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Chapter 1

Introduction

1.1 Survey

The subject treated in the present monograph belongs to a specific discipline in the
earth sciences, known as exploration geophysics. An exploration geophysicist com-
mits himself to discovering and characterizing natural resources, such as oil, coal
and gas. For this purpose he often resorts to the scismic method, which is an elas-
todynamic remote sensing technique. A steady increase of the energy demand in a
globally competitive business causes a continuous search for techniques to improve
the seismic method, in terms of efficiency and effectivencss. A potentially interesting
analysis technique has been developed in the late cighties: the wavelet transforma-
tion. The wavelet transformation is a mathematical tool; it makes the scale and time
or space dependency, present in almost any measurement of physical phenomena,
explicitly manifest. In this thesis, the significance of the wavelet transformation in
various stages of the seismic method will be explored.

The current chapter will be utilized to concisely introduce the main aspects of
the thesis, and to point out the elements which comprise innovations. In scction 1.2
the seismic method and the associated conceptual physical model will be dealt with.
In section 1.3 attention will be paid to the role of representations and (ransforinations
for the seisinic method, more specifically to the role of the wavelet transformation.
In section 1.4 the outline of the thesis will be discussed with an emphasis on its novel
aspects. Finally, in section 1.5 a number of notational and mathematical conventions
applicable to the complete thesis are put together.

1.2 The seismic method

The field of carth sciences sets itself the target to acquire extensive knowledge of
the structure and material properties of the earth, and of the dynamic processes
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Fig. 1.1 An artist impression of the surface seismic reflection method. Generally a dis-
tinction is made between a land survey (left-hand side) and a marine survey
(right-hand side)

taking place in the earth. This knowledge serves a wide range of goals. For the
exploration geophysicist the goal is to locate natural resources in order to meet the
expected worldwide growth in demand for energy (EC-report, 1996). An exploration
aeophysicist does not only want to know where the fossil fuels are, but also how to
get them out. Consequently, he is interested in both the structure and the material
properties of the subsurface.

A naive method to reveal the two of them is to excavate the earth. Besides
the accurateness of this method, it is quite impractical due to its low success rate

and dun b dha Fact that it covaraly dictnrhe the halance of the livine creatures

in and on the earth. Fortunatcly, the exploration geophysicist can investigate the
earth more cfficiently, either by probing it remotely and globally, or by probing it
directly and locally. The remote and global method comprises various techniques,
such as gravimetry and seismic exploration. The direct and local method comprises
all logging techniques, such as electromagnetic and sonic logging. If the earth is
considered to be a system, than these methods have in common that they provide
information on the system earth (both its structure and material propertics) via a
process, that is generally externally initiated.

Among the global methods the method of scismic exploration, also referred to
as the scismic method. is by far the most powerful. In the seismic method, elastic
wave fields are generated by localized sources. The elastic wave fields interact with
the svstem earth and after the interaction they are measured with localized receivers.
The scismic method turns out to be an adequate method to infer, via the measured
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Fig. 1.2 Conceptual model of a surface seismic reflection ezperiment.

wave ficlds, both the structure and the material properties of the carth, i.e. both to
locate the natural resources and to characterize them.

The seismic exploration method is not just a single unique method. It consti-
tutes a number of methods which can be discriminated on the basis of their specific
source and receiver configurations. The surface seismic reflection method, which
is most often used, is characterized by the fact that both sources and receivers are
located at or near the surface. Figure 1.1 presents an artist impression of the surface
seismic reflection method. Albeit an artist impression, Figure 1.1 gives a good idea
what kind of interaction is referred to above. An elastodynamic wave, also referred
to as an elastic wave, is propagating from the source down into the subsurface, it is
partially reflected at points where the material properties relevant for wave propa-
gation vary, and after this interaction part of the wave propagates up to the surface
and will be measured by a set of receivers.

On a conceptual level the surface seismic reflection method can be represented
by a set of operators related to the distinctive features of the method. Together the
operators form the conceptual model of Figure 1.2. The quantity S, represents a
source wave field. The operator DT converts the source wave ficld into a downgoing
wave field. Moreover, it can be used to represent the configuration of the sources
al or near the surface. The propagation from the surface down into the subsurface
is represented by the propagation operator W7*. Reflection in the subsurface at a
specific depth level is described by the reflection operator R*. The propagation
up to the surface is given by the propagation operator W~. The upgoing wave
field at the surface is fed into the earth again via a reflection at the surface. The
reflection at the surface is represented by R~. It converts upgoing wave fields into
downgoing wave fields. The measuring process at the surface is represented by the
operator D~. It converts the upgoing wave fields into wave fields measured by a
hydrophone or gecophone. Besides, D~ represents the receiver configuration. Hence,
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the action of the operator D~ yields the seismic reflection data P~. The presented
model is referred to as the WRW-model (Berkhout, 1982; Berkhout and Wapenaar,
1990); it is a forward model, making manifest the most relevant aspects of a seismic
experiment.

To infer the structure and the material propertics of the subsurface from the
seismic reflection data, an inversion procedure is required. Generally, a distinction is
made between two phases of inversion. In imaging the aim is to estimate the reflec-
tion operator R* by getting rid of the effects of the surface related operators Dt and
D~ (decomposition) and R~ (multiple elimination), and by removing the effects of
the propagation operators W+ and W~ (downward and upward extrapolation). The
imaging procedure reveals the structure of the earth in terms of the reflectivity R*.
As was recently pointed out by Berkhout (1997a), scismic imaging does not require
a prior knowledge of R™. The latter is very important as geological boundaries may
represent complex reflectors. Imaging is followed by lithologic inversion. The aim of
lithologic inversion is to estimate the material properties relevant for the recovery
of the natural resources, such as the type of the rock, its porosity, its porefill and its
permeability. The fully estimated angle-dependent reflection operator R is input
to the lithologic inversion procedure.

