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Definitions
Early Warning Model
Model that aims to provide a warning for upcoming events, in this case thunderstorms, so that precau-
tions can be taken to minimize the negative impacts.
F Score
Indicates the relative importance of model inputs for the XGBoost algorithm by summing the number
of times an input was used to make a decision.
False Alarm Ratio
The percentage of alarms that are false. It is defined as false positives over false positives plus true
positives.
False Negative
Occurs when no alarm is issued for a thunderstorm.
False Positive
An alarm is issued but no thunderstorm occurs.
Hit Rate
The percentage of thunderstorms that have been predicted. Defined as true positives over true posi-
tives plus false negatives.
Hybrid Model
Model developed for this study that combines classification and regression.
Knowledge Inputs
Model inputs based on an analysis of the Spearman correlation and probability density functions.
Lead Time
Time between when the alarm is issued and when the first lightning strike occurs.
Lightning Strike
A cloud-to-ground or cloud-to-cloud lightning strike as measured by the TAHMO lightning sensor.
Model Inputs
The data on which the model trains and predicts the model target.
Model Target
The variable that the model aims to predict.
Neural Network
A machine learning technique based on optimizing weights and biases in neurons to minimize the dif-
ference between model target and prediction.
Raw Inputs
The 9 variables that are measured by the TAHMO station, namely pressure, lightning distance, light-
ning strikes, precipitation, radiation, relative humidity, temperature, wind direction, and wind speed.
Storm Intensity
Defined as the number of lightning strikes occuring during the lifetime of the storm.
Thunderstorm
A period when the TAHMO lightning sensor measures lightning strikes. A storm ends when there has
not been a lightning strike for one hour.
Training Set
Past measurements that are used to find the relationship between model inputs and model targets.
True Negative
No alarm is issued and no thunderstorm occurs.
True Positive
An alarm is issued and a thunderstorm occurs.
Validation Set
Measurements that are kept separate and are used as a final test to see how the model performs on
unseen data.
XGBoost
Machine learning technique based on combining decision tree’s.
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Summary

Introduction
This report describes the development of an early warning model for thunderstorm occurrence around
Lake Victoria. It is the first model to use the TAHMO lightning sensor data to predict thunderstorms. This
study hopes to contribute to the TWIGA focus area of increasing disaster resilience through forecasting
and early warnings and could be used to reduce the impact of thunderstorms for the communities
around Lake Victoria, and to aid the flights of Zipline’s medicine-delivery drones.

Literature Review
Lake Victoria is one of the most lightning active places in the world. The main mechanism of thun-
derstorm formation is differential heating and cooling between land and lake. This causes nighttime
thunderstorms over the lake and daytime thunderstorms over the land. Four existing early warning
models have been investigated. Two models used weather station data, one satellite data, and the
last one balloon soundings. The study areas were Lake Victoria, Switzerland, and Northern Italy. Data
records from 9 to 11 years were used and the lead times ranged from 10 minutes to 6 hours. Two
models used linear techniques and two models non-linear techniques, namely a neural network and
an ensemble of decision trees. The models achieved hit rates of 0.77, 0.83, 0.85, and 0.89. The false
alarm ratios were 0.03, 0.29, 0.60, and 0.94. In this study the effect of different prediction techniques,
both linear and non-linear, as well as different model inputs will be further investigated. Moreover, this
study also aims to predict the intensity of the approaching storms, which could be useful in guiding
emergency precautions.

Method
From the 20 TAHMO stations on the Kenyan side of Lake Victoria, TA00173 is chosen to build the
model based on the 3 year data length and the the 2.7% missing values. The station measures 9 vari-
ables, namely pressure, lightning distance, lightning strikes, precipitation, radiation, relative humidity,
temperature, wind direction, and wind speed. The data is divided into a two year training set from
June 2017 until May 2019, and an one year validation set from June 2019 to May 2020. The model is
tested with two different sets of model inputs. The first set contains 19 model inputs, selected from the
5-minute interval measurements, standard deviations, gradients and past 24 hour values, based on
the Spearman correlation and probability density functions (knowledge inputs). The second input set
contains the 5-minute interval measurements of the 9 variables (raw inputs). Three model techniques
are tested, namely a linear regression model, a neural network, and an ensemble of decision tree’s
(XGBoost). The three techniques and two input sets lead to six model configurations. A modelling
approach is developed which combines classification and regression into a single model. The model
target is the sum of lightning strikes in the next six hours at 5-minute resolution. The model predictions
are summed at this resolution and once the threshold is exceeded an early warning is issued. The
value of this threshold influences the hit rate, false alarm ratio, and lead time. The average model
prediction six hours before the first lightning strike gives the thunderstorm intensity. The advantage,
compared to for example the set-up of the other Lake Victoria model, is that the temporal resolution is
maintained because the aggregation occurs after the prediction and not before. This also leads to a
more precise lead time. The algorithm is newly developed and should be reviewed by another party.

Results
The raw inputs score best on the number of true positives. The improvement compared to the knowl-
edge inputs is 14%, 10%, and 6%, for the linear regressionmodel, the neural network, and the XGBoost,
respectively. The knowledge inputs score best on the number of false positives. The improvement com-
pared to the raw inputs is 0%, 14%, and 15%, for the linear regression model, the neural network, and
the XGBoost, respectively. The knowledge inputs also increase the lead time by 5%, 6%, and 11%,
for the linear regression model, the neural network, and the XGBoost, respectively. The non-linear
techniques improve the true positives by 4% for the neural network and reduce them with 1% for the
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x Summary

XGBoost, compared to the best linear regression model. The effect on the false positives is larger,
namely an improvement of 40% for the neural network and 35% for the XGBoost model. An increase
in lead time of 19% for the neural network and 10% for the XGBoost is achieved. The knowledge in-
puts combined with non-linear techniques have slightly smaller errors in the intensity prediction of the
medium and large thunderstorms.

The neural network with raw inputs gives the highest hit rate (0.91) of all six configurations. The
neural network with knowledge inputs has a lower hit rate (0.81) but the lowest false alarm ratio (0.43),
the highest average lead time (220 minutes), and the lowest mean absolute error and mean absolute
relative error for the medium (51-100 lightning strikes) and large thunderstorms (101-889 lightning
strikes). The neural network with knowledge inputs therefore performs best on three of the four criteria.
This model predicts 220 out of 273 thunderstorms, issues 164 false alarms and has 806 true negatives.
The model has an mean absolute error of 58 lightning strikes and a mean absolute relative error of 5.
Compared to the existing early warning models, the neural network with knowledge inputs ranks fourth
out of five on the hit rate and third out of five on the false alarm ratio. The model does this with a data
length record of three years compared to at least nine year of the other models.

Conclusion
From the existing early warning models it is concluded that regardless of the type of data source, area,
and prediction technique, it is possible to predict the majority of thunderstorms. However, with the
exception of the Switzerland study which used a very short lead time, the challenge is to reduce the false
alarm ratio. This study finds that for predicting thunderstorms a linear technique and current weather
station measurements are sufficient, but using non-linear techniques and past temporal weather station
measurements reduces the false alarms and improves the lead time. This effect is also seen for the
intensity prediction but no conclusions are drawn at this point due to the small differences and overall
lacking skill in this area. Overall, it is concluded that the classification results of this model show promise
but the false alarms are still too high for any practical application. Moreover, at this stage the model is
not able to predict if the upcoming thunderstorm will be small or large.

Recommendations
Several recommendations are made to further develop the model. These are combining the neural
network with raw inputs and the neural network with knowledge inputs, reviewing the model set-up and
algorithm, optimizing the model parameters, trying out a LSTM neural network, conducting a sensitivity
analysis on the lead time, data length, andmodel inputs, combiningmultiple weather stations, and trying
additional data sources such as overshooting tops or numerical weather predictions. To understand
if the model also has potential for aiding Zipline’s medicine-delivery drones, it should be tested on a
weather station in a different area. Finally, to learn how the model performs in practice it should be
tested on location.
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1
Introduction

This report describes the development of an early warning model for thunderstorm occurrence. The
possibility and idea of creating this model originates from the desire to investigate and use the lightning
sensor data that is measured by the TAHMO stations. This is the first attempt to use this data for such
an early warning model. As a starting point, the Lake Victoria area is chosen for this research because
of the dense TAHMO weather station network and the high lightning activity. The early warning model
has the potential to reduce the impact of thunderstorms for the communities around Lake Victoria as
well as improve the flight safety for medicine-delivery drones. This potential will be elaborated on in
Section 1.1. The research fits well within the objectives of the TWIGA project, so a brief framework is
presented of both TAHMO and TWIGA in Section 1.2. To introduce some overarching structure, the aim
of the research is described in Section 1.3 in the form of an objective, research questions and model
criteria. Finally, Section 1.4 gives a brief outline of the chapters for the reader to have a comprehensive
idea of what to expect.

1.1. Relevance
The quality of weather services in Africa is still low compared to other regions. For example, the one-
day weather forecast skills in the tropics are similar to those at day six in the extra tropics (Haiden et al.
2012). The lack of skill is one of the reasons that weather and climate services are still underused
in Africa. In East-Africa the percentage of the population using weather services is estimated to be
between 15% and 82% depending on the service and population, with lower numbers in West-Africa
(5.6%-76%) and higher numbers in Southern Africa (27%-86%)(Vaughan et al. 2019). The same study
indicates that in Malawi, indigenous knowledge and personal experience was found to be more reliable.
Global warming is threatening this knowledge with potentially harmful consequences. Another study
shows that much of the weather and climate information in Africa comes from global data sets that
have a coarse spatial resolution making it less useful for individual users (Singh et al. 2018). Creating
weather services that are reliable and actually useful for end-users is for this reason a promising field.

This is also true for the area around Lake Victoria. The lake is the largest in Africa and sustains
the livelihood of 30 million people (Thiery et al. 2017). The Ugandan Meteorology Department and the
WMO indicate that Uganda, one of the countries bordering Lake Victoria, has 287 thunderstorm days
a year (Mary and Gomes 2015). These thunderstorms have severe consequences, for example by
posing a hazard to the 200.000 fishermen operating on the lake. The Red Cross estimates that 3000 to
5000 people die every year on the lake (Thiery et al. 2017), although the specific causes are unknown.
It is estimated that at least 8 relatives, on average, depend on each fisherman. This, in turn, causes
major economic and social implications. Besides affecting the lake, thunderstorms also provide risks
for the surrounding land. Between January 2007 and December 2011, 150 deaths and 584 personal
injuries due to lightning were reported in Uganda (Mary and Gomes 2012). Another study shows that
between 2010 and 2012, the North Eastern Ugandan part of Lake Victoria had 18 deaths and 46 injuries
reported and the North Western Ugandan part 22 deaths and 50 injuries (Mary and Gomes 2015).
Although not around Lake Victoria, another potential application of the early thunderstorm warning is
for the delivery of emergency supplies by drones. In Rwanda and Ghana, the Zipline company uses
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2 1. Introduction

drones to quickly deliver medical supplies to remote areas, but they are often lost due to downdrafts.
These downdrafts occur during cold pools caused by evaporation of heavy rainfall (Schlemmer and
Hohenegger 2014). Since thunderstorms coincide with heavy rainfall, an indication of the likelihood
of thunderstorms occurring in the coming hours would be tremendously helpful in deciding if a drone
should be launched. It should be noted that although an early warning model for thunderstorms could
be beneficial, it is only a part of the required measures to reduce the associated risks. For example,
as mentioned by Mary and Gomez, financial constraints often force the people around Lake Victoria to
keep working outside, regardless of a thunderstorm occurring (Mary and Gomes 2015).

