<]
TUDelft

Delft University of Technology

Optimal model distributions in supervisory adaptive control

Ghosh, D.; Baldi, Simone

DOI
10.1049/iet-cta.2016.0679

Publication date
2017

Document Version
Accepted author manuscript

Published in
IET Control Theory and Applications

Citation (APA)
Ghosh, D., & Baldi, S. (2017). Optimal model distributions in supervisory adaptive control. /[ET Control
Theory and Applications, 11(9), 1380 - 1387. https://doi.org/10.1049/iet-cta.2016.0679

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1049/iet-cta.2016.0679
https://doi.org/10.1049/iet-cta.2016.0679

This is an Accepted Author Manuscript of an article published by Institution of Engineering and Technology (IET) in the journal
IET Control Theory and Applications, available online: http://dx.doi.org/10.1049/iet-cta.2016.0679

Optimal Model Distributions in Supervisory Adaptive Control

Debarghya Ghosh ! and Simone Baldi**

'Laboratoire Ampere, Ecole Centrale de Lyon, 69130 Ecully, France
Delft Center for Systems and Control, Delft University of Technology, 2628 Delft, Netherlands

Abstract: Several classes of multi-model adaptive control schemes have been proposed in liter-
ature: instead of one single parameter-varying controller, in this adaptive methodology multiple
fixed-parameter controllers for different operating regimes (i.e. different models) are utilized. De-
spite advances in multi-model adaptive control theory, the question of how the synthesis of the pairs
model/controller will affect transient and steady-state performance is not completely addressed. In
particular, it is not clear to which extent placing the pairs model/controller in a structurally optimal
way will result in a relevant improvement of the properties of the switching algorithm. In this
work we focus on a multi-model unfalsified adaptive supervisory switching control scheme, and
we show how the minimization of a suitable structural criterion can lead to improved performance
of the adaptive scheme. The peculiarity of the resulting structural optimality criterion is that the
optimization is carried out so as to optimize the entire behavior of the adaptive algorithm, i.e. both
the learning transient and the steady-state response. This is in contrast to alternative multi-model
adaptive control schemes, where special structural optimization considers only the steady-state
ideal response and neglects learning transients. A comparison with respect to model distributions
achieved via two structural optimization criteria is made via a benchmark example.

1. Introduction

The emerging field of multi-model adaptive control has successfully mitigated classical adaptive
control limitations by introducing logic-based adaptation [1]: instead of a single controller where
the parameters vary and adapt with time multiple controllers, each one pertaining to a different
operating regime (i.e. to a different model) and whose parameters are fixed, are used. The problem
becomes the one of switching to the most appropriate controller in such a way to limit the poor
transient that classical adaptive control might exhibit. The initial work on switching-based multi-
model adaptive control led to two distinct families, namely the Unfalsified Adaptive Supervisory
Switching Control [2, 3] and the Multi-model Adaptive Supervisory Switching Control schemes
[4, 5, 6, 7]. The major downside of these multi-model adaptive control families is that none of them
provides sufficient insight regarding where, within the uncertainty set covering the whole operating
envelope, one should place the nominal models (and the corresponding candidate controllers) so
as to achieve some optimal switching and steady-state performance.

Therefore, an existing open problem in the domain of multi-model adaptive control is the lack
of insight regarding the placement locations of model/controller pairs within a given uncertainty
set [8]. The best possible placement locations should be sought so that such performance is optimal
with respect to a certain criterion. In this work, we demonstrate how the model/controller locations
have a significant effect on the adaptive performance of the multi-model adaptive control scheme.



The term ‘adaptive performance’ encompasses factors like the length of learning transients, the
swiftness with which the final controller is placed in the loop, and the amount of controller switches
occurring before the final controller is turned on.

A novel multi-model adaptive control method was proposed recently, namely Multi-model Un-
falsified Adaptive Supervisory Switching Control (MUASSC) [9, 10, 11, 12] that aims to tackle
this issue by introducing an adaptive performance parameter that has a direct effect on the number
of switches, and the maximum value achieved by the performance index. This parameter, that
we refer to as the structural optimality index of the multi-model architecture, has been conceived
such that it depends on both the synthesis methodology utilized to build the controller, and the
distribution of the models within the given uncertainty.

