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Abstract

The localization and tracking of artists on stage enables theatre spotlights to automatically
follow the artist’s movements. The company Sendrato utilizes Ultra-Wideband (UWB) sys-
tems for this purpose, but the position estimation accuracy decreases when the sensors op-
erate in a Non-Line-of-Sight (NLOS) environment. To prevent the body from blocking the
UWRB signals, Sendrato places two UWB tags on the hips of the artist and averages the two
estimated tag positions. Inertial Measurement Units (IMUs) offer an additional means for
location tracking, providing inputs to calculate position, velocity, and orientation estimates
independent of the environment, but suffer from accumulative error due to integration drift.
This thesis studies how Sendrato can improve position tracking accuracy with UWB data by
incorporating IMU sensor data. Additionally, the thesis investigates how the two tags can
be coupled to correct for each other’s inaccuracies. Hence the thesis studies how the sensor
fusion of two coupled UWB/IMU sensors, attached to a person’s hips, can be used to im-
prove position tracking accuracy compared to using two separate UWB tags. This gives rise
to a research approach consisting of two parts. To investigate the potential of UWB/IMU
sensor fusion for position tracking accuracy, an Extended Kalman Filter (EKF) fusing IMU
and UWB measurements is implemented and compared to UWB-only position tracking al-
gorithms. Additionally, it is investigated whether IMU bias state estimation, Zero Velocity
Update (ZUPT) implementation and NLOS detection and mitigation can further improve the
UWB/IMU EKF tracking accuracy. The second part researches the potential of coupling two
UWB/IMU tags for position tracking accuracy. Previous methods inspired to use knowledge
of the fixed relative distance between the tags to correct position estimates from each tag.
This research developed this approach by including an equality constraint on the distance
between the tags into the EKF. An experiment is conducted where the joint UWB/IMU EKF
is tested on a known walked trajectory containing several stationary points. The results show
that the tightly coupled UWB/IMU EKF can help smooth faulty UWB measurements, correct
stationary points with a ZUPT, and identify IMU bias. Moreover, enforcing a fixed distance
between joint tags allows for mutual correction of their trajectories, though the impact on the
averaged trajectory may be less significant. All of these techniques show potential for improv-
ing position tracking accuracy compared to a loosely coupled UWB-only algorithm. However,
the methods all showed limitations, presumably caused by the data quality. An important
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direction for future work would be to continue this research with better calibrated UWB data.
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Chapter 1

Introduction

1-1 Background and motivation

Localization and tracking have been extensively researched over the past few decades. In re-
cent years, the rapid development of wireless communication technology in smartphones and
wearables has enabled many applications for user localization and tracking. Various sectors,
including healthcare, industry, surveillance, and more, have been utilizing these applications
and services [2]. Some examples of localization and tracking include optimizing traffic flow,
monitoring Alzheimer’s patients, and smart homes [3], [4], [5]. In general, localization refers
to determining the position coordinates of a sensor, while tracking refers to the continuous
localization over time, where the position and velocity are estimated at each time instant [6],
[7]. This research is in the context of another sector, which is the theatre industry. High-
accuracy tracking of artists on stage enables the spotlights to automatically follow the artist’s
movement on the stage. The benefit of automating the spotlights is that a large number of
artists on stage can easily be followed by their own individual spotlight. Additionally, artists
no longer have to worry about missing their cue for the lighting. During theatre performances,
it needs to be ensured that the tracking of the artists happens in real-time and flawlessly, as
localization mistakes cannot be filtered out after the event and are immediately noticed by
the audience. The thesis is executed in collaboration with Sendrato. The research focuses on
their product TraXYZ, a technology that tracks the position of artists on stage to automati-
cally operate light, sound, video, and more.

In general, position tracking relies on signals and systems such as GPS, visual cameras, inertial
navigation sensors, and LIDAR [8]. To track artists on stage, Sendrato makes use of an Ultra-
Wideband (UWB) system and Inertial Measurement Units (IMUs). UWB is a low-power
consumption radio technology that utilizes signal pulses with a duration of one nanosecond
[9], [10], [11]. These short pulses enable the distinction between multiple propagation paths
and filtering them out accordingly [10]. These characteristics make UWB systems suitable for
position estimation for localization and tracking. Nevertheless, UWB systems are still affected
by multipath or Non-Line-of-Sight (NLOS) conditions [9]. NLOS refers to the prolongation
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2 Introduction

Gyroscope f ) )
—_—
measurements Orientation

Rotation

Accelerometer g ) H "
easurements ——»  Acceleration ————» Position

Figure 1-1: The process of ‘dead-reckoning’ for estimating position and orientation (pose) based
on accelerometer and gyroscope measurements.

of signal flight time due to obstacles in the environment that block the signals, resulting in
inaccurate position estimates [9], [12]. The additional sensor system used by Sendrato, the
IMU sensor, includes a 3D accelerometer and a 3D gyroscope. The accelerometer measures
the acceleration by measuring the external specific force acting on the sensor. The gyroscope
measures the angular velocity, which gives information about orientation. From the gyroscope
and accelerometer measurements, the position and orientation can be derived by means of
‘dead-reckoning’. This process is illustrated in Figure 1-1. As can be seen in the figure,
the measurements obtained can be integrated to result in 6D position and orientation (pose)
estimation. However, when the measurements contain bias and noise, the errors grow over
time because of this integration process. This is called ‘integration drift’ [13].

Figure 1-2: lllustration of the TraXYZ setup with anchors around the stage and tags carried by
the artists [1].

M. F. Hoekstra Master of Science Thesis



1-1 Background and motivation 3

The TraXYZ setup of Sendrato consists of anchors and tags (Fig. 1-2 and 1-3). Anchors (also
referred to as receivers, sources, or beacons in literature) are stationary nodes that send and
receive signals to and from the tags. Tags are the mobile sensors carried by the artists of which
the location needs to be tracked. The location of the anchors can be calculated beforehand
and is therefore known, while that of tags needs to be determined during tracking. Each tag
is equipped with a UWB sensor and an IMU sensor. The UWB sensor provides Two Way
Ranging (TWR) data. Estimating the distance between anchor and tag is called ranging.
During two-way ranging, the anchor and tag exchange multiple signals, so their clocks do not
need to be fully synchronized beforehand [14]. The UWB sensors of Sendrato directly provide
a distance in meters. This distance represents the shortest signal path between anchor and
tag when NLOS conditions are absent. The accelerometer and gyroscope contained in the
IMU sensor provide data for acceleration and angular velocity, respectively. This happens
independently of the anchors. The IMU sensor also contains a magnetometer, but this will
not be used due to magnetic disturbances in theatre environments. Therefore, this report will
not discuss the magnetometer any further.

TRAXYZ

(a) Tags (b) Anchor

Figure 1-3: TraXYZ tags and anchor [1].

A disadvantage that comes with tracking a person using a UWB system is that the radio
signals can be blocked by the user’s body, causing NLOS problems. This is because the hu-
man body contains a high percentage of water, which can cause delays in the UWB signals.
Therefore, the best placement for a single UWB sensor would be the top of the head [15].
However, this is not always practical, especially in theatre performances where the tag needs
to be invisible to the audience. Sendrato’s solution to this, while still addressing NLOS is-
sues, is to attach two sensors on opposite sides of the user’s body and combine their data to
estimate position. For that reason, Sendrato chooses to place two tags on the hips of the artist.

Currently, TraXYZ relies primarily on UWB-based tracking, despite the availability of IMU
measurements. Regarding the two tags attached to the user’s hips, both tags are processed
separately to result in two position estimates. Thereafter, the centroid of the two tag positions
is taken as the final position estimate of the artist. However, this can lead to less accurate
tracking if one or more tags give erroneous or no data. This thesis project studies how the
(UWB-only) position tracking accuracy of TraXYZ can be improved, by researching how all
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4 Introduction

available data from the UWB sensor, the IMU sensor, and the two tags can be combined and
utilized for accurate localization and tracking of the artists.

The aim of this research essentially comes down to researching ‘sensor fusion’ Sensor fusion
can be defined as: “The combining of sensory data or data derived from sensory data from
disparate sources such that the resulting information is in some sense better than would be
possible when these sources were used individually [16].” Hence, for this thesis the sensor
fusion of UWB with IMU, and two UWB/IMU sensors placed on the hips, needs to be re-
searched.

The goal of Sendrato leads to the main question for this research:

“How can the sensor fusion of two coupled UWB/IMU sensors, attached to a person’s hips,
be used to improve position tracking accuracy compared to using two separate UWB tags?”

To answer this question, the research aims to delve into the following subquestions:

1. What potential does UWB/IMU fusion have for position tracking accuracy?

2. What potential does fusing the two tags have for position tracking accuracy?

By addressing these subquestions, this research aims to provide an analysis of the contribution
of IMU data and joint tags to the UWB-only tracking system of TraXYZ.

1-2 Organization

Chapter 2 of this report provides an overview of the technical background concerning UWB
and IMU sensors and related work on the research topic. It starts with an explanation of
the modelling of the UWB and IMU measurements provided by TraXYZ. Subsequently, tech-
niques to perform position estimation with only UWB data are described. This is used as a
baseline that needs to be improved. The chapter continues with a description of related work
and the state of the art in sensor fusion of multiple UWB/IMU sensors attached to a human
body for location tracking.

Thereafter, Chapter 3 presents the algorithm developed in this research for the UWB/IMU
sensor fusion and the sensor fusion of two UWB/IMU tags. All sections provide a detailed
explanation of a component of this algorithm. That is, the filtering algorithm for UWB/IMU
sensor fusion, IMU bias estimation, Zero Velocity Update (ZUPT) implementation, NLOS
detection and mitigation, and the sensor fusion method for two tags. The final algorithm
with all components is given in Section 3-3.

Chapter 4 starts with a description of the experiments executed to acquire data for testing
the algorithm, where the actual walking trajectory is known. The effects and potential of the

M. F. Hoekstra Master of Science Thesis



1-2 Organization 5

method’s components applied to the acquired dataset are analyzed in the next sections. This
includes the effects of incorporating the IMU data and of joining the two tags, for different
cases such as the addition of bias estimation and a Zero Velocity Update.

Finally, the conclusion in Chapter 5 provides answers to the research questions defined in the
previous section. It reflects on the findings in Chapter 4 and discusses the insights on the
improvement of the tracking accuracy of Sendrato’s TraXYZ.

Master of Science Thesis M. F. Hoekstra
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Chapter 2

Related work

This chapter is dedicated to related work on the sensor fusion of UWB and IMU data and
the sensor fusion of two UWB/IMU tags attached to the person. It begins with an expla-
nation of the modelling of UWB and IMU measurements. The following section delves into
current methods for position estimation using only UWB measurements. Currently, TraXYZ
processes the measured distances between anchors and tags using an Extended Kalman Fil-
ter (EKF) or an Extended Finite Impulse Response (EFIR) filter combined with a NLOS
detection and mitigation method, without including IMU measurements. This is explained
in Section 2-2. Thereafter, algorithms for UWB/IMU sensor fusion found in literature are
discussed, as well as previous research on the fusion of two tags attached to a person.

In general, there are two ways of performing sensor fusion: loosely coupled and tightly coupled.
In the case of a loosely coupled approach, measurements from each individual sensor are first
processed. Subsequently, these preprocessed measurements are combined to determine the
final outcome. Conversely, a tightly coupled approach involves using the ‘raw’ measurements
from all sensors directly to calculate the final result [17]. A tightly coupled system thus directly
incorporates the distance measurements provided by the UWB system in the algorithm, rather
than preprocessing this data to result in preliminary positions. There exist UWB/IMU sensor
fusion methods based on a loosely coupled algorithm, for example [18] and [19]. Although a
loosely coupled approach might in some cases be more practical, some information can get
lost during the preprocessing of the measurements. This can happen because of the statistical
distribution used to approximate the data [9]. In a tightly coupled approach, all available
data is included to compute the final outcome, and outlier rejection opportunities are often
included. For those reasons, some literature claims that a tightly coupled system performs
better in terms of accuracy and robustness [17], [20]. Currently, Sendrato processes the
two tags separately to result in two position estimates and ultimately outputs the averaged
position. This is considered a loosely coupled approach. The goal of this thesis is to fuse
all available sensor data from both tags directly in one algorithm and investigate the effects.
Therefore, this report mainly describes tightly coupled approaches for sensor fusion of two
tags.

Master of Science Thesis M. F. Hoekstra



8 Related work

2-1 Modelling of sensor measurements

To develop algorithms for UWB/IMU sensor fusion, the data of both sensor types need
to be modelled. When the UWB data contains outliers, these can be incorporated into
the measurement model [9] or the data can be preprocessed to mitigate the outliers before
inserting it into the fusion algorithm [12]. Both the modelling of the sensor data and the
handling of UWB outliers are discussed in this section.

2-1-1 Modelling of UWB measurements

TraXYZ utilizes a UWB system that provides Two Way Ranging (TWR) measurements.
During two-way ranging, the anchor and tag exchange multiple signals, so their clocks do not
need to be fully synchronized beforehand [14]. Some literature that uses TWR-type UWB
data describes the data as the measured Time of Flight (TOF) of a signal’s round trip. This
has to be multiplied by the propagation speed of the signal to obtain the distance between
the anchor and the tag [12]. However, the UWB sensors investigated for this project di-
rectly provide a distance in meters. This distance represents the shortest signal path between
anchor and tag. In case of NLOS conditions, the measured distance contains positive bias [14].

The measured distance yz‘li between the tag and anchor i can be modeled as [21], [22]:

yzii,t = d‘irue,t + eil,t = Hp;nc - ptag,tH2 + eil,t? (2-1)

where pi, . is the position of the i-th anchor, Dtag,t 1S the position of the UWB tag, and efi,t
is the Gaussian error term. The positions of the stationary anchors p . can be calculated
beforehand and are therefore assumed to be known. The UWB setup is calibrated with cal-
ibration software of Sendrato. The anchor positions are calibrated to the local geographic
coordinate system in which the person is localized, defined as the navigation frame. Hence
this thesis assumes that the UWB coordinate frame is aligned with the Earth’s coordinate
frame. The position of the tag prag ¢ used in the UWB model of Eq. (2-1) is therefore defined
in this navigation frame.

Existing literature discusses managing UWB outliers before inserting them into a position
estimation algorithm. For example, the UWB measurements can be preprocessed using a
Kalman Filter (KF) [12] or Non-Linear Least Squares (NLS). These approaches filter out the
main outliers of the UWB data before inserting them into a fusion algorithm. However, for this
thesis, a tightly coupled fusion algorithm is researched, where the goal is that the IMU data
corrects for erroneous UWB data. Therefore, for this research, it is chosen to not delve further
into using a different algorithm to filter out UWB outliers beforehand. Alternatively, the work
presented in [9] offers an alternative model for the UWB measurements. The article states
that the heavy-tailed asymmetric distribution can model the UWB data while incorporating
the outliers, rather than the normal distribution of Eq. (2-1). However, when bayesian filtering
techniques are used, the measurements are assumed to be Gaussian.