1.2. Framework
In-situ observations play an important role in the quality of weather and climate services by providing
initial conditions for numerical models, validating predictions and offering information on small spatial
scales. However, it is generally known that weather stations are sparse in sub-Saharan Africa and the
existing ones are often unreliable in communicating their measurements (Dezfuli et al. (2017); van de
Giesen et al. (2014)). To tackle this problem, TAHMO was founded in 2014 with the aim to deploy
cost-effective and robust weather stations throughout sub-Saharan Africa (van de Giesen et al. 2014).
To make TAHMO financially sustainable and to create a large positive impact, the raw weather station
data has to be transformed into actionable information. A big step in this direction is the TWIGA project,
which is short for transforming water, weather and climate information through in-situ observations
for geo-services in Africa (TWIGA 2017). The project runs from 2018 to 2021 and has the objective
to develop information services specifically addressed to the needs of the African stakeholders. By
involving and promoting businesses, TWIGA not only wants to create sound technical products, but
also implement them commercially. One of the TWIGA focus areas is increasing disaster resilience
through forecasting and providing early warnings. The development of an early warning model for
thunderstorms has the potential to contribute to this area.

1.3. Aim
This research aims to create a completely new early warning for thunderstorm occurrence around Lake
Victoria. It will be the first early warning model that uses the TAHMO lightning sensor data. Although
the model is new, existing early warning models will be investigated to serve as an inspiration and
comparison. The developed model will rely on a data-driven approach instead of explicitly modelling
physical phenomena. Three prediction techniques as well as two different sets of model inputs will be
tested. Whereas other studies have focused only on classifying thunderstorm occurrence, this research
will also attempt to predict the thunderstorm severity. The model will be evaluated on four criteria:

1. Percentage of thunderstorms that are predicted by the model (Hit rate) should be maximized.

2. Percentage of alarms that are false (False Alarm Ratio or FAR) should be minimized.

3. The lead time of the predictions should allow for communication of the warning and taking appro-
priate safety measures.

4. The prediction should indicate the intensity of the approaching thunderstorm, where large thun-
derstorms carry more weight.

Based on these criteria the prediction technique and model inputs that give the best performance
are selected for a further analysis. To summarize the above, three research questions are posed:

• How do the current thunderstorm early warning models work and perform?

• Which model inputs and prediction technique lead to the best performance of the early warning
model based on the four model criteria?

• What are the prediction characteristics of the best performing model?
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1.4. Outline
The literature review in Chapter 2 consists of two parts. The first part deals with the basic mechanism
of thunderstorm formation around Lake Victoria. This is included to have a general idea of what the
model should capture. The second part of the literature review discusses the most relevant early
warning models and how they work and perform. These lessons will guide the development of the
early warning model and can put its performance in a larger context. Chapter 3 is dedicated to the
method of developing the model. It describes the whole procedure from selecting the weather station
data to validating the final model. Chapter 4 gives an overview of the results, concretely on how the
different prediction techniques and model inputs perform and a more detailed investigation of the best
model. In chapter 5 the model is reviewed and discussed. Finally, in chapter 6 the research questions
are answered and recommendations are made for future research.





2
Literature Review

With this chapter a foundation will be laid upon which the early warning model can be build. The model
aims to predict thunderstorm occurrence based on identifying patterns in past measurements. Under-
standing how the thunderstorms are formed can provide important insights into the value of the different
measured variables. Section 2.1 will show that the basic mechanism of thunderstorm formation around
Lake Victoria is differential heating between lake and land, which causes a wind that is forced upward
either by convergence or topography. Different studies and figures will be addressed to improve the
understanding of this process. There already exist a variety of early warning models for thunderstorm
prediction. For this study four models are selected that show the most promise and relevance. They
are all relatively recent studies, the oldest from 2007 and the most recent from 2019. One of them uses
Lake Victoria as a study area. Two others are included because they solely use weather station data,
as is the case with this study. The fourth study is chosen because it utilizes a neural network, a predic-
tion technique that receives a lot of attention in the field of machine learning and artificial intelligence.
These models will be covered in Section 2.2, which is also the last section of this chapter.

2.1. Thunderstorm Formation
Lake Victoria is one of the lightning hotspots in the world with over 50 lightning flashes a year per km2
(Mary andGomes (2015); Albrecht et al. (2016)). Thismakes it very suitable to test a thunderstorm early
warning model. With its surface area of 68,800 km2, over 1.5 times the size of the Netherlands, the lake
has a strong influence on the weather. Unequal heating and cooling of the lake and land causes a lake-
breeze during the day and a land-breeze during the night. At daytime the surrounding land warms faster
than the lake, causing a faster expansion of the land air column that results in an air stream from the land
to the lake at high altitudes. This in turn results in high pressure at the lake surface and low pressure at
the land surface, which eventually propels an air stream from the lake to the land. At the north eastern
part of the lake themoist wind from the lake is pushed upward due to the topography, causing convection
and thereby resulting in the formation of large cumulonimbus clouds. The topography of Lake Victoria
is shown in Fig. 2.1. During the night the land cools faster which results in the opposite situation. A land
breeze converges over the lake, thereby being forced upward and resulting in night-time storms. The
land and lake breeze lead to the occurrence of thunderstorms over the lake at night-time and mainly
on the eastern and north-eastern surrounding land during daytime. That night-time storms occur over
the lake and day-time storms at the north-eastern land, is also verified by 16 years of data from the
NASA Optical Transient Detector on board of the OrbView-1 (Albrecht et al. 2016). The study by Thiery
et al. (2016), that looked at overshooting tops detected from observations by the SEVIRI instrument, as
shown in Fig. 2.2, provides additional confirmation of this process. Overshooting tops are described
in the study as dome-like protrusions atop a cumulonimbus anvil and are induced by intense updrafts,
thereby providing a proxy for thunderstorm occurrence. Fig. 2.2 shows that the number of overshooting
tops is highest over the lake at night and highest on the eastern and north-eastern surrounding land
during daytime. Relating this to our research, it means that the TAHMO lightning sensor should also
indicatemost lightning activity during daytime. That this process is both theoretically well-understood as
well as confirmed by the satellite data of overshooting tops, gives reason to believe that thunderstorms
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6 2. Literature Review

can be potentially well predicted. For example, if the weather station data captures the radiation that
leads to surface heating, the low-pressure system as a result of the heating, or the surface wind from
the lake to the land, it might also mean that thunderstorms can be predicted. The rest of this study
will show if this is indeed the case. Nonetheless it also gives rise to worry. The resulting model might
perform well around Lake Victoria but can lack skill to assist the medicine-delivery drones that operate
in Rwanda and Ghana. The aim therefore will be to develop a method that can also be applied to other
regions but it will be outside the scope of this study to test this.

Figure 2.1: Topography of East Africa. Lake Victoria is located at an altitude between 1000-1500 meters and the eastern
mountains range from 1500 meters to 3000 meters (Yang et al. 2015)

Figure 2.2: Overshooting top detection during 2005-2013, colours show total number of overshooting tops per satellite pixel,
over the measurement period (a) from 9:00 to 15:00 UTC and (b) from 0:00 to 09:00 UTC (Thiery et al. 2016)
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2.2. Existing Early Warning Models
Developing a new early warning model came from the desire to investigate the lightning sensor data
on the TAHMO stations. Moreover, a previous project on neural networks gave the possibility to apply
the gained knowledge here. Besides this, the development of the model has to be done from scratch.
Looking at the early warning models that already exist and learning from them is therefore essential. As
a way to put the early warning model in a more formal setting, it can be characterized as nowcasting.
The WMO defines nowcasting as ‘’forecasting with local detail, by any method, over a period from the
present to 6 hours ahead, including a detailed description of the present weather’’ (WMO 2017). The
four studies that have been selected for this research all fit this definition and will be investigated in this
section.

2.2.1. Lake Victoria Model
The first early warning model that is considered is developed by Thiery et al. (2017), and aimed to
predict the 1% most intense night-time thunderstorms over Lake Victoria. A logistics regression model
was used as the prediction technique. Thunderstorms were characterized by the occurrence of over-
shooting tops, as identified by an algorithm that takes satellite observations as input. The intensity is
defined as the number of overshooting tops over the lake. A nine-year dataset was used originating
from the SEVIRI instrument on board the Meteosat satellite. The authors mention that the predictability
is derived from afternoon land storms that are often a precursor for night-time storms over the lake.
The model target is therefore the number of overshooting tops at night over the lake and the model
input the number of overshooting tops during the day over the surrounding land. The model target and
model input were aggregated so that there is only one value per night and day. Only the 1% highest
nighttime overshooting tops were considered, and a threshold probability is used to balance the hits
and false alarms. A lead-time of three hours was used, allowing for communication of the warning
and taking safety measures. The model achieved an AUC score of 0.93 with a hit rate of 0.85 and a
false alarm rate of 0.13. The hit rate showed how many of the storms that occurred were predicted by
the model. Although the model showed significant skills by capturing 28 out of 33 extreme events in
the period between 2005 and 2013, the study also mentions that a false alarm is issued almost once
a week. Considering that only 28 events occurred, this could be seen as problematic. However, the
study also mentioned that most false alarms are still associated with storms, yet with a lower intensity
than the 99th percentile. This seems to indicate that the large number of false alarms were related to
predicting the 1%most intense thunderstorm. However, it might also be caused by the linear prediction
technique or by a lack of model inputs. Since the new model should improve upon this model, non-
linear prediction techniques will also be tested. Moreover, were this study only uses one parameter as
input, namely overshooting tops over the surrounding land during the preceding day, the new model
will use more input variables.

