
does not result in an efficient algorithm. Note that there is one constraint on
the input graph states if this conjecture is used. The conjecture is tested for
all graph states up to 5 qubits for all allowed partitions and for all graph states
on 6 qubits with 1 two-qubit node.

(a) One two-qubit node and single qubit
nodes

(b) Two two-qubit nodes and single qubit
nodes

Figure 1.2: Actual running times of two algorithms for the ፓ-LMQC-EQUIV problem with a) ፓ 
({ኺ, ኻ}, … , {ፕ ዅ ኻ}) and b) ፓ  ({ኺ, ኻ}, {ኼ, ኽ}, … , {ፕ ዅ ኻ}). ”Brute force” is algorithm 2 described in result
1., where ”Gate teleportation” is algorithm 5 mentioned in result 3. The max and average running times
are calculated from at least 50 instances of the ፓ-LMQC problem. The input graph states are random
connected graphs, the partition is such that there is a) one or b) two two-qubit node(s) and all other
nodes are single qubit nodes.

3. We propose another algorithm (algorithm 5) to solve 𝑇-LMQC-EQUIV based
on the famous gate teleportation circuit, which we call ”Gate-teleportation”.
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The algorithm is implemented and tested for instances of the 𝑇-LMQC-EQUIV
problem where the number of qubits per node is bounded by 2. However, the
approach is not restricted to this bound. The running time of this algorithm
scales linearly in the size of the graphs but exponentially in the number of
two qubit nodes. In figure 1.2 actual running times are compared for the two
algorithms (”brute-force”,”Gate-teleportation”).

All algorithms described can be found on Github [12], some examples are given in
appendix A.1. All results in this thesis are steps towards the ultimate goal of solving
the 𝑇-LMQC-EQUIV problem in general, by either proving that it is -complete or
providing an polynomial-time algorithm.

1.3. Thesis outline

The results new in the thesis are presented in chapter 4 and chapter 5.

In chapter 2 we discussed background knowledge needed for the other chapters.
Note that in section 2.3 graph operations (local complementations) are introduced
which are fundamental for this research. Chapter 3 gives a detailed introduction to
transforming graph states. No new results are presented there, except lemma 3.1.
At some places we use different notations compared to literature and we have added
examples. Chapter 4 introduces the 𝑇-LMQC problem and provides a first algorithm
for 𝑇-LMQC-EQUIV (result 1). Furthermore, the conjecture of result 2 is discussed.
Finally, some examples are discussed of 𝑇-LMQC equivalence. In chapter 5 an
algorithm solving 𝑇-LMQC-EQUIV based on gate teleportation is discussed (result
3).

1.4. Recommendations

This thesis aims to be a stepping stone for other people interested in this subject,
as this is the first time, to our knowledge, the 𝑇-LMQC-EQUIV problem has been
studied. To stimulate further research, we will shortly discuss a few open questions.

1. Prove that 𝑇-LMQC-EQUIV is -complete or that there exists a polynomial
time algorithm.

2. What changes when also measurements are allowed? In other words, what
is the computational complexity of deciding if a target state can be reached
from a source state with LMQC operations and Pauli-measurements?

3. Related to conjecture 4.1:
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(a) Prove that conjecture 4.1 is true or false. In order to do this, one probably
has to extend the work of Bouchet [11] or provide a counter example.

(b) Extend conjecture 4.1 to allow for nodes with more than two qubits.

4. Related to algorithm 5 (Gate teleportation):

(a) Does there exists a smaller reduced Clifford set than discussed in theo-
rem 5.1?

(b) When a target graph state can be reached from a source graph state
by doing single qubit operations, local Pauli-measurements and classical
communication, the target graph state is a qubit-minor of the source
graph state. The corresponding decision problem is called the qubit-
minor problem, which is known to be -complete [10]. Is it possible
to reduce the 𝑇-LMQC-EQUIV problem via gate teleportation to the qubit-
minor problem by adding ancilla qubits to the source graph state?

5. In this thesis we have always assumed the partition to be fixed. However,
there are also interesting questions where this is not the case. For example:

(a) Given a source state with only single qubit nodes and the freedom to
choose one location in the partition where a local qubit is added. Can
the target state be reached by local multi-qubit Clifford operations and
Pauli-measurements when one local qubit is added to the source state?

(b) Given a source state and the ability to do one extra CZ between any two
qubits in the graph state. Can the target state be reached by doing SQC
operations after possible applying one CZ gate?

6. Can the results on the computational complexity of deciding equivalence of
graph states can be used in the field of code switching in quantum error
correction? In a future quantum computer, it might be useful to be able to
fault-tolerantly switch between codes, as every code has it’s own advantages
[13],[14]. This fault-tolerant mappings have a certain notion of locality. Can
this notion somehow be mapped to the notion of locality in transforming graph
states?

7. In this research, operations and states are assumed to be perfect. What if
they are not? I.e., what happens when the source state and/or the operations
are noisy?





2
Background

This chapter covers important prerequisite knowledge for the other chapters in this
thesis. The content of this chapter is usually covered in textbooks on quantum
information, graph theory or computer science. Thus, we will discuss most topics
only briefly and provide references for the relevant background material. However,
in the section on graph theory, one important graph operation is discussed which
is fundamental to later chapters. The first section introduces notations used in this
thesis. The other three sections in this chapter can be read separately, and the
reader could only read the ones he/she is not familiar with.

9
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2.1. Notation

First, we introduce the general notation used throughout this thesis. We use
to denote the set of all complex numbers. The set {0, 1} with addition and multi-
plication as in table 2.1 is the finite field of dimension 2, which is denoted by ኼ.
Addition in ኼ corresponds to addition mod 2. Multiplication corresponds directly
to the usual multiplication rules. There are other notations used in literature, for
example 𝐺𝐹(2). The set of 𝑁×𝑁 matrices with elements in ኼ is denoted by ፍ×ፍ

ኼ .
A vector 𝑣 of dimension 𝑁 with elements in ኼ is denoted by 𝑣 ∈ ፍ

ኼ . 𝒰(𝑁) denotes
the 𝑁×𝑁 unitary group, the group of unitary matrices with matrix multiplication as
group operation. Matrices will usually be written in bold.

+ 0 1
0 0 1
1 1 0

(a) Addition in Ꮄ.

× 0 1
0 0 0
1 0 1

(b) Multiplication in Ꮄ.

Table 2.1: Addition and multiplication in Ꮄ.

The direct sum (⊕) of two matrices A and B of dimensions 𝑚 × 𝑛 and 𝑝 × 𝑞
respectively, is defined as in equation 2.1. The tensor product (⊗) of two vertices
𝑣, 𝑤 with dimensions 𝑛, 𝑚 is defined in equation 2.2.

A⊕B =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

[
𝑎ኻኻ ⋯ 𝑎ኻ፧
⋮ ⋯ ⋮
𝑎፦ኻ ⋯ 𝑎፦፧

] 0

0 [
𝑏ኻኻ ⋯ 𝑏ኻ፪
⋮ ⋯ ⋮
𝑏፩ኻ ⋯ 𝑏፩፪

]

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(2.1)

𝑣 ⊗𝑤 =
⎡
⎢
⎢
⎣

𝑣ኻ𝑤ኻ 𝑣ኻ𝑤ኼ ⋯ 𝑣ኻ𝑤፦
𝑣ኼ𝑤ኻ 𝑣ኼ𝑤ኼ ⋯ 𝑣ኼ𝑤፦
⋮ ⋮ ⋱ ⋮

𝑣፧𝑤ኻ 𝑣፧𝑤ኼ ⋯ 𝑣፧𝑤፦

⎤
⎥
⎥
⎦

(2.2)

2.2. Quantum Information

As we will be dealing with quantum states a lot, we will first introduce the notation
used for quantum states. The basis of a classical computer is a classical bit, a zero
or an one. In a quantum computer, quantum bits or qubits are used which can be
either zero, one or a superposition of zero and one. The zero state is denoted as
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|0⟩ = [ 10 ] and the one state as |1⟩ = [
0
1 ]. A (pure) quantum state of one qubit,

|𝜓⟩, is given by |𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ where |𝛼|ኼ + |𝛽|ኼ = 1 and 𝛼, 𝛽 ∈ . This state
can be a superposition of |0⟩ and |1⟩ depending on the choice of 𝛼 and 𝛽. It is
possible to use a different basis and a commonly used one is the plus minus basis:
|+⟩ = ኻ

√ኼ
(|0⟩ + |1⟩), |−⟩ = ኻ

√ኼ
(|0⟩ − |1⟩). A (pure) quantum state of 𝑁 qubits can

be described with the same approach, where 2ፍ−1 pre-factors determine the state.
The set of matrices {1, 𝑋, 𝑌, 𝑍} is called the set of Pauli matrices where:

1 = [ 1 0
0 1 ] , 𝑋 = [

0 1
1 0 ] , 𝑌 = [

0 −𝑖
𝑖 0 ] , 𝑍 = [ 1 0

0 −1 ] (2.3)

One can see that the vectors |0⟩ and |1⟩ are actually the eigenvectors of 𝑍, just like
|+⟩ and |−⟩ are the eigenvectors for 𝑋. The 𝐻 (Hadamard) gate, 𝑆 (phase) gate
are defined as follows:

𝐻 =
1
√2

[ 1 1
1 −1 ] , 𝑆 = [ 1 0

0 𝑖 ] (2.4)

Next to single-qubit gates, we also introduce two-qubit gates. We will mostly use
the controlled-Z (𝐶𝑍) and controlled-X (𝐶𝑁𝑂𝑇) gate. A subscript is used to denote
on which qubit(s) the gate is applied. For 𝑖, 𝑗 as the control and target qubit
respectively, we have:

𝐶𝑍።,፣ = |0⟩⟨0|። ⊗ ፣ + |1⟩⟨1|። ⊗ 𝑍፣, 𝐶𝑍ኺ,ኻ =
⎡
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎤
⎥
⎥
⎦

(2.5)

𝐶𝑁𝑂𝑇።,፣ = |0⟩⟨0|። ⊗ ፣ + |1⟩⟨1|። ⊗𝑋፣, 𝐶𝑁𝑂𝑇ኺ,ኻ =
⎡
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥
⎥
⎦

(2.6)

A few relations between the gates introduced above are given in equation 2.7.

𝑋 = 𝑖𝑍𝑌, 𝑌 = 𝑖𝑋𝑍, 𝑍 = 𝑖𝑌𝑋
𝐻𝑋𝐻 = 𝑍, 𝐻𝑍𝐻 = 𝑋, 𝐻𝑌𝐻 = −𝑌

( ⊗𝑍)𝐶𝑍 = 𝐶𝑍( ⊗𝑍), ( ⊗𝑋)𝐶𝑍 = 𝐶𝑍(𝑍 ⊗𝑋)
(2.7)

Using these equations one can easily show that two different Pauli’s always anti-
commute, i.e. for 𝑃ኻ, 𝑃ኼ ∈ {𝑋, 𝑌, 𝑍} and 𝑃ኻ ≠ 𝑃ኼ, then 𝑃ኻ𝑃ኼ + 𝑃ኼ𝑃ኻ = {𝑃ኻ, 𝑃ኼ} = 0.
When a qubit is measured it is projected onto a certain basis. The outcome will
be either a 0 or a 1, corresponding to the +1 or −1 eigenvalue respectively. After
the measurement, the state is collapsed to the eigenvector corresponding to the
measurement outcome. We usually consider measurements in the Pauli basis 𝑋, 𝑌
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or 𝑍. This corresponds to projecting the measured state to one of the eigenvectors
of the Pauli matrix corresponding to the chosen basis.

Often we only need a subset of all elements of a group to describe all elements in
the group. So a subset 𝑔ኻ, ..., 𝑔፥ (the generating set) for 𝑔ኻ, ..., 𝑔፥ ∈ 𝐺 can be used
to construct every element in 𝐺 (the generated group) under the group operation.
We write this as 𝐺 = ⟨𝑔ኻ, ..., 𝑔፥⟩. Note that a generating set is not necessarily
unique. The one qubit Pauli group (𝒫ኻ) is the group with all Pauli matrices and a
multiplicative factor ±1,±𝑖: 𝒫ኻ = {± ,±𝑖 , ±𝑋,±𝑖𝑋,±𝑌,±𝑖𝑌, ±𝑍,±𝑖𝑍}. Sometimes
the group is defined without the imaginary unit phase, but note that this is not
a group: 𝒫ኻ± = {± ,±𝑋,±𝑌,±𝑍}. A generating set for the Pauli group is given by
⟨𝑋, 𝑍, 𝑖 ⟩. The Pauli group for 𝑁 qubits, 𝒫ፍ, is obtained by taking 𝑁 times the tensor
product with the single qubit Pauli group: 𝒫ፍ = (𝒫ኻ)⊗ፍ. As we will be dealing with
large number of qubits it is convenient to introduce some compact notations. To
denote a 𝑁-qubit state where all qubits are in the state |+⟩, we use:

|+⟩ፍ = ⊗ፍ
።ኻ |+⟩

። (2.8)

The same notation is also used for operators and sets. One example of such a
multi-qubit state is the Greenberger Horne Zeilinger state (GHZ-state):

|𝐺𝐻𝑍⟩ፍ =
⊗ፍ
።ኻ |0⟩

። +⊗ፍ
።ኻ |1⟩

።

√2
=
|0⟩ፍ + |1⟩ፍ

√2
(2.9)

There is a special name for the group of unitary operations which leaves the Pauli
group invariant under conjugation. This group is called the Clifford group 𝒞ፍ where
𝑁 refers to the number of qubits considered:

𝒞ፍ = {𝑈 ∈ 𝒰(2ፍ) ∶ (∀𝑃 ∈ 𝒫ፍ ∶ 𝑈𝑃𝑈ጷ ∈ 𝒫ፍ)} (2.10)

When we restrict ourselves to operations on one qubit, this reduces to the single
qubit Clifford group:

𝒞ፍኻ = {𝑈 ∈ 𝒰(2)ፍ ∶ (∀𝑃 ∈ 𝒫ፍ ∶ 𝑈𝑃𝑈ጷ ∈ 𝒫ፍ)} (2.11)

One of the reasons the Clifford group is interesting is that quantum circuits with
only Clifford operations, Pauli measurements and computational basis initialization
can be simulated efficiently on classical computers [15]. Furthermore, the Clifford
group together with a gate not in the Clifford group forms an universal gate set.
The set {𝐻, 𝑆, 𝐶𝑍} generates the multi-qubit Clifford group [15]. The single qubit
Clifford group is generated by {𝐻, 𝑆} [16].

The size of the Clifford group is not directly clear from the definition. However, the
size of the Clifford is very relevant for the later stages of this thesis. Here we will
discuss the size of the 𝑁-qubit Clifford group [17]. Let 𝐶 ∈ 𝒞ፍ. We will consider the
mapping of a Pauli by the Clifford 𝐶. First, we note that identity must be mapped
to itself, which follows from:

ፍ ↦ 𝐶 ፍ𝐶ጷ = 𝐶𝐶ጷ ፍ = ፍ (2.12)
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Let 𝑃, 𝑃ᖣ ∈ {𝑋, 𝑌, 𝑍}. Then it follows that 𝑃 can not map to 𝑖𝑃ᖣ, because then
= 𝑃𝑃 ↦ 𝐶𝑃𝐶ጷ𝐶𝑃𝐶ጷ = 𝑖𝑃ᖣ𝑖𝑃ᖣ = − . Furthermore, note that if 𝐶𝑃𝐶ጷ is known,

𝐶𝑖𝑃𝐶ጷ is known as a scalar commutes with all matrices. Next, we will need all
non-identity Pauli matrices:

�̄�ፍ = {𝜎ኻ ⊗⋯⊗𝜎ፍ|𝜎። ∈ { , 𝑋, 𝑌, 𝑍}}\{ ⊗ፍ} (2.13)

Then from above reasoning, it follows that it is sufficient to specify how 𝐶 transforms
�̄�ፍ in order to know how 𝑃ፍ ∈ 𝒫ፍ is transformed. Using the fact that 𝑋𝑍 = 𝑖𝑌 and
𝑋𝑋 = 𝑍𝑍 = , it is sufficient to only specify the 𝑋 and 𝑍 part to know how 𝑌 is
transformed. Let us consider 𝐶 ∈ 𝒞ፍ and 𝑃 ∈ �̄�ፍ. We will start from the last pair
(𝑋፧, 𝑍፧), i.e. the 𝑋 and 𝑍 part of the 𝑛th qubit. 𝑋፧ can be mapped to any element
of ±�̄�ፍ. Therefore, there are 2|�̄�ፍ| = 2(4ፍ−1) choices for 𝑋፧. The 𝑍፧ element can
be mapped to any element of ±�̄�ፍ that anti-commutes with 𝐶𝑋፧𝐶ጷ, which gives
ኻ
ኼ
2×4ፍ = 4ፍ possibilities. The same then goes for the 𝑁−1th element of 𝑃, which
finally results in the following expression for the size of the 𝑁-qubit Clifford group:

|𝒞ፍ| =
ፍ

∏
።ኻ

(2 × 4። − 2)(4።) (2.14)

Let us consider this result for the 1-qubit Clifford group. For the 1-qubit group, we
have �̄�ኻ = {𝑋, 𝑌, 𝑍} and let 𝐶 ∈ 𝒞ኻ. Therefore, 𝑋 can be mapped to any element of
±�̄�ኻ = {±𝑋,±𝑌,±𝑍}, which are 6 possibilities. Then 𝑍 can be transformed to any
element of ±�̄�ኻ\{±𝐶𝑋𝐶ጷ}, which gives 4 possibilities. Therefore, |𝒞ኻ| = 6×4 = 24.

Note that in general the size of the Clifford group scales exponentially. For 𝑁 up to
4 the size of the Clifford group is given in table 2.2.

𝑁 |𝒞ፍ|
1 24
2 11520
3 92897280
4 12128668876800

Table 2.2: The size of the Clifford group on ፍ qubits for ፍ up to 4.

One way to represent quantum computations is to use quantum circuits. Lines
represent qubits and rectangles or gates represent unitary operations, a square with
a meter represents computational basis measurements and a double line represents
a classical bit. Figure 2.1 is an example of such a circuit.

For an increasing number of qubits it can be complicated and inefficient to keep
track of all the coefficients. For some pure states it is possible to use a different
description, the stabilizer formalism. In this stabilizer formalism a quantum state
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𝑞ኺ • 𝐻 ✌✌✌

𝑞ኻ ✌✌✌

Figure 2.1: An example of a quantum circuit of two qubits (፪Ꮂ, ፪Ꮃ). This circuit implements the well
known Bell measurements. First a CNOT is applied with ፪Ꮂ as control qubit and ፪Ꮃ as target qubit.
Afterwards a Hadamard (ፇ) gate is applied on qubit ፪Ꮂ. Finally, both qubits are measured in the
ፙ/computational/standard basis. The outcome of the circuit is two classical bits (double lines).

is not described by its coefficients, but it is described by a set of operators which
map the state to itself. We say that the state is stabilized by this set of operations.

Let 𝒮 be a set of 𝑁 independent commuting elements from 𝒫ፍ not containing − ፍ.
The 𝑁-qubit quantum state corresponding to the vector with eigenvalue +1 for all
elements in 𝒮 is called the stabilizer state. Furthermore, 𝒮 is called the stabilizer of
the stabilizer state.

One can directly see that all elements in 𝒮 have to commute, if the elements would
anti-commute the only vector stabilized by these elements would be the zero vector.
The minimum number of independent elements needed to generate 𝒮 is called the
rank (𝑟ፒ) of the stabilizer.

𝑟ፒ ∶= rank(𝑆) = min{𝑛|⟨{𝑠ኻ, ..., 𝑠፧}⟩ = 𝑆, 𝑠። ∈ 𝑆} (2.15)

Every 𝑟ፒ = 𝑁 generating set stabilizes exactly one quantum pure state up to a phase
factor, where 𝑁 is the number of qubits.

2.3. Graph Theory

In this section we will introduce graphs and discuss properties of graphs which turn
out to be useful later in this research. Let’s start with defining a graph.

A graph 𝐺 is a tuple of a set of vertices 𝑉 and a set of edges 𝐸. A vertex 𝑣 ∈ 𝑉 can
be visualized as a node in a network, where an edge 𝑒 ∈ 𝐸 connects two vertices in
this network. An edge 𝑒 is denoted as a starting vertex 𝑢 and a receiving vertex 𝑣:
𝑒 = (𝑢, 𝑣). When the direction of the edge does not matter we have an undirected
graph, i.e. edges are then 2-element subsets of 𝑉. A self connecting edge is an
edge with the same start vertex as end vertex: 𝑒 = (𝑢, 𝑢). A graph where the
number of edges between two vertices is either zero or one, is a graph without
multiple edges. By defining 𝐸 as a set, we already restricted ourselves to graphs
without multiple edges. A graph without multiple edges and without self connecting
edges is called a simple graph. An example is given in figure 2.2. In this thesis we
will only consider simple graphs.
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Figure 2.2: A graph ፆ  (ፕ, ፄ) where ፕ  {ኺ, ኻ, ኼ, ኽ, ኾ} and ፄ  {(ኺ, ኻ), (ኺ, ኽ), (ኺ, ኾ), (ኻ, ኼ), (ኼ, ኾ), (ኽ, ኾ)}.

When there is an edge between two vertices we call the vertices adjacent. The
adjacency matrix Γ of a graph 𝐺 is defined as:

Γ፮,፯ = {
𝑤፮,፯ if (𝑢, 𝑣) ∈ 𝐸
0 otherwise (2.16)

Where 𝑤፮,፯ is the weight of the edge (𝑢, 𝑣). For an unweighted graph all edges
have weight 1 (𝑤፮,፯ = 1 ∀ (𝑢, 𝑣) ∈ 𝐸). The neighbourhood 𝑁፮ of a vertex 𝑢 is the
set of vertices 𝑣 which are adjacent to 𝑢. In other words: 𝑁፮ ∶= {𝑣 ∈ 𝑉|𝑢, 𝑣 ∈ 𝐸}.
The size of 𝑁፮ (|𝑁፮|) is called the degree of 𝑢. A vertex with degree zero, i.e.
|𝑁፮| = 0, is called an isolated vertex. Note that for simple graphs the degree of
a vertex is upper bounded by |𝑉| − 1. A connected graph is a graph where every
vertex is reachable from another vertex by moving only between adjacent vertices.
We use the notation 𝐺\𝑢 for the resulting graph after vertex 𝑢 has been removed
from 𝐺. This notation is also used for removing a set of edges 𝐹 from 𝐺: 𝐺\𝐹.
For two sets (of vertices for example) 𝑉,𝑊 the union of 𝑉 and 𝑊 is denoted by
𝑉 ∪𝑊. For the intersection of two sets we use 𝑉 ∩𝑊. The symmetric difference is
written as a plus sign and is defined as: 𝑉 +𝑊 = (𝑉 ∪ 𝑊)\(𝑉 ∩ 𝑊). With a little
bit abuse of notation, we also use the symmetric difference for flipping edges in a
graph: 𝐺 + (𝑎, 𝑏) ≡ 𝐸[𝐺] + {(𝑎, 𝑏)}.

It could be that at some point we want to, for example, colour some vertices red
and some vertices blue. It would be useful to have a way of labelling which vertices
are red and which are blue. For this we introduce a partition 𝑇 of 𝑉. The partition
of V, (𝐴ኻ, ..., 𝐴፦), is a tuple where every element of the tuple, a part, is a set of
one or more vertices and different parts do not overlap, i.e. ∀𝑖, 𝑗 ∶ 𝐴። ∩ 𝐴፣ = ∅ and
፦
⋃
።ኻ
𝐴። = {0, … , 𝑉 − 1}.

There is one graph operation that we will use often, which is called local comple-
mentation. In chapter 3 we will see how local complementing a graph corresponds
to transforming a graph state with single qubit Clifford operations. Complementing
a graph 𝐺 is the operation where every edge in 𝐺 is removed and every edge not
in 𝐺 is added. The result is the complement of 𝐺, or 𝐺.
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Local complementations

Definition 2.1. Given a graph 𝐺 and a vertex 𝑢 ∈ 𝑉[𝐺]. Local comple-
menting a vertex 𝑢 of 𝐺 refers to complementing the subgraph induced by
the neighbourhood of 𝑢, 𝑁፮. The other parts of 𝐺 are left unchanged. The
resulting graph is denoted by 𝜏፮(𝐺). In terms of the adjacency matrix, local
complementing 𝐺 with adjacency matrix Γፆ on vertex 𝑢 gives the graph with
adjacency matrix ΓᎡᑦ(ፆ):

ΓᎡᑦ(ፆ) = Γፆ + Θ(𝑁፮) mod 2 (2.17)

Here Θ(𝑁፮) refers to the complete graph’s adjacency matrix on the neigh-
bourhood 𝑁፮ of 𝑢 where zero elements are added to match the dimensions
of Γፆ.

0

2

1

43

(a)

ᎡᎲ−−→

0

2

1

43

(b)

Vertex in N0

Complete graph induced on N0

Figure 2.3: An example of local complementing a graph ፆ at vertex ኺ, which we denote by ᎡᎲ on ፆ. The
orange dashed circles represent the vertices adjacent to ኺ, whereas the orange dashed lines represent
the complete graph induced by this neighbours.

2.4. Complexity theory

In this section we will briefly introduce the topics from computer complexity theory
which we will use in this thesis. Computer complexity theory provides a formal
measure of computational complexity of a problem, which makes it possible to
compare the complexity of different problems and algorithms.

When thinking about the complexity of a problem, one of the first measures you
might think about is the amount of time you need to spend on the problem to
solve it. For example for a puzzle of 100 pieces one could ask the amount of
time you will need to solve it completely. The time needed depends at least on 𝑛,
the number of pieces of the puzzle. It is not directly clear in what time you have
to solve the problem in order to receive the label ’fast’. For computers solving
problems there is a common way to denote the complexity of a problem. Let
𝑛 be the size of the problem. Deterministic algorithms which give a solution in
polynomial time (𝒪(𝑛𝒪(ኻ))) are considered to be fast. However, algorithms which
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scale exponentially, 𝒪(2poly(፧)), are considered to be slow. To conclude, polynomial
time algorithms are preferred to exponential time algorithms.

When a certain algorithm runs in exponential time, it might still be useful to know
in more detail how different parameters contribute to this scaling. Fixed parameter
tractable problems scale exponential in one parameter 𝑚 and polynomial in the size
of the input to the problem 𝑛: 𝒪(2poly(፦)𝑛𝒪(ኻ)). For small 𝑚, these problems could
still be solved in reasonable time.





3
Review of transforming graph

states

This chapter is written as an introduction to the field of graph states and the
corresponding transformations. No new results are presented. The topics discussed
here are specifically tailored to the needs of the later chapters. As most of the
topics covered are not standard graduate course content, we will also include some
examples or extra discussion to help the reader gain some intuition. In section 3.1
we start by introducing graph states. The effect on a graph when measuring or
transforming the underlying quantum state is discussed in 3.2. In section 3.3 the
problem of deciding equivalence under single qubit Clifford operations is described
and an efficient algorithm is discussed. The relation between stabilizer states and
graph states is discussed in section 3.4. The goal of section 3.5 is twofold. First it
bundles the section 3.1 and 3.2 by discussing an example of graph state operations.
Furthermore, the well known teleportation circuit is discussed in the graph state
picture. This circuit will be the foundation for the results of chapter 5.

19



3

20 3. Review of transforming graph states

3.1. Introducing graph states

The goal of this section is to introduce graph states and the corresponding mathe-
matical framework. In section 3.1.1 graph states are defined. Afterwards, in section
3.1.2, we introduce the binary representation of stabilizer states and graph states.
This binary representation is used in section 3.1.3 to discuss equivalence of graph
states and stabilizer states.

3.1.1. Introducing graph states

In this section we introduce graph states. We start by giving the definition of graph
states [18].

Graph states

A graph state |𝐺⟩ is a quantum state which directly relates to a graph 𝐺 =
(𝑉, 𝐸). Every 𝑣 ∈ 𝑉 corresponds to a qubit initialized in the state |+⟩ and
every edge (𝑢, 𝑣) ∈ 𝐸 corresponds to a controlled-z (𝐶𝑍) operation between
qubits 𝑢 and 𝑣. I.e.:

|𝐺⟩ = ∏
(፮,፯)∈ፄ(ፆ)

𝐶𝑍(፮,፯) (⊗፯∈ፕ(ፆ) |+⟩፯) (3.1)

A visualization of a graph state is shown in figure 3.1. One commonly used quantum
state is the GHZ-state on 𝑛 qubits. The star graph (figure 3.2) and the complete
graph (figure 3.3) can both be transformed to the GHZ-state by only doing single
qubit Clifford operations. The complete graph on 2 qubits, as shown in figure 3.4,
is equivalent to a Bell pair up to single qubit Clifford operations. Therefore, we will
usually refer to this state as the Bell pair graph state. Note that by doing Hadamards
on the leaves of a star graph, the GHZ-state is obtained.

3.1.2. Binary representation

In this section we will introduce the binary notation for stabilizer states. This is
another way to describe the stabilizer formalism from section 2.2 which will turn
out to be quite useful. The element 𝑢 from the Pauli group can be described up to
a global phase by a vector U = (U፱,U፳) where U ∈ ኼፍ

ኼ by:

𝑢 = 𝑋Uᑩ𝑍Uᑫ ≡∏
ፚ∈ፕ

𝑋ፔᑒᑩ ∏
ፚ∈ፕ

𝑍ፔᑒᑫ (3.2)
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Figure 3.1: A graph state |ፆ⟩ corresponding
to the graph ፆ  (ፕ, ፄ). Every vertex corre-
sponds to a qubit initialized in the |ዄ⟩ state,
every edge corresponds to a ፂፙ gate between
the two vertices.
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Figure 3.2: ፒ{Ꮂ,Ꮃ,Ꮄ,Ꮅ,Ꮆ},Ꮆ, the star graph on the
vertex set {ኺ, ኻ, ኼ, ኽ, ኾ} with centre ኾ.
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Figure 3.3: The complete graph on 5 vertices.

0 1

Figure 3.4: The complete graph on 2 vertices.
This state can be transformed to a Bell pair by
doing single qubit Clifford operations.

It is common to use the following notation for Pauli operators in symplectic vector
form:

1 ↦ (0|0), 𝑋 ↦ (1|0), 𝑌 ↦ (1|1), 𝑍 ↦ (0|1) (3.3)

For a string of Paulis, lets take 𝑋ኻ𝑍ኼ ኽ
ኼ𝑌
ኾ𝑍 for example, on different qubits we find:

𝑋ኻ𝑍ኼ ኽ
ኼ𝑌
ኾ𝑍 ↦ (10010|01011) ∈ ኼ⋅

ኼ (3.4)

There are a few important properties belonging to this binary representation. Before
we state these properties, we first introduce the symplectic inner product P =

[ 0ፍ ፍ

ፍ 0ፍ
].
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Properties binary representation [18]

Letting 𝑢, 𝑣, 𝑤 ∈ 𝒫ፍ with corresponding binary vectorsU,V,W ∈ ኼፍ
ኼ , then:

𝑢𝑣 ∼ 𝑤 ⟷ U+V =W (3.5a)
[𝑢, 𝑤] = 0 ⟷ UፓPW = 0 (3.5b)

A subspace S of ኼፍ
ኼ is called self-dual if and only if:

1. UፓPW = 0 for every U,W ∈ S.

2. if W ∈ ኼፍ
ኼ and WፓPU = 0 for every U ∈ S, then W ∈ S.