M. F. Hoekstra Master of Science Thesis



2-1 Modelling of sensor measurements 9

2-1-2 Modeling of IMU measurements

Inertial Measurement Units (IMUs) can be used for pose estimation, where the object’s pose
is formed by its position and orientation. The IMU consists of a 3-axis accelerometer and
a 3-axis gyroscope. The accelerometer measures external specific force acting on the sensor
and the gyroscope measures angular velocity (rate of change of the sensor’s orientation) [13].
After modeling the accelerometer and gyroscope measurements, the measurement models are
used as inputs to a dynamic model.

To understand the models of the accelerometer and gyroscope measurements, some coordinate
frames need to be introduced first. Primarily used for these models are the body frame b and
the navigation frame n [13].

o Body frame (b-frame): The coordinate frame of the IMU sensor itself, with the
origin located in the center of the IMU and the axes aligned to its casing. All IMU
measurements are resolved in the b-frame.

o Navigation frame (n-frame): The local geographic coordinate frame in which the
object is localized. If the sensor travels large distances, it can be necessary to move
the n-frame along the surface of the earth. Since this is not the case in the context of
theatres, the n-frame is considered stationary throughout this report.

Hence, the goal of pose estimation is to determine the position and orientation of the b-frame
with respect to the n-frame. Let ng,t denote the angular velocity of the body frame b with
respect to the navigation frame n, then the gyroscope measurements y,,; can be modeled by
[13]
_ b b b 9.9
Ywit = Wnpt + w,t + €t ( )
In this model 5{3% denotes the gyroscope bias and egi ~ N(0, X,,) describes the Gaussian

noise. Here it is assumed that X, = 0‘3[3 with I3 the 3 x 3 identity matrix. The bias 53,15 can
be considered constant or slowly time-varying.

The external specific force f? measured by the accelerometer consists of the linear acceleration
ay and gravity vector ¢g". The accelerator measurements y,; can be modeled by [13]

b b b
Yot = fi + 5a,t Tt €at

2-3)
b (

= R{"(af' — ") + 054 + €qys
with 52,t the accelerometer bias, eg?t ~ N(0, 3,) the Gaussian noise and ¥, = 02I3. Further-
more, R} is the rotation matrix representing the rotation from the n-frame to the b-frame
at time t. The accelerometer bias can again be treated as constant or slowly time-varying.

The measurements used in the models above are resolved in the b-frame. To compute the
position and orientation in the n-frame, the dead-reckoning process illustrated in Figure 1-1
is used [17]. By using Euler discretization with IMU sampling interval A¢, a dynamic model
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for position, velocity, and orientation of the IMU can be composed, which uses the IMU
measurements y, ; and y,, ¢ as inputs [13], [9], [16]:

At)?
Piy1 = pi + Aty + ( 2) ai
At)? At)?
=+ A+ E Ry, ot -y + B g, (2-4a)
vy = vy + Atay
= o + AtR(ya — 05, — eb ) + Atg", (2-4b)
At At -
iy~ (s + 5 S(as = 50 ) " + 5 S(ael (2-40)

The gyroscope measurements modelled by Eq. (2-2) are integrated to arrive at orientation
q"™ of the b-frame with respect to the n-frame. The accelerometer measurements modelled
by Eq. (2-3) are rotated to the n-frame after which the gravity ¢” is subtracted. This results
in the acceleration a™, which is integrated once to obtain velocity v™ and integrated again to
obtain position p™. The bias and noise contained in the measurements are also integrated in
the process, leading to integration drift. Therefore, the computed position and orientation
are only accurate on a short time scale [13].

The orientation is described by the unit quaternion qu. The unit quaternion has an advantage
over the rotation matrix because it provides a minimal representation of orientation. It also
offers a unique representation of orientation after enforcing go > 0 and avoids the gimbal lock
effect, which is a problem with Euler angles [13], [16]. The unit quaternion can be converted
to a rotation matrix with the formula [16]

2q3 —1+2¢7 2q1q2 — 2q0q3 29143 + 2qog2
R™ = | 2q192 + 29003 293 — 14265 24aq3 — 2q0q1 | , (2-5)
29103 — 20002 2q2q3 + 2q0q1  2q3 — 1 + 243

where ¢ is resolved in the navigation frame (¢g").

The matrices in Eq. (2-4c) are skew-symmetric matrices defined as [16]

0 —w: —wy —w;
w. 0 —w w.
S = r z Y 2-6
@=o o o ol (2-6)
W, —Wy Wy 0
—q1 —q2 —g3
G q0 q3 —q2
S = . 2-7
(q) —q3 4o q1 ( )
q2 —q1 9o

As was mentioned in the modelling of the gyroscope and accelerometer, the bias on the
measurements can be considered constant or slowly time-varying. In the case of slowly time-
varying bias, the bias could be estimated in the state vector along with the position, velocity
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and orientation. The bias could then be modeled as a random walk [23]

b b b
6a,t+l = 5a,t + eéa,b (2_83‘)

521,t+1 = 53;,1& + e(bsw,t, (2-8b)

where the Gaussian noise terms ega ;. and egw . determine how constant the bias will be.

2-2 Position estimation

Since the research aims to compare position tracking through UWB/IMU sensor fusion with
position tracking without usage of IMU data, methods for position estimation with only UWB
data are studied to provide a baseline for the research. Furthermore, methods for position
estimation with both UWB and IMU that are most commonly found in literature are sum-
marized in this section.

TraXYZ is known to use an Extended Finite Impulse Response (EFIR) filter, as given in [24],
[25], [26], or an Extended Kalman Filter (EKF) to estimate position with UWB data only.
The EKF filter will be explained later in this section. The EFIR algorithm is similar to the
EKF and is also suitable for nonlinear systems, but eliminates the use of noise covariance
matrices and initial values for the state and covariance. The objective of this research is to
incorporate the IMU sensor in position tracking. Therefore this thesis will focus on fusion
algorithms such as Kalman Filters (KF's).

2-2-1 Position estimation without IMU

One method to estimate position based on UWB distance measurements is ‘multilateration’
[14], [27]. Let yj, be the measured UWB distance as defined in Eq. (2-1). Multilateration
assumes that the tag is located somewhere on the circle with radius v/, around the anchor.
This means that the tag is localized at the intersection point of all circles around the anchors
[14]. Multilateration comes down to solving a system of equations as shown in [27]. However,
this technique requires data from at least three anchors [20]. Furthermore, the system of
equations can have multiple solutions or no solution at all due to NLOS errors. Therefore, the
localization problem is commonly formulated as a Non-Linear Least Squares (NLS) problem,
which is then solved with, for example, Gauss-Newton [14]. The NLS problem is formulated
as [28]
#anc
PDtag,t = arg min Z (Ya,e — IPragt — Pancll)?. (2-9)
=1

ptag,t n
=

Additionally, Bayesian filtering algorithms can be used to estimate position. A widely used
state estimator for UWB location tracking is the Extended Kalman Filter (EKF) [29], sum-
marized in Algorithm 1. The 2-norm in Eq. (2-1) shows the measurement model for the
UWB data is nonlinear. The EKF [30], [31], works similar to a Kalman Filter (KF), but is
suitable for nonlinear state space models. The principle of EKF is that the nonlinear equation
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is linearized around the current state estimate with first-order Taylor expansion. Therefore,
the Jacobian matrix is calculated, which is then used in the equations of the Kalman Filter
[32]. The EKF consists of a time update (prediction) and a measurement update (correction)
[17], [31]. The time update uses a dynamic model to predict the current state based on the
previous state estimate. In the case of position estimation, the time update can be calculated
with the Constant Velocity Model (CVM) with state x; = (pg, v¢) | [29]

I At- T
T = [ 3x3 3x31 Ti_q +

0 I3><3 At -13><3

(an?
2 I3x3] Wit (2-10)

where w; ~ N (0, 3, ;) is the process noise and At the time between two UWB measurements.
Once UWB measurements are available, the measurement update is performed. In this step,
the state estimated from the time update is corrected with the linearization of the model in
Eq. (2-1) [33]. This is the Jacobian of Eq. (2-1) with respect to the current state estimate. The
measurement vector contains the range values for each anchor ¢. During the measurement
update, the CVM model and UWB data are combined to mitigate NLOS errors in UWB
measurements.

Algorithm 1 EKF with Constant Velocity Model (CVM) and UWB measurements
[17],[29], [30], [31]

1: Perform an initialization on the state estimate and the covariance matrix.

2: Time update: Predict the current state and covariance matrix using the CVM model in
Eq. (2-10).

3: Measurement update: If new UWB measurements are available, do a measurement update
with outlier detection. Linearize the UWB model in Eq. (2-1) by computing the Jacobian
matrix. Use the UWB measurements in combination with Eq. (2-1) to correct the state
estimate from the previous step and update the covariance matrix.

4: Set t :=t+ 1 and iterate from Step 2.

Due to NLOS or multipath errors, the UWB measurements can contain a delay. These mea-
surements can be detected in the measurement update step with hypothesis testing on the
EKF’s residuals [34], [17]. The residual is the difference between the measured UWB distance
yci” for anchor ¢ and the predicted UWB distance ﬁil’t. The predicted UWB distance gg}t is
calculated by substituting the position state estimate p; resulting from the CVM model into
the UWB measurement model Eq. (2-1). The residuals are normal distributed if there are
no delays. Therefore, the normal distribution provides a confidence interval for the predicted
UWRB distances. When an anchor’s residual is larger, the pdf value of this anchor is smaller
[34]. If a measured UWB distance does not satisfy this interval, the measurement is detected
as an outlier and therefore ignored [17].

Instead of using the Gaussian distribution to detect and mitigate NLOS outliers, a constant
threshold can be used [12]. Let ri = |y2l7t - in’t\ be the absolute value of the residual. The
NLOS judgement works according to the following formula:

i >y, NL
{'rt > v, 0OS 7 (2-11)

ri < v, LOS
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for some predefined threshold v. In the case of 7f > v, the UWB measurement is being
mitigated as outlier.

2-2-2 Position estimation with UWB and IMU

Previous research on UWB/IMU sensor fusion consists of Bayesian filtering, optimization, and
machine learning methods. The machine learning methods in [35], [36] are considered too far
from the current ways of working of Sendrato, and will therefore not be used in further
research on this problem. The Bayesian filtering methods occurring in literature are the
Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), and Particle Filter (PF)
8], [16], [37], [32], [38]. An EKF is commonly used in literature for UWB/IMU fusion [34],
[17], [31], [33]. In Subsection 2-2-1 the EKF was described when only the UWB data was
used. The time update consisted of a Constant Velocity Model (CVM) to predict the current
state based on the previous state estimate. In Subsection 2-1-2 the dynamic model in Eq. (2-
4) is derived that uses the IMU measurements as input. To fuse the data from the UWB
and IMU sensors, the dynamic IMU model (2-4) can be used in the time update instead of
a CVM. Once UWB measurements are available, the state estimate #; = (p}, vP, ¢®)"
following from the dynamic IMU model is updated using the linearization of the UWB model
in Eq. (2-1) [33]. During this measurement update, the dynamic IMU model and UWB data
are combined to reduce NLOS errors in UWB measurements and integration drift in the IMU
model. The EKF method for UWB/IMU sensor fusion is summarized in Algorithm 2.

Algorithm 2 EKF for UWB/IMU sensor fusion [17], [30], [31], [33], [34]
1: Initialize:
State vector: zg = (po, vo, Qo
Covariance matrix: Py
2: loop
3: t—t+1
4 & < f(Ze—1, Yarts Yurts €at =0, €yr =0) > IMU measurements
5 P+ FP F' +GiQi 1G]
6: Kt — Pt(HtUWB)T(HtUWBPt(HtUWB)T + REWB>71
7
8
9

)T

< T + K (yar — HYWBE) > UWB measurements
. P+ (I - KHWBYP,
: end loop

The function f is the dynamic IMU model given in Eq. (2-4). It uses the gyroscope and
accelerometer measurements as inputs. The covariance is updated using the Jacobian ma-
trices F; = % s and G; = % s with Z the current state estimate. The process
noise covariance ofttllle time update ste[; ils denoted by Q. In the measurement update the
UWB measurements are incorporated by calculating the Kalman gain K;. The Kalman gain
is calculated using the linearization of the measurement model in Eq. (2-1). Let h;(z¢, pe)

be the function in Eq. (2-1); 4}, = hi(xt, phne) + €l Then HOWE — %‘ _ is the Jaco-

T==Tt
bian for each measurement. These are stacked vertically in the matrix HtUWB. Finally, yq4+
is the vector with the ranging measurements from all anchors ¥, at time ¢. RPWB is the
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corresponding measurement noise covariance matrix.

A downside of the EKF that literature mentions is that linearization errors can occur because
the Taylor expansion used for linearization only retains first order terms [37]. An UKF ad-
dresses this problem by using the Unscented Transformation for linearization without having
to calculate Jacobian matrices [30], [39], [37], [16], [32]. However, some literature states that
when the models are reasonably nonlinear, this method also adds unnecessary complexity [38].
The PF can be useful when the noise is non-gaussian [16], [30], [40]. However, the computa-
tional complexity increases with the number of particles, while using too few particles reduces
accuracy [16], [38]. To conclude, the choice of Bayesian filtering technique for UWB/IMU
sensor fusion requires balancing accuracy and computational complexity, and depends on the
level of nonlinearity of the system. Furthermore, the distribution of the noise influences the
choice of sensor fusion method. EKF and UKF work best with Gaussian noise. Literature
also proposed to incorporate the NLOS and multipath errors in the UWB measurement model
through a tailored heavy-tailed asymmetric distribution. The UWB and IMU measurements
can then be fused by solving a Maximum a Posteriori (MAP) problem, which is an opti-
mization problem [9]. There exist even more Bayesian filtering techniques for sensor fusion.
However, all methods have similar workings and can be used with arbitrary models for the
UWB and IMU measurements, as long as the noise distribution corresponds to the algorithm
of choice. Additionally, literature exists that claims that Bayesian filtering techniques lead
to underuse of information due to the Markov assumption. Instead, graph optimization is
proposed, where the nodes represent the anchors and the tag at different time instances and
the edges represent the measurements. These algorithms use a sliding trajectory window and
maintain previous statuses [21], [40].

This thesis chooses to make minimal changes to Sendrato’s current processes to use them
as a baseline for improvement. Therefore, it is chosen to stay close to their current method
of UWB-only tracking, which is the EKF. For this research, an EKF' is examined that uses
the IMU data for propagation of the state and the UWB data for state correction. The
UWB/IMU EKF developed for this research will be explained in more detail in Chapter 3.

2-3 Previous research on fusion of two tags

The previous sections discussed background information and related work on position esti-
mation with UWB data and UWB/IMU sensor fusion. This section discusses an additional
method to compensate for the NLOS errors of the UWB system. That is to attach two UWB
sensors on opposite sides of the user’s body, to compensate for NLOS errors caused by the
body blocking the UWB signals. Because these tags estimate the position of two different
locations on the body, fusion methods are needed to combine the information from the two
separate tags to estimate the location of the person. In the case of TraXYZ, the UWB tags
are also equipped with an IMU sensor. Therefore, sensor fusion is needed for two UWB and
two IMU sensors, whose data is also fused through UWB/IMU sensor fusion methods from
the previous section. This section starts with previous research on sensor fusion of two IMUs
attached to a person to track the person’s location. This is described in Subsection 2-3-1.
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Thereafter, Subection 2-3-2 describes previous research on sensor fusion of two UWB tags
attached to the person.

