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Improved Moving Horizon Estimation for
Ultra-Wideband Localization on Small Drones

S. Pfeiffer*, C. De Wagter, and G.C.H.E. de Croon
Delft University of Technology, The Netherlands

ABSTRACT

Moving Horizon Estimation (MHE) offers mul-
tiple advantages over Kalman Filters when it
comes to the localization of drones. However,
due to the high computational cost, they can not
be used on Micro Air Vehicles (MAVs) with lim-
ited computational power. We have previously
shown, that with a few assumptions and simplifi-
cations, MHE can be made more efficient while
retaining good localization performance. In this
paper, we present two additional improvements:
the introduction of dynamic step sizes to the gra-
dient descent algorithm, which leads to a sig-
nificant increase in robustness, and the use of
switching variables for outlier rejection, which
further reduces the computational load. Both
improvements are implemented and assessed in
simulation and experiments. Using dynamic step
sizes makes it possible to reliably use the es-
timator on board of a real drone, and the use
of Newton’s method specifically opens the op-
tion to add different types of measurements. The
new outlier rejection method on the other hand is
shown to reduce the computational load signifi-
cantly while having no big impact on accuracy.

1 INTRODUCTION

Self-localization is an important task for autonomous
drones, especially when operating in indoor environments.
Since navigation using Global Navigation Satellite Systems
(GNSS) exhibits a significant decrease in performance when
used inside of buildings, other solutions are needed. Ultra-
Wideband (UWB) technology has been investigated as a
promising alternative in scenarios where the environment can
be prepared in advance. UWB localization works in a sim-
ilar fashion as GNSS, but instead of ranging with respect to
satellites, it uses fixed beacons at known locations in the en-
vironment [1].

The UWB range measurements can be used for trian-
gulation [2], but are more commonly fused with measure-
ments from an inertial measurement unit (IMU) for more ac-
curate results [3]. Kalman filter variants such as the Extended
Kalman Filter (EKF) are often used due to their speed and

*Email address(es): s.u.pfeiffer@tudelft.nl

Figure 1: Moving Horizon Estimators (MHEs) usually re-
quires a lot of computational power. Improvements to our
previous work on computationally efficient MHEs allow for
on-board execution of the algorithm to localize a nano-copter
using Ultra-Wideband measurements.

efficiency. However, they are not ideal when working with
highly non-linear dynamics or non-Gaussian noise, both of
which are present in the system in question [4].

Moving Horizon Estimators (MHEs) are well suited for
state estimation in non-linear systems with non-Gaussian
noise, but are computationally expensive, which makes them
impractical to use on small drones with limited computational
power. In our previous work, we have investigated several
simplifications that reduce the load for localization of small
drones using an MHE [4]. While the resulting estimator per-
formed well in offline evaluations on real measurement data,
its robustness was found to be lacking. Specifically in situ-
ations where the number of incoming measurements varies
a lot, the tuning had to be quite conservative to avoid un-
stable behaviour when many measurements were coming in.
Furthermore, while we were happy with the performance of
Random Sample Consensus (RANSAC) for outlier rejection,
its computational cost was quite high for an algorithm aimed
at computationally extremely limited systems, like the micro-
controllers on board of nano-drones.

In this paper we will present the following two improve-
ments to efficient moving horizon estimation for localization
with UWB:

• Using a dynamic step size in the gradient-descent step
to improve robustness
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• Outlier rejection based on switching variables to fur-
ther improve the computational efficiency

2 PRELIMINARIES

2.1 Computationally Efficient MHE
Let us quickly review the computationally efficient MHE

presented in [4] to highlight some of its shortfalls. We again
consider the discrete-time non-linear dynamic system given
by (1), expressed in terms of the system state ξ, input vector
u, measurement vector y, process noise w and measurement
noise v, all at timestep t respectively.