There is a one-to-one relation between a stabilizer group 𝒮 on 𝑁 qubits with sta-
bilizer state |𝒮⟩ and the 𝑁-dimensional, self-dual linear subspace S of ኼፍ

ኼ in the
binary representation. Just as before we use the generators of this subspace to
describe it. We do this by listing the generators in the generating set in binary form
as rows of the generator matrix (X|Z). The dimensions of this generator matrix
are 2𝑁 by 𝑁. We know, from the definition of stabilizers, that all elements of the
stabilizer group should commute. From the properties of the binary representation,
specifically equation 3.5, this can be stated in the binary representation as follows:

(X|Z)P(X|Z)ፓ = 0 (3.6)

Furthermore, there is a clear relation between the generator matrix of a graph state
and its adjacency matrix:

Adjacency matrix ∼ generator matrix

The generator matrix for a graph state |𝐺⟩ with adjacency matrix Γ has the
following standard form:

(X|Z) = ( ፍ|Γ) (3.7)

3.1.3. Equivalence of graph states/stabilizer states

In this section we will discuss the question whether two stabilizer states are equiv-
alent under Clifford operations. Therefore, we first introduce the symplectic vec-
torspace. A symplectic matrix is defined as a matrix Q ∈ ኼፍ×ኼፍ

ኼ for which holds
that:

QፓPQ = P (3.8)

A symplectic matrix can be seen as four 𝑁 × 𝑁 matrices organized as two by two
block matrix. It is shown [18] that every Clifford operation 𝑈 corresponds to a
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symplectic transformation Q. Furthermore, every symplectic transformation Q can
be realized as a Clifford operation [19] up to a phase. Two stabilizer states 𝒮, 𝒮ᖣ
are equivalent under Clifford operations if and only if there exists two symplectic
matrices Q, Qᖣ such that Q𝒮 ↦ 𝒮ᖣ and Q𝒮ᖣ ↦ 𝒮. Before we formalize the equiv-
alence of stabilizer states, we first discuss the freedom to choose a generating set
for a stabilizer.

A generating set for a stabilizer is not unique in the sense that there could be dif-
ferent generating sets describing the same stabilizer. To transform one generating
set to another generating set of the same stabilizer, only a basis change is needed.
Note that this is not the same as the symplectic transformations discussed before.
The basis change can be achieved by an invertible 𝑁 by 𝑁 matrix R, and more
importantly a basis change is no physical operation. For two different generator
matrices of the same stabilizer group, it then follows that: (Xᖣ|Zᖣ) = R(X|Z).

Let us now formalize the equivalence of two stabilizers under Clifford operations.
Using the notation introduced previously, there are three equivalent ways to do this.

Equivalence of stabilizer states [18]

Letting 𝒮, 𝒮ᖣ be full rank stabilizers with generator matrices (X|Z),(Xᖣ|Zᖣ).
Then there are three equivalent statements for equivalence of stabilizer
states:

𝒮ᖣ = 𝑈𝒮𝑈ጷ for some 𝑈 ∈ 𝒞ፍ with corresponding symplectic matrix Q
(3.9a)

(Xᖣ|Zᖣ) = R(X|Z)Qፓ for some invertible R (3.9b)

and for some Q ∈ ኼፍ×ኼፍ
ኼ with corresponding 𝑈

(Xᖣ|Zᖣ)PQ(X|Z)ፓ = 0 for some Q ∈ ኼፍ×ኼፍ
ኼ with corresponding 𝑈 (3.9c)

It has been shown [8] that every stabilizer state can be transformed to a graph
state by single qubit Cliffords and that the corresponding Clifford and graph state
can be calculated efficiently. This means that deciding equivalence of two stabilizer
states can be reduced to deciding equivalence of two graph states, because we
can always transform stabilizer states to graph states. Note that every row in the
generator matrix of a stabilizer has a ±1 phase, but after transforming the stabilizer
to a graph state all rows will have a +1 phase. Suppose we have two graph states
|𝐺⟩ and |𝐺ᖣ⟩ with corresponding adjacency matrices Γ, Γᖣ. The remaining question
is whether the two graph states are equivalent according to equation 3.5, where
we will use the third formulation. If we can find a symplectic matrix Q such that
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(Xᖣ|Zᖣ)PQ(X|Z)ፓ = 0 holds, we know that |𝐺⟩ and |𝐺ᖣ⟩ are equivalent (and that
the underlying 𝒮, 𝒮ᖣ are equivalent).

We can write the symplectic matrix Q as follows:

Q = [ A B
C D

] (3.10)

Where A,B,C,D are 𝑁 by 𝑁 matrices with elements in ኼ. Plugging this into
equation 3.9c we find:

ΓᖣBΓ +DΓ + ΓᖣA+C = 0 (3.11)

In order to check whether two graph states are equivalent, we have to findA,B,C,D
such that both equation 3.11 and equation 3.8 hold. This last constraint comes from
the fact that Q has to be a symplectic transformation. In order to do this we can
calculate the basis ℬ of the set of vector space formed by the solutions (A,B,C,D)
for equation 3.11. In order to verify if a solution exists we have to check all possible
combinations of basis vectors in ℬ against the constraint 3.8. As ℬ in general is of
dimension 𝒪(𝑁), this could lead to 𝒪(2ፍ) solutions to check against the symplectic
constraint. We will see later how this number can be reduced.

3.2. Operations and measurements on graph states

Here we will relate Clifford operations to graph operations. First, we relate single
qubit Clifford operations to local complementations. Therefore, we use a compact
notation for an operation 𝑈 on a set of qubits W: 𝑈[𝑊] = ∏።∈ፖ 𝑈።.

Definition 3.1 ([18]). Given a graph state |𝐺⟩ and let 𝑢 be a vertex in 𝐺, i.e.
𝑢 ∈ 𝑉[𝐺]. 𝑈፮ is given as:

𝑈፮ = √−𝑋[𝑢]√𝑍[𝑁፮] (3.12)

Applying 𝑈፮ to |𝐺⟩ corresponds to local complementing the graph 𝐺 at vertex 𝑢,
i.e.:

𝑈፮ |𝐺⟩ = |𝜏፮(𝐺)⟩ (3.13)

𝑈፮ can also be written as 𝑈፮ = 𝑒ዅ።
ᒕ
Ꮆ ፗ

ᑦ
𝑒።

ᒕ
Ꮆ ፙ

ᑅᑦ
. Here we see how local comple-

menting a graph corresponds to single qubit Clifford operations on a graph state.
An example is given in figure 3.5. In general, every single qubit Clifford operation
mapping graph states to graph states can be decomposed in a sequence of local
complementations [8].

One sequence of local complementation deserves its own name, the pivot operation.
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(a)

ᎡᎲ−−→

0

2

1

43

(b)

Vertex in N0

Complete graph induced on N0

Figure 3.5: An example of local complementing |ፆ⟩ at qubit ኺ which we denote by ᎡᎲ on |ፆ⟩. The graph
in figure (b) is denoted by |ᎡᎲ(ፆ)⟩.

Definition 3.2 ([10]). With (𝑢, 𝑣) ∈ 𝐸[𝐺], the graph operation 𝜌፮,፯ takes a graph
𝐺 to 𝜌፯(𝐺) such that:

𝜌፮,፯(𝐺) = 𝜏፯𝜏፮𝜏፯(𝐺) (3.14)

We will now introduce some notation in order to see how a pivot transforms a graph
state directly, i.e. not by doing local completementations. Given that 𝑎, 𝑏, 𝑐, 𝑑 ∈
𝑉[𝐺] are four distinct vertices. To denote the sets of neighbours in 𝐺 of 𝑎 and 𝑏, 𝑎
but not 𝑏 and 𝑎 but not 𝑏 as 𝑁ፆፚ = 𝑁ፚ(𝐺) ∩ 𝑁(𝐺), 𝑁ፆፚ\ = 𝑁ፚ(𝐺)\(𝑁(𝐺) ∪ 𝑏) and
𝑁ፆ\ፚ = 𝑁(𝐺)\(𝑁(𝐺) ∪ 𝑎).

Definition 3.3. Two vertices 𝑐 and 𝑑 are from a different neighbourhood of (𝑎, 𝑏)
if 𝑐 ∈ 𝑁ፆ። and 𝑑 ∈ 𝑁ፆ፣ for 𝑖 ≠ 𝑗 and 𝑖, 𝑗 ∈ {𝑎𝑏, 𝑎\𝑏, 𝑏\𝑎}.

a b

NG
ab

NG
a\b NG

b\a

(a)

ᑒ,ᑓ−−−→
b a

NG
ab

NG
a\b NG

b\a

(b)

Figure 3.6: An example graph state before (left) and after (right) a pivot () on ፚ and . Note that ፚ
and  exchange neighbours. The dotted/dashed lines represent edges corresponding to two vertices
from a different neighbourhood. This edges are complemented by the pivot operation. So for ፱ ∈ ፍᐾᑒᑓ,
፲ ∈ ፍᐾᑒ\ᑓ the edge (፱, ፲) is complemented, i.e. deleted if it was present and added if it was not present.

Then we have that a pivot operation on (𝑎, 𝑏) complements every edge (𝑐, 𝑑) for
which the vertices 𝑐, 𝑑 are from a different neighbourhood of (𝑎, 𝑏). Just as with
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local complementations, it is known which quantum gate(s) correspond(s) to a
pivot. This is the topic of the following lemma.

Lemma 3.1. Given a graph state |𝐺⟩. Assume that (𝑎, 𝑏) ∈ 𝐸[𝐺]. Then Hadamards
on 𝑎 and 𝑏 corresponds to a pivot operation on (𝑎, 𝑏) up to a Pauli-Z on 𝑁ፆፚ, i.e.:

𝑍[𝑁ፆፚ]𝐻ፚ𝐻 |𝐺⟩ = |𝜌ፚ,(𝐺)⟩ (3.15)

Proof. In this proof we will explicitly do the three local complementations corre-
sponding to a pivot on a graph state and see how the corresponding quantum
operations can be simplified. The total proof will consist of 4 steps, first three steps
for a local complementation and the 4th to simplify the final expression. The same
notation as in definition 3.3 is used for the sets of (common) neighbours.

• The first step is to see what operations are applied to |𝐺⟩ by the first local
complementation. Therefore, we use that 𝑁ፚ(𝐺) = 𝑁ፆፚ+𝑁ፆፚ\+𝑏. Then from
the definition of local complementation on graph states it follows that:

|𝜏ፚ(𝐺)⟩ = √−𝑖𝑋[𝑎]√𝑖𝑍[𝑏]√𝑖𝑍[𝑁ፆፚ]√𝑖𝑍[𝑁ፆፚ\] |𝐺⟩ (3.16)

• Using that 𝑁Ꭱᑒ(ፆ) = 𝑎 + 𝑁ፆ\ፚ + 𝑁ፆፚ\, the second local complementation cor-
responds to the following operations:

|𝜏𝜏ፚ(𝐺)⟩ = √−𝑖𝑋[𝑏]√𝑖𝑍[𝑎]√𝑖𝑍[𝑁ፆ\ፚ]√𝑖𝑍[𝑁ፆፚ\] |𝜏ፚ(𝐺)⟩ (3.17)

• For the last local complementation we use 𝑁ᎡᑓᎡᑒ(ፆ)ፚ = 𝑏 + 𝑁ፆ\ፚ + 𝑁ፆፚ to find:

|𝜏ፚ𝜏𝜏ፚ(𝐺)⟩ = √−𝑖𝑋[𝑎]√𝑖𝑍[𝑏]√𝑖𝑍[𝑁ፆ\ፚ]√𝑖𝑍[𝑁ፆፚ] |𝜏𝜏ፚ(𝐺)⟩ (3.18)

• In the final step all these operations will be simplified to see what the effect
is on |𝐺⟩.

|𝜏ፚ𝜏𝜏ፚ(𝐺)⟩ =√−𝑖𝑋[𝑎]√𝑖𝑍[𝑏]√𝑖𝑍[𝑁ፆ\ፚ]√𝑖𝑍[𝑁ፆፚ] |𝜏𝜏ፚ(𝐺)⟩

=(√−𝑖𝑋√𝑖𝑍)[𝑎](√𝑖𝑍√−𝑖𝑋)[𝑏](𝑖𝑍)[𝑁ፆ\ፚ]√𝑖𝑍[𝑁ፆፚ]√𝑖𝑍[𝑁ፆፚ\] |𝜏ፚ(𝐺)⟩

=(√−𝑖𝑋√𝑖𝑍√−𝑖𝑋)[𝑎](√𝑖𝑍√−𝑖𝑋√𝑖𝑍)[𝑏](𝑖𝑍)[𝑁ፆ\ፚ](𝑖𝑍)[𝑁ፆፚ](𝑖𝑍)[𝑁ፆፚ\] |𝐺⟩
(3.19)

Using √−𝑖𝑋√𝑖𝑍√−𝑖𝑋 = √𝑖𝑍√−𝑖𝑋√𝑖𝑍 = 𝐻𝑌 = 𝑖𝐻𝑋𝑍 = −𝑖𝐻𝑍𝑋 we find:

|𝜏ፚ𝜏𝜏ፚ(𝐺)⟩ = (−𝑖𝐻𝑍𝑋)[𝑎](𝑖𝐻𝑋𝑍)[𝑏](𝑖𝑍)[𝑁ፆ\ፚ](𝑖𝑍)[𝑁ፆፚ](𝑖𝑍)[𝑁ፆፚ\] |𝐺⟩
(3.20)
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The next step is to identify some of these operations as stabilizers of |𝐺⟩.
There are actually 2 of them. The first is 𝑋ፚ𝑍𝑍ፍᑒ\ᑓ𝑍ፍᑒᑓ , the other is 𝑋𝑍ፚ𝑍ፍᐾᑓ\ᑒ𝑍ፍᐾᑒᑓ .
Using these both we find:

|𝜏ፚ𝜏𝜏ፚ(𝐺)⟩ = (𝑖)ኽ(−𝑖𝐻)[𝑎](𝑖𝐻)[𝑏](𝑍)[𝑁ፆፚ] |𝐺⟩
= 𝐻ፚ𝐻𝑍[𝑁ፆፚ] |𝐺⟩ (3.21)

In the last linewe disregard global phase. As |𝐺⟩ is a graph state, 𝑍[𝑁ፆፚ] will
flip the phase of every generator with a 𝑋 as a position corresponding to a
qubit in 𝑁ፆፚ.

Thus, it follows that |𝜌ፚ,(𝐺)⟩ = 𝐻ፚ𝐻ፚ |𝐺⟩ when one disregards phases of the gen-
erators and global phase.

There is one more quantum gate which we want to relate to graph operations. It is
a little bit more trivial as it follows from the definition of graph states. The 𝐶𝑍 gate
on qubit 𝑖, 𝑗 corresponds to flipping the edge (𝑖, 𝑗): 𝐶𝑍።,፣ |𝐺⟩ = |𝐺 + (𝑖, 𝑗)⟩.

Next to gates on quantum states one can also do measurements. Here we will dis-
cuss Pauli-measurements. Lets start by introducing the following graph operations
[18]:

𝑍ፚ(𝐺) ∶ 𝐺\𝑎 (remove 𝑎 from 𝐺) (3.22)
𝑌ፚ(𝐺) ∶ 𝜏ፚ(𝐺)\𝑎 (local complement on 𝑎 and remove 𝑎) (3.23)
𝑋ፚ(𝐺) ∶ 𝜌ፚ(𝐺)\𝑎 (pivot on 𝑎 and remove 𝑎) (3.24)

This operations correspond to Pauli-X, Pauli-Y, Pauli-Z respectively measurements
on vertex 𝑎 up to single qubit Clifford operations. In figure 3.7 examples are given
for how Pauli measurements on one qubit could act. In definition 3.4 the explicit
expressions for measuring in a Pauli basis, including single qubit Clifford corrections
are discussed. Therefore, the following notation for projectors is used:

𝑃ፚ።,± = |𝑖,𝑚⟩⟨𝑖,𝑚| , 𝑚 = {
0 for 𝑃ፚ።,ዄ
1 for 𝑃ፚ።,ዅ

(3.25)

where 𝑖 ∈ {𝑥, 𝑦, 𝑧} and 𝑚 ∈ 𝐺𝐹(2). For example, 𝑃ፚ፱,ዄ = |𝑥, 0⟩⟨𝑥, 0| = |+⟩⟨+|. For
convenience we write 𝑍[𝑁]፦ = ∏∈ፍ 𝑍፦ .

Definition 3.4. The effect on the graph when measuring a qubit 𝑣 of graph state
|𝐺⟩ in Pauli-X,Y or Z basis is given as follows:
Pauli-Z
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|𝑧,𝑚⟩⟨𝑧,𝑚|፯ |𝐺⟩ =
1
√2

|𝑧,𝑚⟩፯ 𝑍[𝑁፯(𝐺)]፦ |𝐺\𝑣⟩ (3.26)

=
1
√2

|𝑧,𝑚⟩፯ 𝑍[𝑁፯(𝐺)]፦ |𝑍፯(𝐺)⟩ (3.27)

Pauli-Y

|𝑦,𝑚⟩⟨𝑦,𝑚|፯ |𝐺⟩ =
1
√2

|𝑦,𝑚⟩፯ √(−1)ኻዅ፦𝑖𝑍[𝑁፯(𝐺)] |𝜏፯(𝐺)\𝑣⟩ (3.28)

=
1
√2

|𝑦,𝑚⟩፯ √(−1)ኻዅ፦𝑖𝑍[𝑁፯(𝐺)] |𝑌፯(𝐺)⟩ (3.29)

Pauli-X

|𝑥,𝑚⟩⟨𝑥,𝑚|፯ |𝐺⟩ =
1
√2

|𝑥,𝑚⟩፯ 𝑈፮፱,፦ |𝜏፯𝜏፮𝜏፯(𝐺)\𝑣⟩ (3.30)

=
1
√2

|𝑥,𝑚⟩፯ 𝑈፮፱,፦ |𝑋ፚ(𝐺)⟩ (3.31)

Where

𝑈፮፱,፦ = {
√+𝑖𝑌

፮
𝑍ፍᑧ\(ፍᑦ∪፮) if 𝑚 = 0

√−𝑖𝑌
፮
𝑍ፍᑦ\(ፍᑧ∪፯) if 𝑚 = 1

and 𝑢 ∈ 𝑁፯(𝐺). If |𝑁፯(𝐺)| = 0, 𝑣 is not a connected vertex so by definition in
product state with the rest of the graph state. So the state on 𝑎 is |+⟩.
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(a) The graph
state |ፆ⟩ as
shown in figure
3.1.
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(b) Graph state up
to single qubit Clif-
fords after mea-
suring qubit ኺ of
|ፆ⟩ in the ፙ-basis.
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(c) Graph state up
to single qubit Clif-
fords after mea-
suring qubit ኺ of
|ፆ⟩ in the ፘ-basis.
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(d) Graph state up
to single qubit Clif-
fords after mea-
suring qubit ኺ of
|ፆ⟩ in the ፗ-basis.

Figure 3.7: Overview of the effect of Pauli measurements on graph states up to single qubit Clifford
operations.

It is proven by [10] that for a sequence of local complementation and vertex dele-
tions, we can always do the deletion after the sequence of local complementation.
This is useful when we for example have multiple Pauli-𝑋 measurements. In that
case we can first do the sequence of local complementation and then remove the
necessary vertices. This is formalized in the next lemma:
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Lemma 3.2. ([10], Lemma 2.1) Let 𝐺 = (𝑉, 𝐸) be a graph and 𝑣, 𝑢 ∈ 𝑉 be vertices
such that 𝑣 ≠ 𝑢, then

𝜏፯(𝐺\𝑢) = 𝜏፯(𝐺)\𝑢

3.3. Transforming graph states with single qubit Clif-
fords

In this section the single qubit Clifford equivalence of graph states is discussed. Be-
fore focussing on Clifford operations, we will start with a wider view. We distinguish
single qubit unitary operations (SQU) and single qubit Clifford operations (SQC) .
Two graphs, 𝐺 = (𝑉, 𝐸) and 𝐺ᖣ = (𝑉, 𝐸ᖣ), are called SQU-equivalent if there exists
an 𝑈 ∈ 𝒰ፍኻ such that this unitary maps |𝐺⟩ to |𝐺ᖣ⟩ (|𝐺ᖣ⟩ = 𝑈 |𝐺⟩). When we map the
stabilizer 𝒮 by this unitary the resulting set, {𝑈𝑠𝑈ጷ|𝑠 ∈ 𝒮}, always stabilizes |𝐺ᖣ⟩,
i.e. every element acts as identity on the state |𝐺ᖣ⟩. However, we are not sure that
every element is in the Pauli-group. By definition (in section 2.2), a all elements of
a stabilizer should be elements of the Pauli-group.

Let us consider the second type of operations we discussed, the single qubit Clifford
group. We know that the Clifford group has the property that it maps the Pauli group
to itself under conjugation, so they take stabilizers to stabilizers. When two graph
states are equivalent under SQC, we will call this single qubit Clifford equivalent
(SQC-equivalent). So |𝐺ᖣ⟩ = 𝑈 |𝐺⟩ for 𝑈 ∈ 𝒞ፍኻ . Next we will formally introduce the
SQC-equivalence of quantum states.

SQC-equivalent

Definition 3.5. Two quantum states |𝜓⟩, |𝜓ᖣ⟩ are single qubit Clifford (SQC)
equivalent if and only if there exists an operation 𝑈 ∈ 𝒞ፍኻ such that 𝑈 |𝜓⟩ =
|𝜓ᖣ⟩.

When only considering graph states, SQC-equivalence is defined as follows.

Definition 3.6. Two graph states |𝐺⟩, |𝐺ᖣ⟩ are single qubit Clifford (SQC) equiva-
lent if and only if there exists a symplectic matrix Q with the corresponding opera-
tion 𝑈 ∈ 𝒞ፍኻ such that:

( |Γፆ)PQ ( |Γፆᖤ) = 0 (3.32)

When two graph states are SQC-equivalent we write this as:

|𝐺⟩ ∼SQC |𝐺ᖣ⟩ (3.33)

In literature, for example in [18], SQC-equivalent is called local Clifford (LC) equiv-
alent. As this notation of locality conflicts with our notion of locality (defined in
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chapter 4), we will use SQC-equivalent instead. The same conflict holds for local
unitary equivalent (LU) which is therefore called SQU-equivalent throughout this
thesis. Locally equivalent graphs are called SQC-equivalent graphs in this research
to avoid confusion in the usage of local. The reason why we discussed local com-
plementations and their relation to SQC operations before, will now become very
clear. Every SQC operation mapping graph states to graph states can be decom-
posed as a sequence of local complementations on the underlying graph [8]. The
reverse is also true, as we have seen in definition 3.1 how a local complementation
translates to single qubit Clifford operations. This leads to the following lemma,
where 𝐿𝐶 refers to local complementations.

Theorem 3.1 ([8]).
𝐺 ∼ፋፂ 𝐺ᖣ ⟺ |𝐺⟩ ∼ፒፐፂ |𝐺ᖣ⟩ (3.34)

In the next section, we will formally introduce the problem of deciding SQC-equivalence
of graph states and discuss the best known algorithm in terms of time complexity.

3.3.1. Definition and complexity

The decision problemwhether two graph states are equivalent under SQC-operations
we will call the single qubit Clifford equivalence (SQC-EQUIV) problem. SQC-EQUIV
is formally introduced in problem 3.1.

Problem 3.1 (SQC-EQUIV). Given graphs 𝐺, 𝐺ᖣ corresponding to graph states |𝐺⟩,
|𝐺ᖣ⟩ on 𝑁 vertices. Decide whether |𝐺⟩ and |𝐺ᖣ⟩ are SQC-equivalent.

A polynomial time algorithm is found in [18]. This leads to theorem 3.2.

Theorem 3.2 ([18],). The decision problem SQC-EQUIV is in . The running time
of the algorithm is 𝒪(|𝐺|ኾ).

Proof from [18]. This is proven by Van Den Nest et al. [18], where a graph theory
result from Bouchet is used [11]. The proof by Van Den Nest is repeated here.

From section 3.1.3 it is known that two stabilizer states (X,Z) and (Xᖣ,Zᖣ) are
equivalent under Clifford operations if

(Xᖣ|Zᖣ)PQ(X|Z)ፓ = 0 . (3.35)

For graph states these equations reduce to:

ΓᖣBΓ +DΓ + ΓᖣA+C = 0 (3.36)
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For single qubit Clifford operations, Q can be written as four diagonal matrices
A,B,C,D:

Q = [ A B
C D

] (3.37)

Furthermore, for the diagonal matrices A,B,C,D, the property that Q is a sym-
plectic matrix (QፓPQ = P ) reduces to AD +BC = . Let 𝑁 = |𝐺|. By Gaussian
elimination one finds a basis ℬ = {𝑏ኻ, … , 𝑏፝} of the solution space 𝑉 for the linear
equation 3.36. Note that equation 3.36 is a system of 𝑁ኼ equations and 4𝑁 un-
knowns. For large 𝑁, this is usually a highly overdetermined system. Therefore,
one expects the solution space of the linear equation to be relatively small. Unfor-
tunately, it could be that dimℬ = 𝒪(𝑁). This leads to an exponential number of
vectors to check against the symplectic constraint (eq. 3.8). To avoid this, a result
from graph theory by Bouchet is used [11]. This result states that, if dimℬ > 4,
one only has to check all combinations of two basis vectors from ℬ to find a solution
if one exists. Therefore, the set of vectors 𝑉ᖣ that has to be considered if dimℬ > 4
is given as:

𝑉ᖣ = {
የይዱℬ

∑
።ኻ

𝑥።𝑏። ∶ 𝑏። ∈ ℬ, 𝑥። ∈ {0, 1},
የይዱℬ

∑
።ኻ

𝑥። ≤ 2} (3.38)

Note that |𝑉ᖣ| = 1 + dimℬ + (የይዱℬ
ኼ
). In the case that dimℬ > 4, the result can be

stated as follows:

∃Aᖣ,Bᖣ,Cᖣ,Dᖣ ∈ 𝑉ᖣ ∶ AᖣDᖣ+BᖣCᖣ = ⟺ ∃A,B,C,D ∈ 𝑉 ∶ AD+BC = (3.39)

Otherwise, if dimℬ ≤ 4, all vectors in 𝑉 have to be considered. This results in a
running time of 𝒪(𝑁ኾ) where |𝐺| = 𝑁, as is shown in section 3.3.2.

3.3.2. The algorithm

In this section we describe the algorithm proposed by van den Nest [8] in order
to determine equivalence of graph states under SQC operations. The algorithm is
given in pseudocode in algorithm 1 and an implementation in SAGE can be found
on our GitHub [12]. The algorithm follows the steps of the proof of theorem 3.2
closely. In order to understand how the algorithm works, we will now discuss it line
by line.

• line 1: We vectorize equation 3.36 using vec(𝐴𝐵𝐶) = (𝐶ፓ ⊗ 𝐴)vec(𝐵) which
gives 𝑀, the vectorized form of A,B,C,D.

• line 2: AS described in the proof of theorem 3.2, A,B,C,D are all diagonal
matrices. Therefore, we only keep the rows of𝑀 corresponding to an element
on the diagonal of A,B,C,D. This corresponds exactly to the rows {𝑗 + 𝑖 +
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Algorithm 1 Solve SQC-EQUIV [8]
Input: Graphs 𝐺 and 𝐺ᖣ on the same vertex set 𝑉
Output: TRUE if there exists a single qubit Clifford which transforms |𝐺⟩ to |𝐺ᖣ⟩

FALSE otherwise
1: 𝑀 ← [ ⊗ Γᖣ, Γ ⊗ Γᖣ, ⊗ , Γ ⊗ ] ◃𝑀 is a 4𝑁ኼ × 𝑁ኼ matrix.
2: Keep only rows {𝑗𝑁ኼ + 𝑖 + 𝑖𝑁}ፍዅኻ,ኽ።ኺ,፣ኺ of 𝑀, delete the other rows
3: ◃Keep only the diagonal elements of A,B,C,D in equation 3.37.
4: ℬ ← Solve(𝑀ፓ, vec(0ፍ×ፍ))
5: if dim(ℬ) ≤ 4 then ◃Bouchet’s result on holds for dim(ℬ) ≤ 4
6: for 𝑣 ∈ 𝑠𝑝𝑎𝑛(ℬ) do
7: if 𝑣 is a symplectic transformation then
8: return TRUE
9: else
10: for 𝑣 ∈ 𝑉ᖣ do ◃𝑉ᖣ is defined in eq. 3.38
11: if 𝑣 is a symplectic transformation then
12: return TRUE
13: return FALSE

𝑖𝑁}ፍዅኻ,ኽ።ኺ,፣ኺ. For example, if we consider the diagonal elements from A, we
find for 𝑗 = 0 that we have {0, 1 + 𝑁, 2 + 2𝑁,… ,𝑁ኼ − 1}.

• line 3: The system of equations is solved to find a basis ℬ of the solution
space of equation 3.36.

• line 4-7: As Bouchet’s result only holds for dim(ℬ) > 4, we have to check all
elements of the space spanned by ℬ. If an element if found which corresponds
to a symplectic constraint, the algorithm returns TRUE.

• line 9-11: The algorithm only considers all elements in 𝑉ᖣ, for which it checks
if the corresponding transformation is symplectic. If this is the case, return
TRUE.

• line 12: If none of the above returns TRUE, return FALSE.

We now continue by discussing the runtime of the algorithm.

• line 1: For every element of the new 4𝑁ኼ ×𝑁ኼ matrix a multiplication is done
(where multiplication is assumed to be constant time), so this line 𝒪(𝑁ኾ).

• line 2: Here 4𝑁ኼ − 4𝑁 rows are removed, where every row is of length 𝑁ኼ.
Thus, this line is also 𝒪(𝑁ኾ). The result is a 4𝑁 × 𝑁ኼ matrix 𝑀.

• line 3: Solving this system of equations is done using Gaussian elimination
which, for 𝑀 being a 4𝑁 × 𝑁ኼ matrix, is done in 𝒪(𝑁ኾ).
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• line 4-7: The if statement is done in constant time. The loop runs over the full
span of ℬ, which are in the worst case 2ኾ elements. For every element, the
constraint is calculated which makes the total runtime of this part 𝒪(2ኾ𝑁).

• line 9-11: The for loop runs, in the worst case, over |𝑉ᖣ| = 𝒪(𝑁ኼ) elements.
For every element 𝑣 ∈ 𝑉ᖣ, the constraint has to be checked which is done in
𝒪(𝑁). Therefore, the total for loop is of complexity 𝒪(𝑁ኽ).

To summarize the running time of algorithm 1 is 𝒪(𝑁ኾ)+𝒪(𝑁ኾ)+𝒪(𝑁ኾ)+𝒪(2ኾ𝑁)+
𝒪(𝑁ኽ) = 𝒪(𝑁ኾ).

3.4. Reducing stabilizer states to graph states

It is shown [8] that every stabilizer state is single qubit Clifford equivalent to some
graph state. This result is stated in theorem 3.3. In the proof of this theorem a
constructive method is used to find the SQC operations which map a stabilizer state
to a corresponding graph state. In this section we will discuss this method and
apply it to an example. First we formally state the theorem.

Theorem 3.3 ([8]). For every stabilizer state there exists a graph state which is
single qubit Clifford equivalent to the stabilizer state and the running time of finding
the corresponding graph state and the transformation taking the stabilizer state to
the graph state is 𝒪(|𝑉[𝐺]|

ኽ
).

To see how an equivalent graph state is found, we consider a general stabilizer state
𝑆 = (X|Z). The goal is to find a symplectic matrix Q such that (X|Z)Q = (Xᖣ|Zᖣ)
where Xᖣ is an invertible matrix. Then it follows that Xᖣዅኻ(Xᖣ|Zᖣ) = ( |Γ) where Γ
is an adjacency matrix with possible self connecting edges. These can be removed
by an 𝑆 operation on the qubits which have a self connecting edge. Then remaining
phases can be corrected by a 𝑍 Pauli.