The trend in the oil industry has shifted from a wish to increase the oil and
gas production “at any cost” in the late 1970s and 1980s to a more cost-sensitive
way of operating in the 1990s (EC-report, 1996). Hence, just roughly pinpointing
the location of the natural resource reservoirs does not suffice anymore; the explo-
ration geophysicist has to provide information that really improves the production
of the reservoirs, especially in complex areas and/or for complex subsurface struc-
tures, where other exploration techniques are difficult and relatively expensive. The
exploration geophysicist resorts to various solution techniques to meet this require-
ment. With the help of the conceptual model of the previous paragraph, the solution
tachninnac can ho nncily nrdered

The described requirement necessitates, first of all, larger and more fiexible,
sometimes even repeatable, acquisitions (represented by the operators DT), yicld-
ing larger data sets (represented by P7). Seccondly, it requires a more accurate
preprocessing to separate desired and undesired signals, for example primaries and
multiples (removal of R™). Thirdly, it calls for a more accuratc and more efficient
incorporation of the effects of complex structures on the propagation operators (in-
version for W*). Fourthly, it asks for a better understanding of the relation between
the complex subsurface parameters and the effective angle-dependent reflection be-
havior (understanding of R"). Finally, it necessitates the development of techniques
to automatically recover potentially interesting areas from the output images via im-
age analysis techniques (analysis of R™). Divers roads can be followed to fulfill the
presented goals. In this thesis, T will present the opportunities provided by the
wavelet transformation.
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1.3 Representations and transformations

A representation of a particular field or operator is the projection of this field or
operator on a particular sct of functions. The advantage of choosing a particular
representation is expressed by Marr (1982): “a representation is a formal system for
making explicit certain entities or types of information, together with a specification
of how the system does this”. Any representation highlights ccrtain aspects of
the data at the expense of information pushed into the background. Hence, some
representations might be appropriate for efficient computations, while others are for
cxample more appropriate to filter undesired signals. A transformation is a rule
prescribing how to go from one representation of a ficld or operator to another
representation of the same field or operator. In section 1.3.1 the attention will
be focussed on the wavelet representation, and in section 1.3.2 the opportuuities
provided by the wavelet transformation will be discussed in relation to the surface
seismic reflection method.

1.3.1 The wavelet transformation

Among the many possible transformations and associated representations the wavelet
transformation, yielding the wavelet representation, is by far the most recently de-
veloped. In 1982, the geophysicist Morlet introduced the wavelet transformation as
a tool to carry out a joint time-frequency analysis. Instead of a decomposition into
frequency components as the Fourier transform! does, or instead of a decomposition
into frequency components within a window of fixed size, as the windowed Fourier
transform does, the wavelet transformation is a decomposition of a field or operator
into components with fixed shape, but with variable location and size. By adjusting
the size of the decomposing blocks while keeping the shape fixed, the wavelet trans-
formation acts as a mathematical microscope. Whercas the wavelet transformation
in its basic form is continuous and highly redundant, its popularity increased signif-
icantly after the formulation of the so-called discrete wavelet transformation, which
is an orthogonal and cfficient decomposition with basically the same properties as
the continuous wavelet transformation. The multiresolution decomposition scheme
(Mallat, 1989a) and the advent of wavelets of compact support (Daubechics, 1988)
were essential to this development.

YA subtle difference exists between the meaning of the words transform and transformation.
Webster (1988) assigns the following meaning to the word transformation: “the operation of chang-
ing one configuration or expression into another in accordance with a mathematical rule...”. The
word transform is assigned two meanings in Webster: (1) “a mathematical element obtained from
another by transformation” and (2) “transformation”. Hence, a transform refers either to the result
or to the action itself. Both meanings will be used here.
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1.3.2 Applications of the wavelet transformation

The wavelet transformation as a tool to improve the seismic reflection method went
through a development cycle consisting of naive and broad enthusiasm in the first
stage, skepticism with respect to the possibilities of the new tool in the second
stage, and dedicated enthusiasm in the third stage. At the moment that this thesis
is written, the seismic community is in my opinion moving on from the second to
the third stage. The third stage is characterized by a well-developed awareness of
the possibilities and limitations, and a good perception of the specific opportunities
for the seismic method.

From different fields of study the following successful application areas crystal-
lized out in the course of time: (1) compression, (2) time-frequency signal processing,
(3) operator representation, (4) singularity analysis, and (5) image analysis. If a tool
is applicable to one field, it does not necessarily mean that the application will be
successful in another field as well. The operators, the data, or the image to which
the transformation has to be applied, might be of just a different nature, causing
the tool to be less effective. Considering the five application areas, looking at the
major steps in the surface seismic reflection method of Figure 1.2, and facing the
challenges discussed at the end of section 1.2 on page 4, the following potentially
interesting applications for the wavelet transformation can be formulated?, which I
list here together with their current status:

1. Compression
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e Principle: decorrclation of reflection events.

e Status: successfully applied with compression ratios up to 100 (Bosman
and Reiter, 1993; Reiter, 1996).

e Remark: the complete compression algorithm consists of three main steps:
C

+hhn wrarralad < s 3 7ot j . 1
the wavelet transformation, a quantization step, and a coding step on bit
.

level (Vetterli and Kovacevi¢, 1995; Chen, 1995).
2. Time-frequency signal processing

e Application: preprocessing of scismic reflection data, for example multiple
suppression, ground-roll removal or noise suppression.

e Principle: local subdivision of the time-frequency plane, and sensitivity
to local changes.

e Status: there is no clear advantage over existing methods yet.

e Remark: especially the trace-to-trace coherency of a seismic reflection
event is not easily taken into account.

