
Decentral
Market
Self-regulating electronic market
M.J.G. Olsthoorn
J. Winter

Te
ch

ni
sc
he

U
ni
ve

rs
ite

it
D
el
ft
-B

ac
he

lo
rt
he

si
s

Decentral Market
Self-regulating electronic market

by

M.J.G. Olsthoorn
J. Winter

to obtain the degree of Bachelor of Science
at the Delft University of Technology,

to be defended publicly on Friday June 24, 2016 at 10:00 AM.

Students: M.J.G. Olsthoorn
J. Winter

Coach: Ir. E. Bouman TU Delft
Client: Dr. Ir. J.A. Pouwelse TU Delft
Bachelor Coordinator: Prof. Dr. M.A. Larson TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface
This thesis is the result of researching and designing a solution to the problem of the self-regulating
decentral electronic market, by M.J.G. Olsthoorn and J. Winter. The project took place at the Delft
University of Technology for 14 weeks, from early March until the end of June, 2016. First, we would like
to thank Dr. Ir. J.A. Pouwelse, our client, for his support and for giving us the opportunity to carry out this
project. We would also like to thank Ir. E. Bouman, our coach, for giving us valuable feedback on our
project, answering our questions, and supporting us. We further extend our thanks to the Autonomous
self-replicating code bachelor project group for the pleasant cooperation and project discussions, which
made it possible to elevate the quality of both our projects. We also would like to thank the Tribler Team
for their feedback on our problem approach, helping solve our project problems, answering all of our
questions, and giving us valuable guidance. Further thanks to the Software Improvement Group for
the code quality and maintainability review. Lastly, we would like to thank Dr. Ir. F.F.J. Hermans, Dr.
Ir. O.W. Visser and Prof. Dr. M.A. Larson for supervising the TI3806 bachelor end-project course.

M.J.G. Olsthoorn
J. Winter

Delft, June 2016

iii

Abstract
A decentral electronic marketplace to trade digital currencies was created for this project. Users may
trade MultiChain balance for Bitcoin. MultiChain can be described as up- and download currency in
a peer-to-peer network. When a peer uploads, the balance of that peer increases and the peer can
download more effectively. The client for this project is the Tribler Team. Most of the Tribler Team’s
work revolves around Tribler: an open-source peer-to-peer program which enables its users to find,
enjoy, and share content. An earlier bachelor end-project implemented a partial, functional prototype of
this idea. We improved the existing concepts and re-implemented a decentralised market from scratch
with scalability and as much security as possible, given the limited available development time. This
market is the first electronic marketplace to be fully decentralized. There were previous attempts to
create such a marketplace, but those implementations fell short in scalability and security. During the
research phase, we discovered that the previous decentral market project was not scalable and not
production ready, so we made the decision to, together with our client, instead build our application
upon a more production-level network platform known as Dispersy. As nothing on the Internet can be
trusted which is a problem on its own, we could not make the product as secure as we would have
wanted to. At a technical level our contribution consists of 7000+ lines of code, 50+ test suites with a
code coverage of +95% and documentation for Dispersy.

v

Contents

1 Problem description 1
1.1 Problem definition . 1
1.2 Client description . 1
1.3 Group cooperation . 2
1.4 Project requirements . 2
1.5 Development process . 3

2 Global design and existing technology 5
2.1 Sprint description . 5
2.2 Research information. 5
2.3 Related work . 6

2.3.1 Tsukiji . 6
2.3.2 BitMarkets . 6
2.3.3 Beaver . 6

2.4 Dispersy. 6
2.5 Market Community Protocol . 6
2.6 Order book . 8

3 Order distribution 9
3.1 Sprint description . 9
3.2 Message identification & orders . 9
3.3 Market community tick protocol . 10

4 Making trades 11
4.1 Sprint description . 11
4.2 Matching engine . 11
4.3 Market community trade protocol . 12

5 Transactions and payments 15
5.1 Sprint description . 15
5.2 Market community transaction protocol . 16
5.3 Incremental payments . 18
5.4 MultiChain interface implementation. 18
5.5 Bitcoin interface implementation . 18

6 Integration, testing and deployment 21
6.1 Sprint description . 21
6.2 Testing and development process. 21
6.3 Code quality . 22
6.4 Experiment . 23
6.5 Market community API . 24

7 Discussion 25
7.1 Fulfillment of project requirements. 25
7.2 Conclusion . 27

References 29

A Initial SIG Feedback (Dutch) 31

B Infosheet 33

C Original Project Decription 35
C.1 Project description . 35

vii

viii Contents

C.2 Company description . 35
C.3 Auxiliary information . 35

D Market protocol 37
D.1 Ticks . 37
D.2 Trade . 38
D.3 Transaction . 39

1
Problem description

This chapter defines the problem, analyses it, and lists the project requirements.

1.1. Problem definition
During our bachelor project we were tasked with creating an operational electronic marketplace, im-
mune to shutdown by governments, lawyer-based attacks, or other real-world threats. The internet-
deployedmarketplace will have no central server bottleneck, no central point of trust, full self-organisation,
and unbounded scalability. To keep this project realistic, the focus will be on re-using existing code,
to support only Bitcoin-Multichain trading, only use a single market maker, and offer no anonymity or
DDoS protection. Bitcoin, Mt Gox, and Silk Road [18] showed how vulnerable marketplaces are. Bit-
coin [11] was the first-ever successful digital currency after decades of failed attempts by scientists,
anarchists, fraudsters, and entrepreneurs. However, this first-generation technology suffers from a
highly unsTable exchange rate, low usage level, and frequent large-scale thefts by hacking exchange
platforms. TU Delft has a deposit of Bitcoins which will be used to buy Multichain coins during the final
presentation on our platform. Multichain coins are developed at TU Delft. They provide a reward for
relaying Tor-like onion [7] routing traffic and BitTorrent seeding. We will use Python, Twisted, Nosetest,
Jenkins, and Libtribler during our work.

When we began the project, the problem description differed. The intention originally was to improve
and work on the previous bachelor project called “Tsukiji”. During the research phase, we discovered
that Tsukiji was not scalable nor at a production level, and that it may not be possible to achieve
those aspects. A decision was made, together with the client, to make the project more challenging by
creating a real-world, production-level electronic market build on top of the message distribution and
peer discovery library called “Dispersy”, created by the Tribler Team. As we increased the workload of
the project, we decided to begin a month earlier than the regular planning, giving us a total of 14 weeks
to completion. The original project description, as provided by the client, can be found in appendix D.

1.2. Client description
The client for this project is the Tribler Team, which is a part of the Distributed Systems Group at
the faculty of Electrical Engineering, Mathematics and Computer Science at the Delft University of
Technology under supervision of Dr. Ir. J.A. Pouwelse. The Tribler team has been creating disruptive
cooperative software since 1999. Most of the work of the Tribler Team revolves around Tribler: an
open-source peer-to-peer program which enables its users to find, enjoy and share content [13].

The main building block used to develop Tribler is Dispersy. This is a distributed permission system,
which is a platform to simplify the design of distributed communities [24]. Communities are overlay
applications which can be built upon Dispersy. Dispersy will take care of most of the networking logic.
A market community could be developed upon Dispersy by using it as a framework.

The MultiChain functionality has also been developed by the Tribler Team and is included in the
code base of the Tribler repository. MultiChain can be described as up- and and download currency
in a reputation-based peer-to-peer network. When a peer uploads more than it downloads, the repu-
tation of that peer increases, and the peer can download more effectively. The MultiChain community

1

2 1. Problem description

inside Tribler enables the up- and download balance to be stored and transferred to other peers when
downloading from them [12]. The MultiChain community has also been developed upon Dispersy.

1.3. Group cooperation
Another bachelor end-project issued by the Tribler Team, is the Autonomous self-replicating code
project [5]. The Autonomous self-replicating code group has been tasked with creating an internet-
deployed system which can earn money by selling MultiChain balance, and replicate itself by buying
new virtual private servers using the earned Bitcoin, without human control. The Autonomous self-
replicating code project will have this market community as a dependency and will sell MultiChain
quantity on our market community in exchange for Bitcoin. We must agree how the individual systems
are going to communicate with each other.

1.4. Project requirements
To determine the requirements of the clients and the priorities of these requirements during the devel-
opment/implementation phase of the project, we use the MoSCoW method [21]. The requirements are
subject to change during the development phase.