{
ξt+1 = f(ξt,ut) +wt

yt = h(ξt,ut) + vt
(1)

The full MHE problem for a horizon of length N + 1 is
given by the optimization problem (2), formulated in terms
of the decision variables ξ, w and v. Put into words, the
MHE tries to minimize the squared observed process and
measurement noise, as well as changes to the prior estimate
(also called the arrival cost). The prior ξ̄t−N is calculated
from the previous estimate using the prediction equation,
ξ̄t−N = f(ξ̂t−N−1).

min
ξ,w,v

µ∥ξt−N − ξ̄t−N∥2 +
t−1∑

k=t−N
w2
k +

t∑
k=t−N

v2
k

s.t. ξk+1 = f(ξk,uk) +wk

yk = h(ξk,uk) + vk
(2)

By assuming negligible process noise (w = 0), the prob-
lem can be reduced to an output error MHE. Furthermore,
by defining the composite prediction and measurement equa-
tions Fk(ξt−N ) and Hi,k(ξt−N ), we can merge the con-
straints into the cost-function J , which now only depends on
the decision variable ξt−N . Note that the number of measure-
ments mt can differ between timesteps.

Fk(ξt−N ) = fuk ◦ . . . ◦ fut−N (ξt−N ) (3)

Hi,k(ξt−N ) = huki ◦Fk−1(ξt−N ) (4)

J(ξt−N ) =µ∥ξt−N − ξ̄t−N∥2

+

t∑

k=t−N

mt∑

i=1

(
∥yi,k −Hi,k(ξt−N )∥2

) (5)

To save computation time, instead of fully solving the op-
timization problem at every timestep, only a single gradient
descent step is performed as suggested by [5].

ξ̂t−N = ξ̄t−N − α∇J(ξ̄t−N ) (6)

Using the chain rule, the gradient of the cost function is
easily calculated analytically. When using only a single iter-
ation, the gradient is calculated with the prior best estimate

ξt−N = ξ̄t−N , thus the arrival cost term is zero.

∇J(ξ̄t−N ) = −2
t∑

k=t−N

mt∑

i=1

[(
yi,k −Hi,k(ξ̄t−N )

)
∇Hi,k(ξ̄t−N )

]

(7)
To save computational power, the gradient of the compos-

ite measurement equation can be simplified by iterative com-
putation of the Jacobian of the composite prediction equation
(chain rule):

∇Hi,k(ξ̄t−N ) =
(
DFk−1(ξ̄t−N )

)T · ∇hi(ξ̄k,uk) (8)

DFk−1(ξ̄t−N ) = Df(ξ̄k−1,uk−1) ·DFk−2(ξ̄t−N ) (9)

For outlier rejection, a RANSAC scheme was used, which
can identify outliers very well but requires a significant
amount of computational power.

2.2 Drone and Measurement Model

We use the drone model in [3], but represent the attitude in
quaternions and simplify the drag forces. For the use in our
estimator, we discretize the model using the forward Euler
method.

ẋ =

[
q ⊗

[
0
ρ

]
⊗ q−1

]

v

(10)

ρ̇ =
f

m
e3+(Ka − [[ω×]])ρ−

[
q−1 ⊗

[
0
g

]
⊗ q

]

v

(11)

The six dimensional state vector ξ = [xT ,ρT ]T contains the
position x ∈ R3 in the global frame and the drone’s veloc-
ities ρ ∈ R3 in the body frame. The system inputs are the
total thrust f , the attitude quaternion q ∈ R4, and the an-
gular velocities measured by the IMU, ω ∈ R3. m is the
drone’s mass and Ka = diag(k⊥, k⊥, k∥) are the linear drag
coefficients. The quaternion product is noted as ⊗, while the
subscript 0 and v refer to the scalar and vector portion of the
quaternion respectively. Finally, g is the acceleration due to
gravity and [[ω×]] is the skew-symmetric matrix defined as

[[ω×]] =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 (12)