2Note that only the major application areas are given.
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3. Operator representation

* Application: representation of propagation operators for cfficient migra-
tion schemes.

¢ Principle: wavelet transformation is “blind” to slowly varying parts in
the operator (Beylkin et al., 1991).

e Status: in development; increased interest due to success of compression.

e Remark: chapter 4 deals with this subject.

4. Singularity analysis

e Application: characterization of singularities in the subsurface and espe-
cially in the reflection opcrator.

e Principle: a singularity, which is an irregular point, implies scale depen-
dency. The wavelet transformation characterizes the scale dependency.

e Status: successfully applied for the analysis of well-logs (Herrmann, 1997);
scale dependency of reflection operator and hence of scismic reflection
data is subject of current research.

o Remark: chapter 5 deals with this subject.

5. Image analysis

e Application: interpretation of migrated data for the automatic extraction
of geological features of interest for the evaluation of potential reservoirs.

e Principle: visual system can be mimicked by a proper sct of operators
applied to a multiscale representation of a data sct (ter Haar Romeny,
1994).

e Status: in the initial stages of development.

e Remark: chapter 6 deals with this subject.

Figure 1.3 summarizes the above listing. Duc to the fact that the third, the fourth
and fifth item form the heart of seismic imaging and characterization, I have con-
centrated on these items. Three separate chapters are dedicated to them. The other
items are only briefly reported on in chapter 2, where I discuss the basic properties
of the wavelet transformation.

1.4 Outline of the thesis and its novel aspects

In chapter 2, the wavelet transformation is introduced within the realm of general
transforms and representations. At the end of chapter 2 the main application areas
of the wavelet transformation as introduced in the previous section are worked out
in more detail. Up to section 2.6, the content of chapter 2 is a rearrangement of
subjects from different literature sources. The discussion of the relevance of the
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Compression Seismic data

prior to imaging

Time-frequency

s

signal processing Preprocessing
Operator \ / . Lo
representation —) Imaging —» during imaging
Singularity Characterization

after imaging

analysis /

. Reservoir
Image analysis ﬂ

evaluation

I

Fig. 1.3 Successful application areas of the wavelet transformation in other fields of study
are shoun in the left-hand side column. The right-hand side column shows the
main steps of a seismic data processing sequence. The lines between the left and
the right column indicate which application area of the wavelet lransformation
is potentially interesting for the use in seismic data processing. The fat lines
denote the main opportunities.

wavelet transformation for the seismic method in section 2.6 has not been presented
in this form before.

4+ 14 e
Vo e

. - ~ PUPURIUNPRUIS [RURPIRN [ R P ]

Tu Chapion O, e Gud-way forward modcl for aoourface scizmic cupe
sented. Here, I also pay attention to the representation of the propagation operators
via a modal decomposition and to the spectral properties of the Helmholtz operator.
The derivation of the forward model reshuffles publicly available literature. The
concise and systematic discussion of the spectral properties of the Helmholtz oper-
ator is a novelty for the geophysical community. The subsequent derivation of the
propagation opcrator via a modal decomposition is in its basic form not completely
new, but its usefulness for geophysical imaging seems to have been overlooked.

In chapter 4, the role of the wavelet transformation in improving the time
consuming process of migration is discussed. Whereas the propagation operators
themselves cannot be represented particularly efficient in the wavelet transform do-
main, the wavelet transformation allows an efficient subdivision of the migration
process enabling a coarse-to-fine reconstruction of the structural subsurface picture.
The method is illustrated with synthetic and real data examples. The advantages
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and disadvantages are pointed out. The results of chapter 4 have not been presented
clsewhere.

Chapter 5 deals with the effect of singularities (a step function is a singularity
as well) on waves reflecting at those singularities. It shows how the wavelet trans-
formation can be utilized to analyze the effects in a deterministic way. In chapter 5
the so-called wavelet transform modulus maxima analysis is introduced first. It is a
well-developed tool to determine the strength of a singularity (Mallat and Hwang,
1992). A complete characterization can be obtained with an additional analysis of
the phase change induced by the singularity. In order to determine how singularitics
in the medium are transferred to the (angle-dependent) reflectivity and, hence, to
the interacting wave field, analytical derivations and numerical cxperiments have
been carried out. The size of the distortion with respect to the background velocity
turns out to be an important factor. The analysis is concluded with a proposal for a
singularity driven inversion scheme. The systematic use of the phase information to
characterize a singularity and the reflection at a singularity is regarded to be new.

Chapter 6 discusses the use of the wavelet transformation in image analysis.
Here, the image is a 3-D migrated data set from the coastal area of the Gulf coast,
containing lots of “hidden” faults and channels. The nature of migrated data in gen-
eral is such that strong reflectors are highlighted. Faults, channels, point bars, etc,
can be found indirectly via inconsistencies in the strong reflections. Generally, these
features are not strong reflectors themsclves. Hence, the nature of migrated data is
such that certain aspects of great interest for the evaluation of potential reservoirs
arc pushed into the background. The application of the 3-D wavclet transforma-
tion turns out to be a valuable tool in extracting the “hidden” information. The
simplicity of the presented method together with its success is a novel aspect.

The chapters 2 up to and including 6 arc finalized with a summarizing sec-
tion, where the main aspects discussed in the chapter under consideration are put
together.

A number of the more detailed mathematical en notational parts, which are
not completely new, but which are otherwise essential enough to be incorporated,
have been passed to the appendices. In appendix A, the matrix notation for trans-
formations and representations is dealt with. It supports the content of chapter 2
and chapter 4. In appendix B, I deal with homogeneous distributions and their
properties. It sustains the line of reasoning presented in chapter 5.