Must haves
The most important requirements for the project are described in the “must haves” subsection of the
MoSCoWmethod. The “must have” requirements are the minimal, usable subset of requirement which
are guaranteed to be delivered for the project. The following described requirements have the highest
priority, and must be fulfilled in the final implementation of the solution:

• Users must be be able to place a bid and ask, which must be distributed across the connected
part of the network.

• The market community solution must be scalable with a lot of users.

• The market community solution must be able to match a bid and an ask between peers that are
connected.

• The market community solution must be implemented in Tribler [13].

• The market community solution must be a decentralised system.

• The market community solution must be constructed on Dispersy [24].

• The market community solution must be able to make Bitcoin transactions and MultiChain trans-
actions.

Should haves
If all “must have” requirements have been fulfilled, the “should have” requirements have the next-highest
priority. The “should have” requirements are important for the project but are not vital to its completion;
the solution would still be viable without fulfilling these requirements. All of the following requirements
should be fulfilled in the final implementation of the solution:

• The market community solution should be able to let users use incremental payments.

• The market community solution should be tested to a certain extent.

1.5. Development process 3

Could haves
The “could have” requirements are the requirements with the lowest priority. If all “should have” re-
quirements have been fulfilled, the “could have” requirements have the next-highest priority. The “could
have” requirement are desirable requirements for the project, but they will have less impact when left out
compared to “should haves”. The following requirements could be fulfilled in the final implementation:

• The market community solution could be able to blacklist peers on an individual blacklist.

• The market community solution could be able to maintain an efficient connectivity between peers
so that a maximum of possible trades are proposed without creating too much overhead on the
network.

• The market community solution could fully function.

Won’t haves
The “won’t have” requirements are requirements that won’t be implemented in the final implementation.
We have agreed that these requirements will not be delivered. The following requirements will not be
fulfilled in the final implementation:

• The market community solution in Tribler won’t have a nice graphical user interface.

• The market community solution won’t have to protect the privacy of its users.

• The market community solution won’t have to be secured against spoofing.

1.5. Development process
During the entire project we worked in sprints of two weeks. We held meetings with our coach and
client every week to discuss the preliminary progress and incorporate any feedback that they provided.
This made sure that we were able to adjust our goals more towards the client needs. We also had daily
meetings within our groups to stay organized and work efficiently. During development we used test-
driven development methodology to have a well-tested product to suit or production-level code. At one
stage, we ran into the unexpected challenge of requiring to integrate with another bachelor end-project
group who were building an application on top of ours, simultaneously. We approached this through
close cooperation and by documenting all decisions made.

We developed our product using GitHub for revision control. The project code is available at
https://github.com/mitchellolsthoorn/tribler. In the development of our product, we
used Jenkins for continuous integration. Parallel to the development of our solution, we used test-
driven development to extend our test suite and to preserve the quality and maintainability of our im-
plementation [6].

At one stage of the project, we had to submit our solution for a code quality andmaintainability review
by the Software Improvement Group (SIG). We focused on fixing the issues indicated, to improve the
code quality and maintainability of our implementation. At the end of the project we had to submit
our product code again to determine the difference in code quality, and whether we incorporated the
feedback in our implementation.

https://github.com/mitchellolsthoorn/tribler

2
Global design and existing technology

This initial sprint explores the global design and aimed to understand the existing Dispersy and Tribler
technology. An initial high-level market protocol is introduced.

2.1. Sprint description
To make a good overview of the technology and libraries involved in our complex, decentralised elec-
tronic market, we started with conducting research in how decentral systems work, and documenting
existing libraries that will be used in this project, to understand how we can incorporate them. We will
continue doing research into possible schemes for our initial network protocol.

• Research decentral networking theory and applications

• Research Dispersy

• Research Tribler

• Documenting Dispersy

• Research possible market community protocols

2.2. Research information
During the first sprint of the project, we focused on developing a general understanding of the modules
that we needed to use during our project. One of the main building blocks of our project is Dispersy
[2, 15, 24]. We were tasked with documenting the concepts, installation, and the system overview. The
documentation can be found at http://dispersy.readthedocs.io/ [2]. We also researched
other peer-to-peer systems to understand how those systems work and interact [8, 10, 14, 23].

The market community that we are going to develop is going to be used in Tribler so we also
need to develop the integration between the two libraries. For this reason, we orientated ourselves
within Tribler [4, 13] and researched the previous decentral market project [17], existing marketplaces,
and possible market community protocols. We found that other marketplaces are either centralized
or decentralized, but dependant on Bitcoin, which makes the market unscalable. We also researched
decentral networking applications [22, 25], since the market community that we are going to develop
is going to be a decentralised system.

5

http://dispersy.readthedocs.io/

6 2. Global design and existing technology

2.3. Related work
There already have been attempts to solve subsets of the problems which this project consists of, but
most of them use methods which are not scalable or are not viable for production use. Another aspect
of the project is MultiChain. Being a recent development of the Tribler team, there has never been an
attempt to make a marketplace for MultiChain trading.

2.3.1. Tsukiji
Tsukiji is a completely decentralised marketplace to trade commodities for real money. Tsukiji was
made as a bachelor end-project assigned by the Tribler Team. Tsukiji is a lightweight, terminal-based,
Python application. Users can trade on Tsukiji using PayPal to transfer real money. Tsukiji is not built
on top of Dispersy and Tribler. Tsukiji is a proof of concept for a decentral market, which proves that a
decentral market is at least feasible.

2.3.2. BitMarkets
BitMarkets is an open-source protocol and free client for a decentralized marketplace [1] which makes
use of Bitcoin as its currency and Bitmessage as its communication network [20]. BitMarkets imple-
mented a third-party escrow agent system, which adds a certain level of security and reliability to the
application. BitMarkets proves that a scalable, decentral market can be implemented, which allows
users to trade with a digital currency such as Bitcoin.

2.3.3. Beaver
Beaver is a concept for a decentralized anonymous marketplace with a secure reputation system [16].
The concept of Beaver is resistant against malicious attacks, while preserving the anonymity of its
customers. It allows its participants to enjoy free open enrollment, and provides every user with the
same global view of the reputation of other users. Beaver is just a theoretical concept and has not been
implemented.

2.4. Dispersy
Dispersy, the Distributed Permission System, is a platform to simplify the design of distributed com-
munities [2, 15, 24]. A community is the way Dispersy makes an overlay (An overlay is an additional
network built on top of an existing one, most commonly the internet). At the heart of Dispersy lies a sim-
ple identity and message handling system where each community and each user is uniquely identified.
Dispersy is fully decentralized. It does not require any server infrastructure and can run on systems
consisting of a large number of nodes. Each node runs the same algorithm and performs the same
tasks. All nodes are equally important, resulting in increased robustness.

Dispersy implements NAT puncturing which makes it possible for peers to connect to each other
without being exposed directly to the internet. This is accomplished by using a three-way puncturing
scheme that uses a familiar third node as the introducing party.

Each node in the overlay holds a list where it keeps track of all the node that it is directly connected
with (without going through another node first). These nodes are called neighbours in Dispersy. Initially
this list is empty and is filled with the peer discovery algorithm. Which connects to a bootstrap server
to find other nodes on the network.

2.5. Market Community Protocol
The market community protocol that we are going to develop during the project will be built on top of
Dispersy, and the peer will be introduced to other peers in the network initially, if the peer is not con-
nected. The Dispersy peer procedure protocol is responsible for this. The market community protocol
consists of three parts:

1. Ticks which are used to distribute asks and bids across the peer-to-peer network. A bid is placed
by users who are interested in buying MultiChain coin with Bitcoin. An ask is the exact opposite,
users who are interested in selling MultiChain coin for Bitcoin.

2. Trades which are used to find a peer to trade with and come to an agreement. After a matching
tick has been found by a peer, it will send a trade proposal to the origin of the tick. If the tick is

2.5. Market Community Protocol 7

still available, it can either reply with a trade accept or a counter offer. If the tick isn’t available
anymore, a trade decline will be replied.

3. Transactions which are used to regulate the incremental payment and the Bitcoin and MultiChain
payments.

Each part of our market community protocol is executed in a sequential order as can be seen in
Figure 2.1. Every node indicates a message type and the arrows indicate the possible replies for each
message. Ticks are indicated by blue nodes, trades are indicated by red nodes and transactions are
indicated by yellow nodes. Only trade messages can be a reply to tick messages and only transaction
messages can be a reply to trade messages.