First we have to find Q such that 𝑆Q = 𝑆ᖣ = (Xᖣ|Zᖣ) has an 𝑋-part Xᖣ which is
invertible. Note thatX and Z are both 𝑛×𝑛 matrices and rank(𝑆) = 𝑛 by definition.

1. We start by doing Gaussian elimination to bring (X|Z) in the form:

( Rx Rz

0 Sz
)

Where Rx has dimensions 𝑘 ×𝑛 and 𝑘 = rank(Rx), Rz is also a 𝑘 ×𝑛 matrix
and Sz is a (𝑛−𝑘)×𝑛 matrix. Note that Gaussian elimination has no physical
effect on the state, it is only choosing a different set of generators.
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2. Furthermore, the pivot columns of Rx are not always the first 𝑘 columns. We
now relabel the columns of Rx,Rz,Sz such that the pivot columns of Rx are
listed as the first 𝑘 columns. This leads to the following form:

(
R1

x R2
x Rz

ᖣ

0(፧ዅ፤)×፧ Sz
ኻ Sz

ኼ )

Where rank(Rx
ኻ) = 𝑘 and rank(Sz

ኼ) = 𝑛 − 𝑘.

3. If we now perform a Hadamard operation on qubits 𝑘 + 1,… , 𝑛, which maps
𝑋 → 𝑍 and 𝑍 → 𝑋 under conjugation, we find:

(
R1

x R2
x Rz

ᖣ

0(፧ዅ፤)×፤ Sz
ኼ Sz

ኻ 0(፧ዅ፤)×(፧ዅ፤)
) = (Xᖣ|Zᖣ)

The fact that Xᖣ is invertible follows from the fact that Rx
ኻ and Sz

ኼ are
invertible. Rx

ኻ is invertible by construction and the invertibility of Sz
ኼ follows

from ( |Γ)Q( |Γ)ፓ = 0 [8].

4. Again picking a different set of generators by multiplying the stabilizer state
(Xᖣ|Zᖣ) with Xᖣዅኻ results in a stabilizer state ( |Γ) where Γ is an adja-
cency matrix with possible diagonal elements, corresponding to self connect-
ing edges. The fact that Γ is an adjacency matrix (i.e. it is symmetric) follows
from ( |Γ)Q( |Γ)ፓ = 0.

5. In step 2 a possible relabelling has happened. To undo this, we relabel the
qubits/columns back to the original labelling.

6. To remove self connecting edges, we apply an 𝑆 operation to every qubit with
a self connecting edge. This removes the non zero diagonal elements of Γ,
which makes Γ an adjacency matrix corresponding to a simple graph (graph
state).

7. Finally, it could be that there are rows of the generator matrix with a -1 phase.
Note that±𝑖 is not possible, as the corresponding row would not be a stabilizer
as (±𝑖𝑃)ኼ = − for 𝑃 ∈ 𝒫ፕ. The -1 phase can be cancelled by applying a
Pauli-𝑍 operation on the qubit with a 𝑋 on the specific row. The -1 phase is
cancelled, which follows from 𝑍𝑋𝑍 = −𝑋.

Note that the method of reaching a graph state only uses the following operations:

• Picking different sets of generators for the same state (in step 1 and 4)

• Hadamard (𝐻) operations (step 3) and 𝑆 operations (step 6)

• Relabelling of qubits (step 2 and 5), where the labelling before step 2 and
after step 5 is the same.
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• 𝑍 corrections for possible phases.

This method is implemented in Python in a toolbox for stabilizer states in SimulaQron
[20]. In the remainder of this section the method described above will be used in
an example.

Example: A graph state SQC-equivalent to 𝐺𝐻𝑍

In this example we will find a graph state SQC-equivalent to the GHZ state
on 5 qubits, which is given as:

|𝐺𝐻𝑍⟩ =
|0⟩⊗ + |1⟩⊗

√2
(3.40)

A generator matrix corresponding to this stabilizer state is:

(

ኻ ኻ ኻ ኻ ኻ ኺ ኺ ኺ ኺ ኺ
ኺ ኺ ኺ ኺ ኺ ኻ ኻ ኺ ኺ ኺ
ኺ ኺ ኺ ኺ ኺ ኻ ኺ ኻ ኺ ኺ
ኺ ኺ ኺ ኺ ኺ ኻ ኺ ኺ ኻ ኺ
ኺ ኺ ኺ ኺ ኺ ኻ ኺ ኺ ኺ ኻ

) (3.41)

We will now follow the method described above.

1. Gaussian elimination gives the following matrix:

(

ኻ ኻ ኻ ኻ ኻ ኺ ኺ ኺ ኺ ኺ
ኺ ኺ ኺ ኺ ኺ ኻ ኺ ኺ ኺ ኻ
ኺ ኺ ኺ ኺ ኺ ኺ ኻ ኺ ኺ ኻ
ኺ ኺ ኺ ኺ ኺ ኺ ኺ ኻ ኺ ኻ
ኺ ኺ ኺ ኺ ኺ ኺ ኺ ኺ ኻ ኻ

) = ( Rx Rz

0 Sz
) (3.42)

With Rx = [1, 1, 1, 1, 1], Rz = [0, 0, 0, 0, 0] and

Sz = (
ኻ ኺ ኺ ኺ ኻ
ኺ ኻ ኺ ኺ ኻ
ኺ ኺ ኻ ኺ ኻ
ኺ ኺ ኺ ኻ ኻ

)

2. The next step is to relabel the qubits such that the first 𝑘 columns of
Rx are the pivot columns. For this example, this is already the case
so we continue.

3. In this step we perform a Hadamard operation on the last 𝑘 qubits.
The result is:

(Xᖣ|Zᖣ) = (

ኻ ኺ ኺ ኺ ኺ ኺ ኻ ኻ ኻ ኻ
ኺ ኺ ኺ ኺ ኻ ኻ ኺ ኺ ኺ ኺ
ኺ ኻ ኺ ኺ ኻ ኺ ኺ ኺ ኺ ኺ
ኺ ኺ ኻ ኺ ኻ ኺ ኺ ኺ ኺ ኺ
ኺ ኺ ኺ ኻ ኻ ኺ ኺ ኺ ኺ ኺ

)
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4. As Xᖣዅኻ exists, we can now multiply by this matrix to get an identity
matrix as the 𝑋-part. Note that multiplying by Xᖣዅኻ corresponds to
a basis transformation. For intuition, one can also check that doing
Gaussian elimination after the previous step also results in the follow-
ing matrix.

Xᖣዅኻ (Xᖣ|Zᖣ) = (

ኻ ኺ ኺ ኺ ኺ ኺ ኻ ኻ ኻ ኻ
ኺ ኻ ኺ ኺ ኺ ኻ ኺ ኺ ኺ ኺ
ኺ ኺ ኻ ኺ ኺ ኻ ኺ ኺ ኺ ኺ
ኺ ኺ ኺ ኻ ኺ ኻ ኺ ኺ ኺ ኺ
ኺ ኺ ኺ ኺ ኻ ኻ ኺ ኺ ኺ ኺ

) = ( |Γ)

5. Relabelling was not required in step 2, so relabelling is not needed
here either.

6. The diagonal of Γ has all zero elements, so we can skip this.

7. All phases are +1, so no Pauli-𝑍 operations are needed.

8. The result is the star graph 𝑆{ኺ,ኻ,ኼ,ኽ,ኾ},ኺ as shown in figure 3.8.

0

2

14

3

Figure 3.8: A star graph on 5 qubits.

This example shows that a 𝐺𝐻𝑍-state is SQC equivalent to the star graph. By doing
local complementation on the centre qubit, here qubit 0, we get the complete graph.
By doing Hadamards on the leaves of the star graph, i.e. all qubits except the centre
qubit, one obtains the 𝐺𝐻𝑍 state.

3.5. A quantum circuit in the graph state perspec-
tive

Here we discuss how the gate teleportation circuit proposed by Gottesman and
Chuang [21] can be transformed to graph states and graph state operations. This
will be used in chapter 5. The input of the original circuit, shown in figure 3.9, is a
qubit 𝑎 in state |𝜓⟩. The goal is to apply a gate 𝑈 ∈ 𝒰(2) to the state |𝜓⟩ without
doing the gate directly on qubit 𝑎. To achieve this goal, two ancilla qubits 𝐴። for
𝑖 ∈ {0, 𝑎} are used. The result of the circuit is 𝑈ፚ |𝜓⟩, however the state is now on
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the ancilla qubit 𝐴ፚ instead of qubit 𝑎. The labelling is intentionally done such that
the state of qubit 𝑎 is transferred to the state of qubit 𝐴ፚ. Note that for 𝑈ፚ = ኼ
the circuit reduces to the well known teleportation circuit.

𝐴ፚ |0⟩ 𝐻 • 𝑈ፚ 𝑈ጷፚ 𝑋 𝑍 𝑈ፚ 𝑈ፚ |𝜓⟩

𝐴ኺ |0⟩ ✌✌✌ •

𝑎 |𝜓⟩ • 𝐻 ✌✌✌ •

Figure 3.9: A circuit which achieves gate teleportation on a state |Ꭵ⟩ for gate ፔᑒ with two ancilla qubits
ፀᑒ, ፀᎲ prepared in a Bell state. [21]

As discussed in section 3.1 some Clifford operations correspond to known graph
operations. It will be useful to rewrite the well known gate teleportation circuit
in terms of known graph operations by using the following identity: CNOT።,፣ =
H።CZ።,፣H።. The circuit that follows is given below and will be very important in
chapter 5.

𝐴ፚ |0⟩ 𝐻 • 𝑈ፚ 𝑈ጷፚ 𝑋 𝑍 𝑈ፚ 𝑈ፚ |𝜓⟩

𝐴ኺ |0⟩ 𝐻 • • 𝐻 ✌✌✌ •

𝑎 |𝜓⟩ • 𝐻 ✌✌✌ •

Figure 3.10: The gate teleportation circuit compiled with operations for which it is known how they
transform graph states. Note that if |Ꭵ⟩ is a graph state and ፔ  , this circuit can be fully described in
the graph state picture.

In order to get a little bit more feeling for how the gate teleportation circuit works
in the graph state picture, we will discuss an example of gate teleporting 𝑈 = ኼ,
i.e. regular qubit teleportation. In this example we have a graph state on 3 qubits
corresponding to the complete graph and two ancilla qubits 𝐴ኺ,𝐴ኼ. The circuit,
shown in figure 3.11, teleports the state of qubit 2 to qubit 𝐴ኼ. In figure 3.12
the graph states at intermediate stages of the circuit are shown, where the stage
corresponds to the labels in figure 3.11.

• (a) → (b): In this step two ancilla qubits, 𝐴ኺ and 𝐴ኼ, are added to the graph
state. In order to do this, the qubits are prepared in the |+⟩ state. Note that
the ancilla qubits are not yet entangled in the circuit, and not yet connected
as a graph.

• (b) → (c): In this step a CZ gate is applied between 𝐴ኺ and 𝐴ኼ, which is equal
to adding an edge in the graph.

• (c) → (d): By a CZ between 𝐴ኺ and qubit 2 of |𝐺⟩, the graph becomes con-
nected.
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• (d) → (e): From the previous step it is known that 𝐴ኺ and 2 are connected,
therefore using lemma 3.1 it follows that two Hadamards on adjacent vertices
act as a pivot. From definition 3.2 the operations on the underlying graph are
known: 1) 𝐴ኺ and 2 exchange neighbours and 2) all edges corresponding to
vertices from different neighbourhoods of (2, 𝐴ኺ) are complemented. In this
case, 𝑁ፀᎲ\ኼ = 𝐴ኼ, 𝑁ፀᎲኼ = ∅ and 𝑁ኼ\ፀᎲ = 0, 1. Therefore the edges (0, 𝐴ኼ) and
(1, 𝐴ኼ) are complemented.

• (e)→(f): The qubits 𝐴ኺ and 2 are measured in the Pauli-𝑍 basis. Using the
measurement rules from definition 3.4, we know that this corresponds to
removing vertices from the graph.

✤
✤
✤
✤
✤
✤
✤
✤
✤
𝐴ኼ |0⟩ 𝐻

✤
✤
✤
✤
✤
✤
✤
✤
✤
•

✤
✤
✤
✤
✤
✤
✤
✤
✤

✤
✤
✤
✤
✤
✤
✤
✤
✤

✤
✤
✤
✤
✤
✤
✤
✤
✤

𝑋 𝑍

✤
✤
✤
✤
✤
✤
✤
✤
✤

𝐴ኺ |0⟩ 𝐻 • • 𝐻 ✌✌✌ •

|𝐺⟩ኼ • 𝐻 ✌✌✌ • |𝐺⟩

|𝐺⟩ |𝐺⟩ኻ
|𝐺⟩ኺ

(𝑎) (𝑏) (𝑐)(𝑑) (𝑒) (𝑓)
Figure 3.11: Teleporting the state of qubit ኼ of |ፆ⟩ to qubit ፀᎴ. The dashed line labels refer to the
subfigures in figure 3.12. So the dashed line labelled (a) corresponds to the graph state in figure
3.12(a). The input state and the output state are equal up to a vertex permutation.
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(f)
Add qubits to the graph
CZ between two qubits to be performed
Edge to complement with pivot

Figure 3.12: Step by step following the state of all 5 qubits when qubit ኼ of a graph state |ፆ⟩ is teleported
to another qubit ፀᎴ, as shown in figure 3.11. Orange is used to denote the effect of the next operation
in the circuit. For example, the dashed circles in (a) represent the qubits added going from (a) to (b).
The steps (d)->(e) and (e)->(f) are not completely one-to-one with the circuit, as in the graph state
picture some single qubit Cliffords are disregarded.
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Introducing local multi-qubit
Clifford equivalence of graph

states

This chapter takes the first steps in analysing local multi-qubit Clifford equivalence
of graph states. To our knowledge, this topic has not been studied before, and
therefore everything in this chapter is new. We start in section 4.1 with formally
defining the problem. Furthermore, we discuss how this problem relates to known
decision problems in some limiting cases (no multi-qubit nodes, all qubits in one
node). We present an algorithm to decide 𝑇-LMQC equivalance which scales ex-
ponentially in the size of the graph in section 4.2. In this same section we also
present a conjecture related to the presented algorithm. The final section of this
chapter aims to give some feeling for which graph states are 𝑇-LMQC equivalent.
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4.1. Introducing 𝑇-LMQC equivalence

In this section, first the notion of locality in graph states used in this thesis is
defined (section 4.1.1). Afterwards, in section 4.1.2 the problem of deciding 𝑇-
LMQC equivalence of graph states is formally introduced.

4.1.1. Locality in graph states

The topic of this section is to introduce the notion of locality with respect to graph
states. By definition, every vertex in a graph state corresponds to a qubit. In a
quantum internet, some of these qubits could be on the same quantum proces-
sor and other qubits could be on different quantum processors. When visualizing
the quantum internet as a network, one also ends up at something like a graph -
with nodes and with edges. However, every node in a quantum internet is a quan-
tum processor, and a quantum processor could have access to multiple qubits.
Therefore, we will make a distinction between nodes in a quantum internet and
vertices/qubits in a graph state. To avoid confusion we will use the term node/-
component for a quantum chip, and the term vertex or qubit for a node in a graph
state. In other words, a node in a quantum internet is not equal to a node in a
graph state. In order to describe the physical structure behind a graph state, we
introduce a partition 𝑇 of the vertex set of the graph state. 𝑇 is defined as a tuple of
components, such that every vertex in the graph state is in exactly one component.
For example, for a graph state on 5 qubits where every (quantum internet) node has
exactly 1 qubit, the partition is given as 𝑇 = ({0}, {1}, {2}, {3}, {4}). However, when
for example 0 and 1 share a node, the partition is given as 𝑇 = ({0, 1}, {2}, {3}, {4}).
We will use circles with dashed border and a grey filling in order to visualize the
partition of a graph state, an example of this is shown in figure 4.1.
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Figure 4.1: A graph ፆ  (ፕ, ፄ) where ፕ  {ኺ, ኻ, ኼ, ኽ, ኾ} and ፄ  {(ኺ, ኻ), (ኺ, ኽ), (ኺ, ኾ), (ኻ, ኼ), (ኼ, ኾ), (ኽ, ኾ)}
with partition ፓ  ({ኺ}, {ኻ}, {ኼ}, {ኽ, ኾ}).

In this thesis we assume that every qubit in a node can be used to do two-qubit
operations with at least one other qubit in the same node. Then we can use the
fact with two-qubit operations a SWAP operation can be constructed, which can be
used to swap around the qubits as needed. Then it follows that inside a quantum
internet node, there is perfect connectivity of qubits. Note that, in order to achieve
this experimentally, it is already sufficient if one can always make a path of two-
qubit operations between two qubits inside a node. In figure 4.2 this is illustrated
by an example.
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Figure 4.2: On the left hand side a graph state is shown where every two-qubit operations are possible
between neighbours. As using two qubit operations, a SWAP operation can be constructed, the left hand
side graph state is equivalent to the right hand side, where multi-qubit operations are clearly possible
between any qubit in the node.

This leads to the following definition of local operations.

Local operations

Definition 4.1. Given a graph state |𝐺⟩ and a partition 𝑇 of 𝑉(𝐺). An
operation 𝑈 is a local unitary operation w.r.t. to 𝑇 if it can be written as a
tensor product of operations acting inside the same node, i.e. ⊗።∈ፓ𝑈። where
𝑈። ∈ 𝒰(2|።|).

In this thesis we focus on local Clifford operations, which we define as the operation
𝐶 that can be written as ⊗።∈ፓ𝐶። where 𝐶። ∈ 𝒞|።|.

Local Clifford operations

Definition 4.2. Given a graph state |𝐺⟩ and a partition 𝑇 of 𝑉(𝐺). An
operation 𝑈 is a local Clifford operation w.r.t. 𝑇 if it can be written as a
tensor product of operations acting inside the same node, i.e. ⊗።∈ፓ𝑈። where
𝑈። ∈ 𝒞(2|።|).

In the next section we will see how this translates to deciding equivalence of graph
states under local Clifford operations. Below some more examples are given of
graph states including visualization of locality.

0 1

23

0 1

23

(a) The graph state |ፆBell Ꮄ⟩ of two
Bell pairs where both Bell pairs con-
tribute one qubit to a node.
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0

3
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AN+1
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2
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(b) The graph state |ፆBell ᑅ⟩ of ፍ Bell
pairs where all Bell pairs contribute
one qubit to a node.
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4.1.2. Introducing 𝑇-LMQC equivalence

In this section the definition of local operations from the previous section is used
in order to discuss equivalence of quantum states under local Clifford operations.
This is formalized in the following definition:

𝑇-LMQC-equivalence

Definition 4.3. Given two quantum states |𝜓⟩, |𝜓ᖣ⟩ on 𝑁 qubits, with a
partition 𝑇 of the qubits. |𝜓⟩ and |𝜓ᖣ⟩ are local multi-qubit Clifford equivalent
w.r.t. 𝑇 if and only if there exists a Clifford operation 𝑈 ∈ 𝒞ፍ which is a local
Clifford operation w.r.t. 𝑇 such that:

|𝜓ᖣ⟩ = 𝑈 |𝜓⟩ (4.1)

We will restrict ourselves to graph states in the following definition.

𝑇-LMQC-equivalence

Definition 4.4. Given two graph states |𝐺⟩, |𝐺ᖣ⟩ where 𝑉[𝐺] = 𝑉[𝐺ᖣ] with
a partition 𝑇 of the vertex set of 𝐺. Let Γፆ (Γፆᖤ) denote the adjacency matrix
of 𝐺 (𝐺ᖣ). |𝐺⟩ and |𝐺ᖣ⟩ are local multi-qubit Clifford equivalent w.r.t. 𝑇 if
and only if there exists a Clifford operation 𝑈 ∈ 𝒞ፍ which is a local Clifford
operation w.r.t. 𝑇 with the corresponding symplectic matrix Q such that:

( |Γፆᖤ)PQ( |Γፆ)ፓ = 0 (4.2)

Note equation 4.2 is equal to equation 3.9, it is repeated here for convenience. If
two graph states are LMQC equivalent with partition 𝑇 we write this as:

|𝐺⟩ ∼ፓዅLMQC |𝐺ᖣ⟩ (4.3)

The problem of deciding 𝑇-LMQC equivalence of graph states is formally defined in
problem 4.1.

Problem 4.1 (𝑇-LMQC-EQUIV). Given graphs 𝐺, 𝐺ᖣ corresponding to graph states
|𝐺⟩, |𝐺ᖣ⟩ with 𝑇 a partition of the vertex set of 𝐺 and 𝐺ᖣ. Decide whether |𝐺⟩ and
|𝐺ᖣ⟩ are 𝑇-LMQC equivalent.

For the single qubit case, it is known that deciding SQC equivalence corresponds
to deciding LC equivalence of the underlying graphs (theorem 3.1). It would be
interesting to also translate the 𝑇-LMQC-EQUIV problem to the underlying graphs
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and graph operations. In the following theorem we discuss that this is not trivial
for 𝑇-LMQC-EQUIV. First, we need to introduce local edges.

Definition 4.5 (Local edges). Let 𝐺 be a graph with a partition 𝑇 of 𝑉[𝐺]. A local
edge of 𝐺 w.r.t. 𝑇 is an edge (𝑢, 𝑣) such that ∃𝑡 ∈ 𝑇 ∶ 𝑢, 𝑣 ∈ 𝑡. The graph operation
of flipping a local edge will be referred to as LEF (local edge flips).

Which enables us to state the following theorem.

Theorem 4.1. Let 𝐺 (|𝐺⟩) and 𝐺ᖣ (|𝐺ᖣ⟩) be two graph (states) on the same vertex
set 𝑉, and let 𝑇 be a partition of 𝑉. If 𝐺 is equivalent to 𝐺ᖣ under local comple-
mentations (LC) and local edge flips (LEF) w.r.t 𝑇, then |𝐺⟩ and |𝐺ᖣ⟩ are 𝑇-LMQC
equivalent.

𝐺 ∼LCዄፓዅLES 𝐺ᖣ ⇒ |𝐺⟩ ∼ፓዅLMQC |𝐺ᖣ⟩ (4.4)

Proof. From section 3.3 it follows that LCs correspond to SQC operations. From
the definition of graph states, it follows that an edge flip in a graph corresponds to
applying a 𝐶𝑍-gate on the underlying graph state. Local edge flips correspond to
𝐶𝑍-gates inside a multi-qubit node. As a 𝐶𝑍 is a Clifford operation, it follows that
any sequence of LC+LEF on a graph can be realized as a local multi-qubit Clifford
on a graph state. The other way around is an open question, which we will discuss
directly after this proof.

Whether two graphs are equivalent under LC+LEF, if the corresponding graph states
are 𝑇-LMQC equivalent, is an open question. One might think that a local Clifford 𝑈
taking |𝐺⟩ to |𝐺ᖣ⟩ can be realized as a sequence of LC+LEF. However, 𝑈 might be a
sequence of multiple local Clifford operations, i.e. 𝑈 = 𝑈፦⊗⋯⊗𝑈ኻ. Then we know
that |𝐺ᖣ⟩ = 𝑈፦ ⊗ 𝑈ኻ |𝐺⟩. However, 𝑈ኻ |𝐺⟩ in general is not a graph state. In other
words, 𝑈 may take a graph state to another graph state, but the intermediate states
are not necessarily graph states. Therefore, we can in general not decompose 𝑈 in
a sequence of graph operations. However, we have not found an example of this.

For some 𝑇, 𝑇-LMQC-EQUIV can actually be solved in linear time. When there are
no multi-qubit nodes, the 𝑇-LMQC-EQUIV problem reduces to SQC-EQUIV problem,
which can be solved in linear time (theorem 3.2). On the other hand, it could be that
all qubits share the same node, which implies that every edge can be deleted/added
by only doing local operations. Therefore, every two graphs on the same vertex set
are always locally equivalent. Thus, if all qubits share one node, 𝑇-LMQC-EQUIV
can be solved in constant time (𝒪(1)). The interesting cases of 𝑇-LMQC-EQUIV are
indeed somewhere in between these two cases, with (multiple) multi-qubit nodes
and maybe single qubit nodes. Note that the number of local Clifford operations
increases drastically with an increasing number of qubits per node. This follows
from the fact that the size of the Clifford group increase exponentially. Already for
nodes with a few qubits the number of allowed Cliffords is enormous. In section
2.2 the size of the Clifford group is discussed.
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4.1.3. Local Clifford equivalence classes

We introduce the notion of local equivalence classes here. This is inspired on the
definition of 𝐿𝐶 orbits used by Danielsen [22].

Definition 4.6. Given a graph state |𝐺⟩ with partition 𝑇 of 𝑉(𝐺). The local equiva-
lence class Lፓ(𝐺) is the set of all graph states, including |𝐺⟩, which can be reached
from |𝐺⟩ by doing local Clifford operations with respect to 𝑇. I.e.:

Lፓ(𝐺) = {|𝐺ᖣ⟩ ∶ |𝐺ᖣ⟩ ∼ፓዅLMQC |𝐺⟩} (4.5)

In the case of SQC operations the partition of 𝑉(𝐺) with |𝑉(𝐺)| = 𝑁 is given by
({1ኻ, … , 1ፍ}). For this case we will use the subscript 1 instead of 𝑇, i.e.:

Lኻ(𝐺) = L({ኻᎳ,…,ኻᑅ})(𝐺) = {|𝐺
ᖣ⟩ ∶ |𝐺ᖣ⟩ ∼SQC |𝐺⟩} (4.6)

It follows from the definition that SQC operations can not transform |𝐺⟩ to |𝐺ᖣ⟩ if
|𝐺ᖣ⟩ ∉ Lኻ(𝐺). This is different for 𝑇-LMQC operations, as there can ∃𝐺ᖣ ∈ Lፓ(𝐺)
such that 𝐺ᖣ ∉ Lኻ(𝐺).

Definition 4.7. The set of representatives of |𝐺⟩ is a set of graph states 𝑟𝑒𝑝(Lፓ(𝐺))
such that for every |𝐺ᖣ⟩ 𝑇-LMQC equivalent to |𝐺⟩ there exists one graph state in
the set which is SQC-equivalent to |𝐺ᖣ⟩.

So 𝑟𝑒𝑝(Lፓ(𝐺)) = {|𝐺ኻ⟩ , … , |𝐺፧⟩} where |𝐺።⟩ ∈ Lፓ(𝐺) and |𝐺።⟩ ≁SQC |𝐺፣⟩ (not SQC-
equivalent) for 𝑖 ≠ 𝑗 and 𝑖, 𝑗 ∈ {1, … , 𝑛}. In this way a partition of Lፓ(𝐺) is found:
Lፓ(𝐺) = {Lኻ(𝐺ኻ), … ,Lኻ(𝐺፧)} such that all Lኻ(𝐺።) ∈ Lፓ(𝐺) are disjoint and that
⋃። Lኻ(𝐺።) = Lፓ(𝐺). |𝑟𝑒𝑝(Lፓ(𝐺))| is the number of graph states in 𝑟𝑒𝑝(Lፓ(𝐺)).

Example: Local Clifford equivalence classe of two Bell pairs

Given that 𝐺 = ({0, 1, 2, 3}, {(0, 3), (1, 2)}) and 𝑇 = ({0, 1}, {2}, {3}).
Then using algorithm 2 we find that there are 4 repre-
sentative graph states for |𝐺⟩, i.e. |𝑟𝑒𝑝(Lፓ(𝐺))| = 4.

2
(a) (b) (c) (d)

2 2 2
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23

0 1

23

0 1

23

0 1

23

Figure 4.4: The four representatives of ፆ in this example, where ፆ  ፆᎳ (there is no other
graph state SQC equivalent to ፆ). a) ፆᎳ, b) ፆᎴ, b) ፆᎵ, c) ፆᎶ.
With 𝐺። for 𝑖 ∈ {1, 2, 3, 4} given as in figure 4.4, the set of representatives is
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written as:
𝑟𝑒𝑝(Lፓ(𝐺)) = {|𝐺ኻ⟩ , |𝐺ኼ⟩ , |𝐺ኽ⟩ , |𝐺ኾ⟩} (4.7)

and the local equivalence class is given as:

Lፓ(𝐺) = {Lኻ(𝐺ኻ),Lኻ(𝐺ኼ),Lኻ(𝐺ኽ),Lኻ(𝐺ኾ)} (4.8)

Note that |𝐺።⟩ ∈ Lፓ(𝐺). Furthermore, two different repre-
sentatives must be not-SQC equivalent: |𝐺።⟩ ≁SQC |𝐺፣⟩ for
𝑖 ≠ 𝑗 and 𝑖, 𝑗 ∈ {1, 2, 3, 4}. The operations needed to trans-
form one representative of 𝐺 to another are shown in figure 4.5.

2
G1

2

2 2 2 2

2 2 2 2

0 1

23

Labelling

G4

G3 G2

LC on this qubit, which flips the edges marked as
CZ to be applied between two qubits

Figure 4.5: Going from any of the four representatives of ፆ  ፆᎳ to one of the others repre-
sentatives. The orange markings indicate the action to take to go to the next graph state.

4.2. Brute force deciding 𝑇-LMQC equivalence

In this section we will describe an algorithm to solve 𝑇-LMQC-EQUIV. This algorithm
will not be efficient, but it will provide tools to gain intuition for what graph states
are 𝑇-LMQC equivalent. The first section relates local Clifford operations to local
symplectic operations. The second subsection discusses the algorithm. In the
last subsection a conjecture is presented which relates to the running time of the
algorithm to solve 𝑇-LMQC-EQUIV.

4.2.1. Properties of local operations on graph states

In this section we will relate local Clifford operations to local symplectic operations.
We start by discussing how to update a symplectic operation when applying extra
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Clifford operations. I.e., for a given 𝑈,𝑈ᖣ ∈ 𝒞ፍ with correspondingQፔ, the question
is how to find Qፔᖤፔ corresponding to 𝑈ᖣ𝑈. For some Clifford operations it is known
how it updates Qፔ. This is captured in the following definition, where we write
sometimes write Q as a matrix of 4 matrices, i.e.:

Q = [ A B
C D

] =

⎡
⎢
⎢
⎢
⎢
⎣

ፀᎳᎳ ⋯ ፀᎳᑅ ፁᎳᎳ ⋯ ፁᎳᑅ
⋮ ⋯ ⋮ ⋮ ⋯ ⋮
ፀᑅᎳ ⋯ ፀᑅᑅ ፁᑅᎳ ⋯ ፁᑅᑅ
ፂᎳᎳ ⋯ ፂᎳᑅ ፃᎳᎳ ⋯ ፃᎳᑅ
⋮ ⋯ ⋮ ⋮ ⋯ ⋮
ፂᑅᎳ ⋯ ፂᑅᑅ ፃᑅᎳ ⋯ ፃᑅᑅ

⎤
⎥
⎥
⎥
⎥
⎦

Definition 4.8 ([23]). Given 𝑈 ∈ 𝒞ፍ with correspondingQፔ. For 𝑈ᖣ ∈ {𝑆፣, 𝐻፣, 𝐶𝑍።,፣}
with 𝑖, 𝑗 ∈ 𝑁, the symplectic matrix Qፔᖤፔ follows from the following rules:

• 𝑈ᖣ = 𝑆፣: Column 𝑗 of Q is added to column 𝑁 + 𝑗.

[

… 𝐴ኻ፣
!!

