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Abstract

Oceans play a vital role in the regulation of Earth’s intricate climate system. The majority of gas and energy
exchanges occurring at the ocean-atmosphere interface are driven by small-scale, O(1 km), coupled processes.
Despite its importance, too few observations have been able to capture the ocean-atmosphere coupling at
scales smaller than O(10 km). This has led to poor parameterisation in climate models. In an effort to
enhance our understanding of the ocean-atmosphere coupling, this study aims to test and improve upon two
separate Marine Atmospheric Boundary Layer (MABL) characterisation methodologies (called algorithm 2A
and algorithm 2B) put forward by Young et al. (2000). Algorithms 2A and 2B relate processed Synthetic
Aperture Radar (SAR) image properties to a specific atmospheric state through use of surface-layer similar-
ity theory and a combination of surface-layer and mixed-layer similarity theory respectively. Results of both
methods indicate significant inherent limitations. Algorithm 2A’s utility is curbed by uncertainty introduced
during the estimation of Convective Boundary Layer depth Zi and spectral power-law extrapolation. Algo-
rithm 2B suffers from uncertainty introduced by the dimensionless energy dissipation rate ψ. As a result
of these (and other) uncertainties, the estimated atmospheric instability can be off by a factor 2 or more.
Further analyses suggest shortcomings in the applicability of the Geophysical Model Function (GMF). It is
hypothesised that both employed GMFs underestimate the horizontal wind-field variance at scales relevant
to turbulent convection, which subsequently manifests itself as (part of) the observed average 50% overes-
timation of absolute Obukhov length and subsequent 33% underestimation of the atmospheric instability.
Additional research is required to support and quantify the GMF-induced underestimation hypothesis. In-
spired by algorithm 2B, a third method (algorithm 2C) is developed which circumvents major uncertainties
inherent to both algorithm 2A and 2B. However, due to limitations of its own, algorithm 2C is incapable
of replacing algorithms 2A or 2B for a large range of atmospheric instabilities. If improved upon and suc-
cessfully employed, spaceborne characterisation of the MABL could benefit climate studies by providing a
wealth of continuous and global atmospheric-state measurements on scales previously unavailable.
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1 INTRODUCTION

Introduction

1.1 Research relevance

Climate is regulated by the oceans, which combined cover over 70% of the Earth’s surface (NOAA, 2020).
Ocean warming accounts for over 90% of the Earth’s energy inventory increase between 1971 and 2010,
where the majority of excess energy storage occurs in the upper 700 m of the ocean (IPCC, 2013). The gas
and energy exchanges occurring between the Marine Atmospheric Boundary Layer (MABL) and the water
surface are vital for climate descriptions (Smith et al., 1996). The dominant convective processes within
a MABL in which vertical transport of air parcels attempts to re-establish equilibrium (i.e. an unstable
MABL) are structured as microscale, O(< 3 km) (Stull, 1988), two-dimensional rolls and three-dimensional
cells (Sikora and Ufermann, 2004). Sikora and Ufermann (2004) notes three domains for which MABL
convection is important. Firstly, on the micro- to mesoscale (2 km to 2,000 km) MABL convection can
directly affect meteorological conditions. Secondly, on the meso- to macroscale (2,000 km to 20,000 km) the
fluxes induced by MABL convection are critical for weather forecasting. Lastly, on long temporal scales the
statistical properties of MABL convection (such as occurrence frequency and induced flux) are important for
global climate modelling. The range in spatial and temporal scales of these domains highlights the impact
of MABL convection on processes orders of magnitude greater than that of the MABL itself.

In light of current climate research, the impact of MABL convection on large temporal and spatial scales is
particularly important. The Earth system contains a host of intricate feedback loops and non-linear couplings
between processes occurring at different temporal or spatial scales (ESA, 2020). For example, the majority
of energy transport and gas fluxes between the ocean and atmosphere are driven by small-scale, O(1 km),
coupled processes (ESA, 2020). The complexity and scale of these processes necessitates parameterisation
in climate models (Trindade et al., 2019; ESA, 2020). Due to a lack of high-quality observations with
which to constrain models, the parameterisation of these small-scale processes is among the main sources of
uncertainty for climate projections (Trindade et al., 2019; ESA, 2020). Thus, by continuous and successful
characterisation of the MABL, an improved parameterisation of the air-sea coupling can be achieved which
by extension leads to improved global climate models.

1.2 Research aim

Synthetic Aperture Radar (SAR) observations of the oceans are used for a multitude of scientific and civil
purposes. Its all-weather capability makes it a suitable tool for ship and oil spill detection, sea ice moni-
toring, wind field mapping, wave spectrum retrieval, studying tropical cyclones and near-shore bathymetry
estimation (Alpers and Hennings, 1984; Vachon et al., 2004, 2012; Foster, 2013; Wiehle et al., 2019). Unlike
the coarser O(10 km) resolution of scatterometers, the O(100 m) resolution of SAR observations allows it to
resolve scales relevant to MABL-induced convection (at the cost of directional ambiguity). Two-dimensional
rolls and three-dimensional cells alter the local wind field. The altered wind fields whip up surface waves
which leads to increased surface roughness and stronger backscatter of the emitted radio wave (Hersbach,
2008), leaving identifiable roughness patterns visible to SAR. Through observing these MABL-induced rough-
ness patterns one can derive several properties of the MABL state. Gerling (1986) and Zecchetto et al. (1998)
derive wind direction from two-dimensional rolls and three-dimensional cells respectively, Wackerman et al.

1



1.3 Research question 1 INTRODUCTION

(1996) estimates the depth of the convective part of the MABL, i.e. the Convective Boundary Layer (CBL)
depth, using two-dimensional rolls, Sikora et al. (1997) estimates the CBL depth using three-dimensional
cells and Quilfen et al. (1998) estimates the wind field within tropical cyclones using a Geophysical Model
Function (GMF). A GMF relates the intensity of the backscattered signal to surface stress and, in turn, an
estimated wind speed. Young et al. (2000) displays the possibility of inferring several MABL properties from
SAR data by extracting spectral statistics from the convection-induced roughness patterns. ESA’s Sentinel-1
mission has acquired millions of ocean covering SAR observations since launch (Wang et al., 2019a). Apply-
ing Young’s methodology on this vast archive of data could yield new insights into the air-sea interactions
between the ocean and the atmosphere. The aim of this study is to test the characterisation of the MABL
using SAR data. This characterisation consists of the estimation of wind direction, average wind speed,
friction velocity, horizontal wind-field variance, CBL depth and Obukhov length. Of particular interest are
the latter three parameters as these cannot be derived on relevant scales with contemporary scatterometers.
Successful derivation of these parameters can aid the calibration of ocean-atmosphere coupling models by
providing global, near real-time MABL information on horizontal scales previously unavailable.

1.3 Research question

The main research question of this study is

"To what extent is it feasible to characterise the state of the marine atmospheric boundary layer over the
ocean by means of spectral analysis of Sentinel-1 SAR amplitude observations?"

1.4 Research sub-questions

In order to answer the main question, the following sub-questions are addressed

1. What imprints does the MABL leave on the water surface?

Both oceanic and atmospheric processes determine the water-surface structure (Young et al., 2000).
In order to characterise the MABL it must first be understood what signatures it leaves on the water
surface.

2. Can the imprints caused by the MABL be separated from other signal sources?

The horizontal scale of oceanographic and atmospheric phenomena overlap (Young et al., 2000). Perfect
separation of the individual signal components is not always possible. The relevant signals have to be
separated in order to perform further analyses.

3. Are the employed GMFs capable of estimating the MABL-induced wind-field variations?

GMFs are used to relate the radar backscatter intensity to wind fields. Originally designed for the
estimation of average wind speeds on O(10 km) scales, it is hypothesised that these GMFs may fail to
accurately estimate wind-field slopes for resolutions two orders of magnitude higher, e.g. O(0.1 km).
The GMF assumes the surface stress to be caused by a wave field at a particular development stage.
However, the rapidly changing wind fields prevailing during turbulent convection may prevent the wave
fields from reaching the development stage implicitly assumed by the GMF, which would result in the

2



1.5 Research outline 1 INTRODUCTION

derived wind fields failing to capture the convection-induced wind-field variability. If indeed the case,
failure of the GMFs is expected to lead to underestimation of the variability occurring at scales relevant
to turbulent convection and thus underestimation of the horizontal wind-field variance.

4. How can the MABL’s imprints be related to a MABL state?

Once the MABL-induced water-surface signatures have been isolated and transformed into a represen-
tative wind field, it must be related to characteristics of a specific MABL state. Different empirical
relations should enable this connection. An understanding of the shallow atmosphere is required in
order to select and implement the correct empirical relations whilst taking into account their respective
limitations.

1.5 Research outline

Relevant background information regarding the MABL, its imprints on the water surface, the SAR measur-
ing tool and GMFs are described in section 2. The methodology to retrieve MABL properties from SAR
observations is described in section 3 with an in-depth description of the study areas and validation data
following in section 4. Characterisation results for these study areas and a discussion of said results are
provided in section 5. Conclusions regarding the characterisation performance are presented in section 6,
along with recommendations.

3



2 BACKGROUND

Background

2.1 Marine Atmospheric Boundary Layer

Stull (1988) and Sikora and Ufermann (2004) describe the MABL as that part of the atmosphere directly
influenced by the surface. Smith et al. (1996) describes the atmospheric boundary layer as the turbulent zone
between the water surface and non-turbulent atmosphere. Perhaps the most intuitive description is provided
by Augstein et al. (1974) as "that part of the atmosphere where physical processes induced at the sea surface
are detectable". Although the exact definition of the MABL, or one of its synonyms, varies per author, the
general description consistently refers to a layer between the ocean surface and the free atmosphere.

The MABL is often subdivided into several atmospheric layers. For this study the most important of these
layers are the surface layer and the convective/mixed layer. Within the surface layer there are constant
turbulent fluxes, regardless of whether the overlying layer is turbulent or stable (Stull, 1988). The surface
layer occupies approximately the lowest 10% of the MABL, almost touching the water surface were it not for a
thin layer separating the two in which molecular transport exceeds turbulent transport (Stull, 1988). During
turbulent convection the surface layer is capped by the mixed layer. The height of the latter is denoted by Zi,
which frequently appears as an important parameter in equations. Different definitions of Zi are provided by
different authors (or sometimes even one and the same author); Deardorff (1974); Young (1987); Stull (1988)
define Zi as the top/depth of the well-mixed layer within the MABL, Kaimal et al. (1976); Panofsky et al.
(1977); Zecchetto et al. (1998) describe it as the height of the lowest inversion, Cheynet et al. (2018) as the
inversion height and Young (1988); Sikora et al. (1995, 1997) as the convective boundary layer depth. The
above definitions all refer to the same height, namely one below which a well mixed, convective layer exists
which is capped by an inversion. The capping inversion is visible in atmospheric profiles as it coincides with
relatively strong vertical gradients of temperature and humidity. Due to the turbulent mixing within the
Convective Boundary Layer (CBL), its vertical gradients of potential temperature and humidity are small
(Malkus, 1958; Augstein et al., 1974; Kaimal et al., 1976; Stull, 1988). For the sake of consistency, this study
will refer to the layer below Zi as the CBL.

The dominant convective processes within an unstable MABL are structured as microscale two-dimensional
rolls and three-dimensional cells (Sikora and Ufermann, 2004). Examples of the latter and the former are
shown in Figure 2.2 and Figure 2.4 respectively. These convective modes are not mutually exclusive. During
a transition from cells to rolls, or vice versa, the characteristics of both modes can be observed (e.g. Figure
14.5 in Sikora and Ufermann, 2004). Results shown in Mourad (1996) appear to contain signals of cells
neatly aligned within developed rolls and Zecchetto and De Biasio (2002) performed a statistical analysis of
cells located in rolls using wavelet transformations.

2.1.1 Three-dimensional cells

A typical ocean is slightly warmer than the overlying atmosphere (Smith et al., 1996). Such temperature
differences introduce turbulent convective transport (Stull, 1988; Zecchetto et al., 1998). The resulting
atmospheric convection is structured as the aforementioned rolls or cells (e.g. Wackerman et al., 1996;
Zecchetto et al., 1998; Young, 2000; Sikora and Ufermann, 2004). Three-dimensional cells occur frequently
under low wind-speed conditions with large temperature differences between ocean and air (Dorman and

4



2.1 Marine Atmospheric Boundary Layer 2 BACKGROUND

Mollo-Christensen, 1973; Woodcock, 1975; Young et al., 2000). The horizontal scale of microscale three-
dimensional cells is in the order of hundreds of metres to low kilometres (Sikora et al., 1999; Young et al.,
2002). Kaimal et al. (1976) found the dominant wavelength of horizontal velocity within three-dimensional
cells to be a function of Zi, namely 1.5Zi. Likewise, Young (1988) found a ratio of 1.5 from a separate
measurement campaign. Sikora et al. (1995) shows that the expected downdraft pattern caused by three-
dimensional cells approximately follows the predicted ratio and that these patterns are visible in radar
imagery. The ratio of 1.5 is not carved in stone, Sikora et al. (1995) found a ratio of 1.98 ± 0.5 whereas
Caughey and Palmer (1979) observes a lesser ratio. Based on the findings of previous research an aspect ratio
of 1.5 can be used as a rule of thumb (Sikora et al., 1997). The aspect ratio does not hold for weakly capped
inversion layers or mesoscale cells. Convection within the cells is composed of localised up- and downdrafts
(Sikora and Ufermann, 2004). In Figure 2.1 a two-dimensional cross section of a three-dimensional convective
cell is shown.

Figure 2.1: Cross section of a three-dimensional cell (Sikora and Ufermann, 2004).

At the locations of downdraft the turbulent air spreads radially and perturbs the water surface. The down-
draft wind decreases the magnitude of surface perturbation directed opposite the mean wind direction and
amplifies the perturbation in the along-wind direction (Sikora et al., 1995; Sikora and Ufermann, 2004).
In summary, surface signatures of three-dimensional cells consists of cell-like structures, also referred to as
mottling (Sikora and Ufermann, 2004; Sikora et al., 1997) or cat paws (Dorman and Mollo-Christensen, 1973;
Stull, 1988; Sikora et al., 2006), with scales in the order of several hundreds of metres (Stull, 1988) and the
greatest variation in perturbation in the along-wind direction (Zecchetto et al., 1998). Concerning the latter
point, Sikora et al. (2006) notes that, depending on the specific atmospheric conditions, the approximate
orientation of three-dimensional cells can be significantly misaligned with that of the mean wind field.

2.1.2 Two-dimensional rolls

Two-dimensional rolls are created in the presence of thermal differences between layers (similar to three-
dimensional cells) and sufficient wind shear at the air-sea interface (Etling and Brown, 1993; Sikora and
Ufermann, 2004). Etling and Brown (1993) notes that two-dimensional rolls can also, but less frequently, be
caused by inflection point instability during neutral atmospheric stratification. Similar to three-dimensional
cells, the downdraft of two-dimensional rolls perturbs the water surface resulting in characteristic pat-

5



2.1 Marine Atmospheric Boundary Layer 2 BACKGROUND

Figure 2.2: Example of three-dimensional cells caused by cold wind blowing from Vladivostok over the Sea of Japan,
approximate cell size: O(km), Orbit: 20455, Frame: 2763, Satellite: ERS-2, Date: 20-03-1999 (ESA, 2021).

terns (Sikora and Ufermann, 2004; Wackerman et al., 1996; Etling and Brown, 1993). Contrary to three-
dimensional cells, the greatest variation in surface perturbation occurs in the cross-wind direction. The
exact orientation of the two-dimensional structures depends not only on the surface wind but also on the
geostrophic wind above the roll structures, see Figure 2.3. Faller (1964) notes a 13◦ bias to the right of the
mean surface-wind direction, Lemone (1973) notes an alignment of -5◦ to 20◦ to the left of the geostrophic
wind and Wackerman et al. (1996) notes possible bias ranges between 13◦ and 75◦ to the right of the mean
surface-wind direction, the majority of which within 13◦ and 30◦. In a recent study of roll vortices observed
with Sentinel-1 WV mode, the orientation deviated from the surface wind with an angle of -1.77◦ ± 25.18◦

with no bias to either side of the wind direction (Wang et al., 2019a). The author notes more research is
ongoing into this unexpected finding. The spread in wind orientation with respect to roll orientation will
complicate wind-direction estimation.

Figure 2.3: Cross section of two-dimensional rolls, (Alpers and Brümmer, 1994).
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2.1 Marine Atmospheric Boundary Layer 2 BACKGROUND

Figure 2.4: Example of two-dimensional rolls near the East Coast of the USA, approximate image size: 300x150km,
Satellite: RADARSAT-1, Date: 06-03-1997 (Sikora and Ufermann, 2004).

Downdrafts occur at spatial distances double that of the roll diameter as two counter rotating rolls are
required to form one wavelength λ, see Figure 2.3. The scale of λ is in the O(km) order (Sikora and
Ufermann, 2004). Optical imagery often shows cloud streets at the location of updrafts (Etling and Brown,
1993; Sikora and Ufermann, 2004). An optical and radar analysis of the spatial frequency should thus yield
similar results despite observing roll imprints on different media; radars observe the downdrafts patterns
on the water surface whereas optical sensors observe cloud streaks in the updrafts. More interesting for
the purpose of MABL characterisation is that, when confined to the MABL due to a strong inversion, the
distance between downdrafts (λ in Figure 2.3) can be used as proxy for Zi. The aspect ratio λ:Zi is frequently
between 2 to 6, although values higher than 10 have also been observed (Lemone, 1973; Brown, 1980; Etling
and Brown, 1993; Wackerman et al., 1996; Young et al., 2002; Wang et al., 2019a). The vertical flux caused
by two-dimensional rolls is substantial. According to Etling and Brown (1993), modelling exchanges within
the MABL, either for climate or meteorology, without considering the flux induced by two-dimensional rolls
is "inappropriate".