2-3-1 Sensor fusion of two IMUs

Sensor fusion of multiple IMUs is often researched to prevent heading drift. This means that
the estimated track increasingly drifts away from the true path over time, which is mainly
the problem when tracking a pedestrian with two foot-mounted IMUs [41]. A way to mitigate
heading drift in pedestrian tracking is to attach more than one IMU [41], [15], [42]. The
sensor fusion is then based on knowledge of the relative distance between the foot-mounted
IMUs when the person is walking. Two methods to implement this relative distance are: the
maximum relative distance and the spacing vector constraint. The main idea is to project
the estimate that is influenced by heading drift back to the space bordered by the maximum
possible relative distance.

In the case of a pedestrian with two foot-mounted IMUs, the relative distance between the
IMUs is not fixed while walking. Therefore, it becomes challenging to relate the position
estimates of both IMUs to each other. However, there exists an upper bound on how large
the distance between the two can be. This is called the maximum relative distance. Let the
joint state estimate of sensor 1 and 2 be

~ A(DONT /ANTHT
&= (&) @) (2-12)
and suppose the first s elements of ai'gm) € R" m =1, 2, represent position, with s is 2 or 3.

Prior knowledge of the maximum relative distance v imposes a constraint on the joint state
estimate that can be formulated as [15]

IL2])* < 2. (2-13)

with L = [Isxs Osny—s — Lsxs Osna—s]. When [|[LZ¢]|* > 42 the joint state estimate should
be projected to the space {z € R"*"2||Lz||? < 42}. The projection p(i;) is the result of an
inequality constrained weighted least squares problem:

plin) = argmin(|a — 23 1) st [|La)® <+ (2-14)

where P, is the covariance matrix of ;. The optimization problem in Eq. (2-14) is solved by
finding the stationary point of the Lagrange function with the help of, for example, the Bisec-
tion method or Newton’s method [15]. The covariance of the projected joint state estimate
P is approximated as [15]

P =VpP(Vp)', (2-15)

where Vp is the Jacobian of the projection function p(z) with respect to x evaluated at Z;.
If the joint state estimate #; exceeds constraint Eq. (2-13), then #; is updated with the pro-
jection in Eq. (2-14) and the covariance matrix is updated with Eq. (2-15).

Furthermore, a fixed distance between the IMUs can be considered in the fusion method,
instead of a maximum relative distance. The fixed distance can be implemented with the
‘spacing vector constraint’ [42]. The method in [42] assumes that the distance between the
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IMUs is fixed each time the feet are side by side during a leg swing. The proposed constraint
only applies at these moments while walking, to prevent the estimated IMU positions from
crossing each other (the left IMU stays left and the right stays right). However, when the
IMUs are placed on the hips, this constraint can apply at all times. Suppose the distance
between the IMUs is the now fixed value . This can be expressed as the equality constraint
42]

Liy = R(y) m € R, (2-16)

with L defined in Eq. (2-13), and s = 2 in this case. 1)y is the circular average of the two
heading angles of the IMUs

sin ¢§1) + sin ¢t(2)
cos @Z)t(l) + cos ¢§2) .

1y = arctan (2-17)
The matrix R(1);) is a rotation matrix that rotates the position around an axis through angle
;. For the two-dimensional position, R(v;) is given as

R(yy) = lCOS Ve —sin wt] : (2-18)

sinvyy  cosyy

Taking the squared Euclidean norm of both sides in Eq. (2-16) results in the constraint of
Eq. (2-13) when this is changed into an equality constraint. Let the right-hand-sight of
Eq. (2-16) be denoted by u € R®. The projection p(#;) is given by

p(¢) = argmin(|[2; — 96||?3;1) st. Lz =pu. (2-19)
With known solution [43]

p(#) = & — PLT(LP,LT) ™ (Lay — p). (2-20)

2-3-2 Sensor fusion of two UWB tags

Relatively few literature is found on sensor fusion of multiple UWB tags placed on a single
object to be tracked. However, [44] presents a method to fuse two UWB tags placed on
both sides of the object based on the known distance between the tags. In the end, the
fused position from the UWB tags is fused with data from a built-in IMU of the object, in a
loosely coupled fashion. First, initial tag position estimates pgé, pg)g are calculated by apply-
ing a Non-Linear Least Squares (NLS) calculation on Kalman filtered UWB measurements.

Secondly, these initial estimates are fused based on a cost function [44]

1 2 . 1 2 2 ; i, 2

J (Plasplogs 7) = axgmin (200 (Il = P12 =22) "+ 3 (Ip) = Pl ? = wi™)?) ) ,
ptag m,i

(2-21)

where m € {1,2} indicates the UWB tag, i indicates the UWB anchor and pg;, pgé are

the tag locations resulting from a Non-Linear Least Squares (NLS) calculation using prepro-

cessed UWB measurements. Furthermore, yZl’Stm) is the measured distance between UWB tag
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m and anchor i. Because the value of v is known and fixed, the first term in Eq. (2-21)
is given a large weight of 200. Hence, the cost function ensures that the estimated tag po-
sitions meet the distance measurements while, most importantly, the distance between the
tags remains as close to -y as possible. The numerical problem is solved using gradient descent.
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Chapter 3

Methodology

This chapter provides an overview of the methods developed and implemented for analyzing
the effects of UWB/IMU sensor fusion and the fusing of the two tags worn on the individual’s
hips. It is chosen to implement an EKF to estimate the artist’s position, because this algo-
rithm is commonly used in literature for UWB/IMU sensor fusion, as discussed in the previous
chapter, and the EKF is close to the current ways of working of Sendrato. The algorithm de-
veloped for this thesis is presented in Algorithm 3. This chapter explains how this algorithm is
built and explains each component of the EKF in detail. Algorithm 3 will be explained in two
parts. Section 3-1 focuses on UWB/IMU sensor fusion for each tag (Subsection 3-1-1), where
additional components are added and later analyzed on their potential for improving track-
ing accuracy. These additional components are bias estimation and correction (Subsection
3-1-2), a Zero Velocity Update (ZUPT) (Subsection 3-1-3), and Non-Line-of-Sight (NLOS)
detection and mitigation (Subsection 3-1-4). The second part of the algorithm, Section 3-2,
explains the developed method for the tightly coupled sensor fusion of the two tags on the
hips, based on the known distance between the tags. This method is then implemented into
the UWB/IMU sensor fusion EKF of Section 3-1. The structure of Algorithm 3 allows for
analyzing the effects of the different components and combinations thereof, including fusing
the two tags, where the baseline is the UWB/IMU sensor fusion method for loosely coupled
tags in Subsection 3-1-1. Section 3-3 presents the resulting final algorithm developed for this
research in more detail. Ultimately, this research compares the results of all methods in this
chapter to the UWB-only EKF for loosely coupled tags baseline from Subsection 2-2-1.
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Algorithm 3 Tightly coupled EKF for UWB/IMU sensor fusion and fusion of two
tags

1: Initialize:
Joint state vector: zo = [(a:él))—r (a:((]Q))T]T, with xém) the state of tag

m € {1,2}
Covariance matrix: Py
2: loop
3: t+—t+1
4: if doBIAS then
Include the methods from Subsection 3-1-2. EKF time update: Predict the cur-
5: rent state and covariance matrix using the IMU measurements and the dynamic
IMU model in Eq. (2-4). The measurements are corrected for bias.
i elseEKF time update: Predict the current state and covariance matrix using the
' IMU measurements and the dynamic IMU model in Eq. (2-4).
8: end if
9: if doZUPT then
10. Include the Zero Velocity Update (ZUPT) described in Subsection 3-1-3. If the

ZUPT detector detects a stationary point, update the velocity estimate to zero.
11: end if

12: if doNLOS then
13 Include the Non-Line-of-Sight (NLOS) methods described in Subsection 3-1-4.

If NLOS is detected the UWB measurement is rejected.
14: end if

15: if doJOIN then
Include the method for fusing the two tags described in Section 3-2. EKF mea-

surement update: Correct the current state estimate using the UWB measure-

16:
ments and the measurement model in Eq. (2-1), and knowledge of the relative
distance between the tags.

17: else ) ]

18 EKF measurement update: Correct the current state estimate using the UWB

measurements and the measurement model in Eq. (2-1).
19: end if

20: end loop

3-1 UWB/IMU sensor fusion

3-1-1 UWB/IMU sensor fusion with EKF

Subsection 2-2-2 described a general EKF for UWB/IMU fusion. Ultimately, the goal is to
also fuse the data from the two tags on the hips. Inspired by Subsection 2-3-1, a joint state
vector x; = [(:pgl))—r (xgz))T]T, with azgm) = [pt, v, @' for tag m € {1,2}, is defined for
Tagl and Tag2 of this experiment considering that ultimately the tags will be fused in a
tightly coupled fashion. This section describes the EKF where the two tags are yet loosely
coupled, while the two tag states are combined into one state vector. The use of a joint state
vector alters the general EKF in Algorithm 2 to the EKF in Algorithm 4 of this section.
The algorithm iterates through all time instances where at least one sensor provides data.
However, the measurements should be used for the state estimate of only the corresponding
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tag. Therefore, the time update in lines 4-18 of Algorithm 4 is separated into two if-statements
for the tags. Each if-statement considers At as the time difference between the current ¢ and
the previous time instance when data was obtained from the corresponding tag. At enters
the algorithm in the state prediction in line 5 and 16. Let Ft(m) and Ggm) be the Jacobians
corresponding to the state and error of tag m € {1, 2}, respectively. The expressions for Ft(m)
and Ggm) are given in Eq. (A-1) and Eq. (A-2) in Appendix A. Furthermore, let

1 1 1 1 1 T
e |FY 0 P, Yoo GV ool (@ o] [GiY o] (31)
t 0 Tnyxn, 0 Tnyxny 0 0/l 0 o]0 0

T
_l’_

It can be proven that

F,P 1 F, 4 GiQu1GY

1 1 T 1 1 1 T
_[EY o h N N e e
0o F? 0o F? o G2l o @?lo &P (2

Lisny, 0] [Iuxn, 01" o 010 oo o]
= B 9| + (2) (2) (2)
o FEP|t] 0o E o ¢ o Q%o G

by writing out the bottom line. It also follows from the dynamic models for the separate tags,
where consecutively a;ﬁ” = xg)l and aﬁgl) = xfBl Taking the Jacobians of these equations
explains the I and 0 elements of F; and G;. The theory of Eq. (3-2) allows a time update at
time instances where data is obtained from only one of the two IMU sensors, but also works
when both sensors provide data simultaneously. For the measurement update with UWB

data in lines 19-23, all UWB measurements of both tags are combined in one measurement
(1)

vector yq; = lyb) . These are modelled with the measurement Jacobian

Yi
W 77()UWB 0
He l " Ht(Q),UWB] € R, (3-3)
with n1, ny the lengths of xgl) and SCEQ), respectively. The expression for Ht(m)’UWB for tag

m € {1,2} is given in Eq. (A-3) in Appendix A. The measurement noise covariance matrix is

(1),UWB

R 0
RyWP = l ' 0 R(z),UwB] € RF#vax#yar, (3-4)
t

Initialization

The initial position p{ in the navigation frame can be approximated based on the UWB mea-
surements or knowledge of the starting position at the beginning of the experiment. With
the UWB data at time zero, the initial position in the navigation frame can be calculated
using multilateration or NLS. When the person’s starting point relative to one or more anchor
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Algorithm 4 EKF for UWB/IMU sensor fusion with loosely coupled tags
1: Initialize:
Joint state vector: xo = [(z
with x(()m) = [po, vo, qo]' for tag m € {1,2}
Covariance matrix: Py

)

T (@$hHTT

2: loop
3: t+—t+1
4: if yglt), yf}% then > IMU measurements
5 a e faf, ol Wl el =0, el =0)
6: 3 a®
(1) (1) T 1) 1) NN

5 pr o |F 0 1 P [Ft o | _|a o] [Qt_l o] th o]

Iy xns 0 Inyxng 0 O 0 0 0 O
8: 2" gy

Pt — Pt*
10: else
11: AP ON
12: P+ P,
13: end if
14: if yft), yfi then > IMU measurements
15: ;%gl) — :ﬁf(l)
16: ‘@122) «— f(ﬁgi)lv yz(z?t)ﬂ ch)Q,r)f? eg?t) =0, 6512,2‘, - O)
- P(_llmxm 0] *llmxm O]T+[O OHO 0 Ho O]T
' ' o F?"'| o F? 0 G710 Qo G

18: end if
19: if y4; then
20: Kt Y B(HFWB)T(HPWBB(HPWB)T 4 REWB)_I
21: By & + Ke(yar — HtUWB:%t) > UWB measurements
22: P« (I — K;HPWB) P,

23: end if
24: end loop

positions is known, the initial coordinates can also be estimated based on the approximate dis-
tance to the known anchor coordinates. The initial z-coordinate can be measured beforehand.
The initial velocity is set to zero. Finally, the initial orientation can be calculated using the
accelerometer measurements at time zero. Literature in [13] explains a method for estimating
initial orientation using the first accelerometer and magnetometer measurements. However,
magnetometer measurements are unavailable in the context of this research. Magnetometer
measurements provide information about the heading. Hence without magnetomer measure-
ments, this method can approximately determine initial inclination, but initial heading can
not follow from this method. To obtain an indication of initial orientation, the method in
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[13] is adjusted for this research. Define the four normalized vectors [13]

=0T, g=_20_ (3-52)
1Ya.0ll2
= (010)7, =g x (mxg"). (3-5b)

These vectors represent the gravity vector in the navigation frame and the body frame (i.e.
the sensor frame of the IMU), and the magnetic field vector in the navigation frame and the
body frame. The calculation of 77? in Eq. (3-5b) originally uses the normalized magnetometer
measurements in the body frame. Due the lack of magnetometer measurements, 7’ is set
equal to m™. The initial orientation q()‘b is the solution to an optimization problem that finds
the orientation that minimizes the distance between the gravity vector and the normalized
magnetic field vector in the navigation frame (§", ") and the gravity vector following from
the first accelerometer data (§?) and the magnetic field vector in the body frame, where
mb = m™. The optimization problem leads to the matrix

A= —(FHE)E - ()R (3-6)

" = (0 (z™)T) T denotes the quaternion representation of an arbitrary vector ™. Then,

—m\L ._ |70 —(zn)" —mR ._ |T0 —(zn)"
@)™ = Tn Zolzxs + [ﬂfnx]] and (&%) = Lﬁn Tolsxs — [TnX]|’ (3-7)
where
0 —z5 zj
[Zp %] = | «f§ 0 —a|. (3-8)
—xy X7 0

The solution for q(}b is given by the eigenvector corresponding to the largest eigenvalue of
A [13]. Since the measured UWB distances can indicate the walking direction, the initial
heading will be corrected once UWB measurements are inserted in the EKF.