Thus, the structural index can be related to the performance of the switching adaptive loop, and
the research question arising naturally is whether, by minimizing this structural index, the corre-
sponding model distribution would be the finest configuration of model/controller pairs that would
lead to improved switching and steady-state performance. In this paper, we demonstrate how the
model distribution that corresponds to the optimal structural index value indeed leads to superior
switching and steady-state closed-loop performance as compared to suboptimal model distribu-
tions. The proposed structural optimization methodology is also compared to an alternative model
distribution as suggested by the Robust Multi-Model Adaptive Control (RMMAC) architecture
[13]. The peculiarity of the MUASSC structural optimization is that the optimization is carried
out with respect to both the transients occurring during the learning period and the final steady-
state system response. This is in contrast to the RMMAC structural index, which considers only
the ideal steady-state response and neglects the transients during learning. We finally point out
that multi-model adaptive control is closely related to fault tolerant control: fault tolerance is the
property that enables a system to continue operating properly in the event of failures of some of its
components (i.e. some change in the operating regime). Recent contributions in this field include
[14, 15, 16, 17, 18]: to the best of the authors’ knowledge, also in fault tolerant control the problem
of how to place the controllers (each controller corresponding to a different fault) in such a way
to guarantee a desired reconfiguration performance has not been addressed. The study presented
in this work can thus address fault tolerance issues like fast fault detection and reconfiguration via
multiple models.

The paper is structured as follows: section 2 introduces the architecture of switching-based
adaptive control, and presents the structural index linked to model distribution. Section 3 deals
with how the structural parameter is optimized to arrive at the optimal model distribution for a
given uncertainty set. Section 4 presents simulation results, followed by conclusions in section 5.

2. Supervisory adaptive control fundamentals with emphasis on MUASSC

The general structure utilized in the switching-based multi-model adaptive control consists of the
four components illustrated in Fig. 1(a), namely: the plant, the multi-controller, the supervisor and
the performance evaluator. In the sequel an overview of each component is provided.

2.1. The plant

The entity to be controlled is the plant P € . The symbol & denotes the whole operating
envelope of the plant: when the envelope is defined by parametric uncertainty, the envelope is
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Fig. 1. MUASSC basics

represented by an uncertainty set ) in which the uncertain parameters of the plant lie. A set of
nominal models are used to represent some nominal operating conditions: these models are for
simplicity represented with their transfer function in the delay operator d:

Mi(d) = Bi(d)/A(d), i€ N ={1,2,... N}
Having different nominal models corresponds to partitioning the whole uncertainty set {2 into N

N

different subsets 2 = |J €2;. Each nominal model M;(d) will be the representative of its own
=1

subset €2;. Intuitively, one can think that the partition has to be sufficiently dense in order to attain

an approximation of the plant that is adequately tight. We will see that this is not always the case:
in fact, a problem in multi-model adaptive control is the choice of the nominal models, i.e. finding
a model distribution that optimizes some adaptation criterion.

2.2. The multi-controller

Corresponding to each nominal model M;(d), a candidate controller C;(d) is synthesized. Hence
the multi-controller is a bank of these candidate controllers denoted with:

Ci(d) = Si(d)/Ri(d), i€ N

Note that not only the model location, but also the controller will contribute to the stability and
performance of the adaptive scheme, as it will be explained later.

Remark 1. The presentation is carried out in the transfer function formalism: the numerical
example in Section 3 will provide the guidelines in the equivalent state-space representation.