2.2.2. XGBoost Model
The study by Mostajabi et al. (2019) developed a lightning nowcasting model using the XGBoost al-
gorithm (an ensemble of classification trees) with only air pressure, air temperature, relative humidity
and wind speed as input variables. The model used the observations from a single weather station to
predict the occurrence of a lightning strike. The output was validated by a lightning location system
that captured both cloud-to-ground and cloud-to-cloud lightning. The aim of the model was to classify
if lightning will occur in the next 10 minutes, 10 to 20 minutes or 20 to 30 minutes. The model achieved
a high accuracy with a hit rate of 0.83 and a false alarm ratio of 0.03, for a lead time of 10 minutes.
Both a persistence model (hit rate of 0.74 and false alarm ratio of 0.26) and a CAPE model (hit rate
of 0.56 and false alarm ratio of 0.86) were outperformed. The performance at lead times of 10-20
minutes and 20-30 minutes were similar with a hit rate of 0.84 and false alarm ratio of 0.04, and a hit
rate of 0.83 and false alarm ratio of 0.05, respectively. For this study a dataset between 2006 and
2017 was available and the lightning was predicted within a 30 km radius of the station. This study
shows interesting similarities since it only uses weather station data as input, as will also be the case
for our model. However, this model only uses weather station data at the current time steps and no
information from previous time steps is used. With our model it will be tested if using past information
will add to the model’s skill. The reasoning behind this is that by for example knowing how the pressure
has developed in the past hours, the development of a low-pressure system can be identified. Or an
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increase in temperature might point to strong solar radiation that would create an unstable atmosphere
prone to formation of thunderstorms. This model uses short lead times, aimed at warning people for
lightning strikes, for example to make large gatherings safer. The model that will be developed in our
study serves a wider purpose and will therefore aim at a larger lead time. It is interesting to see the low
false alarm ratio compared to the Lake Victoria model by Thiery et al. (2017). This might be caused
by the shorter lead time (10 minutes compared to 3 hours). The high accuracy and low false alarm
ratio also shows the potential of the XGBoost algorithm, which will therefore be selected as one of the
prediction techniques in our study.

2.2.3. Neural Network Model
A study from Northern Italy developed a short-term thunderstorm prediction model using an artificial
neural network (Manzato 2007). A dataset from 1995 to 2002 was used to train the neural network,
and from 2002-2004 to validate the results. The model used balloon sounding-derived indices as
model input and the occurrence of at least three cloud-to-ground lightning strikes in the next six hours
as output. The best model used a neural network with nine inputs and six hidden neurons. For the
validation set a hit rate of 0.89 was achieved and a false alarm ratio of 0.60. The strength of this study
is that they used an extensive process to identify the best nine features from a set of 55 variables. A
forward selection algorithm was created that identified the best features progressively, starting from
one feature and adding single features until no further improvement was achieved. Our study will not
use the same process but it will use a more extensive search for the right model inputs, as for example
compared to the Lake Victoria and XGBoost study. Moreover, our study will also use a neural network
as one of the prediction techniques, to see how it compares with the XGBoost algorithm and a linear
model. The authors of this study warn for quick overfitting of the training data, something that should
also be avoided in our model.

2.2.4. Weather Station Model
The same research group as the neural network study also developed a model to forecast storm occur-
rence only using station-derived features (Pucillo and Manzato 2013). A group of features was selected
from 33 weather stations that measure relative humidity, temperature, wind direction, wind speed, wind
x component, wind y component, heat transport, and moisture transport. The dataset comprised 10
years, from 2000 to 2010. A linear discriminant analysis was used to predict the probability of oc-
currence of a 40 dBZ and 50 dBZ vertical maximum intensity reflectivity threshold as measured by a
radar. The lead time in this case was set to 180 minutes. For the 40 dBZ threshold a hit rate of 0.71
was achieved and a false alarm ratio of 0.31. For the 50 dBZ threshold the hit rate was 0.77 and the
false alarm ratio 0.29. This study is interesting because it uses weather station data and achieves a
reasonable accuracy and false alarm ratio. The two studies that use weather station data achieve a
lower false alarm ratio (0.03 and 0.29) compared to the studies that use satellite data and balloon-
soundings (0.94 and 0.60). This seems counter intuitive because the formation of thunderstorms is
largely a vertical process and this is not captured by the weather station. Perhaps it is the case that
the larger number and variety of variables from the weather station makes up for the lack of vertical
information.

2.2.5. Summary of Models

Table 2.1: Summary of the four nowcasting models investigated for this study. * please see the text for how this number was
calculated.

Area Data source Data length Technique Predicted variable Lead time Hit rate False alarm
ratio

Lake
Victoria Satellite 2005-2013 Logistic

regression
1% highest nighttime
overshooting tops 3 hours 0.85 0.94*

Switzerland Weather
station 2006-2017 Ensemble

of Trees
Occurrence of
lightning strikes 10 minutes 0.83 0.03

Northern
Italy

Balloon
sounding 1995-2004 Neural

Network
>3 lightning
Strikes 6 hours 0.89 0.60

Northern
Italy

Weather
station 2000-2010 Linear

discriminant
>50 dBZ radar
intensity reflectivity 3 hours 0.77 0.29
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The above-mentioned studies are summarized in Table 2.1. Since the false alarm ratio was not given
in the Lake Victoria study it was estimated based on 28 true positives and 468 false positives. The
468 is derived from the statement that there was a false alarm almost every week in the 9-year period.
Because it is not directly stated the value should be checked with the authors of this study.





3
Methods

In this chapter the method of how our early warning model is developed will be discussed. A closer
look at the available data is presented in Section 3.1. Although more TAHMO stations are available,
this study uses only one. The selected station is checked for outliers and with linear interpolation
measurement gaps are filled. The data is divided into a training set of two years and a validation set
of one year. At the end of this section the TAHMO lightning sensor is described. The next step is to
decide what the model should actually predict, which is done in Section 3.2. This section also discusses
different thunderstorm characteristics retrieved from the data. In Section 3.3 the procedure for selecting
the model inputs is explained. Briefly, it is based on the Spearman correlation and distinctions in
probability density functions between thunderstorms and no storms. With the model target and model
inputs known, the prediction techniques that are tested in this study are presented in Section 3.4.
A neural network, a linear regression model and the XGBoost decision tree ensemble are all briefly
discussed. In Section 3.5 the model set-up is discussed and how it relates to the conventional set-up.
Section 3.6 describes how the model is trained and as a final step validated. The chapter ends with a
description of the software that is used in Section 3.7.

3.1. Data
Fig. 3.1 shows the available TAHMO stations on the Kenyan side of Lake Victoria. This area is one
of the most active in terms of lightning strikes of all the land surrounding Lake Victoria, as was shown
in Fig. 2.2. Moreover, the density of stations is very high, making this a suitable area for research.
Each station measures pressure, lightning distance, lightning strikes, precipitation, incoming shortwave
radiation, relative humidity, temperature, wind direction, wind gusts, and wind speed.

As a first step in creating the early warning model one of the available stations is chosen. Using
multiple stations to validate the results or capture more information, could lead to better results, but this
is left for future research. To determine the most suitable station the length of the data record and the
percentage of missing values is analysed. All the prediction techniques rely on finding patterns in the
past measurements, and the longer the data record, the more patterns become available and the more
reliable they are. The missing values are important, because when even one of the measurements
is missing, the time-interval cannot be used as input for the model. From the 20 stations available,
TA00173 is chosen due to the best combination of data record length and missing values. The lighting
sensor on the TA000173 was installed on 12/05/2017, which is also the beginning of the usable data
record. The station measures 10 variables in a five minutes resolution. 2.7% of the 5-minute time
intervals for this station has missing values for at least one of the 10 variables. It is decided to disregard
the wind gust measurements because the firmware version makes it prone to false measurements
during heavy precipitation. An overview of the characteristics of TA000173 are given in Table 3.1.

Before the data is used for the early warning model, some pre-processing is conducted. The data is
first checked for outliers. Amaximum radiation of 1262W/m2 is found, and although high, it is eventually
accepted given the location near the equator and the altitude of 2020 meters. All other values are in
order and no outliers have to be removed. The number of missing values in the data is reduced by
gap-filling. 10028 time-intervals had at least one missing value, this corresponds to about 35 hours

11
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Figure 3.1: Operational TAHMO stations on the Kenyan side of Lake Victoria.

Table 3.1: Characteristics of the TA000173 weather station. *The wind gust data is disregarded in this study.

Location Longisa High school, Bomet Highway, Kenya
Installation height (m) 2
Latitude (∘) -0.85472
Longitude (∘) 35.39565
Elevation (m) 2020
Data record 2017/05/13 - Present

Observation Variables

Atmospheric Pressure (kPa), Lightning Distance (km),
Lightning Strikes (-), Precipitation (mm),
Radiation (W/m2), Relative Humidity (-),
Temperature (∘C), Wind Direction (∘),
Wind Gusts (m/s)*, Wind Speed (m/s)

Temporal resolution (minutes) 5

in a three-year period. Most of them occurred in the wind speed and wind direction measurements.
Missing values are filled in using linear interpolation with a maximum gap length ranging from 5 minutes
for the lightning distance to 285 minutes for the relative humidity. The gap length is based on the
autocorrelation, whereby the maximum gap is set at a correlation of 0.5. This procedure reduces the
number of missing time-intervals to 8793, which corresponds to a reduction of 4 hours. At this point the
data is divided into a training set and a validation set. With a relative short data length it is important
to keep the training set as long as possible. However, to test the skill of the model a representative
validation set should also be available. To fulfil the second condition, it was decided that the validation
set should contain a full-year. By doing this all the seasons are contained in the final test of the model’s
skill. This results in a two-year training dataset from 2017-06-01 until 2019-05-31 and a one-year
validation dataset from 2019-06-01 until 2020-05-31. For all the remaining calculations in this chapter
the training data is used exclusively to avoid any bias towards the validation data. Since the validation
data is unseen by the model, it comes closest to testing the model in real-life and the validation results
will therefore carry the largest weight.

3.1.1. Lightning Sensor
The TAHMOstations contain a Franklin Lightning Sensor that measures the electromagnetic waves pro-
duced by lightning strikes (AustriaMicrosystems 2012). An algorithm detects if the radiation originates
from lightning, both cloud-to-ground and cloud-to-cloud, or from man-made sources. To reject man-
made sources a threshold is defined, the level of which can be altered. Once the signal is validated as
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being a lightning strike, the energy of the radiation serves as the input for the distance calculation. This
is based on the relationship that the radiated energy is inversely proportional to the distance squared
(Kamau et al. 2015). The output of the sensor is therefore the number of lightning strikes and an esti-
mation of the distance from the station to the lightning strike. The closest distance the sensor is able to
measure is 1 km and the furthest 40 km. An important observation here is that the weather variables
have different characteristic spatial scale which might lead to problems for the model in identifying pat-
terns. For example, pressure works on a larger scale than 40 km. This could mean that the pressure
measurement indicates an approaching storm but when it occurs further than 40 km away, the lightning
sensor might not detect it. In this situation a false alarm would be issued. The same could apply to
temperature, relative humidity, and wind direction. It could also be the other way around. The station
might not measure precipitation although there is a storm occurring, just not directly above the station.
Although this could give problems, the hope is that with the right combination of inputs the model will
be intelligent enough to identify these situations.

3.2. Model Target
The purpose of the model is to predict an approaching thunderstorm with a sufficient lead time, as well
as indicate the intensity of the storm. The model target is set to the sum of lightning strikes in the
next six hours. This model target is predicted at a 5-minute resolution. The six hours are selected to
maximize the lead time, while still fitting within the WMO definition of nowcasting as given in Section
2.2. Section 3.5 explains how the model target relates to the classification and regression prediction
of individual thunderstorms. This section will focus on gaining understanding about the thunderstorm
characteristics.