3-1-2 Bias estimation

There are two ways to account for bias included in the accelerometer and gyroscope measure-
ments. The first is to subtract a constant bias from the measurements before being substituted
into the dynamic model. Leaving the sensor stationary for some time can indicate the mag-
nitude of the constant bias. For the gyroscope, it is expected that the measurements in all
axes give zero. In case of bias, the mean of the data is nonzero. The mean can be used as
the value for the constant gyroscope bias d,,; present in the sensor [13]. Determining the
accelerometer bias d,; is less straightforward. When the sensor is stationary, it is expected
that the measurements give (0 0 9.81)T. If the measurement mean is larger than zero in the
x- and/or y-axis, it does not necessarily indicate a bias. It could be that the surface is not
completely flat, hence part of the gravity is "leaking" into the z- and y-axis. If the mean in
the z-axis is larger than 9.81, this can indicate a bias at least in the z-axis [13].
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The second way to address bias is to include 53,7& and 52,25 in the state vector and estimate
their values with the EKF. The state is augmented to z; = (p}, vf, ¢, 5271&, 53775)? The
dynamic model f in Eq. (2-4) used in the EKF time update is extended with the random
walks

52,1&—',—1 = 5Z,t + ega,t, (3-9a)
55;,t+1 = 53,1; + 6gw,t, (3-9b)

and the estimated bias states are subtracted from the IMU measurement input. The terms
egmt and egwt are Gaussian noise terms and determine how constant the bias will be. The
process noise of Eq. (3-9) is incorporated in the EKF process noise covariance matrix Q.
The process noise covariance corresponding to Eq. (3-9) should be small to ensure the bias
changes slowly over time and remains nearly constant. The initial bias can be set to zero, and
subsequently, it can be checked if the estimated bias will converge over time, provided that
the bias model process noise is set small. If the bias is included in the state vector and f is
augmented with Eq. (3-9), it should also be factored into the calculation of the Jacobian for

F; = g—i ~and Gy = %ch . This means the matrices F; and Gy increase dimension.
T=Tt—1 T=Tt—1

The expressions for F; and G; adjusted for bias estimation are given in Eq. (A-4) to Eq. (A-6)
in Appendix A.

3-1-3 Zero velocity update (ZUPT)

In UWB/IMU sensor fusion techniques, the IMU measurements are not only able to suppress
NLOS errors, but the measurements can also be used to prevent sensor drift over time [45].
When the person is stationary, the velocity estimate is expected to be zero. This idea can be
used to correct state estimates during the period the person’s velocity and angular velocity
are close to zero [46]. The goal of a Zero Velocity Update (ZUPT), is to detect when the IMU
is stationary and subsequently correct the velocity estimate to zero. The ZUPT functions
therefore as a pseudo-measurement inserted in a measurement update of an EKF [45].

The first step is to detect the stationary state with a binary hypothesis testing problem [47].
Let 24 = {ya’t}?:‘*}fv 1 and Zom = {ywﬁt}?j,{v ~1 denote the IMU measurement sequences
during a time epoch consisting of N € N measurements between time instants n and n+N —1.

Then the detector decides that the IMU is stationary if
T(zan, 2wn) < Thr. (3-10)

This is the binary hypothesis testing problem consisting of the test statistics T'(2qn; 2w,n)
and the detection threshold Thr. This research uses a Stance Hypothesis Optimal Detector
(SHOD) defined as [47]

1 n+N-1 1 g ) 1 )
T(Zam, Zon) = — — — g |IF 4+ — , 3-11
( a,n wm) N ; 02 Hyaﬂf g ||ya,n|| H 03) ”yw,t’ ( )

where Y, = % Z?:,fv -1 Ya,t denotes the sample mean, 02 and ag denote the variance of the

acceleration noise and angular velocity noise, respectively, and g is the gravitational acceler-
ation.
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During the time period in which the IMU is detected stationary according to Eq. (3-10),
the state propagated by the dynamic IMU model is corrected using the Kalman gain for the
ZUPT model. The pseudo-measurements used for the ZUPT update y,upt,+ are modeled as
[41]

Yzupt,t = HtZCCt + ez, (3-12)

with HtZ the observation matrix that has ones in the elements corresponding to velocity and
zeros in the other elements, and ez the process noise. During the time that Eq. (3-10) is
valid, in each iteration the estimated state Z; is corrected by the ZUPT measurement through
the equation Z; < Iy — KthZ Z; with Ky the Kalman gain, which is calculated similarly as in
Algorithm 2 [41].

The algorithm is tuned by adjusting the values for the horizon N, the ratio of the noise vari-
ances the ratio 02/02, and the threshold Thr. If the stationary points in the trajectory are
known, it can be verified if only these points are detected as zero velocity points. If not, the

algorithm can be tuned accordingly.

The ZUPT algorithm to be implemented in the EKF of Algorithm 4 is summarized in Algo-
rithm 5. The detector T detects if one of the two tags is considered stationary. It is assumed
that the other tag is then also stationary, since the tags are placed on the hips. The "and"
statement is used as additional assurance that the person is stationary and prevents that one
tag detects false stationary points. The ZUPT matrices are defined as

HZ — t c R()X#states 3-13
j [ - (3-13)

and Ht(m)’Zis the matrix with ones in the elements corresponding to velocity and zeros in the

other elements. The noise covariance matrix is the 6 x 6 matrix R that has R,El)’z and R§2)’Z

on its diagonal.

Algorithm 5 ZUPT algorithm for two tags

1: if T(Z((llr)“ zﬁ}%) < Thr and T(z,(f?)l, 2&2%) < Thr then > ZUPT detector
-1

2 K P(HP)T (HZP(HZ)T + RY)

3: Ty < Ty — KthZ‘%t

4 P+ (I-KH?P,

5. end if

3-1-4 NLOS detection and mitigation with IMU data

Section 2-2 discussed two ways for mitigating the delay in the UWB ranging measurements
due to NLOS: a constant threshold on the absolute value of the residual r§ = |y2l7t - gg’l’t| and
a confidence interval for the normal distribution. The methods both use the predicted UWB
distance Qé,t, which was calculated by substituting the position state estimate p, resulting from
the CVM model into the UWB measurement model Eq. (2-1). Instead of the CVM model,
the dynamic IMU model in Eq. (2-4) is used to predict the state and therefore QZM. For the
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first method, a constant threshold can be set as in Eq. (2-11). This threshold should not be
too small, since too many UWB measurements will be rejected for the estimated trajectory
to be accurate. On the other hand, if the threshold is too large, too many inaccurate UWB
measurements will be taken into the estimation algorithm. The second method, given in
Algorithm 6, makes use of the fact that in the absence of measurement delays, the residuals
are normal distributed according to [23]

Ydt — Yae ~ N (0,5), (3-14)

where S; = HUWBP,(HVWBYT 1 RVWB "and ya+ and g are vectors containing the distance
measurements from each anchor, and the estimated distances from each anchor, respectively.
P, is the covariance matrix after the prediction step. Each independent ranging measurement
in the vector yg; needs to be checked if it is close to the predicted distance for that anchor,
as some measurements may contain NLOS and some may not. Assume the measurements are
uncorrelated, then for each measurement yfi,t a confidence interval can be calculated using

Eq. (3-14)
(CI)i = ey/(S)ii (3-15)

with ¢ the critical value corresponding to the desired confidence level. If yﬁu — gjfi,t is not
included in the interval [—(CI);, (CI),], then this measurement is considered NLOS and
rejected. Using this method avoids having to choose a random threshold.

Algorithm 6 NLOS mitigation with normal distribution confidence interval

1: if y4; then > UWB measurements
2. S« H'WVBR(HIWVE)T + RYWE

3: CI + cy/diag(St)

4: Yd,t <y2l7t| yil’t — Qé?t e [-(CI);, (C’I)Z]) > NLOS mitigation

5 HYWB, RUWE  [(HYWB), (RYWE),| g, — 95, € [-(CI)i, (CT).]]
6: end if

3-2 Fusion of two UWB/IMU tags

From the related work on the fusion of two tags in Section 2-3 it could be concluded that
the sensor fusion of two UWB/IMU tags has not yet been researched extensively. Previous
research primarily focused on two IMUs placed on the feet. For this thesis, a different situ-
ation applies where two tags equipped with both a UWB and an IMU sensor are placed on
the hips. Therefore, the problem requires a fixed relative distance between the tags, unlike
tags placed on the feet. In this section, the methods from previous research in Section 2-3
are adjusted for the methodology of this research problem; a fixed relative tag distance and
an EKF. The methods described in Section 3-2 prompted the idea to enforce a fixed dis-
tance between the two UWB/IMU tags with an equality constraint on the joint state vector

o = ) ()]

cluded in an EKF. To include any equality constraint in an EKF, the equations in the EKF
measurement update can be augmented with perfect measurements containing zero measure-
ment noise [43]. This results in an unconstrained problem where the EKF state estimate

Hence for this research, an equality constraint needs to be in-
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automatically satisfies the constraint.

The relative distance between the tags v € R is known and fixed. Let the joint state estimate
of tags 1 and 2 be

.
(3-16)

o= [ @)

Then the equality constraint is formed as
[ La¢][2 =, (3-17)

with L = [I3x3 03pn,-3 — I3x3 035,-3] and n;, ng the size of the state vectors of Tagl and
Tag2. Eq. (3-17) is equivalent to the constraint in Eq. (2-16) when taking the Euclidean norm
of both sides of that equation. Eq. (2-16) is a linear constraint. The constraint in Eq. (3-17)
can also be linearized to

Hfd =7, (3-18)

where H} is the Jacobian of ||Lxz||2 evaluated at 2 = #;. The expression for H} is given
in Eq. (A-7) in Appendix A. To ensure that the EKF estimates satisfy the constraint in
Eq. (3-17), the EKF measurement update is augmented as

.%'t"i‘

yai| _ [HOWD
0

v HE

ed¢1. (3-19)

Then the relative distance -y is considered a perfect measurement containing zero noise. This
results in an unconstrained problem where the EKF state estimate automatically satisfies
|IL&||2 = . Alternatively, the relative distance between the tags can be considered a soft
constraint, meaning that the equality constraint is approximately satisfied rather than ex-
actly satisfied [43]. This can be accomplished by adding noise to the "perfect" measurements
in Eq. (3-19). The measurement equation augmentation method in Eq. (3-19) is similar to
the projection method in Eq. (2-19), because the solution in Eq. (2-20) resembles the EKF
measurement update in lines 3 and 7 of Algorithm 7. This algorithm shows how the EKF
measurement update for loosely coupled tags in Algorithm 4 alters when the fixed distance
constraint is included for tightly coupling the tags. Algorithm 7 replaces lines 19-23 of Algo-
rithm 4 when the tags need to be tightly coupled. Lines 6-8 in Algorithm 7 enforce the fixed
tag distance also when no UWB measurements are available.
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Algorithm 7 Measurement update of the EKF for UWB/IMU sensor fusion with
tightly coupled tags

1. if y;; then > UWB measurements
T T -1
HUWB HUWB HUWB RUWB ¢
2: K+ P HtL HtL P, HtL + 0 Rl{: > Include
. R HUWB]
3: Tt +— T4+ K ([y’i’t‘| — [ ‘thL ] .Tt)
FUWB

4: P+ |I-K t P

t ( t l Hy D t
5. else .
6 K P(H]T (HEP(HE)T + RF)
7 By 2y + Ky (y — HEy) > Relative distance correction
8 P+ (I - KHF)P,
9: end if

3-3 Final algorithm

In Section 3-1 and 3-2, all methods and components for a sensor fusion approach for TraXYZ
are described. Based on this information, this section presents the algorithm for sensor fusion
of all sensor data provided by Sendrato’s TraXYZ system. The TraXYZ system consists of
two tags placed on the artist’s hips. Each tag contains a UWB sensor and an IMU sensor.
Hence, we have data from two UWB sensors and two IMU sensors, and the fixed relative
distance between them is known. This section presents the tightly coupled sensor fusion
method for UWB data and IMU data coming from two tags placed on the hips, to track an
artist on stage. The goal of this method is to improve TraXYZ’s tracking accuracy compared
to UWB-only position tracking. Algorithm 8 on the next page combines Algorithm 4 - 7 of
this chapter.
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Algorithm 8 Tightly coupled EKF for UWB/IMU sensor fusion and fusion of two tags

1: Initialize:

Joint state vector: zo = [(:1:(()1))—r (:c(()Q))T]T
Covariance matrix: Py

2: loop
3: t—t+1
4: if y((llt), yfulz then > IMU measurements
3t L(1 1 1 1 1
5 M — f(xt )17 y((ht)v y(,(uy)ta a,g = O’ ew,)t = 0)
TN
(1) (1) i 1) 1) M "
.. P E; 0 Py Ey 0 n Gy’ 01 1Q,2 0](Gy7 0
0 Inyxne 0 Inyxne 0 0 0 O 0 0
8: a1 g
9: P+ Pt*
10: else
11: AR ON
12: Pr+— P,
13: end if
14: if y((ft) , yc(fz then > IMU measurements
15: (1) 4+
~ Ly
(2 2 2 2 2
16: ()Ff($t 1 yc(zt)a yf.zi)fv gt):Ov 501—0)
T T
Inyxn, O Inisxny, O 0 0 0 0 0 0
17: P+~ Py +
' l o F?"'| o FY 0 G710 Qo G
18: end if
19: if T(zélq)z, zu(},)l) < Thr or T(za(fy)z, zb(?zl) < Thr then > ZUPT detector
—1
20: K, + P(HF)" (H7P(H)T + Rf)
21: Ty < Ty — KthZ.’IA?t
22: P+ (I - K:HY)P,
23: end if
24: if yc(llt) or yc(lzt) then > UWDB measurements
25: Sy < HYWBP,(HIWB)T 1 RUWB
26: CI + c\/diag(St)
o7 yar < (Yl iy — 95 € [=(C1)i, (C).)) > NLOS mitigation
2w HPWPROVP < [(HPVR), (BIYP)| yl, — i € [H(CD (CD]
T T -1
HUWB FUWB HUWB RUWB
29: K+ P, ¢ P, + |7 > Include
! tHL]<lHtL tHL 0 Rf
X . HUWB]
o s (f][E)
HUWB
31: P+ |I-K; HL P;
32: else i
33: K, « P(H])T (HEP(HE)T + RE)
34: By @+ Ky(y — HE2y) > Relative distance correction
35: P+ (I - KHE)P,
Btaster afivdidfce Thesis M. F. Hoekstra

37: end loop
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Chapter 4

Results

This chapter starts with the experiment conducted to acquire datasets for testing the effec-
tiveness of the method discussed in the previous chapter. The following sections discuss the
results of applying Algorithm 8 to this dataset. The goal is to evaluate the effects of including
the IMU sensor in the position estimation algorithm and the effects of joining the two tags,
therefore finding answers to the research’s two subquestions. From these results, it can be
concluded what the potential is of the methods explained in Chapter 3 and in what situa-
tions the methods could be beneficial. As a baseline, only UWB sensors are used to estimate
position. First by using only the UWB measurements in a Non-Linear Least Squares (NLS)
algorithm. Second, by using the UWB measurements in an EKF that uses a Constant Veloc-
ity Model (CVM) model in the time update step. The results are shown in Section 4-2. The
next section, Section 4-3, then compares the results of the UWB/IMU fusion to this baseline.
It also discusses the effects of IMU bias state estimation, implementation of ZUPTs, and im-
plementation of NLOS detection and mitigation on further improving the UWB/IMU fusion
EKF. The impact of joining the two tags is discussed in Section 4-4.