1.5 Notational conventions

To specify the position in an arbitrary configuration I employ the 3-D coordinate
vector @ = (&), z2,x3), which is defined with respect to a right-handed orthogonal
Cartesian coordinate system. The mutually perpendicular base vectors in the co-
ordinate system are given by 2, = (1,0,0), 2 = (0,1,0), and 23 = (0,0,1). The
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13-axis is referred to as the direction of preference. In geophysical applications the
vector i3 generally points vertically downwards. Roman subscripts for the position
coordinates can take the values 1,2, 3, i.c. 2, denotes x1, x4 or x3. Greek subscripts
are reserved for the coordinates perpendicular to the is-direction; they are referred
to as the lateral or horizontal coordinates. Hence, z,, denotes either z, or x3. The
lateral coordinates are also denoted by x;, = (x7,25). Partial differentiation with
respect to one of the spatial coordinates zy, is denoted by J;. The time coordinate is
denoted by ¢. Partial differentiation with respect to time is denoted by ;. The pa-
rameter o is frequently encountered. It is referred to as the scale parameter. Partial
differentiation with respect to the scale parameter is denoted by d,. With respect
to repeated subscripts Einstein’s summation convention applies, i.e.

TrYk = T1y1 + Tays + x3ys for Roman subscripts, except t,

TpYy = 1 + T2ys for Greek subscripts, except o.

Calligraphic uppercase characters denote operators. Bold calligraphic upper-
case characters denote operator matrices. Bold sans serif uppercase characters de-
note discrete matrices. Bold sans serif lowercase characters denote discrete vectors.
The symbols tilde 7, hat *, and check ™ are reserved for representations in the Fourier
domain, in the Gabor domain and in the wavelet domain, respectively. Note, how-
ever that continuous representations of wave fields in the temporal Fourier domain
arc denoted by uppercase characters.




Chapter 2

Representations, analysis
techniques and operators

2.1 Introduction

A mathematical model of a physical process can be written in a conceptual form as
Au = f, (2.1)

where A is an operator, whose action on the field u yields the field f. A complete
understanding of the action of an operator on an arbitrary field in the domain of
the operator can be acquired by solving the eigenvalue problem of 4, which reads

Aoy = Apa, (2.2)

where A is the cigenvalue and ¢, the corresponding cigenvector or eigenfunction.
The solution of the eigenvalue problem provides the clementary components, into
which every field f or u can be uniquely decomposed; this decomposition is called
the eigenvalne or modal decomposition. The eigenvalue decomposition gives the ide-
alized operator dependent representation of both the operator and the field. There
arc two major reasons to cousider other decompositions and representations as well.
Firstly, in the case that the operator A is just one part of a larger physical process,
the cigenvalue decomposition of A is not necessarily a useful decomposition for an-
other part of the process!, or for effectively decomposing the field quantities f or
u. Sccondly, a modal decomposition draws heavily on the computational abilities.
‘There are other decompositions that can be computed more efficiently. This chapter

'In terms of the conceptual model of a surface seisiuic cxperiment of Figure 1.2, this aspect can
be easily illustrated. The eigenvaluc decomposition of the propagation operators Wt is generally
not the ideal decomposition for the reflection operator R+.
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concisely introduces various representations and transformations. In chapters 4, 5,
and 6 the representations and transformations will be applied to the different ele-
ments of the conceptual model of the surface seismic reflection method, which has
been introduced in the previous chapter and which will be worked out in considerable
detail in the next chapter.

Before I proceed, let me elucidate at this point two important notions: repre-
sentation and transformation. Here, I adopt the definitions and habits of quantum
mechanics (Messiah, 1958). A representation of a field f in the variable a € R" is
a projection of this field on a particular set of functions or generalized functions?
1q of the variable a, which can be expressed symbolically by the inner product of f
with the projection functions, according to®

fla) = (f,¢a). (2.3)

Similarly, the representation of a linear operator A4 in the variable a can be expressed
by

Aa,a’) = (Atar, Ya) - (2.4)

What is the advantage of choosing a particular representation? David Marr (1982)
in his book Vision put it this way:

“A representation is a formal system for making explicit certain entities
or types of information, together with a specification of how the system

Ao 4LIY
GOES LiILis.

Of course, choosing onc representation often means that certain aspects in the data
or in the operator are highlighted at the expense of other aspects:

9

. Thus, there is a trade-off; any particular representation makes cer-
tain information explicit at the expense of information that is pushed into
the background and may be quite hard to recover.”(Marr, 1982).

Translating this to the problem at hand, it means that some representations might
be more appropriate for efficient computations (in the case of an emphasis on the
propagation operator), while others are designed to filter unwanted aspects in the
data (emphasis on data), and again others are effectively representing the complexity
in the reflectivity (emphasis on reflectivity).

The other term that requires a further elucidation is the concept transforma-
tion. A transformation is a rule prescribing how to go from onc representation of a
field or operator to another representation of the same field or operator. Figure 2.1

2For the concept of generalized functions or distributions the reader is referred to Zemanian
(1965) or to section 2.4.
3The abstract equations (2.3) and (2.4) will be elucidated in the course of this chapter.
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field f, operator A

projection on a-basis projection on b-basis

transformation . . - ,
a-representation f(a), A(a,a’) . b-representation f(b), A(b,b)
a—

Fig. 2.1 The representation of a field f and an operator A consists of a projection on a
particular set of functions. A transformation links two representations. The tilde
in the b-representation makes the difference with the a-representation explicit.

schematically shows the relation between representations and transformations. Un-
like the situation in quantum mechanics, in scismology a wave ficld is almost always
dealt with as a function of time and spatial coordinates, i.e. as a representation.
Hence, the original representation is often fixed by the temporal and spatial filters,
which the wave fields are projected on.