3.2.1. Thunderstorm Characteristics
Within the two-year training dataset, 422 thunderstorms are identified. A single thunderstorm is defined
here as the period of time between the occurrence of a lightning strike until there has not been a lightning
strike for one hour. This means that multiple thunderstorms can occur during a day, as long as there is
a period of at least one hour between them without any lightning strikes. Fig. 3.2 shows during which
months the thunderstorms occur and the time of the day when they occur.
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Figure 3.2: The plots show how the 422 thunderstorms of the training dataset are distributed over the months of the year and
over the hours of the day.

It can be seen that thunderstorms happen all year round but there is a peak around March and
around November. That the thunderstorms happen throughout the year is due to the lake breeze
which is not dependent on the seasons. The peaks are explained by the movement of the Inter Tropical
Convergence Zone, which causes seasonality due to changes in solar irradiation. This leads to the East
African rainy seasons that take place in October-November-December and March (Gong et al. 2016).
As was discussed in Section 2.1, during the day a lake breeze is forced upward by the topography
and eventually can cause a thunderstorm. Fig. 3.2 shows that thunderstorms occur almost exclusively



14 3. Methods

during the day. This makes the lightning measurements of the TAHMO station in agreement with the
theory. 79% of the thunderstorms, 333 out of 422, occur between 9:00 and 15:00 UTC. Of the 422
thunderstorms only two occur between 22.00 and 06:00 UTC.

Fig. 3.3 shows how the intensity and the duration of the thunderstorm is distributed. Most thunder-
storm have less than 100 lightning strikes. There are 89 thunderstorms (21%) with only one lightning
strike and 228 thunderstorms (54%) have six or less lightning strikes. There are 45 thunderstorms
(11%) with over 100 lightning strikes. The largest thunderstorm counts 599 lightning strikes and lasts
140 minutes. Fig. 3.3 shows that most thunderstorms last only 5 minutes, namely 106 thunderstorms
(25%). 238 thunderstorms (56%) last less than 60 minutes. The longest thunderstorm lasts 330 min-
utes with 383 lightning strikes.
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Figure 3.3: These plots show the intensity of the thunderstorm, defined by the sum of lightning strikes, and the duration of the
thunderstorms. The duration is the time period between the first lightning strike and the last lightning strike of the thunderstorm.
A thunderstorm ends when there has not been a lightning strikes for one hour.

3.3. Model Inputs
The model target is the rolling sum of lightning strikes over the next six hours. To be able to predict
this it is important that the model has meaningful inputs. The goal of this section is to identify inputs
that are precursors for approaching thunderstorms. The inputs that will be considered are the 5-minute
intervals, the standard deviations, the gradients and the daily values of the measurements. The 5-
minute intervals show the current state of the atmosphere and could reveal valuable precursors, such
as a wind direction from the lake. The standard deviations are investigated because they indicate
changes. For example, a fluctuating radiation might point to the formation of clouds, necessary for
a thunderstorm to form. The standard deviation is calculated over the past three hours. Gradients
point to a drop or increase of a variable. For example, a negative pressure gradient could indicate
the formation of a low-pressure system and therefore rising air. The gradients are calculated over the
past three hours. Finally, the values of the past 24 hours are also used. The reasoning behind this is
that what happened in the last 24-hours has an effect on the coming hours. For example, if there has
been precipitation in the past 24-hours the likelihood of a thunderstorm could be higher because there
is more moisture available. For the lightning strikes and precipitation the 24-hour sum is used, and for
the wind speed the 24-hour maximum. For the other variables the 24-hour mean is used.

With this method there are 36 possible model inputs, 9 for each of the four categories. To select the
most meaningful inputs and avoid redundant inputs, the correlations and probability density functions
will be investigated. The final selection is made from combining both sets of inputs and removing
duplicate and redundant features. To understand if this method provides added skill to the model, it will
be compared to using the raw 5-minute interval measurements as model inputs.

3.3.1. Spearman Correlation
Both Pearson and Spearman correlations are tested, and it is found that Spearman gives higher cor-
relation values and also involves skewed distributions such as precipitation and wind speed. For all
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four categories, namely the 5-minute intervals, standard deviations, gradients, and daily values, the
Spearman correlation is calculated, both between the inputs and with the model target. An input is
selected if its correlation with the model target is at least |0.15|. If an input has a correlation higher
than |0.75| with another input, only the input with the highest model target correlation is selected. Fig.
3.4 shows the correlation matrix for the 5-minute intervals. Based on the values shown in this figure,
the lightning distance, lightning strikes, radiation, relative humidity, temperature, and wind speed are
selected. Lighting distance is removed because it has a correlation of 1 with the lightning strikes. Rela-
tive Humidity is removed because it has a correlation of -0.78 with temperature and its correlation with
the model target is lower. This procedure is repeated for the standard deviations, gradients and daily
values. The remaining three correlation matrices can be found in Appendix A.
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Figure 3.4: Spearman correlation of the 5-minute interval measurements with each other and with the model target. The model
target is the rolling sum of lightning strikes in the 6 hours following each observation.

3.3.2. Probability Density Functions
The idea behind using probability density functions (PDF) to select model inputs is that there could
be a different distribution when a storm is approaching and when there is no storm approaching. For
each measurement a PDF is created with two distributions. The first distribution contains the mea-
surements for which a thunderstorm will occur in the next six hours. The second distribution contains
measurements for which a thunderstorm will not occur in the next six hours. If there is a visible differ-
ence between the two distributions the model input is selected. Fig. 3.5 shows four probability density
functions, one from each of the four categories. The other probability density functions can be found
in Appendix A. It can be seen that if there is a thunderstorm in the next six hours the temperature
is generally higher. This can be explained by considering that thunderstorms happen during the day
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when temperatures are higher. Moreover, a higher surface temperature can lead both to a stronger
lake breeze and more convection. When a thunderstorm is approaching the standard deviation of the
wind direction, indicating changes in wind direction, tends to be higher. In general the wind is coming
from the east at this latitude, the so-called trade-winds, but a lake breeze which is associated with a
thunderstorm comes from the west or south-west. Fig. 3.5 also shows that a storm is preceded by a
negative pressure gradient, corresponding to rising air and thereby increasing the changes of a thun-
derstorm. Finally, a higher relative humidity in the past 24-hours is associated with thunderstorms. A
simple explanation for this could be the higher moisture availability, increasing the chances of cloud
formation.
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Figure 3.5: Probability density functions for thunderstorm versus no thunderstorm. If the model target is above zero, meaning
that there will be lightning strikes in the next six hours, the value is used for the storm distribution. Similarly, if the model target
is zero, the value is added to the no storm distribution. One variable has been selected as an example from each of the four
categories. The other Probability density functions can be found in Appendix A.

3.3.3. Final selection
By combining both methods a final selection of model inputs is made. The Spearman correlation gives
24 potential model inputs and the probability density functions 16. When the duplicate and redundant
inputs are removed 19 model inputs remain. Table 3.2 gives an overview of this, where the x indicates
inputs selected by the Spearman correlation and o by the PDFs. The variables in red are removed
because there Spearman correlation with another variable is higher than 0.75.

3.3.4. Raw Inputs
To understand if the above procedure gives any benefit in improving the model’s predictions, a second
model input selection will also be tested. The Switzerland early warning model uses only pressure,
temperature, relative humidity and wind speed at the current time step and achieves a hit rate of 0.83
and a false alarm ratio of 0.03 (Mostajabi et al. 2019). It is therefore not unlikely that only using raw
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Table 3.2: This table shows the final selection of model inputs. The x indicates a variable selected based on the Spearman
correlation. A o indicates it is selected based on the probability density functions. If a variable is red, it means it is removed
because it had a Spearman correlation with another variable higher than 0.75.

Variable 5-minute
Intervals

Standard
Deviations Gradients Daily Values

Pressure o x o x o o
Lightning Distance x x x
Lightning Strikes x x x x
Precipitation x
Radiation x o x o o
Relative Humidity x o x o x o x o
Temperature x x o x o
Wind Direction o o x o
Wind Speed x x

measurements at the current time steps leads to good results. This means that 9 model inputs will be
used, namely the pressure, lightning distance, lightning strikes, precipitation, radiation, relative humid-
ity, temperature, wind direction, and wind speed at the 5-minute interval level. An advantage of this
approach is that there are relatively few model inputs, reducing the chance of overfitting and possibly
creating a more robust model. In the results chapter it will become clear if this gives better results than
the more extensive selection of model inputs based on the Spearman correlation and probability den-
sity functions. For simplicity the model inputs containing the 5-minute interval measurements are called
raw inputs, and the model inputs based on the Spearman correlation and PDFs are called knowledge
inputs.

3.4. Model Techniques
In Section 3.2 the model target was described as being the sum of lightning strikes in the next six hours.
Using the inputs found in Section 3.3 the aim of the model technique is to approach the model target
as close as possible. The model technique has to find patterns between the model inputs and model
targets based on the training data set and apply these patterns on new model inputs. In this study
three model techniques will be compared. The first, and most simple, model will be a linear regression
model. A neural network will also be tested as was done in the study by Manzato (2007). Finally, the
XGBoost algorithm will be tested, inspired by the study of Mostajabi et al. (2019). This study achieved
the lowest false alarm ratio, namely 0.03, and also used weather station measurements as input. An
important difference however, is that the study focused on classifying lighting strikes in the next ten
minutes. The neural network and XGBoost algorithm are both non-linear techniques, where the linear
regression is, as the name states, linear. In this section all three techniques will be covered. In the end
a brief explanation is given on how the model parameters have been selected.

3.4.1. Linear Regression Model
The linear technique is a regression model with a linear least squares loss function. To avoid overfitting
the model utilizes a regularization function that punishes large fitting constants. Equation 3.1 shows the
objective function that the model tries to minimize.Y is the model target, X the model inputs, w the fitting
coefficients and alpha a constant parameter that controls the degree of regularization. The training of
this model consists in changing the fitting coefficients w until the objective function is minimized.

Objective function = (𝑦 − 𝑋 ∗ 𝑤)ኼ − 𝛼 ∗ 𝑤ኼ (3.1)

For the models with knowledge inputs there will be 22 different fitting coefficients and for the models
with raw inputs 9 different fitting coefficients. Once these are determined they can be used to calculate
the model target by adding the product of the fitting coefficients with their model inputs, as shown in
3.2

𝑦 = 𝑋 ∗ 𝑤 (3.2)
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The advantage of this model is the simplicity since the only parameter that needs to be tuned is
alpha. However, a disadvantage is that it is a linear technique and it might not capture the complex
phenomena that lead to thunderstorms.

3.4.2. Neural Network
The first non-linear technique used for the early warning model is a neural network with a forward pass
and backward error-propagation. In the forward pass the input data goes through the neurons of the
hidden layers. The output of each neuron is determined by the activation function, bias, and weight
of that particular neuron. All the values of the hidden layer neurons are passed through the neuron in
the final layer, which then outputs the final value. The error of this output value is calculated using a
pre-defined loss function. This error is back-propagated whereby the bias and weight of each neuron
are adjusted with the gradient descend method to minimize the error. Being a non-linear technique, it
is expected that the neural network will capture the patterns in the training data better than the linear
regressionmodel. However, as alsomentioned byManzato (2007), the neural network can easily overfit
the training data. Another disadvantage of the neural network is the number of parameters that need
to be tuned, such as the neurons, epochs, dropout rate, and batch size. Finding the right combination
of these parameters takes experience and time, or large computational power so that many different
combinations can be tested.