4-1 Experiments

To test Algorithm 8, data has been acquired from TraXYZ in a way the true trajectory is
known. Therefore, a simplified trajectory is setup for a potential artist in a theatre show. The
two tags including both an UWB and IMU sensor are attached to the hips. The measurements
are used as input in the models in Eq. (2-4) and Eq. (2-1) to be used in the UWB/IMU EKF
for estimating the trajectory. The goal of the experiments is to analyze the potential of the
methods described in previous chapter for accurately estimating the trajectory.

Figure 4-1 shows the walked trajectory during the experiment. The person walks on the
sides and one diagonal of a 3m x 3m square. At the start and end, the person is stationary
for approximately 30 seconds. The red crosses indicate stationary points during the walking
route. Stationary point 1 is at 3m from the starting point. Points 2-4 are exactly at the
middle of the sides, at 1.5m. What happens at each of these points is the following;:
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END

A
&
>

"

START

Figure 4-1: True trajectory of the experiment. The sides of the square are 3m. The stationary
points are indicated with red crosses. At the start and end the person was stationary for +30
seconds.

e Point 1: First stand still for 5 seconds, then turn left.
e Point 2: Stand still for 5 seconds, then continue walking in the same direction.

o Point 3: First turn 90° to face the "audience" (the bottom in Figure 4-1). Then stand
still for 5 seconds. Then turn back 90° to continue walking the trajectory.

e Point 4: Stay at this spot for 5 seconds while changing the weight on each leg a bit.
This causes a bit of hip movement on the spot.

The experiment tries to include realistic movements of a person. During the experiment the
TraXYZ system is used. The anchor placement is shown in Figure 4-2. These coordinates are
calculated by the calibration software in TraXYZ. The anchors are calibrated with the height
of an office table (0.70m) as ground level. Compared to the real-life anchor setup, it can
be concluded that these positions are not entirely accurate, particularly in the z-coordinate.
That is because the anchor setup in real-life gives an idea of the anchor positions relative to
each other and of the height of the anchors. These factors do not entirely match the relative
positions and heights provided by the calibration software. However, due to limitations of the
available UWB setup in practice, better UWB calibration was not feasible in this case. The
TraXYZ tags are taped to the person’s belt at the sides of the hips. The distance between
the two tags is measured to be 0.27m.

The exact type of IMU sensor incorporated in TraXYZ is unknown, but presumably an
LSM9DS1. TraXYZ obtains IMU measurements at a sampling frequency of approximately
120Hz. Every 6th IMU measurement is accompanied by UWB ranging measurements. As a
result, the algorithm iterates through the IMU data timestamps, and every 6 iterations, it
updates the state estimate using the UWB data. At times, one of the sensors may fail to
provide data.
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As an auxiliary experiment, a different type of IMU sensor is used in addition to the IMUs
integrated in TraXYZ. These types of IMUs are the Xsens MTi-100-2A8G4 for Tagl and the
Xsens MTi-300-2A8G4 for Tag2, and are rigidly taped to the TraXYZ tags for the experi-
ment. The first has a sampling frequency of 200Hz and the second 400Hz. Both have a bias
stability of 10°/h and a noise density of 0.01°/s/v/Hz, where in this case Hz stands for the
bandwidth of 415Hz. The same algorithm is applied to both the TraXYZ IMU data and the
Xsens IMU data, in combination with the TraXYZ UWB data. When significant differences
in estimation accuracy between the two IMU sensor types are found, replacing the TraXYZ
IMU sensor with the Xsens IMU sensor can be recommended on top of the main research
findings.

R Anchor positions Anchor positions ) Anchor positions
5
*3 25
2
8 5 2
2
7 6 15 3 15
o
> N N
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s 1 4 o1 o 1 $1e5 °3
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4 2 8 \\\—(/’“'4" 6 8 " 0 T T T T T T 1
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X y X X
(a) Anchors xy-plane (b) Anchors 3D (c) Anchors z-coordinate

Figure 4-2: UWB anchor positions. An office table not included in the picture is used as ground
level. Therefore the z-coordinate is +70cm in real life.

Figure 4-3: The experiment setup. The trajectory is taped on the floor.
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4-2 Baseline: no IMU

As a baseline for this research, position estimation results are generated with UWB data only.
That is, using the UWB data in the Non-Linear Least Squares (NLS) algorithm of Eq. (2-9).
Additionally, the UWB data is used in the measurement update of an EKF, where the CVM is
used in the time update. This gives some correction to the UWB measurements and therefore
smooths the estimated trajectory. This method is described in Algorithm 1.

4-2-1 Non-Linear Least Squares (NLS)

. NLS estimated trajectory . Averaged tag NLS estimated trajectory ‘E‘JLS estimated position coordinates over time
Tag1 o e NLS trajectory *
8 Tag2 M 81| e Anchor position 8 A)A 7 il e
® Anchor position 1 Skt zal A"{"‘\m s/
r v T T 8 "‘w‘“"v{"w"”ﬁ' / IL i p-w“'l
. ‘ - = ¥y \ il
6 \ . 6 . -E 4 Pl Mr,"f“w v
5 B \ 5 B 2t
3 a
. 1 .
4 4+ ok
= X
3 3 st v
" 4
2 - - - - ! 2 - - - N - ! -4 - - - - - ’
2 3 4 5 6 7 8 ] 10 2 3 4 5 6 7 8 ] 10 0 20 40 60 80 100 120 140
X X Time (s)
(a) Trajectory Tagl and (b) Trajectory averaged (c) Coordinates averaged
Tag?2. tags. tags.

Figure 4-4: Position coordinates estimated with UWB measurements and the NLS algorithm in
Eq. (2-9).

First, a NLS algorithm is used to find the position estimates that best fit the UWB distance
measurements. The MATLAB function "lsqnonlin” along with Eq. (2-9) is used for this estima-
tion. The initial conditions are set to z§"” = (4.07, 5.9, 0.3)T and 22 = (3.85, 5.74, 0.3)7 for
Tagl and Tag2, respectively. This is an approximation for timestep 0, based on the real-life
distance to the position of anchor 1. That is because it is known the person started close
to anchor 1, therefore the position coordinates of anchor 1 gave an approximate indication
of the initial position of the person. Additionally, the initial conditions are chosen such that
the Euclidean norm of the difference of the two vectors is approximately 0.27m; the true
distance between the two tags. The anchors were calibrated with the height of the table
(0.70m) as ground level. Therefore, the initial z-coordinate is set to 0.3m, which is the hips’
height minus the table’s height. These initial conditions are used throughout this experiment.

Figure 4-4 shows the tag’s trajectory and coordinates over time, together with the anchor
positions. For the averaged position estimates, the average of the two position estimates is
taken. At time instances where one of the tags has no measurements, the estimate of the other
tag is used solely. This happens numerous times at the left side of the trajectory in Figure
4-4b. The stationary points in the trajectory can be recognized clearly in the xz-coordinate of
Figure 4-4c, at the beginning and ending and the four horizontal pieces in the line.

Figure 4-4b roughly agrees with the true walked trajectory in Figure 4-1. The figures clearly
show NLOS problems, as the error of each tag is visibly large. Furthermore, it is noticeable
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that the estimates are unsteady at the stationary points in the trajectory. The z-coordinate
estimates are not constant. This is as expected since UWB systems typically have a lower
accuracy when estimating height [48]. The bottom part of the trajectory seems to go through
the wall to which the anchor was attached. This could be due to the inaccurate anchor
positions in Figure 4-2 provided by the calibration software.

4-2-2 EKF with Constant Velocity Model (CVM)

. UWB/CVM EKF estimated trajectory A\geraged tag UWB/CVM EKF estimated trajectory ‘lalWBlCVM EKF position coordinates over time
Tag1 * UWB/CVM EKF trajectory e
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Figure 4-5: Position coordinates estimated with UWB measurements and an EKF with CVM.

UWB/CVM EKF parameters
o (4.07, 5.9, 0.3, 0, 0, 0, 3.85, 5.74, 0.3, 0, 0, 0) "
Py 0.2 - I3xs
Py | 0.05 Iyus
Qf JENE!
Qy I3xs
RPWB 0.25 - I#ydtx#yd t

Table 4-1: Parameters used for UWB/CVM EKF position estimation.

To improve the results in previous section without integrating IMU data, a Constant Velocity
Model (CVM) is used in an EKF to find the position that corresponds best to the prediction
from the CVM and the UWB measurements. The algorithm is described in Algorithm 1. Ta-
ble 4-1 shows the parameters used for this EKF. Py is an approximation of the initial variance
based on an approximation of the uncertainty of the initial condition. In this case, the initial
position’s variance is guessed to be 0.2 m? and the initial velocity’s variance to be 0.05 m?/s2.
RPWB is roughly based on the variance of the UWB measurements taken during the first 30
seconds where the person was stationary. This value was then slightly increased to account for
inaccuracies in the anchor positions, giving the UWB measurements more uncertainty. It was
observed that increasing or decreasing RYWE with a factor 10 resulted in minimal differences
in smoothness of the outcome. ); is tuned until a balance is found between the trajectory’s
smoothness and any delays in movements. For example, when decreasing Q); with a factor
10, a slight delay in turning the upper right corner was observed. Note that @; and R; are
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set constant for all ¢.

The estimates are smoother compared to the NLS results in previous section. The averaged
trajectory in Figure 4-5b is approximately 3mx 3m with an error of circa 10 cm based on the
distance between arbitrarily selected points on the corners of the estimated trajectory. NLOS
errors are still present in this estimation. The "dip" in Tagl’s trajectory at +(5,5.9) in Figure
4-5a is expected from the result in Figure 4-4a, where the UWB measurements at that spot
led to erroneous estimates. A second NLOS example can be observed in Tag2’s trajectory
at £(7.4,3.1). This can be explained by the person walking close to the wall to which that
particular anchor was attached. That anchor is therefore unable to accurately capture the
distance to Tag2, while the other anchors experience NLOS by the person’s body. On the
other hand, the trajectory of Tagl is estimated more accurately in that area, because most
anchors do not experience any NLOS by the person’s body. This raises the hypothesis that
Tagl may be able to correct for Tag2 when the tags are joint by a fixed distance constraint.
Section 4-4 will further delve into that. Averaging the trajectories of Tagl and Tag2 (Figure
4-5b) also partly compensates for NLOS errors, as the peaks at +(7.4,3.1) and the upper
right corner reduced.

Subsection 3-1-4 explained methods for detecting and mitigating NLOS errors in the UWB
data with an EKF. The methods intuitively reject UWB measurements y,; that differ too
much from the distance g4, predicted by the CVM. The results are shown and compared in
Figure 4-6. The constant threshold on the absolute value of the residual in Eq. (2-11) is set
to Im. The confidence interval in Eq. (3-15) uses a 90% confidence interval with critical value
c = 1.645 and RYWB = 0.25. It can be argued that after the NLOS mitigation, RPWE in
the UWB measurement update can be decreased due to increased certainty in the remaining
UWB measurements. However, it was observed that the differences in results were negligible.

U\QNB/CVM EKF trajectory, 1m constant threshold UV!BICVM EKF trajectory, 90% confidence interval Averaged tag UWB/CVM EKF estimated trajectory

Tag1 * Tag1 e 9 No NLOS mitigation
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(a) Trajectory Tagl and (b) Trajectory Tagl and (c) Trajectory averaged
Tag2, 1m constant NLOS Tag2, 90% confidence in- tags.
threshold. terval.

Figure 4-6: Position coordinates estimated with UWB measurements and an EKF with CVM.
Additionally, the UWB measurement outliers are rejected with the methods from Subsection 2-2-
1: a constant threshold on the residual and using a 90% confidence interval on the measurements.

The NLOS issues observed before are reduced. For example, Figure 4-6¢ shows that the peak
at £(7.4,3.1) disappeared. The figure additionally indicates that the 1m constant threshold
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and the 90% confidence interval produced nearly identical results. The 90% confidence inter-
val method is less arbitrary in establishing a restriction for the measurements, whereas the
constant threshold can give a better understanding of how much the CVM prediction differs
from the UWB measurement. In general, increasing the confidence interval percentage leads
to results similar to Figure 4-5. A final observation is that the z-coordinate did not improve
compared to the case without NLOS mitigation. Since the EKF with CVM already provides
more accurate results than the NLS method, the UWB/CVM EKF will now serve as the
baseline to evaluate whether the IMU sensor can further improve results.

4-3 UWB/IMU fusion

This section evaluates the UWB/IMU sensor fusion methods discussed in Section 3-1. The
section starts with the fusion of the data without bias correction, Zero Velocity Updates
(ZUPTs) and Non-Line-of-Sight (NLOS) mitigation. Subsequently, each of these elements
is incorporated into the EKF and in some cases combined. The effects of each of these
components are analyzed.

4-3-1 UWB/IMU fusion
As a starting point, the raw UWB and IMU data are inserted into the standard EKF of

Algorithm 4. Hence no bias correction, ZUPT implementation, and NLOS mitigation are
applied. The results are compared to the UWB-only results in previous section.

TraXYZ UWB/IMU EKF
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(a) Trajectory Tagl and (b) Trajectory averaged (c) Coordinates averaged
Tag?2. tags. tags.

Figure 4-7: Position coordinates estimated with UWB measurements and an EKF with IMU
model in the time update. TraXYZ's IMU measurements are used. No IMU bias is subtracted
from the measurements. No NLOS mitigation.

The initial orientation is calculated using the first couple IMU data points and Eq. (3-5)-
Eq. (3-8) [13]. Subsection 3-1-1 discussed that this method mainly determines initial inclina-
tion due to lack of magnetometer measurements. The heading will be corrected once UWB
measurements are available. RYWE equals the UWB measurement covariance in the UW-
B/CVM case. The process noise Q¢ is tuned until a balance is achieved between certainty in
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TraXYZ UWB/IMU EKF parameters
T (4.07, 5.9, 0.3, 0, 0, 0, 0.62, —0.05, —0.78, 0.06, ...
3.85, 5.74, 0.3, 0, 0, 0, —0.63, —0.02, 0.77, 0.03) "

Py 0.2 I3x3

P} 0.05- 1074 I35

Pl 0.3 - I3x3

Qs QU | 0.6 s

QL(Z;) 0.6 - I3x3

RPWB 0.25 'I#yth#ydt

Table 4-2: Parameters used for UWB/IMU EKF position estimates using TraXYZ's IMU sensors.
m = 1,2 for Tagl, Tag2, respectively.

UWB measurements and IMU predictions. In general, the EKF is tuned with the covariance
matrices Py, ¢, and R;. The initial covariance Py captures the uncertainty of the initial state
xo. The process noise covariance matrix ¢); takes into account the uncertainty of the dynamic
IMU model as well as the IMU measurements that are used as input. The measurement noise
covariance matrix R; accounts for the uncertainty in the UWB measurements. Smaller @),
led in this experiment to more inaccurate results. On the other hand, when increasing ; it
can be argued that the IMU measurements do not significantly contribute to the results at all.