2.3. Performance index evaluator

It has to be emphasized that the operating regime is not known in general. Only the input/output
data v and y can be used for the selection of the most appropriate controller corresponding to the
current (and uncertain) operating regime (e.g. think about a plant possibly subjected to faults).
Toward this goal, the performance evaluator must generate a quantitative index used by the su-
pervisor to produce o, the controller index. The family of performance indices, one for each
controller/model pair, is denoted as:



J(t): ieN

Different performance indices have been formulated in literature [2, 3, 4, 6, 7]. In this work, the
MUASSC performance index will be adopted. Referring to Fig. 1(b), we will denote a candidate
loop with (P/C}), i.e. the plant in feedback with a candidate controller C;. We recall that the
MUASSC performance index passes through the definitions of:

—Cd) 1]
Q) = M) O(d) A M
and
Li(d) = | Bi(d) Ai(d) )

where B;(d) = B(d) — B;(d) and A;(d) = A(d) — A;(d), where the true plant’s transfer function
is indicated with P(d) = B(d)/A(d). From recorded input/output data z, the stability inference
of a given candidate loop (P/C;) is performed by estimating the magnitude ||Q;L;||~. Using the
definition (1) and (2), it can be shown that the deviation between the actual control loop and a
given pair controller/model (both driven by the virtual reference as defined in [2]), coincides with
||7;|| 0, the generalized sensitivity matrix of the candidate loop (P/C;)

—piPC; pC;
p1/2P —1

(2

Zi(t) = Ty(d)z(t) = (1+ PCy) ! zi(t) 3)

where %(t) == [p*@(t)  §:(t)] and z(t) == [p)*wi(t) v (t)]', p; > 0. Hence, in the MUASSC
scheme, a performance index that is often used is the estimate of ||7; ||, which can be conveniently
evaluated from plant data:

M)y =2/ NP 7)== maxAut) @)

where || Z! || is the norm of the data sequence for all time intervals till time ¢: Z;(0), ..., Z;(¢).

Remark 2. The interested reader can verify that the concepts the transfer functions (1) and (2)
can be carried out in the equivalent state-space formulation. In particular, with reference to Fig.
1(D), one can see that (1) is the map between [u y|' and e; (closed-loop sensitivities) and (2) is the
map between e; and [u y|' (deviation between the true and the nominal parameter values). Such
maps can be found in the equivalent state-space representation via the state-space forms of P, M;
and C;. A similar comment applies to the generalized sensitivity matrix T; (which can be seen as
the map between input/output disturbances and [u y|'.

It is to be observed that, provided that & is a priori known and compact, for any candidate plant
in &, indices ¢ € N exists, that yield stable loops (P/C;) such that HQZ Ll <B<1,8€ R,.

These indices that are stabilizing, are part of the set: i € S(P).

Such a model distribution for which the aforementioned property holds, is referred to as a [3-
dense model distribution. The value [ arises from the solving the following in the all uncertainty
set

(&)

= max min
6 PeZ ieS(P HQZ
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(. The work [10] considers an class of dense model distributions, where 3 is allowed to be lalrge;>O

than 1. It can be seen from (5) that S depends on the closed-loop sensitivity in addition to the
deviation between the true and the nominal parameter values. Consequently, the methodology of
controller synthesis plays an important role in determining the value of parameter 3, which from
now on will be referred to as the structural index of the MUASSC scheme.

Assuming that a 5-dense model distribution exists, (P/C;) possesses the 3-property when HQl L;

2.4. Supervisor (Switching logic)

The controller to be chosen is decided with the aid of a ‘switching’ logic that ultimately assigns
a relevant controller index o. Ideally, one would like to select the controller C,(d), which cor-
responds to the smallest .J,(¢): however, directly using this methodology leads to chattering in-
between controllers, which can lead to instability. Consequently, this issue of chattering, a hys-
teresis switching logic [19] is widely used, as follows:

U(t> = Z(U(t - 1)7 ‘](t))7 U(O) = ’io - W (6)
1630 ={ s, e OO a

Here ¢(J) is the smallest integer j € W where J; < J;, Vi € W, and h, christened the
hysteresis constant, is typically a small positive constant.

Initialize &

Y E@

I A

J () < Jp(r) +h
no yes
?