⋯ 𝐵ኻ፣ ⋯
… ⋮ ⋯ ⋮ ⋯
… 𝐶፧፣ ⋯ 𝐷፧፣ ⋯

]

• 𝑈ᖣ = 𝐻፣: Column 𝑗 of Q is exchanged with column 𝑁 + 𝑗.

[
⋯ 𝐴ኻ፣

!!
⋯ 𝐵ኻ፣

""
⋯

⋯ ⋮ ⋯ ⋮ ⋯
⋯ 𝐶፧፣ ⋯ 𝐷፧፣ ⋯

]

• 𝑈ᖣ = 𝐶𝑍።,፣: Column 𝑗 is added to column 𝑁 + 𝑖 and column 𝑖 is added to
column 𝑁 + 𝑗.

[
⋯ 𝐴ኻ፣

##
⋯ 𝐴ኻ።

! !
⋯ 𝐵ኻ፣ ⋯ 𝐵ኻ። ⋯

⋯ ⋮ ⋯ ⋮ ⋯ ⋮ ⋯ ⋮ ⋯
⋯ 𝐶፧፣ ⋯ 𝐶፧። ⋯ 𝐷፧፣ ⋯ 𝐷፧። ⋯

]

To give some intuition to how this works, we will now give an example of how
Clifford operations relate to symplectic operations.



4.2. Brute force deciding 𝑇-LMQC equivalence

4

47

Example: Graph state initialization

In this example we transform the |00⟩ into a connected graph state on 2
qubits and discuss the corresponding symplectic transformation. We start
with two qubits in the |0⟩ state, which is trivially stabilized be the 𝑍 operator
so a generator matrix is given by:

(𝑋ኺ|𝑍ኺ) = (
ኺ ኺ ኻ ኺ
ኺ ኺ ኺ ኻ )

Following our definition of graph states, we first have to apply a 𝐻 on both
qubits and then do a 𝐶𝑍 operation. We know how these operations update
a symplectic transformation, but there is no symplectic transformation to
update yet. Therefore, we start from the identity operation ኼፍ. Then first
the two Hadamards are applied. According to definition 4.8, for a Hadamard
on qubit 𝑗 this corresponds to exchanging column 𝑗 and column 𝑗+𝑁 . Using
this we find:

𝑄idle = (
ኻ ኺ ኺ ኺ
ኺ ኻ ኺ ኺ
ኺ ኺ ኻ ኺ
ኺ ኺ ኺ ኻ

)
ፇ⊗ፇ
−−−−→ 𝑄ፇ⊗ፇ = (

ኺ ኺ ኻ ኺ
ኺ ኺ ኺ ኻ
ኻ ኺ ኺ ኺ
ኺ ኻ ኺ ኺ

)

When we would transform (𝑋ኺ|𝑍ኺ) by Qፇ⊗ፇ the resulting generator matrix
is a graph state without any edges:

(𝑋ኺ|𝑍ኺ)(
ኺ ኺ ኻ ኺ
ኺ ኺ ኺ ኻ
ኻ ኺ ኺ ኺ
ኺ ኻ ኺ ኺ

) = ( ኻ ኺ ኺ ኺ
ኺ ኻ ኺ ኺ )

The next step is to do a 𝐶𝑍 between the two qubits, for which we find the
corresponding update to Qፇ⊗ፇ using definition 4.8. The result is:

Qፇ⊗ፇ = (
ኺ ኺ ኻ ኺ
ኺ ኺ ኺ ኻ
ኻ ኺ ኺ ኺ
ኺ ኻ ኺ ኺ

)
ፂፙ
−−→ 𝑄ፂፙ(ፇ⊗ፇ) = (

ኺ ኺ ኻ ኺ
ኺ ኺ ኺ ኻ
ኻ ኺ ኺ ኻ
ኺ ኻ ኻ ኺ

)

Applying 𝑄ፂፙ(ፇ⊗ፇ) to (𝑋ኺ|𝑍ኺ) results in the generator matrix of the complete
graph on 2 qubits.

(𝑋ኺ|𝑍ኺ)(
ኺ ኺ ኻ ኺ
ኺ ኺ ኺ ኻ
ኻ ኺ ኺ ኻ
ኺ ኻ ኻ ኺ

) = ( ኻ ኺ ኺ ኻ
ኺ ኻ ኻ ኺ )

This indeed corresponds to a graph state related to the complete graph on
2 vertices.

Definition 4.8 will be very important for the following lemma.

Lemma 4.1. Given a graph state |𝐺⟩ with related graph 𝐺 = (𝑉, 𝐸) and a partition



4

48 4. Introducing local multi-qubit Clifford equivalence of graph states

𝑇 of this vertex set 𝑉. Assume that the vertices in 𝑇 are ordered such that for every
part, the vertices are consequitive. I.e., a part can be {6, 7, 8} but it can not be
{0, 5, 10}. For any local Clifford operation 𝐶 there exists a corresponding symplectic
matrix Q = [[A,B], [C,D]] where

A,B,C,D ∈ {⊕።∈ፓM። ∶ M። ∈
|።|×|።|
ኼ } (4.9)

such that QPQፓ = P. The ⊕ sign is the direct sum as defined in section 2.1.

Note that local Clifford operations are found using the tensor product (⊗) and the
symplectic transformations are found using the direct sum (⊕), i.e.:

𝐶 = ⊗𝐶። ∼ ⊕M። =M

This is not a formal relation, but it might help to give some intuition to how the
symplectic operations are constructed.

Proof. The proof of lemma 4.1 consists of the following steps. During this proof
we will keep track of the possible non-zero elements of the matrices A,B,C,D, in
order to show that these matrices indeed satisfy equation 4.9. The possible non-
zero positions of these four matrices are given by the matrices 𝑁𝑍ፀ,𝑁𝑍ፁ, 𝑁𝑍ፂ, 𝑁𝑍ፃ,
which are all 𝑁 × 𝑁 matrices with elements in ኼ. We start from the possible
non-zero positions of the idle circuit, and then continue to update them according
to SQC and 𝑇-LMQC operations. At some point, adding more operations will not
change the positions any further.

1. The idle circuit is given by four 𝑁 × 𝑁 matrices A,B,C,D, where A,D = ፍ
and B,C = 0. Therefore, the possible non-zero elements are given by:

𝑁𝑍ፀ = ፍ, 𝑁𝑍ፁ = 0, 𝑁𝑍ፂ = 0, 𝑁𝑍ፃ = ፍ

By doing SQC operations, any combination of 𝑆 and 𝐻 gates, we use the rules
from definition 4.8 to find that the possible non-zero positions are given by:

𝑁𝑍ፀ = ፍ, 𝑁𝑍ፁ = ፍ, 𝑁𝑍ፂ = ፍ, 𝑁𝑍ፃ = ፍ

2. In this step the possible non-zero positions are updated after doing 𝑇-LMQC
operations. Therefore, we assume that the columns of Q are labelled such
that qubits in the same node are adjacent. If this is not the case, this can
be achieved by relabelling columns (up to row swaps), which are not physical
operations. Using the rule for a 𝐶𝑍 gate, we find that a 𝐶𝑍 gate makes the
𝑁𝑍 matrices block diagonal, where the dimensions of every block correspond
to the number of qubits in the node. Here Jፍ is used for the 𝑁 × 𝑁 all-ones
matrix.

𝑁𝑍ፀ = ⊕።∈ፓJ|።|, 𝑁𝑍ፁ = ⊕።∈ፓJ|።|, 𝑁𝑍ፂ = ⊕።∈ፓJ|።|, 𝑁𝑍ፃ = ⊕።∈ፓJ|።|
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3. Any extra 𝑆, 𝐻 or 𝐶𝑍 operation will not change the possible non-zero posi-
tions any more. This follows again from the rules in definition 4.8. This proves
that any symplectic transformation corresponding to a sequence of 𝐻, 𝑆 and
𝐶𝑍 gates, will satisfy equation 4.9. Furthermore, as the set {𝐻, 𝑆, 𝐶𝑍} gener-
ates the Clifford group, any local Clifford corresponds to a symplectic matrix
described by equation 4.9. This concludes the proof.

An example for the form of A,B,C,D corresponding to Q with partition 𝑇 =
({0, 1}, {2, 3, 4}, {5, 6}) is given below where 𝑚። ∈ {0, 1} for 𝑖 ∈ {0, … , 16}:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[ 𝑚ኺ 𝑚ኻ
𝑚ኼ 𝑚ኽ

] 0 0

0 [
𝑚ኾ 𝑚 𝑚ዀ
𝑚 𝑚ዂ 𝑚ዃ
𝑚ኻኺ 𝑚ኻኻ 𝑚ኻኼ

] 0

0 0 [ 𝑚ኻኽ 𝑚ኻኾ
𝑚ኻ 𝑚ኻዀ

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.10)

4.2.2. Overview of the algorithm

In order to gain more intuition about which graph states are equivalent under local
multi-qubit Clifford operations we used an algorithm which is not efficient. This
algorithm is described in Algorithm 2 and can be found on Github [12]. In this
subsection we will discuss this algorithm step-by-step and its correctness. We first
state the algorithm:

The goal of the algorithm is to determine whether two graph states are equivalent
under local multi-qubit operations with respect to 𝑇. The input to the algorithm
is two graphs, 𝐺 and 𝐺ᖣ, and a partition 𝑇 of the vertex set of the graphs 𝐺 and
𝐺ᖣ. The algorithm is restricted to two graphs on the same vertex set and the same
partition. We will discuss the algorithm line by line.

• line 1: From vectorizing linear equation 3.36 we find 𝑀.

• line 2: This is the step where local operations are enforced. By only selecting
the rows which correspond to possible non-zero values in ⊕።∈ፓJ|።|, the other
elements of A, B, C, D must be zero. This follows from lemma 4.1.

• line 4: The remaining system of equations is solved to find a basis ℬ.

• line 5-8: Every element in the space spanned by ℬ is checked if it is symplectic.
If it is symplectic, the algorithm returns TRUE
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Algorithm 2 𝑇-LMQC-EQUIV (brute-force)
Input: Graphs 𝐺 and 𝐺ᖣ on the same vertex set 𝑉 and a partition 𝑇 of 𝑉.

𝑇 must be ordered such that qubits in the same node are also
consecutive (up to other qubits in the same node)

Output: TRUE if there exists a local Clifford which transforms 𝐺 to 𝐺ᖣ
FALSE otherwise

1: 𝑀 ← [ ⊗ Γᖣ, Γ ⊗ Γᖣ, ⊗ , Γ ⊗ ]
2: Only keep rows of 𝑀 corresponding to a 1 in vec(⊕።∈ፓJ|።|)
3: ◃The remaining matrix is of dimensions 4𝑚 × 𝑁ኼ where 𝑚 = ∑።∈ፓ |𝑖|

ኼ.
4: ℬ ← Solve(𝑀ፓ,0ኾ፦×ኻ)
5: for 𝑣 ∈ 𝑠𝑝𝑎𝑛(ℬ) do
6: Find E,F,G,H corresponding to 𝑣
7: if [[E,F], [G,H]] is symplectic then
8: return TRUE
9: return FALSE

• line 9: If no symplectic operation satisfying equation 3.36 is found, the algo-
rithm returns FALSE.

The next thing to do is analyse the time complexity of this algorithm. Therefore,
we will analyse the algorithm line-by-line.

1. Line 1-2: This is constructing a 4𝑁ኼ × 𝑁ኼ matrix and then removing some
rows, which is done in 𝒪(𝑁ኾ).

2. Line 3: Solving this system of equations can be done using Gaussian elimina-
tion. The dimensions of 𝑀 are 4𝑚×𝑁ኼ, and as 𝑚 = 𝒪(𝑁ኼ), we find that this
step can be done in 𝒪(𝑚ኼ𝑁ኼ) = 𝒪(𝑁ዀ).

3. Line 4-7: This loop runs over 2፦ elements, where 𝑚 = ∑።∈ፓ |𝑖|
ኼ. For every

iteration of the for loop, matrix multiplications is done of matrices of dimension
𝑁×𝑁, which is done in 𝒪(𝑁ኽ). So the full body has time complexity 𝒪(2፦𝑁ኽ).

Thus, the time complexity of algorithm 2 is 𝒪(𝑁ኾ)+𝒪(𝑁ዀ)+𝒪(2፦𝑁ኽ) = 𝒪(2፦𝑁ኽ).
This leads us to the theorem corresponding to this algorithm.

Theorem 4.2. Given |𝐺⟩, |𝐺ᖣ⟩ and a partition 𝑇 of the vertex set of 𝑉[𝐺] (= 𝑉[𝐺ᖣ]).
Algorithm 2 returns true if and only if |𝐺⟩ ∼ፓዅLMQC |𝐺ᖣ⟩ and returns false otherwise.
The running time of this algorithm is 𝒪(2፦𝑁ኽ) where 𝑚 = ∑።∈ፓ |𝑖|

ኼ = 𝒪(𝑁ኼ).
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4.2.3. Conjecture

In this section we present a conjecture which, if true, improves the run time of
algorithm 2. To be able to state the conjecture, we first formally discuss locally
connected graphs.

Definition 4.9 (Locally connected graphs). Let 𝐺 be a graph with a partition 𝑇 of
𝑉[𝐺]. Furthermore, let 𝐺ᖣ be the graph which results from adding every local edge
to 𝐺 which is not in 𝐺. Then a graph 𝐺 is a locally connected graph w.r.t. 𝑇 if and
only if 𝐺ᖣ is a connected graph.

The conjecture is very similar to the result of Bouchet which is used to find a poly-
nomial time algorithm for SQC-EQUIV [11]. The restriction on locally connected
graphs is necessary, as counter-examples are otherwise found when testing the
conjecture.

Conjecture

Conjecture 4.1. Given |𝐺⟩, |𝐺ᖣ⟩ and a partition 𝑇 of the vertex set of 𝑉[𝐺]
(= 𝑉[𝐺ᖣ]). Let the maximum number of qubits per node be upper bounded
by 2. Furthermore, we assume 𝐺 and 𝐺ᖣ are locally connected graphs. Lastly,
we assume that no local edges are present in 𝐺 and 𝐺ᖣ. Let ℬ be a basis of
the solution space of equation 3.36. Furthermore, 𝑡ኼ is the number of two-
qubit nodes in 𝑇. In order to verify that a solution in span(ℬ) is a symplectic
operation, it is sufficient to check if there exists a solution in 𝑉ᖣ which is
symplectic. In other words:

∃𝑣(A,B,C,D) ∈ 𝑉 ∶ AD+BC =
⟺

∃𝑣(Aᖣ,Bᖣ,Cᖣ,Dᖣ) ∈ 𝑉ᖣ ∶ AᖣDᖣ +BᖣCᖣ =
(4.11)

where

𝑉ᖣ = {
|ℬ|

∑
።ኻ

𝑥።𝑏። ∶ 𝑏። ∈ ℬ, 𝑥። ∈ {0, 1},
|ℬ|

∑
።ኻ

𝑥። ≤ 2 + 2𝑡ኼ} (4.12)

The size of 𝑉ᖣ is given as follows:

|𝑉ᖣ| =
ኼዄኼ፭Ꮄ

∑
።ኻ

(
𝑀
𝑖
), 𝑀 =∑

።∈ፓ

|𝑖|ኼ (4.13)

Note that if 𝑡ኼ = 0, the conjecture reduces to the result from Bouchet [11] used in
theorem 3.2. Using 𝑀 = ∑።∈ፓ |𝑖|

ኼ = 2ኼ𝑡ኼ + |𝑉| − 2𝑡ኼ = 2𝑡ኼ + |𝑉|, an upper bound



4

52 4. Introducing local multi-qubit Clifford equivalence of graph states

on the size of 𝑉ᖣ can be found:

|𝑉ᖣ| =
ኼዄኼ፭Ꮄ

∑
።ኻ

(
𝑀
𝑖
) ≤

ኼዄኼ፭Ꮄ

∑
።ኻ

𝑀። =
ኼዄኼ፭Ꮄ

∑
።ኻ

(2𝑡ኼ + |𝑉|)። (4.14)

Therefore, we know that |𝑉ᖣ| scales polynomial in |𝑉[𝐺]| for a fixed 𝑡ኼ:

𝒪(|𝑉ᖣ|) = 𝒪((2𝑡ኼ + |𝑉|)ኼዄኼ፭Ꮄ) (4.15)

Conjecture 4.1 has been tested for all possible combinations of 𝐺 and 𝐺ᖣ for |𝐺| ≤ 5
and for 𝑡ኼ = 1, 2, and also for |𝐺| = 6 and for 𝑡ኼ = 1. This is illustrated by the
possible vertex sets and partitions in figure 4.6. If the conjecture is true, this can

Figure 4.6: Conjecture 4.1 is tested for all possible locally connected graph states |ፆ⟩, |ፆᖤ⟩ on vertex
set ፕ and partition ፓ shown here.

be used to find an algorithm with an improved runtime to solve 𝑇-LMQC-EQUIV,
this is the topic of the next theorem.

Theorem 4.3 (if conjecture 4.1 is true). Given |𝐺⟩, |𝐺ᖣ⟩ and a partition 𝑇 of the
vertex set of 𝑉[𝐺] (= 𝑉[𝐺ᖣ]). Assume the qubits per node is bounded by 2 and the
number of two-qubit nodes is given by 𝑡ኼ. Furthermore, assume that 𝐺 and 𝐺ᖣ are
locally connected graphs. Algorithm 3 returns true if and only if |𝐺⟩ ∼ፓዅLMQC |𝐺ᖣ⟩
and returns false otherwise. The running time of this algorithm is 𝒪(∑ኼዄኼ፭Ꮄ።ኻ (፦

።
)𝑁ኽ)

where 𝑚 = ∑።∈ፓ |𝑖|
ኼ.

Proof. The algorithm is identical to the proof of algorithm 2, except line 7. Instead
of checking all vectors in 𝑉, the algorithm only checks all vectors in 𝑉ᖣ. Conjecture
4.1 states that checking 𝑉ᖣ is sufficient to find a solution, if such a solution exists
in 𝑉.

Here we state the algorithm based on conjecture 4.1. Note that the algorithm is
very similar to algorithm 2. We will discuss the lines different from algorithm 2.
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Algorithm 3 Check multi-qubit Clifford equivalence (conjecture-brute-force)
Input: Graphs 𝐺 and 𝐺ᖣ on the same vertex set 𝑉 and a partition 𝑇 of 𝑉,

such that max።∈ፓ(𝑖) ≤ 2. Furthermore, 𝐺 and 𝐺ᖣ are
locally connected graphs w.r.t. 𝑇.

Output: TRUE if there exists a local Clifford Q which transforms |𝐺⟩ to |𝐺ᖣ⟩
FALSE otherwise

1: remove all local edges (w.r.t. 𝑇) in 𝐺 and 𝐺ᖣ
2: 𝑀 ← [ ⊗ Γᖣ, Γ ⊗ Γᖣ, ⊗ , Γ ⊗ ]
3: Only keep rows of 𝑀 corresponding to a 1 in vec(⊕።∈ፓJ|።|)
4: ◃The remaining matrix is of dimensions 4𝑚 × 𝑁ኼ where 𝑚 = ∑።∈ፓ |𝑖|

ኼ.
5: ℬ ← Solve(𝑀ፓ,0ኾ፦×ኻ)
6: for 𝑣 ∈ 𝑉ᖣ do ◃𝑉ᖣ is defined in conjecture 4.1
7: Find E,F,G,H corresponding to 𝑣
8: if [[E,F], [G,H]] is symplectic then
9: return TRUE
10: return FALSE

• line 1: All local edges are removed, because this is one of the requirements
of the conjecture.

• line 6: Instead of 𝑠𝑝𝑎𝑛(ℬ) the algorithm only considers all elements in 𝑉ᖣ ⊆
𝑠𝑝𝑎𝑛(ℬ), where 𝑉ᖣ is defined in conjecture 4.1.

Algorithm 3 is implemented in SAGE, the code can be found on Github [12] and
examples using this code can be found in appendix A.1. In figure 4.7 the running
time of algorithm 2 and algorithm 3 are shown.

Figure 4.7: Maximum and average running times of algorithm 2 (”Brute Force”) and algorithm 3 (”Con-
jecture”). The input graphs are randomly generated connected graphs and the number of two-qubit
nodes is one.
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4.3. Examples of 𝑇-LMQC equivalent graphs

Algorithm 2 solves 𝑇-LMQC-EQUIV, as this is a new result we will here present
some examples of 𝑇-LMQC equivalent graph states.This hopefully helps to get some
intuition for local Clifford equivalence. The first example is to check whether the
GHZ state (complete graph) on 4 vertices and two Bell pairs sharing a node are
𝑇-LMQC equivalent. It would be very useful if this was true, as Bell pairs are
often created in experimental setups and the GHZ-state is often used as an input
for network protocols. Unfortunately, it turns out that the two are not equivalent
under local multi-qubit operations:

2
(a) (b) (c) (d)

2 2 2

Figure 4.8: All graphs which are equivalent up to SQC to |ፆBellᎴ⟩ under LMQC operations given ፓ 
({ኺ, ኻ}, {ኼ}, {ኽ}), i.e. Lᑋ(ፆBell Ꮄ). As |፫፞፩(Lᑋ(ፆBell Ꮄ))|  ኾ, we have 4 graph states here.

0

2

1

3

0

2

1

3

̸∼T−LMQC

Figure 4.9: Using algorithm 2 we find that two Bell pairs are not ፓ-LMQC equivalent to the complete
graph, with partitions as in this figure.

The next example considers all graph states on 4 vertices. We will check which
of them are equivalent under local multi-qubit operations if there is one two-qubit
node. It turns out that the 18 single qubit Clifford equivalence classes form 6 𝑇-
LMQC equivalence classes (given 𝑇 = ({0, 1}, {2}, {3})) as shown in figure 4.10.
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2
(a) (b) (c) (d)

(e) (f) (g)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r)

2 2 2

2 2 2 (h) 2

2

2

2

2

2

2

2

2

0 1

2

2

2

0 1

3 2

Labelling

Figure 4.10: Representatives of all single qubit Clifford equivalence classes on four qubits and with
ፓ  ({ኺ, ኻ}, {ኼ}, {ኽ}). Note that only (a)-(h) are (can be) connected graphs on four qubits. The dotted
lines indicate different LMQC equivalence classes. For example, the four graphs (a)-(d) are not SQC-
equivalent but they are LMQC equivalent. And the graphs in figure (a) and (e) are not SQC-equivalent
and not LMQC-equivalent.





5
Mapping multi-qubit

operations to ancilla states

In this chapter we propose a new algorithm to decide local multi-qubit Clifford
equivalence of graph states. The concept behind this algorithm is not restricted by
the number of qubits per node, however we will focus on the algorithm for maximum
2 qubits per node. The algorithm still scales exponentially in the number of multi-
qubit nodes, but linearly in the size of the graph state. As the concept behind this
algorithm is completely new, we will try to give some intuition for why it works in
section 5.1. In section 5.2 we formalize the concept of the first section and provide
the main result of this chapter, theorem 5.1. This theorem is proved in section 5.3.
Section 5.4 provides lemmas for the proof of theorem 5.1. However, some results in
section 5.4 might be of interest outside the context of theorem 5.1. In section 5.5
we finally present the algorithm, which is relatively straightforward when the result
of section 5.2 is understood. In section 5.5.4 we compare the algorithm proposed in
this chapter with the brute force algorithm proposed in chapter 4. Finally, in section
5.6 we discuss how the algorithm would work for general multi-qubit nodes.
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5.1. Introducing deciding 𝑇-LMQC equivalence via
gate teleportation

The naive approach of checking local multi-qubit Clifford equivalence of graph states
is to apply every possible local Clifford to the source state and then verify whether
the target state is reached. However, even for small multi-qubit nodes the size
of the local Clifford group is enormous. For example, as discussed in chapter 2,
the two qubit Clifford group has 11520 elements. Nevertheless, for deciding single
qubit Clifford equivalence of graph states a polynomial time algorithm is known
(see 3.1). To optimize the naive approach a little bit, one could first consider all
local multi-qubit operations and then use the polynomial time algorithm instead of
checking all single qubit Cliffords. To be more specific, given two graph states |𝐺⟩
and |𝐺′⟩ on 𝑁 qubits for which one wants to decide 𝑇-LMQC equivalence. Lets
assume, for example, that there are two two-qubit nodes, 𝐴 and 𝐵, and all other
nodes are single qubit nodes. Then we apply every local multi-qubit operation to
the source state |𝐺⟩ to find the set 𝐺ፚ፥፥ = {𝐶ፀ ⊗𝐶ፁ |𝐺⟩ |𝐶ፀ, 𝐶ፁ ∈ 𝒞ኼ}. This is a set
of possibly 11520 × 11520 stabilizer states, as 𝐶ፀ and 𝐶ፁ can both be any element
from 𝒞ኼ and |𝒞ኼ| = 11520. Then, for every stabilizer state in 𝐺ፚ፥፥ we check SQC-
equivalence with |𝐺′⟩. This can either be done by considering every SQC operation
per node or by using the efficient algorithm. The naive approach would lead to
considering 24ፍዅ|ፀ|ዅ|ፁ| single qubit Clifford operations, where the optimized naive
approach would scale linearly with 𝑁: 𝒪(𝑁ኾ).

In this chapter we provide an algorithm to decide 𝑇-LMQC equivalence which is
very similar to the improved naive approach. The difference is that, instead of con-
sidering every element of the local multi-qubit Clifford group, considering a smaller
set (the reduced Clifford set, 𝒞ᖣኼ) is sufficient. The reduced Clifford set is formally
defined in section 5.2. A rough sketch of the algorithm is as follows. The algorithm
will first generate a set of stabilizer states, 𝐺ᖣፚ፥፥ = {𝐶ፀ, 𝐶ፁ ∈ 𝒞ᖣኼ|𝐶ፀ ⊗𝐶ፁ |𝐺⟩}, and
then check SQC-equivalence to |𝐺′⟩ for every graph state in 𝐺ᖣፚ፥፥. The improved
runtime is due to the reduced size of 𝒞ᖣኼ: |𝒞ᖣኼ| ≪ |𝒞ኼ|.

The big question remaining is how to find this reduced Clifford set 𝒞ᖣኼ. The ap-
proach discussed in this chapter is based on the gate teleportation circuit discussed
in section 3.5. Here we will try to introduce the concept informally, which hope-
fully provides some intuition for this approach. In the next section a more formal
discussion is provided.

Lets start by studying the gate teleportation circuit in a bit more detail. In order to
teleport a 𝑀-qubit gate 𝑈ፌ ∈ 𝒞(2ፌ), 2𝑀 ancilla qubits are needed. We will refer to
the quantum state of these qubits as the ancilla state. The ancilla qubits must be
initialized in a specific quantum state |𝐴⟩. The state |𝐴⟩ is known, it is always the𝑀-
Bell pairs graph state. An example for 𝑀 = 5 is shown in figure 5.1. The next step
is to apply 𝑈ፌ to the ancilla state instead of applying it directly to |𝐺⟩. An example
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Figure 5.1: Theፌ-Bell pairs state forፌ  , where every Bell pair contributes one qubit to a multi-qubit
node.

of this is shown in figure 5.2, for the case that |𝐺⟩ is a graph state on 5 vertices with
1 two qubit node. The state 𝑈ፌ |𝐴⟩ might not be a graph state, as not every Clifford
maps graph states to graph states, but it is definitely a stabilizer state as 𝑈ፌ is a
Clifford. As discussed in section 3.4 a stabilizer state can always be transformed to a
graph state with only SQC-operations. In other words, starting from the𝑀-Bell pairs
graph state, MQC operations are applied on 𝑀 qubits and SQC-operations on 2𝑀
qubits such that the resulting state is a graph state. In terms of local operations, this
corresponds to local operations with partition 𝑇ፀ = ({0, … ,𝑀−1}, {𝑀}, … , {2𝑀−1}).
𝑈ፌ is applied to the node with qubits {0, … ,𝑀 − 1}, after which SQC-operations
on possibly all ancilla qubits are applied to reach a graph state. Using algorithm
2 we can find all graph states 𝑇ፀ-LMQC to |𝐴⟩, i.e. Lፓᐸ(𝐴). At first sight it might
not be clear why would want to do this. Let us consider the case for 𝑀 = 2 as
an example. The size of the two-qubit Clifford group is 11520, however there are
only 64 graphs on 2𝑀 qubits. Therefore, it follows that Lፓᐸ(𝐴) ≤ 64. This example
already indicates that considering the possible graph states on the ancilla qubits
might help to reduce the number of multi-qubit Cliffords relavant to check 𝑇-LMQC
equivalence.

The next step in gate teleportion is to do Bell measurements in order to map 𝑈ፌ to
|𝐺⟩. Given the set of all graph states in Lፓᐸ(𝐴), we will apply Bell measurements to
study the effect on |𝐺⟩ of different graph states on the ancilla qubits. We will find
that some of the graph states in Lፓᐸ(𝐴) will have a SQC-equivalent effect on |𝐺⟩.
Remember that we are still using the naive approach described earlier in this section,
so we first consider all multi-qubit nodes and then check for SQC-equivalence to
|𝐺′⟩. Therefore, for two ancilla graph states which have a SQC-equivalent effect on
|𝐺⟩, we only need to consider one of them in order to decide 𝑇-LMQC-equivalence
of |𝐺⟩ and |𝐺′⟩. By removing the elements which have a duplicate effect (up to
SQC-operations) from the Clifford group, we find the reduced Clifford set.



5

60 5. Mapping multi-qubit operations to ancilla states

(a) A graph state |ፆ⟩ on 5 qubits
with one 2 qubit node.

(b) A graph state |ፆ⟩ (below)
and a graph state |ፀ⟩ (above) in
the ኼ-Bell pair state. The rectan-
gles denote measuring the two
qubits in the Bell basis (Bell
measurements).

Figure 5.2: An example for how a multi-qubit node in a graph state (in (a)) can be mapped to an ancilla
state (in (b)). In order for the two to be equal, the multi-qubit operation on the ancilla state is mapped
back to the original graph state via Bell measurements (the rectangles in (b)).

5.2. Formalizing the concept

In this section the approach described in the previous section will be formalized and
an outline is given for the calculations that have to be done. Finally, the main result
of this chapter is stated. In this section the number of qubits sharing a node is
bounded by 2. In other words, we assume that there are only one- and two-qubit
nodes in the graph state. However, in general this approach is not restricted by the
number of qubits per node. In section 5.6 we discuss the general case without a
bound on the number of qubits per node.

Let |𝐺⟩ be a graph state and let 𝑇ፆ be a partition of 𝑉[𝐺], the vertex set of 𝐺. Further-
more, assume that there exists a two-qubit node with two distinct qubits 𝑎, 𝑏, i.e.
∃𝑎, 𝑏 ∶ ∃𝑡 ∈ 𝑇ፆ ∶ 𝑎, 𝑏 ∈ 𝑡, 𝑎 ≠ 𝑏. Let 𝑇ፆ′ be the partition 𝑇ፆ where {𝑎, 𝑏} is replaced
by {𝑎}, {𝑏}. Let |𝐴⟩ be the 2-Bell pair graph state with every pair contributing a qubit
to a multi-qubit node. I.e., 𝐴 = (𝑉, 𝐸) = ({𝐴ኺ, 𝐴ኻ, 𝐴ፚ, 𝐴}, {(𝐴ኺ, 𝐴ፚ), (𝐴ኻ, 𝐴)}) and
𝑇ፀ = ({𝐴ፚ, 𝐴}, {𝐴ኺ}, {𝐴ኻ}) is a partition of 𝑉[𝐴]. Furthermore, let 𝑈ፚ ∈ 𝒞ኼ and let
G.T. (𝐺, |𝐴ፔᑒᑓ⟩) denote applying operation 𝑈ፚ to |𝐺⟩ via gate teleportation where
|𝐴ፔᑒᑓ⟩ = 𝑈ፚ |𝐴⟩. Note that when we write 𝑈ፚ |𝐴⟩, 𝑈ፚ is actually applied on 𝐴ፚ, 𝐴
and not on 𝑎, 𝑏. Formally, we then have:

𝑈ፚ |𝐺ፓᐾ⟩ = G.T. (𝐺ፓᖤᐾ , |𝐴
ፔᑒᑓ⟩) (5.1)

Note that in the r.h.s. of equation 5.1 we will drop the ket labels if the state is a
graph state. So we write 𝐺 instead of |𝐺⟩, but as 𝑈ፚ |𝐴⟩ is not always a graph
state we write |𝐴ፔᑒᑓ⟩. For example, for a graph state on 5 vertices with qubits 𝑎,𝑏
sharing a node, figure 5.3(a) corresponds to the l.h.s. of equation 5.1 and figure
5.3(b) corresponds to the r.h.s. of the same equation. The rectangles correspond
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to Bell measurements of the two qubits inside, which are done in order to make the
two graph states equal (for the same 𝑈ፚ of course). Everything is in place now

a b

2

3

4

(a) Graph state |ፆ⟩ on the vertices
{ፚ, , ኼ, ኽ, ኾ} where ፚ, share a node.