A large number of representations and associated transformations are avail-
able. Some ordering is required to be able to make a sound choice. Here, I make
a discrimination between representations associated with sclf-adjoint operators and
representations associated with so-called coherent states. Self-adjoint operators give
rise to an orthogonal basis of eigenfunctions. Every function in an appropriate
space can be uniquely decomposed in the orthogonal basis. Well-known examples
are Legendre polynomials, Bessel functions, or complex exponentials, but also §-
distributions, Hermite polynomials or spherical harmonics (Churchill and Brown,
1978; Messiah, 1958). As I am looking for rather general representations, which
nevertheless have attractive properties in various applications, the number of possi-
bilities is limited. I will consider representations induced by complex exponentials,
i.e. the Fouricr representation, and the representation related to the §-distribution,
i.e. the spatial or temporal representation. They are associated with the derivative
operator and the space or time operator, respectively. I will also study an inter-
mediate representation, related to a combination of the derivative operator and the
time operator, i.e. the Mellin or log-modulation representation.

While a decomposition in eigenfunctions has proven undoubtedly its uscfulness,
it is in other instances a limitation. A field which is not exactly an cigenfunction
should be described by a linear combination of the eigenfunctions. Especially, in
classical physics or classical limits of quantum physics, one is not bounded to work
with eigenfunctions. More than that, the eigenfunctions are often physically unre-
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alistic. A Fourier component or a d-distribution, albeit very powerful mathematical
objects, will never occur in real life. These limitations, though not always motivated
in the same way, caused both quantum physicists aud engineers to introduce a con-
tinuous sct of square-integrable, i.e. measurable, states. Quantum physicists called
them coherent states (see Primer, Klauder and Skagerstam, 1985). Coherent states
arc generated by applying unitary operators to a fixed ground state. A well-known
example of a colierent state has been introduced in the signal analysis community
by Dennis Gabor (1946)%:

Jan(t) = ejatg(t —b),

where g(t) is the normalized ground state. The coherent states gan(t) are generated
by applying unitary translation and modulation operators to the function g(¢). If
the function g(#) is concentrated around ¢ = 0 and its Fourier transform g{w) around
w = 0. then it can be easily seen that g,,(¢) is concentrated around (t,w) = (b, a).
Via the parameters a and b the functions g,,(t) can be used to carry out a local
Fourier analysis, whence the often employed term windowed Fourier transform. Are
the functions gq(t) with (a,b) € R? completely describing any function in a certain
functional space? Are any restrictions applicable to the ground state g(¢)? Answers
to these questions have been given in the past decades and will be discussed in
section 2.3.

Another set of coherent states are gencrated by translating and dilating a par-
ticular square-integrable ground state (1), i.e.

() 1 (1‘ - b>
UU} - - _‘L‘" - b
Yak /7|0_| o

with o # 0. The function (¢} has to obey the ‘admissibility’ condition:

The functious w,5(¢) are called afline coherent states or wavelets. They have been
introduced by Aslaksen and Klauder (1968, 1969). The geophysicist Morlet (Morlet
et al., 1982) introduced wavelets as a useful tool to carry out a joint time-frequency
analysis of dispersed seismic reflection and transmission data. The importance of
wavelets stems firstly from the fact that they are “blind” to trends in a signal, which
is directly due to the admissibility condition. Secondly, wavelets act through the
scaling parameter o as a mathematical zoom. By enlarging ¢ the analyzing wavelet
12(#) is stretched. whereas a smaller ¢ causes a highly compact version of the wavelet.
which allows one to zoom in on small details at the location given by the translation
parameter b. Hence. the parameter o enables a local analvsis at multiple scales or

IThe term coherent state was only introduced in the sixties.
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resolutions. The zooming property in addition to its blindness to trends has resulted
in a number of interesting applications such as regularity analysis and singularity
detection (Holschneider and Tchamitchian, 1990; Mallat and Hwang, 1992; Bacry
et al., 1993; Herrmann, 1997). The importance of singularities in physics has been
beautifully formulated by Maxwell (1882, p. 443):

“For example, the rock loosed by frost and balanced on a singular point of
the mountain-side, the little spark which kindles the greal forest, the little
word which sets the world a fighting, the liltle scruple which prevents a
man from doing his will, the little spore which blights all the potatoes, the
little gemmule which makes us philosophers or wdiots. FEvery existence
above a certain rank has its singular points: the higher the rank, the
more of them. At these points, influences whose physical magnitude is
too small to be taken account of by a finite being. may produce results of
the greatest importance. All greal results produced by human endeavour
depend on taking advantage of these singular states when they occur.”

Realizing that reflection can be seen as the local interaction of a wave with a singular
medium, the association with wavelets is easily made and will be worked out in the
remaining part of the thesis.

In the fall of 1986, Mallat and Neyer realized that a representation in the
wavelet domain also expresses the difference between observations made at two dif-
ferent scales. Their theory of a multiresolution approximation made the link between
wavelets and measurements more manifest. Without loosing too much of the prop-
erties of the continuous wavelet transform, it turns out that, within the theory of a
multiresolution approximation, a discrete wavelet transform can be carried out, at
least as fast as the fast Fourier transform. The discrete wavelet transform is obtained
by choosing particular discrete translation values for b and discrete dilation values
for 0. The advent of the multiresolution approximation scheme by Meyer (1986)
and by Mallat (1989b), to be discussed in section 2.5, and the advent of orthogonal
wavelets of compact support (Daubechies, 1988) were major factors in increasing
the popularity of the wavelet representation.