2.1.3 Atmospheric turbulence

The atmosphere contains various scales of turbulence. Two-dimensional rolls and three-dimensional cells only
occupy a portion of the total turbulence spectrum. Three commonly distinguished scales of atmospheric
phenomena are the microscale, mesoscale and synoptic scale (Fiedler and Panofsky, 1970). Microscale
phenomena are driven by vertical temperature and wind gradients (Fiedler and Panofsky, 1970) such as
those observed during MABL convection. In the spatial domain they occupy wavelengths between 100 m to
several kilometres, although usually smaller than O(3 km) (Stull, 1988). Mesoscale phenomena are driven
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by horizontal temperature and wind gradients which occupy spatial scales between approximately 2 km and
several hundred kilometres (Fiedler and Panofsky, 1970; Nastrom et al., 1984; Lilly, 1989) with synoptic
scale phenomena being greater still (Fiedler and Panofsky, 1970). One can distinguish between scales of
turbulence by plotting the atmospheric horizontal velocity energy spectrum. The calculation of this spectrum
is described in subsection 3.3. The mesoscale follows a -3 and -5/3 power law between approximate horizontal
scales 600 - 3000 km and 1 - 200 km respectively (Nastrom et al., 1984; Lilly, 1989). The local atmospheric
setting affects the kilometre scale spectral shape. In the presence of sufficient microscale forcing—read
turbulent convection in the form of two-dimensional rolls or three-dimensional cells—a +1 power law leads
up to a microscale peak located at the hectometre/kilometre scale, followed by yet another -5/3 power law
at shorter wavelengths (Young, 2000). Depending on the surface-layer interactions of turbulent eddies with
the mean flow, a −1 power law can be found instead of a spectral peak (e.g Katul and Chu, 1998).

The largest scale of horizontal three-dimensional cells was found to be approximately 1.5Zi by Kaimal et al.
(1976). Thus, in the presence of three-dimensional cells one expects to find an energy peak in the horizontal
velocity spectrum around spatial wavelengths of 1.5Zi (the same holds for two-dimensional rolls although the
Zi multiplier may differ). This is called the production range. The turbulent energy produced at these scales
transfers into smaller scales, i.e. large convective eddies dissipate energy and become smaller over time. The
energy dissipation results in the well known -5/3 power law in the inertial subrange (Stull, 1988; Lilly, 1989).
The entire -5/3 slope past the microscale peak (or plateau) will be referred to as the inertial subrange. If the
observed horizontal-velocity energy spectra contain a peak or plateau in the microscale range followed by an
inertial subrange, it indicates the presence of microscale convection. However, the spectrum amplitude, and
thus the wind-field variance, can still be incorrect whilst simultaneously showing a perfect power law.

2.1.4 Similarity theory

It is complex to model all the underlying physics and interactions occurring within the lower turbulent
atmosphere. For some time it has been known that under similar conditions, similar atmospheric behaviour
can be observed. Hence the similar in similarity theory. By grouping parameters which are likely to
influence atmospheric conditions, one can derive and fit empirical functions (Stull, 1988; Smith et al., 1996).
Successful examples of such an approach are that of the Monin-Obukhov Similarity Theory (MOST) (Monin
and Obukhov, 1954) for the surface layer (hence also referred to as surface-layer similarity) and mixed-layer
similarity (e.g. Deardorff, 1970; Kaimal et al., 1972) for the mixed layer. Both these similarity theories are
used to characterise the MABL and thus they shall be introduced further below.

2.1.4.1 Monin-Obukhov Similarity Theory MOST provides approximate universal surface-layer pro-
file functions (Wilson, 2008). These functions depend on but a few variables, which, by measuring at a known
height, can be used to extrapolate atmospheric behaviour within the entire surface layer. Horizontally ho-
mogeneity and quasi-stationary conditions are preconditions for the theory to be applicable (Khanna and
Brasseur, 1997). The main scaling parameter in MOST is Obukhov length L. It is related to atmospheric
stability and can be interpreted as being proportional to the height above the surface beyond which buoy-
ant production of turbulence dominates over shear production (Stull, 1988). Obukhov length is calculated
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following

L = − T vu
3
∗

κgw′T ′v
. (2.1)

The numerator contains information on the horizontal wind shear whereas the denominator concerns the
vertical transport of energy (temperature). The virtual potential temperature Tv is equal to the temperature
of a hypothetical dry air parcel at the same pressure and with equal density as a moist parcel for which
altitude pressure variations have been removed (Stull, 1988). u∗ is the horizontal friction velocity and κ the
von Kármán constant. Both are used to connect wind speeds to surface stress. Typically u∗ is an order
of magnitude smaller than the wind speed at 10 m height. According to Table 1 in Högström (1996) and
Table 2 in Foken (2006) κ ≈ 0.40. Gravitational acceleration is denoted by g and vertical wind velocity by
w. Over-bars and apostrophes indicate mean (e.g. temporal mean) and fluctuations respectively.

Three-dimensional cells and two-dimensional rolls are created by turbulent heat transport from the water
surface into the lower atmosphere. Vice versa is also possible but less prominent (Smith et al., 1996). Thus
the mean energy flux, w′T ′v, is positive and directed upwards. The corresponding Obukhov length is negative
which means the atmospheric conditions can be described as an unstable regime (Monin and Obukhov, 1954).
This fact will become important later on for the selection of equations. Although MOST has been used for
over 50 years, it is not without its limitations. Smedman et al. (2007) argues that for large negative values of
L (−L > 150 m) near the surface (z ≈ 10 m) MOST might be incapable of accurately predicting atmospheric
behaviour.

2.1.4.2 Mixed-Layer Similarity Mixed-layer similarity is applicable during free convective conditions
in the mixed layer (Stull, 1988), hence the name. Free convective conditions includes convection induced
by cold air blowing over a warm water surface (Stull, 1988), such as for two-dimensional rolls and three-
dimensional cells. The primary scaling parameter in mixed-layer similarity is the convective velocity scale
w∗ which, according to Deardorff (1970) and Stull (1988), can be calculated following

w∗ =

[
g

Tv
Ziw′T ′v

]1/3
(2.2)

By combining a calculated value of w∗ with equations presented in subsubsection 3.5.3, mixed-layer similarity
can be used to derive L and subsequent atmospheric parameters. It is important to consider the validity
of mixed-layer similarity for the expected scenarios. The estimated wind fields are located at 10 m height.
Even for conservative boundary layer heights this would likely result in surface-layer—rather than mixed-
layer—similarity governed regimes (e.g. Figure 2 in Khanna and Brasseur, 1997). Young (2000) justifies
the use of mixed-layer similarity in the surface layer as the conditions encountered under strongly unstable
boundary layers in the surface layer should be representative of those in the mixed layer. This introduces a
degree of uncertainty into the analysis depending on how representative the surface layer behaviour is with
respect to the mixed layer. In a bid to account for such uncertainties, this study will use dimensionless energy
dissipation rate ψ values more in line with those encountered in the surface layer, see subsubsection 3.5.3.
Whether this alteration is sufficient to justify use of mixed-layer similarity within the surface layer for less
unstable atmospheric settings remains open for debate.
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2.2 Water surface

2.2.1 MABL signature

The MABL is observed indirectly by identifying its signatures on other physical media. Both the two-
dimensional rolls and three-dimensional cells discussed in subsection 2.1 perturb the water surface following
unique patterns. The large-scale perturbations of these patterns (hundreds of metres to kilometres) result
in a local increase/decrease of water-surface short waves with wavelengths ranging between a few to tens
of centimetres (Holt, 2005). Constructive interference of the radar signal can occur when these short waves
are equally spaced and of approximately equal size with respect to the radar signal (Holt, 2005). This is
known as Bragg scattering and results in increased radio wave backscatter (Vachon et al., 2004; Holt, 2005;
Robinson, 2010). Bragg scattering is dominant for VV polarisation between incidence angles of 20◦ to 70◦

(Rizaev et al., 2021) for wind speeds greater than 2 ms−1 (Holt, 2005). Since these conditions are frequently
met for the Sentinel-1 (S1) observed scenes, the side-looking radar onboard S1 is predominantly sensitive to
Bragg scattering and, thus, surface roughness at scales comparable to its emitted radio wavelength (Rizaev
et al., 2021). The orientation of the surface waves also affects backscatter. That part of the wave oriented
towards the radar returns stronger backscatter than that part facing away (Robinson, 2010). This is known
as tilt modulation. MABL signatures can be identified as structures within the SAR observation where
increased backscatter follows the expected water surface perturbation structures, such as in Figure 2.1 and
Figure 2.3. Both Bragg and tilt modulation are weakest for waves propagating in the azimuth direction
(Robinson, 2010).

2.2.2 Swell

The water surface contains manifestations of more processes than the two MABL convection processes de-
scribed above. Oceanic processes (e.g. oceanic eddies, upwelling and bathymetry) and atmospheric processes
(e.g. gravity waves, coastal winds and rain events) can perturb the water surface, leaving signatures of their
own (Young et al., 2000). The presence of swell is a frequently cited error source in sea-state analyses (e.g.
Smith et al., 1996; Sikora et al., 1999; Drennan et al., 1999; Young et al., 2000). Swell originates from
strong wind-forcing events such as storms. The low-frequency waves created during these events gradually
dissipate their energy and are capable of travelling thousands of kilometres from their original source loca-
tion (Ardhuin et al., 2009). Swell spatial wavelengths are in the order of hundreds of metres (e.g. Vachon
et al., 2004; Toffoli and Bitner-Gregersen, 2017), which can overlap with that of two-dimensional rolls and
three-dimensional cells. Swell-induced perturbations of the water surface result in local increases/decreases
of radar backscatter. This can negatively affect the wind-speed and surface-stress estimation as it is assumed
that the water-surface perturbations are wind induced (Sikora et al., 1999; Robinson and Fangohr, 2010).
Errors introduced by swell can be strong enough to prevent any further analysis (Drennan et al., 1999; Young
et al., 2000). Furthermore, swell waves are not bound to propagate in the mean wind-speed direction (Smith
et al., 1996). The total stress vector caused by both swell and wind can thus be orientated erroneously with
respect to the true wind direction. The aforementioned other atmospheric and oceanic processes can also
introduce errors but their signal is more easily separated or has a lesser impact than that of swell.
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2.3 Sentinel-1

The Sentinel-1 constellation contains two C-SAR carrying satellite platforms with a revisit time of at most
6 days (ESA, 2021a). The C-SAR instrument sends out C-band microwave pulses with a centre frequency
of 5.405 GHz (approximately 5.5 cm wavelength) (ESA, 2021b). At these wavelengths the effects of weather
on backscatter can, under most circumstances, be ignored, allowing the instrument to make measurements
under all weather conditions. The returned signal intensity, also known as backscatter, is used to infer
properties of the observed medium. The C-SAR instruments can operate at various modes with different
polarisations. This study will use the Interferometric Wide swath mode (IW) with a ground range resolution
of 5 by 20 m (prior to resampling). In principal any of the other modes could be used instead. All analysed
images were obtained with the C-SAR instrument transmitting and receiving in the vertical (V) polarisation.
This is abbreviated by VV. Alternative polarisation settings are transmitting and receiving in horizontal (H)
polarisation, abbreviated by HH, or cross polarisation such as VH or HV. VV polarisation performs better for
meteorological investigations such as those performed in this study (Ufermann and Romeiser, 1999).

The achievable resolution of a radar is governed by its antenna length. Practical considerations limit the
maximum antenna length and thus the achievable resolution. By rapidly changing the orientation of the
radar antenna one can illuminate and receive echos from the same target at successive locations in the orbit,
see Figure 2.5. Through matching these echos one synthetically increases the antenna’s aperture, a.k.a.
effective antenna length, which in turn increases the achievable resolution (Chan and Koo, 2008). Hence the
acronym SAR, which stands for Synthetic Aperture Radar.

Figure 2.5: SAR principle (Chan and Koo, 2008).

During echo matching it is assumed that the observed targets had a negligible velocity component with
respect to their surroundings (Brüning et al., 1990). Targets with a velocity component will be shifted
in azimuth direction due to the manner in which SAR data is processed (Holt, 2005). This can result in
interesting artefacts such as trains appearing off their tracks. Even within a single pixel, the ocean surface
is in constant motion with waves travelling in different directions with variable velocities and accelerations.
Resulting artefacts include azimuthal cut-off, smearing and velocity bunching (e.g. Brüning et al., 1990;
Kerbaol et al., 1998; Rizaev et al., 2021). These can degrade the ideal image resolution such that the real
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resolution is an order of magnitude less, e.g. 20 m resolution to 200 m resolution. The degree of degradation
is dependent on the distribution of surface-wave velocities, i.e. the sea state, and the radar platform range-
to-velocity ratio (Brüning et al., 1990; Vachon et al., 1994; Rizaev et al., 2021). Zecchetto et al. (1998) was
only able to obtain a 4.4 by 4.4 m ground-range resolution using an airborne—rather than spaceborne—radar
over a relatively calm water surface.

2.4 Geophysical Model Functions

Geophysical Model Functions (GMFs) are empirical models used to estimate low-resolution, O(10 km), wind
speeds from backscatter measured by scatterometers or SAR systems. Other variables included in GMFs
are wind direction and radar incident angle. In the simplest form such a model for C-band systems can be
written as

σ0 = CMOD (c, Un, φ, θ) , (2.3)

where c represents several fine-tuned constants (28 for CMOD5.N), Un the current relative equivalent neutral
wind speed at 10 m above sea level, φ the angle between scatterometer look direction and wind direction, θ
the incidence angle of the scatterometer and σ0 the Normalised Radar Cross Section (NRCS) which quantifies
the reflectivity of the object, i.e. the quantity of radio wave backscatter per surface area (Hersbach, 2008).
Current relative equivalent neutral wind speed (throughout this study referred to as wind speed or neutral
wind speed) is used because the component of the wind vector moving parallel to the surface current vector
does not exert a force. Thus, depending on the magnitude and orientation of surface currents, the estimated
wind speeds will be over- or underestimated. This study employs inverse CMOD5.N and CMOD-IFR2
models to calculate wind fields from radar images. Multiple combinations of wind speed and incidence angle
can yield the same radar backscatter value (Vachon et al., 2004). To resolve this ambiguity the wind direction
must be known prior to the application of the inverse model. The retrieval of the wind direction is described
in subsection 3.2.

Although originally not designed for Sentinel-1, CMOD5.N is calibrated for C-band scatterometers, allowing
Sentinel-1 to use it. The acronym stands for (the 5th iteration of the) C-band model (Hersbach, 2008). The
".N" refers to equivalent neutral wind speeds. For identical wind speeds, winds occurring under unstable
atmospheric conditions cause greater surface roughness than their neutral atmospheric counterparts. As the
degree of instability is not known, the CMOD algorithm yields equivalent neutral wind speeds i.e. the neutral
wind speed with the same perturbing strength as a wind speed with unknown instability (Hersbach, 2010).
As discussed in subsection 2.1, during convective processes the atmosphere is turbulent and non-neutral.
Because the received radar signal is a function of surface roughness, and thus surface stress, the computed
neutral wind speeds can be inverted to calculate the real surface stress without having to account for a
turbulent atmosphere. This is detailed in subsubsection 3.5.1. All other parameters require a correction for
the non-neutral atmosphere.

Multiple empirical models exist capable of relating wind speed to σ0. Young et al. (2000) uses a CMOD4-
like algorithm which also gives neutral wind speed. A different CMOD branch entirely is presented by
Quilfen et al. (1998) called CMOD-IFR2, after the second iteration of a CMOD product developed by
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Institude Français de Recherche (pour l’Exploitation de la Mer). In comparison with CMOD5.N, CMOD-
IFR2 yields lower wind speed values with relatively greater wind-speed variance for the study areas, see
section 5. CMOD5.N is selected as the main GMF for this study since it has enjoyed a decade of improve-
ments and tweaks over CMOD-IFR2. This choice is supported by results from Geldsetzer et al. (2019)
who found (slightly) lower biases and RMSE for CMOD5.N in comparison with CMOD-IFR2 and buoy
measurements.

Considering that this study employs GMFs at resolutions two orders of magnitude greater than these GMFs
were designed for, O(0.1 km) instead of O(10 km), it is fitting to note relevant limitations. The resolution
of any GMF-derived wind field is subjected to the SAR-related limitations mentioned in subsection 2.3. In
this study it will be assumed that these limitations do not degrade the resolution over spatial wavelengths
for which the power laws discussed in subsubsection 2.1.3 hold. There exist less straightforward constraints
which hinder the performance of GMFs beyond the physical limitations associated with SAR observations. No
GMFs take into account atmospheric and oceanic effects such as rain bursts, swell, surface slicks or currents.
These phenomena will yield erroneous wind-speed values if present in the observed area. By comparing wind
fields calculated using HH and VV polarisation one might be able to isolate oceanographic effects since HH
polarisation is more sensitive to oceanographic signals (Ufermann and Romeiser, 1999). More important
for this study is the omission of sea-state effects in most CMOD algorithms. Quilfen et al. (2004) shows
improved performance over existing models CMOD-IFR2 and CMOD4 when (partially) accounting for the
local sea state. They note the impact of sea state being greatest for falling and rising wind conditions and or
anomalous fetch lengths. According to Hersbach (2010), CMOD5, and thus CMOD5.N, does not explicitly
take into account sea-state effects. However, while training the CMOD5 GMF, the Charnock constant a—
which is an empirical constant that accounts for sea state—was selected as a function of wind speed and
thus indirectly incorporated sea-state effects. Hersbach (2010) goes on to note that a large spread in a exists
for a given wind speed, implying that a Charnock constant as a function of wind speed alone is insufficient
at capturing sea states. This begs the questions whether or not GMFs such as CMOD5.N are capable of
estimating high-resolution wind-speed fields since they are not designed to take into account small-scale
variations of the sea state associated with turbulent convection.
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Methodology

This study aims to estimate atmospheric parameters from SAR amplitude data. These parameters include
wind direction δ, wind field U , wind-field variance σ2

u, friction velocity u∗, Convective Boundary Layer
(CBL) depth Zi and Obukhov length L. This chapter addresses step-by-step the conversion of Ground
Range Detected (GRD) radar data to Normalised Radar Cross Section (NRCS) data using the Sentinel
Application Platform (SNAP), the derivation of wind directions from NRCS fields, the extraction of u∗ from
wind fields (using algorithm 1), the computation of turbulence spectra from wind fields, the estimation of Zi
from turbulence spectra and lastly the application of similarity theories employed in algorithms 2A, 2B and
2C to retrieve L and σu. A general overview of the methodology is presented in Figure 3.1. Python scripts
for the methodology are provided in subsection A.1.