2

3

4

a b

A0 A1

Aa Ab

(b) The same graph state as in (a) but
now the multi-qubit operations on ፚ, are
mapped onto the ancilla state. To end up
with the same state as in (a), Bell mea-
surements are done on qubits ፀᎲ, ፚ and
on ፀᎳ, .

Figure 5.3: An example of equation 5.1, where we either apply a two-qubit gate directly on the graph
state (a) or on an ancilla state (b). The Bell measurements, the rectangles in (b) correspond to Bell
measurements on the two qubits.

to formally discuss the concept of this chapter. When applying a two qubit gate
directly to the graph state, 𝑈ፚ |𝐺⟩, there are no intermediate steps that we can
analyse. However, if we apply 𝑈ፚ via gate teleportation there is a lot of redundancy
on the ancilla state, namely the set of possible graph states on the ancilla qubits.
Furthermore, we can analyse whether different ancilla states have a SQC-equivalent
effect on |𝐺⟩. To state this more formally, for 𝑈ፚ, 𝑈ᖣፚ ∈ 𝒞ኼ:

G.T. (𝐺, |𝐴ፔᑒᑓ⟩) ?∼ፒፐፂ G.T. (𝐺, |𝐴ፔ
ᖤ
ᑒᑓ⟩) (5.2)

To be more specific, we first give a circuit view of applying a gate via gate telepor-
tation in figure 5.4. When comparing this to the graphs we have seen before, the
graph state in figure 5.3b corresponds to the graph state in figure 5.4 at 𝐿ኻ.

Let us focus on the redundancy of the states on the ancilla qubits by analysing the
circuit in figure 5.4. The state |𝐴ፔ⟩ on the ancilla states at 𝐿ኼ is in general not a
graph state but a stabilizer state. From section 3.4 we know that any stabilizer
state is SQC equivalent to a graph state. Therefore |𝐴ፔ⟩ can always be turned into
a graph state |𝐴ፔፆፒ⟩. We use subscript 𝐺𝑆 to denote that this is a graph state on
the ancilla qubits originally in |𝐴⟩ and superscript 𝑈 for the gate 𝑈ፚ applied to
|𝐴⟩. Note that 𝑈ፚ fully specifies |𝐴ፔፆፒ⟩. Furthermore, |𝐴ፔፆፒ⟩ ∈ Lፓᐸ(𝐴), i.e. |𝐴

ፔ
ፆፒ⟩ is

always 𝑇ፀ-LMQC equivalent to |𝐴⟩. Using algorithm 2 we know that there are only
24 graph states 𝑇ፀ-LMQC equivalent to |𝐴⟩. The fact that, for any two-qubit Clifford
𝑈, there are only 24 possible graph states on |𝐴ፔፆፒ⟩ is the redundancy mentioned
before.
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𝑉[𝐺]\𝑎, 𝑏
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𝑎 • 𝐻 ✌✌✌ •

𝐴ኺ |0⟩ 𝐻 • • 𝐻 ✌✌✌ •

𝐴ፚ |0⟩ 𝐻 •
𝑈ፚ 𝑈ጷፚ

𝑋 𝑍
𝑈ፚ

𝐴 |0⟩ 𝐻 • 𝑋 𝑍

𝐴ኻ |0⟩ 𝐻 • • 𝐻 ✌✌✌ •

𝑏
𝐿ኺ 𝐿ኻ 𝐿ኼ

• 𝐻 ✌✌✌ •
𝐿

Figure 5.4: A circuit view of gate teleporting ፔᑒᑓ to |ፆ⟩. At the start of the circuit, at line ፋᎲ, we have the
graph state |ፆ⟩. Next four ancilla qubits are added and prepared as the graph state |ፀ⟩, which makes
the state at ፋᎳ |ፆ⟩⊗ |ፀ⟩. ፔᑒᑓ is applied to ancilla qubits ፀᑒ,ፀᑓ and with |ፀᑌ⟩  ፔᑒᑓ |ፀ⟩ the state after
the two qubit gate, at ፋᎴ, is |ፆ⟩⊗ |ፀᑌ⟩. After the Bell measurements the final state is ፔᑒᑓ |ፆ⟩ (at ፋᎷ).

However, just checking the 24 graph states in Lፓᐸ(𝐴) as an ancilla state in the
gate teleportation circuit is not sufficient to consider 𝑇-LMQC equivalence of graph
states. I.e.,:

∃𝑈ፚ ∈ 𝒞ኼ ∶ ∀𝐴ᖣ ∈ Lፓᐸ(𝐴) ∶ 𝑈ፚ |𝐺⟩ ≁ፒፐፂ G.T.(𝐺, 𝐴
ᖣ) (5.3)

What is missing here, is that the operations taking |𝐴ፔ⟩ to a graph state |𝐴ፔፆፒ⟩might
affect the two-qubit gate applied to |𝐺⟩. Let 𝐶to graph be the single qubit Clifford
operations such that 𝐶to graph |𝐴ፔ⟩ = |𝐴ፔፆፒ⟩. We will now rewrite the definition of
gate teleportation from equation 5.1 such that 𝐴ፔፆፒ and 𝐶to graph is used:

G.T.(𝐺, |𝐴ፔ⟩) = G.T.(𝐺, 𝐴ፔፆፒ, 𝐶to graph) (5.4)

By carefully analysing what the operations 𝐶to graph are and how they affect |𝐺⟩, we
will find which combinations of 𝐴ፔፆፒ and 𝐶to graph have a SQC-equivalent effect on
|𝐺⟩. This leads us to the formal definition of the reduced Clifford set.

Definition 5.1. Given a graph state |𝐺⟩ with a node with 𝑀 qubits. Let |𝐴⟩ be
the graph state corresponding to 𝐴 = (𝑉, 𝐸) = ({0, … , 2𝑀 − 1}, {(0, 0 + 𝑀),… , (𝑀 −
1,𝑀−1+𝑀)}). For 𝑈 ∈ 𝒞ፌ, |𝐴ፔ⟩ = 𝑈 |𝐴⟩. Then 𝐶to graph ∈ 𝒞ፌኻ is used to denote the
SQC operations taking |𝐴ፔ⟩ to the corresponding graph state |𝐴ፔፆፒ⟩. The reduced
Clifford set 𝒞ᖣፌ on 𝑀 qubits is a set of tuples �̃� where �̃� = (𝐴ፔፆፒ, 𝐶to graph) such that:

∀𝐶 ∈ 𝒞ፌ ∶ ∃�̃� = (𝐴ፔፆፒ, 𝐶to graph) ∈ 𝒞ᖣፌ ∶ G.T. (𝐺, 𝐴ፔፆፒ, 𝐶to graph) ∼SQC 𝐶 |𝐺⟩ (5.5)
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By |𝒞፤′| we denote the number of elements in 𝒞፤′. We are now ready to state the
main result of this chapter.

Theorem 5.1. ∃𝐶ኼ′ ∶ |𝒞ኼ′| = 40

Section 5.4 provides lemmas that are used to prove theorem 5.1, the proof is given
in section 5.3.

5.3. The reduced Clifford set for nodes with 2 qubits

In this section we proof theorem 5.1.

Proof of theorem 5.1. Let us start by providing an overview of the steps taken to-
wards proving the theorem.

• Step 1: The circuit of figure 5.4 is further analysed to prepare for the other
steps in the proof. Part of the previous sections is covered more formally.
Furthermore, the operations are specified which take a stabilizer state to a
graph state. This is covered in section 3.4.

• Step 2: The teleported gate can be substituted for a closely related gate which
is chosen such that no SQC-operations are needed on qubits 𝐴ፚ, 𝐴 to make
the ancilla state a graph state. This is used for the first bound on the reduced
Clifford set in eq. 5.12.

• Step 3: In the remaining steps (4-7) we will find that certain elements of
the reduced Clifford set always result in SQC-equivalent stabilizer states. In
this step, we simplify the gate teleportation circuit by assuming that the mea-
surement outcomes of the Bell measurements are all 1 (referring to the |0⟩
post-measurement state). Furthermore, new notation is introduced which will
be used in the remainder of the proof.

• Step 4: Using lemma 5.3 it is noted that any 𝑍 ∈ 𝐶። never results in an
unique (up to SQC) stabilizer state at 𝐿, in the sense that there always exists
𝐶። ∶ 𝑍 ∉ 𝐶። with a SQC-equivalent effect. This leads to a thighter bound on
the reduced Clifford set in equation 5.20.

• Step 5: Observe that single Hadamards (so 𝐶። = 𝐻, but not 𝐶። = 𝐻𝑆) can be
rewritten as a different ancilla graph state from Lፓ(𝐴) with 𝐶። = . This leads
to a new bound in equation 5.24.



5

64 5. Mapping multi-qubit operations to ancilla states

• Step 6: Note that stabilizer states for the corrections 𝐶። = 𝐻𝑆 are SQC-
equivalent to one of the other 𝐶። in the reduced Clifford set of equation 5.24
leading to the bound in equation 5.28.

• Step 7: Reduce the set of possible graph states on the ancilla qubits to 10
graph states. This is done by noting that by going to a graph state from a
stabilizer state on the ancilla qubits, not just one of the 24 states in Lፓ(𝐴) is
reached, but actually one in a subset (Lፓ(𝐴)ᖣ) of 10 graphs is reached. To
find this result, lemma 5.7 is used. This allows for an even tighter bound on
the reduced Clifford set, given in equation 5.34.

Step 1
For this step we use the circuit given in figure 5.5. In this circuit 𝐶to graph = 𝐶ኺ ⊗
𝐶ኻ ⊗𝐶ፚ ⊗𝐶 are chosen such that |𝐴ፔፆፒ⟩ is always a graph state. In figure 5.5 the
operations needed to transform |𝐴ፔ⟩ to a graph state are done between 𝐿ኼ and 𝐿ኽ,
and they are cancelled one step later between 𝐿ኽ and 𝐿ኾ. In section 3.4 we discuss
that one can always transform a stabilizer state to a graph state with only single
qubit Cliffords.
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𝐴ኻ 𝐶ኻ 𝐶ጷኻ • 𝐻 ✌✌✌ •

𝑏
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Figure 5.5: The gate teleportation without the initialization of the ancilla states (on ፀᎲ, ፀᎳ, ፀᑒ, ፀᑓ). ፂᑚ
with ። ∈ {ኺ, ኻ, ፚ, } are chosen such that the ancilla state is a graph state, |ፀᑌᐾᑊ⟩, and the operations are
cancelled between ፋᎵ, ፋᎶ. At ፋᎶ the state is the same as the state at ፋᎴ.

At 𝐿ኽ the state on the ancilla qubits is a graph state, |𝐴ፔፆፒ⟩. Furthermore, this graph
state is reached by doing single qubit Cliffords on all four qubits and a two qubit
Clifford between 𝐴ፚ and 𝐴 on the original ancilla state |𝐴⟩. Then we know that
|𝐴ፔፆፒ⟩ ∈ Lፓᐸ(𝐴), where 𝑇ፀ = ({𝐴ፚ, 𝐴}, {𝐴ኺ}, {𝐴ኻ}) as before. I.e., |𝐴ፔፆፒ⟩ is always
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a graph in the local multi-qubit Clifford equivalence class of |𝐴⟩ w.r.t. 𝑇ፀ. Using
algorithm 2 one can find that there are only 24 such graph states (|Lፓᐸ(𝐴)| = 24).
So for every 𝑈ፚ that is being teleported, |𝐴ፔፆፒ⟩ is always one of the 24 graph states
𝑇ፀ-LMQC equivalent to |𝐴⟩. I.e.:

∀𝑈ፚ ∈ 𝒞ኼ ∶ ∃ |𝐴ፔፆፒ⟩ ∈ Lፓᐸ(𝐴) (5.6)

At first sight it might seem that in order to check LMQC equivalence of graph states
for a two qubit node, one only has to consider the 24 graph states in Lፓᐸ(𝐴) via
the gate teleportation. However, this is not true as the operations making |𝐴ፔፆፒ⟩
a graph state still have to be cancelled (between 𝐿ኽ and 𝐿ኾ). If these operations
are not cancelled, the two qubit gate 𝑈ፚ applied just before 𝐿 might be a dif-
ferent Clifford gate than we originally teleported. One might try to commute the
operations between 𝐿ኽ and 𝐿ኾ through the circuit to the right, so through the Bell
measurements after 𝐿. In that case, only the 24 graph states in Lፓᐸ(𝐴) have to
be teleported. However, commuting the operations from 𝐿ኽ-𝐿ኾ through till after
𝐿 does in general produce a two-qubit gate after 𝐿. As the idea is to check for
SQC equivalence after gate teleportation, adding an extra two-qubit gate is not the
way to go. Therefore, we will consider the circuit including cancellations, i.e. the
operations between 𝐿ኼ and 𝐿ኽ are cancelled in the step between 𝐿ኽ and 𝐿ኾ.

As discussed in section 3.4 the set of operations to transform any stabilizer state to
a graph state consists of operations of the form 𝑍፳𝑆፲𝐻፱ for 𝑥, 𝑦, 𝑧 ∈ ኼ. Therefore,
we know that for 𝑖 ∈ {0, 1, 𝑎, 𝑏}:

𝐶። ∈ 𝐶ኺto graph = { , 𝑆, 𝐻, 𝑆𝐻, 𝑍, 𝑍𝑆, 𝑍𝐻, 𝑍𝑆𝐻} (5.7)

Step 2
In this step we will change the gate 𝑈ፚ teleported to another gate, which will bring
us to the first non-trivial bound on the reduced Clifford set. First we will discuss
what other gate is teleported instead of 𝑈ፚ.

The operations on qubits 𝐴ፚ and 𝐴 can be seen as operations belonging to the
gate teleported, so instead of teleporting 𝑈ፚ, the gate 𝑈ᖣፚ = (𝐶ፚ ⊗ 𝐶)𝑈ፚ is
teleported. As 𝐶ፚ and 𝐶 are SQC operations, it is clear that:

𝑈ፚ |𝐺⟩ ∼SQC 𝑈ᖣፚ |𝐺⟩ (5.8)

This can also be stated in terms of gate teleported states:

∀𝑈ፚ ∈ 𝒞ኼ, ∀𝐶ፚ, 𝐶 ∈ 𝐶ኺto graph ∶ G.T.(𝐺, |𝐴
ፔᑒᑓ⟩) ∼ፒፐፂ G.T.(𝐺, |𝐴(ፂᑒ

⊗ፂᑓ)ፔᑒᑓ⟩) (5.9)

Teleporting 𝑈ᖣፚ allows us to write the circuit such that on qubits 𝐴ፚ and 𝐴 no
operations are needed to reach a graph state. This is shown in figure 5.6.
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Figure 5.6: The gate teleportation circuit without initialization of the ancilla states. Furthermore, the
teleported gate ፔᑒᑓ is substituted for (ፂᑒ ⊗ፂᑓ)ፔᑒᑓ  ፔᖤᑒᑓ. Note that the only remaining operations
(ፂᑚ’s) to reach a graph state on the ancilla qubits are on ፀᎲ and ፀᎳ.

Next we will analyse the remaining operations between 𝐿ኼ and 𝐿ኾ. We know from
equation 5.7 that for 𝐶። ∈ {𝐶ኺ, 𝐶ኻ}, there are 8 possible gates to consider:

𝐶ኺto graph = { ,𝐻, 𝑆, 𝑆𝐻, 𝑍, 𝑍𝐻, 𝑍𝑆, 𝑍𝑆𝐻} (5.10)

Therefore, the total number states at 𝐿ኾ right now is 8 × 8 (for the operations on
𝐴ኺ and 𝐴ኻ) times 24 (all possible graph states |𝐴ፔፆፒ⟩) = 1536. The set of states can
be labelled only by the graphs 𝐴ፔፆፒ and the operations 𝐶ኺ, 𝐶ኻ as follows:

𝐶ᖣኻኼ = {(𝐴ፔፆፒ, 𝐶ኺ, 𝐶ኻ)|∀𝐴ፔፆፒ ∈ Lፓᐸ(𝐴), ∀𝐶ኺ, 𝐶ኻ ∈ 𝐶
ኺ
to graph} (5.11)

This results in the first bound on the size of the reduced Clifford set:

|𝐶ᖣኻኼ | = 1536 (5.12)

Note that this is already almost x10 smaller than checking all elements of the two
qubit Clifford group. The next step is to analyse the stabilizer state after the Bell
measurements to see if some of these 1536 cases result in single qubit Clifford
equivalent states.

Step 3
In order to do analyse the stabilizer state after the Bell measurements, we will use
that the measurement outcome 0000 is always possible, i.e. the state |0ፚ00ፀᎲ0ፀᎳ⟩
has non-zero probability of being the result of the four measurements. This follows
from lemma 5.1. The circuit when only considering 0-outcome measurements is
given in figure 5.7.
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𝑉[𝐺]\𝑎, 𝑏

| 𝐺
⟩⊗
|𝐴
ፔ
ᖤ ⟩

✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤ |𝐺

+
𝐴ፔ

ᖤ
ፆ
⟩

✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤ | 𝐺

⟩⊗
|𝐴
ፔ
ᖤ ⟩

✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤ 𝑈

ᖣ ፚ
| 𝐺
⟩

✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤

𝑎 • 𝐻 ✌✌✌

𝐴ኺ 𝐶ኺ 𝐶ጷኺ • 𝐻 ✌✌✌

𝐴ፚ
𝑈ፚ′

𝐴

𝐴ኻ 𝐶ኻ 𝐶ጷኻ • 𝐻 ✌✌✌

𝑏
𝐿ኼ 𝐿ኽ 𝐿ኾ

• 𝐻 ✌✌✌
𝐿

Figure 5.7: The gate teleportation circuit with the initialization part not incorporated in the figure.
Furthermore, the measurement outcomes are assumed to be 0 in this circuit. Therefore there are no
ፗ, ፙ corrections after the measurements, and ፔᐯᑒᑓፔᑒᑓ cancel.

We can now continue with analysing which of the 1536 cases result in SQC-equivalent
stabilizer states after the Bell measurements. The Bell measurement part of the cir-
cuit corresponds to the following projective measurement: |𝐵።,፣⟩ = 𝐶𝑍።,፣𝐻።𝐻፣ |0።0፣⟩.
We can then describe the stabilizer state after the Bell measurements by start-
ing with the state at 𝐿ኽ, a product state of the original graph state |𝐺⟩ and the
ancilla graph state |𝐴ፔᖤፆ ⟩: |𝐺 + 𝐴ፔᖤፆ ⟩. In the next step we consider the opera-
tions between 𝐿ኽ and 𝐿: the cancelling of 𝐶ኺ and 𝐶ኻ, which gives the state
𝐶ጷኺ𝐶

ጷ
ኻ |𝐺 + 𝐴ፔᖣፆ ⟩, and the Bell measurements. When we denote the stabilizer state

at 𝐿 by G.T.
∗(𝐺, 𝐴ፔᖤፆ , 𝐶ኺ, 𝐶ኻ), it then follows that we can denote this state as:

𝑈ᖣፚ |𝐺⟩ = G.T.
∗(𝐺, 𝐴ፔᖤፆ , 𝐶ኺ, 𝐶ኻ) = ⟨𝐵ፀᑓፀᎳ| ⟨𝐵ፀᑒፀᎲ| 𝐶

ጷ
ኺ𝐶

ጷ
ኻ |𝐺 + 𝐴ፔ

ᖤ
ፆ ⟩ (5.13)

The astrix * is used to avoid confusing with the well-known gate teleportation circuit.
Note that the operations between 𝐿ኽ and 𝐿 correspond exactly to the operations in
the definition in equation 5.13, this is of course by definition. Furthemore, note that
this state depends on 𝐺, 𝐴ፔᖤፆ and on 𝐶ኺ, 𝐶ኻ. The remainder of this proof is dedicated
to see if there are different elements of 𝒞ᖣኻኼ , (𝐴ፔፆፒ, 𝐶ኺ, 𝐶ኻ), (�̄�ፔፆፒ, �̄�ኺ, �̄�ኻ) ∈ 𝒞ᖣኻኼ , which
always have a SQC-equivalent on |𝐺⟩ for every possible 𝐺, i.e.:

∀𝐺 ∶ G.T.∗(𝐺, 𝐴ፔᖤፆፒ, 𝐶ኺ, 𝐶ኻ) ∼SQC G.T.
∗(𝐺, �̄�ፔᖤፆፒ, �̄�ኺ, �̄�ኻ) (5.14)

If we find such (�̄�ፔፆፒ, �̄�ኺ, �̄�ኻ), then these can be removed from 𝒞ᖣኻኼ without violating
the definition of the reduced Clifford set.
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There is one general constraint on 𝐺 in this proof, which is the following. It is
assumed that all local edges are removed before doing gate teleportation. I.e.,
inside every node all edges are removed. This can be trivially done by applying CZ
gates before doing any of the gate teleportation as the qubits are in the same node.
To use the notation currently used for the circuit, we have that (𝑎, 𝑏) ∉ 𝐺.

Step 4
In this step the Pauli-𝑍 gates in

𝐶ኺto graph = { ,𝐻, 𝑆, 𝑆𝐻, 𝑍, 𝑍𝐻, 𝑍𝑆, 𝑍𝑆𝐻} (5.15)

are considered and lemma 5.3 is used, which states that any single qubit Pauli
before measurements results in multiple single qubit Pauli’s after the measurement.
Lemma 5.3 holds for any Pauli measurement, however it is not directly clear how
this can be applied for Bell measurements. In this step we consider the effect of
a Pauli-𝑍 in 𝐶ኺto graph, and we see that there are four elements containing a Pauli-
𝑍: 𝑍, 𝑍𝐻, 𝑍𝑆, 𝑍𝑆𝐻. As we will propagate 𝑍 through the Bell measurements and 𝑍,
𝑆 commute, we identify two cases: 𝑍, 𝑍𝐻. Using the commutation relations from
section 2.7 one finds:

𝑍ፀᎲ𝐶𝑍ፚፀᎲ𝐻ፚ𝐻ፀᎲ = 𝐶𝑍ፚፀᎲ𝐻ፚ𝐻ፀᎲ𝑋ፀᎲ𝑍ፀᎲ𝐻ፀᎲ𝐶𝑍ፚፀᎲ𝐻ፚ𝐻ፀᎲ = 𝐻ፀᎲ𝐶𝑍ፚፀᎲ𝐻ፚ𝐻ፀᎲ𝑍ፀᎲ𝑋ፚ
(5.16)

The result is a Pauli-𝑋 or -𝑍 on the ancilla qubit and a possible Pauli-𝑋 on the
corresponding graph state qubit. These Pauli’s will, according to lemma 5.3, result
in a Pauli string after the measurements. To conclude, any 𝑍 ∈ 𝐶። can be propagated
through the Bell measurements and the result will be a string of Pauli’s. As this are
only SQC operations after the multi-qubit operations, this Pauli-string will not affect
the single qubit Clifford equivalence class. Therefore, we can disregard all elements
of the reduced Clifford set with 𝑍’s in 𝐶። for 𝐶። ∈ 𝐶ኺto graph. More formal, with

𝐶ኻto graph = { , 𝑆, 𝐻, 𝑆𝐻} (5.17)

we have:

∀𝐶ኺ, 𝐶ኻ ∈ 𝐶ኺto graph = { ,𝐻, 𝑆, 𝑆𝐻, 𝑍, 𝑍𝐻, 𝑍𝑆, 𝑍𝑆𝐻} ∶ ∃�̃�ኺ, �̃�ኻ ∈ 𝐶
ኻ
to graph = { , 𝑆, 𝐻, 𝑆𝐻} ∶

G.T.(𝐺, 𝐴ፔፆፒ, 𝐶ኺ, 𝐶ኻ) ∼ፒፐፂ G.T.(𝐺, 𝐴ፔፆፒ, �̃�ኺ, �̃�ኻ)
(5.18)

Therefore we can remove all elements with a 𝑍 from 𝒞ᖣኻኼ , which results in 𝒞ᖣኼኼ :

𝐶ᖣኼኼ = {(𝐴ፔፆፒ, 𝐶ኺ, 𝐶ኻ)|∀𝐴ፔፆፒ ∈ Lፓᐸ(𝐴), ∀𝐶ኺ, 𝐶ኻ ∈ 𝐶
ኻ
to graph} (5.19)

Which gives us a lower upper bound on the size of the reduced Clifford set compared
to equation 5.12:

|𝐶ᖣኼኼ | = 384 (5.20)
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Step 5
In this step we consider only Hadamard gates on 𝐴ኺ or 𝐴ኻ, so 𝐶ኺ = 𝐻 or 𝐶ኻ = 𝐻. The
effect of a single Hadamard on a graph state is not easy to see, but we know from
section 3.1 that two Hadamards on adjacent vertices act as a pivot up to Pauli-𝑍 on
the common neighbours. Therefore, we will use an extra Hadamard on a connected
but not measured vertex in 𝐴ፔᖤፆ , which is compensated by a Hadamard after the
measurements. The possible Pauli-𝑍 on the common neighbours is disregarded
following the same reasoning as in Step 4. We will now discuss the calculations
for 𝐶ኺ = 𝐻 and 𝐶ኻ = , the other cases are very similair and can be found in the
appendix A.3.

G.T.∗ (𝐺, 𝐴ፔᖤፆ , 𝐻, ) = ⟨𝐵
ፀᎳ
ኻ | ⟨𝐵ፚፀᎲኻ | 𝐻ፀᎲ |𝐺 + 𝐴

ፔᖤ
ፆ ⟩

= ⟨𝐵ፀᎳኻ | ⟨𝐵ፚፀᎲኻ | 𝐻፮𝐻፮𝐻ፀᎲ |𝐺 + 𝐴
ፔᖤ
ፆ ⟩

=𝐻፮ ⟨𝐵
ፀᎳ
ኻ | ⟨𝐵ፚፀᎲኻ |𝐺 + 𝜌ፀᎲ፮(𝐴

ፔᖤ
ፆ )⟩

=𝐻፮G.T.
∗ (𝐺, 𝜌ፀᎲ፮(𝐴

ፔᖤ
ፆ ), , )

∼ፒፐፂG.T.
∗ (𝐺, 𝜌ፀᎲ፮(𝐴

ፔᖤ
ፆ ), , )

Where 𝑢 is as either 𝐴ፚ or 𝐴, i.e. 𝑢 ∈ 𝑁ፀᎲ(𝐴
ፔᖤ
ፆ )\𝐴ኻ. Lemma 5.6 proves that

such an 𝑢 always exists. Note that 𝑢 is chosen as a vertex which is not measured.
Otherwise, it might not commute with the measurements which is inconvenient.
In the step from the second to the third line we use that 𝑢, 𝐴ኺ are neighbours
and that 𝐻፮ commutes with the Bell measurements. The fourth line follows from
the definition of G.T.∗. To conclude, when considering all elements of the reduced
Clifford set in equation 5.19, the elements with 𝐶ኺ = 𝐻 or/and 𝐶ኻ = 𝐻 will always
be SQC-equivalent to some other elements with 𝐶ኺ, 𝐶ኻ = . To state this formally:

∀𝐶ኺ, 𝐶ኻ ∈ { , 𝐻, 𝑆, 𝑆𝐻} ∶ ∀𝐴ፔፆፒ ∈ Lፓᐸ(𝐴) ∶ ∃�̃�ኺ, �̃�ኻ ∈ { , 𝑆, 𝑆𝐻} ∶ ∃�̃�
ፔ
ፆ ∈ Lፓᐸ(𝐴)

G.T.(𝐺, 𝐴ፔፆፒ, 𝐶ኺ, 𝐶ኻ) ∼ፒፐፂ G.T.(𝐺, �̃�ፔፆ , �̃�ኺ, �̃�ኻ)
(5.21)

This new set for 𝐶። is denoted by 𝐶ኼto graph:

𝐶ኼto graph = { , 𝑆, 𝑆𝐻} (5.22)

Therefore, we can again remove some elements from 𝒞ᖣኼኼ which leads to:

𝐶ᖣኽኼ = {(𝐴ፔፆፒ, 𝐶ኺ, 𝐶ኻ)|∀𝐴ፔፆፒ ∈ Lፓᐸ(𝐴), ∀𝐶ኺ, 𝐶ኻ ∈ 𝐶
ኼ
to graph} (5.23)

Which allows us to bound the size of the reduced Clifford group with a lower number
(compared to eq. 5.12, 5.20):

|𝐶ᖣኽኼ | = 24 × 3 × 3 = 216 (5.24)
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This number is already ≈ 50× smaller than checking all elements of 𝒞ኼ.

Step 6
In this step we will see that also 𝐶ኺ = 𝑆𝐻 and/or 𝐶ኻ = 𝑆𝐻 will lead to a state
SQC-equivalent to a element of the reduced Clifford set with 𝐶ኺ, 𝐶ኻ ≠ 𝑆𝐻, i.e.:

∀𝐶ኺ, 𝐶ኻ ∈ 𝐶ኼto graph, ∀𝐴
ፔ
ፆፒ ∈ Lፓᐸ(𝐴) ∶ ∃�̃�ኺ, �̃�ኻ ∈ 𝐶

ኽ
to graph, ∃�̃�

ፔ
ፆፒ ∈ Lፓᐸ(𝐴) ∶

G.T.∗(𝐺, 𝐴ፔፆፒ, 𝐶ኺ, 𝐶ኻ) ∼ፒፐፂ G.T.
∗(𝐺, �̃�ፔፆፒ, �̃�ኺ, �̃�ኻ)

(5.25)

where
𝐶ኽto graph = { , 𝑆} (5.26)

The calculations proving this statement are given in the appendix A.3. The remain-
ing elements in the reduced Clifford set which might have a non SQC-equivalent
effect are:

𝐶ᖣኾኼ = {(𝐴ፔፆፒ, 𝐶ኺ, 𝐶ኻ)|∀𝐴ፔፆፒ ∈ Lፓᐸ(𝐴), ∀𝐶ኺ, 𝐶ኻ ∈ 𝐶
ኽ
to graph} (5.27)

This results in a new bound on the size of the reduced Clifford set:

𝐶ᖣኾኼ = 24 × 2 × 2 = 96 (5.28)

Step 7
The last step of removing SQC-duplicate elements from the reduced Clifford set is
based on a slightly different perspective. There is something else that we can do
that we haven’t discussed before. As before, 𝐶። ’s just before 𝐿ኽ make sure that
|𝐴ፔᖤፆ ⟩ is a graph state, and we know that |𝐴ፔᖤፆ ⟩ ∈ Lፓᐸ(𝐴). Furthermore, we know

that |Lፓᐸ(𝐴)| = 24, so there are 24 possible graph states |𝐴
ፔᖤ
ፆ ⟩.