Of course, the discussion of possible representations in a thesis, or even in
a complete textbook on representations, cannot be all encompassing. The reader
can always point out properties, applications, or related subjects that are not dis-
cussed, The exposition is dictated by a personal historical development placed in the
aforcmentioned framework and by the applications in subsequent chapters. Let me
discuss some of the limitations. The body of this chapter is concerned with signals
or functions depending on one variable only, and the operators discussed arce set
to work on one-dimensional signals. NMore dimensional versions are not necessarily
straightforwardly obtained. In subsequent chapters, I will introduce more dimen-
sional versions as soon as I will utilize them. Another restriction is related to the
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choice to work with linear representations only. The fact that I am considering the
linearized wave equation, and the fact that it is appealing to consider the decom-
posing building blocks as special wave field functions, which can be manipulated
in the transformed domain, made me not consider non-linear representations, like
the Wigner-Ville distribution (Cohen, 1993)%. I will also not consider a completely
signal dependent transformation like the Karhunen-Loéve transformation (Vetterli
and Kovacevié, 1995). It optimally decorrelates a signal, but it is not related to
any operator. The reader will also not find an extensive historical overview of the
field of wavelets. I would like to refer the reader to the books of Daubechies (1992)
or Meyer (1993}, and to last year’s Special issue on wavelets of the IEEE (see, for
example, Daubechies; 1996).

In the sequel, the concepts that have been hinted at in this introduction will be
worked out. I will start with the framework for representations and transformations
provided by self-adjoint operators in section 2.2. Here, the fundamental variables
time ¢, temporal frequency w and the logarithmic modulation ¢ and their associated
eigenfunctions will be introduced®. In section 2.3 coherent states will be introduced
as an alternative for the representations related to self-adjoint operators. The Gabor
representation and the wavelet representation will be presented. A number of prop-
erties of the two representations will be discussed. In section 2.4 the properties of the
wavelet transform will be discussed. Emphasis will be put on the concept scale. Sub-
sequently, in section 2.5 discrete versions of the introduced representations will be
discussed. Here, the multiresolution framework and the discrete wavelet transform
(as opposed to the continuous wavelet transform) will be brought in. In section 2.6
the main applications of the wavelet transform will be discussed in relation to the
scismic method. Section 2.7 summarizes the main aspects of this chapter.

2.2 Representations and transformations related to
self-adjoint operators

The common use in quantum physics to associate physical quantities with operators
has been adopted in the signal analysis community, especially since Gabor (1946)
wrote his masterpicce on joint time-frequency analysis”. Gabor introduced oper-
ators for time and frequency similar to the operators for position and momentum
in quantum physics. Although it is not strictly necessary to draw on the extensive

5Steeghs (1997) deals with a number of non-linear distributions and their applications in geo-
physical processing.

SThe derived properties apply equally well, mutatis mutandis, to the variables position, spatial
frequency and spatial logarithmic modulation.

71t is important to realize that quantum physics, here or in the rest of this chapter, is not used
to clarify aspects in signal analysis. The tools developed in quantum physics are translated to a
time-frequency framework instead.
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operator theory, it provides a unifying framework of which the variable, the basis
and the properties of the basis form integral parts. Moreover, the results obtained in
quantum physics for the conjugate pair position-momentum based upon the operator
theory can be translated to the conjugate pair time-frequency. The translation has
been clearly reported on, amongst others, by Cohen (1993, 1995), and by Baraniuk
and Jones (1995). The operator framework will be given for general operators in
section 2.2.1. In section 2.2.2 I will specify the exposition for operators relevant for
a time, frequency and mixed time-frequency analysis.

2.2.1 General theory

In this subsection the following notions will be introduced: Hilbert space, linear
operator, adjoint operator, self-adjoint operator, cigenfunction, unitary operator,
and invariance and covariance properties. The exposition will be necessarily brief.
For more extensive introductions the reader is referred to Messiah (1958), for a broad
overview, or to chapter 3, for a more extensive treatment of some specific subjects.

Hilbert space —A mathematical description of a physical process requires a care-
ful analysis of the states the observable field can possibly attain. The possible states
depend on the operators ruling the physical process. They are mathematically de-
scribed by defining an appropriate Hilbert space. A Hilbert space is a linear space®;
it is equipped with an inner product denoted by (, ), which has to satisfy the
following properties:

(a) the inner product of ¢ and 9 is the complex conjugate of the inner product of
Y and ¢, i.e.

(60) = (¥,0)%; (2.5)
(b) the inner product is linear with respect to the first argument

(A1 + Aoga, ) = A1 (D1, 0) + A2 (d2, ) ; (2.6)

(c) the norm of a function ¢ is a real non-negative number defined by

Il = v/ (b, 0) >0, (2.7)

where (1,1)) =0, if and only if ¢ = 0.

In order that a space of functions is a Hilbert space, it is required that (¥, %) < oo
for any 1 in the Hilbert spacc. Finally, a Hilbert space is required to be complete

8A vector space is linear in the case that a linear combination of two vectors or functions U
and 2 in the vector space, is in the vector space as well. In terms of wave fields, this means that
the superposition principle applies, i.e. that the linearized wave equation is assumed to be valid.
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and scparable. Completeness in this context means that every so-called Cauchy
scequence® of clements in the Hilbert space converges towards an element in the
same Hilbert space. Separability means that any element in the Hilbert space can
be approached infinitely close by a Cauchy sequence of clements in that space.

Operators —An opcrator A assigns to a function ¥ in the domain of A another
function ¢, according to

where 1) and ¢ do not necessarily belong to one and the same Hilbert spacc. If the
action of the operator A is linear in 9, it is called a linear operator. The inverse
of an operator (if it cxists) is the operator B = A~! that undoes the action of the
operator A on v, according to

P =A""o. (2.9)

Consequently, BA = A~! A = T, where T is the identity operator. The adjoint of A
is denoted by Af. It is the operator for which the equality

(A, ¢) = (v, ATd) (2.10)
holds true.