We consider two different types of UWB measurements.
Two-way ranging (TWR) can be used to determine the dis-
tance between the drone and a fixed beacon located at pA.
Time-difference of Arrival (TDOA) measurements on the
other hand represent the difference in the distance of the
drone to two fixed beacons at positions pA and pB . The mea-
surement noise is represented by ηtwr and ηTDOA respectively.

ytwr = ∥pA − x∥+ ηtwr (13)

yTDOA = ∥pA − x∥ − ∥pB − x∥+ ηTDOA (14)

SEPTEMBER 11-15, 2023, AACHEN, GERMANY 87



ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2023-10 14th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

3 DYNAMIC STEP SIZE

A serious problem with the approach in [4] is the fixed
step size used in the gradient descent algorithm. Specifically
in situations where the numbers of measurements mt varies
between steps, the fact that the gradient of the cost function
is the sum of mt individual measurement terms can lead to
large variations in the gradient’s magnitude. As a result, a
value for α that is optimal with 4 UWB beacons, might cause
the estimator to become unstable for 8 beacons. A solution
to this problem is to dynamically adjust the step size of the
gradient descent algorithm. We investigated two options for
choosing the step size dynamically: linesearch and Newton’s
method. While robustness is of course an important property
of any state estimation algorithm, it should be noted that we
are sacrificing computational efficiency to achieve it.

3.1 Linesearch

With the linesearch method, different values for the step
size α are tested at each time step. The step size resulting in
the estimate with the lowest cost is then retained for the next
step. The algorithm is laid out in Algorithm 1.

Algorithm 1 Linesearch Method
t← 0 ξ ← ξ0 α← α0

s← {0.5, 0.8, 1.0, 1.25, 2.0}
while running do
t← t+ 1
calculate ∇J(ξt−N )
for si ∈ s do

ξi = ξt−N − si · α∇J(ξt−N )
calculate Ji(ξi)

end for
iopt ← argmini(Ji)
ξt−N ← ξiopt

α← siopt · α
end while

The linesearch method is easy to implement in the exist-
ing algorithm, but has the downside of scaling the step size
for all state variables at once. If different types of measure-
ments are available, this can lead to problems. As an exam-
ple, if a lot of velocity estimates are available but only few
position estimates, it would be good to choose different step
sizes for the different states. An approach that allows for this
flexibility is the use of Newton’s method.

3.2 Newton’s Method

Newton’s method is more complex to implement than
linesearch, but offers two additional advantages. First, there
is no need to calculate the cost of multiple estimates (which
requires several predictions through the complete horizon)
and second, Newton’s method allows to adjust the step size
along different axes. Specifically, instead of using a scalar
step size α, the gradient of the cost function is multiplied by

the inverse Hessian matrix of the cost function:

ξ̂t−N = ξ̄t−N −
(
D2J(ξ̄t−N )

)−1∇J(ξ̄t−N ) (15)

The Hessian matrix of the cost function can be obtained
by calculating the Jacobian of the cost function gradient.

D2J(ξ̄t−N ) = 2µI − 2

t∑

k=t−N

mt∑

i=0

(
yi,k D2Hi,k(ξ̄t−N )

−∇Hi,k(ξ̄t−N )∇Hi,k(ξ̄t−N )T

−Hi,k(ξ̄t−N )D2Hi,k(ξ̄t−N )
)

(16)

As with the gradients, the Hessian matrices of the cost and
measurement functions can be calculated algebraically in an
iterative manner while stepping through the horizon. Making
use of the chain rule, we find the following expression [6]:

D2Hi,k(ξ) = (DFk−1(ξ))
T ·D2h (Fk−1(ξ)) ·DFk−1(ξ)

+

n∑

j=1

∂h

∂ξj
(Fk−1(ξ)) ·D2Fj

k−1(ξ)
(17)