In this step we will add a few extra operations corresponding to local complementa-
tions on the qubits 𝐴ፚ, 𝐴. This is illustrated in figure 5.8. For convenience, we use
the following notation for a sequence of local complementations 𝜏ፒ = 𝜏ፒᎲ … 𝜏ፒᑞᎽᎳ
where 𝑆 is a string of length 𝑚 with letters from {𝐴ፚ, 𝐴}. For example, 𝑆 = 𝐴ፚ𝐴𝐴ፚ
and therefore 𝜏ፒ = 𝜏ፀᑒ𝜏ፀᑓ𝜏ፀᑒ . 𝐴።[𝜏ፒ] is the single qubit Clifford operation on qubit
𝐴። corresponding to the LC sequence 𝜏ፒ. Local complementations map graph states
to graph states, so the ancilla state at 𝐿ᖣኽ is also a graph state: |𝜏ፒ (𝐴ፔ

ᖤ
ፆ )⟩. However,

by applying local complementations on 𝐴ፚ, 𝐴 one has to apply a Clifford (√𝑖𝑍) to
the neighbours of 𝐴ፚ, 𝐴 as well. Thus the Cliffords applied on 𝐴ኺ, 𝐴ኻ due to local
complementations on 𝐴ፚ, 𝐴 are denoted by 𝐴ኺ[𝜏ፒ], 𝐴ኻ[𝜏ፒ]. Just as before, we also
cancel these operations, otherwise the propagate through the circuit and might re-
sult in an extra two-qubit gate on |𝐺⟩. Therefore, after 𝐿ᖣኽ the daggered operations
are applied. The LCs on 𝐴ፚ, 𝐴 can be seen as part of 𝑈, just as before, we do
not focus on these. For the new operations on 𝐴ኺ and 𝐴ኻ however, it is not directly
clear how this affects the operations 𝐶ኺ,𝐶ኻ.
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𝑉[𝐺]\𝑎, 𝑏
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✤
✤
✤
✤
✤
✤

𝑎 • 𝐻 ✌✌✌

𝐴ኺ 𝐶ኺ 𝐴ኺ[𝜏ፒ] 𝐴ኺ[𝜏ፒ]ጷ 𝐶ጷኺ • 𝐻 ✌✌✌

𝐴ፚ 𝐴ፚ[𝜏ፒ] 𝐴ፚ[𝜏ፒ]ጷ

𝐴 𝐴[𝜏ፒ] 𝐴[𝜏ፒ]ጷ

𝐴ኻ 𝐶ኻ 𝐴ኻ[𝜏ፒ] 𝐴ኻ[𝜏ፒ]ጷ 𝐶ጷኻ • 𝐻 ✌✌✌

𝑏
𝐿ኽ 𝐿ኽ′ 𝐿ኾ

• 𝐻 ✌✌✌
𝐿

Figure 5.8: A part of the modified gate teleportation circuit without ancilla initialization and assuming
that the measurement outcomes are all 0. The state of the qubits at ፋᎵ is a product state of the graph
state |ፆ⟩ and the graph state |ፀᑌᖤᐾ ⟩. At ፋᖤᎵ the ancilla qubits are in the state |Ꭱᑊ (ፀᑌ

ᖤ
ᐾ )⟩.

For 𝑗 ∈ {𝐴ኺ, 𝐴ኻ} we write the added operations, 𝐴፣[𝜏ፒ], in terms of the already
possible operations on 𝐶፣. It follows that the operations on 𝐴፣ applied between 𝐿ኽ
and 𝐿ᖣኽ are (sequences of) 𝑆ጷ.

1
√𝑖
√𝑖𝑍 = 𝑆ጷ (5.29)

When we can now rewrite 𝐶፣ to also incorporate 𝐴፣[𝜏ፒ] as:

𝐶ᖣ፣ = (𝑆ጷ)፥𝐶፣ (5.30)

The set of possible operations for 𝐶ᖣ፣ is then given by:

𝒞ኾto graph = {(𝑆
ጷ)፥𝐶፣|𝑙 ∈ , 𝐶፣ ∈ 𝒞ኺto graph} (5.31)

Where 𝑙 ∈ , indicating 𝑙 local complementations on a neighbour of vertex 𝑗. On
first hand, it might seem that 𝒞ኾto graph is a bigger set of operations compared to
𝒞ኺto graph. However, in lemma 5.7 it is proven that ∀𝐶

ᖣ
፣ ∈ 𝒞ኾto graph ∶ 𝐶

ᖣ
፣ ∈ 𝒞ኺto graph.

I.e., with the corrections in 𝒞ኺto graph every stabilizer state can be transformed to a
graph state and local complementations can be done on 𝐴ፚ and 𝐴 . Therefore, we
don’t have to consider all 24 graph states in Lፓᐸ(𝐴), but we only have to consider
the graph states which are not equivalent under local complementations on 𝐴ፚ, 𝐴.
This set of graph states is called Lፓᐸ(𝐴)

ᖣ and an example of this set is shown in
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figure 5.9, where |Lፓᐸ(𝐴)
ᖣ| = 10. Again, we will now state this formally:

∀𝐶ኺ, 𝐶ኻ ∈ 𝒞ኽto graph, ∀𝐴
ፔ
ፆፒ ∈ Lፓᐸ(𝐴) ∶ ∃�̃�ኺ, �̃�ኻ ∈ 𝒞

ኽ
to graph, ∃�̃�

ፔ
ፆፒ ∈ Lፓᐸ(𝐴)

ᖣ ∶

G.T.∗(𝐺, 𝐴ፔፆፒ, 𝐶ኺ, 𝐶ኻ) ∼ፒፐፂ G.T.
∗(𝐺, �̃�ፔፆፒ, �̃�ኺ, �̃�ኻ)

(5.32)
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Figure 5.9: All 24 graph states LMQC equivalent to two Bell pairs where both pairs contribute one qubit to
a shared node. The r.h.s. graphs can be reached from l.h.s. graphs by only doing local complementations
on ፀᑒ and ፀᑓ.

Now we can make the final reduction on the reduced Clifford set. By only consid-
ering the ancilla states in Lፓᐸ(𝐴)

ᖣ we end up with the reduced Clifford set:

𝐶ᖣኼ = {(𝐴ፔፆፒ, 𝐶ኺ, 𝐶ኻ)|∀𝐴ፔፆፒ ∈ Lፓᐸ(𝐴)
ᖣ, ∀𝐶ኺ, 𝐶ኻ ∈ 𝐶ኽto graph} (5.33)

Which lead to the final result of this proof:

|𝐶ᖣኼ | = 2 × 2 × 10 = 40 (5.34)

This concludes the proof.

5.4. Lemmas for the proof in 5.3

This section is dedicated to proving multiple lemmas which are used in the proof
of theorem 5.1. Some will be used explicitly in the proof, others will be used in the
calculations in appendix A.3. The results of section 5.4.2 might be of independent
interest, whereas the results of the other subsections are very specific to our needs
in proving theorem 5.1.
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5.4.1. We might always measure zeros

In this section we prove lemma 5.1, which is used in the proof of theorem 5.1.

Lemma 5.1. In the gate teleportation circuit in figure 5.4 the probability of col-
lapsing the state, by the measurements, of the four measured qubits to |0000⟩ is
bigger than 0.

Proof. We start with figure 5.4, where we shift all operations on qubits 𝐴ፚ,𝐴 such
that in the circuit they appear after the measurements of the other qubits. Then
we get the circuit given in figure 5.10. Note that this shifting does not change
the result of the circuit in anyway. Note that after the ancilla initialization, before

𝑉[𝐺]\𝑎, 𝑏

| 𝐺
⟩

✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤ | 𝐺

⟩⊗
| 𝐴
⟩

✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤ |𝐺

⟩

✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤

𝑎 • 𝐻 ✌✌✌

𝐴ኺ |0⟩ 𝐻 • • 𝐻 ✌✌✌

𝐴ፚ |0⟩ 𝐻 •
𝑈ፚ

𝐴 |0⟩ 𝐻 •

𝐴ኻ |0⟩ 𝐻 • • 𝐻 ✌✌✌

𝑏 • 𝐻 ✌✌✌

Figure 5.10: The first part of the gate teleportation circuit from figure 5.4. All operations on ፀᑒ, ፀᑓ after
the initialization as a graph state are delayed till after the measurements of the other four qubits. The
state just before the measurements is the graph state |ፆ̃⟩  |ᑒ,ᐸᎲᑓ,ᐸᎳ (ፆ ዄ ፀ ዄ (ፚ, ፀᎲ) ዄ (, ፀᎳ))⟩.

the second vertical line, we have a product state of two graph states. The two
CZ gates connect the two graph states and the Hadamards act as a pivot. As 𝑎,
𝐴ኺ are not from different neighbourhoods of (𝑏, 𝐴ኻ), because of the assumption
that (𝑎, 𝑏) ∉ 𝐺, and using lemma 5.4 we find that |�̃�⟩ is indeed a graph state. To
continue, we use the following proposition:

Lemma 5.2 (proposition 8 in [18]). Let 𝐴 ⊆ 𝑉 be a subset of vertices for a graph
𝐺 = (𝑉, 𝐸) and 𝐵 = 𝑉\𝐴 the corresponding complement of 𝐴 in 𝑉. The reduced
state 𝜌ፀፆ ∶= 𝑡𝑟ፁ(|𝐵⟩⟨𝐵|) is given by

𝜌ፀፆ =
1
2|ፀ|

∑
∈𝒮ᐸ

𝜎 , (5.35)
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where 𝑆ፀ ∶= {𝜎 ∈ 𝒮 ∶ 𝑠𝑢𝑝𝑝(𝜎) ⊆ 𝐴} denotes the subgroup of stabilizer elements
𝜎 ∈ 𝒮 for |𝐺⟩ with support on the set of vertices within 𝐴. 𝜌ፀፆ is up to some factor
a projection,i.e.,

(𝜌ፀፆ)ኼ =
|𝒮ፀ|
2|ፀ|

𝜌ፀፆ . (5.36)

It projects onto the subspace in Hፀ spanned by the vectors

|Γᖣ𝐵ᖣ⟩ፆ[ፀ] = 𝑍ፆፚ፦፦ፚ
ᖤፁᖤ |𝐺[𝐴]⟩ (𝐵ᖣ ⊂ 𝐵) , (5.37)

where 𝐺[𝐴] = 𝐺\𝐵 is the subgraph of 𝐺 induced by 𝐴 and Γᖣ ∶= Γፀፁ denotes the
|𝐴| × |𝐵|-off-diagonal sub-matrix of the adjacency matrix Γ for 𝐺 that represents
the edges between 𝐴 and 𝐵. In this basis, 𝜌ፀፆ can be written as

𝜌ፀፆ =
1
2|ፁ|

∑
ፁᖤ⊆ፁ

|Γᖣ𝐵ᖣ⟩ፆ[ፀ] ⟨Γᖣ𝐵ᖣ| (5.38)

In our case, 𝐴 = {𝑎, 𝐴ኺ, 𝑏, 𝐴ኻ}. From the definition of graph states we know that
|0000⟩ ∈ |𝐺[𝐴]⟩. Furthermore, the Pauli-𝑍 in equation 5.37 does not affect the
|0000⟩ state. Therefore, it follows from equation 5.38 that |0000⟩ ⟨0000| ∈ 𝜌ፀፆ .
Therefore, the resulting state of measuring the four qubits can always be |0000⟩,
i.e. the probability of this to happen is bigger than 0.

5.4.2. Pauli’s and Pivots

In this subsection we cover a lemma on Pauli-measurements and the relation be-
tween a sequence of Hadamards and pivot operations. We will start by rewriting
the single Pauli measurement rules from section 3.1 such that it is clear that for a
given basis, the two possible post-measurement states differ by only Pauli’s. This
might seem trivial at first, but it will be very convenient. Afterwards, we use this
result to derive that a Pauli operation acting on the graph state before measure-
ment is equal to a Pauli on multiple qubits after the measurement. We also discuss
when 4 Hadamard gates correspond to 2 pivots on a graph state in section 5.4.2.
Finally, we derive measurement rules for measuring two qubits in a graph state in
section 5.4.2.

Rewriting Pauli measurement rules for graph states

Let |𝐺⟩ be a graph state on 𝑁 qubits and 𝑣 ∈ 𝑉[𝐺]. Lets use the following notation
for projectors:

𝑃ፚ።,± = |𝑖,𝑚⟩⟨𝑖,𝑚| (5.39)

where 𝑖 ∈ {𝑥, 𝑦, 𝑧} and 𝑚 ∈ 𝐺𝐹(2) such that 𝑚 = {
0 for 𝑃ፚ።,ዄ
1 for 𝑃ፚ።,ዅ

. Furthermore, in-

line square brackets following an operation are sometimes used for convenience:
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𝑋[𝑉] = ∏።∈ፕ 𝑋።. An integer 𝑚 can be used as an exponent: 𝑋[𝑉]፦ = ∏።∈ፕ 𝑋፦። .

Pauli-Z
In the expression for 𝑍 measurements it is directly clear that a different 𝑚 only
affects Pauli’s. To be precise, 𝑚 only appears in Pauli related terms.

|𝑧,𝑚⟩⟨𝑧,𝑚|፯ |𝐺⟩ =
1
√2

|𝑧,𝑚⟩፯ 𝑍[𝑁፯(𝐺)]፦ |𝐺\𝑣⟩ (5.40)

Pauli-Y
For the Pauli-𝑌 measurements we split a Clifford using √−𝑖𝑍𝑍 = √𝑖𝑍 in order to see
the effect of different measurement outcomes 𝑚.

|𝑦,𝑚⟩⟨𝑦,𝑚|፯ |𝐺⟩ =
1
√2

|𝑚⟩፯ √(−1)ኻዅ፦𝑖𝑍[𝑁፯(𝐺)] |𝜏፯(𝐺)\𝑣⟩

=
1
√2

|𝑚⟩፯ √−𝑖𝑍[𝑁፯(𝐺)]𝑍[𝑁፯(𝐺)]፦ |𝜏፯(𝐺)\𝑣⟩ (5.41)

Pauli-X
For Pauli-𝑋 we apply the same method as for Pauli-𝑌, although it is a bit more
involved now. The main step is to use √𝑖𝑌(−𝑖𝑌) = √−𝑖𝑌 to remove the 𝑚 term
from the square root.

|𝑥,𝑚⟩⟨𝑥,𝑚|፯ |𝐺⟩ = {
ኻ
√ኼ
|𝑥,𝑚⟩፯ √+𝑖𝑌፮𝑍[𝑁፯\(𝑁፮ ∪ 𝑢)] |𝜌፮፯(𝐺)\𝑣⟩ if 𝑚 = 0

ኻ
√ኼ
|𝑥,𝑚⟩፯ √−𝑖𝑌፮𝑍[𝑁፮\(𝑁፯ ∪ 𝑣)] |𝜌፮፯(𝐺)\𝑣⟩ if 𝑚 = 1

=
1
√2

|𝑥,𝑚⟩፯ √𝑖𝑌፮ (−𝑖𝑌፮)
፦ 𝑍[𝑁፯\(𝑁፮ ∪ 𝑢)]፦ዄኻ𝑍[𝑁፮\(𝑁፯ ∪ 𝑣)]፦ |𝜌፮፯(𝐺)\𝑣⟩

(5.42)

and 𝑢 ∈ 𝑁፯(𝐺).

A Pauli before leads to Pauli’s after measurements

Here we will prove that Pauli’s acting on a graph state before measuring, are equiv-
alent to other Pauli’s acting on the graph state after measuring. , we have the
following lemma.

Lemma 5.3. Let 𝑃፯ be a single qubit Pauli, i.e. 𝑃፯ ∈ 𝒫ኻ and let �̃� ∈ 𝒫ፍ. Further-
more, let 𝑖 ∈ 𝑥, 𝑦, 𝑧 and 𝑚 ∈ 𝐺𝐹(2). Using the notation for projectors from equation
5.39, we then have:

|𝑖, 𝑚⟩⟨𝑖,𝑚|፯ 𝑃፯ |𝐺⟩ = �̃�፯ |𝑖, 𝑚⟩⟨𝑖,𝑚|፯ |𝐺⟩
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Proof. This proof will consider every measurement basis 𝑚።፯ separately. The main
idea for every calculation is to see that any Pauli either acts trivially or flips the
measurement basis to the other eigenvector. This flip will only contribute an extra
Pauli string which we can pull out to find the original measurement projectors.

• When 𝑃፯ = 𝑖, the projector and the 𝑃፯ commute. Therefore, the Pauli acts
trivially and we find that 𝑃፯ = �̃�፯.

• Otherwise, if 𝑃፯ ≠ 𝑖, then:

|𝑖, 𝑚⟩⟨𝑖,𝑚| 𝑃፯ |𝐺⟩ = |𝑖,𝑚⟩ ⟨𝑖,𝑚 + 1|𝐺⟩ (5.43)

From the previous section, equations 5.40-5.42, we know that this is �̃� |𝑖, 𝑚⟩⟨𝑖,𝑚| |𝐺⟩.
To be precise, we have:

�̃�፯ = {
𝑍[𝑁፯(𝐺)] if 𝑖 = 𝑍

(𝑖𝑍)[𝑁፯(𝐺)] if 𝑖 = 𝑌
(−𝑖𝑌፯) 𝑍[𝑁፯\(𝑁፮ ∪ 𝑢)]𝑍[𝑁፮\(𝑁፯ ∪ 𝑣)] if 𝑖 = 𝑍

(5.44)

This shows that every Pauli applied on a graph state before measuring, is equivalent
to a Pauli(s) after measuring.

Multiple Hadamards and multiple pivots

In this section it is discussed how multiple Hadamards act on a graph state. The
same notation is used as in section 3.2. Given a graph (state) 𝐺 (|𝐺⟩) where
𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑉[𝐺] are four distinct vertices. To denote the sets of neighbours in 𝐺
of 𝑐 and 𝑑, 𝑐 but not 𝑑 and 𝑑 but not 𝑐 as 𝑁፝ = 𝑁 ∩ 𝑁፝, 𝑁\፝ = 𝑁\𝑁፝ and
𝑁፝\ = 𝑁፝\𝑁. We denote 𝑁ፆ(𝑐, 𝑑) = (𝑁፝, 𝑁\፝, 𝑁፝\) as the neighbourhood set of
(𝑐, 𝑑).

Definition 5.2. Two vertices 𝑎 and 𝑏 are from a different neighbourhood of (𝑐, 𝑑)
if 𝑎 ∈ 𝑁። and 𝑏 ∈ 𝑁፣ for 𝑖 ≠ 𝑗 and 𝑖, 𝑗 ∈ {𝑐𝑑, 𝑐\𝑑, 𝑑\𝑐}.

Definition 5.3. (𝑎, 𝑏) is a neighbourhood connector of (𝑐, 𝑑) if (𝑎, 𝑏) ∈ 𝐺 and 𝑎
and 𝑏 are from a different neighbourhood of (𝑐, 𝑑).

This leads to the following lemma:

Lemma 5.4. 𝑃𝐻ፚ𝐻𝐻𝐻፝ |𝐺⟩ is equal to |𝜌ፚ𝜌፝(𝐺)⟩ if one of the following state-
ments is true.

• (𝑎, 𝑏) ∈ 𝐺 and 𝑎 and 𝑏 are not from different neighbourhoods of (𝑐, 𝑑).
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• (𝑎, 𝑏) ∉ 𝐺 and 𝑎 and 𝑏 are from different neighbourhoods of (𝑐, 𝑑).

where 𝑃 ∈ 𝒫ፕ.

Proof. From lemma 3.1 it is known that if (𝑎, 𝑏) ∈ 𝜌፝(𝐺) then 𝐻ፚ𝐻 |𝜌፝(𝐺)⟩ =
|𝜌ፚ𝜌፝(𝐺)⟩ up to a global phase and a Pauli-𝑍. Furthermore, since only simple
graphs are considered, (𝑎, 𝑏) ∈ 𝐺 or (𝑎, 𝑏) ∉ 𝐺. Lets cover these two cases sepa-
rately:

• (𝑎, 𝑏) ∈ 𝐺: In order for 𝐻ፚ𝐻 to act as a pivot, it must be that (𝑎, 𝑏) ∈ 𝜌፝(𝐺).
As (𝑎, 𝑏) ∈ 𝐺 before 𝜌፝, it follows that 𝜌፝ must not complement (𝑎, 𝑏). This
is true if 𝑎 and 𝑏 are not from different neighbourhoods.

• (𝑎, 𝑏) ∉ 𝐺: Then (𝑎, 𝑏) should be complemented by a pivot on (𝑐, 𝑑), so 𝑎 and
𝑏 should be from different neighbourhoods of (𝑐, 𝑑).

We haven’t considered the possible Pauli-𝑍 as a result of a pivot. From lemma
3.1 we know that 𝐻𝐻፝ act as a pivot on 𝐺 up to 𝑍[𝑁ፆ፝]. This Pauli term can
be commuted with the remaining 𝐻ፚ𝐻 to find 𝑍[𝑁፝\{𝑎, 𝑏}]𝑋[𝑁፝ ∩ {𝑎, 𝑏}]. For
applying 𝐻ፚ𝐻 on |𝜌፝(𝐺)⟩ there is also an extra 𝑍 term. By combining this, we find
that:

𝑃 = 𝑍[𝑁፝\{𝑎, 𝑏}]𝑋[𝑁፝ ∩ {𝑎, 𝑏}]𝑍[𝑁
ᑔᑕ(ፆ)
ፚ ] (5.45)

To our knowledge, it is not known what the effect is of two Hadamards acting on
non-adjacent vertices of a graph state. In general, the resulting state is not a graph
state. However, just as with Hadamards on adjacent vertices in lemma 3.1, it might
be that there is a general rule using the stabilizers of the graph state. If such a
rule exists, it might be that Hadamards on non-adjacent vertices transform graph
states to graph states up to some Pauli operators.

The next lemma is used to simplify the calculations in the appendix A.3. Let 𝑇ፀ =
({𝐴ፚ, 𝐴}, {𝐴ኺ}, {𝐴ኻ}), |𝐴′⟩ ∈ Lፓᐸ(𝐵𝑒𝑙𝑙ኼ) and |𝐺⟩ a graph state with more than 1
qubit. Let 𝑎, 𝑏 ∈ 𝑉[𝐺] be two distinct vertices in 𝐺. We assume that (𝑎, 𝑏) ∉ 𝐺,
which is the same assumption as made in the proof of theorem 5.1. This is visualized
in figure 5.11.

Lemma 5.5. Let 𝐺ᖣ = 𝜌ፚፀᎲ𝜌ፀᎳ(𝐺 + 𝐴′ + (𝑎, 𝐴ኺ) + (𝑏, 𝐴ኻ)). Then:

(𝑎, 𝑏) ∉ 𝐺 ⟺ (𝐴ኺ, 𝐴ኻ) ∉ 𝐺ᖣ (5.46)
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Figure 5.11: An example used in lemma 5.5. The lemma states that after pivots on ፀᎲ, ፚ and ፀᎳ, , the
edge (ፀᎲ, ፀᎳ) is not present if (ፚ, ) ∉ ፆ.

Proof. As (𝑎, 𝑏) ∉ 𝐺, we know that (𝑎, 𝐴ኺ) is never a neighbourhood connector
of (𝑏, 𝐴ኻ). Therefore, 𝜌ፀᎳ does not flip (𝑎, 𝐴ኺ). From section 3.2 it is known
how a pivot changes a graph state. We first apply 𝜌ፀᎳ , which exchanges the
neighbours of 𝑏 and 𝐴ኻ, from which we find that (𝑎, 𝑏) ∈ 𝐺 ⟺ (𝑎, 𝐴ኻ) ∈ 𝜌ፀᎳ(𝐺 +
𝐴′ + (𝑎, 𝐴ኺ) + (𝑏, 𝐴ኻ)). The pivot on 𝑎 and 𝐴ኺ exchanges the neighbours of 𝑎 and
𝐴ኺ, so that we have (𝑎, 𝐴ኻ) ∈ 𝜌ፀᎳ(𝐺 + 𝐴′ + (𝑎, 𝐴ኺ) + (𝑏, 𝐴ኻ)) ⟺ (𝐴ኺ, 𝐴ኻ) ∈
𝜌ፚፀᎲ𝜌ፀᎳ(𝐺 + 𝐴′ + (𝑎, 𝐴ኺ) + (𝑏, 𝐴ኻ)). Combining this with the earlier statement
proves the lemma.

Graphical rules for Pauli measurements on two qubits in a graph state

In this subsection we will discuss what happens to a graph state |𝐺⟩ on 𝑁 qubits
when two qubits 𝑎 and 𝑏 are measured. The results of this section are used in the
calculations in appendix A.3 which are needed in the proof of theorem 5.1. However,
this subject might also be of interest in general. We will distinguish between Pauli-
X,Y and -Z measurements. In order to do this we use the single Pauli measurement
rules introduced in subsection 3.2. Square brackets in a superscript are used as
follows: 𝑥[ፒ] = 𝑥 if 𝑆 ∈ {1, 𝑇𝑟𝑢𝑒}, 𝑥[ፒ] = 1 otherwise. We will first discuss measuring
one or more qubits in the 𝑍 basis, then two 𝑌 and two 𝑋 measurements and finally
an 𝑋 and 𝑌 measurement. We will consider the following state:

|𝑖ፚ,𝑚ፚ⟩⟨𝑖ፚ,𝑚ፚ| |𝑖,𝑚⟩⟨𝑖,𝑚| |𝐺⟩ (5.47)

where 𝑖ፚ, 𝑖 ∈ {𝑥, 𝑦, 𝑧} and 𝑚ፚ,𝑚 ∈ 𝐺𝐹(2). This notation is introduced in section
3.1

One or more Pauli-Z measurements
Here we discuss what happens to a graph state when one qubit (𝑎) is measured in
a Pauli basis and the other (𝑏) is measured in the Pauli-Z basis. Therefore, we are



5.4. Lemmas for the proof in 5.3

5

79

interested in the projectors in equation 5.47 with 𝑖ፚ ∈ 𝑥, 𝑦, 𝑧 and 𝑖 = 𝑧:

|𝑖ፚ,𝑚ፚ⟩⟨𝑖ፚ,𝑚ፚ| |𝑧,𝑚⟩⟨𝑧,𝑚| |𝐺⟩ = |𝑖ፚ,𝑚ፚ⟩⟨𝑖ፚ,𝑚ፚ| |𝑧,𝑚⟩ 𝑍 [𝑁(𝐺)]
፦ᑓ |𝐺\𝑏⟩

=𝑍 [𝑁(𝐺)]
፦ᑓ �̃�ፚ |𝑖ፚ,𝑚ፚ⟩ |𝑧,𝑚⟩ ⟨𝑖ፚ,𝑚ፚ|𝐺\𝑏⟩

∼ፒፐፂ |𝑖ፚ,𝑚ፚ⟩ |𝑧,𝑚⟩ ⟨𝑖ፚ,𝑚ፚ|𝐺\𝑏⟩

From the first to the second line we use lemma 5.3 to shift the potential 𝑍’s on
𝑁(𝐺) to after the measurements, where we have an extra �̃�ፚ ∈ 𝒫ፍኻ to incorporate
the shifting of Paulis. Note that �̃�ፚ depends on 𝑖ፚ, 𝑚ፚ and 𝑚. In the last line
we disregard all SQC operations after the measurement to find the resulting graph
state.

Two Pauli-Y measurements
For two 𝑌-Pauli measurements we do the same as for one or more 𝑍’s, however the
operations become a bit more involved. However, if (𝑎, 𝑏) ∉ 𝐺 the corrections from
measuring one cant change the measurement basis of the other. For (𝑎, 𝑏) ∈ 𝐺 we
have:

|𝑦ፚ,𝑚ፚ⟩⟨𝑦ፚ,𝑚ፚ| |𝑦,𝑚⟩⟨𝑦,𝑚| |𝐺⟩ =

= |𝑦ፚ,𝑚ፚ⟩⟨𝑦ፚ,𝑚ፚ| |𝑦,𝑚⟩√(−1)ኻዅ፦ᑓ𝑖𝑍[𝑁(𝐺)] |𝜏(𝐺)\𝑏⟩

=√(−1)ኻዅ፦ᑓ𝑖𝑍[𝑁(𝐺)\𝑎] |𝑦ፚ,𝑚ፚ⟩ |𝑦,𝑚⟩ ⟨𝑦ፚ,𝑚ፚ|√(−1)ኻዅ፦ᑓ𝑖𝑍ፚ |𝜏(𝐺)\𝑏⟩

=√(−1)ኻዅ፦ᑓ𝑖𝑍[𝑁(𝐺)\𝑎] |𝑦ፚ,𝑚ፚ⟩ |𝑦,𝑚⟩ ⟨𝑥ፚ,𝑚ፚ + 𝑚|𝜏(𝐺)\𝑏⟩

=√(−1)ኻዅ፦ᑓ𝑖𝑍[𝑁(𝐺)\𝑎] |𝑦ፚ,𝑚ፚ⟩ |𝑦,𝑚⟩𝑈፮፱,፦ᑒዄ፦ᑓ |𝜏ፚ𝜏፮𝜏ፚ𝜏(𝐺)\𝑎, 𝑏⟩

∼ፒፐፂ |𝑦ፚ,𝑚ፚ⟩ |𝑦,𝑚⟩ |𝜏ፚ𝜏፮𝜏ፚ𝜏(𝐺)\ 𝑎, 𝑏⟩

Where 𝑢 ∈ 𝑁ፚ(𝜏(𝐺))\𝑏 if such a 𝑢 exists, otherwise 𝑎 is already in an eigenstate
of Pauli-𝑋. 𝑈፦፱ is the correction corresponding to a 𝑋 measurement with outcome
𝑚. To the third line we first use the single qubit measurement rule from equation
5.41 and keep only the operation on qubit 𝑎. Then using ⟨𝑦,𝑚ፚ|√(−1)ኻዅ፦ᑓ𝑖𝑍 =
⟨𝑥,𝑚ፚ + 𝑚| we find that 𝑎 is now measured in the 𝑋 basis. Using the single qubit
Pauli measurement rules we find the result. By assuming that |𝑁ፆፚ | > 1 if (𝑎, 𝑏) ∈ 𝐺,
we find:

|𝑦ፚ,𝑚ፚ⟩⟨𝑦ፚ,𝑚ፚ| |𝑦,𝑚⟩⟨𝑦,𝑚| |𝐺⟩ ∼ፒፐፂ |𝑦ፚ,𝑚ፚ⟩ |𝑦,𝑚⟩ |(𝜏ፚ𝜏፮)[(ፚ,)∈ፆ]𝜏ፚ𝜏(𝐺)\ 𝑎, 𝑏⟩
(5.48)

If the assumption is not valid, 𝑎 is disconnected from the rest of the graph after
removing 𝑏. Therefore, the 𝑋 measurement will not change the state. The resulting
state is SQC equivalent to |𝑦ፚ,𝑚ፚ⟩ |𝑦,𝑚⟩ |𝜏(𝐺)\ 𝑎, 𝑏⟩.