The true trajectory is recognizable from these estimated positions. The resulting trajectory
is improved compared to the NLS case in Figure 4-4, indicating that the IMU measurements
can compensate for UWB errors. However, the trajectory is less smooth than the CVM case
in Figure 4-5. This can be explained by the measurement input in the IMU model Eq. (2-4).
These measurements contain bias that is not eliminated yet in this algorithm and is accumu-
lating over time. The UWB measurements are not sufficiently accurate to correct for these
IMU errors. The expectation is that a ZUPT and bias correction will mitigate these errors.

The same is done with the Xsens sensors. Applying an EKF without bias correction, ZUPT
implementation and NLOS mitigation provided in Algorithm 4 leads to the results in Figure
4-8. The resulting trajectory is smoother compared to Figure 4-7. The process noise Q; could
afford a lower value compared to the TraXYZ case, indicating more certainty in the Xsens
measurements. Moreover, the process noise is almost ten times smaller than in the CVM
case, while generating similar results. This shows that the Xsens IMU sensors contain less
bias and noise and consequently provide more accurate results. It can also be concluded that
the Xsens IMU sensor can improve UWB-only position estimation with NLS.

4-3-2 Bias estimation

To account for the bias present in the IMU measurements, the methods in Subsection 3-1-2
are applied and evaluated in this subsection. The IMU bias d,; and d, are included in the
state and estimated by the EKF. For each timestep, the estimated bias is subtracted from the
IMU measurements. The resulting trajectory is shown in Figure 4-9. The estimated bias over
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Xsens UWB/IMU EKF
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Figure 4-8: Position coordinates estimated with UWB measurements and an EKF with IMU
model in the time update. Xsens' IMU measurements are used. No IMU bias is subtracted from
the measurements. No NLOS mitigation.

Xsens UWB/IMU EKF parameters
20 (4.07, 5.9, 0.3, 0, 0, 0, —0.76, 0.06, 0.64, —0.05, ...
3.85, 5.74, 0.3, 0, 0, 0, 0.76, 0.02, —0.65, —0.02)—r

P 0.2 Isys

Py 0.05- 1074 I35

P 0.3 Isy3

Q;(:Z), fof? 0.2 I3x3

Q{E}ﬂ,’;) 0.2 I3><3

RPWB 0.25 'I#yth#ydt

Table 4-3: Parameters used for UWB/IMU EKF position estimates using Xsens' IMU sensors.
m = 1,2 for Tagl, Tag2, respectively.

time is shown in Figure 4-10. Table 4-4 provides the bias estimation parameters. Additionally,
the algorithm uses the EKF parameters from Table 4-2. The initial bias is set to zero to see
if the value will converge. The initial bias state covariance Pga and Pgw has to be reasonably
large to ensure quick convergence at the start, hence the value 0.5 is chosen (= 0.72). Since
the bias is expected to stay nearly constant for the duration of this experiment, the noise
covariances Q?“, Q?“ in the random walk bias model Eq. (2-8) are set very small: 10710,

Figure 4-9 indicates that the trajectory has improved at many locations compared to Figure
4-7. For example, Tagl’s trajectory shows straighter lines, mostly the first two sides (left
and bottom side). Overall, the estimated trajectory starts to approach the results from the
UWB/CVM EKEF in Figure 4-5 and therefore comes closer to the true trajectory. Problems
with the stationary points stay present. This can be due to the unstable UWB measurements
at those points. It is expected that a ZUPT can solve this and can give the EKF valuable
information for the bias estimation as well.
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The estimated gyroscope bias in Figure 4-10 clearly converges. The estimated accelerome-
ter bias fluctuates more than the gyroscope bias but also converges. The bias fluctuation
is expected from accelerometers. A notable change in estimated bias happens at about 46s
in Figure 4-10b, after the initial convergence was completed. This is exactly where the first
stationary point ended and the person continued walking. During the tuning process, this
more often occurred in the results after stationary points. A possible cause could be the
sudden acceleration at those moments and at the same time the noisy UWB measurements
or UWB outliers. Another explanation could be that including bias estimation does generally
not always improve performance because position, heading, and gyroscope bias around the
vertical axis are unobservable during stationary moments [49], [50], [51], [52]. The accelerom-
eter and gyroscope cannot determine the heading, only the inclination. The magnetometer
in the IMU sensor often determines heading, but this is not available in theatre situations
due to magnetic disturbances. Alternatively, the position derived from UWB data can give
information about the heading when combined with accelerometer and gyroscope predictions.
However, at stationary points, the heading is not observable due to the lack of displacement
measured by the UWB system. Therefore, when the person starts walking again, the heading
becomes observable and the bias can change. This occurs mainly in the y and z direction
in Figures 4-10a and 4-10b. The acceleration in the y and z directions in the sensor frame
correspond to the horizontal accelerations in the navigation frame and, therefore related to
heading. These sudden bias changes could lead to inaccurate results. However, in this case,
it is accepted since the trajectory seems not too much affected by this. The same theory may
explain why the gyroscope bias in the x direction in Figures 4-10c and 4-10d is larger than
expected from the raw gyroscope measurements. The angular velocity around the z-axis in
the sensor frame corresponds to the angular velocity around the z-axis (vertical axis) in the
navigation frame, therefore corresponding to the yaw or heading. Since the heading is un-
observable at stationary points, the gyroscope bias around the vertical axis is less accurately
estimated [49], [50], [52]. Additionally, one could argue that the gyroscope bias is incorrectly
estimated at the stationary point at the start without available heading information, and
subsequently remaining constant due to the low value for Qf”. Values up to Qf“ =10"* are
tested and it was found that the gyroscope bias around the vertical axis does not significantly
reduce without the overall gyroscope bias excessively fluctuating. In general, UWB data is
necessary for accurate bias estimation with an EKF, because the position information that
the UWB system provides should reduce the IMU bias drift and additionally give more in-
formation about the difference between the IMU prediction and the UWB position estimate.
This difference provides information for the magnitude of the IMU bias. When UWB data is
erroneous, the bias estimation could be negatively affected by that.

Once the IMU bias is subtracted from the measurement input, it is expected that the certainty
in the process model and measurement input increases. Therefore, one could argue that
performing IMU bias correction means that the process noise covariance for the other states,

le, iji, fo?t, can decrease. In this experiment, it was found that decreasing Q; for p, v,

and ¢ without changing @;* and Qf‘“ resulted in less accurate trajectories. Therefore the
value for @J; remained equal to Table 4-2 for these results.
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TraXYZ UWB/IMU EKF + IMU bias estimation

. IMU bias EKF estimated trajectory A\gleraged tags IMU bias EKF estimated trajectory ‘UIMU bias EKF position coordinates over time
Tag1 * UWB/CVM *
8 Tag2 Y 8 UWB/IMU 87
® Anchor position o + IMU bias estimation| -~
7 O RTT Seed N 7L v 6 by
- o I ) ok g

IS
=

Position (m)

r AN F
v S B ¢ -
\ 1
3 \ < 3r 2F y
=

2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10 “o 20 40 60 80 100 120 140
X X Time (s)

(a) Trajectory Tagl and (b) Trajectory averaged (c) Coordinates averaged
Tag?2. tags. tags.

Figure 4-9: Position coordinates estimated with UWB measurements and an EKF with IMU
model in time update. TraXYZ IMU measurements are used. Bias is estimated in the state and
subtracted from the measurements in each time step. No NLOS mitigation.

Bias estimation parameters
58 (0,0,0)7

8¢ (0,0,0)7

Pg’l 0.5 - Isxs

Pgw 0.5 I3x3

Qta 10710 : I3><3

Q| 10710 Iy

Table 4-4: Parameters used for the bias estimation.

4-3-3 Zero Velocity Update (ZUPT)

In previous results, the stationary points remain unstable. Subsection 3-1-3 explains a method
for correcting the estimates during stationary points based on IMU data. Once the ZUPT
detector in Eq. (3-10) detects a stationary point based on IMU data, the velocity is corrected
to 0. The applied ZUPT method is summarized in Algorithm 5. The hypothesis is that these
intermittent corrections can prevent part of the IMU integration drift as well.

The algorithm is tuned with the ZUPT parameters of Table 4-5. These are found by adjusting
the number of measurements N that the ZUPT detector each time considers, as well as the
detection thresholds for Tagl and Tag2, until the true stationary points are captured. The
threshold Thr can be determined by calculating Eq. (3-11) during a known stationary point,
for example, the beginning or end of the trajectory. The noise variances o2 and o2 are based
on the values for @Q; in Table 4-2. For the SHOD detector, only the ratio 02 /o2 determines the
detector’s performance [47]. Besides the ZUPT parameters in Table 4-5, the EKF parameters
in Table 4-2 are applied. However, it was found that the process noise covariance (); could be
lowered from 0.6 to 0.4 when applying a ZUPT, presumably due to the ZUPT reducing the
accumulating process errors. Hence, Figure 4-12 and 4-11 show the results when @; = 0.4 for
p, v, and q.
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TraXYZ IMU bias estimation

Tag1 estimated accelerometer bias over time

Tag2 estimated accelerometer bias over time
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Figure 4-10: Estimated bias over time.

Figure 4-11b visualizes how the estimated position coordinates improve compared to the
UWB/CVM EKF estimates. The main difference is that for the UWB/IMU EKF with
ZUPTs, the stationary points are recognizable by the constant horizontal lines. Moreover,
the z-coordinate remains more constant for the UWB/IMU EKF with ZUPTs. Figure 4-11a
displays the estimated position coordinates over time with vertical bars indicating the start
or endpoint of a stationary period. These points correspond to the time instances where the
ZUPT detector continually satisfies the condition in Eq. (3-10) and where it stops meeting
the condition. In between two vertical bars, the coordinates are nearly constant. Stationary
point 4 in Figure 4-1, at approximately 72s in Figure 4-11, and at the upper side of the
trajectory, is more difficult to capture by the IMU data. At that location, the hips moved a
lot, but the person stayed in one place. This is hard to capture when the UWB data is also
noisy at that point. In Figure 4-11a this can be observed by the alternating ZUPT detection
and movement. Overall, the true stationary points are captured. At 56s an extra ZUPT is
detected at a single time instant. Fortunately, this single detection does not affect the overall
trajectory.
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TraXYZ UWB/IMU EKF + ZUPT
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Figure 4-11: Position coordinates estimated with UWB measurements and an EKF with IMU
model in time update. TraXYZ IMU measurements are used. No IMU bias is subtracted from
the measurements. No NLOS mitigation. A ZUPT is applied. The purple vertical bars indicate
the period’s start or end where the ZUPT detector detects a stationary point. The second figure
compares the UWB/IMU EKF with ZUPT to the UWB/CVM EKF.

Figure 4-11b shows that the averaged trajectory approaches the true trajectory more accu-
rately than the UWB/CVM EKF and the UWB/IMU EKF without ZUPTs. Moreover, some
NLOS problems as well as the IMU integration drift reduced. However, the individual trajec-
tories of the two tags show a couple of inaccurate bends. Presumably due to UWB outliers
and the position and heading being unobservable during ZUPTs [49], [50], [51], [52]. The
latter can cause errors in position and heading in the trajectory [50]. It can be concluded
that the ZUPT itself works, as the true stationary points are captured and the trajectory is
corrected during the stationary points. Problems can still occur before and after the ZUPT
locations.

It was additionally tested to include both a ZUPT and bias estimation in the EKF of Al-
gorithm 3. The previous subsection about bias estimation found that the accelerometer and
gyroscope bias corresponding to the yaw or heading is difficult to estimate due to the unob-
servability of position, heading and gyroscope bias around the vertical axis during stationary
points [50]. When including a ZUPT, this phenomenon was even more noticable, but the
inclination also became inaccurate. The trajectory spiralled upwards, presumably due to
inaccurate UWB data in the z axis (measured height) in addition to the unobservability
problem. According to [49] including gyroscope bias estimation in addition to ZUPTs de-
grades results. Therefore, this section ends with inspecting the effects of only estimating the
accelerometer bias in the state in addition to a ZUPT, while the gyroscope bias is fixed. The
results are displayed in Figure 4-13. The method is achieved by adding a constant gyroscope
bias statement at the end of each iteration of the EKF. Consequently, the gyroscope bias
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state remains constant and is subtracted from the gyroscope measurements in each iteration.
Note that in this way the gyroscope bias is not excluded from the state but is kept fixed with
a constant bias update. The accelerometer bias state is unfixed and is estimated as usual.
The algorithm uses the ZUPT parameters of Table 4-5. Furthermore, the bias estimation
parameters of Table 4-6 are used. The process noise covariance Q; for the position, velocity
and orientation states are set back to 0.6. The value for Qf“ is increased to 107% to make
the estimated accelerometer bias less constant. The initial value for g is set to the constant
gyroscope bias value that is fixed throughout the iterations. This value is found by taking the
average of the gyroscope measurements during the first 30 seconds of the trajectory. During
this stationary point, it is expected that the gyroscope measurements are zero. Therefore the
mean of the measurements during this time interval serves as an indication of the gyroscope
bias present in the sensors. Hence, the gyroscope bias is fixed to (0.0257 0.0462 0.0252)T for
Tagl and (0.1143 —0.0312 0.0368) " for Tag2. These calculated biases in the y and z axis are
about the same as the estimated values in Figure 4-10. The results indicate that the aver-
aged trajectory does not significantly improve compared to Figure 4-9b and 4-12b. However,
Figure 4-13 shows that this method mitigates some inaccurate bends in the ZUPT results of
Figure 4-12a. The trajectories approach the results of the bias estimation in Figure 4-9, while
the stabilization of the stationary points is a beneficial additional result. Remaining errors
can be attributed to accumulating gyroscope bias still present, as this constant value may
not be entirely accurate. The estimated bias over time is shown in Figure B-1 in Appendix
B, where the gyroscope bias is constant over time. The accelerometer bias in the y and z
direction converge to a different value than Figure 4-10.

TraXYZ UWB/IMU EKF + ZUPT
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Figure 4-12: Position coordinates estimated with UWB measurements and an EKF with IMU
model in time update. TraXYZ IMU measurements are used. No IMU bias is subtracted from
the measurements. No NLOS mitigation. A ZUPT is applied.
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TraXYZ UWB/IMU EKF + IMU bias estimation + ZUPT
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Figure 4-13: Position coordinates estimated with UWB measurements and an EKF with IMU
model in time update. TraXYZ IMU measurements are used. No NLOS mitigation. A ZUPT is
applied and only accelerometer bias is estimated and subtracted.

ZUPT parameters
N 5

o2 0.6

a? 0.6
Thr®) 0.3
Thr® 0.25
RtZUPT 10—7

Table 4-5: Parameters used for the ZUPT.

Bias estimation parameters if ZUPT implementation
ge(m) (0,0,0)"

g (0.0257, 0.0462, 0.0252)7

5o @ (0.1143, 0.0312, 0.0368)T

POa 0.5 Isxs

Pg“’ 0.5 I343

Qe 1076 - I35

Qp 10710 I3,

Table 4-6: Parameters used for the bias estimation when additionally a ZUPT is included.
m = 1,2 for Tagl and Tag2, respectively.