Figure 2.1: State diagram of messages and possible replies between peers.

8 2. Global design and existing technology

2.6. Order book
Order books are used to store data about supply and demand, a list of offers divided into two sides, a
buyer side and a seller side [9, 19]. An order book is used to record the interest of MultiChain buyers
and MultiChain sellers in our project. An order book is displayed in Figure 2.2. The order book in the
Figure and in general consists of two sides: the left side contains the bids, and the right side contains
the asks. Each side consists of price levels which contains ticks with a certain quantity. If an ask and
a bid are in the same price level, they can be removed from the order book and the matching engine
can initiate a trade between the ask and the bid. The quantity in the Figure is indicated in megabytes
(MB). The quantity used by the MultiChain community is indicated in bytes. The price is indicated in
milliBitcoins (mBTC). The market community measures price in Bitcoin (BTC). The order book in our
implementation will consist of a side with asks and a side with bids including the quantity and price of
the tick.

Figure 2.2: Visualisation of an order book.

3
Order distribution

After our two-week exploratory sprint, we created amarket community prototype built on top of Dispersy
which was able to distribute ticks across the peer-to-peer network.

3.1. Sprint description
Now that we have a general understanding of the modules that we need to use for our market commu-
nity, we can further construct the market protocol. Using this market community protocol, we started
developing the first iteration of the protocol. In the process of creating the protocol, we received feed-
back from our coach and client, so we could check and adjust our market community protocol to the
client’s needs. For example, we discussed the trade-off between distributing a message across the
whole peer-to-peer network, and the capacity of the network. We came to the conclusion that we
should not flood the network and send messages only to close peers using a “time to live”.

• Construct the market community protocol

• Documenting the market community protocol

• Developing an initial market community

• Extend and maintain the market community test suite

• Use a time to live with a range of 2 or 3 for the market community

3.2. Message identification & orders
In a decentral system there is no central party handing out identifiers so all object can be uniquely
identified. This needs to be performed by the peers themselves. This is accomplished by making a
composite key from the public identifier of the node and a local counter that keep track of the number
of objects created. The composite key makes sure that all the object that are used throughout the
application can be uniquely identified across the whole overlay network. There are separate identifiers
for the orders and the messages (objects that are send over the network). This is done so that on a
node it can be individually checked if a message has arrived twice or not at all.

When the user creates a bid or an ask, the system creates an order to represent that internally.
In this order all the information regarding that bid or ask is collected and stored. After the order is
created a tick is made from this order and distributed across the network to nearby neighbours. This
tick represents the original order on another node. On arrival of the tick on a node, it is stored in the order
book, so it can be matched against by that node. When eventually a trade is proposed and accepted,
the information regarding the progress and the contents are added to the order of both parties involving
in the trade.

9

10 3. Order distribution

3.3. Market community tick protocol
Ticks are messages which are distributed across the peer-to-peer network to indicate supply and de-
mand of MultiChain quantity. As seen in Figure 2.1, there are two types of tick messages:

• Bids are placed by peers who are interested in buying MultiChain coin with Bitcoin.

• Asks are placed by peers who are interested in selling MultiChain coin for Bitcoin.

In Dispersy there are two ways to spread messages:

• Messages can be synchronized across clients, which takes a long time. Synchronising means
exchanging databases, so storing the items permanently.

• Messages can be sent directly to neighbours, which is more efficient, but can quickly flood the
network

Because ticks are created and deleted at a very high rate it does not make sense to synchronize
them because it takes a long time and they will probably already be deleted before they are synchro-
nized anyway. It is faster to directly spread the tick message among neighbours. A disadvantage of
directly spreading the tick message among neighbours is the higher network traffic and when the order
is fulfilled or cancelled, the messages are deleted. Messages can be directly sent to all neighbours or
to a single neighbour. Ticks are sent to all neighbours.

In order to not flood the peer-to-peer network, we incorporated a limited broadcast which adds a
“time to live” for our tick messages and thus only sends the messages to close peers, with the risk of
missing a potential trade. When a peer initiates a bid or an ask, it sends the message to its peers and
they also send it to their peers. However, if none of those peers contain a matching ask or bid and there
exists a peer in the network who does have a matching ask or bid, the potential trade cannot be made.
For example, in Figure 3.1, the peer in grey could have an ask or bid which can only be matched by an
ask or bid from one of the peers in white, but because they cannot reach each other, the potential trade
cannot be made. Circles indicate peers and lines between those peers indicate connections. The grey
peer indicates the origin of the message, and the red lines indicate where the message is being sent
from and to. Red circles indicate peers who received the message.

Figure 3.1: Indication how messages are spread across the peer-to-peer network.

There are multiple ways to distribute the tick messages across the network. A possibility would be
to only spread one kind of tick: an ask-only tick distribution or a bid-only tick distribution. The other
possibility is both bid and ask tick distribution, which enables a price discovery mechanism. This can
contain useful information for peers in the network. The price discovery mechanism makes it possible
for a peer to construct an order book containing both the asks and the bids in his or her environment.
The order book in our implementation contains a side of asks and a side of bids, including the buyer or
seller, and the quantity of the tick. This enables the market to be transparent [9, 19], which is important
because it enables the user to place bids and asks based on contextual information. In the case of a
decentral market with a limited broadcast, it is impossible to achieve complete transparency, as not all
ticks are received by each peer.

4
Making trades

This advanced prototype implements a full trading protocol. Our prior prototype only supported a subset
of the required functionality, focusing mostly on market order message distribution.

4.1. Sprint description
In this sprint, we continue with the development of the market community and the construction of the
market community protocol. Most of the development consists of refactoring the current code base,
fixing bugs, and extending our test suite. The client wanted us to test our market community on sample
data, so we prepared a test file containing ask and bid messages to be used on our market community,
in a simulation to see how the market community reacts to large data sets of messages. In the future,
we may extend this simulation so we can analyse the efficiency of the market community, and collect
valuable information which can help improve the market community protocol.

• Continue development on the market community and the market community protocol

• Document market community implementation

• Extend and maintain the market community test suite

• Make preparations to test the market community with sample data

• Fix bugs in the market community implementation

4.2. Matching engine
When asks and bids are distributed across the network, each peer can start with matching these ticks
and propose trades with their peers. To match ticks, the system needs a matching engine and at least
a level 2 order book with the ticks from this peer. When a peer receives a tick from another peer, the
matching engine is called with the current order book and the received tick as input of this peer. If the
received tick is an ask, the ask is matched with the bid side of the order book. If the received tick is a
bid, the bid is matched with the ask side of the order book.

When ticks are matched, their quantity is totally or partially reserved based on the matched tick.
When quantity is reserved, it cannot be used by the peer in proposed and counter trades. The quantity
in ticks can be reserved because the possibility exists that a trade decline or trade counter message
will be replied. When a proposed trade is declined or countered, the reserved quantity of the tick must
totally or partially released, based on the matched tick. When quantity is released, it can be reused
again by the peer in proposed and counter trades. The reserving of quantity in a tick makes it possible
to dynamically match multiple quantity parts of a tick with multiple other ticks.

If the received tick is a bid, the highest price level under or equal to the price level of the received
bid of the ask side is selected. If there is an ask with an equal or higher unreserved MultiChain quantity,
the selected quantity of the ask is reserved, and a trade proposal is sent to the origin of the received
tick. If there is an ask with a lower, unreserved MultiChain quantity, the total quantity of the ask is

11

12 4. Making trades

reserved, and a trade proposal is sent to the origin of the received tick. The procedure is repeated
with the unmatched MultiChain quantity from the received bid, until the whole MultiChain quantity from
the received bid is matched, or when no more matches can be made. The opposite rules hold for the
matching engine if the received tick is an ask. An example matching, with the described matching
strategy, can be seen in Figure 4.1. The 250 MB bid in the bottom right corner is matched to the ticks
from this peer. The two 100 MB asks with the same price level can be matched, and 50 MB of the bid
is still unreserved, which can be matched with a subset of the quantity in the 200 MB ask with a lower
price level.