Fig. 2. Hysteresis switching logic

Remark 3. The added advantage of introducing the hysteresis logic is that a change in the con-
troller index occurs only when the 'more suitable’ controller has a performance improvement of at
least h [19] over the currently switched on controller. If such is not the case, and the improvement
in J is inferior to h, the switching is avoided as the improvement is not good enough. This is shown
schematically in Fig. 2. The algorithm of the switching logic represented in Fig. 2 is independent
from the controller design.

2.5. MUASSC stability and performance Theorem

If (4) is chosen as the MUASSC performance index, in combination with the switching logic (6),
(7), then the following results, as stated in [9] are valid.



Theorem 1. Provided that at least one of the candidate controllers can stabilize the real plant P, for
any initial condition and reference r, the switching stops in finite time, and the resulting MUASSC
system (P/C,.)) is r-stable in the sense of [2]. Furthermore, if & is compact, under a (-dense
model distribution 0 < [ < 1, then:

1. The total number of switches N, is upper-bounded by:

62
%<5 [y .
2. The occurring condition V § € S¢(P),
52
As(t) > ———= 9

effectively guarantees that after time ¢, no controller that is potentially destabilizing will be
switched-on;

3. Similarly, the occurring condition, V § € S¢(P),

52
As(t) > ——=+h (10)
(1-75)?
guarantees that any index active after time ¢ will be associated to a stabilizing candidate

controller.

4. When the condition i > 3%/(1 — (3)? is satisfied, each controller candidate will be placed
in the loop only once, and if any controller that is stabilizing and possesses the previously
introduced [3-property, when placed in the feedback loop, cannot be turned off henceforth.

Meaning of theorem I: The interpretation of Theorem 1 is now given. The theorem shows how
lowering [ can be advantageous towards improving the transient switching performance of the
scheme. Relation (8) makes it clear that a lower 3 leads to reduced number of switches N,. More-
over, greater the N, the lower the value of 5. Relations (9) and (10) can be more easily satisfied
for smaller 5: hence, the lower the 3, the smaller the chances of a destabilizing controller being
switched on. In addition to this, a lower  implies a smaller steady-state performance (in terms of
the generalized sensitivity matrix in (3)). Finally, it is evident from the fourth point that a lower 3
mitigates the possibility of a wrong unwanted controller being switched on once the best controller
is already in the loop. To summarize, Theorem 1 suggests that by lowering /3, the performance of
MUASSC (transient and steady state) should improve. The research question arising naturally is
whether, by minimizing the structural index [, the corresponding model distribution is the finest
configuration of model/controller pairs that would lead to the best possible switching and steady
state performance. This hypothesis will be verified via a numerical benchmark example.

3. Benchmark example for comparison

In order to evaluate how the adaptive performance will change by changing the model distribution,
we will adopt the classical two carts benchmark example, which is widely used to model suspen-
sion systems, smart structures, flexible space structures, etc. [20, 21, 22, 23]. The benchmark,
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shown in Fig. 3, consists of two carts, each one weighing 1K g (m; = my = m = 1Kg). The
carts are interconnected via a spring of stiffness +, which in-turn is the uncertain parameter and
may vary between I' = [0.25, 1.5]N/m, a prefixed known interval [9]. The system input is the
force applied to the first cart and the output to be controlled is the second cart’s position x,. The
state-space description of the bechmark with m = 1K g substituted is given by:

& = (Ao + vA1)x(t) + Gyu(t) (1D
y(t) = [ 00 01 ] x(t), with:

0100 0O 0 0 O 0
00 0O -1 0 1 0 0 (12)

Ad=lgoo01 | M=l 000 1| G|

00 0O 1 0 -1 0 1

which in discrete-time, with sampling time 77, results in the transfer function:
T4d

vy = 1= (13)

(d—1)2[d? + (2912 — 2)d + 1]