4-3-4 Non-Line-of-Sight (NLOS) detection and mitigation
This subsection applies the methods for mitigating NLOS errors in the UWB data discussed
in Subsection 3-1-4. The techniques are also applied and discussed in Subsection 4-2-2. In this

subsection it is chosen to analyze the 90% confidence interval method for NLOS detection,
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because this method is less arbitrary in establishing a restriction for the measurements than
the method that uses a constant threshold on the residuals. The NLOS method applied is
provided in Algorithm 6. The confidence interval method is first applied to the UWB/IMU
EKF without bias estimation and ZUPT. The EKF uses the parameters in Table 4-2. The
value of RYWE in the NLOS algorithm, used for the calculation of the confidence interval in
Eq. (3-15), is set to 0.4. This is higher than RYWB = 0.25 that was set initially. However, it
was found that when RYWB for Eq. (3-15) was set to 0.25, the trajectory of Tagl diverges.
This happens when too many UWB measurements are rejected due to the IMU predictions
drifting from the UWB distance measurements. As a consequence, the algorithm has too few
UWB measurements to determine the person’s heading. Including more UWB uncertainty
in the confidence interval determination prevented the diverging trajectory. In the UWB
measurement update, RPWE is again 0.25. This value then indicates the uncertainty of the
remaining UWB measurements. Figure 4-14 indicates that the resulting trajectory is slightly
more accurate compared to Figure 4-7, for both the individual tag trajectories as the averaged
trajectory.

TraXYZ UWB/IMU + NLOS mitigation
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Figure 4-14: Position coordinates estimated with UWB measurements and an EKF with an
IMU model in the time update. TraXYZ IMU measurements are used. The EKF includes NLOS
detection and mitigation using a 90% confidence interval, both for the CVM and the IMU model
EKF.

The NLOS mitigation with confidence interval is also applied to the EKF including IMU bias
estimation and to the EKF including a ZUPT implementation, according to Algorithm 3.
For the EKF with IMU bias estimation, the averaged trajectory shown in Figure 4-15b is
considered more accurate than the results in Figure 4-9b. However, when inspecting Figure
4-15a, it can be concluded that Tagl is accurate, whereas Tag2 loses accuracy in the upper
side and diagonal of the trajectory, meaning the last part of the walk. This may be due
to useful UWB measurements being rejected by the NLOS method, therefore losing heading
information. The algorithm for the IMU bias estimation and NLOS mitigation uses the
parameters in Table 4-2 and Table 4-4. The value for RYWB used for the calculation of the
confidence interval is in this case 0.25. The estimated accelerometer and gyroscope bias over
time are shown in Figure B-2 in Appendix B. Mainly the accelerometer and gyroscope bias
of Tag2 have increased compared to the estimated bias in Figure 4-10.
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TraXYZ UWB/IMU + bias estimation + NLOS mitigation
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Figure 4-15: Position coordinates estimated with UWB measurements and an EKF with an IMU
model in the time update. TraXYZ IMU measurements are used. The IMU bias is estimated
in the state and corrected for. The EKF includes NLOS detection and mitigation using a 90%
confidence interval, both for the CVM and the IMU model EKF.

Figure 4-16 shows the results of Algorithm 3 when the ZUPT implementation and NLOS
mitigation are included. The results indicate that the trajectory does not improve accuracy
compared to earlier results. The algorithm introduces some inaccurate bends in the trajec-
tory. This was already observed in the ZUPT results without NLOS mitigation. The NLOS
mitigation was not able to solve this. It can be concluded that the NLOS mitigation does
not add value to the ZUPT algorithm. The algorithm that provided these figures uses the
parameters in Table 4-5. Additionally the parameters in Table 4-2 are used, where Q; for p,
v, and ¢ are in this case reduced to 0.4, similar to the previous subsection. The value for
RPWB is set to 0.4 for the confidence interval calculation and set back to 0.25 for the UWB

measurement update.
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Figure 4-16: Position coordinates estimated with UWB measurements and an EKF with an IMU
model in the time update. TraXYZ IMU measurements are used. A ZUPT is applied. The EKF
includes NLOS detection and mitigation using a 90% confidence interval, both for the CVM and
the IMU model EKF.

The previous subsection discussed that including bias estimation of both the accelerometer
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and the gyroscope, along with a ZUPT, does not perform accurately. It is observed that
adding NLOS detection and mitigation to this algorithm does not solve this. Therefore, in
this final experiment, the NLOS mitigation with 90% confidence interval is added to the
accelerometer bias estimation and ZUPT method used at the end of the previous subsection.
For this algorithm the parameters in Table 4-5 and Table 4-6 are used along with Table 4-2.
That is, the gyroscope bias remains fixed and the accelerometer bias is estimated by the
EKF. For this experiment RYWB used to calculate the confidence interval is 0.25. Figure 4-17
indicates the trajectory is almost accurate except for some bends. The inaccurate parts could
partly be attributed to accumulating gyroscope bias that this EKF does not estimate. The
individual trajectories are close to the true square shape.

TraXYZ UWB/IMU + bias estimation + ZUPT + NLOS mitigation
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Figure 4-17: Position coordinates estimated with UWB measurements and an EKF with an
IMU model in the time update. TraXYZ IMU measurements are used. A ZUPT is applied and
accelerometer bias is estimated in the state. The EKF includes NLOS detection and mitigation
using a 90% confidence interval, both for the CVM and the IMU model EKF.

4-4 Joint tags

The second subquestion of this research is about the tight coupling of the two tags on the hips,
and evaluating whether the tags can correct each other’s estimates to, ultimately, improve
accuracy compared to loosely coupled tags. Section 3-2 discussed a method to research
the effect of tightly coupled tags; augmenting the measurement equations with an equality
constraint on the distance between the two tags on the hips. It is assumed that this distance
is fixed and is measured to be 0.27m for the person walking the trajectory. Therefore, in this
section Algorithm 7 is added to the EKF with v = 0.27.

4-4-1 Joint tags with CVM

To start with, the effects of joint tags are evaluated for the UWB/CVM EKF. The EKF
uses the same parameters as in Table 4-1. For joining the tags, the parameters v = 0.27 and
RF = 10710 are used. The latter value represents the noise on the fixed distance measurement
between the two tags.

M. F. Hoekstra Master of Science Thesis



4-4 Joint tags 49

Figure 4-5a and 4-18b show that the trajectories of the individual tags become more accurate
when joining the tags. The distance between the tags indeed remains approximately 0.27m.
However, Figure 4-18c shows that, in this case, the averaged trajectory is similar for the
loose tags and joint tags. Figure 4-19 shows two results when the UWB/CVM EKF is tuned
slightly "worse". First by decreasing the process noise covariance @y to 0.1, meaning the
algorithm puts more certainty in the CVM model. This causes some lag when turning the
upper right corner for the loose tags. Secondly, by reducing the threshold on the residuals in
the NLOS detection to 0.5m. This results in too many UWB measurements being rejected
by the algorithm. In both cases, the results for the loose tags averaged trajectory become less
accurate, while the results for the joint tags remain nearly unaffected. For example, Figure
4-19a shows that for loose tags the algorithm introduces a delay in the upper right corner,
whereas the joint tags remained on the true track. Figure 4-19b shows that for loose tags the
trajectory diverges from the true trajectory when too many UWB measurements are rejected,
whereas the joint tags were better resistant to this problem. These results indicate that for
this experiment and a UWB/CVM EKF, the algorithm demonstrates to be less sensitive to
errors caused by tuning parameters.

. UWB/CVM EKF estimated trajectory IgJWB/CVM EKF estimated trajectory joint tags A\ggraged tag UWB/CVM EKF estimated trajectory
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(a) Trajectory Tagl and (b) Trajectory Tagl and (c) Trajectory averaged
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Figure 4-18: Position coordinates estimated with UWB measurements and an EKF with CVM
for loose tags and joint tags.
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Figure 4-19: Position coordinates estimated with UWB measurements and an EKF with CVM
for loose tags and joint tags. The EKF is tuned slightly "worse". First by decreasing ) in Table
4-1 to 0.1. Second by keeping the parameters of Table 4-1 but decreasing the threshold on the
residual from 1m to 0.5m.
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4-4-2 Joint tags with UWB/IMU fusion

For the UWB/IMU EKF, the tags are joined similarly. Algorithm 7 is used with the EKF
parameters of Table 4-2, along with v = 0.27. Tuning R} differs from the UWB/CVM algo-
rithm in the previous subsection. Setting RF = 10710 means that the distance between the
tags is strictly fixed, since the noise on the distance equation in Eq. (3-19) is almost zero.
However, when applied to the UWB/IMU EKF, this low value for RF causes the S; matrix
to be inverted in lines 2 and 6 of Algorithm 7 (general HtPthT + R;) to be close to singular.
This happens for RF < 1078 and imposes numerical problems. It is found that joining the
tags works for RF = 1073, as shown in Figure 4-20. Intuitively, this value means the distance
between the tags has a freedom of approximately 3cm. Therefore, the fixed distance is less
strictly enforced, but the tags are still coupled to correct each other’s errors. This aligns
with the goal of tracking artists on stage, where the individual tag trajectories do not need
to maintain a strictly fixed distance, but the averaged tag trajectory needs to benefit from
the tag’s mutual corrections.

Figure 4-20b shows the individual trajectories intersect at some points. This may occur be-
cause the other updates in the EKF redirect individual trajectories in addition to the joint tag
update, leading to possible intersections. The averaged trajectory in Figure 4-20c indicates
that the joint trajectory is at points slightly more accurate than the averaged loose tags, for
example the upper side of the square and the upper right corner. Only the right side has an
inaccurate bend towards the left at £(7.25,5.75). Generally, it was found that the tighter
the tag coupling (smaller R}), the more the trajectories intersect, resulting in less smooth
trajectories. For example, Figure B-3 in Appendix B shows the results for R = 1076, It
may be that the individual estimated trajectories each exhibit too many unstable movements,
causing tight coupling to result in unusual or unexpected directions. The higher the value for
RtL , the more the trajectory approaches the loosely coupled tags. Therefore, in these cases,
the averaged trajectory remains largely unchanged.

. UWB/IMU EKF estimated trajectory 9l.’lWBlIMU EKF estimated trajectory joint tags A\gleraged tag UWB/IMU EKF estimated trajectory
Tag1 e Tag1 e UWB/CVM e
8 Tag2 8r Tag2 Y 8 UWB/IMU loose tags| _
® Anchor position A ® Anchor position LN UWB/IMU joint tags »\»;
7 [ . L P 7t [P it e
. 4§y Paty o . - w .
¥
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Figure 4-20: Position coordinates estimated with UWB measurements and an EKF with an IMU
model in the time update, for loose tags and joint tags. No bias correction, ZUPT, or NLOS
mitigation is applied.
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4-4-3 UWB/IMU fusion with joint tags, NLOS detection, ZUPT, and bias esti-
mation

The final subsection of this chapter includes all methods discussed in Chapter 3: UWB/IMU
fusion with bias estimation, ZUPT, NLOS mitigation, and joint tags. That is, Algorithm 3
is applied with all flags on. The tags are joined the same way as the previous subsection and
according to the theory in Section 3-2. The parameters used remain equal to the ones used
for the corresponding experiments for the loose tags in Section 4-3, with in addition a joint
tag update with v = 0.27 and R} = 1073,

Subsection 4-3-3 and 4-3-4 discussed reasons for the reduced performance of the combination
of accelerometer and gyroscope bias estimation, ZUPT, and NLOS mitigation for the loose
tags. Problems observed were too large estimated gyroscope bias in the vertical axis, inclina-
tion drift, mainly of Tagl, resulting in the trajectory rising upwards, and finally, the NLOS
mitigation causing some drift in the trajectory. However, joining the tags did enhance results.
This can be seen in Figure 4-21. The EKF uses the ZUPT parameters of Table 4-5 and the
bias estimation parameters of Table 4-4. For the calculation of the confidence interval for
NLOS detection, the value for RYW® is increased from 0.25 to 0.5. This makes sure that
fewer UWB measurements are rejected in the process, which prevents the trajectory from
diverging. Afterwards, RYWB = 0.25 for the remaining UWB measurements in the UWB
measurement update. The estimated gyroscope bias around the vertical axis remains severely
large. The main difference with the loose tags is that the joint tags were able to prevent the
inclination drift occurring mainly in Tagl, which can be seen in the z-coordinate of Figure
4-21b. This shows that the two tags could, to some extent, correct each other’s deficiencies.
The resulting averaged trajectory closely aligns with the truth, except for the notable bend on
the lower right side and in the diagonal. To conclude, the application of all UWB/IMU fusion
methods shows that joint tags mitigate the issues faced by loose tags. However, the estimated
trajectories for both individual tags and averaged tags still exhibit certain limitations in the
case of joint tags.

Apart from reducing inclination drift, joint tags can also help reduce heading drift if it occurs
in one of the tags. One of the examples where this appears is the EKF with ZUPT and
NLOS mitigation, where some inaccurate bends in Tagl’s trajectory are reduced in the joint
tag case in Figure 4-22b. For example the bends at £(5,5) and +(6.3,4.6) in Tagl’s trajec-
tory. However, it can also cause the other trajectory to show new bends because the tags are
coupled. For example at £(4.8,6.8). These results used the EKF parameters of Table 4-2 and
the ZUPT parameters from Table 4-5. Furthermore, RYWB = 0.4 for the NLOS confidence
interval calculation and RPWB = 0.25 for the remaining UWB measurements. However, the
resulting averaged trajectory did not show accurate results.

The last observed advantage of joint tags is that diverging trajectories are prevented when
applying NLOS detection and mitigation. For example, for the results in Figure 4-23, the
90% confidence interval is calculated with RYWB = 0.3. In this case the loose tags diverged,
but the joint tags remained on track. This means that more UWB measurements could be
rejected based on NLOS detection, without causing the trajectory to diverge. The loose tags
needed a value RYWB > 0.4 to not diverge. This phenomenon occurred more often when
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TraXYZ UWB/IMU + bias estimation + ZUPT + NLOS mitigation
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Figure 4-21: Position coordinates estimated with UWB measurements and an EKF with an
IMU model in the time update, for loose tags and joint tags. Bias correction, ZUPT, and NLOS
mitigation are applied.

analyzing joint tags and NLOS, also for the UWB/CVM case.

Appendix B-2 shows several auxiliary results for joint tags. Generally, it can be concluded
that corrections of the individual trajectories are possible. Even though the fixed distance is
not exactly preserved. That is because the value of RF = 1073 gives some freedom to the
value of the distance between the tags, together with the estimates still being propagated
according to other information in the EKF. Furthermore, the joint tags’ averaged trajectory
often did not necessarily improve compared to the loose tags’ averaged trajectory. Hence
strong overall improvement due to joint tags is not observed. However it is shown that in
some cases the tags can correct for each other’s deficiencies, therefore showing some potential
for further research on joint tags with fixed distance.
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TraXYZ UWB/IMU + ZUPT + NLOS mitigation
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Figure 4-22: Position coordinates estimated with UWB measurements and an EKF with an IMU
model in the time update, for loose tags and joint tags. ZUPT and NLOS mitigation are applied.
No bias correction included.
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Figure 4-23: Position coordinates estimated with UWB measurements and an EKF with an IMU
model in the time update, for loose tags and joint tags. NLOS mitigation is applied. No bias
correction or ZUPT included.
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Chapter 5

Conclusion

5-1 Conclusion and discussion

The research studied how the sensor fusion of two coupled UWB/IMU sensors, attached to
a person’s hips, can be used to improve position tracking accuracy compared to using two
separate UWB tags. This research question gave rise to two subquestions concerning the
potential of UWB/IMU sensor fusion, and the potential of coupled tags for position tracking
accuracy. This chapter aims to answer these questions and the main research question, fol-
lowed by suggestions for future research and recommendations.