Incidence angle NRCS

SNAP

GRD

Sentinel-1 Ocean product

Wind direction

GMF

Wind fieldSentinel-1 Ocean product

Turbulence spectrumAlgorithm 1

u∗

CBL depth

R/V Meteor & ECMWF

Algorithms 2A, 2B & 2C

σu & L,

GOES-E optical imagery

R/V Meteor & SaildroneECMWF

Data
Operations

Validation

Figure 3.1: Methodology flowchart.
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3.1 Normalised Radar Cross Section

Ground Range Detected (GRD) 10 m resolution data downloaded from the Alaskan Satellite Facility is
imported into SNAP. Here the data is processed further following the steps outlined by James (2017) and
Filipponi (2019). First, if available, the precise orbit of the satellite is updated, improving the positioning
accuracy. The Sentinel-1 observation is comprised of three cross-track subswaths (Collecte Localisation
Satellites, 2016). The antenna patterns causes a spatially varying noise pattern with sharp discontinuities at
the subswath border (Park et al., 2017). Thermal noise removal in SNAP gets rid of this background noise
signal. Subsequently the digital number values contained in the GRD file are converted to Normalised Radar
Cross Section σ0 (NRCS). Each pixel in the NRCS image links the observed surface area to a quantity of
backscatter. After conversion to NRCS the radar image can be used for quantitative purposes. As an optional
step one can apply SNAP multilooking (a low-pass filtering operation) to spatially average pixels. This leads
to decreased speckle noise and pixels of desired size. Multilooking was performed to achieve 300 m pixels.
This dimension was selected as suitable as it decreased computational load (compared to the standard 10 m
pixels) whilst maintaining a high-enough resolution required to observe the convection processes in question.
A more elaborate explanation for this resolution is provided in subsubsection 3.3.1.

3.2 Wind direction

The NRCS field is linked to small-scale surface roughness. The surface roughness is closely connected to
wind speed and is normally inferred from NRCS using GMFs (see subsection 2.4). The wind direction δ

is a required input for the GMF. A frequently used δ estimation method for SAR imagery employs two-
dimensional spectral analysis to find the orientation corresponding to the greatest degree of variance (e.g.
Gerling, 1986; Wackerman et al., 1996; Zecchetto et al., 1998). This approach relies on the fact that water-
surface perturbations tend to be greatest either along- or cross wind, depending on the forcing mechanism.
Two-dimensional rolls and three-dimensional cells induce the greatest variation approximately cross- and
along wind respectively. Thus, with prior knowledge of the present forcing mechanism, one can estimate
δ based on the observed orientation of the greatest variation. The δ estimation performed in this study
follows the methods described by Gerling (1986) and Wackerman et al. (1996). The method is adapted to
take into account an approximate 90◦ offset when applied on scenes containing three-dimensional cells (the
original method was developed for two-dimensional rolls). When both convective modes are present and
interspersed, such as during the transition phase, a 90◦ ambiguity exists for δ estimates. For such cases one
can use validation data to resolve the ambiguity.

First the radar tiles are detrended in range and azimuth to remove the effect of wavelengths longer than
those involved in wind-direction estimation as well as to circumvent the effect of variable SAR backscatter
as a function of range (Gerling, 1986). Detrending is accomplished by subtracting and subsequently dividing
the tile by a low-pass filtered tile. The low-pass filtered tile is created by Gaussian blurring using a kernel
size of 102 km2. Similar to Gerling (1986), a two-dimensional Hamming window is applied to the entire
detrended tile in order to prevent spectral leakage. Next a two-dimensional Fourier transform is calculated
for the detrended windowed tile, yielding its two-dimensional spectrum. Gaussian smoothing is applied
to the two-dimensional spectrum to reduce its speckle noise. The location of spectral peaks within this
smoothed spectrum give the orientation of greatest variance. Combined with the known satellite heading,
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the orientation of greatest variance is converted to a heading with respect to north, i.e. the wind direction δ.
Peaks at wavelengths < 400 m are ignored as these are unlikely to be caused by MABL convection. One can
also set an upper limit to prevent to the inclusion of spectral peaks originating from mesoscale convection.
Rather than relying on peaks only, one can fit a two-dimensional Gaussian function through the wavelengths
of interest, similar to Wackerman et al. (1996). In this manner more spectral information is incorporated
into the estimation than peaks only. However, for small homogeneous areas this is not expected to improve
results.

The method described above contains several error sources of which the most prominent will be mentioned
here. First there is the 180◦ ambiguity introduced by the two-dimensional Fourier spectrum (Robinson, 2010).
Zecchetto et al. (1998) proposes a method to resolve this ambiguity by determining the lee side of the wave
in the along-wind radar amplitude data. However, this approach was only possible as a result of a favourable
measuring setup. Other studies have used the direction of island wind shadows to resolve the ambiguity
(e.g. Koch, 2004). Naturally this is only possible if islands or other large wind obstructing structures are
present in the observed area. This study will use co-located δ estimates provided by the Sentinel-1 Ocean
(S1 OCN) product in order to resolve the ambiguity. For further details on S1 OCN see subsubsection 4.2.4.
Then there is the difference between δ estimation for cells versus rolls. Mistaking cells for rolls will lead to
approximately 90◦ error in δ estimation since their respective axes of maximum variability are approximately
perpendicular to each other. This can be especially tricky when both modes are present and interspersed
such as during a transitional phase. Next is the bias between the orientation of greatest variance and the
true wind direction. For two-dimensional rolls this bias follows a distribution (Wackerman et al., 1996; Wang
et al., 2019a) meaning δ can only be given in a stochastic sense. For three-dimensional cells the estimated
δ’s are expected to be within a few degrees of the direction of greatest variation (Sikora et al., 2006). In
this study it will be assumed that the δ’s for cells are aligned with the true wind direction and that the
δ’s for rolls are orientated 20◦ to the left (right) of the axes of greatest variance on the northern (southern)
hemisphere. The justification for this value relates to it falling within the range of angle deviations provided
in literature (e.g. Wackerman et al., 1996; Wang et al., 2019a). In Figure 3.2a the estimated wind directions
are shown for an example scene without compensation for the expected offset. Each arrow represents a wind
direction estimated over a 252 km2 area. In Figure 3.2b a 20◦ compensation is applied which compares more
favourably to the S1 OCN wind-direction field in Figure 3.2c.

The radar look angle with respect to the wind direction directly affects the ability to detect SAR wind
features and in turn wind direction. Thompson et al. (1983) and Robinson (2010) note that waves travelling
perpendicular to the radar look angle yield the least prominent signatures. Thus, structures propagating
parallel to the azimuth direction are significantly harder to detect. Phenomena unrelated to convection can
also compromise δ estimation if they sufficiently perturb the water-surface stress vector. A catalogue con-
cerning common compromising culprits could certainly contain currents, cloudbursts, coastal circumstances
(et) cetera.

3.3 Spectrum calculation

The wind direction, incidence angle and NRCS field are fed into a GMF, which yields a wind field. A
one-dimensional turbulence spectrum is computed from this wind field. First the wind field is rotated cross-
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(a) Accounting for no offset (b) Accounting for 20◦ offset (c) S1 OCN wind field
Figure 3.2: Effect of wind direction offset for rolls w.r.t. S1 OCN forecast. An increased quantity of estimates pass
the quality threshold from left to right, hence the extra arrows. Scene January 27th B, see Table 5.

and along the axis of greatest variability, i.e. the orientation of the spectral peaks found in subsection 3.2.
Rotation results in rows of unequal size in the direction parallel/perpendicular to the desired orientation.
Clipping ensures that the largest square unaffected by rotation artefacts is extracted (see Figure 3.3). Unless
rotation is exactly an integer multiple of 90◦, the rotated wind field will be smaller than the original wind
field.

Figure 3.3: Example extent after sub-setting, rotating by 45◦ and clipping.

Next a normalised Hanning window and a Discrete Fourier Transform (DFT) are performed on a per-row
basis. The DFT output is divided by the number of samples in each row N , giving F (ξ), such that
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F (ξ) =
DFT (row (i))

N
, (3.1)

here ξ refers to spatial frequency and i specifies the row index. Depending on the rotation this will result in
either a cross- or along-wind F (ξ). Following Stull (1988), the single-sided energy spectrum E(ξ) is calculated
from the positive frequencies of F (ξ) using

E (ξ) =


E (ξ1→nq) = 2|F (ξ1→nq)|2, for N = odd

E (ξ1→nq−1) = 2|F (ξ1→nq−1)|2, for N = even

E (ξnq) = |F (ξnq)|2, for N = even

(3.2)

here ξ1 is the fundamental frequency and ξnq is the Nyquist frequency. The DC component ξ0 is discarded.
The sum of all E(ξ) components is identical to the wind-field variance, e.g.

σ2
u =

∑
E (ξ1→nq). (3.3)

Subsequently the power spectral density is calculated following

S (ξ) =
E (ξ)

∆ξ
, (3.4)

where ∆ξ is the frequency bin width, which can be calculated by

∆ξ =
ξs

NDFT
, (3.5)

where ξs is the sample frequency, i.e. pixel size, and NDFT is the number bins in the DFT, i.e. the number of
samples N in F (ξ). The units of S(ξ) are equal to the input units squared over spatial frequency. Since the
input wind field has units of ms−1, the units of S(ξ) are m3s−2 (m2s−2m1) . However, further calculations
require temporal spectra S(n) with units of m2s−1 rather than spatial spectra. The conversion from spatial
S(ξ) to temporal S(n) invokes Taylor’s hypothesis. This hypothesis assumes that the studied air parcel is
"frozen" whilst propagating through space (Stull, 1988). Invoking Taylor’s hypothesis, temporal frequency
n is calculated from spatial frequency ξ as

n = ξU, (3.6)

where U indicates mean wind speed. Following equation 1 from Kaimal et al. (1972), this leads to the
calculation of S(n) as

S (n) =
1

U
S (ξ) . (3.7)
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3.3 Spectrum calculation 3 METHODOLOGY

Thus, spatial frequency spectra are divided by the mean wind speed to arrive at the temporal frequency
spectra. The latter is used for further calculations and will be referred to as the PSD. Examples of PSDs
calculated for a radar scene are presented in Figure A.11.

The presence of anomalous strong reflectors (such as ships) within the study area can skew calculated PSDs.
For this reason anomalous PSDs are removed from further analysis. The filter works as follows: first the
PSDs are calculated as described above, next the PSDs are scaled with their respective temporal frequency
to arrive at n · S(n). The maximum amplitude values of these scaled PSDs are retrieved (which should be
the microscale peak) and lastly each scaled PSD whose maximum exceeds twice the median of maxima is
excluded. The threshold at twice the maximum is manually set, but it can be varied or optimised.

3.3.1 Spectral filtering

Water-surface stress is the key parameter in estimating MABL properties. The methodology proposed by
Young et al. (2000) relates water-surface stress caused by MABL convection to a specific MABL state.
The variance of this stress field is used for computations. However, stress at the air-sea interface can be
caused by both oceanographic and other atmospheric phenomena. When analysing this variance one should
only consider that part induced by MABL turbulence. Significant amounts of variance may be present in
the mesoscale part of the spectrum. Attributing this variance to microscale turbulence will contaminate
results. Applying a simple band-pass filter is unsuitable because the horizontal scale of MABL turbulence
can overlap with other sources of variance (Young et al., 2000). Instead Young et al. (2000) uses spectral
models of atmospheric turbulence, such as those by Lilly (1989); Young (2000), to filter the SAR-derived
turbulence spectra. This filtering entails the fitting of known spectral models to uncontaminated portions of
MABL turbulence spectra, followed by extrapolation of these models into the spectral regions contaminated
by unwanted variance. Naturally this requires that sufficiently large uncontaminated sections of the spectra
can be attributed to MABL convection and, in turn, used as extrapolation starting points. Work by Mourad
et al. (2000) implies that a similar effect can be achieved by spatial averaging to a sufficiently large resolution.
The desired resolution for their dataset was found to be approximately 300 m. Young et al. (2000) employs
the spectral filtering method whereas the studies by Sikora et al. (1999, 2000); Sikora and Thompson (2002)
apply spatial averaging to the resolution found in Mourad et al. (2000). Alternatively one can avoid filtering
all together by only using that part of the spectrum known to be unaffected by other sources. This is
implicitly assumed in the inertial subrange characterisation approach of subsubsection 3.5.3 which is the
second method employed by Young et al. (2000).

This study uses 300 m resolution radar imagery though not for the reason described by Mourad et al. (2000).
At 300 m resolution the imaging artefacts discussed in subsection 2.3 are avoided and the two-dimensional
spectra showed no unwanted signals such as from swell or speckle, see Figure 3.4a. A two-dimensional
spectrum obtained using 50 m pixels displays unwanted signals at high wavenumbers, see Figure 3.4b. Using
a 300 m resolution, all one-dimensional spectra obtained for the Barbados study cases displayed approximate
-5/3 power law slopes following a plateau or peak. For higher resolutions the expected power laws were
compromised. This could be due to spectral projection or leakage of power onto the relevant wavelengths
of the -5/3 slope. In particular for non-homogeneous study areas with multiple local spectral peaks one
can observe spectral power at higher frequencies projecting itself onto the more relevant lower frequencies.
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As an alternative to SNAP multilooking one could use a higher resolution and apply a custom low-pass
filter, see Figure 3.4c. Regardless of whether one applies SNAP multilooking or custom low-pass filtering,
the resolution should be selected as that which removes unwanted signals whilst simultaneously allowing to
resolve the spatial frequencies related to convection. For instance, for shallow mixed layers (Zi ≤ 400 m), a
higher resolution than 300 m is required to resolve the spectrum at the convective wavelengths.

(a) 300 m resolution (Multilooked) (b) 50 m resolution (c) 50 m resolution, filtered at 600 m
Figure 3.4: Examples of Gaussian smoothed two-dimensional spectra for a subsection of scene January 27th B, see
Table 5. Arbitrary amplitude from low (blue) to high (yellow), axes in wavenumber k [rad m−1].

3.4 Convective Boundary Layer depth

Both convective processes discussed in subsection 2.1 provide indirect information on the CBL depth. The
large spread in observed aspect ratios of two-dimensional rolls complicates their use in consistent CBL depth
estimation. Three-dimensional cells have a more constant aspect ratio near 1.5, as shown by Kaimal et al.
(1976) and Sikora et al. (1995). Sikora et al. (1997) utilises this ratio in combination with spectral analyses
for CBL depth estimation. This study will use a version of the methodology proposed by Sikora et al. (1997)
to estimate Zi for both cells and rolls.

The PSD from subsection 3.3 is computed and averaged along the desired axis. Next, a Gaussian filter
(standard deviations set to two) is applied on the one-dimensional PSD. This increases the robustness of
peak estimation as it smooths over minor anomalous peaks. The calculated power at each frequency is
multiplied with its respective frequency to arrive at n · S (n). Lastly, the spatial wavelength of the resulting
peak location is extracted and divided by the aspect ratio to arrive at the estimated CBL depth Zi. As
previously mentioned, the ratio of 1.5 does not hold for rolls. For these a ratio of 2.0 is selected as this value
approaches the statistical mode of aspect ratios provided in Figure 3 from Wang et al. (2019a). That being
said, the ratio of 2.0 is on the low side of values estimated in other literature (e.g. Wackerman et al., 1996;
Young et al., 2002).

The choice of analysis axis can influence results. For two-dimensional rolls the analysis can only be performed
perpendicular to the axis of greatest variance (as little relevant spectral power exists in the along-wind
direction). For three-dimensional cells the analysis axis is not fixed. Sikora et al. (1997) determines Zi
through spectral analysis parallel to the along-wind direction. According to Nicholls and Readings (1981),
surface imprints of three-dimensional cells are prone to stretching in the along-wind direction. Similarly,
Ufermann and Romeiser (1999) found that three-dimensional cells became elliptical during higher wind
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speeds. Stretched cellular structures would lead to spectral peaks at lower frequencies and thus overestimation
of the CBL depth. For this reason Young et al. (2000) employs cross-wind spectral analysis. However, for
the single Barbados scene with three-dimensional cells (namely January 27th A, see Table 5) the spectral
peaks in the axis perpendicular to the direction of greatest variance were less evident than their along-
wind counterparts (not shown). For this reason the Zi values for scenes containing three-dimensional cells
are retrieved using along-wind spectral analysis despite the fact that this could lead to Zi overestimation.
Estimates for two-dimensional rolls are unaffected.

3.5 Characterisation

Characterisation of the MABL will follow two approaches outlined by Young et al. (2000) as well as a new
third approach. The first approach outlined by Young et al. (2000) relies on total wind-field variance and
spectral filtering (algorithm 2A) whereas the second relies on the wind-field variance within the inertial
subrange (algorithm 2B). The method proposed by Mourad et al. (2000) and subsequently employed by
Sikora et al. (1999, 2000); Sikora and Thompson (2002) is a version of algorithm 2A using spatial filtering
rather than spectral filtering. Algorithms 2A and 2B employ surface-layer and a mix of surface- and mixed-
layer similarity respectively. Both algorithms require correct estimation of the wind field and its variance
as well as an initialisation loop (algorithm 1) in which the stress field and friction velocity are calculated
using the GMF-retrieved neutral wind field. An adapted version of algorithm 2B is presented as algorithm
2C which uses surface-layer similarity rather than a mix of surface- and mixed-layer similarity.

3.5.1 Algorithm 1: Surface stress

Wind-induced surface stress τ is related to friction velocity u∗ and wind velocity following

u∗
2 = CdU2, (3.8a)

τ = ρairu∗
2, (3.8b)

where Cd is the drag coefficient, U the mean horizontal wind speed and ρair the air density (Monin and
Obukhov, 1954; Kaimal et al., 1976; Champagne et al., 1977; Smith, 1988; Fairall et al., 1996). Similar to the
approach of Young et al. (2000) and Sikora et al. (2000), U2 is given the value of the observed neutral current
relative average wind speed at 10 m height retrieved from the GMF. The drag coefficient Cd is calculated
following

Cd =

[
κ

ln(z)− ln(z0)− ψm

]2
, (3.9)

where z is the measurement height (10 m for CMOD5.N and CMOD-IFR2), z0 the aerodynamic roughness
length (the height above the surface at which the wind speed becomes zero (Stull, 1988)) and ψm the diabatic
wind profile function (Stull, 1988). For neutral conditions (zL−1 = 0) the ψm term becomes zero and Cd will
be referred to as Cdn. Since neutral wind speed is retrieved from the GMF, Cdn will be used in algorithm
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Table 1: Algorithm 1.