Two Pauli-X measurements
Both qubits are measured in the 𝑋 basis so we have equation 5.47 with 𝑖ፚ, 𝑖 =
𝑥ፚ, 𝑥. When (𝑎, 𝑏) ∉ 𝐺 the first measurement does not change the second (up to
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Pauli’s afterwards depending on 𝑢). Otherwise, if (𝑎, 𝑏) ∈ 𝐺, we use the fact that
⟨𝑥,𝑚|𝐻 = ⟨𝑧,𝑚|, which leads to:

|𝑥ፚ,𝑚ፚ⟩⟨𝑥ፚ,𝑚ፚ| |𝑥,𝑚⟩⟨𝑥,𝑚| |𝐺⟩ =
= |𝑧ፚ,𝑚ፚ⟩⟨𝑧ፚ,𝑚ፚ| |𝑧,𝑚⟩⟨𝑧,𝑚|𝐻ፚ𝐻 |𝐺⟩ =
= |𝑧ፚ,𝑚ፚ⟩⟨𝑧ፚ,𝑚ፚ| |𝑧,𝑚⟩⟨𝑧,𝑚| 𝑍[𝑁ፆፚ ∩ 𝑁ፆ ] |𝜌ፚ(𝐺)⟩ =

∼ፒፐፂ |𝑥ፚ,𝑚ፚ⟩ |𝑥,𝑚⟩ |𝜌ፚ,(𝐺) \ 𝑎, 𝑏⟩

When we also incorporate (𝑎, 𝑏) ∉ 𝐺, this leads to the general rule:

|𝑥ፚ,𝑚ፚ⟩⟨𝑥ፚ,𝑚ፚ| |𝑥,𝑚⟩⟨𝑥,𝑚| |𝐺⟩ ∼ፒፐፂ {
|𝑥ፚ,𝑚ፚ⟩ |𝑥,𝑚⟩ |𝜌ፚ,(𝐺) \ 𝑎, 𝑏⟩ if (𝑎, 𝑏) ∈ 𝐺
|𝑥ፚ,𝑚ፚ⟩ |𝑥,𝑚⟩ |𝜌ፚ,፯𝜌,፮(𝐺)\ 𝑎, 𝑏⟩ if (𝑎, 𝑏) ∉ 𝐺

(5.49)

Pauli-X and a Pauli-Y measurement
We first consider the 𝑌 measurement, which flips the 𝑋 measurement to the 𝑌
basis if (𝑎, 𝑏) ∈ 𝐺. With flip, we refer to √(−1)ኻዅ፦ᑓ𝑖𝑍ፚ |𝑥ፚ,𝑚ፚ⟩ = |𝑦ፚ,𝑚ፚ + 𝑚⟩.
Otherwise, if (𝑎, 𝑏) ∉ 𝐺, the two graph operations do not affect each other. This
results in a measurement rule for measuring two qubits, one in 𝑋 and one in 𝑌
basis:

|𝑥ፚ,𝑚ፚ⟩⟨𝑥ፚ,𝑚ፚ| |𝑦,𝑚⟩⟨𝑦,𝑚| |𝐺⟩ ∼ፒፐፂ |𝑥ፚ,𝑚ፚ⟩ |𝑦,𝑚⟩ |(𝜏ፚ𝜏፮)[(ፚ,)∉ፆ]𝜏ፚ𝜏(𝐺)\ 𝑎, 𝑏⟩
(5.50)

Where 𝑢 ∈ 𝑁ፚ(𝜏(𝐺)\𝑏).

5.4.3. Specialized lemmas for section 5.3

In this section we cover lemmas which are needed for the proof of theorem 5.1 and
which are probably not of interested outside the scope of this proof.

Lemma 5.6. Let 𝐵𝑒𝑙𝑙ፓᐸኼ = (𝑉, 𝐸) = ({𝐴ፚ, 𝐴, 𝐴ኺ, 𝐴ኻ}, {(𝐴ኺ, 𝐴ፚ), (𝐴ኻ, 𝐴)}) with 𝑇 =
({𝐴ፚ, 𝐴}, {𝐴ኺ}, {𝐴ኻ}) then:

∀ |𝐺⟩ ∈ Lፓ(𝐵𝑒𝑙𝑙ኼ), ∀𝑖 ∈ {0, 1} ∶ (𝐴።, 𝐴ፚ) ∈ 𝐺 ∨ (𝐴።, 𝐴) ∈ 𝐺 (5.51)

𝐵𝑒𝑙𝑙ፓᐸኼ is shown in figure 5.12(a). To state this lemma in words, for all graph states
𝑇-LMQC equivalent to |𝐵𝑒𝑙𝑙ኼ⟩, 𝐴ኺ and 𝐴ኻ are always connected to 𝐴ፚ, 𝐴 or to 𝐴ፚ
and 𝐴.

Proof. Using algorithm 2 one can find all graph states 𝑇-LMQC to 𝐵𝑒𝑙𝑙ኼ. An im-
plementation in SAGE to do this can be found on our GitHub repository [12]. The
result is the set of graphs in figure 5.12. For every graph in figure 5.12 the lemma
is true, which concludes the proof.
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Figure 5.12: All 24 graph states LMQC equivalent to two Bell pairs where both pairs contribute one qubit
to a shared node. The labelling is shown below the graphs.

Lemma 5.7. For 𝑥, 𝑦, 𝑧, 𝑖, 𝑗, 𝑘 ∈ ኼ and 𝑙 ∈

∀𝑖, 𝑗, 𝑘, 𝑙 ∃𝑥, 𝑦, 𝑧 ∶ 𝐻፱(𝑆ጷ)፲𝑍፳ = 𝐻።(𝑆ጷ)፣𝑍፤√−𝑖𝑍
፥

(5.52)

Proof. In this proof we will write rotations around the 𝑍-axis by specifying the ro-
tated angle in radians, we will therefore use a letter 𝒵 as follows: 𝑍 = 𝒵(𝜋),
𝑆 = 𝒵(𝜋/2), 𝑆ጷ = 𝒵(−𝜋/2). We first note that √−𝑖𝑍፥ =

(ኻዅ።)
√ኼ
𝑆፥ =

(ኻዅ።)
√ኼ
𝒵(90𝑙) and

𝑆 = (𝑆ጷ)ኽ. Up to a global phase we can then write the r.h.s. of equation 5.52 as:

𝐻።𝒵 (𝑘𝜋 + (𝑙 − 𝑗)
𝜋
2
)

Note that 𝒵(2𝜋) = , from which we conclude that the argument of 𝒵 can be
simplified to four cases.

𝒵 (𝑘𝜋 + (𝑙 − 𝑗)
𝜋
2
) =

⎧
⎪

⎨
⎪
⎩

if 𝑘𝜋 + (𝑙 − 𝑗)
ኼ

mod 2𝜋 = 0
𝑆ጷ if 𝑘𝜋 + (𝑙 − 𝑗)

ኼ
mod 2𝜋 = 

ኼ
𝑍 if 𝑘𝜋 + (𝑙 − 𝑗)

ኼ
mod 2𝜋 = 𝜋

𝑍𝑆ጷ if 𝑘𝜋 + (𝑙 − 𝑗)
ኼ

mod 2𝜋 = ኽ
ኼ

(5.53)

This completes the proof of the lemma.
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5.5. Solving 𝑇-LMQC-EQUIV using the reduced Clif-
ford set

In this section we describe an algorithm to check 𝑇-LMQC equivalence of graph
states based on theorem 5.1. The results and notation are used from section 5.2
and 5.3, when one understands the methods described there, implementing the
algorithm is not too hard. Either way, we will start in section 5.5.1 with a rough
sketch before providing and discussing the algorithm in pseudo code. In section
5.5.2 we prove that the algorithm is correct. The runtime of the algorithm is dis-
cussed in section 5.5.3. An implementation in SAGE can be found on Github [12].
The main result of this section is given in theorem 5.2.

Theorem 5.2. Algorithm 5 returns true if and only if the two input graph
states are 𝑇-LMQC equivalent, and it returns false otherwise. The maxi-
mum number of qubits per node is restricted to 2. The running time of the
algorithm is 𝒪(40፦|𝐺|ኾ) where 𝑚 is the number of two qubit nodes in 𝑇.

5.5.1. The algorithm

Here we describe the 𝑇-LMQC equivalence algorithm based on theorem 5.1. First we
discuss algorithm 4 which returns the graph state after gate teleportation for a given
element of the reduced Clifford set. This is based on the calculations in appendix
A.3. We will discuss the algorithm and the complexity line by line, however the
intuition behind this algorithm follows from the calculations done in appendix A.3.

• Line 2: 𝐺 and 𝐴ፔፆፒ are connected by two edges, (𝑎, 𝐴ኺ) and (𝑏, 𝐴ኻ). This
corresponds to the 𝐶𝑍 gates in the gate teleportation circuit. We assume
edge flips to be 𝒪(1) operations.

• Line 3: Pivot operations on (𝑎, 𝐴ኺ) and (𝑏, 𝐴ኻ), which correspond to the
Hadamards from the Bell measurements.

• Line 4-7: If one of the corrections was a 𝑆 gate, apply a local complementation
on the corresponding ancilla qubit. Local complementations are 𝒪(𝑁ኼ).

• Line 8: Remove the qubits 𝑎, 𝑏, 𝐴ኺ, 𝐴ኻ from the graph as they are measured.
Removing a vertex is an 𝒪(𝑁) operation, as there are possible 𝑁 − 1 edges
to delete as well.

Next, we will discuss the algorithm based on the reduced Clifford set step-by-step.
The idea of the algorithm is to first (step 1) consider every multi-qubit node by



5.5. Solving 𝑇-LMQC-EQUIV using the reduced Clifford set

5

83

Algorithm 4 Modified gate teleportation
Input: A graph 𝐺 = (𝑉, 𝐸), two distinct vertices 𝑎, 𝑏 ∈ 𝑉[𝐺],

𝐴ፔፆፒ ∈ Lፓᐸ(|𝐵𝑒𝑙𝑙ኼ⟩),𝐶ኺ, 𝐶ኻ ∈ { , 𝑆}.
Output: |�̃�⟩
1: function G.T.∗(𝐺, 𝑎, 𝑏, 𝐴ፔፆፒ, 𝐶ኺ, 𝐶ኻ)
2: |𝐺፭፦፩⟩ ← |𝐺 + 𝐴ፔፆፒ + (𝑎, 𝐴ኺ) + (𝑏, 𝐴ኻ)⟩
3: |𝐺፭፦፩⟩ ← |𝜌ፚፀᎲ𝜌ፀᎳ(𝐺፭፦፩)⟩
4: if 𝐶ኻ = 𝑆 then
5: |𝐺፭፦፩⟩ ← |𝜏ፀᎳ(𝐺፭፦፩)⟩
6: if 𝐶ኺ = 𝑆ጷ then
7: |𝐺፭፦፩⟩ ← |𝜏ፀᎲ(𝐺፭፦፩)⟩
8: |𝐺፭፦፩⟩ ← |𝐺፭፦፩\{𝑎, 𝑏, 𝐴ኺ, 𝐴ኻ}⟩
9: return |𝐺፭፦፩⟩

applying every local Clifford operation to |𝐺⟩, before checking SQC for the resulting
state to |𝐺ᖣ⟩ (step 2). However, instead of checking all 11520 two qubit Cliffords, we
will only consider the 40 elements from the reduced Clifford set defined in section
5.2. The two steps are discussed in more detail here.

1. In this step we will loop over all multi-qubit nodes in 𝑇, lets say there are 𝑚
multi-qubit nodes. As different multi-qubit nodes are independent, i.e. one
has to check all elements of the reduced Clifford set independent of the other
node, this step can be visualized by a tree structure. The root is the graph |𝐺⟩
and by considering all elements of the reduced Clifford set for the first multi-
qubit node in 𝑇 the root has 40 leaves. When considering the next multi-qubit
node in 𝑇, we only consider the leaves of the previous node and create 40 new
leaves for every old leave. I.e., the branching factor is 40. After considering
the last multi-qubit node in 𝑇, the tree has 40፦ leaves and every leave is a
graph state. The function in algorithm 4 is called to find the state after the
gate teleportation.

2. After considering all multi-qubit nodes, we have a list 𝐿ፆto Check (all leaves of
the tree of step 1) of 40፦ graph states. The final step is to one-by-one check
the graphs in 𝐿ፆto Check for SQC equivalence to |𝐺

ᖣ⟩. If a success case is found,
i.e. a graph state in 𝐿ፆto Check is SQC-equivalent to |𝐺

ᖣ⟩, we stop considering
the remaining elements of 𝐿ፆto Check and return true. Otherwise, if no element
of 𝐿ፆto Check is SQC-equivalent to |𝐺

ᖣ⟩, the algorithm returns false.

The algorithm can be optimized, for example by traversing a tree and stopping if
we have success,instead of first finding all elements of 𝐿ፆto Check. Another idea would
be to keep a set of graphs instead of a list such that no duplicates are considered.
However, this will not improve the worst case running time.
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Algorithm 5 Is |𝐺⟩ 𝑇-LMQC equivalent to |𝐺ᖣ⟩
Input: Graph states |𝐺⟩, |𝐺ᖣ⟩ with 𝑉[𝐺] = 𝑉[𝐺ᖣ] and a partition 𝑇 of 𝑉[𝐺].

Where |𝑖| ≤ 2 for 𝑖 ∈ 𝑇.
Output: TRUE if |𝐺⟩ ∼ፓዅLMQC |𝐺ᖣ⟩

FALSE otherwise
1: if |𝐺⟩ ∼ፒፐፂ |𝐺ᖣ⟩ then
2: return TRUE
3: Set 𝐿ፆto Check = 𝑙𝑖𝑠𝑡(|𝐺⟩)
4: 𝑚𝑢𝑙𝑡𝑖𝑄𝑢𝑏𝑖𝑡𝑁𝑜𝑑𝑒𝑠 = [𝑛𝑜𝑑𝑒 for 𝑛𝑜𝑑𝑒 in 𝑇 if |𝑛𝑜𝑑𝑒| > 1]
5: for 𝑎, 𝑏 ∈ 𝑚𝑢𝑙𝑡𝑖𝑄𝑢𝑏𝑖𝑡𝑁𝑜𝑑𝑒𝑠 do
6: Set 𝑡𝑚𝑝𝑙𝑖𝑠𝑡 = ∅
7: for |𝐺።፧⟩ ∈ 𝐿ፆto Check do
8: if (𝑎, 𝑏) ∈ |𝐺።፧⟩ then
9: remove (𝑎, 𝑏) from |𝐺።፧⟩ ◃Follows from assumption that (𝑎, 𝑏) ∉ 𝐺
10: for (𝐴ፔፆፒ, 𝐶ኺ, 𝐶ኻ) ∈ 𝒞ᖣኼ do
11: |𝐺G.T.⟩ ← G.T.∗(𝐺።፧, 𝐴ፔፆፒ, 𝐶ኺ, 𝐶ኻ)
12: append |𝐺G.T.⟩ to 𝑡𝑚𝑝𝑙𝑖𝑠𝑡
13: Set 𝐿ፆto Check ← 𝑡𝑚𝑝𝑙𝑖𝑠𝑡
14: Set 𝑒𝑞𝑢𝑖𝑣 = FALSE
15: for |𝐺።፧⟩ ∈ 𝐿ፆto Check do
16: if |𝐺።፧⟩ ∼SQC |𝐺ᖣ⟩ then
17: 𝑒𝑞𝑢𝑖𝑣 = TRUE
18: break
19: return equiv
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5.5.2. Proof that the algorithm is correct

In this section we prove that the algorithm presented in the previous section, al-
gorithm 5, is correct. I.e., it returns true if and only if the two graph states are
𝑇-LMQC equivalent and false otherwise. Note that this proof will rely heavily on the
definition of the reduced Clifford set, (definition 5.1) and theorem 5.1.

The algorithm succeeds

In this section we prove that algorithm 5 only returns true if and only if |𝐺⟩ ∼ፓዅLMQC
|𝐺ᖣ⟩. If the algorithm returns true, there is an element of the reduced Clifford set
which results in a |𝐺።፧⟩ SQC-equivalent to |𝐺ᖣ⟩. |𝐺።፧⟩ is achieved by gate teleporting,
which is essentially the same as applying the gate directly to |𝐺⟩. Thus, when the
algorithm returns true, |𝐺⟩ can be transformed to |𝐺ᖣ⟩ by only 𝑇-LMQC operations.
Therefore, if the algorithm returns TRUE, it holds that |𝐺⟩ ∼ፓዅLMQC |𝐺ᖣ⟩.

The algorithms fails

In this section we prove that algorithm 5 only returns false if and only if |𝐺⟩ ≁ፓዅLC
|𝐺ᖣ⟩. By definition the reduced Clifford set covers all multi-qubit Cliffords up to
SQC equivalence. Therefore, if the algorithm returns false, there exists no local
multi-qubit Clifford taking |𝐺⟩ to |𝐺ᖣ⟩.

5.5.3. Runtime of the algorithm

Algorithm 5 decides 𝑇-LMQC equivalence of graph states. Here we show that
the runtime is 𝒪(40፦𝑁ኾ) where 𝑚 is the number of two qubit nodes in 𝑇 and
𝑁 = |𝑉[𝐺]|. Therefore, algorithm 5 is first analysed line by line. Afterwards, the
computational heavy steps can be bundled to find the runtime.

• Line 1-2: Checking SQC-equivalence can be done in 𝒪(𝑁ኾ) according to the-
orem 3.2.

• Line 3,6,12,13,14,17: These are all operations which can be done in constant
time, 𝒪(1).

• Line 4: In the worst case this loop runs over 𝑁 elements, so 𝒪(𝑁).

• Line 5-13: The outer for loop runs over 𝑚 elements. Let us use 𝑖 to denote
the 𝑖th iteration of the outer loop (first iteration is 𝑖 = 0). Then the for
loop starting in line 7 runs over 40። graphs, as this is the number of leaves
of the previous outer loop (remember the tree form discussed in step 1 of
the algorithm). Line 8-9 is be done in constant time. The inner-most for
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loop always considers all 40 elements of the reduced Clifford set. Line 11
consists of local complementations (𝒪(𝑁ኼ) [11]), edge flips (𝒪(1)) and vertex
deletions (𝒪(𝑁)). Therefore, the total complexity of the inner-most for loop
is 𝒪(40𝑁ኼ). The for loop starting in line 7 has time complexity 𝒪(40።40𝑁ኼ).
This results in the total complexity of the outer for loop to be 𝒪(40፦𝑁ኼ).

• Line 15-18: The list 𝐿ፆto Check has 40
፦ elements. Checking SQC-equivalence

can be done in 𝒪(𝑁ኾ), and this has to be checked for every element of
𝐿ፆto Check. Therefore the total running time is 𝒪(40

፦𝑁ኾ).

Thus, the total running time of algorithm 5 is 𝒪(40፦𝑁ኾ). In section 5.5.4 the
performance of the algorithm is compared to algorithm 2 (brute-force) for an actual
implementation of the two algorithms in SAGE.

5.5.4. Benchmarking

In this section the performance of algorithm 2 and algorithm 5 are compared by
considering running times of implementations of both algorithms in SAGE. Note that
for figure 5.13a (b), the number of multi-qubit nodes is fixed to 1 (2) . The 𝑥-axis
denotes an increasing number of vertices (single qubit nodes). The ”brute-force”
algorithm clearly scales exponentially, whereas the gate teleportation algorithm
grows significantly slower. This is as expected after the running time analysis of
both algorithms.

(a) One two-qubit node and single qubit
nodes

(b) Two two-qubit nodes and single qubit
nodes

Figure 5.13: Actual running times of two algorithms for the ፓ-LMQC-EQUIV problem with a) ፓ 
({ኺ, ኻ}, … , {ፕ ዅ ኻ}) and b) ፓ  ({ኺ, ኻ}, {ኼ, ኽ}, … , {ፕ ዅ ኻ}). ”Brute force” is algorithm 2, where ”Gate
teleportation” is algorithm 5. The max and average running times are calculated from at least 50 in-
stances of the ፓ-LMQC problem. The input graph states are random connected graphs, the partition is
such that there is a) one or b) two two-qubit node(s) and all other nodes are single qubit nodes.
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5.6. Extension to general multi-qubit nodes

The concept behind the reduced Clifford set in section 5.2 and the corresponding
algorithm 5 are not restricted the bound of 2 qubits per node. However, due to
the exponential scaling in the number of qubits 𝑁 of 1) the 𝑁-qubit Clifford group
and 2) the set of all graphs on 𝑁 vertices, finding the correct set of graphs and
operations of the reduced Clifford set becomes very involved.

The operations are still doable, it is the same concept we used to find the operations
needed on 2 qubits, although there are more qubits involved. In the reduced Clifford
set of theorem 5.1, we know that 𝐶። ∈ { , 𝑆}, for 𝑖 ∈ {0, 1}. One might think that
this is also true for 𝑖 ∈ {0, 1, 2} in the case of 3 or more qubits per node. However,
the calculations behind the result in theorem 5.1 are very subtle. It might be that
there is a step in the proof that has to be reconsidered in order to cover the Clifford
group on 3 qubits.

In order to find the reduced Clifford set on 3 qubits, we have to consider the 3-Bell
pairs state shown in figure 5.14. Finding the set of all graphs in Lፁ፞፥፥Ꮅ(𝑇) is however

quite difficult. Note that there are 2
Ꮈ×Ꮇ
Ꮄ = 32768 possible graphs on 6 qubits and

that |𝒞ኽ| = 92897280. However, by making use of the computer facilities of the
INSY group at EWI, it was possible to find the number of graphs 𝑇-LMQC equivalent
to the 3-Bell pair state. The results are shown in table 5.1.

𝑀 |𝒞ᖣፌ|
2 24
3 10760

Table 5.1: The number of graph states ፓ-LMQC equivalent to ፌ Bell pairs all contributing one qubit to
a ፌ-qubit node.

Figure 5.14: The ፌ-Bell pairs state for ፌ  ኽ, where every Bell pair contributes one qubit to multi-qubit
node.
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A
Appendix

A.1. Examples of SAGE implementation

Here we discuss some examples of how to use our SAGE implementation for testing
𝑇-LMQC equivalence, which is available on our repository [12].

The file LMQC.sage contain classes for sage that can be used to study graph states
under local multi-qubit Clifford operations. Using the class SimpleGraphLMQC one
can test whether two graphs states are 𝑇-LMQC equivalent. To use the classes, start
sage and load the script by writing load(”LMQC.sage”). Some useful methods
are described below:

• SimpleGraphLMQC(data): Creates an instance of the class SimpleGraphLMQC.
data can be a an instance of the Graph-class already in SAGE, a dictionary
describing the neighbors of vertices, etc.

• G.is_LC_eq(Gp): This checks if 𝐺 and 𝐺𝑝 are SQC equivalent. Note that
LC does not refer to local multi-qubit Cliffords here.

• G.set_partition(T): Initializes the partition of G as T. This is needed for
G.is_LMQC_eq(Gp).

• G.is_LMQC_eq(Gp,method=”brute”): Checks if G is 𝑇-LMQC equivalent
to Gp. Note that there are two other methods with an improved runtime,
gate_tele and conj. These three methods correspond to the algorithms
described in this thesis. So:

method=”brute” → Algorithm 2
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method=”conj”’ → Algorithm 3 (number of qubits per node ≤ 2)
method=”gate_tele” → Algorithm 5 (number of qubits per node ≤ 2)

Example 1

In this example 𝐺 is the complete graph on 4 vertices and 𝐺𝑝 is the star graph
with center 0 from which the edge (0, 1) is removed. Note that the star graph and
complete graph are SQC equivalent, and that vertices 0 and 1 are inside the same
node. Therefore, we expect 𝐺 and 𝐺𝑝 to be 𝑇-LMQC equivalent.

G=SimpleGraphLMQC([0,1,2,3])
G.set_partition([[0,1],[2],[3]])
Gp = SimpleGraph({0:[2,3],1:[]})
G.is_LMQC_eq(Gp)

Example 2

In this example 𝑇-LMQC equivalence is decided using all three algorithms discussed
in this thesis, for two randomly generated graphs. To generate a random graph,
the function graphs.RandomGNP(V,p) is used. Here V stands for the number of
vertices, and p is the probability that an edge is inserted in the graph. Note that
G.is_LMQC_eq(Gp,method=’conj’) will return an error message if G or Gp is
not a locally connected graph.

G = SimpleGraphLMQC(graphs.RandomGNP(4,0.7))
Gp = SimpleGraph(graphs.RandomGNP(4,0.9))
G.set_partition([[0],[1],[2,3]])
G.is_LMQC_eq(Gp,method=’brute’)
G.is_LMQC_eq(Gp,method=’gate_tele’)
G.is_LMQC_eq(Gp,method=’conj’)

Example 3

In this example 𝑇-LMQC equivalence is decided for a graph state on 6 qubits with
one three qubit node. Note there is only one algorithm able to solve this, and that
it might take a long time. Note that this could take a long time before returning a
result.

G = SimpleGraphLMQC(Graph({0:[3],1:[4],2:[5]}))
Gp = SimpleGraph(graphs.RandomGNP(6,0.9))
G.set_partition([[0,1,2],[3],[4],[5]])
G.is_LMQC_eq(Gp,method=’brute’)



A.2. Generating random connected graphs 93

A.2. Generating random connected graphs

In this section we describe how to generate a random connected graph 𝐺 on 𝑁
vertices. There are three main steps in doing this.

1. Generate a random tree 𝐺 on 𝑁 vertices.

2. Choose the total number of edges, 𝐸ዱዥዼ, 𝐺 should have from the set {𝑁 −
1,⋯ ,𝑁(𝑁 − 1)/2}

3. Add random edges to 𝐺 till |𝐸[𝐺]| = 𝐸ዱዥዼ.

We will now explain each step in a bit more detail. It is shown [24] that there are
𝑁ፍዅኼ trees on the vertex set {0,⋯ ,𝑁 − 1}. Choosing one of these trees uniformly
at random corresponds to generating a random tree. Note that in SAGE there is
method for a 𝑔𝑟𝑎𝑝ℎ𝑠 object which returns a random tree (𝑔𝑟𝑎𝑝ℎ𝑠.𝑟𝑎𝑛𝑑𝑜𝑚𝑇𝑟𝑒𝑒(𝑁)).
The next step is to choose the total number of edges uniformly at random from the
set {𝑁 − 1,⋯ ,𝑁(𝑁 − 1)/2}. Note that there exists no simple connected graph of
which the number of vertices is outside this set. In the final step, we start by mak-
ing a set 𝐸 of all edges not present in 𝐺. While |𝐸[𝐺]| ≤ 𝐸ዱዥዼ, we choose an edge
(𝑎, 𝑏) from 𝐸, remove this edge from 𝐸 and add it to 𝐺.

A.3. Stabilizer state after gate teleportation calcula-
tions

In this section the calculations are performed for finding the stabilizer state after
the gate teleportation circuit, which correspond to the state in equation 5.13. Note
that we assume that (𝑎, 𝑏) ∉ 𝐺.

A.3.1. 𝐶ኺ = , 𝐶ኻ =

• In this section we will calculate the state after the gate teleportation circuit
for the case that 𝐶ኺ, 𝐶ኻ = . The first step is to write down the state from the
definition in equation 5.13.

G.T.∗ (𝐺, 𝐴ፔᖤፆ , , ) = ⟨𝐵
ፀᎳ
ኻ | ⟨𝐵ፚፀᎲኻ | ኼ ⊗ ኼ |𝐺 + 𝐴ፔ

ᖤ
ፆ ⟩

• As in this case the operations act trivially, the next step is to expand the Bell
measurements in order to see how this operations affect the graph state.

= ⟨0ፀᎲ0ፀᎳ0ፚ0|𝐻ፀᎲ𝐻ፀᎳ𝐻ፚ𝐻𝐶𝑍ፚፀᎲ𝐶𝑍ፀᎳ |𝐺 + 𝐴
ፔᖤ
ፆ ⟩
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• As 𝐺 and 𝐴ፔፆ are by definition not connected, the edges (𝑎, 𝐴ኺ), (𝑏, 𝐴ኻ) are
added. As (𝑎, 𝑏) ∉ 𝐺, the four Hadamards always act as two pivots following
5.4. However, from lemma 3.1 we know that there are also possible 𝑍 opera-
tions when writing 2 Hadamards as a pivot. Using lemma 5.3 it is known that
any Pauli before measurements, only result in Pauli’s afterwards. Therefore,
we have the following state up to Pauli’s:

= ⟨0ፀᎲ0ፀᎳ0ፚ0|𝜌ፚፀᎲ𝜌ፀᎳ(𝐺 + 𝐴
ፔᖤ
ፆ + (𝑎, 𝐴ኺ) + (𝑏, 𝐴ኻ))⟩

• The last step is the measurements of the four qubits, which removes them
from the graph state.

= |𝜌ፚፀᎲ𝜌ፀᎳ(𝐺 + 𝐴
ፔᖤ
ፆ + (𝑎, 𝐴ኺ) + (𝑏, 𝐴ኻ))\{𝐴ኺ, 𝐴ኻ, 𝑎, 𝑏}⟩

A.3.2. 𝐶ኺ = 𝐻, 𝐶ኻ =

• For 𝐶ኺ = 𝐻, 𝐶ኻ = we start from the definition.

G.T.∗ (𝐺, 𝐴ፔᖤፆ , 𝐻, ) = ⟨𝐵
ፀᎳ
ኻ | ⟨𝐵ፚፀᎲኻ | 𝐻ፀᎲ |𝐺 + 𝐴

ፔᖤ
ፆ ⟩

• As we know how 2 Hadamards act on a graph state, we add a Hadamard on
a not-measured neighbour of 𝐴ኺ, in this case 𝑢. I.e., 𝑢 ∈ 𝑁ፀᎲ(𝐴

ፔᖤ
ፆ )\𝐴ኻ

= ⟨𝐵ፀᎳኻ | ⟨𝐵ፚፀᎲኻ | 𝐻፮𝐻፮𝐻ፀᎲ |𝐺 + 𝐴
ፔᖤ
ፆ ⟩

• As 𝐻፮ commutes with the measurements of other qubits, we have:

=𝐻፮ ⟨𝐵
ፀᎳ
ኻ | ⟨𝐵ፚፀᎲኻ |𝐺 + 𝜌ፀᎲ፮(𝐴

ፔᖤ
ፆ )⟩

• Here one can recognize the stabilizer state after measurements for 𝐶ኺ, 𝐶ኻ =
for ancilla state 𝐴ፔፆ , up to 𝐻፮.

=𝐻፮G.T.
∗ (𝐺, 𝜌ፀᎲ፮(𝐴

ፔᖤ
ፆ ), , )
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A.3.3. 𝐶ኺ = , 𝐶ኻ = 𝐻

See section A.3.2 for details on these calculations.

G.T.∗ (𝐺, 𝐴ፔᖤፆ , , 𝐻)

= ⟨𝐵ፀᎳኻ | ⟨𝐵ፚፀᎲኻ | 𝐻ፀᎳ |𝐺 + 𝐴
ፔᖤ
ፆ ⟩

= ⟨𝐵ፀᎳኻ | ⟨𝐵ፚፀᎲኻ | 𝐻፮𝐻፮𝐻ፀᎳ |𝐺 + 𝐴
ፔᖤ
ፆ ⟩

=𝐻፮ ⟨𝐵
ፀᎳ
ኻ | ⟨𝐵ፚፀᎲኻ |𝐺 + 𝜌ፀᎳ፮(𝐴

ፔᖤ
ፆ )⟩

=𝐻፮G.T.
∗ (𝐺, 𝜌ፀᎳ፮(𝐴

ፔᖤ
ፆ ), , )

𝑢 ∈ 𝑁ፀᎳ(𝐴
ፔᖤ
ፆ )\𝐴ኻ

A.3.4. 𝐶ኺ = 𝑆, 𝐶ኻ =

• Again we start from the definition:

G.T.∗ (𝐺, 𝐴ፔᖤፆ , 𝑆, ) = ⟨𝐵
ፀᎳ
ኻ | ⟨𝐵ፚፀᎲኻ | 𝑆ጷፀᎲ |𝐺 + 𝐴

ፔᖤ
ፆ ⟩

• The question is now how 𝑆ጷፀᎲ affects the graph state. As it is not clear how
𝑆ጷፀᎲ changes the graph state directly, we commute it through the Bell mea-

surement operations. Note that 𝑆 and CZ commute, and that 𝐻𝑆ጷ = √𝑋
ጷ
𝐻.