Luckily, many of the terms appearing in this equation are
already needed when calculating the cost function gradient.
Furthermore, since the prediction model we use is linear in
terms of the states, the Hessian matrix of the composite pre-
diction equations turns out to be zero. The simplified expres-
sion for the Hessian matrix of the cost function thus only de-
pends on the Hessian matrix of the measurement function and
the Jacobian matrix of the composite prediction equation:

D2Hi,k(ξ) = (DFk−1(ξ))
T ·D2h(Fk−1(ξ)) ·DFk−1(ξ) (18)

4 SWITCHING VARIABLE OUTLIER REJECTION

Since using RANSAC for outlier rejection has the disad-
vantage of being computationally heavy, we decided to look
for a more efficient method. The need for outlier rejection
in optimization problems also arises in Simultaneous Local-
ization and Mapping (SLAM), where incorrectly identified
loop-closures can cause large errors in the resulting map.
A possible approach to deal with this issue is the addition
of switching variables that multiply the constraints in ques-
tion [7]. Applying this concept to our MHE, we introduce for
each measurement yi,k an associated switching variable si,k.
By giving the optimization algorithm the ability to change
these switching variables, the algorithm can enable and dis-
able measurements based on how they impact the value of the
cost function.

To use the switching variables as decision variables, they
must be continuous. At the same time, for their function
to enable and disable measurements, binary values would be
more useful. Following [7], we use a sigmoid function to con-
vert the continuous switching variables into values between
0 and 1, which then multiply the measurement equation. A
simple sigmoid function to use is the logistic function (19).
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sig(si,k) =
1

1 + e−si,k
(19)

In the context of calculating gradients, it is also helpful to
note the derivative of the logistic function (20).

∂

∂si,k
sig(si,k) = sig(si,k) (1− sig(si,k)) (20)

It is important to penalize the estimator for ignoring a
measurement. We do this by adding a term similar to the ar-
rival cost, that penalizes switching variables that deviate from
a prior value s̄, which enables the measurement (e.g. s̄ = 5).
To simplify notation, we collect all switching variables in a
single column vector s = [si,j ]. The resulting cost function
including switching variables then looks like this:

J(ξt−N , s) =µ∥ξt−N − ξ̄t−N∥2

+ µs ·
t∑

k=t−N

m∑

i=1

(
si,k − s̄

)2

+

t∑

k=t−N

m∑

i=1

(
sig(si,k) · ∥yi,k −Hi,k(ξt−N )∥2

)

(21)
When calculating the gradient of the cost function, we

now also need to consider the derivative with respect to the
individual switching variables. Luckily, each switching vari-
able only appears once in each of the two sums and the cor-
responding derivative is easily calculated:

∂J

∂si,k
(ξt−N , s) = 2µs

(
si,k − s̄

)

+ sig(si,k)
(
1− sig(si,k)

)
· ∥yi,k −Hi,k(ξt−N )∥2

(22)
The changes to the derivatives with respect to ξt−N are

also small, one only has to add the sigmoid multiplication to
each of the terms of the sums:

∂J

∂ξt−N

(ξt−N , s) =

− 2
t∑

k=t−N

m∑

i=1

[
sig(si,k)

(
yi,k −Hi,k(ξ̄t−N )

)
∇Hi,k(ξ̄t−N )

]

(23)
The full gradient could now be formed from the partial

derivatives with respect to the state and the individual switch-
ing variables, but since the switching variables are decoupled
from the rest of the system, it makes sense to update them
individually using Newton’s method:

ŝi,k = ŝi,k−1 −
(

∂2

∂s2i,k
J(ξ̄t−N , ŝ)

)−1
∂

∂si,k
J(ξ̄t−N , ŝ)

(24)
For large outliers, even with the use of a switching

penalty, the switching variable can take very large negative
values, resulting in a variable overflow for the intermediate
result of e−si,k . To avoid this issue, it makes sense to place a
lower limit on the value of si,k.