The following points are to be emphasized: first, no single (linear) controller can cope with the
entire uncertainty set. So, to control the plant, a multi-controller has to be adopted. Second, due
to the presence of integrators and a pair of purely imaginary poles, no PID controller can stabilize
the plant (at least not in a robust way). Third, being based on a generalized sensitivity matrix, the
MUASSC structural index is well posed only for linear controllers, which prevents from testing
nonlinear control strategies like feedback linearization, sliding mode, etc. For theses reasons, the
candidate controllers are designed based on H ., and LQ mixed sensitivity criterion [24] as follows:

~ 2 2
He: Cs)—arg min 12—+ 1l (14)
<1 7]l
LQ: Cs) = arg min 7= ol + Jul? (15)

where 7 = V(s)r, and V (s) = (s + 2)2(s? + v/2s + 1) is a strictly Hurwitz polynomial to ensure
pole placement [24]. The resulting controllers are discretized with sampling time 7 = 0.1s. The
controllers are shown in Table 1 for a family of 3 and 5 candidate controllers. These controllers and
the uncertainty set I' = [0.25, 1.5]N/m will be used for the calculation of the structural indices.

X1 X2

(Output)
Unknown Spring stiffness

between I'=[0.25,1.5] N/m

\ 4

(Input)

Fig. 3. Two carts benchmark



3.1.  Optimization of the structural index (3

The formulation of 3 in (5) sheds light on the fact that 5 depends on the deviation between the
true plant and model parameters and hence the position of the models effects its value. In addition
to this, 5 also depends on the closed-loop sensitivity and hence affected by the methodology used
to synthesize the controller. For simplicity, it is assumed that all controllers are synthesized using
the mixed sensitivity criterion [24]. This leads to a simplified optimization problem wherein the
design variables of the problem can be restricted to the model/controller locations alone.

With reference to (5), one can observe that in the synthesis of 5, max and min operators are

used. Please refer to Fig. 4(a) and 5(a), which show how HQZ [:i

tainty, with 3 and 5 candidate controllers. The presence of such max and min operators lead to
discontinuities in function values and hence smooth optimization algorithms would fail. In ad-
dition, the cost function is nonlinear in nature containing multiple minimas. Hence conventional
off-the-shelf convex methodologies would fail to attain the global minimum. One therefore needs
to use non-smooth, nonlinear optimization methodologies [25, 26] for possibly suited optimization
techniques. A structural optimization algorithm has been proposed in [27] that takes advantage of
a structure inherent to this specific minimization problem to efficiently arrive at the global minima:
such an algorithm will be adopted in this work.

changes across the uncer-

3.2. An alternative structural index

Among the different proposed approaches in multi-model adaptive control, the Robust Multi-
Model Adaptive Control (RMMAC) is the only one where effort has been made towards attaining
an optimal model distribution. In RMMAC the set of multi-models is places in such a way to
guarantee an acceptable user defined degradation with respect to the mixed sensitivity achieved
by an infinite set of local controllers covering the uncertainty set. For more details the reader is
referred to [13]. Summarizing, the RMMAC technique accounts only for the steady-state mixed
sensitivity performance, once the best controller is turned on. However there are no guarantees
that the best controller will be placed in the loop. Moreover, no quantification on transient perfor-
mance like total number of switches etc (e.g. Theorem 1 for MUASSC) is present in the RMMAC
model distribution method. Thus, it is relevant to compare how model distributions that are struc-
turally optimal with respect to the two different criteria will perform in transient and in steady-state
conditions.

4. Simulation results

The § minimization technique introduced in [27] was utilized to optimize the MUASSC struc-
tural index. The simulations were carried out for two cases: 3 and 5 candidate controllers build
up the multi-controller to tackle the uncertainty. All the model/controller pairs, before and after
optimization, both the /., and LQ synthesis, can be found in Tables 1 and 2.

3 candidate controllers: For the 3 controller case, the models are placed suboptimally at
[0.3,0.5,1.0]N/m, corresponding to = 3.00 for H,, synthesis and 5 = 4.21 for LQ synthe-
sis. The minimization procedure places the models at [0.3395, 0.62, 1.17] N/m, corresponding to
B = 1.90 for H, synthesis, and [0.3366, 0.6064, 1.227] N /m, corresponding to 5 = 2.54 for LQ
synthesis.