3.4.3. XGBoost
The final technique that will be tested is the XGBoost algorithm. This algorithm is similar to the random
forest technique since it is built from individual decision trees. The difference is that the random forest
technique averages or uses majority rules to combine the individual trees. The XGBoost algorithm
works in a forward manner and adds a new tree to the previous tree to improve its result and is thereby
combining the tree’s along the way. As with the neural network the challenge with this algorithm is
overfitting and finding the right combination of parameters. The main parameters of the XGBoost
algorithm are the number of trees, the maximum depth of each tree, and the percentage of inputs
used for each tree. An added advantage of the XGBoost model is that some insight can be gained
in the relative importance of model inputs. Decision tree’s are build from nodes, and a node makes a
decision based on a model input. For example a node might make a split between temperatures above
and below 20 degrees, where each leads to a different number of lightning strikes predicted. The F
score calculates how often a model input has been used to make a decision. The higher the F score
the more important a model input is in predicting thunderstorms. The F score of both the raw inputs
and knowledge inputs will be discussed in Chapter 4.

3.4.4. Parameter Selection
For each of prediction techniques parameters should be chosen in such a way that the optimal result
is achieved. A formal optimization would entail trying out different combinations of all the parameters,
which quickly becomes unfeasible. For example, if 20 different options would be tested for five pa-
rameters, 3.2 million model configurations would have to be tested. This would require computational
power that is not available for this study. To still come up with an acceptable configuration each of the
three models have been tested extensively while continuously tuning the parameters. The drawback of
this method is that no formal optimum is achieved and moreover, with a slight change of model inputs
or model targets, the whole procedure has to be repeated. This means that using a formal optimization
method could still lead to better results.

To be complete, the choice of parameters for each model is listed here. For the linear regression
model it is found that the results are insensitive to changing alpha and the default value of 1 is kept.
A neural network with one hidden layer, 60 neurons, 80 training epochs, a batch size of 5000 and a
dropout rate of 0.1 is chosen. The mean squared error is used as loss function, Relu as the activation
function and Adam as the optimizer. 200 decision trees are used for the XGBoost algorithm, with a
maximum depth of 3 and 30% of the inputs for each tree. The algorithm uses a squared error loss
function.
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3.5. Classification - Regression Model
One of the challenges faced in this research is that the early warning model is completely new and does
not build on any previous work. Four other early warning models have been studied and their lessons
learned, but this research is mainly based on trying out many different things, discarding models, and
continuing with the most promising ones. The model set-up that will be discussed in the first part of
this section is the result of this continuous experimenting and shows subtle differences with the existing
early warning models. How the model results will be evaluated and compared with the four existing
early warning models will be discussed in the second and final part of this section.

3.5.1. Model Set-up
This subsection discusses the model set-up that is developed for this study. Both the conventional
approach, as identified in the other early warning models, and the new approach are discussed. For the
new approach to work an algorithm is developed that loops through the measurements and predictions
to derive the performance of the model. This algorithm is explained and clarified with a plot.

Conventional Approach
The four early warning models discussed in Section 2.2 use a model target that represents a certain
intensity value. For example, the Lake Victoria study uses the 1% highest nighttime overshooting tops
and the Northern Italy study events with more than three lightning strikes. The model target is set
to 1 when the intensity is achieved and 0 when it is not. The model prediction is then a probability
between 0 and 1, and a threshold is selected that optimizes the hits and false alarms. The lead time is
fixed by aggregating the model inputs and model targets to the desired time interval. The Lake Victoria
study provides an example whereby the daytime overshooting tops are aggregated between 13:00 and
18:00 and the nighttime overshooting tops between 00:00 and 12:00. This then gives a lead time of six
hours, namely the difference between 18:00 and 00:00. A setback of this method is that the aggregation
reduces the temporal resolution of the measurements. In the Lake Victoria study the overshooting tops
are available in a 15-minute resolution but this is lost due to the aggregation. Another disadvantage is
that it is not clear when the storm actually occurs because the overshooting tops are summed between
00:00 and 12:00. The storm could have occurred anytime during the 12 hour window.

New Approach
In this study a different approach is tested. The 5-minute resolution is maintained and the model target
is set to the sum of lightning strikes in the next six hours. A threshold could be applied to every 5-
minute prediction but this would mean that there is a potential alarm every 5-minutes which would not
be practical. To avoid this the 5-minute predictions are summed and continuously checked against a
threshold. Once the threshold is exceeded an alarm is issued. For example, the model might predict
50 lightning strikes occurring in the next six hours at every 5-minute interval starting from 07:00. When
the threshold is 200 an alarm would be issued at 07:20 because the aggregated predictions would be
4 times 50 at this time. An algorithm has been developed that loops over the dataset in 5-minute steps
and compares the model predictions with the actual occurrence of lightning strikes.

Algorithm
When a lightning strike occurs the algorithm checks if the model predictions exceed the threshold in
the period from six hours up to 30 minutes before the lightning strike. When this is the case a true
positive is counted. The lead time is then calculated as the time difference between the first lightning
strike and when the alarm is issued. False negatives are counted when the threshold has not been
exceeded at least 30 minutes before the first lightning strike. The 30 minutes value can be changed
depending on the minimum time that is required for taking safety measures. After the first lightning
strike the algorithm monitors the duration of the storm and signals the end of a storm when there has
not been a lightning strike for one hour. This is to avoid issuing multiple alarms for the same storm
or not issuing an alarm for a new storm. After the one hour the analysis is continued and a new true
positive or false negative can be counted. The storm intensity is also stored by averaging the model
predictions in the six hours preceding the first lightning strike. This is then compared to the number of
lightning strikes that have actually occurred during the storm. For example, a storm occurs between
15:00 and 16:00. The average model prediction from 09:00 until 14:55 equals 80 lighting strikes and
the threshold is exceeded at 11:00. In this case a true positive would be counted with a lead time of
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four hours and an intensity prediction of 80 lightning strikes. The 80 lightning strikes will be compared
to the number of lightning strikes that are actually measured between 15:00 and 16:00.

For the true positives and false negatives the algorithm takes a lightning strike as reference point.
To determine the false positives and true negative this is not possible. To still be able to count these
the predictions are summed over a six hour period. A false positive is counted when the threshold is
exceeded during the six hour period and there is no lightning strike during these six hours or the next
six hours. A true negative is counted when the threshold has not been exceeded during the six hour
period and there is no lightning strike in these six hours or the next six hours. For example, a false
positive is counted when the aggregated predictions exceed the threshold between 06:00 and 12:00
but there is no lightning strike between 06:00 and 18:00. Two six hour blocks are considered because
the threshold might be exceeded at the end of the first block and a thunderstorm could occur during
the second block. With this method only one false positive or true negative can be counted every six
hours.

Figure 3.6 gives a visual example of the model set-up in the case of a true positive. The threshold
can be defined by the user and will be optimized using k-cross validation, as will be explained in Section
3.6.

Figure 3.6: This figure shows how the model set-up works with a true positive as example. The blue line in the graph indicates
the predictions made by the model, namely the predicted number of lightning strikes in the next six hours. The green line is the
model target, namely the actual sum of lightning strikes in the next six hours. The orange line shows the lightning strikes that
are measured by the sensor in real time. For this example the threshold is exceeded at 07:10 but this is arbitrary and depends
on the value of the threshold.
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3.5.2. Evaluation and Comparison
The final outputs of the algorithm are the true positives, false negatives, true negatives, false positives,
lead time, and intensity prediction. The six configurations can be compared based on these values
because they all deal with the same events. To make a comparison with models from other studies
however, the values have to be normalized. For this purpose the hit rate and the false alarm ratio are
calculated. The hit rate (eq. 3.3) is the percentage of storms that have been predicted by the model.
The false alarm ratio (eq. 3.4) is the percentage of issued alarms that are false.

Hit rate = True Positives
True Positives+ False Negatives (3.3)

False alarm ratio = False Positives
True Positives+ False Positives (3.4)

A hit rate of 1 means that all thunderstorms are predicted. A false alarm ratio of 0 means that
all the issued alarms are followed by thunderstorms. The difference between hit rate and false alarm
ratio (H-F) gives a good indication of the classification skill. A H-F of 1 indicates that all storms have
been predicted and that there have been no false alarms. A H-F value of -1 indicates that no storms
have been predicted and that the model only issued false alarms. Other studies have also used the
false alarm rate (eq. 3.5), which indicates the percentage of false alarms over all the times without
thunderstorm.

False alarm rate = False Positives
True Negatives+ False Positives (3.5)

For sparse targets this value seems less suitable since a model with a low false alarm rate can still
issue many false alarms. For example, the Lake Victoria model by Thiery et al. (2017) predicted 28
thunderstorms but had a false alarm almost every week over a period of 9 years. This leads to a false
alarm ratio of about 0.94 whereas the false alarm rate was 0.13. As stated by Barnes et al. (2009) the
false alarm rate and false alarm ratio are often confused. It was found that 10 out of 26 studies used
the wrong definition.

It should be noted that the hit rate and false alarm ratio might give an indication of how the skill of
the models compare, it is only partially useful because each model has different areas, data lengths,
lead times, model inputs, model targets, etc.

The model developed in this study also predicts the intensity of the storm. For all the thunderstorms
that have been classified the skill of the intensity prediction will be evaluated using the absolute error
(eq. 3.6) and the relative absolute error (eq. 3.7).

Absolute Error = |Prediction Intensity− Storm Intensity| (3.6)

Absolute Relative Error = |Prediction Intensity− Storm Intensity
Storm Intensity | (3.7)

Both metrics are evaluated because an absolute error of 100 lightning strikes is more severe for
a thunderstorm with 10 lightning strikes than a thunderstorm with 600 lightning strikes. The absolute
values are considered so that under and over estimations do not cancel each other out when taking the
average over all storms. In Chapter 4, the hit rate, false alarm ratio, absolute error, and absolute relative
error are given for all combinations of model techniques and model inputs. The prediction intensity skill
cannot be compared to the other models because they only deal with classification.

3.6. Training & Validation
Now that the model target, model inputs, model techniques, and the model evaluation are known, the
remaining steps are to find the optimal threshold and finally to validate the model using previously
unseen data. As explained in Section 3.5 the value of the threshold influences the number of true
positives, false negatives, true negatives, and false positives, as well as the lead time, and should
be selected for the six configurations. Each configuration, namely the two input sets (raw inputs and
knowledge inputs) and three techniques (linear regression model, neural network, and XGBoost), will
have its own optimal threshold and validation results. As mentioned in Section 3.1 the data has been
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divided into a training set (2017-06-01 until 2019-05-31) and a validation set (2019-06-01 until 2020-05-
31). For an unbiased evaluation of the model skill the validation data is kept separately and the training
dataset is used to determine the optimal thresholds. However, the optimal threshold also needs to be
determined in an unbiased manner and therefore the training dataset is further divided into training and
testing days. This division is done using k-cross validation. Four folds are created, each containing
a different quarter of the set as testing days and the remaining three quarters as training days. The
testing days are uniformly distributed over the training dataset. For each fold a different model is trained
and evaluated, according to the procedure shown in Fig. 3.7.