The matching engine can be described at a high-level in the following systematical way:

1. Retrieve the price level with the highest bid price

2. Go through all the bids in the price level

(a) Reserve as much quantity of the ask on the current bid
(b) If the quantity still left to be traded is zero then return, otherwise continue

3. If the quantity still left to be traded is zero then return, otherwise continue with 2. with a lower
price level

Figure 4.1: Example matching by the matching engine visualised on an order book.

4.3. Market community trade protocol
When the tick messages have been distributed across the network, peers can start trading with each
other. As can be seen in Figure 4.2, there are four different types of trade messages. The arrows
indicate the possible replies for each message:

4.3. Market community trade protocol 13

• Proposed trades are sent as a reply to a tick. It consists of a trade proposal including the Mul-
tiChain quantity to trade, and the Bitcoin price. When a trade proposal is sent, the selected
quantity of the respective tick will be reserved until the trade proposal times out, if there is no
reply received.

• Counter trades are similar to proposed trades. A counter trade is sent as a reply to a proposed
trade when a subset of the MultiChain quantity in the respective tick has already been reserved.
A counter trade can always be accepted, because the quantity of the counter trade is always
smaller than the reserved quantity for the proposed trade.

• Declined trades are sent as a reply to a proposed trade when the respective tick has already been
reserved for its total MultiChain quantity.

• Accepted trades are sent as a reply to a proposed trade or a counter trade when the proposed
quantity is still available in the respective tick. When a trade has been accepted, the transaction
can be initiated.

Figure 4.2: State diagram of trade messages and possible replies between peers.

After a tick of a certain peer, peer 1 in this example, gets distributed across the peer-to-peer network,
peers with matching ticks will send trade proposals to this peer 1. If the tick is still available, they will
reply with a trade accept as can be seen in Figure 4.3. Peer 1 introduces an ask message on the
network, which is forwarded by peer 2. Peer 2 has no matching bid, but peer 3 does, and sends a trade
proposal to peer 1. Peer 1 checks if the ask is still available and sends a trade accept to the third peer.
If the tick is not available anymore, they will reply with a trade decline. If the tick has been partially
reserved, they will reply with a counter-offer.

Because messages can reach nodes that are not directly connected to the originating node, and
for security reasons it is not wise to relay trade and transaction messages through a third node, it was
decided that when a trade is proposed with such a node a direct connection is established. Because
of the way the Dispersy peer discovery algorithm works it is not possible to accomplish this without
requiring that all nodes have no NAT between the node and the Internet. This requirement is not
optimal but safeguard the system better against spoofing and MitM (man-in-the-middle) attacks.

As can be seen in Figure 4.4, and in practice, is that a matching ask and bid do not always contain
equal quantities. Peer 1 and peer 2 are connected, and peer 2 and peer 3 are connected. Peer 2
introduces an ask message to his neighbours. Peer 1 and peer 3 peer both have a matching bid and
can send a trade proposal to peer 2. If peer 1 sends a trade proposal to peer 2, peer 2 will reserve the
proposed quantity, and when it receives the trade, will reserve the accepted quantity. If peer 3 sends a
trade proposal which arrives after the trade accept for peer 1, peer 2 has already reserved a part of its
quantity, and will send a counter-offer to peer 3 with a reduced quantity. Since peer 3 already reserved
a higher quantity for the previous trade proposal, we can assure that peer 3 will send a trade accept
and will release the quantity difference.

14 4. Making trades

Figure 4.3: Trade sequence diagram between two peers, with an intermediary peer which distributes ticks for the other peers.
All ticks indicated in the image have equal price levels.

Figure 4.4: Counter trade sequence diagram between three peers. All ticks indicated in the image have equal price levels.

5
Transactions and payments

The market protocol will be fully implemented in this development cycle by adding the final transaction
part. For the transaction part to function we integrated Bitcoin and MultiChain interaction to transfer
funds.

5.1. Sprint description
Making Bitcoin toMultiChain coin transactions has some disadvantages. Due to the way that MultiChain
coin is implemented, the disadvantage exists that it is possible to have a negative amount of MultiChain
coin. Because this community will be included in the main Tribler code it would be unwise to include a
Bitcoin wallet directly. This would had a great deal of code and complexity, which will only be used if the
user opts for selling or buying MultiChain quantity and would also not allow the user to choose a wallet
of his or her own choosing. The application instead uses a Bitcoin wallet application programming
interface (API), that can connect to any wallet that implements the created API. Given how Bitcoin is
implemented, it is not possible to instantly check whether a Bitcoin transaction has been processed:
it takes ten minutes to securely confirm a transaction. Since the client wants to have incremental
payments implemented into the market community, research needs to be conducted on what is the
best solution to approach this, taking the processing time of Bitcoin transactions into account.

• Continue development on the market community

• Extend and maintain the market community test suite

• Research incremental payments and its efficiency and risk

• Research Bitcoin transactions

• Research Bitcoin transaction confirmation

• Research possible Bitcoin wallet APIs and integrate a Bitcoin wallet API

• Integrate Bitcoin transaction functionality

• Research MultiChain transactions

• Research MultiChain transaction confirmation

• Integrate MultiChain transaction functionality

15

16 5. Transactions and payments

5.2. Market community transaction protocol
Transaction messages can be categorized in four different types of messages. As can be seen in
Figure 5.1, the arrows indicate the possible replies for each message:

• Start transaction messages are sent as a reply to an accepted trade message. If the peer with
the bid sends a trade accept, the peer will reply with a MultiChain payment message. If the peer
with the ask sends a trade accept the peer will reply with a continue transaction message.

• Continue transaction messages are sent as a reply to a start transaction message. Continue
transaction messages can only be received by the peer with the ask to ensure that the peer with
the ask will first transfer the MultiChain quantity. We chose for this scheme because MultiChain
is a virtual currency that has less real world value than Bitcoin. If a node that has bad intentions
tries to trade with another node and decides not to pay, the currency lost is less significant.

• MultiChain payment messages indicate that the peer has transferred the respective MultiChain
quantity to the other peer. MultiChain payment messages can be a reply to a start transaction
message, continue transaction message or a Bitcoin payment message. MultiChain payment
messages can only be sent by the peer with the ask.

• Bitcoin payment messages indicate that the peer has transferred the respective Bitcoin price to
the other peer. Bitcoin payment messages can only be a reply to a MultiChain payment message.
Bitcoin transaction payment can only be sent by the peer with the bid.

• End transaction messages are used to indicate that the transaction has been successful when
the last batch of Bitcoin price has been received and confirmed. The end transaction message is
always a reply to a Bitcoin payment message.

Figure 5.1: State diagram of transaction messages and possible replies between peers.

After a trade has been accepted, a transaction as can be seen in Figure 5.2 will take place. Peer 1
already has a distributed ask, and peer 2 has a matching bid and proposed a trade to peer 1. If peer 1,
which has the ask, has also sent the trade accept to peer 2, peer 2 will send a start transaction message
to peer 1. If peer 1 has received the trade accept from peer 2, the start transaction will be skipped and
peer 1 will start transferring MultiChain coin. This way, we can always ensure that the MultiChain coin
from the ask is transferred first, and the Bitcoin from the bid is transferred last. After peer 1 receives
the message, they will transfer a part of the MultiChain coin amount to peer 2. After the transaction has
been confirmed, peer 1 will send a MultiChain transaction message, which also contains the address to
which the Bitcoin transaction has to be made. Peer 2 will now transfer an equal part of the total amount
in Bitcoin to the provided address, and after the transaction has been confirmed, they will send a Bitcoin

5.2. Market community transaction protocol 17

transaction message, and this process will continue until the full amount of Bitcoin and MultiChain coin
has been transferred. When the full amount has been transferred, peer 1 will send an end transaction
message to indicate that the transaction has been completed.

Figure 5.2: Transaction sequence diagram between two peers.

18 5. Transactions and payments

5.3. Incremental payments
This section discusses incremental payments, and their efficiency and risk. The incremental payment
scheme that this program uses has to maximize efficiency, because Bitcoin transactions take time to
process. It also has to minimize the risk, which is equal to the highest incremental transaction while
also taking into account that the peers that are traded with must build trust before making larger trans-
actions. Those two criteria contradict each other: if you want to decrease the risk and thus the highest
incremental transaction, you have to divide the amount using extra transactions, which decreases the
efficiency of the transaction.