5 candidate controllers: For the 5 controller case, the models are placed as suggested by
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Fig. 5. H., synthesis, 5 controllers case: structural index [3

the RMMAC scheme at [0.334,0.446, 0.606, 0.871, 1.50] N/m, corresponding to § = 1.81 for
H, synthesis and § = 2.46 for LQ synthesis. The minimization procedure places the mod-
els at [0.307,0.45,0.65,0.924,1.273] N/m, corresponding to § = 1.19 for H,, synthesis, and
[0.334,,0.229,0.6717,1.0484, 1.4683] N /m, corresponding to 5 = 1.85 for LQ synthesis.

Due to the fact that the H, synthesis culminated in a lower [ for both the 3 and 5 controller
cases, in the following we restrict the performance evaluation comparisons to the mixed sensitivity

case alone. Figs. 4 and 5 show min;eg(p) HQ, f/i ‘ over the entire uncertainty set for 3 and 5

controllers, respectively, for both suboptimal and ofﬁimal model distribution. It is evident from
Figs. 4 and 5 that by optimizing the locations of models one can achieve lower values of /3.

Simulations are to be performed with the MUASSC scheme to prove the improvement in switch-
ing transient and steady-state performance before and after minimization of 3. Different criteria
are used to measure the performances:

e Criteria for switching transient performance

— Final switching time
— Number of switches before final switching time

9



Table 1. Model/controller pairs: 3 candidate controllers

Initial model/controller pairs o] Final model/controller pairs Ié]
[0.3;0.5; 1.0]N/m 0.3395; 0.62; 1.17]N//m
MUASSC original, H, synthesis MUASSC optimal, H,, synthesis
— 43.43-129d+127.84" —42.3d 38.65—114.9d+114d2 —37.75d3
C1 = 1 58+ 193500520508 3.00 Cl = A i oo o b iemas 1.90
C., = 26:5=T79.04d+78.77d?~26.23 21.06—63.02d+63.06d2—21.1d3
2 1—2.372d+1.902d2?—0.5119d3 CQ - 1—2.362d+1.888d2 —0.5065d3
Oy = 13:28-40.38d+41.134° ~14.024° (), — 11.43-35.28d+36.48d°~12.63d°
1—2.322d+1.83d?—0.4848d; 3 T T1-2.9286d+1.778d2—0.4656d3
[0.3;0.5; 1.0]N/m [0.3395;0.62; 1.17]N/m
MUASSC original, LQ synthesis MUASSC optimal, LQ synthesis
_ 43.23—129.2d4126.9d%—42.12d° __ 38.97—115.8d4114.9d>—38.05d3
C1 = 1-2.376d+1.921d% —0.5202d3 4.20 i = 1-2.385d+1.921d% —0.5189d3 2.59
O, — 26.42—79.092d+78.15d% —26.12d° O, — 21.66—85.38d+126.4d2—83.3d3+20.61d4
2 = T 1-2.366d+1.907d2—0.5136d3 2 7 T12.3.33d+4.174d2—2.334d3+0.4904d%
Oy = 7.456—29.2d+42.98d2 —28.18d%+6.938d*4 Oy = —2.133+8.872d—13.88d%+9.692d% —2.551d*
3 — "1-3.339d+4.198d%—2.354d3+0.4961d% 3 — T 1-3.342d+4.207d2—2.361d3+0.4983d%

— Maximum input/output peak
e Criteria for steady state performance

— Final controller-plant mixed sensitivity peaks

Remark 4. It is important to underline that all these criteria are evaluated over the entire uncer-
tainty set, and averaged over different controllers initially placed in the loop. This means that the
uncertainty set [0.25,1.5]|N/m has been divided into 250 discrete values and for every discrete
point, simulations with different initial controllers are performed.