Training Days

Model TargetModel Inputs

Scale to zero mean
and unit variance

Train Model Predict using the
trained model

Evaluate Results

Testing Days

Model Inputs

Scale based on
training data

Figure 3.7: This figure shows a schematic overview of how the models are trained and evaluated. The procedure is the same
for all three predictions techniques.

The model inputs are scaled to zero mean and unit variance. This is done because the input vari-
ables have different units and their absolute values should not influence their importance. Because
the results should not be biased towards the testing days, the scaling factors are calculated based on
the training days and applied to both training and testing days. The model is then trained by fitting the
model inputs to the model target. Once this is done the testing days can be predicted and its perfor-
mance evaluated. The hit rate, false alarm ratio, and average lead time are calculated by combining
the testing days of all four folds. This is repeated for different thresholds and the threshold with the
highest value of H-F is selected as the optimum. Thresholds ranging from 0 to 1000, in steps of 50,
are evaluated. This threshold does not represent the intensity of a storm but rather the 5-minute ag-
gregated predictions. With the optimum threshold known the model is retrained and reevaluated using
the training data as training days and the validation data as testing days.

3.7. Software
The programming environment used for this study is Python version 3.6.8. For the data handling the
Pandas and NumPy packages are used. Plotting is done using the Matplotlib package. Each model
technique uses a different package. The linear regression model comes from the Scikit-learn machine
learning package and is called Ridge. The XGBoost package is used for the ensemble of decision trees.
Finally, for the neural network the Keras package is used, which is built upon Google’s TensorFlow.
All packages are freely available and have many online resources available such as examples and
troubleshooting guides.
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Results

In this chapter the results of the study are presented. Section 4.1 deals with the selection of the optimal
threshold for each of the six configuration based on the value of H-F and the lead time. Section 4.2
gives the classification, lead time and regression results for all six configurations based on the validation
dataset. Moreover, to gain some understanding of how the thunderstorms are predicted, this section
also looks at the relative importance of each model input. This is done using the F score from the
XGBoost model. Finally, in Section 4.3 the best model is chosen based on the four criteria listed in
Section 1.3 and a further analysis is conducted on its performance.

4.1. Training
The level of the threshold determines how sensitive the model is and influences the hit rate, false alarm
ratio, and lead time. The balance between the hit rate and false alarm ratio can be summarized in the
difference between both (H-F). Fig. 4.1 shows how H-F and the lead time change with threshold.
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Figure 4.1: The left plot shows how the value of hit rate minus false alarm ratio changes with threshold. The right plot shows how
the lead time changes with threshold. The plots show the results for all six configurations. The blue lines correspond to the linear
regression model (LR), the orange lines to the neural network (NN), and the green lines to the XGBoost algorithm (XGB). The
solid lines correspond to the model inputs based on the Spearman correlation and PDFs (knowledge inputs), and the dashed
lines use the raw measurements (raw inputs).

For all six configurations H-F first increases, reaches a maximum and then decreases again. How-
ever, the rate of increase and decrease, and therefore its maximum, differs between configurations.
The neural network with raw inputs shows the largest difference with the other models and performs
best. The linear regression model with knowledge inputs shows the worst performance. The lead time

23
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decreases with threshold and starts around 350 minutes at a threshold of zero, almost equal to the
prediction window of six hours. The reason for this is that the evaluation is started six hours before
the first lightning strike, and for most thunderstorms the prediction is above zero at this point. At low
thresholds the lead time between configurations does not differ much but the gap becomes larger at
higher thresholds. The neural network and XGBoost show the slowest decrease in lead time whereas
the linear regression model shows the fastest decrease. Table 4.1 gives the optimum thresholds based
on the H-F maxima with the corresponding H-F value and average lead time.

Table 4.1: This table shows the optimum threshold based on the H-F maximum for all six configurations. To compare the different
models, the values of H-F and the lead time at this threshold are also given.

Model Threshold H-F
(-)

Lead
Time
(m)

LR 500 0.28 183
LR-RI 500 0.32 163
NN 350 0.33 222
NN-RI 550 0.41 182
XGB 400 0.31 210
XGB-RI 400 0.34 188

In Appendix B the results are shown both for the training and testing days. This is done to check
for overfitting. The figures show that the neural network and XGBoost models with knowledge input set
have slight overfitting, meaning that the training set performs better than the testing set. The overfitting
is larger compared to the raw inputs. This was expected since the raw inputs contain fewer model
inputs and also less redundancy between inputs.

4.2. Validation
With the optimum thresholds selected the models are retrained and evaluated on the validation data.
The true positives, false negatives, true negatives, false positives, and lead times of the six configura-
tions are shown in Table 4.2.

Table 4.2: This table shows the classification results and the average lead times for all six configurations based on the validation
data.

Model True
Positives

False
Negatives

True
Negatives

False
Positives

Lead
Time (m)

LR 217 56 697 273 185
LR-RI 239 34 698 272 177
NN 220 53 806 164 220
NN-RI 248 25 780 190 207
XGB 223 50 793 177 204
XGB-RI 236 37 761 209 183

The true positives are improved by 14% for the linear regression model, 10% for the neural net-
work, and 6% for the XGBoost, when using the raw inputs over the knowledge inputs. Going from a
linear technique to a non-linear technique improves the true positives by 4% for the neural network but
reduces it with 1% for the XGBoost, compared to the best linear regression model. The model with the
highest number of true positives is the neural network with raw inputs. The false positives are reduced
by 0% for the linear regression model, 14% for the neural network, and 15% for the XGBoost, when
using the knowledge inputs over the raw inputs. Going from a linear technique to a non-linear tech-
nique reduces the false positives by 40% for the neural network and 35% for the XGBoost. The model
with the lowest number of false alarms is the neural network with knowledge inputs. The average lead
time is increased by 5% for the linear regression model, 6% for the neural network, and 11% for the
XGBoost, when using the knowledge inputs over the raw inputs. Going from a linear technique to a
non-linear technique increases the lead time by 19% for the neural network and 10% for the XGBoost.
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The model with the highest lead time is the neural network with knowledge inputs. The values in Table
4.2 are used to calculate the hit rate, false alarm ratio, and difference between them (H-F). These val-
ues are graphically represented in Fig. 4.2. The neural network with raw inputs has the highest hit rate
(0.91), followed by the linear regression model with raw inputs (0.88), and the XGBoost model with raw
inputs (0.86). The neural network with the knowledge inputs shows the best false alarm ratio (0.43).
The linear regression model with both model inputs shows the worst false alarm ratio (0.56 and 0.53).
Combining both in the H-F value, shows that the neural network with raw inputs provides the best clas-
sification results with a value of 0.47, with the second best value being 0.39 for the XGBoost model with
raw inputs. The neural network with knowledge inputs (0.38) and the XGBoost with knowledge inputs
(0.38) are not far behind. The worst performing model is the linear regression with knowledge inputs,
having a H-F value of 0.23. When the lead time is evaluated, the neural network also gives the best
performance. The neural network with knowledge inputs gives an average lead time of 220 minutes
and with raw inputs of 207 minutes. The linear regression model with raw inputs shows the lowest lead
time (177 minutes). Interestingly, the neural network with raw inputs has the highest threshold, namely
550, but shows a higher lead time than the linear regression and XGBoost models.
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Figure 4.2: The left plot shows the hit rate, false alarm ratio, and difference between them (H-F). The right plot shows the how
the average lead time differs between the six models. The results are based on the validation data.
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Figure 4.3: The plots in this figure relate to the intensity prediction of the thunderstorms for the validation set. The left plots
shows the mean absolute error and the right plot the mean absolute relative error for three different categories of thunderstorms.
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Fig. 4.3 give the regression results for all six configurations. Since the thunderstorms have a wide
range of intensity, from 1 to 889 in the validation set, they have been divided into three categories.
For the lowest category, 1 to 50 lightning strikes, the linear regression model with raw inputs gives the
lowest mean absolute error and mean absolute relative error. For the middle category, 51-100 strikes,
and the highest category, 101-889 strikes, the neural network with knowledge inputs performs slightly
better than the other models. In general it can be seen that the mean absolute error is higher for larger
thunderstorms but the mean absolute relative error is lower for larger thunderstorms. To clarify this, if
a storm with 800 lightning strikes has been predicted to have 400 lightning strike, the absolute error is
400 but the absolute relative error is only 0.5. On the other hand if a storm with 1 lightning strike has
been predicted to have 10 lightning strikes, the absolute error is only 9 but the absolute relative error
9. To understand if the regression performance is useful in practice the best performing model will be
further analysed in Section 4.3.

The three tables in appendix B show the results both for the training and testing days of the vali-
dation procedure to check for underfitting or overfitting. However, a mixed picture occurs and no clear
conclusions can be drawn. The reason for this is that no formal optimization procedure was done, as
explained in Section 3.4, and the models use the same parameters for both inputs sets. Ideally, the
parameters would be tuned separately for the raw inputs and for the knowledge inputs. Moreover,
the model is evaluated on different criteria, and each criteria shows a different degree of overfitting.
Nonetheless, the overfitting that occurs is larger than for the training procedure. The testing days of
the k-fold cross-validation are evenly distributed over the two years of the training set. On the other
hand, the validation data is a completely new and separate year.

To gain a deeper understanding of how thunderstorms can be predicted, the F score of the XGBoost
model is investigated. The F score gives a measure of the importance of the individual model inputs
by counting how often they have been used in making decisions. Fig. 4.4 shows the F score for the
knowledge inputs as well as for the raw inputs.
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Figure 4.4: This figure shows the XGBoost F score for the knowledge inputs (left) and for the raw inputs (right). The F score
counts the number of decisions made per model input. The higher the F score the more important an input can be considered
for predicting thunderstorms.

For the knowledge inputs the lightning strike sum in the past 24 hours and the precipitation sum
in the past 24 hours, show the highest importance. This indicates that there is value in knowing if
a thunderstorm has occurred in the previous day to predict if there will be a new thunderstorm. The
inputs based on the past 24 hour show more importance than the 5-minute measurements, gradients,
and standard deviations. The F score for the raw inputs show less difference, with the exception of
precipitation and lightning distance, which show a low importance. Precipitation and lightning strikes
occur during or after the storm, thereby being less interesting in predicting if a stormwill occur in the next
hours. It is unclear however, why lightning strikes show a higher importance. Radiation and pressure
are the most important inputs based on the F score, but the difference with wind direction, radiation,
temperature, wind speed, and lightning strikes is small.