Step Equations Operations Constants

1 Equation 3.8a u∗ =

√
CdnUn

2 initial guess Cdn
2 Equation 3.10 z0 = au∗

2

g + 0.11 ν
u∗

a, g, ν

3 Equation 3.9 Cdn =
[

κ
ln(z)−ln(z0)

]2
z, κ

4 Iterate till convergence

Final Equation 3.8a τ = ρairCdnUn
2 ρair

1. In turn the aerodynamic roughness length z0 can be calculated according to the Charnock relation as
(Charnock, 1955; Smith, 1988; Fairall et al., 1996)

z0 = a
u∗

2

g
+ 0.11

ν

u∗
. (3.10)

The Charnock constant a is an empirical measure used to quantify the sea state (Smith et al., 1996). Fairall
et al. (1996); Drennan et al. (1999); Young et al. (2000) use a constant value of 0.011 which is supported
by Yelland and Taylor (1996) who found that this value holds well for wind speeds between 6 and 13 ms−1.
Stull (1988) notes a value of 0.016 for sea measurements and the ECMWF uses a ≈ 0.015 during January for
the area east of Barbados (Figure 14a in Hersbach, 2010). According to Hersbach (2011), the a value for seas
with swell hovers around 0.01 whereas for young steep seas it is closer to 0.04. Typical values fall within this
range. For consistency, this study will use a value of 0.011. According to the formula presented in Andreas
et al. (1989), the kinematic viscosity of air ν is approximately 1.5 · 10−5 m2s−1 for an air temperature of 293
K.

Because roughness length and friction velocity depend on each other, their values are iteratively solved
taking an initial estimate of Cdn till convergence of the parameters. Results for this iterative loop include
an estimate of z0, Cdn and u∗. Once the iterative results converge, U2 in Equation 3.8 can be replaced
with a per pixel U2

n value which, combined with Equation 3.8b, yields a surface-stress field τ sampled at
the same spatial interval as the input wind field. The calculated τ field and the values for z0, Cdn and
u∗ are used in the successive algorithms. Parameters ρair, a and ν are approximated rather than retrieved
from measurements. According to Donelan et al. (1997) and Drennan et al. (1999), the presence of swell
can lead to significant errors in the calculation of the above surface parameters. Algorithm 1 is outlined in
Table 1.

3.5.2 Algorithm 2A: Variance approach

Equation 2.1 contains unknown w′T ′v, which cannot be derived at this stage. Thus, instead of using Equa-
tion 2.1, an alternative empirical formulation is employed to calculate Obukhov length L. Panofsky et al.
(1977) presents an empirical equation created by curve fitting to data from field experiments. Rewriting this
to give L yields
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L = − Zi[
1 2
3

((
σu
u∗

)2
− 4

)]3/2 . (3.11)

Input parameters are CBL depth Zi, horizontal wind-field standard deviation σu and friction velocity u∗.
These parameters are derived either directly or indirectly from the SAR-derived wind field. Zi is retrieved
according to the method of Sikora et al. (1997), u∗ is estimated in algorithm 1 and σu is retrieved from the
one-dimensional spatial wind-field energy spectrum E(ξ). Here one can choose to apply spatial or spectral
filters prior to the calculation of E(ξ) in order to only include that portion of the wind-field variance induced
by MABL convection. Alternatively, one can simply compute the standard deviation of the wind field to
retrieve an unfiltered and overestimated σu, as is done in this study.

Having calculated L, its value is used to correct the neutral wind field for atmospheric instability. After all,
the original wind field calculated through CMOD was valid for neutral atmospheric stratification only. The
recalculated wind field U is computed from τ (retrieved at the end of algorithm 1) and Cd by combining
Equation 3.8a and Equation 3.8b to form

U =

√
τ

ρairCd
. (3.12)

Because of non-neutral conditions, the stability correction introduced by ψm for Cd in Equation 3.9 will no
longer be zero. Several equations exist to calculate ψm, for unstable conditions, i.e. z

L < 0, Young et al.
(2000) employs (corrected for typo)

ψm = ln

[(
1 + x2

2

)2
]
− 2tan−1 (x) +

π

2
, (3.13)

with empirical constant x calculated by

x =
(

1 + 16
∣∣∣ z
L

∣∣∣)1/4. (3.14)

A new value of σu is obtained from the recalculated wind field. Resubmitting this value into Equation 3.11
yields an updated value of L. Iterations of calculating L in order to update the stability correction, the
recalculated wind field and in turn σu converge within ten iterations.

Once L has successfully been determined, its value is used in Equation 2.1 together with u∗ from algorithm
1 and constants g and κ. The mean virtual potential temperature Tv is not measured directly. Instead a
reasonable estimate will be made. At worst this will lead to a few percent error as even for extreme cases the
average temperature will not deviate by more than 10% from 293 K. Submitting the above into Equation 2.1
returns the kinematic flux of virtual potential temperature w′T ′v. Rewriting the equation in terms of w′T ′v
yields
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Table 2: Algorithm 2A.

Step Equations Operations Constants
1 Equation 3.14 x =

(
1 + 16

∣∣ z
L

∣∣)1/4 z, initial guess L

2 Equation 3.13 ψm = ln

[(
1+x2

2

)2]
− 2tan−1 (x) + π

2 -

3 Equation 3.9 Cd =
[

κ
ln(z)−ln(z0)−ψm

]2
z, κ, z0 from algorithm 1

4 Equation 3.12 U =
√

τ
ρairCd

ρair, τ from algorithm 1

5 Equation 3.1
Equation 3.2 U → E(ξ)

6 Equation 3.3 E(ξ) → σu

7 Equation 3.11 L = − Zi[
1 2

3

(
(σuu∗ )

2−4
)]3/2 Zi from subsection 3.4, u∗

from algorithm 1

8 Iterate till convergence

Final Equation 3.15 w′T ′v = −u∗
3Tv
Lκg

κ, g, estimate of Tv, u∗
from algorithm 1

w′T ′v = −u∗
3T v
Lκg

. (3.15)

Algorithm 2A is outlined in Table 2.

Multiple versions exist of the empirical formulae used above. For alternative empirical equations to calculate
L refer to Panofsky et al. (1977) and Caughey and Palmer (1979) with a recent version provided by Wilson
(2008). For strongly unstable conditions all versions give similar values. Significant differences are observed
when approaching near neutral conditions (large |L|’s). Equation 3.11 returns imaginary values for σu/u∗ < 2

although, due to the asymptotic behaviour nearing this point, iterations of the equation tend to fail nearer
to σu/u∗ < 2.5. The onset of asymptotic behaviour depends on which equation was used. Similarly, different
authors provide different equations to compute ψm and x. For these refer to Paulson (1970), Young and
Kristensen (1992) and Larsén et al. (2004). Of particular interest are those provided by Larsén et al. (2004)
as they derive the equations as a function of wave age (while taking into account the effect of swell) and
hypothesise an additional dependence on Zi/L, albeit using a limited sample size.

3.5.3 Algorithm 2B: Inertial subrange approach

The inertial subrange segment of the turbulence spectrum is used in an alternative analysis approach. Rather
than analysing the total wind-field variance within an image, one can analyse the variance of the inertial
subrange only. This requires a portion of the inertial subrange to follow the -5/3 power law in the one-
dimensional spectrum. Because this approach is normalised with frequency, it does not matter at which
frequency in the inertial subrange the analysis is performed as long as it falls on the -5/3 slope. The greater
the portion of the -5/3 slope considered, the more one can average results. Unlike the variance approach,
no spectral (or spatial) filtering is necessary as only (a portion of) the inertial subrange is of interest.
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Contamination of the inertial subrange by signals other than the MABL can naturally lead to failure of this
method. As both approaches rely on the information contained in the one-dimensional spectrum, they are
not truly independent. According to Kaimal et al. (1976) the convective velocity scale w∗ is calculated from
the PSD following

w∗ =

√
(2π)

2/3
fi

2/3nS(n)

αβψ2/3
, (3.16)

where n is temporal frequency which can be calculated from spatial frequency ξ following Equation 3.6, S(n) is
the along- or cross-wind PSD at the specified frequency in the inertial subrange, α the Kolmogorov constant
of approximately 0.5 (e.g. Kaimal et al., 1976; Smedman et al., 2007, in an overview study Sreenivasan
(1995) found α to be closer to 0.53 for scenarios representative of atmospheric surface-layer turbulence),
β the isotropy correction factor of 1 and 4

3 for along- and cross-wind analyses respectively (Kaimal et al.,
1976; Caughey and Palmer, 1979; Smedman et al., 2007) and ψ the dimensionless energy dissipation rate
for which near-surface overland values appear to fall between 1.0 and 2.5 according to Figure 4 in Kaimal
et al. (1976). Considering the observed asymptotic behaviour of near-surface dissipation rates presented in
said figure, dissipation rates larger than 2.5 would seem possible depending on the observed z/Zi. Results
obtained in Young et al. (2000) used a mixed-layer value of ψ = 0.6, which, according to Young (2000), is
valid for buoyancy-driven unstable surface layers. Unless stated otherwise, results in this study are obtained
using ψ = 1.0. Lastly, fi represents the dimensionless frequency calculated following

fi =
nZi

U
. (3.17)

A value for the convective velocity scale, w∗,i, is obtained for each analysed frequency ni within the inertial
subrange. These values should be near identical meaning they can be averaged to form a single convective
velocity scale, w∗, representative of the entire inertial subrange. However, if the inertial subrange is of poor
quality or poorly constrained, the observed slope can deviate from the -5/3 powerlaw. Thus, in addition to
the spectrum amplitude filter described in subsection 3.3, the spread in w∗,i estimates will be used as a second
quality filter. If the standard deviations of w∗,i estimates are relatively high, the corresponding quality will be
considered poor, leading to its exclusion from further calculations. The standard deviations are normalised
by dividing with the median w∗,i value such that a single threshold can be set for all amplitudes. Unless
stated otherwise, this threshold is set to 0.15. Prior to calculating either the mean or normalised standard
deviation, all w∗,i values are weighted with respect to their frequency, e.g. if the lowest spatial wavelength
in the inertial subrange is 650 m than it receives a weight of 1, 975 m receives a weight of 1.5 and 1300 m
receives a weight of 2. Weighting reduces the bias caused by the increasing quantity of high frequencies. The
final value of w∗ is combined with Equation 2.2 which, when rewritten as

w′T ′v =
w∗

3Tv
gZi

, (3.18)

returns the kinematic heat flux w′T ′v. Plugging the w′T ′v value back into a rearranged form of Equation 3.15
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Table 3: Algorithm 2B.

Step Equations Operations Constants
1 Equation 3.6 n = ξU · χ χ = 1 for first iteration

2 Equation 3.17 fi = nZi
U ·χ

Zi from subsection 3.4,
χ = 1 for first iteration

3 subsection 3.3 U · χ → S(n) χ = 1 for first iteration

4 Equation 3.16 w∗ =
√

(2π)2/3fi2/3nS(n)
αβψ2/3 α, β, ψ

5 Equation 3.18 w′T ′v = w∗
3Tv
gZi

g, Zi from subsection 3.4,
estimate of Tv

6 Equation 2.1 L = − Tvu
3
∗

κgw′T ′v

κ, g, u∗ from algorithm 1,
estimate of Tv

7 Equation 3.14 x =
(
1 + 16

∣∣ z
L

∣∣)1/4 z

8 Equation 3.13 ψm = ln

[(
1+x2

1

2

)2]
− 2tan−1 (x1) + π

2

9 Equation 3.19 χ = 1−
(
ψm
√
Cdn
κ

)
κ, Cdn from algorithm 1

10 Iterate till convergence

Final rewritten
Equation 3.11 σu = u∗

√
4 + 0.6

(−Zi
L

)2/3 Zi from subsection 3.4,
u∗ from algorithm 1

gives L. The estimated parameters require a stability correction to account for the unstable atmospheric
stratification. Young et al. (2000) calculates a stability correction factor χ as

χ = 1−
(
ψm
√
Cdn
κ

)
, (3.19)

where Cdn is retrieved from algorithm 1 and ψm is computed by plugging the obtained value of L into Equa-
tion 3.14 to get x and subsequently ψm. Next χ is multiplied with the mean wind speed U of Equation 3.17
and the wind field U prior to calculation of S(n) in Equation 3.16. The values for fi, S(n) and w∗ are
updated iteratively until convergence. Algorithm 2B is outlined in Table 3. At the end of algorithm 2B one
can rewrite Equation 3.11 in terms of σu to compare outputs with algorithm 2A.

An interesting difference between the approaches of algorithms 2A and 2B relates to their respective depen-
dence on Zi. For algorithm 2A it follows from Equation 3.11 that

− L ∝ Zi, (3.20)

whereas L calculated in algorithm 2B is (mostly) independent of Zi, since

1

−L
∝ w′T ′ ∝ w∗

3

Zi
∝

(√
fi

2/3

)3

Zi
∝

(√
Zi

2/3

)3

Zi
∝

(
Zi

1/3
)3

Zi
∝ 1 (3.21)

The only dependence on Zi in algorithm 2B stems from the inertial subrange being selected up to the spatial
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wavelengths associated with the microscale peak, which is itself a function of Zi. This indirect dependence
is greatest for poorly estimated inertial subranges which are detected based on w∗,i spread and subsequently
removed from the analysis. Thus, w∗ estimates from the remaining inertial subranges are mostly independent
of Zi.

3.5.4 Algorithm 2C: Turbulent kinetic energy dissipation rate approach

The power within the inertial subrange is used in a third characterisation approach. For algorithm 2C,
surface-layer spectral characteristics are employed instead of the mixed-layer spectral characteristics from
algorithm 2B. The former is likely more applicable for the 10 m height wind fields retrieved from the GMF.
According to Lundquist and Bariteau (2015), the turbulent kinetic energy (TKE) dissipation rate ε for
unstable conditions is calculated as

ε =

(
2π

U

)[
n5/3S (n)

αβ

]3/2
. (3.22)

The notable difference between this equation and Equation 3.16 relates to the dependence on ψ. Similar to
algorithm 2B, an isotropy correction factor β is included for cross-wind analyses (e.g. Nicholls and Readings,
1981; Oncley et al., 1996). For along-wind analyses β = 1 and can thus be ignored. Near-surface scaling
parameters can be estimated using the obtained ε following (Fairall et al., 1990)

φe

( z
L

)
=
εκz

u∗3
. (3.23)

The empirical fits to the dimensionless gradient profile function φε provided in early literature were developed
for κ = 0.35 (e.g. Wyngaard and Coté, 1971; Kaimal et al., 1972). In an overview study of eleven different
field studies Kooijmans and Hartogensis (2016) presents an empirical fit which accounts for κ = 0.4

φe

( z
L

)
= 0.88

[(
1− 2.06

z

L

)−1/4
− z

L

]
, (3.24)

A Monte-Carlo approach is applied to solve Equation 3.24 for Obukhov length L. If Equation 3.23 yields
φe < 0.88, no solution can be obtained from Equation 3.24. Having obtained L, a stability correction χ is
calculated and applied in a similar fashion as for algorithm 2B. Iterations are performed till convergence.
Similar to algorithm 2B, an inertial subrange normalised standard deviation filter is applied.

In essence algorithm 2C is identical to algorithm 2B as the analysis relies on the power within the inertial
subrange. The main difference relates to the dependencies of w∗ and ε; unlike algorithm 2B, algorithm 2C
is unaffected by the uncertainty relating to ψ. As an additional benefit algorithm 2C does not rely on Zi,
which is a source of uncertainty for algorithm 2A.

Algorithm 2C is not without its own shortcomings. For |z/L| < 0.2 the empirical fits to φε, either from
Wyngaard and Coté (1971); Kaimal et al. (1972) or Kooijmans and Hartogensis (2016), struggle to account for
the observed spread in ε and thus φe, see Figure 3.5. This could indicate other parameters at play which are
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Table 4: Algorithm 2C.

Step Equations Operations Constants
1 Equation 3.6 n = ξU · χ χ = 1 for first iteration
2 subsection 3.3 U · χ → S(n) χ = 1 for first iteration

3 Equation 3.22 ε =
(

2π
U

) [
n5/3S(n)

αβ

]3/2
α, β

4 Equation 3.23 φe
(
z
L

)
= εκz

u∗3
κ, z, u∗ from algorithm 1

5 Equation 3.24 φe
(
z
L

)
→ L

range of L estimates to
select reasonable L

6 Equation 3.14 x =
(
1 + 16

∣∣ z
L

∣∣)1/4 z

7 Equation 3.13 ψm = ln

[(
1+x2

2

)2]
− 2tan−1 (x) + π

2

8 Equation 3.19 χ = 1−
(
ψm
√
Cdn
κ

)
κ, Cdn from algorithm 1

9 Iterate till convergence

Final rewritten
Equation 3.11 σu = u∗

√
4 + 0.6

(−Zi
L

)2/3 Zi from subsection 3.4,
u∗ from algorithm 1

not directly incorporated in the formulation. Considering the observed spread of φe and that for CMOD5.N
z = 10 m, for characterisation this implies algorithm 2C will perform poorly for |L| > 50 m. Moreover,
though Equation 3.23 may be less sensitive to the natural spread in ε for |L| < 10 m, Figure 3.5 shows the
equation was fitted to few data points with a high degree of relative uncertainty. In other words, algorithm
2C is expected to provide reasonable results for a small stability range only; the scatter of φe complicates
the use of algorithm 2C for relatively high values of |L| whereas for lesser values of |L| algorithm 2C suffers
from propagated uncertainty originating from the empirical fit. Algorithm 2C is outlined in Table 4.

When the observed stability range is favourable, algorithm 2C can be used in combination with algorithm
2A and 2B for calibration and derivation of dimensionless dissipation rate ψ, see subsection 5.2.
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Figure 3.5: Y-axis is equal to φe. Gray dots represent data obtained from several field studies. Data uncertainty is
represented by colour code, lighter colours indicate higher uncertainty. The black line represents the fit through the
data, i.e. Equation 3.24. Plot retrieved from Kooijmans and Hartogensis (2016).
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4 DESCRIPTION OF DATA

Description of data

The data of this study concerns two separate study areas. The Barbados study area covers the sea east
of Barbados and the miscellaneous study areas cover various coastal parts of the Atlantic and Pacific, see
Figure 4.1. The Barbados study area enjoys ample validation data from which all characterisation results
can be validated whereas the miscellaneous study areas provide insight into characterisation performance
under a broader range of atmospheric circumstances at the cost of less available validation data. The
validation methods and datasets for the Barbados and miscellaneous study areas are included in the relevant
chapters.

Figure 4.1: Location of various Sentinel-1 scenes subdivided into two study areas.