4.1. Three controller comparisons: original vs optimal MUASSC structural index

Final switching time: The reader is directed towards Fig. 6(a), which shows the average highest
switching time for both model distributions. As any one of the three controllers can be placed in
the loop initially, Fig. 6(a) is the average of the final switching time. The results from Fig. 6(a)
suggest that the highest switching time in the optimal case (8 = 1.9) has been reduced to 944
seconds as compared to a previous highest switching time of 1056 seconds with a § = 3.009:
consequently one can interpret this as an improved transient performance.

Number of switches: Table 3 shows the total number of switches occurring before the final
controller is placed in the loop. It is observed that the overall total number of switches reduces
from 3 switches in the suboptimal model distribution, to 2 in the optimal one. According to the first
part of Theorem 1, if /3 is reduced, then one may expect the upper bound on the number of switches
to go down. Our simulations indicate that also the actual number of switches goes down, which is
not an obvious result. These comparisons prove that the model distribution corresponding to the
optimal 3 does indeed yield superior switching performance when compared with the suboptimal
one.

Mixed sensitivity peak: Fig. 6(b) shows the mixed sensitivity peak (i.e steady-state perfor-
mance) resulting from the combination of the final controller and plant. The results of the mixed

10



Table 2. Model/controller pairs: 5 candidate controllers

Initial placement o] Final Placement o]
[0.334; 0.446; 0.606; 0.871; 1.50] N /m [0.307; 0.45;0.65; 0.924; 1.273] N/m
RMMAC, H,, synthesis MUASSC optimal, H,, synthesis
C, — 39.25—116.6d+115.7d2—38.33d° O, = 42.5—126.2d+125.1d%—41.42d3
1 = "1-2.385d+1.921d2—0.5189d° 1 = 172.387d+1.924d2—0.5202d3
O, — 29.68—88.4d+87.96d2 —29.24d3 O, — 29.42—87.64d+87.21d? —28.99d3
2 = T1_2.376d+1.90842—0.5141d3 1.81 2 = T1-2.376d+1.907842—0.51394° 1.19
C- = 21.85—65.35d+65.35d% —21.84d° Oy = 20.36—60.96d+61.05d> —20.44d3
3 7 T1-2.364d+1.891d2—0.5075d3 3 7 T1-2.361d+1.886d2—0.5056d°
O, — 15.17—45.82d+46.32d2—15.67d3 O, — 14.32—43.36d+43.96d> —14.91d3
4 = T1-2.34d+1.855d2—0.4941d3 4 = T1-2.333d+1.846d2—0.4906d3
(O — 9:043-29.66d—32.47d>+11.84d° (. — 10.68—33.35d—34.89d%—12.21d°
1—2.153d+1.58842 —0.3957d3 5 1—2.259d+1.73842—0.451d3
[0.334; 0.446; 0.606; 0.871; 1.50] N /m [0.334; 0.4229; 0.6717; 1.0484; 1.4683| N /m
RMMAC, LQ synthesis MUASSC optimal, LQ synthesis
O, = 34.93—135.3d+196.7d> —127.1d3430.79d* C, = 34.9—135.3d+196.7d2—127.1d3+30.79d*
1 = T173.31d+4.128d2—2.297d3+0.4806d% 1 = T123.31d+4.128d2—2.297d3+0.4806d%
O, — 23.99-93.38d+136.4d>—88.61d°+21.6d" O, — 26.3-102.4d+149.7d% —97.33d°+23.74d"
2 1—3.333d+4.185d2 —2.343d3+0.493d% 2.46 2 1—3.332d+4.182d% —2.341d3+0.4925d4 1.85
Oy = 21.19—83.26d+122.9d> —80.74d34+19.9244 Oy = 13.31—51.92d4-76.05d% —49.57d% +12.13d*
3 T T 1-3.348d+4.22d%—2.372d3+0.5009d% T 1—3.345d+4.213d2—2.366d3+0.4994d4
C, = 9.74—38.14d+56.12d2 —36.77d3+9.052d* C, = —2.944+12.21d—19.04d%+13.24d% —3.467d*
4 = T1°3.351d+4.228d2—2.378d3+0.5026d% 4 = TT173.351d+4.23d2—2.379d3+0.5031d%
_ —1.80747.341d—11.22d2+7.665d°—1.977d* _ —4.417417.73d—26.8d%+18.1d3 —4.6114
Cs = Cs =
5 1—3.36d+4.25d2—2.396d34-0.5075d* 5 1—3.359d+4.248d2 —2.394d34+-0.5072d4