The system is designed to be trust less. This is done because the Internet itself has not trust built
into it. If the system would transfer the entire amount in one transaction, people with bad intentions
could easily make abuse of this system. With a incremental payment system, the individual payment
amount can be regulated to be small enough based on the risk that is posed. By first transferring a
small amount, the risk of people making abuse of the system in the first payment becomes insignificant.
After the first payment, the amount is increased and stays at a constant level for the remaining payment.
This increased amount is high enough to not stretch the transaction out into the days, but it is small
enough to not pose a too big risk for abusing the system. With this system the security increases with
the amount. A higher amount would take more payments to complete the transaction. If a peer breaks
the trust at any point in the transaction, it will get blocked on the current node for any future transactions.
So the maximum amount a peer can acquire through abusing the system is the constant amount that is
used for all the transactions after the first one. For this system the client concluded that 0.5 mBTC for
the initial payment and 5 mBTC for the incremental payment were suiTable parameters. An example
of an incremental payment transaction can be seen in Figure 5.3.

5.4. MultiChain interface implementation
To enable the market community to transfer MultiChain coins for the user, and to query the MultiChain
balance of the user, the MultiChain community was introduced as a dependency for this community.
We implemented a MultiChain payment provider, which is an interface that contains the logic to transfer
MultiChain and request the balance of the user. Due to the implementation of the MultiChain commu-
nity, we are not able to check for transaction confirmation using a transaction identifier. However,
we can implement an approximated check for MultiChain transaction confirmation by storing the Multi-
Chain balance of the user after every transaction, and checking the difference when another transaction
confirmation occurs.

This implementation has two disadvantages. The first disadvantage occurs if MultiChain funds are
transferred or received outside of the market community. Since the stored MultiChain balance isn’t up
to date, a false positive or a false negative can occur when checking a transaction for confirmation.
The second disadvantage occurs when a user of the market community is trading with two other peers
in parallel. If the user receives MultiChain funds from one of the peers, it cannot detect the origins
from the MultiChain fund and may confirm the wrong transaction, which results in both a false positive
and a false negative. A MultiChain balance callback was implemented in the API to be used by the
self-regulating code project, as requested by the client, so there is a uniform method of determining the
balance.

The API that was created for interacting with the MultiChain can be seen in Listing 1. It was formed
with the support of the MultiChain team. Schedule block in the MultiChain community can be used to
transfer MultiChain quantity to a neighbour. Get total in the MultiChain database can be used to query
the MultiChain up- and download quantity of a peer.

5.5. Bitcoin interface implementation
To enable the market community to transfer Bitcoin for the user and to query the Bitcoin balance of
the user, a Bitcoin wallet or a Bitcoin wallet API was needed. Together with our coach and client,
we decided that we should use the Electrum Bitcoin wallet in our market community. The Electrum
Bitcoin wallet was chosen because it is one of the most popular wallets and does not require the whole
blockchain to be downloaded. The self-regulating code project also uses the Electrum Bitcoin wallet,
which makes communication between the two systems possible.

Since our code is developed within the Tribler repository, it would not be feasible to include the

5.5. Bitcoin interface implementation 19

Figure 5.3: Incremental payment sequence diagram between two peers.

Electrum Bitcoin wallet as a dependency because of the size and complexity. So instead this project
chose to communicate with the Electrum Bitcoin wallet through the command line. The users need to
install Electrum on their system to use the market community, and if the user does not have Electrum
installed, the market community is unavailable to receive or transfer Bitcoin from, and to, other peers.
The Bitcoin interface implementation uses two commands to interact with Electrum as described in
Listing 2. We tested the implementation by assuming the correctness of the Electrum command line
and by mocking the command line. In the test we specified the input and the output as described in the
Electrum documentation [3].

20 5. Transactions and payments

1 class MultiChainCommunity(Community):
2

3 def schedule_block(self, candidate, bytes_up, bytes_down):
4 % candidate - (Candidate) peer with whom you have interacted
5 % bytes_down - (int) bytes you have downloaded from the peer
6 % returns - (Order) order that includes all the information
7

8 @property
9 def persistence(self)

10 % returns - (MultiChainDB) persistence layer for the
11 % MultiChain community
12

13 class MultiChainDB(Database):
14

15 def get_total(self, public_key):
16 % public_key - public_key of the node
17 % returns - (total_up (int), total_down (int)) or
18 % (-1, -1) if no block is known.

Listing 1: Function call signatures in MultiChain community API

> electrum getbalance
{”confirmed”: <confirmed_amount>, ”unconfirmed”: <unconfirmed_amount>}

> electrum payto -f 0 <bitcoin_address> <bitcoin_amount>
Which transfers an amount in BTC to the specified address

Listing 2: Electrum commands used by the market community.

6
Integration, testing and deployment

After fully implementing the market community protocol we can now start deploying the market com-
munity for testing purposes.

6.1. Sprint description
For the final sprint and development cycle we will focus on fixing bugs in the market community and
making the market community operational. Now that we have fully implemented the market community
protocol that we envisioned during the first sprint we can start with fully integration testing the market
community by developing an experimental deployment. We also received feedback from the code
quality and maintainability review by SIG. We will focus on fixing the issues indicated to improve the
code quality and maintainability of our implementation.

• Continue development on the market community

• Extend and maintain market community test suite

• Develop experimental deployment test

• Find incorrect implementations and bugs in the market community and fix those

• Make improvements based on SIG feedback

6.2. Testing and development process
Parallel to the development of our solution we used test-driven development to preserve the quality and
maintainability of our implementation. Before developing a certain feature for our market community
we would first decide on the design and the software architecture to use for the development of that
specific feature. This allows us to develop a test suite first so we can implement the specific feature
using test-driven development. We used continuous integration by using Jenkins in our development
work flow. We tested our implementation by developing unit tests for each class inside our market
community implementation. A subset of unit tests in the matching engine can be seen in Listing 3. We
also developed basic integration tests to check the basic functionality of the market community. We
implemented a total of 50+ separate test suites. The final market community test suite report as can
be seen in Table 6.1 indicates a total line coverage of +95% calculated over a total of 7000+ lines.

21

22 6. Integration, testing and deployment

Table 6.1: Line coverage report of the market community implementation files and directories.

Module statements missing excluded coverage
market - - - - %
market\community 314 92 0 71%
market\conversion 93 22 0 76%
market\payload 153 0 0 100%
market\socket_address 14 0 0 100%
market\ttl 17 0 0 100%
market\core - - - - %
market\core\bitcoin_address 8 0 0 100%
market\core\incremental_manager 23 0 0 100%
market\core\matching_engine 124 6 0 95%
market\core\message 75 0 0 100%
market\core\message_repository 16 0 0 100%
market\core\order 107 0 0 100%
market\core\order_manager 37 0 0 100%
market\core\order_repository 51 0 0 100%
market\core\orderbook 132 0 0 100%
market\core\payment 75 0 0 100%
market\core\payment_provider 44 0 0 100%
market\core\price 58 0 0 100%
market\core\pricelevel 65 0 0 100%
market\core\pricelevel_list 42 0 0 100%
market\core\quantity 56 0 0 100%
market\core\side 73 0 0 100%
market\core\tick 66 0 0 100%
market\core\tickentry 31 0 0 100%
market\core\timeout 21 0 0 100%
market\core\timestamp 50 0 0 100%
market\core\trade 103 0 0 100%
market\core\transaction 109 0 0 100%
market\core\transaction_manager 34 0 0 100%
market\core\transaction_repository 47 0 0 100%

6.3. Code quality
In this section we will evaluate the developed decentral market community by its code quality and how
we processed the SIG feedback into our final implementation. The SIG feedback in Dutch can be seen
in appendix A. We received a code quality score of 4 out of 5. The only code quality issue mentioned in
our code is the high issue in the market conversion class and the matching engine class. We fixed this
issue for the market conversion class by removing all duplicate code in the market conversion class
and turning the removed duplicate code into a separate method. We fixed this issue for the matching
engine by moving the matching engine logic in multiple functions. This also made it easier to test the
matching engine implementation. We were not able to cover most lines of the matching class with our
matching engine test suite which was possible after the refactoring.