Selt-adjoint operators —tor a self-adjomnt operator the adjomt operator equals
the operator itself, according to Al = A. Consequently, for a self-adjoint operator,
the following equality holds:

(Av,¢) = (¥, Ag). (2.11)

The proper definition of a sclf-adjoint operator goes along the subtle lines sketched
in section 3.3.1 on page 81. Self-adjoint operators form an important subclass of the
set of linear operators. They provide insight in the properties of a physical system
amongst others through a study of the eigenvalue problem

Ad)a = aq, (212)

where a is the eigenvalue and ¢, is the corresponding eigenfunction. The advantage
of a self-adjoint operator becomes manifest, if one realizes that all the eigenvalues
of a self-adjoint operator arc real (in quantum physics it is postulated that they are

IThe sequence v, is said to be a Cauchy sequence if, given ¢ > 0, there exists an N such that
[[t'n — wml| < € for every n and m greater than NV (sce, e.g. Higgins, 1977: Gohberg and Goldberg,
1981).
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related to the observables, see section 3.3.1) and that the corresponding eigenfunc-
tions form an orthonormal and complete set, hence an orthonormal basis!®. The
orthonormality condition takes the mathematical form

(Pa, ar) = 6(a—d'), (2.13)
and the requirement for completeness is given by
(halt), dalt')) =06(t = 1), (2.14)

where on the left-hand side an integration over @ in the spectrum o(A) of A is carried
out!'. In relation (2.14) I have assumed an explicit dependence on a variable ¢ which
can be in R™, but in this chapter ¢ is assumed to be a 1-D variable. The completeness
relation means that any function in the Hilbert space can be expanded in a linear
combinations of (generalized) eigenfunctions. Another form of the completeness
relation is given by

u(t) = /1)((1,) $a(t) da, (2.15)
where v(a) is the representation of a ficld v in the basis {¢,}, according to

v{a) = (v, 0q) - (2.16)

Equation (2.15) is called the closure relation. The integral in equation (2.15) is taken
over the valucs @ in the spectrum o(A) of A. The closure relation expresses that
the projection of a function on a complete set of eigenfunctions acts as an identity
opcrator. Note that equations (2.13), (2.14), and (2.15) should be understood in the
sense of generalized functions.

The representation of an opcrator X in the basis {¢,} is given by

K(a, al) = <K¢a’a ¢a> . (2.17)

K(a,a’) is called the kernel of the operator K.

10Here, it is tacitly understood that the generalized ecigenfunctions, those belonging to the abso-

lute continuous or singular continuous part of the spectrum, are included as well. Strictly speaking,
the generalized eigenfunctions do not belong to the domain of the operator. See chapter 3 for a
more extensive treatment of this issue.

11 The spectrum o(A) of A is the set of all eigenvalues of A. Note that in equations (2.13), (2.14)
and (2.15) the spectrum is assumed to be non-degenerate and continuous. In the case of a degencrate
spectrum or in the presence of other types of spectra as well, the expressions for orthonormality
and completeness get slightly more involved, but not fundamentally different (Messiah, 1958). The
physical interpretation of the various types of spectra, however, can be quite diffcrent.
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Unitary operators —Another important class of operators is the unitary operator.
For a unitary operator U the adjoint operator equals the inverse, i.e.

ut=uy-. (2.18)
A unitary operator preserves the inner product, according to
UpUP) = (p,UTUP) = (¢, $). (2.19)

Consequently, a unitary operator is norm-preserving, that is

Up,Up) = (Y, ¥). (2.20)

In this chapter, two types of unitary operators will be encountered'?. One is related
to the transformation between two representations. It is the unitary operator which
straddles the representation related to different sets of eigenfunctions. I will refer
to this type of unitary operator as transformation unitary operator. The other type
of unitary operator is related to the representation of a group. Operations like
translation, modulation, scaling and rotation, or any mixture of these operations
belong to the latter class. 1 will refer to this type of unitary operator as parameterized
unitary operator.

Transformation unitary operators -Supposc two different self-adjoint opera-
tors A and B in a particular Hilbert space are defined with two different complete
sets of eigenfunctions denoted by {¢, } and {14}, respectively. Both the spectral val-
ues a of A and b of B are assumed to be absolutely continuous for ease of notation
(see chapter 3, Messiah (1958) or Reed and Simon (1972), for a complete description
of the spectrum). Duc to the completeness of both scts any function of the set {¢q}
can be expressed as a linear combination of functions from the set {1} and vice

....... AF apeiadio =0
versa, cf. equation {2.15),

b= [tonininds b= [ (i) duda (2.21)

The coeflicients {¢q,¥s) or (b, ¢q) can be regarded as the coeflicients of an integral
kernel'®. It can be easily shown that U(a,b) = (@, ¥s)* is a unitary transformation
kernel relating the representation of a function v in the sets {¢,} and {v5 }, according
to

v(a) = /U(a,b)v(b) db v(b) = /U_l(a,b)v(a) da, (2.22)

12Baraniuk and Jones (1995) discriminate three types.
1311 the case of two complete discrete spectra (¢a,vy) and (¥, ¢a) are matrix kernels.




2.2 Representations and transformations related to self-adjoint operators 21

where U™ (a, b) is the kernel of the inverse operator, given by U~ !(a,b) = (dq, 1) -
Similarly, the representation of an operator K in the basis {13}, given by K(b,b') =
(K#ppr ,4bp) , can be transformed to a representation in the basis {¢,} by

K(a,d') = /b/b (s o) *K (b, ) (par, by ) db db (2.23)

or
K(a,a’):// U(a, b)K (b, YU (a’, ') db’ db. (2.24)
b ’

Equations (2.22) and (2.24) make the symbolic transformations shown in Figure 2.1
explicit.