Table 3. 3 controllers case: transient and steady-state performance criteria

Locations of Controllers Original MUASSC | Optimal MUASSC | Reduction %
Highest switching time 1080 s 930 s 13.9%
Highest number of switches . .
(Overall, for all initial conditions ) 3 switches 2 switches 33.3%
P/C; Mixed Sensitivity peak 70 % of uncertain set experienced a lower peak value

sensitivity showed that almost 70% of the set experienced a lower mixed sensitivity peak, around
28% faced degradation while the rest 2% remained almost the same. Note that, in Fig. 6(b), only
the portions of uncertainty where the final controller is active have been plotted. The disconti-
nuities in Fig. 6(b) indicate the change in the final controller between one spring stiffness and
another. Hence as a collective set, the steady-state performance is improved by the optimal model
distribution.

4.2. Five controller comparisons: MUASSC vs RMMAC structural index

Final switching time: In these simulations the averaging of the final switching time is done out of
five possible initial controllers. Fig. 7(a) and Table 4 indicate that the highest switching time for
MUASSC model distribution is limited to 380 seconds as compared to 540 seconds in the RMMAC
model distribution.

Number of switches: Fig. 7 shows that the total number of switches reduced from 2 in the
RMMAC model distribution to 1 in the MUASSC optimal model distribution. Consequently, the
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3 controller comparison, Max. average switching time 3 Controllers, final controller-plant mixed sensitivity peak
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Fig. 6. H., synthesis, 3 controllers case

Table 4. 5 controllers case: transient and steady-state performance criteria

Locations of Controllers RMMAC | Optimal MUASSC % Reduction
Highest switching time 540 s 380 s 29.6%
Highest number of switches . .
(Overall, for all initial conditions ) 2 switches I switch 0%
P/C; Mixed Sensitivity peak 80 % of uncertain set experienced a lower peak value

reducing of 3 led to better transient MUASSC performance for both N = 3 and NV = 5.

Mixed sensitivity peak: The mixed sensitivity peak in Fig. 7(b) shows clearly that for the
uncertainty set as a whole, the peak is reduced for almost 80% of the set, with a 20% performance
degradation elsewhere. Again this suggests that irrespective of /N, optimizing /3 leads not only to
superior transient performance but also improved steady-state performance. The results of the five
controller case are concisely presented in Table 4.

5. Conclusions

This work demonstrated how the minimization of a suitable structurally optimal criterion can lead
to improved performance of the MUASSC scheme. The structural index depends on the location
of the model/controller pairs, also referred to as model distribution. It was the hypothesis that
the model distribution the would correspond to the lowest possible structural index could yield
optimal transient and steady state performance. A numerical benchmark example clearly shows
that a lower structural index can decrease the ‘number of switches’ before the final controller is
inserted. A reduction of the ‘final switching time’ is also observed. In addition, the theoretical
mixed sensitivity peak comparisons also indicated a better steady state performance for a greater
part of the set with the final controller being switched on.

In retrospect, when comparing MUASSC with RMMAC, the structural index of MUASSC and
RMMAC, the structural index in MUASSC guarantees a desired transient performance, while in
the RMMAC case no such guarantee can be provided. Future work will involve development
of fast and efficient non smooth non linear algorithms that can speed up the convergence of this
structural optimization problem. Furthermore, the definition of the structural index is limited to
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5 controller comparison, Max. average switching time 5 Controllers, final controller-plant mixed sensitivity peak
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Fig. 7. H., synthesis, 5 controllers case

linear systems and linear controllers. Extensions to nonlinear cases is an open problem and might
be addressed in the future.
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