4.1 Barbados data

The main study area is located to the east of Barbados in the so-called trade wind alley (Stevens, B. et
al., 2021). For this region validation data is available from the 2020 EUREC4A campaign. The Sentinel-
1 (S1) scenes for the Barbados area are presented in Figure A.1 with their respective overpass details in
Table 5. Each radar scene is divided into several 252 km2 tiles where each tile is composed of 83 by 83
pixels at 300 m resolution in both directions. Figure 4.2 contains a tiling example for January 27th B. The
tile size proved large enough to provide repeatable results (since each tile contains similar amounts of either
rolls or cells) whilst remaining sufficiently small to limit inhomogeneities (and thus invalidation of similarity
theories (Khanna and Brasseur, 1997) and contamination of the two-dimensional spectrum). Additionally,
at sixty tiles for a regular S1 Interferometric Wide (IW) swath scene, redundancy allows for the filtering of
low-quality tiles. The choice of tile size is open for debate; the study area in Young (2000) is 37.52 km2

whereas that in Sikora et al. (1997) is 52 km2.

Prior to analysis each radar scene is classified as being dominated by two-dimensional rolls or three-
dimensional cells since either convection mode requires slightly different processing approaches. A two-
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pronged classification is performed. Each scene is classified using a custom binary Convolutional Neural
Network (CNN) trained on a portion of the dataset retrieved from Wang et al. (2019b). The CNN classi-
fies the individual tiles of the radar scenes as containing either two-dimensional rolls or three-dimensional
cells after which the entire scene is classified as the majority mode of the individual tiles. This decreases
classification outliers at the cost of worse classification spatial resolution. In addition to the automatic
CNN classification, visual inspection is performed by comparing the two-dimensional orientation of greatest
variance of the image spectra with the wind directions derived from the validation source. If these align
the convection likely consists of three-dimensional cells whereas an approximate 90◦ offset indicates two-
dimensional rolls. According to the CNN classifier all Barbados scenes were dominated by two-dimensional
rolls. This assessment is supported by manual inspection results according to which all scenes but January
27th A were dominated by two-dimensional rolls. The January 27th B scene contains a sharp discontinuity
and February 20th contains several patches of discontinuities. These will affect local results because the
introduced wind variance of this discontinuity causes the turbulence spectra to deviate from the ideal turbu-
lence spectra. Fortunately these discontinuities can be detected and removed through filtering, as described
in subsubsection 3.5.3

Surface currents near Barbados are expected to manifest themselves as underestimation of the wind-field
magnitude since the two main regional surface currents, namely the North Equatorial Current and the North
Brazil Current, are directed approximately west-north-west (Schott et al., 2002; Barbie Bischof, 2003) along
the observed easterly winds of the trade wind alley. Based on the location of the Barbados study area and
the magnitudes of the two respective surface currents, the mean surface current is expected to be in the
order of O(cm) (e.g. Arnault, 1987; Bourlès et al., 1999). This would lead to an equal order underestimation
of the wind-field magnitude.

Figure 4.2: Scene January 27th B tiled into sixty equal sized squares.
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Table 5: Metadata Barbados scenes.

Short name Date Path Frame Orbit Mode Polarisation Abs. Orbit
Jan 15th 15-01-2020 21:54 120 1224 Ascending IW VV 30817
Jan 27th A 27-01-2020 21:53 120 1219 Ascending IW VV 30992
Jan 27th B 27-01-2020 21:54 120 1224 Ascending IW VV 30992
Feb 1st 01-02-2020 22:02 18 1224 Ascending IW VV 31065
Feb 8th 08-02-2020 21:54 120 1224 Ascending IW VV 31167
Feb 20th 20-02-2020 21:54 120 1224 Ascending IW VV 31342

4.2 Barbados validation

Results of the Barbados characterisation approaches are validated using several data sources. These include
field measurements of the EUREC4A campaign, optical satellite imagery and ECMWF atmospheric param-
eters (both from the Sentinel-1 Ocean product and the ERA5 database). The ideal validation data has
identical spatial and temporal coverage compared to the testing data. The EUREC4A campaign validation
data is primarily composed of point observations whereas the data to be validated concerns large spatial
extents. Taylor’s hypothesis, which relates spatial and temporal scales, is invoked in order to compare these
different scales and optical imagery is analysed in order to justify use of this hypothesis.

The EUREC4A campaign spanned the early months of 2020 and covered the ocean to the east and south
of Barbados. A complete description of the field campaign is provided in Stevens, B. et al. (2021). The
research area of this study was selected to overlap with that of the EUREC4A campaign in order to benefit
from its vast quantity of observations. The EUREC4A measurements used for validation include those made
by instruments onboard research vessel (R/V) Meteor as well as a saildrone. Higher-level products of these
measurement stations were not available at the time of research. Instead the in-situ measurements were used
to compute higher-level products.

Validation data from both the R/V Meteor and saildrone are derived from two hours pre and post S1
observation, if available. Assuming Taylor’s hypothesis, this spatially translates to approximately three to
five 252 km2 tiles centred at the observation point. Thus, the validation data from the measuring platforms
represent a much smaller area than the S1 footprint. Limiting the comparisons to such scales would lead to
the exclusion of most Barbados scenes since all validation data other than that from the R/V Meteor for
February 1st and the saildrone for February 8th and February 20th were obtained from platforms outside
the S1 footprint. This should be kept in mind when comparing SAR-derived values and validation-derived
values since they are inherently unequal.

4.2.1 Research vessel Meteor

The research vessel (R/V) Meteor provided a host of convenient measurement systems including a ceilometer,
cloud radar, wind lidar, radiosondes and eddy-covariance measurement systems. Each of these systems will
be elaborated on below. A full description of the R/V Meteor can be found online at http://eurec4a.eu/
platforms/rv-meteor. The predecessor and namesake to the R/V Meteor provided measurements used to
study the vertical structure of the atmosphere in Augstein et al. (1974), whose conclusions were in turn used
in this study. In other words, this study directly relies on knowledge obtained from the "old" and "new"
R/V Meteor.
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4.2.1.1 Ceilometer and cloud radar Both ceilometer data and cloud radar images, available at
EUREC4A (2020a) and EUREC4A (2020b) respectively, will be used to derive the cloud base height. Since
the cloud layer is located at the top of the mixed layer (Augstein et al., 1974; Stull, 1988), cloud base height
can be used as a proxy for Zi. A ceilometer uses optical wavelengths to determine the cloud base height. This
tool yields good temporal resolution but it requires clouds to be present in order for it to make meaningful
measurements. Meanwhile the cloud radar is capable of providing information on clouds beyond the first
layer due its use of radio wavelengths. This also enables the cloud radar to detect rain events. In this study
only the cloud radar’s retrieved reflectivity profiles are used.

The interpretation of example ceilometer and cloud radar data is given to illustrate the method of Zi
deduction. Both the morning and evening S1 overpass on January 25th and the evening overpass on January
27th appeared to contain convective signatures in their respective radar imagery. The respective ceilometer
and cloud radar measurements can be found in Figure 4.3 and Figure 4.4. Ceilometer data on the 25th
shows erratic cloud base behaviour during the morning overpass. The cloud radar observations confirm that
this was caused by a rain event. No further analyses were performed on data acquired over the 25th as the
uncorrupted evening overpass occurred during a period of technical difficulties.

(a) Ceilometer (b) Cloud radar
Figure 4.3: Ceilometer and cloud radar data obtained onboard R/V Meteor on the 25th of January 2020. Cloud
radar images retrieved from EUREC4A (2020b).

On the 27th the cloud radar was down with technical difficulties, resulting in no measurements. Fortunately
the scene does not have to be discarded because the ceilometer measurements can be used instead. The
ceilometer displays two cloud bases: one at approximately 600 m and another briefly at 2000 m. The cloud
base at 600 m likely represents the condensation level at the top of the mixed layer. It will be selected as Zi.
This base appears relatively constant in height during the day but tapers off during the evening as incoming
solar radiation decreases. The cloud base at approximately 2000 m could represent clouds spreading laterally
after reaching the trade inversion height, far beyond the relevant mixed layer.
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(a) Ceilometer (b) Cloud radar
Figure 4.4: Ceilometer and cloud radar data obtained onboard R/V Meteor on the 27th of January 2020. Cloud
radar images retrieved from EUREC4A (2020b).

4.2.1.2 Radiosonde More precise estimates of Zi can be retrieved from radiosonde data available at
EUREC4A (2020c). Radiosondes released from the R/V Meteor measured detailed profiles up to an altitude
of several kilometres. At the first inversion layer one expects to find strong vertical gradients of temperature
and humidity (e.g. Malkus, 1958; Augstein et al., 1974; Stull, 1988). The height corresponding to these
large gradients is taken as Zi. The radiosonde data has a vertical spacing of 10 m. At such a resolution
the gradients can appear quite erratic. Retrieved temperature profiles are smoothed with a one-dimensional
Gaussian filter (sigma = 3) after which the gradients are calculated with a simple derivative. Next the
temperature gradient and relative humidity are plotted up to an altitude of 4000 m. Altitudes beyond that
level fall outside the reasonable range of Zi. The approximate height of Zi is visually determined from the
plots corresponding closest in time with the S1 overpass. According to Stull (1988), the vertical variability
of Zi at equilibrium may be less than 10% over an horizontal extent of 1000 km. Thus, if the radiosonde
measurement was acquired within a 100 km from the S1 footprint, its derived value of Zi will be accepted
as a reasonable estimate. By combining information from the ceilometer, cloud radar and the radiosondes a
single amalgamated value of Zi is retrieved. In the results this value is presented as Zi, RV .

An example of radiosonde data acquired on February 8th is presented in Figure 4.5. On this date a S1 image
was acquired close to the R/V Meteor at approximately 22:00 hours. Both the radiosonde before and after
acquisition, 20:16 and 22:45 respectively, display a sharp transition at approximately 1800 m which, once
again, is deemed to be the trade inversion height beyond the relevant mixed layer. Hence this inversion
is ignored. At lower altitudes of approximately 650 and 900 m, at 20:16 and 22:45 respectively, one can
find local maxima of relative humidity and increased gradients of temperature. Furthermore, below these
respective heights the vertical temperature gradient is significantly smaller than over the remaining profile,
indicating a well-mixed layer. Hence a value between 650 and 900 m will be used as the Zi validation height.
This height range corresponds to the Zi estimated from the ceilometer and cloud radar data retrieved on
the 8th of February (not shown). Based on these ancillary data sources, the increasing trend of Zi visible in
the ceilometer data and the maximum relative humidity values at 20:16 and 22:45 respectively, the Zi, RV
value during the S1 overpass is estimated to be near 850 m.
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Figure 4.5: Radiosonde profiles acquired on February 8th, released from R/V Meteor, see Figure A.6.

4.2.1.3 Wind lidar The lidar onboard the R/V Meteor measured wind speed and orientation from four
different directions for heights ranging between 40 and 250 m. The data is to be published in Baranowski
et al. (2021). The preliminary data used in this study had previously been corrected for ship motion. The
wind speeds of all four directions are averaged to obtain a single wind speed per 30 minutes, which decreases
noise and yields the same temporal sampling as the eddy-covariance measurements. The wind speed at 10
m height U10 is estimated by extrapolating and fitting to a logarithmic wind-speed profile between heights
40, 60, 70, 80, 90, 100 and 110 m. Figure 4.6 shows forty-three out of forty-eight extrapolated wind-speed
profiles made for January 27th. The remaining five profiles were removed as their U10 was greater than their
U40. Some scatter is still visible in the 40 to 110 m segments of several profiles. This could be reduced
by further temporal averaging at the cost of temporal resolution. Depending on the degree of atmospheric
instability, the wind-speed profiles might not follow logarithmic patterns (Archer et al., 2016). In that case
either longer temporal averages or different fits entirely should be used to determine U10.

Figure 4.6: Examples of fitted wind-speed profiles based on lidar wind measurements for scene January 27th.
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4.2.1.4 Eddy-covariance meteor The R/V Meteor measured latent and sensible heat fluxes between
the 15th of January and the 25th of February. The data is to be published in Baranowski et al. (2021).
Preliminary data made available for this study includes 30 min averages of latent and sensible heat measured
from the mast. The Obukhov length L can be determined by combining this data with U10 retrieved from
the wind lidar. This is accomplished through an iterative scheme similar to algorithm 1 and algorithm 2A.
No stability correction is applied to the wind-speed estimates as they are in-situ measurements rather than
measurements obtained under a hypothetical neutral stratification.

First x and ψm are calculated using Equation 3.14 and Equation 3.13 with an initial estimate of L. Next
z0 and Cd are calculated using Equation 3.10 and Equation 3.9 with an initial estimate of u∗. Then u∗ is
recalculated using Equation 3.8a where the lidar value of U10 is used for U . Lastly L is calculated following
(Verburg and Antenucci, 2010)

L =
−u3∗ρairTv

κg
(
H
cp

+ 0.61TvELv

) . (4.1)

New parameters in Equation 4.1 are latent heat flux E (energy transfer in the form of phase changes, such
as evaporation), sensible heat flux H (energy transfer in the form of temperature changes), the specific heat
of air Cp of 1005 J kg−1 K−1 (Alpers and Brümmer, 1994) and latent heat of vaporisation Lv. The latter is
calculated following

Lv = 2.501 · 106 − 2370T0, (4.2)

where T0 represents the water surface temperature in ◦C (Verburg and Antenucci, 2010). Approximating
this value as 20 ◦C will, at most, lead to a few percent error. Similarly, Tv will be approximated by 293
K. Convergence is typically achieved in less than ten iterations, yielding 30 min average values of L. These
are used as validation for the SAR-derived values of L. Valid measurements from both the eddy-covariance
system and wind lidar are required to calculate L. Combining the retrieved value of L with the estimated
values of u∗ and Zi yields a R/V Meteor estimate of σu.

4.2.2 Saildrone

Saildrones were among the measuring platforms used during the EUREC4A campaign. These unmanned
vehicles measured bulk fluxes in coordination with the neighbouring research vessels. A full description of the
drones can be found online at http://eurec4a.eu/platforms/saildrones with data provided in Quinn,
Patricia K et al. (2021).

4.2.2.1 Bulk fluxes The saildrone measures surface stress τ , wind speeds U10, specific humidity r10 (g
kg−1), sea surface temperature TSST and air temperature T10. Combining these parameters allows for the
calculation of L. Friction velocity u∗ is computed from τ following an inverse of Equation 3.8b where it is
still assumed that ρair is 1.2 kg m−3. Next the drag coefficient Cd is calculated by combining the known
values for τ and U10 in
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Cd =
τ

ρairU10
2 . (4.3)

This equation is the combination of Equation 3.8a and Equation 3.8b. No iterations nor stability corrections
are performed as the wind speed is obtained from in-situ measurements and τ is known. Following Alpers
and Brümmer (1994) it is assumed that the heat transfer coefficient CH is approximately equal to the drag
coefficient Cd, i.e.

CH ≈ Cd. (4.4)

The temperature difference ∆T is computed following

∆T = T10 − TSST. (4.5)

The parameters are combined to compute sensible heat flux H following

H = −ρairCpCHU10∆T. (4.6)

For the considered conditions the air temperature is lower than the sea surface temperature, i.e. ∆T < 0 K.
The negative sign in the H calculation results in a positive flux directed upwards into the atmosphere. Heat
flux H is converted to kinematic heat flux w′T ′ following

w′T ′ =
H

ρairCp
. (4.7)

The virtual potential temperature is calculated following (Stull, 1988; Donelan et al., 1997)

Tv = (T10 + 273.15) (1 + 0.61R10) . (4.8)

Where R10 is calculated by dividing the specific humidity by a factor 1000 to get units of kg kg−1,

R10 =
r10

1000
. (4.9)

For the final step Tv, w′T ′, u∗ and known constants κ and g are used to compute the Obukhov length L with
Equation 2.1. Combining the retrieved value of L with u∗ and Zi (retrieved from the R/V Meteor) yields a
saildrone estimate of σu.
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4.2.3 GOES-E optical imagery

Even on a local scale the atmospheric setting can change rapidly, such as near atmospheric fronts. For
all Barbados scenes either one or both validation measurement platforms were located outside of the radar
footprint. Optical imagery with a greater footprint than that of S1 was assessed in order to determine
whether measurements from these exterior platforms are representative for the area within the footprint.
To this end the cloud structures at the respective locations are compared in a qualitative sense. Similar
cloud structures are a good indication of similar atmospheric conditions because convection-induced surface
signatures are tied to that of cloud signatures, e.g. up- and downdrafts of two-dimensional rolls yields similar
structures in the clouds and on the water surface.

Using Geostationary Operational Environmental Satellite-East (GOES-E) video time series provided online
at EUREC4A (2020d), the cloud structure outside the radar footprints were analysed. From these it was
determined that the cloud structures at measurement platforms just outside the radar footprint are repre-
sentative of the structure within the footprint for all scenes but January 27th A and January 27th B. Both
scenes on the 27th happen to be located to east of an atmospheric front whereas the R/V Meteor is located
to west. This could in fact have been deduced from the sharp transition in the top left corner of the radar
imagery in Figure A.4. Thus the measurements from the R/V Meteor on the 27th of January might be less
representative for the area within the radar footprint. Due to the apparent similar cloud structure, extra
validation data is provided for January 27th A, January 27th B and February 1st from saildrone measure-
ments located well outside of the radar footprints, see subsection A.4. However, because these saildrone
measurements are separated by hundreds of kilometres from the study area, they too should be treated with
caution.

4.2.4 ECMWF

The European Centre for Medium-Range Weather Forecasting (ECMWF) provides validation for several
atmospheric parameters. Included in the Sentinel-1 Ocean (S1 OCN) product are a wind field Un and wind
directions δ (with an RMSE of 30◦) retrieved from a three-hourly ECMWF atmospheric model (Collecte
Localisation Satellites, 2016) covering the same extent as the S1 scene. The ECMWF Reanalysis 5th Genera-
tion (ERA5) database provides gridded hourly data for several other parameters of interest. Their boundary
layer height value is included in the results as a proxy measurement for Zi. Further parameters retrieved
include mean surface sensible and latent heat fluxes, H and E respectively, sea surface temperature TSST
and friction velocity u∗. Combining these with Equation 4.1 and Equation 4.2 yields an estimate of Obukhov
length L using ECMWF data only. In turn, combining L with ERA5’s Zi and u∗ in Equation 3.11 yields
σu. Thus, the ECMWF provides validation for six atmospheric parameters, Un and δ through the S1 OCN
product and Zi, u∗, σu and L through the ERA5 database. For clarity the data from both S1 OCN and
ERA5 will be referred to as originating from the ECMWF in the results section.