The first subquestion focused on the potential of UWB/IMU fusion for improving position
tracking accuracy. UWB-only tracking using a Non-Linear Least Squares (NLS) algorithm
showed noticeable inaccuracies and outliers. The use of an UWB/IMU Extended Kalman
Filter (EKF) improved accuracy by smoothing the trajectory and correcting UWB outliers.
Techniques like IMU bias correction, Zero Velocity Update (ZUPT), and Non-Line of Sight
(NLOS) detection also showed potential to enhance accuracy further. While IMU bias esti-
mation improved trajectories, challenges with heading and gyroscope bias in the vertical axis
arose, presumably due to their unobservability during stationary periods or ZUPTs. Accurate
UWRB data is essential for bias estimation since it provides heading information without a mag-
netometer. A ZUPT effectively captured stationary points but struggled with hip movements
and does not guarantee improved trajectory between ZUPTs. NLOS detection and mitigation
helped reject UWB outliers, provided that the UWB measurement noise covariance matrix is
suitable to prevent trajectory divergence. To answer this subquestion, UWB/IMU fusion can
enhance position tracking accuracy but requires further refinement of these methods used for
TraXYZ.

The second subquestion focused on the potential of tightly coupling the tags for position
tracking accuracy. This research used two UWB/IMU sensors on the hips, enforcing a fixed
distance through an equality constraint on the joint state in the EKF, therefore adding to
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research on fusing multiple sensors attached to the moving object for location tracking. The
fixed distance constraint was included by augmenting the EKF measurement update equa-
tions. The results indicated that joint tags could correct heading and inclination errors of
individual tags, reduce divergence due to strict NLOS mitigation, and reduce the algorithm’s
sensitivity to tuning variability. However, the fixed distance was not consistently preserved
due to increased noise covariance on the tag distance and the impact of other updates within
the EKF. Nevertheless, the primary goal was mutual error correction by the tags, ensuring
an averaged trajectory with increased accuracy. While joint tags can partially correct each
other’s trajectories, the averaged trajectory did not always improve for UWB/IMU fusion.
In the case of UWB/CVM, the fixed distance can be preserved with negligible noise on the
tag distance. This potentially shows that the fixed distance can be better preserved if the
algorithm functions accurately. In conclusion, while joint tags have potential for improving
position tracking accuracy, further research is needed for UWB/IMU sensors. This will be
discussed in the next section.

The potential of UWB/IMU sensor fusion and joint tags analyzed in the two subquestions
leads to answering the main research question: "How can the sensor fusion of two coupled
UWB/IMU sensors, attached to a person’s hips, be used to improve position tracking accuracy
compared to using two separate UWB tags?"

The results from this experiment indicate that incorporating IMU data through an EKF
can correct for UWB data impacted by NLOS and increase smoothness, as shown by the
comparison with UWB-only NLS algorithm results. However, using a Constant Velocity
Model (CVM) instead of IMU sensors can do this as well. This could be because the CVM
is better suited for modelling the true walk in this specific experiment, which might already
resemble a constant velocity walk. Since the IMU in principle provides more information, it
is expected that for different walking trajectories with more bends and turns, the IMU model
is preferred over the CVM. Then techniques such as IMU bias estimation, ZUPT, and NLOS
detection have shown potential for further improvement of UWB/IMU fusion tracking. The
observed effectiveness of tightly coupled tags lies in the ability to mutually correct individual
trajectories and reduce sensitivity to tuning variability, though the averaged trajectory might
not significantly improve. The UWB/CVM EKF showed that the joint tags method can
function effectively.

The limitations of the tightly coupled joint UWB/IMU EKF are mainly attributed to the
quality of UWB data in this experiment, which has evident inaccuracies and outliers, espe-
cially in the z-direction. While the IMU can correct some UWB errors, it also contains bias
and noise that accumulate over time. Therefore, sufficiently accurate UWB data is necessary
to compensate for that. The UWB data is important for heading estimation without magne-
tometer and for IMU bias estimation. Inaccurate UWB data is most likely the main reason
for the limited performance of the developed algorithm. It was additionally found that the
Xsens IMU sensor generates more accurate results than the TraX'YZ sensor due to its smaller
inherent bias and noise. However, it is expected that after improvements in UWB setup and
calibration, the TraXYZ IMU also suffices. Besides the data quality, several research factors
may cause limited performance. For example the method for determining initial orientation
and the modelling of the UWB data. This will be discussed in the next section.
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To conclude, when IMU data is incorporated into the TraXYZ system, a UWB/IMU EKF can
be applied. This should be tuned so that a balance is found between smoothness and latency
while keeping the values for noise covariance within a reasonable range. In general, tuning
depends on how much trust is put in the IMU data relative to the UWB data. Accurate
initial state estimation also increases performance. However, limitations of this algorithm
were found that could not be resolved by tuning the algorithm. This research emphasized
the importance of sufficiently accurate UWB data to maximize the algorithm’s effectiveness.
Hence it is recommended to look into UWB calibration. When data has improved, it is
recommended to include IMU bias estimation, ZUPT, and NLOS detection into the EKF,
as each of these methods showed their potential for improved tracking accuracy. Attaching
multiple tags for coupled mutual position correction has benefits, as more clearly shown in
the UWB/CVM case. One such is the reduced sensitivity to tuning variability. However, the
technique studied in this thesis needs more research when IMU sensors are involved.

5-2  Future work

Following this research, it is recommended to start with obtaining a new dataset and repeat
the research conducted in this report. Particularly, make sure the UWB setup has improved
and the UWB system is well calibrated. The hypothesis is that this reduces most problems
found in this research. Secondly, it might help to incorporate a different type of IMU sensor
that contains less bias and noise. Once the research is tested with a better dataset, there
are several additional suggestions to be considered. To start with, the UWB data can be
modelled differently. For example, sometimes the data follows a heavy-tailed distribution due
to outliers. The research in [9] discusses a method to implement this. Secondly, the UWB
data can be preprocessed with a UWB/CVM EKF, creating a loosely coupled algorithm.
This is similar to performing NLOS mitigation but based on the CVM instead of the IMU
model. However, the purpose of incorporating an IMU sensor is then questioned. Concerning
the IMU data, it is beneficial to analyze the bias by placing it stationary on a table and
measuring from all six sides. This provides an indication of the bias, which can serve as an
initial condition for bias estimation. In general, having a more accurate initial state is helpful.
It is recommended to create a situation where the initial position of the artist in the UWB
frame can be approximately determined. The artist should also begin in a way that allows
their heading to be derived and then proceed to walk in that direction. Once the data quality
is improved and the same sensors are used consistently, it is advised to thoroughly investigate
the tuning parameters to ensure they can remain equal for different theatre productions.
The values can also differ for Tagl and Tag2. It can be allowed to let the values for noise
covariance matrices vary per time step. Increasing the UWB measurement noise covariance
over time may be beneficial for NLOS mitigation. Moreover, the NLOS mitigation can be
performed by comparing the averaged position estimates of the two tags with the UWB
distance measurements, provided the tags are joint. Regarding the UWB/IMU fusion with
joint tags, it may be beneficial to perform the fixed distance update less frequently rather
than at every timestep. Finally, if height estimation issues persist, a constant height update
could be considered in the EKF.

Once the UWB/IMU fusion EKF has been thoroughly researched and possibly improved,
related future research questions can be considered:
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e Does this algorithm ensure that fewer UWB anchors are needed for accurate position
estimation?

o How can the tags be weighed in the algorithm so that the most accurate tag is predom-
inant in position estimation with joint tags?

e How can the height estimation be improved?

e Are there benefits to using a different fusing algorithm than the EKF?

Regarding research on tightly coupling two tags, the technique developed in this thesis was
shown to work in the case of UWB/CVM. However, when orientation is involved by using IMU
sensors, this technique needs more research. Potential solutions would be to further reduce
IMU bias, or include a constant height update or constant inclination update in the EKF.
Generally, it can be concluded that attaching multiple tags has benefits for position tracking
accuracy. Averaging multiple loosely coupled tags already shows improvement. Tightly cou-
pling the tags can provide additional benefits like corrected trajectories of the individual tags,
preventing divergence due to strict NLOS mitigation, and reducing the algorithm’s sensitivity
to tuning variability. Therefore, fusing multiple tags shows potential for increased robustness
against errors occurring in individual tags within general location tracking applications.
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Jacobian matrices for UWB /IMU
fusion EKF

A-1 Jacobian matrices for UWB/IMU fusion EKF

The EKF developed in Chapter 3 uses Jacobian matrices defined as Ft(m) = 85(];)

z(m) = ('m)

and Ggm) = 83{")

)™ with f the dynamic IMU model of Eq. (2-4) and z(™ =

p, v, q) the state of tag m € {1,2}. This results in the expressions for an
( )" the state of tag {1,2}. Thi Its in th ions for F™ and G{™
for each tag m € {1,2}

_I3><3 At - I3x3 (A2t)2 [aﬁlzb, 85?;1)7 85?;7 852? ” i) yat

Ft(m) = 0 I3y At [a;:;zb’ 861;21’;‘1’7 aézzb’ aazzb H i yat e R10X10, (A-1)
0 0 I4><4+%S(ygrtl)>
(85 Ioxs 0 0

G = 0 At Is 0 € R1I0X9, (A-2)
L0 0 85@M)

with At the time difference between consecutive measurements provided by tag m specifically,
R™ given in Eq. (2-5), and S and S are given in Eq. (2-6) and Eq. (2-7), respectively. Note
that in the calculation of Ggm), the negative sign of e, ; and the multiplication of R with
€q,t in the model of Eq. (2-4) are omitted without loss of generality [13].

The Jacobian matrix in the EKF measurement update is defined as Hz UWB _ di?,;)

m)

z(m) ::i:ft
for each UWB ranging measurement ¢ at time ¢, where ydi = hi(x,plL.) + efi’t is the measure-
ment model in Eq. (2-1). Hence h;(z, p..) = [P}, — ptll2- The expression for Ht(m)’UWB for
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the measurements ¢ provided by tag m € {1,2} is then

_(p;nc’z_ﬁ(;z)) _(p;nc,y_ﬁg:ytl)) _(p'cllnc,z_ﬁ_(z’trz)) 0 O
S T I L -
Ht(m), = : c R*Var ><10’ (A-3)
~(Phnee=BYY)  ~Phney DoY) (P, —DUY) .
hncpl e Wphne=p " lz btz
where yc(lf'z) contains all UWB measurements i provided by tag m € {1,2} and ﬁg’z)’ 253(/772)7 ﬁif?)

represent the x, y and z coordinate of the position ﬁgm).

A-2 Jacobian matrices for UWB/IMU fusion EKF with bias esti-
mation

If the bias is estimated in the state of the EKF, the state is augmented to z; = (p?, v}, ¢?°, 52775, 5g7t)T

and the model f is augmented with the random walks in Eq. (3-9), then Ft(m) and Ggm) are
adjusted to

m
Ft( ) _
_ ) . 5 -
I3x3 At-I3xs (A2t> [afqzb, aﬁ?b, aézzb, a(g;” ” _A(m)-(yé’,'i)%i’fl)_l) *%Rnb‘q:q(m) 0
a=d; t—1
0 Isgs At[aéz”b OR™  gR"b  gRMD ” (™ 30 _(ap? R 0
a0 ' 9q1 ' 0dag ' Oqg :q“”) at a,t—1 2 q:qgf_nl)
t—1 (m)
0 o Tt 3L 557 ) 0 e P o) gl
0 0 0 I3xs 0
L O 0 0 0 Isxs i
c R16>< 16’

(A-4)

with At the time difference between consecutive measurements provided by tag m specifically,
R™ given in Eq. (2-5), and S given in Eq. (2-6). Furthermore,

~(m) ~(m) ~(m)
(m) B
AtOSWos = Out) Lom _ At =" " ) (A-5)
5 85w7t t—1 2 _q:())m) _qA((]m) (ﬁm)
AR
S 0 0 0o
m) 0 At IS><3 0 0 0
G _ . . %5’(@@1)) 0 o | er16x15 (A-6)
0 0 0 I3><3 0
0 0 0 0 I3x3

with S given in Eq. (2-7).
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A-3 Jacobian matrix for UWB/IMU fusion EKF with tightly cou-
pled tags

To fuse the data of the two tags in an EKF, the EKF measurement update is augmented
with an equality constraint on the relative distance between the tags. The equations use the
Jacobian of ||Lz|s evaluated at 2 = &. The expression for the Jacobian Hf is

5(1) _ 5(2) 5(1) _5(2) S(1) _ 5(2)

tL — pm,t_pa:,t py,t_py,t pz,t_pz,t
R S P R P e
(1 (2 A(1 ~(2 (1 (2
R R C BN, DR,
N N R N N R )
R e e P
(A-7)
ith he number of f d ively, and p{", p") | p{™)

with n1, ng the number of states of Tagl and Tag2, respectively, and p, ", D, ;"> D, represent

the z, y and z coordinate of the position ﬁgm) for tag m € {1, 2}.
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Additional results

Appendix B

B-1

Accelerometer bias (m/sz)
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Bias estimation results
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Estimated IMU bias over time when only accelerometer bias is estimated and
M. Fg)f-ﬁgsé(f(osgsabias is fixed over time. Additionally a ZUPT is applied.
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Figure B-2: Estimated IMU bias over time when additionally NLOS mitigation is applied.
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B-2 UWB/IMU EKEF joint tags results
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Figure B-3: Position coordinates estimated with UWB measurements and an EKF with an IMU
model in the time update, for loose tags and joint tags. In the joint tag update the noise covariance
is set to RL = 1075. No bias correction, ZUPT, or NLOS mitigation is applied.
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Figure B-4: Position coordinates estimated with UWB measurements and an EKF with an IMU
model in the time update, for loose tags and joint tags. NLOS mitigation is applied where
RYWB = 0.4 to calculate the confidence interval and RYWE = 0.25 for the remaining UWB
measurements. No bias correction or ZUPT is applied.
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Figure B-5: Position coordinates estimated with UWB measurements and an EKF with an IMU
model in the time update, for loose tags and joint tags. A ZUPT is applied. No bias correction

or NLOS mitigation is applied.
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Figure B-6: Position coordinates estimated with UWB measurements and an EKF with an IMU
model in the time update, for loose tags and joint tags. A ZUPT is applied. Only accelerometer
bias is estimated. Gyroscope bias is fixed. No NLOS mitigation is applied.
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CVM
EFIR
EKF
GPS
IMU
KF
LiDAR
NLOS
NLS
PF
SHOD
ToF
TWR
UKF
UwWB
ZUPT

Constant Velocity Model
Extended Finite Impulse Response
Extended Kalman Filter

Global Positioning System

Inertial Measurement Unit
Kalman Filter

Light Detection And Ranging
Non-Line-of-Sight

Non-Linear Least Squares

Particle Filter

Stance Hypothesis Optimal Detector
Time of Flight

Two Way Ranging

Unscented Kalman Filter
Ultra-Wideband

Zero Velocity Update
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