6.4. Experiment 23

1 class PriceTimeStrategyTestSuite(unittest.TestCase):
2 ”””Price time strategy test cases.”””
3

4 def setUp(self):
5 # Object creation
6 ...
7

8 def test_match_order_divided(self):
9 # Test for match order divided over two ticks

10 self.order_book.insert_ask(self.ask)
11 self.order_book.insert_ask(self.ask2)
12 proposed_trades = self.price_time_strategy.match_order(self.bid_order2)
13 self.assertEquals(2, len(proposed_trades))
14 self.assertEquals(Price(100), proposed_trades[0].price)
15 self.assertEquals(Quantity(30), proposed_trades[0].quantity)
16 self.assertEquals(Price(100), proposed_trades[1].price)
17 self.assertEquals(Quantity(30), proposed_trades[1].quantity)
18

19 def test_match_order_different_price_level(self):
20 # Test for match order given an ask order and bid in different price levels
21 self.order_book.insert_bid(self.bid2)
22 proposed_trades = self.price_time_strategy.match_order(self.ask_order)
23 self.assertEquals(1, len(proposed_trades))
24 self.assertEquals(Price(200), proposed_trades[0].price)
25 self.assertEquals(Quantity(30), proposed_trades[0].quantity)
26

27 def test_match_bid_order_insufficient(self):
28 # Test for match order with insufficient tick quantity
29 self.order_book.insert_ask(self.ask)
30 proposed_trades = self.price_time_strategy.match_order(self.bid_order2)
31 self.assertEquals(0, len(proposed_trades))

Listing 3: Several tests in the matching engine / price time strategy test suite.

6.4. Experiment
A smaller experiment was executed after the completion of the trades. In this experiment basic exam-
ples like shown in Figure 4.3, Figure 4.4 and Figure 5.2 were reproduced and tested for completeness
and correctness. The experiment was concluded to be a success, because it fulfilled all the require-
ments of the application to that point in the development.

At the end of the project a real life money trial was conducted in cooperation with the Autonomous
self-replicating code group to test if the whole system would work when put to the test. The success of
this experiment is harder to evaluate because of the nature of decentral system. Every time a scenario
is run, the composition of the nodes in the overlay changes and different trades are possible. The
experiment was considered complete, because trades were made and payed for by transactions.

It was not possible to extract meaning full test data from the experiment because of time constraints.
Extracting this data would require setting up a complex testing framework and infrastructure and that
would have been out of the scope for this project.

24 6. Integration, testing and deployment

6.5. Market community API
In this section the market community API as shown in Listing 4 developed for the Autonomous self-
replicating code project [5] is discussed. The Autonomous self-replicating code group needs to be able
to create asks and bids to trade MultiChain quantity that their system earned by providing bandwidth
for uploading. To check how much MultiChain quantity is available to trade we implemented a function
to provide a stable API to our MultiChain payment provider. The order book also provides statistical
functions for the other team so they can use different strategies for their genetic algorithm.

1 class MarketCommunity(Community):
2

3 def create_ask(self, price, quantity, timeout):
4 % price - (float) Bitcoin price in BTC
5 % quantity - (float) multichain bytes in MB 10^6
6 % timeout - (float) time when the order must expire
7 % returns - (Order) order that includes all the information
8

9 def create_bid(self, price, quantity, timeout):
10 % price - (float) Bitcoin price in BTC
11 % quantity - (float) multichain bytes in MB 10^6
12 % timeout - (float) time when the order must expire
13 % returns - (Order) order that includes all the information
14

15 def get_multichain_balance(self)
16 % returns - (Quantity) amount of multichain in MB 10^6
17

18 @property
19 def order_book(self)
20 % returns - (OrderBook) order book containing all the offers
21

22 class OrderBook(object):
23

24 def bid_price(self):
25 % returns - (Price)
26 % the price an ask needs to have to make a trade
27

28 def ask_price(self):
29 % returns - (Price)
30 % the price a bid needs to have to make a trade
31

32 def bid_side_depth_profile(self):
33 % returns - (List[(Price, Quantity)])
34 % the list of bids in the provided format
35

36 def ask_side_depth_profile(self):
37 % returns - (List[(Price, Quantity)])
38 % the list of asks in the format provided

Listing 4: Function call signatures in market community API

7
Discussion

In this chapter we will be giving a number of recommendations to the client that can be used to further
improve the implementation. In this chapter we will evaluate the requirements that have been fulfilled.
At the end we will be giving a number of recommendations to the client that can be used to further
improve the implementation.

7.1. Fulfillment of project requirements
To determine the requirements of the clients and the priorities of these requirements during the devel-
opment / implementation phase of the project we used the MoSCoW method [21]. In this section we
will look back to the project requirements and will discuss which requirements have been fulfilled and
how these have been fulfilled.

Must haves
The most important requirements for the project are described in the “must haves” subsection of the
MoSCoWmethod. The “must have” requirements are the minimal, usable subset of requirement which
are guaranteed to be delivered for the project. The following described requirements have the highest
priority, and must be fulfilled in the final implementation of the solution:

3 Users must be be able to place a bid and a ask which must be be distributed across the connected
part of the network.

3 The market community solution must be scalable with a lot of users. Because we implemented
the market community upon Dispersy it is scalable. Tribler is proof for the scalability of Dispersy.

3 The market community solution must be able to match a bid and an ask between peers that are
connected.

3 The market community solution must be implemented into Tribler.

3 The market community solution must be a decentralised system.

3 The market community solution must be constructed on Dispersy.

3 The market community solution must be able to make Bitcoin transactions and MultiChain trans-
actions. The market community can make transactions if users have installed Electrum so it can
be called from the command line. The market community can also make MultiChain transactions
although there isn’t any possibility for MultiChain transaction confirmation.

25

26 7. Discussion

Should haves
If all “must have” requirements have been fulfilled, the “should have” requirements have the next-highest
priority. The “should have” requirements are important for the project but are not vital to its completion;
the solution would still be viable without fulfilling these requirements. All of the following requirements
should be fulfilled in the final implementation of the solution:

3 The market community solution should be able to let users use incremental payments.

3 The market community solution should be tested to a certain extent. We used test-driven devel-
opment to preserve the quality and maintainability of our implementation. The testing report of
our implementation can be seen in table 6.1.

Could haves
The “could have” requirements are the requirements with the lowest priority. If all “should have” re-
quirements have been fulfilled, the “could have” requirements have the next-highest priority. The “could
have” requirement are desirable requirements for the project, but they will have less impact when left out
compared to “should haves”. The following requirements could be fulfilled in the final implementation:

7 The market community solution could be able to blacklist peers on an individual blacklist.

3 The market community solution could be able to maintain an efficient connectivity between peers
so that a maximum of possible trades are proposed without creating too much overhead on the
network.

3 The market community solution could fully function.

Won’t haves
The “won’t have” requirements are requirements that won’t be implemented in the final implementation.
We have agreed that these requirements will not be delivered. The following requirements will not be
fulfilled in the final implementation:

7 The market community solution in Tribler won’t have a nice graphical user interface.

7 The market community solution won’t have to protect the privacy of its users.

3 The market community solution won’t have to be secured against spoofing.

7.2. Conclusion 27

7.2. Conclusion
The goal of this bachelor project was to create an operational decentral electronic marketplace which
will have no central server bottleneck, no central point of trust, full self-organization and unbounded
scalability. Users should be able to trade digital currencies with other users through a decentral elec-
tronic marketplace.

The market community solution we developed for this project is decentral, scalable and well-tested.
While the previous bachelor end project group delivered a proof of concept for a decentral market we
delivered a scalable decentral market by building our market community on top of Dispersy. Users
of the market community are able to trade Bitcoin for MultiChain balance and MultiChain balance for
Bitcoin with other users. Due to MultiChain still being in development there are still some parts that
need to finalised before this product can be fully operational in production.

There are some known issues concerning our market community implementation:

• We were not able to implement the functionality which can confirm whether a MultiChain trans-
action has been made. There is no functionality in the MultiChain community which makes it
possible to confirm whether a MultiChain transaction has been made.

• Due to MultiChain being insecure, the Market community also is insecure. There is no security
measure for having a negative MultiChain balance. By running two MultiChain communities a
user could be able to gain an infinite amount of MultiChain this way.

To further improve the implementation, we have giving a number of recommendations to the client:

• A trust system should be implemented to increase the security of the system. If a peer has proven
to have bad intentions on themarket community his reputation should be distributed to other peers
to prevent theft.

• The requirement for not having a NAT between the peers could be removed by implementing a
new peer discovery algorithm.

References
[1] Bitmarkets. URL https://voluntary.net/bitmarkets/whitepaper/.