ERA5’s 0.25◦ by 0.25◦ horizontal resolution is too coarse to capture convection events. Instead the relevant
parameters have been retrieved through parameterisation. For this reason the estimates retrieved through
ERA5 should be treated with caution. ERA5 ensemble statistics are calculated for an area slightly greater
than each S1 observation. The ERA5 footprints used for the Barbados scenes are provided in Table 6. On
temporal scales the ERA5 data is selected to the closest hour of the S1 observation.
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Table 6: ECMWF input footprint coordinates for ERA5 validation data. Barbados scenes.

Jan 15th Jan 27th A Jan 27th B Feb 1st Feb 8th Feb 20th
N 14.50 13.00 14.50 14.75 14.50 14.50
E -54.50 -54.00 -54.25 -56.50 -54.25 -54.25
S 12.50 11.00 12.50 12.75 12.50 12.50
W -57.25 -56.75 -57.00 -59.25 -57.00 -57.00

4.3 Miscellaneous data

A selection of miscellaneous scenes are analysed to provide insight into characterisation performance under
a broader range of atmospheric circumstances. These are selected on their visually apparent convective
features, see Figure A.2. Their geographical locations are presented in Figure 4.1 with overpass details
provided in Table 7. Using the custom CNN all scenes were classified as containing three-dimensional cells,
albeit to varying degrees. Thus, the processing approach for three-dimensional cells was followed.

Table 7: Metadata miscellaneous scenes.

Short name Date Path Frame Orbit Mode Polarisation Abs. Orbit
Carolina 09-01-2020 22:49 33 105 Ascending IW VV 30730
Sea of Japan 17-01-2020 21:22 31 460 Descending IW VV 19862
Bering Sea 14-11-2019 05:05 168 188 Ascending IW VV 18919
Georgia 31-12-2019 23:13 77 97 Ascending IW VV 30599
Portugal 09-12-2019 18:50 16 115 Ascending IW VV 19292
Madeira 08-01-2020 18:50 16 103 Ascending IW VV 30713
Peru 22-10-2019 23:32 18 1122 Ascending IW VV 18594
Argentina 15-10-2019 09:09 170 734 Descending IW VV 29467

4.4 Miscellaneous data validation

For the miscellaneous scenes no field campaign data is available. Instead validation is performed using
available ECMWF data, namely Un and δ from the S1 OCN product and Zi, u∗, σu and L from the ERA5
database, see subsubsection 4.2.4. The ERA5 footprints for the miscellaneous data are provided in Table 8.
The S1 OCN footprints are identical to that of the S1 observation.

Table 8: ECMWF input footprint coordinates for ERA5 validation data. Miscellaneous scenes.

Carolina Sea of Japan Bering Sea Georgia Portugal Madeira Peru Argentina
N 34.75 40.75 59.25 32.25 37.75 34.00 -15.75 -41.25
E -70.50 132.50 -168.50 -76.00 -11.25 -10.50 -74.25 -58.75
S 32.50 38.75 57.25 30.00 35.25 31.75 -18.25 -44.00
W -73.75 128.50 -174.00 -79.50 -15.00 -14.00 -77.25 -63.00
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Results and discussion

Results are presented for two datasets, namely the Barbados study area and several miscellaneous study
areas. The results concerning the Barbados study area are presented in subsection 5.1 followed by results
for the miscellaneous radar scenes in subsection 5.2. Characterisation results for the Barbados study area
are obtained using algorithm 2B only. The observed stability ranges of the Barbados scenes fall outside
the resolvable range for either algorithm 2A or 2C. For a single miscellaneous scene a comparison of the
Obukhov length, L, results obtained with algorithms 2A, 2B and 2C are presented in Figure 5.5. The
remaining miscellaneous results are obtained using algorithm 2B.

The inertial subrange normalised standard deviation threshold is set to 0.15, as discussed in subsubsec-
tion 3.5.3, resulting in the removal of tiles whose spectral slope did not follow a -5/3 power law. Results
for the whole Sentinel-1 scene are presented as median ± median of absolute deviation (MAD) to decrease
the sensitivity to outliers. For data following a Gaussian distribution the standard deviation σ is equal to
1.4862·MAD (Rousseeuw and Croux, 1993). An overview of results obtained for the Barbados and miscella-
neous scenes is presented in Figure 5.1.

Figure 5.1: Median values of L estimated with scenario 2 of algorithm 2B using δECMWF. Please note the Barbados
results are presented up to three times, each compared to a different validation source.

5.1 Barbados

For the Barbados study area we focussed on the derivation of wind direction δ (180 degree ambiguity resolved)
from subsection 3.2, CBL depth Zi from subsection 3.4, friction velocity u∗ and mean neutral wind speed Un
from algorithm 1A and horizontal wind standard deviation σu and Obukhov length L from algorithm 2B. A
total of five scenarios are considered for each scene within this study area. Scenario 1 serves as a reference
run. Its values were computed following the methodology of section 3. The remaining four scenarios test the
characterisation sensitivity to various parameters, models and constants.
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5.1.1 Scenario 1, 2 & 3: Reference and estimation sensitivity

Results are presented comparing reference scenario 1 to scenarios 2 and 3 and validation data. Scenario
2 uses the wind directions δ retrieved from ECMWF rather than those calculated following the steps in
subsection 3.2. Since wind direction is estimated early in the methodology, see Figure 3.1, errors in its
estimation propagate throughout all further calculations. Thus, by comparing scenario 1 and 2 one gains
insight into the wind-direction estimation error as well as the propagated effect of this error on further
estimates. In scenario 3 another source of uncertainty, the boundary layer height Zi, is set using the in-situ
collected data Zi, RV . A comparison between scenarios 1, 2 and 3 gives insight into the error of manual Zi
estimation and its propagated effect on further estimates.

In Table 9 to Table 14 results for scenarios 1 to 3 are presented in combination with available validation
data from the saildrone (SD), R/V Meteor (R/V) and the ECMWF. Each table shows δ, Zi, Un, u∗, σu and
L. Included for each scenario are the fraction of tiles used in analysis. Missing tiles were filtered out due
to not meeting the thresholds set in subsection 3.3 and subsection 3.5, i.e. a fraction closer to 1 is better.
Data in bold indicates a predetermined value, i.e. bold values for δ and Zi indicate δECMWF and Zi, RV
respectively. In Figure 5.2 the spatial distribution of L estimates is plotted for a single scene using scenario
2. The spatial distributions for all scenes are presented in Figure A.10.

Table 9: Scenarios January 15th. Convection classified as two-dimensional rolls. Lack of Zi, RV measurement
prevents the calculation of scenario 3 and σu, SD.

Scenario 1 Scenario 2 Scenario 3 SD R/V ECMWF
Tiles 52/60 59/60 - - - -
δ 62.1 ± 26.5 78.3± 2.4 - - - 78.3± 2.4

Zi 1095 ± 269 956 ± 243 - - - 1102 ± 52
Un 10.9 ± 1.1 9.1 ± 0.3 - - - 9.0 ± 0.3
u∗ 0.399 ± 0.047 0.323 ± 0.012 - 0.37 ± 0.01 - 0.34 ± 0.01
σu 0.885 ± 0.098 0.718 ± 0.027 - - - 0.88 ± 0.02
L -561 ± 170 -585 ± 123 - -469 ± 52 - -109 ± 4

Table 10: Scenarios January 27th A. Convection classified as three-dimensional cells. Please note: the R/V Meteor
was located outside S1 footprint on the other side of an atmospheric front while the saildrone was located well outside
S1 footprint.

Scenario 1 Scenario 2 Scenario 3 SD R/V ECMWF
Tiles 57/60 60/60 59/60 - - -
δ 112.1 ± 28.9 79.5± 5.3 79.5± 5.3 - - 79.5± 5.3

Zi 939 ± 142 969 ± 112 500 500 500 713 ± 53
Un 6.4 ± 0.5 5.9 ± 0.1 5.9 ± 0.1 - - 5.9 ± 0.1
u∗ 0.211 ± 0.019 0.192 ± 0.004 0.192 ± 0.004 0.13 ± 0.00 0.16 ± 0.01 0.22 ± 0.01
σu 0.504 ± 0.035 0.460 ± 0.007 0.433 ± 0.008 0.33 ± 0.01 0.47 ± 0.01 0.58 ± 0.02
L -194 ± 38 -202 ± 26 -213 ± 36 -45 ± 5 -30 ± 8 -52 ± 5
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Table 11: Scenarios January 27th B. Convection classified as two-dimensional rolls. Please note: the R/V Meteor
was located outside S1 footprint on the other side of an atmospheric front while the saildrone was located well outside
S1 footprint.

Scenario 1 Scenario 2 Scenario 3 SD R/V ECMWF
Tiles 51/60 51/60 52/60 - - -
δ 111.6 ± 8.1 94.8± 2.0 94.8± 2.0 - - 94.8± 2.0

Zi 662 ± 145 647 ± 142 500 500 500 704 ± 59
Un 6.8 ± 0.4 5.9 ± 0.3 5.9 ± 0.2 - - 5.8 ± 0.3
u∗ 0.224 ± 0.018 0.193 ± 0.010 0.194 ± 0.009 0.13 ± 0.00 0.16 ± 0.01 0.21 ± 0.01
σu 0.504 ± 0.037 0.433 ± 0.022 0.433 ± 0.008 0.33 ± 0.01 0.47 ± 0.01 0.57 ± 0.03
L -372 ± 94 -323 ± 71 -302 ± 62 -45 ± 5 -30 ± 8 -45 ± 4

Table 12: Scenarios February 1st. Convection classified as two-dimensional rolls. Please note: the saildrone was
located well outside S1 footprint.

Scenario 1 Scenario 2 Scenario 3 SD R/V ECMWF
Tiles 53/60 60/60 60/60 - - -
δ 75.2 ± 28.3 82.8± 1.5 82.8± 1.5 - - 82.8± 1.5

Zi 869 ± 251 657 ± 164 650 650 650 839 ± 34
Un 8.6 ± 0.9 7.2 ± 0.2 7.3 ± 0.2 - - 7.3 ± 0.2
u∗ 0.301 ± 0.038 0.246 ± 0.007 0.246 ± 0.007 0.22 ± 0.01 0.27 ± 0.01 0.27 ± 0.01
σu 0.655 ± 0.07 0.541 ± 0.015 0.537 ± 0.013 0.52 ± 0.02 0.68 ± 0.01 0.72 ± 0.01
L -550 ± 157 -476 ± 88 -454 ± 86 -127 ± 12 -87 ± 5 -80 ± 3

Table 13: Scenarios February 8th. Convection classified as two-dimensional rolls. Please note: the R/V Meteor was
located just outside S1 footprint.

Scenario 1 Scenario 2 Scenario 3 SD R/V ECMWF
Tiles 59/60 58/60 59/60 - - -
δ 76.9 ± 4.8 77.4± 2.1 77.4± 2.1 - - 77.4± 2.1

Zi 815 ± 231 842 ± 249 850 850 850 1061 ± 213
Un 10.3 ± 0.3 9.4 ± 0.3 9.3 ± 0.4 - - 9.3 ± 0.3
u∗ 0.374 ± 0.014 0.333 ± 0.012 0.334 ± 0.012 0.35 ± 0.02 0.36 ± 0.02 0.35 ± 0.01
σu 0.823 ± 0.031 0.726 ± 0.024 0.730 ± 0.026 0.77 ± 0.04 0.83 ± 0.03 0.89 ± 0.03
L -515 ± 105 -568 ± 105 -572 ± 108 -495 ± 51 -219 ± 75 -120 ± 18
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Table 14: Scenarios February 20th. Convection classified as two-dimensional rolls. Please note: only a single mea-
surement available from the R/V Meteor for Zi, RV . Scene suffers from several local inhomogeneities, see Figure A.1.

Scenario 1 Scenario 2 Scenario 3 SD R/V ECMWF
Tiles 44/60 50/60 52/60 - - -
δ 23.9 ± 10.4 59.4± 1.0 59.4± 1.0 - - 59.4± 1.0

Zi 1236 ± 207 996 ± 235 800 800 800 991 ± 27
Un 12.6 ± 1.3 8.7 ± 0.3 8.8 ± 0.4 - - 8.7 ± 0.2
u∗ 0.479 ± 0.060 0.307 ± 0.011 0.307 ± 0.011 0.30 ± 0.04 - 0.32 ± 0.02
σu 1.102 ± 0.129 0.692 ± 0.029 0.683 ± 0.024 0.69 ± 0.07 - 0.85 ± 0.03
L -453 ± 101 -425 ± 57 -403 ± 41 -358 ± 138 - -88 ± 11

Figure 5.2: Spatial overview of Scenario 2 Obukhov Length L results for February 8th.

5.1.1.1 Wind direction The median wind directions, δ, of scenario 1 differ with those retrieved from
ECMWF (RMSE is 18.2◦). The wind directions of scenario 1 are offset in both directions with respect to
δECMWF. For scene February 20th the difference is greatest at over 35◦ whereas for scene February 8th
the difference is less than 1◦. The scenario 1 uncertainties (expressed as the MAD) are up to an order of
magnitude greater than those from δECMWF. For all scenes but February 20th the δECMWF values fall within
the MAD range of the δ estimates.

As is illustrated by scenario 1 and 2, the wind-direction estimation affects all subsequent parameters, albeit
to varying degrees. When using δECMWF, the quantity of tiles increases for all scenes but February 8th—
whose δ already aligned with δECMWF—meaning more tiles meet the thresholds set in subsection 3.3 and
subsection 3.5. For all scenes the neutral wind speed Un decreases, which simultaneously decreases u∗ and
σu. These new scenario 2 estimates of Un, u∗ and σu are closer to the validation data than those from
scenario 1. Similarly, on average the estimates of Zi approach Zi, RV when using δECMWF; the RMSE of
Zi estimates with respect to Zi, RV decreases from 258 m for scenario 1 to 165 m for scenario 2. There
is little difference between the scenario 1 and 2 estimates for L because, despite affecting both u∗ and σu

by up to several tens of percents (see February 20th), the ratio σu/u∗ stays approximately the same (the
RMSE between the two is 1.0% of the average ratio). For scenes with relatively large uncertainty, such as
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January 15th and February 1st, the respective uncertainty for Un, u∗ and σu decreases by a factor ∼4 or
more in scenario 2. This suggests at least part of their scatter originates from scatter in wind-direction
estimation.

A possible explanation for the difference between δ and δECMWF is the bias between true wind direction and
the direction of greatest variability for two-dimensional rolls. A 20◦ bias is used to account for rolls being
orientated between the surface wind direction and the geostrophic wind direction (see subsubsection 2.1.2).
However, based on the observed bias ranges in Figure 3 of Wang et al. (2019a), the introduced constant
bias of 20◦ may still be off by tens of degrees. A second source of difference between δ and δECMWF relates
to the variations in convective structures. For instance, the scene February 1st was assumed to contain
two-dimensional rolls yet the histogram of estimated wind directions displays a secondary distribution at
approximately 90◦ offset with respect to the main distribution, see Figure 5.3. The effect of this secondary
δ distribution visibly carries over in the distributions of u∗, Un and σu. This indicates that a processing
approach for rolls was erroneously applied on a tile dominated by cells, i.e. misclassification of tiles.

Figure 5.3: Scenario 1 results for February 1st, wind direction histogram not yet corrected for 180◦ ambiguity.

If one desires to precisely and consistently estimate wind direction using only the orientation of features
within radar imagery, such as rolls or cells, a suitable method should be found capable of deriving the offset
between surface-wind direction and the orientation of features rather than selecting a constant bias (such
as 20◦ for rolls) to account for a stochastic offset. This is especially the case if interested in only σu or
u∗ as changes in wind direction can affect these parameters by up to several tens of percents (e.g. scene
February 20th). Additionally, each tile should be classified separately and processed accordingly, rather than
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processing each tile according to the most dominant convection mode of the whole scene (as was done in
this study). The former approach was was not selected for this study because, due to the immaturity of our
classification algorithm, it inadvertently increased the scatter of results. Even on the scale of an individual
tile convective structures can contain both cells and rolls (e.g. Zecchetto and De Biasio, 2002), complicating
classification. For such scenarios one could apply a filter to remove tiles for which the classification certainty
falls below a certain threshold. Neither was this performed in our study due to the aforementioned limitations
of our classification algorithm.

5.1.1.2 Convective Boundary Layer depth Scenario 1 estimates of Convective Boundary Layer
(CBL) depth Zi are consistently overestimated with respect to the in-situ boundary layer depth Zi, RV .
The largest discrepancies are observed for scenes January 27th A and February 20th, for which the difference
exceeds 400 m. Only for scenes February 1st and February 8th the difference is within the uncertainty
(MAD). Using δECMWF improves the estimation of Zi; The RMSE of Zi estimates for scenario 1 and 2
with respect to Zi, RV are 258 m and 165 m respectively. This observation can be substantiated by theory:
power in the two-dimensional spectrum will project itself onto longer wavelengths in the one-dimensional
spectrum if not directly on the axis of analysis, thus leading to overestimation of Zi when using an incorrect
δ. The Zi, ECMWF values have an RMSE of 201 ms−1 with respect to Zi, RV . However, their difference is so
consistent that the coefficient of determination between Zi, ECMWF and Zi, RV is R2 = 0.996, compared to
a mere R2 = 0.010 for scenario 2’s Zi and Zi, RV .

The effect of errors in the Zi estimation are negligible for further estimation of u∗, σu and L. Even for scene
January 27th A—whose Zi estimate is almost twice as high as Zi, RV—scenario 2 and 3 estimates of L differ
by only ∼5%. However, these results were obtained using algorithm 2B, which is mostly independent of Zi
(see Equation 3.21). When using algorithm 2A the errors in Zi estimates would propagate as linear errors
in the estimation of L following the linear dependence of L and Zi in Equation 3.11. For January 27th A
that could lead to a factor ∼2 overestimation of −L.

Errors in Zi estimation could originate from the stochastic nature of aspect ratios. This study assumes a
constant aspect ratio of 1.5 and 2 for three-dimensional cells and two-dimensional rolls respectively. For
the latter Wang et al. (2019a) shows aspect ratios ranging between 0.5 and 10 (with a mean and standard
deviation of 3.39 ± 1.79). Since aspect ratios are inverse linearly proportional to Zi, see subsection 3.4, an
aspect ratio of 4 would be sufficient to cause underestimation of Zi for all scenes rather than the currently
observed overestimation. In other words, results for Zi are malleable depending on which aspect ratio is
chosen, especially considering the range of plausible aspect ratios. Thus, in order to improve the estimation of
Zi, the aspect ratios should be derived for each scene rather than chosen from a stochastic distribution.