4.3. Selection & Analysis of Best Model 27

4.3. Selection & Analysis of Best Model
In Section 1.3 four criteria for selecting the best model were listed. The criteria included the hit rate, false
alarm ratio, lead time, and the intensity prediction. The neural network with raw inputs performs best
on the hit rate (0.91) and overall on the classification (H-F=0.47). The neural network with knowledge
inputs has the lowest false alarm ratio (0.43). It also has the highest lead time (220 minutes) and
the lowest mean absolute error and mean absolute relative error for the medium (51-100 lightning
strikes) and large thunderstorms (101-889 lightning strikes). The neural network with knowledge inputs
performs best on three of the four criteria and is therefore selected as the best model. The model
predicts 220 out of 276 storms that occurred during the one year validation period. The 220 predictions
include 43 out the 46 storms with more than 100 lightning strikes. The largest storm has 889 lightning
strikes, occurring on the 14th of December 2019. The alarm for this storm is issued at 11:25, 2 hours
and 15 minutes before the first lightning strike. 53 storms that occurred are not predicted by the model.
Of those storms, only three have more than 100 lightning strikes (103, 117, and 372). 31 out of 53
missed storms have less than 10 lightning strikes and 12 out of the 53 missed storms have only 1
lightning strike. The model issues 164 false alarms. 51 of the false alarms occur on a day where there
is a storm. The 164 alarms are distributed over 129 days, meaning that there are 35 days with more
than one false alarm. Finally, 806 true negatives are counted. This is when there is no storm and also
no alarm. Fig. 4.5 shows how the alarms are distributed over the months of the validation set. The
model is able to capture the seasonality of thunderstorms, with peaks around March and November,
without having any explicit knowledge of days or months. During 8 out of 12 months more true positives
are issued than false positives. During 1 month this is equal and in the remaining 2 months there are
more false alarms than true alarms. In the month of January 2020 no false alarms are issued yet 6
thunderstorms are predicted. Fig. 4.5 also shows the distribution of the lead time for the 220 predicted
storms. The lead times range from 30 minutes to 350 minutes, with an average of 220 minutes.
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Figure 4.5: The left plot shows how the alarms issued by the neural network are distributed over the one-year validation set. The
blue bars indicate the true alarms and the orange bars the false alarms. The right plot shows how the lead time of the predicted
thunderstorms is distributed.

The average absolute error of the intensity prediction is 58 lightning strikes and the average absolute
relative error is 5. All intensity predictions are between 5 and 92 lightning strikes whereas the storms
intensity ranges from 1 to 889 lightning strikes. This means that the model is not able to predict the
intensity of the 43 storms that have more than 100 lightning strikes. This becomes clear in Fig. 4.6
where there are absolute errors as high as 870 lightning strikes. The relative errors, shown in the figure,
that are above 12 all occur for storms with only one or two lightning strikes. Since the predictions all
are between 5 and 92 lightning strikes, the storms that fall within this range are best predicted. The
Pearson correlation between the measured and predicted intensity is 0.14 for all storms and for storms
between 5 and 92 lightning strikes it is 0.19.
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Figure 4.6: The figure shows the error (left plot) and relative error (right plot) made by the neural network with knowledge inputs.
The error is the prediction intensity minus the storm intensity. The relative error is the error divided by the storm intensity. It can
be seen that the errors are mainly negative and the relative errors mainly positive. The reason for this is that the highest errors
occur for the large storms which are under predicted and the highest relative errors for small storms which are over predicted.



5
Discussion

After having presented the results of the early warning model in Chapter 4, this chapter will go on
with discussing several points that are relevant to the model. To structure the discussion the points are
gathered under eight categories. These are the comparison with the existing early warning models, the
false alarm ratio, the thunderstorm severity, the model inputs, the model technique, the model set-up,
further improvements, and finally what the model could mean for the drone-delivery company Zipline.

Comparison with other Models
Comparing the model from this study with the existing early warning models is not straight forward
because there are fundamental differences with regards to the data, model set-up, and area. Nonethe-
less, there might be some value in comparing the hit rate and false alarm ratio. The Lake Victoria,
XGBoost, Neural Network, and Weather Station model achieved hit rates of 0.85, 0.83, 0.89, and 0.77,
and false alarm ratio’s of 0.94, 0.03, 0.60, and 0.29, respectively. The value of 0.94 should be con-
firmed with the authors from the Lake Victoria study because it was not explicitly mentioned. The best
configuration, as selected in Section 4.3, achieved a hit rate of 0.81 and a false alarm ratio of 0.43.
Based on these percentages the model from this study scores fourth out of five on the hit rate and third
out of five on the false alarm ratio. An important distinction here is that the model from this study used
a dataset of three years and the other models at least nine years. A longer dataset is likely to improve
this model and can be tested by doing a sensitivity analysis using different data lengths. Moreover, the
neural network with raw inputs achieved a hit rate of 0.91, ranking it first out of five.

False Alarm Ratio
The high false alarm ratio is a key obstacle to overcome for a real life application. The best configuration
issues 220 true alarms and 164 false alarms. During 8 out of 12 months there are more true alarms than
false alarms, but in July 2019 and May 2020, the model issues more false alarms than true alarms. This
is problematic and should be a priority improvement for the model. Understanding when these false
alarm occur should be investigated further. Asmentioned in Section 3.1 the spatial scales of the weather
variables is different. The lightning sensor only measures lighting within 40 km but other variables
such as pressure and temperature have larger spatial scales. Looking at other weather stations to
understand if the false alarms are issued for storms further away could increase our understanding.
The results also showed that 51 out of 164 false alarms occur on days when a storm occurs. It should
be investigated how long before or after the false alarm the storm occurs. Moreover, the XGBoost
model achieved a false alarm ratio of 0.03 and used a lead time of 10 minutes. Conducting a sensitivity
analysis on this model for different prediction windows (currently 6 hours), could show if if the false
alarm ratio can be improved by using shorter lead times.

Thunderstorm Severity
In Section 4.3 it was seen that the model predicts thunderstorms between 5 and 92 lightning strikes,
whereas the actual thunderstorms range from 1 to 889 lightning strikes. It is therefore clear that the
model is not able yet to distinguish between large and small storms, which results in large absolute
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errors for big thunderstorms and large relative errors for small thunderstorms. A more accurate in-
tensity prediction will provide large benefits for this model. Understanding how severe an upcoming
thunderstorm is will guide the necessary precautions and minimize their costs. Moreover, with a good
intensity prediction the threshold can be altered so that only certain storms are considered, and no
alarm is raised for small storms. This can be done based on the preferences of the user. At the mo-
ment however, the overprediction of small storms means that they are still included in the predictions,
even when using higher thresholds. It is expected that a longer data record can improve the intensity
prediction. The Lake Victoria area has a high lightning activity, the two year training set contains 422
thunderstorms, but only 11% of the storms in the training record have more than 100 lightning strikes.
A longer data record would contain more severe storms and these could serve as an example for pre-
dicting future storms. Although the intensity prediction lacks skill, the current model is already able to
classify 43 out of the 46 thunderstorms that have more than 100 lightning strikes.

Model Inputs
In Section 4.2 it was seen that the raw inputs improve the true positives with 14%, 10%, and 6% but
that the knowledge inputs improve the false positives with 0%, 14%, and 15% for the linear regression
model, neural network, and XGBoost, respectively. By using the raw inputs for the thunderstorm pre-
diction and the knowledge inputs to correct for possible false alarm, it should be possible to improve
the model. In principle the model could then achieve a hit rate of 0.91, as the neural network with raw
inputs, and a false alarm ratio of 0.43, as the neural network with knowledge inputs. A possible way
to combine the models would be to use the output of the neural network with raw inputs as an input
for the neural network with knowledge inputs. This would add a second layer that can possibly identify
alarms as being false.

Model Technique
Section 4.2 also showed that going from a linear technique to a non-linear technique reduces the
false alarms by 40% for the neural network and 35% for the XGBoost model. Using a non-linear
technique improves the true positives with 4% for the neural network and reduces them with 1% for the
XGBoost, compared to the best linear regression model. The lead time is increased by 19% for the
neural network and 10% for the XGBoost. It is likely that the results can be further improved by working
on the model technique. For example, the parameters for the models using the raw inputs are the same
as for the models using the knowledge inputs. Improvements can be made by tuning the parameters
separately for the different model inputs. Moreover, the parameters have not been formally optimized
but rather tuned by trial and error. A formal optimization would entail systematically trying out different
combinations of parameters, something that quickly leads to excessive computational times and was
therefore not done in this study. A more thorough check if the models are overfitting or underfitting
should also be conducted. The challenge here is that what is predicted by the model, namely the
number of lightning strikes in the next six hours, is not what the model is eventually evaluated on,
namely hit rate, false alarm ratio, lead time, and intensity prediction. This makes it hard to see if
overfitting or underfitting is occurring. Appendix B shows that almost no overfitting occurs for the k-
cross training procedure but a mixed picture occurs for the validation. It is also possible that a better
machine learning technique exists for this problem. A long short-term memory (LSTM) neural network
uses feedback between current and past temporal inputs that allows it to develop a ”memory”. In this
way no explicit temporal knowledge has to be passed in the model, as was done with the knowledge
inputs. In this way more subtle temporal changes that lead to thunderstorms might be identified as is
possible with the gradients, standard deviations, and 24 hour averages.

Model Set-up
Section 3.5 described the conventional approach for a classification prediction and that it comes with
the disadvantage of a reduced temporal resolution and uncertainty in when the thunderstorm actually
occurs. A new approach is developed that maintains the resolution and aggregates the values after the
prediction and not before. The lead time becomes flexible but more precise and it also adds an predic-
tion on the thunderstorm severity. However, the results showed that the predictions do not capture the
thunderstorm severity well. If this would have been the case, the lead time would become equal to the
prediction window, six hours in this case, and the threshold only serves to disregard storms below a
certain intensity. As it is now the threshold works more as a filter that removes noise and that balances
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the hits and false alarms. Improving the regression would make the developed model set-up more
useful. Moreover, the algorithm that counts the true positives, false negatives, true negatives, and
false positives, is new and should be reviewed by another party. Especially counting the true negatives
and false positives is challenging because there is no reference points such as a lightning strike. The
way the algorithm works has a strong effect on the final evaluation of the model. For this reason it is
essential that the algorithm is eventually tested in real life. Only then is it possible to see how useful
the model predictions are and how well the algorithm evaluates them.

Further Improvements
Besides the possible improvement already mentioned such as combining the model inputs, optimizing
the parameters, using multiple weather stations, and conducting sensitivity analysis on the lead time
and data length record, some further improvements can also be considered. For example, it could
be interesting to combine the TAHMO weather station data with other data sources. Using satellite
measurements, such as overshooting tops, could provide added skill to the model. The Lake Victoria
model used daytime overshooting tops over the surrounding land to predict nighttime overshooting tops
over the lake. For this model the overshooting tops counted during the previous night could be added.
Moreover, the predictions of a numerical weather model could also be used. The weather model could
give an indication of thunderstorm occurrence in the next days and the early warning model could be
used as a precision tool to indicate when it will happen.