[2] Dispersy Documentation. URL http://dispersy.readthedocs.io/.

[3] Electrum Documentation. URL http://docs.electrum.org/en/latest/.

[4] Tribler Architecture. URL https://www.tribler.org/TriblerArchitecture/.

[5] N.C. Bakker, R.S. van de Berg, and S.A Boodt. Autonomous self-replicating code. TU Delft,
Parallel and Distributed Systems, 2016.

[6] K. Beck. Test-driven development: by example. Addison-Wesley Professional, 2003.

[7] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation onion router. Tech-
nical report, DTIC Document, 2004.

[8] V. Dumitrescu. Rewarding Good Behavior in Peer-to-Peer Net-
works, 2013. URL http://repository.tudelft.nl/view/ir/
uuid{%}3Ad2a72d3f-d28b-4d9d-998a-b030c2f28aed/.

[9] M.D. Gould, M.A. Porter, and S. Williams. Limit order books. Quantitative Finance, 2013. URL
http://www.tandfonline.com/doi/abs/10.1080/14697688.2013.803148.

[10] G. Logiotatidis. Splash: Data synchronization in unmanaged, untrusted peer-
to-peer networks, 2010. URL http://repository.tudelft.nl/view/ir/
uuid{%}3A52b586ea-6144-4b4e-a5a1-b05255ce493a/.

[11] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[12] S.D. Norberhuis. MultiChain: A cybercurrency for cooperation, 2015.

[13] J.A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup, D.H.J. Epema, M. Reinders,
M.R. Van Steen, H.J. Sips, et al. Tribler: A social-based peer-to-peer system. Concurrency and
computation: Practice and experience, 20(2):127, 2008.

[14] R. Rahman. Peer-to-Peer System Design: A Socioeconomic ap-
proach, 2011. URL http://repository.tudelft.nl/view/ir/
uuid{%}3Aa14fc07c-7c6c-45cf-8d8b-c03533e6f603/.

[15] B. Schoon. Building a neighbourhood with Dispersy. pages 1–17, 2013. URL https://github.
com/Tribler/dispersy/blob/d056b388836cec227f6752683045534325b5b5e4/doc/
component_walker.pdf.

[16] K. Soska, A. Kwon, N. Christin, and S. Devadas. Beaver: A decentralized anonymousmarketplace
with secure reputation. 2016.

[17] M. The andH. Reinbergen. Tsukiji: A decentral market. TUDelft, Parallel and Distributed Systems,
2015.

[18] L.J. Trautman. Virtual currencies; bitcoin & what now after liberty reserve, silk road, and mt. gox?
Richmond Journal of Law and Technology, 20(4), 2014.

[19] S. Viswanathan and J.D. Wang. Market architecture: limit-order books versus dealership mar-
kets. Journal of Financial Markets, 5(2):127 – 167, 2002. doi: http://dx.doi.org/10.1016/
S1386-4181(01)00025-8. URL http://www.sciencedirect.com/science/article/
pii/S1386418101000258.

29

https://voluntary.net/bitmarkets/whitepaper/
http://dispersy.readthedocs.io/
http://docs.electrum.org/en/latest/
https://www.tribler.org/TriblerArchitecture/
http://repository.tudelft.nl/view/ir/uuid{%}3Ad2a72d3f-d28b-4d9d-998a-b030c2f28aed/
http://repository.tudelft.nl/view/ir/uuid{%}3Ad2a72d3f-d28b-4d9d-998a-b030c2f28aed/
http://www.tandfonline.com/doi/abs/10.1080/14697688.2013.803148
http://repository.tudelft.nl/view/ir/uuid{%}3A52b586ea-6144-4b4e-a5a1-b05255ce493a/
http://repository.tudelft.nl/view/ir/uuid{%}3A52b586ea-6144-4b4e-a5a1-b05255ce493a/
http://repository.tudelft.nl/view/ir/uuid{%}3Aa14fc07c-7c6c-45cf-8d8b-c03533e6f603/
http://repository.tudelft.nl/view/ir/uuid{%}3Aa14fc07c-7c6c-45cf-8d8b-c03533e6f603/
https://github.com/Tribler/dispersy/blob/d056b388836cec227f6752683045534325b5b5e4/doc/component_walker.pdf
https://github.com/Tribler/dispersy/blob/d056b388836cec227f6752683045534325b5b5e4/doc/component_walker.pdf
https://github.com/Tribler/dispersy/blob/d056b388836cec227f6752683045534325b5b5e4/doc/component_walker.pdf
http://www.sciencedirect.com/science/article/pii/S1386418101000258
http://www.sciencedirect.com/science/article/pii/S1386418101000258

30 References

[20] J. Warren. Bitmessage: A peer-to-peer message authentication and delivery system. 2012. URL
https://bitmessage.org/bitmessage.pdf.

[21] K. Waters. Prioritization using moscow. Agile Planning, 12, 2009.

[22] N. Zeilemaker and J.A. Pouwelse. ReClaim: a Privacy-Preserving Decentralized Social Net-
work. In 4th USENIX Workshop on Free and Open Communications on the Internet (FOCI
14), 2014. URL https://www.usenix.org/conference/foci14/workshop-program/
presentation/zeilemaker.

[23] N. Zeilemaker, M. Capota, and J.A. Pouwelse. Open2Edit: A peer-to-peer platform for collab-
oration. 2013. URL http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=
6663524.

[24] N. Zeilemaker, B. Schoon, and J.A. Pouwelse. Dispersy bundle synchronization. TU Delft, Parallel
and Distributed Systems, 2013.

[25] N. Zeilemaker, B. Schoon, and J.A. Pouwelse. Large-scale message synchronization in chal-
lenged networks. In Proceedings of the 29th Annual ACM Symposium on Applied Computing -
SAC ’14, pages 481–488. ACM Press, 2014. ISBN 9781450324694. URL http://dl.acm.
org/citation.cfm?id=2554850.2554908.

https://bitmessage.org/bitmessage.pdf
https://www.usenix.org/conference/foci14/workshop-program/presentation/zeilemaker
https://www.usenix.org/conference/foci14/workshop-program/presentation/zeilemaker
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6663524
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6663524
http://dl.acm.org/citation.cfm?id=2554850.2554908
http://dl.acm.org/citation.cfm?id=2554850.2554908

A
Initial SIG Feedback (Dutch)

De code van het systeem scoort 4 sterren op ons onderhoudbaarheidsmodel, wat betekent dat de code
bovengemiddeld onderhoudbaar is. De hoogste score is niet behaald door een lagere score voor Unit
Size. Voor Unit Size wordt er gekeken naar het percentage code dat bovengemiddeld lang is. Het
opsplitsen van dit soort methodes in kleinere stukken zorgt ervoor dat elk onderdeel makkelijker te
begrijpen, te testen en daardoor eenvoudiger te onderhouden wordt. In jullie project is MarketConver-
sion._decode_offer een voorbeeld van zo’n lange methode. Deze lengte is ook onnodig, als je naar de
code kijkt herhalen jullie steeds hetzelfde stuk code. Zeker in Python zijn er diverse oplossingen om de
hoeveelheid code naar beneden te krijgen, zodat je in ieder geval niet steeds hetzelfde try/catch blok
hoeft te herhalen. Een ander voorbeeld van een lange methode is PriceTimeStrategy.match_order. De
oorzaak van de lengte is hier de hoeveelheid functionaliteit die in de methode wordt geïmplementeerd:
je ziet nu dat jullie de verschillende delen van elkaar scheiden met commentaar. Het is beter om dat
met code-structuur te doen, dus er aparte methodes van te maken. Op die manier wordt je code beter
leesbaar, en is het ook makkelijk om unit tests voor de aparte gedeeltes te schrijven. Over unit tests
gesproken: jullie hebben een goede hoeveelheid testcode geschreven. Hopelijk lukt het om tests te
blijven toevoegen in het vervolg van het project.