One cause of consistent Zi overestimation to be excluded is that of elongation of cells in the along-wind
direction. For five out of six study areas in the Barbados region the analysis was performed in the across-
wind direction due to the roll-like alignment of convection. Thus in five out of six cases along-wind elongation
could not have been a factor. Naturally the one scene with three-dimensional cells, namely January 27th A,
could still suffer from elongation and subsequent Zi overestimation.

The different dependencies of algorithms 2A, 2B and 2C on Zi present an opportunity to estimate Zi. For
this one needs an accurate PSD and estimate of u∗ from which both a filtered σu (using algorithm 2A) and L

45



5.1 Barbados 5 RESULTS AND DISCUSSION

(using either algorithm 2B or 2C) can be derived. Then by iterating different inputs of Zi into Equation 3.11
from algorithm 2A, one can determine the true value of Zi as the value which yields the same L as the L
calculated in algorithm 2B or 2C independent of Zi. This by-basses the need to calculate Zi following the
method of Sikora et al. (1997) and its inherent uncertainties related to the aspect ratio. For this to become
feasible the limitations and uncertainties of algorithms 2A and 2B or 2C need to be resolved first.

5.1.1.3 Wind speed and friction velocity Scenario 1 results for Un and u∗ are consistently overesti-
mated with respect to the validation results. Using the wind directions from ECMWF, δECMWF, improves
the estimation of both parameters. Compared to ECMWF data, the RMSE of scenario 1 estimates for Un
decreases from 1.6 ms−1 to < 0.1 ms−1 for scenario 2. Similarly, the coefficient of determination for the u∗
values of scenario 1 and ECMWF is R2 = 0.766 whereas that of scenario 2 and ECMWF is R2 = 0.995 (both
only for six scenes). A similar comparison between results from scenario 1 and 2 with the saildrone yields
R2=0.738 and R2=0.980, respectively. Excluding the January 27th scenes (which self correlate and experi-
ence unfavourable validation platform locations, see subsubsection 4.2.3) the estimates of u∗ from scenario
2 are within a few percent of validation. Compared to the saildrone, R/V Meteor and ECMWF validations
data, the scenario 2 estimates of u∗ are spread with the mean difference being 0.02, 0.00 and -0.02 ms−1,
respectively. Using a two-tailed paired t-test, the differences between scenario 2 estimates and saildrone or
R/V Meteor validation is insignificant (p > 50%). However, the difference with respect to ECMWF data is
significant (p < 0.1%).

5.1.1.4 Horizontal wind standard deviation Estimates for horizontal wind standard deviation σu

improve when using δECMWF. The coefficient of determination for σu’s between scenario 1 and the saildrone,
R/V Meteor and ECMWF is R2 = 0.720, 0.988 and 0.765 respectively. A similar analysis using σu’s from
scenario 2 yields R2 = 0.982, 0.930 and 0.987. Only four σu data points are retrieved from the R/V Meteor
of which two for January 27th, which use identical validation data retrieved from unfavourable validation
platform locations (see subsubsection 4.2.3). This could result in the high correlation observed for the R/V
Meteor. The mean σu difference between scenario 2 and the validations platforms is 0.04, -0.07 and -0.15
ms−1 for the saildrone, R/V Meteor and the ECMWF respectively. Similar to u∗ results, using a two-tailed
paired t-test, the differences between scenario 2 estimates of σu with respect to saildrone or R/V Meteor
validation are insignificant (p < 50% and p < 20% respectively) whereas the difference between scenario 2
estimates and ECMWF validation is significant (p < 0.1%).

5.1.1.5 Obukhov Length Obukhov length L is used to indicate an atmospheric stability where the
(in)stability is calculated as zL−1 (z being the measurement height of 10 m). For negative L’s the atmo-
sphere is considered unstable with values closer to zero indicating greater instability. Estimates of |L| are
consistently overestimated with respect to validation, leading to a smaller |zL−1| and thus underestimation
of the atmospheric instability. The coefficient of determination increases when external inputs for δ and Zi
are used (scenario 2 and 3 respectively) with respect to all three validation sources. The greatest performance
increase occurs from scenario 1 to scenario 2.

The overestimation of L is caused by underestimation of σu and or overestimation of u∗. Since −L ∝
(σu/u∗)

−3, see Equation 3.11, minor relative differences in the ratio σu/u∗ can greatly affect the Obukhov
length estimate. The mean difference between this ratio from scenario 2 with respect to the saildrone,
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R/V Meteor and ECMWF is -0.12, -0.42 and -0.38, respectively. Using a one-tailed paired t-test (instead
of two-tailed because the mean difference in average ratios is negative for all), the differences between the
ratios obtained through scenario 2 and the saildrone, R/V Meteor and ECMWF are statistically significant
(p < 5.0%, p < 5.0% and p < 0.1% respectively).

5.1.2 Scenario 4: GMF intercomparison

Scenario 4 compares results obtained using CMOD5.N (reference) with those obtained with CMOD-IFR2.
Both GMFs were used following scenario 2, i.e. using wind direction δECMWF. Alternatively one could use
scenario 3 but then one cannot determine the influence on Zi estimation. Furthermore, only five scenario 3
results are available versus six of scenario 2. Parameters affected by the GMF are included in Table 15.

Table 15: Comparison of CMOD5.N with CMOD-IFR2 using δECMWF.

Jan 15th Jan 27th A Jan 27th B
CMOD 5.N IFR2 5.N IFR2 5.N IFR2
Zi 956 ± 243 926 ± 243 969 ± 112 969 ± 112 647 ± 142 657 ± 162
Un 9.1 ± 0.3 8.7 ± 0.4 5.9 ± 0.1 4.9 ± 0.1 5.9 ± 0.3 5.0 ± 0.3
u∗ 0.323 ± 0.012 0.303 ± 0.016 0.192 ± 0.004 0.158 ± 0.005 0.193 ± 0.010 0.161 ± 0.011
σu 0.718 ± 0.027 0.706 ± 0.028 0.460 ± 0.007 0.410 ± 0.010 0.433 ± 0.022 0.382 ± 0.025
L -585 ± 123 -297 ± 77 -202 ± 26 -109.4 ± 16.5 -323 ± 71 -164 ± 28

Feb 1st Feb 8th Feb 20th
CMOD 5.N IFR2 5.N IFR2 5.N IFR2
Zi 657 ± 164 635 ± 162 842 ± 249 815 ± 241 996 ± 235 996 ± 235
Un 7.2 ± 0.2 6.5 ± 0.2 9.4 ± 0.3 8.9 ± 0.4 8.7 ± 0.3 8.1 ± 0.3
u∗ 0.246 ± 0.007 0.216 ± 0.009 0.333 ± 0.012 0.316 ± 0.015 0.307 ± 0.011 0.282 ± 0.012
σu 0.541 ± 0.015 0.495 ± 0.022 0.726 ± 0.024 0.710 ± 0.030 0.692 ± 0.029 0.669 ± 0.031
L -476 ± 88 -210 ± 47 -568 ± 105 -316 ± 68 -425 ± 57 -216 ± 30

Compared to Un retrieved from ECMWF, the CMOD5.N and CMOD-IFR2 estimated wind speeds have
an RMSE of < 0.1 ms−1 and 0.7 ms−1 respectively. Results from scenario 4 illustrate the impact of a
minor bias in the estimates of u∗. Compared to CMOD5.N, CMOD-IFR2 yields lower wind-speed estimates
which results in lower values of u∗. The decrease in u∗ affects the estimated Obukhov length by up to a
factor 2 despite being partially counteracted by a decrease in σu. Thus, for an accurate estimate of L it is
crucial to retrieve accurate values of both u∗ and σu. An error of no more than 10% in either parameter
is sufficient to hinder the estimation process. Using CMOD5.N, the estimated values of Un and u∗ are in
line with those retrieved from validation for all scenes but those on the 27th of January. Thus, despite not
experiencing consistent |L| overestimation, CMOD-IFR2 accomplishes this through tweaking the "wrong"
parameter.

5.1.3 Scenario 5: Sensitivity to constants

Several constants and parameters of the scenario 1 reference run are varied within spread found in literature
to determine the L estimation sensitivity, see Figure 5.4.
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Figure 5.4: Algorithm 2B reference run used: ψ = 1, κ = 0.4, α = 0.5, a = 0.011, T = 20◦ and δ = δscenario 1.

Results of scenario 5 display the importance of correct constants and variables. The choice of dimensionless
energy dissipation rate ψ introduces significant uncertainty to algorithm 2B. The natural spread of near-
surface values for ψ (as per Figure 4 in Kaimal et al. (1976)) combined with the inverse dependence of |L|
on ψ can easily cause a factor 2 over- or underestimation. A 10% change in either κ or α propagates as a
∼25% change in |L|. However, frequently cited alternative values for κ or α tend to be within 5% of the
reference values used for algorithm 2B rather than 10%. Furthermore, in practise the sensitivity to spread
in κ is less than may appear from Figure 5.4 as the equations selected for this study were fine-tuned to
κ = 0.40. Should the true value of κ be found to differ from 0.40, the empirical equations would cancel out
most of the introduced error. The chosen value of 0.011 for a is suitable for oceans with swell (Hersbach,
2011). Should larger values of a be selected corresponding to a typical ocean, a ≈ 0.020, or young ocean,
a ≈ 0.040 (Hersbach, 2011), the resulting estimates of |L| would be up to 50% greater. Compared to the
other variables, the choice of temperature has a negligible influence on |L| estimation. The sensitivity to
errors in wind-direction estimation differs from scene-to-scene. For February 1st the effect is minor whereas
for February 20th it is almost as great as the sensitivity to ψ. The variable sensitivity could be caused by
the uncertainty in the initial wind-direction estimates (see paragraph 5.1.1.1) and or a non-linear relation
between wind direction and Obukhov length.

Considering that favourably low values are chosen for a, α and ψ, that offsets in δ can cause both under-
and overestimation of |L| rather than the observed overestimation only and that temperature changes have
negligible influence on |L|, it is assumed that the aforementioned parameters can be excluded as likely sources
of consistent |L| overestimation. From the considered constants and parameters only κ can be a consistent
source of |L| underestimation, although the observed overestimation of |L| is too large to be explained by a
lower value of κ alone. Thus, the observed consistent overestimation of |L| likely requires other contributing
sources.
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5.1.4 Currents and swell

Surface currents change the observed surface-stress field. For the Barbados region the mean surface-current
vector is approximately aligned with the wind direction, as discussed in subsection 4.2. Thus, if present,
surface currents could lead to a (minor) underestimation of Un and u∗ and therefore underestimation of |L|.
Since the opposite is observed, it means currents would lead to a decrease of the observed Obukhov length
overestimation. Scenario 4 results display the effect of a minor change in Un on the estimation of u∗ and
L. Surface currents need only alter the observed velocity field by a few percent to achieve similar results.
Since surface currents introduce a bias to Un they are expected to influence low-wind scenarios relatively
more.

Long-wavelength swell might affect the results of this study. Though a Charnock constant was chosen which,
according to Hersbach (2011), is representative of oceans with swell, this does not fully account for the
influence swell may have on characterisation. A review of Figure 10 in Drennan et al. (1999) indicates
a significant swell-induced variability in drag coefficients for U < 5 ms−1. A Charnock value between
0.010 < a < 0.040 is unable to account for such variability. Furthermore, according to the aforementioned
figure, the effect of swell is orientation dependent meaning that a Charnock constant should be chosen based
on the magnitude and orientation of swell, rather than the former only. From Equation 3.8 it follows that a
change in Cd affects u∗ and since L ∝ −u3∗ (Equation 2.1), the effect of swell on u∗ can significantly affect
the estimation of L.

When using 50 m pixels instead of 300 m ones, two-dimensional spectra for all Barbados scenes contain
spectral peaks at spatial wavelengths shorter than 300 m (not shown). These fall within the common O(100

m) range of swell wavelengths (e.g. Vachon et al., 2004; Toffoli and Bitner-Gregersen, 2017). However, the
estimated u∗ values differ insignificantly with those retrieved from the saildrone or R/V Meteor and for all
scenes but those from January 27th, the estimated values of u∗ fall within a few percent of those retrieved
from validation data. This implies swell did not significantly alter the expected parameter. Furthermore,
according to Figures 9 and 10 from Donelan et al. (1997) and Drennan et al. (1999) respectively, swell can
lead to over- or underestimation of Cd—and thus |L|—depending on the orientation of swell with respect to
the wind direction. This study observes consistent overestimation only, which further supports the hypothesis
that swell did not decisively contribute to the observed consistent |L| overestimation. However, At only six
observation for the Barbados region, statistical confidence is lacking. Additional data is required in order to
determine the variable effect swell may induce on characterisation and to test whether ignoring that part of
the two-dimensional spectrum containing swell signatures (e.g. by filtering spatial wavelengths < 300 m as
performed in this study) is correct.

5.2 Miscellaneous scenes

Results are presented for several miscellaneous study areas. These scenes cover a wider range of atmospheric
settings than those of Barbados and thus allow for usage of algorithms 2A and 2C. Additionally, the increased
number of scenes allows for conclusions to be drawn based on statistical significance.

By combining algorithms 2A, 2B and 2C for the Carolina study area it is shown how to estimate ψ and
the necessary wind-field slope multiplier to arrive at ECMWF’s estimate of LECMWF. Applying a slope
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multiplier involves the subtraction of the mean wind speed and the multiplication of the residuals followed
by the readdition of the mean. This artificially increases the wind-field variance at all assessed spatial
wavelengths. First a scenario 3 run of algorithms 2A, 2B and 2C is performed using a predetermined
Zi ECMWF and δECMWF in combination with a slope multiplier of 1 (i.e. no multiplication) and ψ = 1,
see Figure 5.5a. Algorithm 2A’s and 2B’s estimates of |L| are greater than |LECMWF| = 15.5 m, which
implies underestimation of the wind-field variance. Additionally, algorithm 2A’s estimates of |L| are greater
than that of algorithm 2B despite no spectral filtering being applied in algorithm 2A. For such an approach
algorithm 2A should always yield lesser |L| values than algorithm 2B. By multiplying the wind-field slope
by a factor 1.7 the observed stability range allows for usage of algorithm 2C. For said slope multiplication
algorithm 2C yields a median value of |L| = 15.5 m, algorithm 2B yields |L| = 11.0 m and algorithm 2A
yields lesser values still. Algorithm 2A’s values can be explained by the aforementioned lack of spectral
filtering. Algorithm 2B’s values should be identical to that of algorithm 2C. By increasing ψ from 1.0 to 1.6
the median results for algorithms 2B and 2C match. Thus, if we can assume |LECMWF| = 15.5 m is correct,
a slope multiplication of approximately 1.7 is necessary to arrive at LECMWF using algorithm 2C, which in
turn requires ψ to be 1.6 for algorithm 2B to approximately align with algorithm 2C.

(a) (b)

(c)
Figure 5.5: Iterative approach to arrive at estimated values for wind-field slope multiplication factor and ψ.

50



5.2 Miscellaneous scenes 5 RESULTS AND DISCUSSION

Results for a similar process applied on the Sea of Japan and Argentina study areas are presented in Table 16.
The |LECMWF| values for the remaining study areas are either too large or too small for algorithm 2C to be
applied. A multiplication of the wind-field slope is required in order to align algorithm 2B’s and 2C’s results
with that of the ECMWF. This discrepancy exist for all scenes, see data points validated with ECMWF in
Figure 5.1, suggesting that either ECMWF or algorithm 2B suffers from a bias.

Table 16: Median values of L retrieved from ECMWF and a scenario 3 version of algorithm 2B. Where available
the slope multiplier and deduced ψ are given to align algorithms 2B and 2C with LECMWF.

LECMWF L Required slope multiplier Deduced ψ
Carolina -15.5 -41.1 1.7 1.6
Sea of Japan -21.6 -63.6 1.8 1.7
Bering Sea -149.6 -365.0 - -
Georgia -39.4 -145.1 - -
Portugal -38.5 -53.7 - -
Madeira -69.3 -170.8 - -
Peru -8.8 -9.8 - -
Argentina -33.0 -70.1 1.7 1.9

For all fourteen scenes (six from Barbados and eight miscellaneous) the scenario 3 results for Un, u∗, σu and
σu/u∗ are presented in Figure 5.6. The Barbados results differ slightly from those presented prior as here
Zi ECMWF was used rather than Zi RV .

Figure 5.6: Median values of Un, u∗ and σu estimated with scenario 3 of algorithm 2B using CMOD5.N, δECMWF

and Zi ECMWF.
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The RMSE of wind-speed estimates for all fourteen scenes with respect to ECMWF validation is 0.3 ms−1,
increasing to 0.8 ms−1 when using CMOD-IFR2 (not shown) over CMOD5.N (Figure 5.6). According to a
two-tailed paired t-test, the difference between CMOD-IFR2 estimates and ECMWF validation is statistically
significant (p < 0.1%) whereas that been CMOD5.N and ECMWF is not (p > 50%). Results from Figure 5.6
show that all ECMWF’s median values for u∗ are greater than those calculated using algorithm 2B despite
no significant bias existing for average neutral wind speed Un. This can be explained by the choice of a
favourably low Charnock constant a which decreases algorithm 2B’s estimate of u∗. On average ECMWF’s
u∗ values are 0.02 ms−1 larger than those estimated through algorithm 2B. From Equation 3.11 it follows
that a greater u∗ leads to a lesser σu/u∗ and thus a greater |L|. However, ECMWF’s values for σu are
sufficiently large (on average 0.16 ms−1 larger than those from algorithm 2B), that despite the increased
u∗’s, its ratio for σu/u∗ exceeds that retrieved using algorithm 2B. On average for all fourteen study areas,
the ECMWF ratio for σu/u∗ is 15% greater than that calculated through algorithm 2B (i.e. algorithm 2B
underestimates σu/u∗ by 13%). Since |L| ∝ (σu/u∗)

−3, see Equation 3.11, the ECMWF values for |L| are
a third smaller than those from algorithm 2B. Thus, underestimation of algorithm 2B’s wind-field variance
(with respect to that retrieved from ECMWF) leads to an average 50% overestimation of |L|. Algorithm
2B’s consistent underestimation of σu, u∗ and σu/u∗ are all three statistically significant with p < 0.05%

(using a one-tailed paired t-test).