Then we find:

= ⟨0ፀᎲ0ፀᎳ0ፚ0|√𝑋ፀᎲ
ጷ

𝐻ፀᎲ𝐻ፀᎳ𝐻ፚ𝐻𝐶𝑍ፀᎳ𝐶𝑍ፚፀᎲ |𝐺 + 𝐴
ፔᖤ
ፆ ⟩

• Using √𝑋 |0⟩ = |+𝑖⟩ we change the measurement basis of qubit 𝐴ኺ, however
the other three qubits are still measured in the 𝑍-basis. Therefore, we first
do the measurements of 𝑎, 𝑏 and 𝐴ኻ, to find:

= ⟨+𝑖ፀᎲ|𝜌ፚፀᎲ𝜌ፀᎳ(𝐺 + 𝐴
ፔᖤ
ፆ + (𝑎, 𝐴ኺ) + (𝑏, 𝐴ኻ))\{𝐴ኻ, 𝑎, 𝑏}⟩

The last step is to measure qubit 𝐴ኺ and find the resulting graph state using
the measurement rules in definiton 3.4.

=√−𝑖𝑍
ፍᐸᎲ |𝜏ፀᎲ𝜌ፚፀᎲ𝜌ፀᎳ(𝐺 + 𝐴

ፔᖤ
ፆ + (𝑎, 𝐴ኺ) + (𝑏, 𝐴ኻ))\{𝐴ኺ, 𝐴ኻ, 𝑎, 𝑏}⟩
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A.3.5. 𝐶ኺ = , 𝐶ኻ = 𝑆

See section A.3.4 for the idea behind these calculations.

G.T.∗ (𝐺, 𝐴ፔᖤፆ , , 𝑆)

= ⟨𝐵ፀᎳኻ | ⟨𝐵ፚፀᎲኻ | 𝑆ጷኻ |𝐺 + 𝐴ፔ
ᖤ
ፆ ⟩

= ⟨0ፀᎲ0ፀᎳ0ፚ0|𝐻𝐻ፀᎳ𝐻ፚ𝐻ፀᎲ𝐶𝑍ፀᎳ𝐶𝑍ፚፀᎲ𝑆
ጷ
ኻ |𝐺 + 𝐴ፔ

ᖤ
ፆ ⟩

= ⟨0ፀᎲ0ፀᎳ0ፚ0|𝐻ፀᎲ𝑆
ጷ
ኻ𝐻ፀᎳ𝐻ፚ𝐻𝐶𝑍ፀᎳ𝐶𝑍ፚፀᎲ |𝐺 + 𝐴

ፔᖤ
ፆ ⟩

= ⟨0ፀᎲ0ፀᎳ0ፚ0|√𝑋ፀᎳ
ጷ

𝐻ፀᎲ𝐻ፀᎳ𝐻ፚ𝐻𝐶𝑍ፀᎳ𝐶𝑍ፚፀᎲ |𝐺 + 𝐴
ፔᖤ
ፆ ⟩

= ⟨0ፀᎲ + 𝑖ፀᎳ0ፚ0|𝜌ፚፀᎲ𝜌ፀᎳ(𝐺 + 𝐴
ፔᖤ
ፆ + (𝑎, 𝐴ኺ) + (𝑏, 𝐴ኻ))⟩

= ⟨+𝑖ፀᎳ|𝜌ፚፀᎲ𝜌ፀᎳ(𝐺 + 𝐴
ፔᖤ
ፆ + (𝑎, 𝐴ኺ) + (𝑏, 𝐴ኻ))\{𝐴ኺ, 𝑎, 𝑏}⟩

=√−𝑖𝑍
ፍᐸᎳ |𝜏ፀᎳ𝜌ፚፀᎲ𝜌ፀᎳ(𝐺 + 𝐴

ፔᖤ
ፆ + (𝑎, 𝐴ኺ) + (𝑏, 𝐴ኻ))\{𝐴ኺ, 𝐴ኻ, 𝑎, 𝑏}⟩

A.3.6. 𝐶ኺ = 𝐻𝑆, 𝐶ኻ =

• Equation 5.13 is our starting point.

G.T.∗ (𝐺, 𝐴ፔᖤፆ , 𝐻𝑆, ) = ⟨𝐵
ፀᎳ
ኻ | ⟨𝐵ፚፀᎲኻ | 𝐻ፀᎲ𝑆

ጷ
ፀᎲ |𝐺 + 𝐴

ፔᖤ
ፆ ⟩

As it is not directly clear how 𝐻ፀᎲ𝑆
ጷ
ፀᎲ act on a graph state, we will rewrite.

First we do an extra operation 𝑆ፀᎲ𝑆
ጷ
ፀᎲ = just before the CZ gates. 𝑆ፀᎲ

we then pull all the way to the left to the projectors. 𝑆ጷፀᎲ is used to get an
operation for which we might know the effect on a graph state: √−𝑖𝑋ፀᎲ =
𝑆ጷፀᎲ𝐻ፀᎲ𝑆

ጷ
ፀᎲ . Now remember from section 3.2 that √−𝑖𝑋፣ is the operation on

qubit 𝑗 corresponding to a local complementation on 𝑗. Therefore, we find the
following:

= ⟨0ፀᎲ0ፀᎳ0ፚ0|√𝑋ፀᎲ𝐻ፀᎲ𝐻ፀᎳ𝐻ፚ𝐻𝐶𝑍ፚፀᎲ𝐶𝑍ፀᎳ√−𝑖𝑋ፀᎲ |𝐺 + 𝐴
ፔᖤ
ፆ ⟩

In the next step we use definition 3.1, the definition of how local comple-
menting acts on a graph state, to find:

= ⟨0ፀᎲ0ፀᎳ0ፚ0|√𝑋ፀᎲ𝐻ፀᎲ𝐻ፀᎳ𝐻ፚ𝐻𝐶𝑍ፚፀᎲ𝐶𝑍ፀᎳ√−𝑖𝑍
ፍᐸᎲ(ፀ

ᑌᖤ
ᐾ )
|𝐺 + 𝜏ፀᎲ(𝐴

ፔᖤ
ፆ )⟩
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Doing a local complementation includes SQC operations on the neighbourhood
of the vertex, so in this case on 𝑁ፀᎲ . The only measured qubit which might
be in 𝑁ፀᎲ is 𝐴ኻ, therefore the measurement basis of qubit 𝐴ኻ is changed if
(𝐴ኺ, 𝐴ኻ) ∈ 𝐴ፔፆ .

=√−𝑖𝑍
ፍᐸᎲ(ፀ

ᑌᖤ
ᐾ )\ፀᎳ

⟨0ፀᎲ0ፀᎳ0ፚ0|√𝑋ፀᎲ√−𝑖𝑋ፀᎳ
[(ፀᎲ,ፀᎳ)∈ፀᑌ

ᖤ
ᐾ ]

𝐻ፀᎲ𝐻ፀᎳ𝐻ፚ𝐻𝐶𝑍ፚፀᎲ𝐶𝑍ፀᎳ |𝐺 + 𝜏ፀᎲ(𝐴
ፔᖤ
ፆ )⟩

As the measurements of 𝑎, 𝑏 are the easiest, we will do them first. After-
wards, we use the 2 qubit measurement rules from section 5.4.2 to find the
corresponding graph states (up to SQC operations on the final graph state)

∼ፒፐፂ

⎧
⎪⎪

⎨
⎪⎪
⎩

|𝜏ፀᎲ𝜏ፀᎳ𝜌ፚፀᎲ𝜌ፀᎳ (𝐺 + 𝜏ፀᎲ(𝐴
ፔᖤ
ፆ ) + (𝑎, 𝐴ኺ) + (𝑏, 𝐴ኻ)) \{𝑎, 𝑏, 𝐴ኺ, 𝐴ኻ}⟩

if (𝐴ኺ, 𝐴ኻ) ∈ 𝐴ፔ
ᖤ
ፆ

|𝜏ፀᎲ𝜌ፚፀᎲ𝜌ፀᎳ (𝐺 + 𝜏ፀᎲ(𝐴
ፔᖤ
ፆ ) + (𝑎, 𝐴ኺ) + (𝑏, 𝐴ኻ)) \{𝑎, 𝑏, 𝐴ኺ, 𝐴ኻ}⟩

if (𝐴ኺ, 𝐴ኻ) ∉ 𝐴ፔ
ᖤ
ፆ

A.3.7. 𝐶ኺ = , 𝐶ኻ = 𝐻𝑆

This is similar as section A.3.6 when swapping 𝐶ኺ and 𝐶ኻ.

G.T.∗ (𝐺, 𝐴ፔᖤፆ , , 𝐻𝑆) = ⟨𝐵
ፀᎳ
ኻ | ⟨𝐵ፚፀᎲኻ | 𝐻ፀᎳ𝑆

ጷ
ፀᎳ |𝐺 + 𝐴

ፔᖤ
ፆ ⟩

∼ፒፐፂ {
if (𝐴ኺ, 𝐴ኻ) ∈ 𝐴ፔ

ᖤ
ፆ |𝜏ፀᎲ𝜏ፀᎳ𝜌ፚፀᎲ𝜌ፀᎳ (𝐺 + 𝜏ፀᎳ(𝐴

ፔᖤ
ፆ ) + (𝑎, 𝐴ኺ) + (𝑏, 𝐴ኻ)) \{𝐴ኺ, 𝐴ኻ, 𝑎, 𝑏}⟩

if (𝐴ኺ, 𝐴ኻ) ∉ 𝐴ፔ
ᖤ
ፆ |𝜏ፀᎳ𝜌ፚፀᎲ𝜌ፀᎳ (𝐺 + 𝜏ፀᎳ(𝐴

ፔᖤ
ፆ ) + (𝑎, 𝐴ኺ) + (𝑏, 𝐴ኻ)) \{𝐴ኺ, 𝐴ኻ, 𝑎, 𝑏}⟩

A.3.8. 𝐶ኺ = 𝐻, 𝐶ኻ = 𝐻

• As before, we start from the definition.

G.T.∗ (𝐺, 𝐴ፔᖤፆ , 𝐻, 𝐻) = ⟨𝐵
ፀᎳ
ኻ | ⟨𝐵ፚፀᎲኻ | 𝐻ፀᎲ𝐻ፀᎳ |𝐺 + 𝐴

ፔᖤ
ፆ ⟩
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• It is known how two Hadamards act on a graph state if the corresponding
edge is present in the graph, so in this case (𝐴ኺ, 𝐴ኻ) ∈ 𝐴ፔፆ . That is the first
case we distinguish. The second and thirth case are a little bit more tricky
as it is not known how two Hadamards on non-adjacent vertices transform a
graph state. However, it turns out that when always starting with a pivot on
the vertex with only 1 neighbour, the vertex still to pivot is always connected
to 𝐴ፚ or 𝐴 or both. This leads to:

=

⎧
⎪

⎨
⎪
⎩

if (𝐴ኺ, 𝐴ኻ) ∈ 𝐴ፔፆ 𝑍[𝑁ፀᎲ ∩ 𝑁ፀᎳ] ⟨𝐵
ፀᎳ
ኻ | ⟨𝐵ፚፀᎲኻ | |𝐺 + 𝜌ፀᎲፀᎳ(𝐴

ፔᖤ
ፆ )⟩

elif |𝑁ፀᎲ| = 1 ⟨𝐵ፀᎳኻ | ⟨𝐵ፚፀᎲኻ | 𝐻፮𝐻ፀᎳ |𝐺 + 𝜌ፀᎲ፮(𝐴
ፔᖤ
ፆ )⟩

elif |𝑁ፀᎳ| = 1 ⟨𝐵ፀᎳኻ | ⟨𝐵ፚፀᎲኻ | 𝐻፮𝐻ፀᎲ |𝐺 + 𝜌ፀᎳ፮(𝐴
ፔᖤ
ፆ )⟩

• if |𝑁ፀᎲ| = 1 then 𝑢 ∈ 𝑁ፀᎲ(𝐴
ፔᖤ
ፆ ), if |𝑁ፀᎳ| = 1 then 𝑢 ∈ 𝑁ፀᎳ(𝐴

ፔᖤ
ፆ ). And by

choosing 𝑣 similairly, so if |𝑁ፀᎲ| = 1 then 𝑣 ∈ 𝑁ፀᎳ(𝜌ፀᎲ፮(𝐴
ፔᖤ
ፆ )), if |𝑁ፀᎳ| = 1

then 𝑣 ∈ 𝑁ፀᎲ(𝜌ፀᎳ፮(𝐴
ፔᖤ
ፆ )):

=

⎧
⎪

⎨
⎪
⎩

if (𝐴ኺ, 𝐴ኻ) ∈ 𝐴ፔፆ 𝑍[𝑁ፀᎲ ∩ 𝑁ፀᎳ] ⟨𝐵
ፀᎳ
ኻ | ⟨𝐵ፚፀᎲኻ | |𝐺 + 𝜌ፀᎲፀᎳ(𝐴

ፔᖤ
ፆ )⟩

elif |𝑁ፀᎲ| = 1 ⟨𝐵ፀᎳኻ | ⟨𝐵ፚፀᎲኻ | 𝐻፯𝐻፮ |𝐺 + 𝜌ፀᎳ፯𝜌ፀᎲ፮(𝐴
ፔᖤ
ፆ )⟩

elif |𝑁ፀᎳ| = 1 ⟨𝐵ፀᎳኻ | ⟨𝐵ፚፀᎲኻ | 𝐻፯𝐻፮ |𝐺 + 𝜌ፀᎲ፯𝜌ፀᎳ፮(𝐴
ፔᖤ
ፆ )⟩

As 𝑢, 𝑣 are chosen such that they always commute with the projectors, all
three cases are equal to the state in section A.3.1 up to SQC.

∼ፒፐፂ G.T.
∗(𝐺, �̃�ፔᖤፆ , , )

A.3.9. 𝐶ኺ = 𝐻, 𝐶ኻ = 𝑆

This case builds further on the results of section A.3.4 and A.3.2.

G.T.∗ (𝐺, 𝐴ፔᖤፆ , 𝐻, 𝑆) = ⟨𝐵
ፀᎳ
ኻ | ⟨𝐵ፚፀᎲኻ | 𝐻ፀᎲ𝑆

ጷ
ኻ |𝐺 + 𝐴ፔ

ᖤ
ፆ ⟩

=𝐻፮ ⟨𝐵
ፀᎳ
ኻ | ⟨𝐵ፚፀᎲኻ | 𝑆ጷኻ |𝐺 + 𝜌ፀᎲ፮(𝐴

ፔᖤ
ፆ )⟩

=𝐻፮G.T.
∗(𝐺, 𝜌ፀᎲ፮(𝐴

ፔᖤ
ፆ ), , 𝑆)

𝐻𝑆ጷ = √𝑋
ጷ
𝐻

𝑢 ∈ 𝑁ፀᎲ(𝐴
ፔᖤ
ፆ )\𝐴ኻ
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A.3.10. 𝐶ኺ = 𝐻, 𝐶ኻ = 𝐻𝑆

This case builds further on the results of section A.3.4 and A.3.2.

G.T.∗ (𝐺, 𝐴ፔᖤፆ , 𝐻, 𝐻𝑆)

= ⟨𝐵ፀᎳኻ | ⟨𝐵ፚፀᎲኻ | 𝐻ፀᎲ𝐻ፀᎳ𝑆
ጷ
ኻ |𝐺 + 𝐴ፔ

ᖤ
ፆ ⟩

=𝐻፮ ⟨𝐵
ፀᎳ
ኻ | ⟨𝐵ፚፀᎲኻ | 𝐻ፀᎳ𝑆

ጷ
ኻ |𝐺 + 𝜌ፀᎲ፮(𝐴

ፔᖤ
ፆ )⟩

=𝐻፮G.T.
∗ (𝐺, 𝜌ፀᎲ፮(𝐴

ፔᖤ
ፆ ), , 𝐻𝑆ጷ)

𝑢 ∈ 𝑁ፀᎲ(𝐴
ፔᖤ
ፆ )\𝐴ኻ

A.3.11. 𝐶ኺ = 𝑆, 𝐶ኻ = 𝐻

This case builds further on the results of section A.3.4 and A.3.2.

G.T.∗ (𝐺, 𝐴ፔᖤፆ , 𝑆, 𝐻)

= ⟨𝐵ፀᎳኻ | ⟨𝐵ፚፀᎲኻ | 𝐻ፀᎳ𝑆
ጷ
ፀᎲ |𝐺 + 𝐴

ፔᖤ
ፆ ⟩

=𝐻፮ ⟨𝐵
ፀᎳ
ኻ | ⟨𝐵ፚፀᎲኻ | 𝑆ጷፀᎲ |𝐺 + 𝜌ፀᎳ፮(𝐴

ፔᖤ
ፆ )⟩

= 𝐻፮G.T.
∗ (𝐺, 𝜌ፀᎳ፮(𝐴

ፔᖤ
ፆ ), 𝑆ጷ, )

𝑢 ∈ 𝑁ፀᎳ(𝐴
ፔᖤ
ፆ )\𝐴ኺ

A.3.12. 𝐶ኺ = 𝐻𝑆, 𝐶ኻ = 𝐻

This case builds further on the results of section A.3.2 and A.3.6.

G.T.∗ (𝐺, 𝐴ፔᖤፆ , 𝐻𝑆, 𝐻)

= ⟨𝐵ፀᎳኻ | ⟨𝐵ፚፀᎲኻ | 𝐻ፀᎲ𝑆
ጷ
ፀᎲ𝐻ፀᎳ |𝐺 + 𝐴

ፔᖤ
ፆ ⟩

=𝐻፮ ⟨𝐵
ፀᎳ
ኻ | ⟨𝐵ፚፀᎲኻ | 𝐻ፀᎲ𝑆

ጷ
ፀᎲ |𝐺 + 𝜌ፀᎳ፮(𝐴

ፔᖤ
ፆ )⟩

=𝐻፮G.T.
∗ (𝐺, 𝜌ፀᎳ፮(𝐴

ፔᖤ
ፆ ), 𝐻𝑆, )

𝑢 ∈ 𝑁ፀᎲ(𝐴
ፔᖤ
ፆ )\𝐴ኻ
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A.3.13. 𝐶ኺ = 𝑆, 𝐶ኻ = 𝑆

• Here we will do something very similar to section A.3.4, but now for 2 qubits
instead of only one. Thus we refer to section A.3.4 for an explanation of this
calculations. However, the final step towards the last line requires a little bit
more attention. There, the two qubit measurement rules of section 5.4.2 are
used, together with lemma 5.5.

G.T.∗ (𝐺, 𝐴ፔᖤፆ , 𝑆, 𝑆)

= ⟨𝐵ፀᎳኻ | ⟨𝐵ፚፀᎲኻ | 𝑆ጷፀᎲ𝑆
ጷ
ፀᎳ |𝐺 + 𝐴

ፔᖤ
ፆ ⟩

= ⟨0ፀᎲ0ፀᎳ0ፚ0|𝐻𝐻ፀᎳ𝐻ፚ𝐻ፀᎲ𝐶𝑍ፀᎳ𝐶𝑍ፚፀᎲ𝑆
ጷ
ፀᎲ𝑆

ጷ
ፀᎳ |𝐺 + 𝐴

ፔᖤ
ፆ ⟩

= ⟨0ፀᎲ0ፀᎳ0ፚ0|𝐻ፀᎲ𝑆
ጷ
ፀᎲ𝐻ፀᎳ𝑆

ጷ
ፀᎳ𝐻ፚ𝐻𝐶𝑍ፀᎳ𝐶𝑍ፚፀᎲ |𝐺 + 𝐴

ፔᖤ
ፆ ⟩

= ⟨0ፀᎲ0ፀᎳ0ፚ0|√𝑋ፀᎲ
ጷ

√𝑋ፀᎳ
ጷ

𝐻ፀᎲ𝐻ፀᎳ𝐻ፚ𝐻𝐶𝑍ፀᎳ𝐶𝑍ፚፀᎲ |𝐺 + 𝐴
ፔᖤ
ፆ ⟩

= ⟨+𝑖ፀᎲ + 𝑖ፀᎳ0ፚ0|𝜌ፚፀᎲ𝜌ፀᎳ (𝐺 + 𝐴
ፔᖤ
ፆ + (𝑎, 𝐴ኺ) + (𝑏, 𝐴ኻ))⟩

= ⟨+𝑖ፀᎲ + 𝑖ፀᎳ|𝜌ፚፀᎲ𝜌ፀᎳ (𝐺 + 𝐴
ፔᖤ
ፆ + (𝑎, 𝐴ኺ) + (𝑏, 𝐴ኻ)) \𝑎, 𝑏⟩

∼ፒፐፂ |𝜏ፀᎲ𝜏ፀᎳ𝜌ፚፀᎲ𝜌ፀᎳ (𝐺 + 𝐴
ፔᖤ
ፆ + (𝑎, 𝐴ኺ) + (𝑏, 𝐴ኻ)) \{𝐴ኺ, 𝐴ኻ, 𝑎, 𝑏}⟩

A.3.14. 𝐶ኺ = 𝑆, 𝐶ኻ = 𝐻𝑆

• We start from the definition:

G.T.∗ (𝐺, 𝐴ፔᖤፆ , 𝑆, 𝐻𝑆) = ⟨𝐵
ፀᎳ
ኻ | ⟨𝐵ፚፀᎲኻ | 𝑆ጷፀᎲ𝐻ፀᎳ𝑆

ጷ
ፀᎳ |𝐺 + 𝐴

ፔᖤ
ፆ ⟩

• The first steps are very similar to section A.3.6 and A.3.4, by following the
procedure described there we find:

=√−𝑖𝑍
ፍᐸᎳ(ፀ

ᑌᖤ
ᐾ )\ፀᎲ

⟨𝑖ፀᎲ0ፀᎳ0ፚ0|√𝑋ፀᎳ√−𝑖𝑋ፀᎲ
[(ፀᎲ,ፀᎳ)∈ፀᑌ

ᖤ
ᐾ ]

𝐻ፀᎲ𝐻ፀᎳ𝐻ፚ𝐻𝐶𝑍ፚፀᎲ𝐶𝑍ፀᎳ |𝐺 + 𝜏ፀᎳ(𝐴
ፔᖤ
ፆ )⟩
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• Writing the two cases seperatly and applying the projectors on 𝑎 and 𝑏 this
leads to:

=

⎧
⎪
⎪

⎨
⎪
⎪
⎩

√−𝑖𝑍
ፍᐸᎳ(ፀ

ᑌᖤ
ᐾ )\ፀᎲ ⟨0ፀᎲ − 𝑖ፀᎳ| |𝜌ፚፀᎲ𝜌ፀᎳ (𝐺 + 𝜏ፀᎳ(𝐴

ፔᖤ
ፆ ) + (𝑎, 𝐴ኺ) + (𝑏, 𝐴ኻ)) \𝑎, 𝑏⟩

if (𝐴ኺ, 𝐴ኻ) ∈ 𝐴ፔ
ᖤ
ፆ

√−𝑖𝑍
ፍᐸᎳ(ፀ

ᑌᖤ
ᐾ )
⟨𝑖ፀᎲ − 𝑖ፀᎳ| |𝜌ፚፀᎲ𝜌ፀᎳ (𝐺 + 𝜏ፀᎳ(𝐴

ፔᖤ
ፆ ) + (𝑎, 𝐴ኺ) + (𝑏, 𝐴ኻ)) \𝑎, 𝑏⟩

if (𝐴ኺ, 𝐴ኻ) ∉ 𝐴ፔ
ᖤ
ፆ

• Then using the two qubit measurement rules from section 5.4.2 and lemma
5.5 this leads to:

∼ፒፐፂ

⎧
⎪⎪

⎨
⎪⎪
⎩

|𝜏ፀᎳ𝜌ፚፀᎲ𝜌ፀᎳ (𝐺 + 𝜏ፀᎳ(𝐴
ፔᖤ
ፆ ) + (𝑎, 𝐴ኺ) + (𝑏, 𝐴ኻ)) \{𝐴ኺ, 𝐴ኻ, 𝑎, 𝑏}⟩

if (𝐴ኺ, 𝐴ኻ) ∈ 𝐴ፔ
ᖤ
ፆ

|𝜏ፀᎲ𝜏ፀᎳ𝜌ፚፀᎲ𝜌ፀᎳ (𝐺 + 𝜏ፀᎳ(𝐴
ፔᖤ
ፆ ) + (𝑎, 𝐴ኺ) + (𝑏, 𝐴ኻ)) \{𝐴ኺ, 𝐴ኻ, 𝑎, 𝑏}⟩

if (𝐴ኺ, 𝐴ኻ) ∉ 𝐴ፔ
ᖤ
ፆ

A.3.15. 𝐶ኺ = 𝐻𝑆, 𝐶ኻ = 𝑆

This is similar to section A.3.14.

G.T.∗ (𝐺, 𝐴ፔᖤፆ , 𝐻𝑆, 𝑆)

∼ፒፐፂ

⎧
⎪⎪

⎨
⎪⎪
⎩

|𝜏ፀᎲ𝜌ፚፀᎲ𝜌ፀᎳ (𝐺 + 𝜏ፀᎲ(𝐴
ፔᖤ
ፆ ) + (𝑎, 𝐴ኺ) + (𝑏, 𝐴ኻ)) \{𝐴ኺ, 𝐴ኻ, 𝑎, 𝑏}⟩

if (𝐴ኺ, 𝐴ኻ) ∈ 𝐴ፔ
ᖤ
ፆ

|𝜏ፀᎲ𝜏ፀᎳ𝜌ፚፀᎲ𝜌ፀᎳ (𝐺 + 𝜏ፀᎲ(𝐴
ፔᖤ
ፆ ) + (𝑎, 𝐴ኺ) + (𝑏, 𝐴ኻ)) \{𝐴ኺ, 𝐴ኻ, 𝑎, 𝑏}⟩

if (𝐴ኺ, 𝐴ኻ) ∉ 𝐴ፔ
ᖤ
ፆ

A.3.16. 𝐶ኺ = 𝐻𝑆, 𝐶ኻ = 𝐻𝑆

• Here we discuss the stabilizer state after gate teleportation for 𝐶ኺ, 𝐶ኻ = 𝐻𝑆,
starting with equation 5.13.

G.T.∗ (𝐺, 𝐴ፔᖤፆ , 𝐻𝑆, 𝐻𝑆) = ⟨𝐵
ፀᎳ
ኻ | ⟨𝐵ፚፀᎲኻ | 𝐻ፀᎲ𝑆

ጷ
ፀᎲ𝐻ፀᎳ𝑆

ጷ
ፀᎳ |𝐺 + 𝐴

ፔᖤ
ፆ ⟩
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• Using 𝐻ፀᎳ𝑆
ጷ
ፀᎳ = 𝑆ፀᎳ√−𝑖𝑋ፀᎳ:

= ⟨𝐵ፀᎳኻ | ⟨𝐵ፚፀᎲኻ | 𝑆ፀᎳ𝐻ፀᎲ𝑆
ጷ
ፀᎲ√−𝑖𝑋ፀᎳ |𝐺 + 𝐴

ፔᖤ
ፆ ⟩

• Where we know that √−𝑖𝑋 is part of a local complementation, which leads
to:

= ⟨𝐵ፀᎳኻ | ⟨𝐵ፚፀᎲኻ | 𝑆ፀᎳ𝐻ፀᎲ𝑆
ጷ
ፀᎲ√−𝑖𝑍

ፍᐸᎳ(ፀ
ᑌᖤ
ᐾ )
|𝐺 + 𝜏ፀᎳ(𝐴

ፔᖤ
ፆ )⟩

• When 𝐴ኺ and 𝐴ኻ are neighbours in 𝐴ፔፆ , local complementing 𝐴ኻ also results in
an operation on 𝐴ኺ. This leads to two different cases, where in the first case
we use that 𝑆ጷፀᎲ√−𝑖𝑍ፀᎲ = and in the second case we exploit the fact that
we can always do an extra identity operation = 𝑆ፀᎲ𝑆

ጷ
ፀᎲ:

={
if (𝐴ኺ, 𝐴ኻ) ∈ 𝐴ፔ

ᖤ
ፆ ⟨𝐵ፀᎳኻ | ⟨𝐵ፚፀᎲኻ | 𝑆ፀᎳ𝐻ፀᎲ√−𝑖𝑍

ፍᐸᎳ(ፀ
ᑌᖤ
ᐾ )\ፀᎲ |𝐺 + 𝜏ፀᎳ(𝐴

ፔᖤ
ፆ )⟩

if (𝐴ኺ, 𝐴ኻ) ∉ 𝐴ፔ
ᖤ
ፆ ⟨𝐵ፀᎳኻ | ⟨𝐵ፚፀᎲኻ | 𝑆ፀᎳ√−𝑖𝑍

ፍᐸᎳ(ፀ
ᑌᖤ
ᐾ )
𝑆ፀᎲ𝑆

ጷ
ፀᎲ𝐻ፀᎲ𝑆

ጷ
ፀᎲ |𝐺 + 𝜏ፀᎳ(𝐴

ፔᖤ
ፆ )⟩

• Using similar approaches as before in this chapter, the remaining operations
can be written either as a local complementation or a pivot on the graph state,
up to some SQC operations. This results in:

∼ፒፐፂ

⎧
⎪⎪

⎨
⎪⎪
⎩

⟨0ፀᎲ − 𝑖ፀᎳ0ፚ0| |𝜌ፚፀᎲ𝜌ፀᎳ (𝐺 + 𝜌ፀᎲ፮𝜏ፀᎳ(𝐴
ፔᖤ
ፆ ) + (𝑎, 𝐴ኺ) + (𝑏, 𝐴ኻ))⟩

if (𝐴ኺ, 𝐴ኻ) ∈ 𝐴ፔ
ᖤ
ፆ

⟨−𝑖ፀᎲ − 𝑖ፀᎳ0ፚ0| |𝜌ፚፀᎲ𝜌ፀᎳ (𝐺 + 𝜏ፀᎲ𝜏ፀᎳ(𝐴
ፔᖤ
ፆ ) + (𝑎, 𝐴ኺ) + (𝑏, 𝐴ኻ))⟩

if (𝐴ኺ, 𝐴ኻ) ∉ 𝐴ፔ
ᖤ
ፆ

• Using the two qubit meaurement rules from section 5.4.2:

∼ፒፐፂ

⎧
⎪⎪

⎨
⎪⎪
⎩

|𝜏ፀᎳ𝜌ፚፀᎲ𝜌ፀᎳ (𝐺 + 𝜌ፀᎲ፮𝜏ፀᎳ(𝐴
ፔᖤ
ፆ ) + (𝑎, 𝐴ኺ) + (𝑏, 𝐴ኻ)) \{𝐴ኺ, 𝐴ኻ, 𝑎, 𝑏}⟩

if (𝐴ኺ, 𝐴ኻ) ∈ 𝐴ፔ
ᖤ
ፆ

|𝜏ፀᎲ𝜏ፀᎳ𝜌ፚፀᎲ𝜌ፀᎳ (𝐺 + 𝜏ፀᎲ𝜏ፀᎳ(𝐴
ፔᖤ
ፆ ) + (𝑎, 𝐴ኺ) + (𝑏, 𝐴ኻ)) \{𝐴ኺ, 𝐴ኻ, 𝑎, 𝑏}⟩

if (𝐴ኺ, 𝐴ኻ) ∉ 𝐴ፔ
ᖤ
ፆ
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