There is one final consideration regarding switching out-
lier rejection, which is the initial value of the switching vari-
able. For simplicity, we decided to use the Mahalanobis dis-
tance based on only the measurement noise (the MHE doesn’t
estimate state covariance) of the associated measurement.

5 OFFLINE EVALUATION

The presented improvements were evaluated offline, us-
ing real UWB measurements gathered in the ”Cyberzoo” test
arena at TU Delft [8]. We simulated the performance on 12
different flights for TWR and 9 different flights for TDOA.
The simulations were performed 10 times with different seeds
for the random number generator, for a total of 120 simu-
lations for TWR and 90 simulations for TDOA. For every
simulation, all estimators were executed in parallel and saw
therefore the same noise. For comparison, we also simulated
the initial version of the MHE using the simple gradient (SG)
method with a fixed step size and RANSAC for outlier rejec-
tion from [4], as well as the EKF from [3].

We compared the different estimators based on three met-
rics, which are presented in Figure 2 for TWR and in Figure
3 for TDOA.

• Success rate: We defined a run to be successful if the
root-mean-square error (RMSE) on the position stays
below 0.5 m. This definition is somewhat arbitrary but
is meant to reflect a value at which the estimator’s ac-
curacy is good enough to allow navigation in spacious
indoor environments.

• Accuracy: The accuracy of the estimators is assessed
using the position RMSE. Unsuccessful runs were re-
moved from the data prior to plotting the accuracy
statistics, since unsuccessful runs for only a few bea-
cons can easily reach errors of tens of meters and there-
fore have a tendency to distort the plots.

• Normalized computation time: To assess the compu-
tational efficiency, we calculated the average compu-
tation time per step. For every run, we normalize the
average by dividing by the average computation time
of the EKF. This was done to reduce the effect of the
hardware used and the system load from other sources.

At first glance we can see, that TWR yields more stable re-
sults. The success rate of all estimators is near identical and
reaches 100% at 5 or 6 beacons. Looking at the accuracy, we
can see that all MHE versions outperform the EKF slightly,
but no difference can be seen between the different versions.

The TDOA results are a bit messier. The success rate is
quite different between different versions and for many esti-
mators never reaches 100%. It is therefore more interesting
to compare the quality of the estimates based on the success
rate, rather than based on the accuracy of the successful runs.
All MHE variants surpass the EKF in terms of success rate
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Figure 2: Performance of MHE configurations in simula-
tion using TWR measurements: Simple gradient (SG), line-
search (LS) and Newton’s method to solve the minimization
problem, random sample consensus (RANSAC) and switch-
ing variable outlier rejection (SVOR) for outlier rejection.
Shaded regions represent the standard error of the mean.
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Figure 3: Performance of MHE configurations in simula-
tion using TDOA measurements: Simple gradient (SG), line-
search (LS) and Newton’s method to solve the minimization
problem, random sample consensus (RANSAC) and switch-
ing variable outlier rejection (SVOR) for outlier rejection.
Shaded regions represent the standard error of the mean.

SEPTEMBER 11-15, 2023, AACHEN, GERMANY 90



ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2023-10 14th ANNUAL INTERNATIONAL MICRO AIR VEHICLE CONFERENCE AND COMPETITION

up to 7 beacons. The effect of a constant step size for vary-
ing numbers of measurements can be seen in the decreased
performance of the simple gradient MHE when the number
of beacons increases to 8. Interestingly, using switching vari-
ables for outlier rejection (SVOR) seems to be another suit-
able method for reducing this problem, as seen in the higher
success rate. This is likely due to the fact, that SVOR can
turn off measurements to keep the magnitude of the gradient
closer to constant. This does however mean, that the esti-
mator does not profit from the increased number of measure-
ments, which becomes apparent when looking at the accu-
racy plots. The most successful approach for dealing with
variable gradient magnitudes seems to be the linesearch (LS)
approach. We suspect however, that in scenarios that incor-
porate other measurements (e.g. velocity from optic flow),
using Newton’s method will be advantageous.