31

B
Infosheet

Self-regulating electronic market
Tribler Team / Distributed Systems group
Date of final presentation 24-06-2016

Project Description:
A decentral electronic marketplace to trade digital currencies was created for this project. Users may
trade MultiChain balance for Bitcoin. MultiChain can be described as up- and download currency in
a peer-to-peer network. When a peer uploads, the balance of that peer increases and the peer can
download more effectively. The client for this project is the Tribler Team. Most of the Tribler Team’s
work revolves around Tribler: an open-source peer-to-peer program which enables its users to find,
enjoy, and share content. An earlier bachelor end-project implemented a partial, functional prototype of
this idea. We improved the existing concepts and re-implemented a decentralised market from scratch
with scalability and as much security as possible, given the limited available development time. This
market is the first electronic marketplace to be fully decentralized. There were previous attempts to
create such a marketplace, but those implementations fell short in scalability and security. During the
research phase, we discovered that the previous decentral market project was not scalable and not
production ready, so we made the decision to, together with our client, instead build our application
upon a more production-level network platform known as Dispersy. As nothing on the Internet can be
trusted which is a problem on its own, we could not make the product as secure as we would have
wanted to.

We held meetings with our coach and client every week to discuss the preliminary progress and
incorporate any feedback that they provided. This made sure that we were able to adjust our goals
more towards the client needs. We also had daily meetings within our groups to keep organized and
be efficient. During development we used test driven development methodology to have a solid tested
product to suit or production level code. During the development we ran into the unexpected challenge
of needing to integrate with another bachelor end project group who was building an application on top
of ours at the same time. We dealt with this situation by tightly cooperating and documenting decisions.
We made the recommendation to our client to improve upon security and trust before putting the prod-
uct in production use.

Members of the project team:
M.J.G. Olsthoorn
Interest: Back-end development, security, software architecture
Role & Contribution: Developer, Dispersy integration, matching engine

J. Winter
Interest: Back-end development, testing, graphical design
Role & Contribution: Developer, test development, payment providers

All team members contributed to preparing the core implementation, report and the final project pre-

33

34 B. Infosheet

sentation.

Client & Coach
Dr. Ir. J.A. Pouwelse, DS Group, TU Delft (Client)
Ir. E. Bouman, MMC Group, TU Delft (Coach)

Contacts
Dr.Ir. J.A. Pouwelse, DS Group, TU Delft, j.a.pouwelse@tudelft.nl
J. Winter, info@joswinter.nl

The final report for this project can be found at: http://repository.tudelft.nl.
The project code is available at https://github.com/mitchellolsthoorn/tribler.

mailto:j.a.pouwelse@tudelft.nl
mailto:info@joswinter.nl
http://repository.tudelft.nl
https://github.com/mitchellolsthoorn/tribler

C
Original Project Decription

C.1. Project description
You will create an operational electronic market place that is immune to shutdown by governments, im-
mune to lawyer-based attacks or other real-world threats. The Internet-deployed marketplace will have
no central server bottleneck, no central point of trust, full self-organization and unbounded scalability.

To keep this project realistic, the focus will be on re-using existing code, support only Bitcoin-
Multichain trading, only use a single marketmaker, and offer no anonymity or DDoS protection. Bitcoin,
Mt Gox, and Silk Road showed how vulnerable marketplaces are. Bitcoin was the first ever successful
cybercurrency after decades of failures by scientists, anarchists, fraudsters, and entrepreneurs. How-
ever, this first-generation technology suffers from an highly unstable exchange rate, low usage level
and frequent large-scale thefts by hacking exchange platforms.

TUDelft has a stash of Bitcoins which will be used to buy MultichainCoins during your final presen-
tation on your platform. Multichain coins are developed at TUDelft. They provide a reward for relaying
Tor-like onion routing traffic and Bittorrent seeding. You will use Python, Twisted, nosetest, jenkins,
and Libtribler during your work.

C.2. Company description
Tribler Team. Creating disruptive cooperative software since 1999.

Read about the team at these URLs:
http://http://www.foxnews.com/tech/2012/02/10/forget-megaupload-researchers-call-new-file-sharing-network-invincible.

html, http://http://www.ee.princeton.edu/events/anonymous-hd-video-streaming-and-reputations,
http://news.harvard.edu/gazette/story/2007/08/creating-a-computer-currency,
http://tweakers.net/nieuws/98175/torrentclient-tribler-gebruikt-onderdelen-tor-voor-anonieme-downloads.
html, http://http://www.elsevier.nl/Tech/blogs/2014/12/Johan-Pouwelse-Tribler-Mijn-ideaal-is-mensen-aan-de-macht-1674399W/

Multichain coins documentation: http://repository.tudelft.nl/view/ir/uuid%3A59723e98-ae48-4fac-b258-2df99d11012c/

C.3. Auxiliary information
Your starting point is the operational code from previous BEP project: https://github.com/Tribler/
decentral-market

Multichain coins documentation: http://repository.tudelft.nl/view/ir/uuid%3A59723e98-ae48-4fac-b258-2df99d11012c/

35

http://http://www.foxnews.com/tech/2012/02/10/forget-megaupload-researchers-call-new-file-sharing-network-invincible.html
http://http://www.foxnews.com/tech/2012/02/10/forget-megaupload-researchers-call-new-file-sharing-network-invincible.html
http://http://www.ee.princeton.edu/events/anonymous-hd-video-streaming-and-reputations
http://news.harvard.edu/gazette/story/2007/08/creating-a-computer-currency
http://tweakers.net/nieuws/98175/torrentclient-tribler-gebruikt-onderdelen-tor-voor-anonieme-downloads.html
http://tweakers.net/nieuws/98175/torrentclient-tribler-gebruikt-onderdelen-tor-voor-anonieme-downloads.html
http://http://www.elsevier.nl/Tech/blogs/2014/12/Johan-Pouwelse-Tribler-Mijn-ideaal-is-mensen-aan-de-macht-1674399W/
http://repository.tudelft.nl/view/ir/uuid%3A59723e98-ae48-4fac-b258-2df99d11012c/
https://github.com/Tribler/decentral-market
https://github.com/Tribler/decentral-market
http://repository.tudelft.nl/view/ir/uuid%3A59723e98-ae48-4fac-b258-2df99d11012c/

D
Market protocol

D.1. Ticks
• Ask tick

– trader_id
– message_number
– order_number
– price
– quantity
– timeout
– ttl
– ip
– port
– timestamp

• Bid tick

– trader_id
– message_number
– order_number
– price
– quantity
– timeout
– ttl
– ip
– port
– timestamp

37

38 D. Market protocol

D.2. Trade
• Proposed trade

– trader_id
– message_number
– order_number
– recipient_trader_id
– recipient_order_number
– price
– quantity
– timestamp

• Counter trade

– trader_id
– message_number
– order_number
– recipient_trader_id
– recipient_order_number
– price
– quantity
– timestamp

• Declined trade

– trader_id
– message_number
– order_number
– recipient_trader_id
– recipient_order_number
– timestamp

• Accepted trade

– trader_id
– message_number
– order_number
– recipient_trader_id
– recipient_order_number
– price
– quantity
– ttl
– timestamp

D.3. Transaction 39

D.3. Transaction
• Start transaction

– trader_id
– message_number
– transaction_trader_id
– transaction_number
– order_trader_id
– order_number
– trade_message_number
– timestamp

• Continue transaction

– trader_id
– message_number
– transaction_trader_id
– transaction_number
– timestamp

• Multi chain payment

– trader_id
– message_number
– transaction_trader_id
– transaction_number
– bitcoin_address
– transferor_quantity
– transferee_price
– timestamp

• Bitcoin payment

– trader_id
– message_number
– transaction_trader_id
– transaction_number
– price
– timestamp

• End transaction

– trader_id
– message_number
– transaction_trader_id
– transaction_number
– timestamp

	Problem description
	Problem definition
	Client description
	Group cooperation
	Project requirements
	Development process

	Global design and existing technology
	Sprint description
	Research information
	Related work
	Tsukiji
	BitMarkets
	Beaver

	Dispersy
	Market Community Protocol
	Order book

	Order distribution
	Sprint description
	Message identification & orders
	Market community tick protocol

	Making trades
	Sprint description
	Matching engine
	Market community trade protocol

	Transactions and payments
	Sprint description
	Market community transaction protocol
	Incremental payments
	MultiChain interface implementation
	Bitcoin interface implementation

	Integration, testing and deployment
	Sprint description
	Testing and development process
	Code quality
	Experiment
	Market community API

	Discussion
	Fulfillment of project requirements
	Conclusion

	References
	Initial SIG Feedback (Dutch)
	Infosheet
	Original Project Decription
	Project description
	Company description
	Auxiliary information

	Market protocol
	Ticks
	Trade
	Transaction