Zipline
Although the developed model predicts thunderstorm for a weather station on the eastern side of Lake
Victoria, it could also potentially aid medicine delivery drones in avoiding bad weather. The drones
operate in Rwanda and Ghana, so to understand if this model has possible benefits it should be tested
for a different weather station. Section 3.3 describes how the model inputs are selected. An advantage
of the method is that it selects the inputs based on the measurements. This means that when a different
weather station is used the inputs that arise from the Spearman correlation and PDFs will be different
from the inputs for the TA00173 weather station. In principle the model should therefore also be able
to predict thunderstorms for a different area. However, it should be noted that the focus area of this
study is very lightning active, the 2 year training set contained 422 thunderstorms. This large amount
of thunderstorms compensates for the short data length record, which would not be the case when
the weather station is in an area with less thunderstorms. Understanding how the area influences the
results is therefore an important next step in improving the model. The developed model provides
early warnings for lightning strikes but not for the associated winds and precipitation events, which
are the source of danger for the drone flights. It would therefore be useful to study the relationship
between lightning strikes, precipitation, and wind, and see how this could be incorporated in the model.
This study tried to do this by using the Calculated Convective Activity (CALCA), a variable consisting
of lightning strikes, precipitation, and wind gusts, as developed by Manzato (2007). However, it was
found that at this point the variable did not add any benefit. The prediction skill of the number of lightning
strikes should be improved first, before moving on to the more complex task of also predicting wind
and precipitation.





6
Conclusion & Recommendation

During this research a new early warning model was developed that predicts thunderstorm occurrence
around Lake Victoria. In Section 1.3, three research questions were posed to guide this process:

• How do the current thunderstorm early warning models work and perform?

• Which model inputs and prediction techniques lead to the best performance of the early warning
model based on the model criteria?

• What are the prediction characteristics of the best performing model?

Beginning with the first question, the four current early warning models that were investigated all
showed different characteristics. The models varied in their data sources, areas, data record lengths,
model targets, lead times, and prediction techniques. Even with the large variety in models consistent
high hit rates were achieved (0.89, 0.85, 0.83, and 0.77). It is therefore concluded that regardless
of the type of data source, area, and the prediction technique, it is possible to predict the majority
of thunderstorms using statistical or machine learning methods. Most noticeably, using only ground
measurements from weather stations seems sufficient to predict a thunderstorm which is by its nature
a vertical process. A larger difference between models was found in the false alarm ratio (0.03, 0.29,
0.60, and 0.94). The Switzerland study distinguishes itself by achieving a ratio of 0.03, possibly due
to low lead time of 10 minutes compared to the 3 or 6 hours of the others models. Nonetheless, the
other three studies make apparent that the main challenge of an early warning model is to reduce the
number of false alarms.

To answer the second research question two different sets of model inputs were tested, namely the
raw inputs and the knowledge inputs. Moreover, two non-linear techniques, namely a neural network
and the XGBoost model, and one linear technique were tested. Based on comparing the six config-
urations, it is concluded that for the true positives the raw inputs provide better results compared to
the knowledge inputs. For the true positives there is no clear preference for non-linear over linear
techniques. For the false positives and lead time, the non-linear techniques with knowledge inputs
provide better results compared to the linear techniques with raw inputs. This means that for predicting
thunderstorms a linear technique and current weather station measurements are sufficient, but using
non-linear techniques and past temporal weather station measurements reduces the false alarms and
improves the lead time. This effect is also seen for the intensity prediction, but no conclusions are
drawn at this point due to the small differences and overall lacking skill in this area.

Answering the third research question, the neural network with knowledge inputs scores best on
three out of four criteria, namely the false alarm ratio, lead time, and intensity prediction. The model
predicts 220 out of 276 storms, resulting in a hit rate of 0.81, with an average lead time of 220 minutes.
The model predicts thunderstorms between 5 and 92 lightning strikes, whereas the actual storms range
from 1 to 889 lightning strikes. Although the intensity prediction lacks skill, the model is able to classify
43 out of 46 storms with more than 100 lightning strikes. During the one year validation period themodel
still issues 164 false alarms, resulting in a false alarm ratio of 0.43. 51 of these false alarms occur on
days with thunderstorms. It is therefore concluded that the classification results show promise but that
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the false alarms are too high for any practical application. Moreover, at this stage the model is not able
to predict if the upcoming thunderstorm will be small or large.

Compared to the four existing early warning models, the neural network with knowledge inputs
scores fourth out of five on the hit rate and third out of five on the false alarm ratio. The model does
this with a data length record of three years compared to at least nine year of the other models. The
main improvement over the other Lake Victoria model is the reduction of false alarms due to the use
of a non-linear technique and more extensive model inputs. However, it is important to note that by
focusing on the 1%most intense storms, the Lake Victoria model increases its false alarms. The model
set-up developed in this study offers a more precise lead time compared to the Lake Victoria model
and it maintains the temporal resolution by aggregating after the prediction.

Recommendation
As a way forward in developing the early warning model several recommendations are made. Combin-
ing the neural network with raw inputs and neural network with knowledge inputs should be investigated
since it could potentially lead to a higher hit rate while maintaining the lower false alarm ratio. For the
model set-up, as described in Section 3.5, an algorithm is developed that compares the predictions to
the lightning strike measurements. Since it is newly developed the algorithm should be checked and
corrected by a different reviewer. Moreover, the model parameters should be formally optimized and
for each technique and model input set separately. Investigating different model techniques, such as
a LSTM neural network, could also lead to improved model skill. A sensitivity analysis should be con-
ducted on the model whereby the prediction window, dataset length, and model inputs, are varied and
its effect on the performance evaluated. This might provide insight into how the false alarm ratio and
intensity prediction can be improved. Combining multiple weather stations could also lead to a better
understanding of the model. Further improvements could be realised by adding different data sources,
for example, including overshooting tops or numerical weather model predictions. To understand if this
model also has potential for aiding Zipline’s medicine delivery drones in Rwanda and Ghana, it should
be tested on a different weather station. Finally, the only way to understand the potential of the model
is to test it on location and see how the predictions match the real life conditions. Before doing this
however, more research and development is recommended.
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A
Model Input Figures

The model inputs are selected based on the Spearman correlation and probability density functions.
The figures that are not shown in the main report are found in this appendix. Fig. A.1, Fig. A.2, and Fig.
A.3 show the correlation matrices for the standard deviations, gradients, and daily values, respectively.
Fig. A.4, Fig. A.5, Fig. A.6, and Fig. A.7 show the probability density functions for the 5-minute
intervals, standard deviations, gradients, and daily values, respectively.
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Figure A.1: Spearman correlation of the measurement standard deviations taken over a three hour period, with each other and
with the model target.
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Figure A.2: Spearman correlation of measurement gradient taken over a three hour period, with each other and with the model
target
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Figure A.3: Spearman correlation of the measurement over the past 24 hours, with each other and with the model target.For the
lightning events and the precipitation the sum over the past 24 hours has been used. For the wind speed the maximum value
over the past 24 hours is used. For the other variables the mean value is used.
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Figure A.4: Probability density functions for thunderstorm versus no thunderstorm for the 5-minute intervals.
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Figure A.5: Probability density functions for thunderstorm versus no thunderstorm for the measurement standard deviations.
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Figure A.6: Probability density functions for thunderstorm versus no thunderstorm for the measurement standard gradients.



43

79.8 80.0 80.2 80.4 80.6
Pressure [kPa]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Pr

ob
ab

ili
ty

 D
en

si
ty

 [
-]

Pressure 24 Hour Mean

No storm
Storm

0 100 200 300 400 500
Radiation [wm 2]

0.000

0.002

0.004

0.006

0.008

Pr
ob

ab
ili

ty
 D

en
si

ty
 [

-]

Radiation 24 Hour Mean

No storm
Storm

14 16 18 20 22 24
Temperature [ C]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Pr
ob

ab
ili

ty
 D

en
si

ty
 [

-]

Temperature 24 Hour Mean

No storm
Storm

50 100 150 200 250 300
Wind Direction [ ]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Pr
ob

ab
ili

ty
 D

en
si

ty
 [

-]

Wind Direction 24 Hour Mean

No storm
Storm

Figure A.7: Probability density functions for thunderstorm versus no thunderstorm for the measurement daily values.





B
Overfitting

This appendix shows if overfitting occurred both for the training procedure of section 4.1 and the vali-
dation procedure of section 4.2. For the training procedure, the change of the hit rate, false alarm ratio,
and lead time with threshold is shown for the linear regression models in Fig. B.1, for the neural network
models in Fig. B.2, and for the XGBoost models in Fig. B.3. The models that show the most overfit-
ting are the neural network and XGBoost with knowledge inputs. Both models show more overfitting
compared to the raw inputs. The overfitting shows itself by higher hit rates and lower false alarm ratio’s
for the training set compared to the testing set. The lead times show only small differences between
the training and testing sets. Table B.1, table B.2, and table B.3, show the results for the validation
procedure. A very mixed picture occurs, where a better performance is reached by the validation data
on some criteria but worse on other criteria. It is also not clear if the raw inputs or knowledge inputs give
rise to more overfitting. For the linear regression model and neural network the knowledge inputs show
more overfitting, whereas for the XGBoost model the raw inputs. Three reasons are identified for this
mixed picture. Firstly, there was no formal optimization for the parameters of the models. Secondly,
both model input sets use the same model parameters. In the best case, the parameters would be
optimized according to the model inputs. Finally, the model is judged on multiple criteria and they can
all show different degrees of overfitting.
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Figure B.1: The upper plots show how the hit rate (solid line) and false alarm ratio (dashed line) change with threshold. Both
the training set (blue line) and testing set (orange line) are considered. The lower plots show how the lead time changes with
threshold, for the training set (blue line) and for the testing set (orange line). The left plots show this for the linear regression
model with correlation and PDF inputs and the right plots for the linear regression model with raw inputs
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Figure B.2: This figure shows the same as Fig. B.1 but now for the neural network models.
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Figure B.3: This figure shows the same as Fig. B.1 but now for the XGBoost models.

Table B.1: Results for the training and validation sets, both for the linear regression model with correlation and PDF inputs and
the linear regression model with raw inputs.

LR LR-RI
Training Validation Training Validation

Hit rate (-) 0.93 0.79 0.95 0.88
FAR (-) 0.63 0.56 0.63 0.53
Lead Time
(minutes) 182 185 164 177

MAE 41.03 57.83 40.70 54.81
MARE 4.76 4.39 4.16 3.86

Table B.2: Results for the training and validation sets, both for the neural network model with correlation and PDF inputs and the
neural network model with raw inputs.

NN NN-RI
Training Validation Training Validation

Hit rate (-) 0.86 0.81 0.91 0.91
FAR (-) 0.51 0.43 0.48 0.43
Lead Time
(minutes) 225 220 184 207

MAE 44.33 57.60 41.52 55.28
MARE 6.37 5.40 5.62 5.85
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Table B.3: Results for the training and validation sets, both for the XGBoost model with correlation and PDF inputs and the
XGBoost model with raw inputs.

XGB XGB-RI
Training Validation Training Validation

Hit rate (-) 0.83 0.82 0.94 0.86
FAR (-) 0.51 0.44 0.58 0.47
Lead Time
(minutes) 217 204 188 183

MAE 41.94 56.85 40.92 56.95
MARE 5.52 5.26 4.53 3.86
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