Let’s finally have a look at the computational efficiency.
The EKF clearly still outperforms all versions of the MHE,
but as expected, SVOR clearly reduces the computation time
compared to RANSAC. Looking at the methods for choosing
dynamic step sizes, Newton’s method is more efficient than
Linesearch, but still adds some additional cost compared to
the simple gradient method.

6 ON-BOARD EXPERIMENTS

To verify our simulation results and demonstrate that the
MHE is indeed capable of running on computationally lim-
ited devices, we implemented the code on a Crazyflie 2.1.
The Crazyflie 2.1. is a small (38 g), versatile platform that can
be equipped with a variety of expansion boards, such as the
UWB Deck for UWB ranging and the Flow Deck, for altitude
and flow measurements. To make full use of the Flow Deck
and challenge the versatility of our estimator, we not only
used the time-of-flight measurements for altitude, but also in-
corporated the measurement equations for flow and adjusted
the MHE formulation to enable the use of measurements with
different units (the flow measurements are in pixels per sec-
ond). Specifically, we use Newton’s method with SVOR and
introduce the inverse covariance matrix of the prior, P−1, and
the inverse measurement variance, σ2 as weights in the cost
function [9]:

J(ξt−N , s) =µ
(
ξt−N − ξ̄t−N

)T
P−1

(
ξt−N − ξ̄t−N

)

+ µs ·
t∑

k=t−N

m∑

i=1

(
si,k − s̄

)2

+

t∑

k=t−N

m∑

i=1

(
sig(si,k) ·

∥yi,k −Hi,k(ξt−N )∥2
σ2

)

(25)
This way, the units of the measurement errors are re-

moved and the measurements are immediately weighted ac-
cording to their reliability. Each estimator was flown at least
five times for a given number of beacons (4, 6 and 8) with the
UWB ranging set to TWR. The results in Figure 4 show, that
the MHE is indeed able to compete with the EKF in terms
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Figure 4: Comparison of MHE and EKF using Two-Way
Ranging (5 flights per setting)

of performance for the given scenarios. In terms of computa-
tional requirements, we limited the number of measurements
the MHE keeps in memory to 80 and used a quality measure
based on the switching variable to remove bad measurements
before they fall out of the window. With these changes, the
MHE runs on-board, using about 25% of the available com-
putational resources, whereas the EKF operates with only
about one-fifth of this number. This actually matches quite
well with the observations from the offline evaluation.

7 CONCLUSION

Moving Horizon Estimation holds a lot of potential, even
for computationally limited platforms. By simplifying the
problem to an output error MHE and approximating the opti-
mization problem with a single-step gradient descent algo-
rithm, the computational requirements of MHE can be re-
duced significantly, albeit at the cost of a bit of accuracy. In
the end, the MHE slightly outperforms the extended Kalman
Filter, which is a popular option for any non-linear state esti-
mation problem.

The use of dynamic step sizes in a single-step gradient
descent algorithm helps alleviate problems that occur when
the number of incoming measurements varies greatly. Both
a linesearch approach and Newton’s method are suitable, but
Newton’s method offers more flexibility when dealing with
different kinds of measurements.

To further reduce the computational cost, we employed
outlier rejection based on switching variables, which offers
advantages over RANSAC in terms of computation time.

The improved MHE shows promise in simulation and ex-
periments, where it outperforms a classical EKF and previous
iterations of our computationally efficient MHE. The main
limitations of the approach are the more complex formulation
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and the still non-negligible increase in computational cost.
In its current formulation, the MHE only estimates po-

sition and velocity, while attitude estimates are provided by
the complementary filter. This approach is suitable for pitch
and roll, since the gravitational pull can be used as reference.
The yaw estimates on the other hand are subject to drift and
currently require proper initialization. This problem should
be addressed in future work by including yaw (error) as an
additional state in the model.
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