5.3 Overview

Successful implementation of algorithm 2A, and to a lesser degree algorithms 2B and 2C, requires improved
estimation of Zi. In turn this requires a better understanding of the aspect ratios associated with rolls
and cells with respect to Zi. Ideally these aspect ratios would be derivable rather than setting them to
a constant. Currently algorithm 2A is also impeded by asymptotes in its equations. This prevents use in
cases such as the Barbados study area with high absolute Obukhov lengths. Lastly, algorithm 2A requires
spectral filtering to retrieve σu from the spectrum directly. This requires a clear +1 power law leading up to
a spectral peak from which to extrapolate. In the absence of a clear spectral peak (such as the case for most
scenes of this study, see Figure A.11 for examples) the +1 power-law extrapolation becomes an art rather
than a science. This yields malleable results due to the cubed dependence of |L| on σu.

Algorithm 2B is impeded by uncertainties relating to near-surface values of ψ although its consistent overesti-
mation of |L| is unlikely to be explained by ψ alone, nor by reasonable variations of its constants/parameters.
Algorithm 2C circumvents the major uncertainties relating to Zi and ψ but it is only applicable on a lim-
ited stability range due to uncertainties relating to the empirical fit and its sensitivity to minor changes in
ε. All three characterisation approaches are affected by errors in δ as these carry over into all subsequent
derivations. For the limited number of Barbados scenes it was found that externally retrieved wind-direction
data led to improved characterisation. In particular the stochastic difference between orientation of greatest
variation and the wind direction limits the achievable precision of δ estimates.

Saildrone and R/V meteor validation of the Barbados results indicate statistically significant underestimation
of σu/u∗ leading to overestimation of |L|. Due to the limited number of Barbados scenes, the source of
σu/u∗ underestimation cannot be attributed to either underestimation of σu or overestimation of u∗ using
validation from the saildrone or R/V Meteor alone. Further analyses using the miscellaneous scenes and
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ECMWF validation indicate a statistically significant underestimation of both σu and u∗. The former more
than the latter which leads to an average 13% decreased σu/u∗ ratio and a subsequent 50% overestimation
of |L| (with respect to ECMWF data).

Other than complications with respect to estimation techniques, stochastic constants, the GMF applicability,
currents, swell and so forth, one should also consider which of the (often numerous) empirical equations are
most suitable. The choice of different empirical derivations for x, ψm and L will influence results, albeit
certainly less than the aforementioned other uncertainties. For that reason the major uncertainties should
be resolved prior to fine-tuning the selection of equations.

A ranking of approximate uncertainties associated with constants and variables to the estimation of |L| for
the Barbados scenes is presented in Table 17. This ranking should not be seen as an error budget, rather as
the potential order of improvements on a to-do list based on the scatter in results from scenario 1 through
5. Some unconsidered uncertainty sources include: the effect of image rotation on one-dimensional spectral
analysis, the choice of spectral window and its effect on the spectral amplitude, the effect of radar viewing
geometry on wind-direction estimation (and other parameters), the validity of Taylor’s hypothesis under the
selected circumstances and the validity of assuming the isotropic ratio of 4/3 during cross-wind analyses (i.e.
β = 4/3 in Equation 3.16 or Equation 3.22) for the entirety of the −5/3 slope. This last point is expected
to only affect cross-wind analysis such as performed on scenes containing two-dimensional rolls.

Table 17: Approximate uncertainty factor for L estimation of the Barbados scenes.

Factor > 2 2 ≥ Factor > 1.2 1.2 ≥ Factor
Zi

a δ κ

Ψb Swellc α

GMF (wind magnitude)d Currentse ρair

af T

GMF (wind variance)g

a Algorithm 2A only. Lesser effect on algorithms 2B and 2C.
b Algorithm 2B only.
c As per Figure 10 in Drennan et al. (1999).
d Based on the average difference between results obtained through
CMOD-IFR2 and CMOD5.N.
e Minor effect expected for magnitude of currents in the Barbados
study area. Uncertainty potential is greater for regions with stronger
surface currents.
f For Charnock constants between 0.011 ≤ a ≤ 0.040.
g Based on the average difference between results obtained through
algorithm 2B and ECMWF and the assumption that this can (par-
tially) be attributed to GMF-induced σu underestimation.
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Conclusions and recommendations

6.1 Conclusions

The research objective of this study regards the spectral characterisation of the convective MABL by estimat-
ing key atmospheric parameters. Two existing characterisation methods (algorithms 2A and 2B) are tested
and a new third method (algorithm 2C) is presented. All three methods are applied on newly available data
from the Sentinel-1 constellation. Answers to the main research question and sub-questions are provided
below.

Results of this study suggest shortcomings in all three characterisation methods. Algorithm 2A is unable
to retrieve near-neutral values of L due to asymptotes in Equation 3.11 while errors in the estimation of Zi
can easily propagate a factor 2 error in the estimate of L. Similarly, considering the cubed power of σu in
Equation 3.11, taking but minor liberties during spectral filtering can achieve a wide range of L’s. The more
frequently cited "silver bullet" method of spatial filtering to 300 m resolution does not achieve the desired
effect either, as other authors inferred from results presented by Mourad et al. (2000), since it does not
resolve any of the aforementioned limitations. For the analysed study areas algorithm 2B yields more precise
results than algorithm 2A because its equations do not behave asymptotically for large |L|’s nor do they
require spectral filtering. However, its estimates of |L| suffer from uncertainty introduced by ψ and they are
consistently overestimated with respect to validation. Overestimation of |L| results in a lesser |zL−1| ratio
meaning the atmospheric instability is underestimated. Results from the Barbados and miscellaneous scenes
suggest the |L| overestimation to be caused by statistically significant underestimation of σu rather than
overestimation of u∗. The instability underestimation persists unless one assumes unreasonably favourable
parameters and constants.

The CMOD5.N and CMOD-IFR2 GMFs employed in this study were not designed to take into account high-
resolution sea-state variations. It is expected that these GMFs will underestimate the variability occurring
at scales relevant to turbulent convection which would subsequently manifest itself as underestimation of the
local wind-field slope and, thus, underestimation of σu and |zL−1|. On the surface the observed consistent
underestimation of σu and |zL−1| appears to support the GMF-induced underestimation hypothesis. How-
ever, definitive conclusions cannot be drawn due to limited number of scenes analysed as well as uncertainty
relating to other influencing factors. There is reason to believe that neither currents, swell, estimation errors
nor reasonable variations in constants could individually cause the observed |L| overestimation, though un-
fortuitous combinations of these four can not be excluded. The older CMOD-IFR2 does not suffer from |L|
overestimation although this is due to it yielding lower wind speeds rather than taking into account variable
sea states. A minor multiplication of CMOD5.N’s wind-field slope tends to be sufficient at achieving the
validation values.

The suitability of GMFs appears to have gone unquestioned in previous studies due to the uncertainty and
malleability of results. A new characterisation approach (algorithm 2C) was developed which circumvents
major uncertainties inherent to algorithms 2A and 2B. Additionally, algorithm 2C uses the more applicable
surface-layer spectral characteristics rather than algorithm 2B’s mixed-layer spectral characteristics. Due
to limitations of its own, algorithm 2C produces results over a limited stability range only. This being
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between approximately 10 m < |L| < 50 m. For all other stability ranges algorithm 2B is preferred. An
example is provided showing the ability of algorithm 2C to estimate ψ when combined with algorithm 2B. It
is thought that, if applied over the appropriate stability range, a combination of algorithms 2C and 2A could
yield independent estimates of Zi by exploiting their respective different dependencies on this parameter.
Improvements with respect to the estimation of TKE dissipation rate ε or the dimensionless gradient profile
function φe are necessary before algorithm 2C could replace algorithm 2B over a larger stability range.

Answers to the sub-questions:

1. What imprints does the MABL leave on the water surface?

Convective two-dimensional rolls and three-dimensional cells within the MABL exert a stress on the
water surface representative of their respective wind-field structure. These stress patterns result in
increased surface roughness and, in turn, an increase in observed radar signal. Thus, imprints of MABL
convection are visible in radar imagery as water-surface roughness patterns following the structure of
convective wind fields.

2. Can the imprints caused by the MABL be separated from other signal sources?

Contamination of the MABL-induced convection signatures can be mitigated by only analysing ho-
mogeneous study areas for which the visual structures have been classified as either "clean" roll or
cell-like convection. For such areas this study found approximate -5/3 spectral power laws within spa-
tial wavelengths corresponding to microscale turbulence (after a microscale peak or plateau). Thus,
for homogeneous areas with strong convection, the MABL’s imprints are mostly separable from other
signal sources. Exceptions include surface imprints caused by swell and surface currents. Both these
phenomena can interfere with that of the MABL without obvious deterioration of the spectral slope,
especially for low wind speed settings (U < 5 ms−1). Further studies could use differential polarimetry,
such as discussed in Ufermann and Romeiser (1999), to isolate and quantify the influence of surface
currents. Quantifying the influence of swell remains a separate issue.

3. Are the employed GMFs capable of estimating the MABL-induced wind-field variations?

This study displays the characterisation sensitivity to minor alterations of σu and u∗ and thereby the
importance of an accurate GMF. Results from this study support the GMF-induced σu underestimation
hypothesis; estimates of |L| are consistently greater than those retrieved from validation and the source
for this overestimation appears to be underestimation of σu. Quantifying the net effect of possible GMF-
induced underestimation on characterisation is complicated by the limited number of scenes analysed
as well as uncertainty relating to other influencing factors. Thus, modern GMFs may limit successful
MABL characterisation, though uncertainties relating to other parameters and constants equally or
exceedingly limit characterisation beyond that of possible GMF-induced σu underestimation.

4. How can the MABL’s imprints be related to a MABL state?

Three characterisation methods are shown that employ similarity theories to relate estimates of the
wind direction, convective boundary layer height and wind-field information to a specific atmospheric
stability. Results of this study suggest limitations of all considered characterisation methods. The
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estimations of Zi and δ are complicated by stochastic constants and it is hypothesised that the GMF
is responsible for underestimation of σu. These and further uncertainties propagate as errors in the
estimation of the atmospheric instability.

Answer to the main research question of this study:

• "To what extent is it feasible to characterise the state of the marine atmospheric boundary layer over
the ocean by means of spectral analysis of Sentinel-1 SAR amplitude observations?"

Characterisation feasibility is assessed through six atmospheric parameters, namely: wind direction δ,
average neutral wind speed Un, friction velocity u∗, horizontal wind-field variance σ2

u, CBL depth Zi
and Obukhov length L. Of particular interest are the latter three as these cannot be estimated (on
relevant scales) with contemporary scatterometers.

The characterisation performance varies per atmospheric parameter. Estimated wind directions yield
worse further characterisation results than wind directions retrieved from ECMWF. Spatial averaging
and improved empirical constants could improve wind-direction estimation. Compared to in-situ val-
idation data, estimates of Zi are more accurate but less precise than those retrieved from ECMWF
(RMSE = 165 m and R2 = 0.100 versus RMSE = 201 m and R2 = 0.996 respectively). The RMSE of
estimated average neutral wind speeds for all scenes with respect to validation is 0.3 ms−1 and 0.8 ms−1

using CMOD5.N and CMOD-IFR2 respectively. The difference between the latter and validation being
statistically significant (p < 0.1%) whereas that between the former and validation is not (p > 50%).
The choice of GMF greatly affects further characterisation; absolute Obukhov lengths estimated with
CMOD-IFR2 are a factor 2 smaller than those estimated with CMOD5.N due to the former’s underesti-
mation of neutral wind speed. When using the more suitable CMOD5.N, the σu/u∗ ratio is consistently
underestimated with respect to validation. Since −L ∝ (σu/u∗)

−3, an underestimated ratio leads to
overestimation of |L| and in turn underestimation of the atmospheric instability |zL−1|. An analysis
of the Barbados and miscellaneous scenes suggests that a statistically significant underestimation of
σu results in an average 13% underestimation of σu/u∗ and a subsequent 50% overestimation of |L|.

To summarise, wind directions retrieved from atmospheric models are favoured over those estimated in
this study. When using a suitable GMF, estimated wind speeds and friction velocities are approximately
on equal footing to those received from in-situ validation and an atmospheric model. Estimates of CBL
depth are slightly more accurate but substantially less precise than those received from atmospheric
models with respect to in-situ validation. Lastly, estimates for horizontal wind-field variance and
Obukhov length are biased with respect to validation. Of the above, the estimation of wind direction
and CBL depth can be improved through refinement of the relevant empirical constants whereas the
estimation of horizontal wind-field variance and Obukhov length can be improved by finding and
quantifying the source(s) of horizontal wind-field variance underestimation.

To conclude, spaceborne characterisation of the marine atmospheric boundary layer still faces numerous
challenges that limit the practical utility of remote sensing over in-situ measurements. But no doubt sci-
ence will find its way with the contemporary challenges, just like the scientific understanding of water and
turbulence has come a long way since Leonardo da Vinci’s Studies of water from 1510.
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6.2 Recommendations

The methodology described in this study contains a host of steps and processes that could each be improved
upon further. However, the purpose of this study concerns the general characterisation of the MABL, not
the optimisation of a specific processing step. To this end the recommendations shall focus on those that
could lead to a direct improvement in the characterisation effort. Based on the encountered deficiencies, this
study recommends the following improvements be made in potential successor studies.

1. Collect large database of radar scenes with two-dimensional or three-dimensional convection with known
atmospheric conditions

This study relies on but a few radar scenes for which fewer still have validation beyond that provided
by ECMWF. A larger database of radar scenes with corresponding validation data is required in order
to achieve greater statistical confidence and to make quantitative statements regarding the impact of
specific parameters. Ideally this would be achieved by collocation of radar scenes with a network of
ocean buoys. A more feasible starting point may be to use the labelled image database provided my
Wang et al. (2019b) in combination with the ERA5 database, similar to Wang et al. (2019a).

2. Derive constants for Zi and δ rather than using stochastic constants

The derivation of both Zi and δ requires use of empirical constants. The stochastic nature of these
constants adds significant uncertainty to further computations. The overall characterisation process
would benefit if these constants could be derived rather than arbitrarily set. One possibility for deriving
Zi could be to use the different dependencies of L on Zi in algorithms 2A, 2B and 2C.

3. Derive ψ in an independent fashion in order to apply algorithm 2B

The natural variability and importance of ψ dictate that a constant value will not suffice in algorithm
2B. An independent derivation of ψ should be used in order to consistently and successfully apply
algorithm 2B.

4. Improve algorithm 2C to be applicable over larger stability range

Usage of algorithm 2C is restricted to a limited stability range. Considering the benefits of algorithm
2C over algorithms 2A and 2B, increasing the feasible stability range of algorithm 2C would improve
characterisation efforts.

5. Adapt GMF for usage in high-resolution variable sea states

Should further research support the hypothesised inadequacy of current GMFs, a new GMF ought
to be developed capable of accounting for the sea state. This could include, for instance, a spatial
awareness term in the GMF yielding variable results depending on the estimated local wind-field slope.
In other words, the GMF would be trained assuming a Charnock constant based not only on wind-field
magnitude but also on wind-field slope.

6. Quantify the effect of swell on characterisation and determine the validity of removing swell signatures
from two-dimensional spectrum
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Previous studies illustrate the ability of swell to influence ocean-atmosphere coupling. Depending on
the frequency and severity of contamination, the influence of swell on characterisation methods should
be quantified in order to remove its signal from further analyses. Alternatively, the great abundance of
satellite observations could be exploited by identifying and removing all scenes containing significant
swell signatures.

7. Improve threshold filters

Tiles were filtered based on anomalous PSD amplitude and the fit to the -5/3 power law. Additional
filters could be put in place to remove further low-quality results. Furthermore, rather than considering
each tile as separate, one could include neighbouring tiles for quality control, e.g. by comparing the δ
estimate of a tile to its direct neighbours and or by applying spatial averaging.

8. Improve convection classifier

Although this study does not focus on the classification of radar images, it was found that a basic
CNN classifier struggled to discern between rolls and cells. While classification results may appear
fine visually, the corresponding two-dimensional spectra could suggest the opposite class. Thus, the
classification metrics should more heavily weigh the distribution and orientation of power in the two-
dimensional spectrum. Further improvements to the classifier could be achieved by incorporating more
distinct classes (rather than rolls and cells only) and the addition of an object and or land removal higher
up the SNAP processing chain. The eventual goal of the classifier should be to perform classification
on a tile level rather than on a scene level.
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Appendix

A.1 Python code

Python scripts for the processes described in section 3 (with the exclusion of those performed in SNAP)
are publicly accessible in the following repository https://github.com/owenod1/MSc_thesis. The reposi-
tory contains four separate scripts, namely MSc.py, MSc_equations.py, CMOD5N.py and CMOD_IFR2.py.
The MSc.py script is the main script in which inputs are loaded and which calls the other three scripts.
MSc_equations.py contains all the relevant custom functions with the exclusion of the GMF functions con-
tained in CMOD5N.py and CMOD_IFR2.py respectively.
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A.2 Radar scenes

(a) Jan 15th (b) Jan 27th A

(c) Jan 27th B (d) Feb 1st

(e) Feb 8th (f) Feb 20th
Figure A.1: Sentinel-1 scenes used in the Barbados study area. Metadata can be found in Table 5.
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(a) Carolina
(b) Sea of Japan

(c) Bering Sea (d) Georgia

(e) Portugal (f) Madeira
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(g) Peru (h) Argentina
Figure A.2: Miscellaneous Sentinel-1 scenes. Metadata can be found in Table 7. Contamination by snippet of North
Korean coast next to the Sea of Japan is avoided by providing median results, as is contamination by the occasional
strong reflector.

A.3 Location validation data

Figure A.3
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Figure A.4: Contains two radar scenes. Jan 27th B located north of Jan 27th A.

Figure A.5
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Figure A.6: location R/V Meteor hidden near radiosonde time stamp 22:45.

Figure A.7
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A.4 Extended locations validation data

Figure A.8

Figure A.9
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A.5 Spatial distribution results

(a) Jan 15th (b) Jan 27th A

(c) Jan 27th B (d) Feb 1st

(e) Feb 8th (f) Feb 20th
Figure A.10: Spatial distribution of L derived for Sentinel-1 scenes in the Barbados study area using scenario 2 of
algorithm 2B. Location of nearby validation sources included for two hour pre and post Sentinel-1 observation time.
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A.6 Miscellaneous

Figure A.11: Calculated 1D spectra for each tile of scenario 2 results for Jan 27th A. Dashed red line indicates a
-5/3 power law.
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