In the case that a onc-to-onc correspondence exists between eigenfunctions of
the two scts, the matrix or integral kernel U can be expressed as a transformation
unitary operator (/. Hence, equation (2.24) can be casted in operator form

K=uxu. (2.25)

The operators K and K are called unitarily equivalent (Messiah, 1958; Daubechies
et al., 1986; Baraniuk and Jones, 1995). Unitarily equivalent self-adjoint operators
share the same spectrum; however, the corresponding eigenfunctions are generally
different; they are related by the unitary operator . An eigenfunction ¢ of K
transforms to the eigenfunction ¢ of K according to

¢ =Ugp. (2.26)

The concept of unitarily equivalent operators has been used by Baraniuk and Jones
(1995) to derive, in an elegant way, from cxisting orthogonal decompositions, like
the Fourier transform or the wavelet transform, other orthogonal decompositions
better adapted to the signal to be analyzed.

Parameterized unitary operators —Another type of unitary operators can be
associated with groups. The concept group!? formalizes the symmetry aspects in a

14 Definition 2.1: Group (Messiah,1961)
A set & of operations a, b, ¢, ... forms a group if

(i) the product of any two of them also belongs to the sct:
two operations a and b carried out consecutively can also be applied in one step
according to the rule ¢ = ab;

(ii) one of the elements, I, is the unit clement: application of the unit element does not
change the systen;

(iii) each of the elements has an inverse: cach of the operations does not destroy informa-
tion, i.e., it can be undone;
(iv) the operation is associative: in a series of three operations the operations can be done

in pairs.

Note that if the inverse cannot be defined, a semi-group is dealt with.
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given system. Following Duffey (1992, page 38): “Every operation that transforms a
given system into an equivalent system is called a symmetry operation. By equivalent
system, we mean one that is indistinguishable from the original one with respect to
the properties under study. All the symmetry operations for a system considered in
a certain way form a group.”

Example 2.1 The set of translations or shifts over an axis forms a continuous group
with an infinite number of elements. It is defined by

(Saf)(t) = f(t —a). (2.27)

It can be easily verified that the group requirements for the translation operator are
fulfilled.

The shift operator S, is a unitary operator and it constitutes a representation of the
translation group. According to Stone’s theorem (Reed and Simon, 1972, Theorem
VIIL.8) one can associate to a parameterized unitary operator, like the translation
operator or the rotation operator, a self-adjoint operator A such that

Uy, = cioA, (2.28)

In the case of a bounded self-adjoint operator A, equation (2.28) can be evaluated
with a Taylor series expansion. For an unbounded operator functional calculus is
required. The self-adjoint operator A is called the infinitesimal generator of the
unitary operator U,. In the previous example the infinitesimal generator is the
self-adjoint operator A = %(‘)t.

Invariance and covariance properties —In order to fully explore a particular
representation, one has to be aware of its properties with respect to other represen-
tations. The power spectrum of a signal is not sensitive to temporal shifts of the

lrermal ncrascan 4 34 Anmaiticen ba snadalatiane AF thio o avictnal cienal Tha cnaesh fan
Cigailay LTTVCTCT, AU D DONIIUIVT UC IMOTULOUICHD O TRC COriZinill DI LT Dohrc T

the properties of a system can be carried out by looking at commutation relations
between the parameterized unitary operators and self-adjoint operators representing
a physical system (Messiah, 1961, Ch. XV, Section IIT). Two operators A and B
commute if their commutator [A, B] is zero, according to

[A, B] & AB - BA=0. (2.29)

In the case that A is a sclf-adjoint operator, i.e. an operator representing a certain
physical variable a, and B is a parameterized unitary operator U,, equation (2.29)
reads

(A, U] =0, (2.30)

and consequently, the variable a is invariant under the group of transformations
associated with Up.
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Example 2.2 Consider again the shift operator (S,f)(t) = f(t — a). It is well-
known that the frequency content of a signal is invariant under temporal translations,
except for a phasc factor. The frequency content of a signal can be obtained by
doing a decomposition in complex exponentials. The couplex exponentials arc the
generalized eigenfunctions of the self-adjoiut operator F = %(‘Pt. Conscquently, one
might expect that S, and F comimite, Le.

[F. 8] =0,
which can be easily verified to be true'”.

Besides the invariance properties, it is often interesting to know how a represen-
tation in a specific domain behaves under (unitary) changes of the representation in
another domain. If the changes carried out in one domain can be carried out equally
well in the other dowmain, the associated properties are called covariant (Baraniuk
and Jones, 1995). In the discussion of the different representations attention will be
paid to both invariance and covariance properties. Nore particularly, I will look for
invariance and covariance properties under the action of a shift operator, a dilation
operator, and a modulation operator.

2.2.2 Time, frequency, and logarithmic modulation

In the previous section thie apparatus has been developed which enables an investi-
gation of the physical variables time ¢, frequency w and logarithmic modulation!®
parameter ¢ in terms of self-adjoint operators and associated unitary operators'?.
Following Cohen (1993, 1995), aud Baraniuk and Jones (1995}, the sclf-adjoint rep-

resentations of time, frequency and log modulation are in the time domain'® given

by
Time operator (THO =11
Frequency operator (FNO(t) = %(),f(f) (2.31)
Log modulation CnH) = (yf) (t).

Although the terminology might not be a priori clear, the solution of the (gener-
alized) cigenvalue problems of the three self-adjoint operators will show that the

15 Knowing that the infinitesimal generator of S, is F, it is a trivial result.

16In the sequel abbreviated as log modulation.

L7 the introduction I explained that the results can be used, mutatis mutandis, for the corre-
sponding variables in space as well.

13 A representation of an operator in the time domain means that the operator is sct to work on
a function projected on the temporal basis.
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terminology makes sense. The eigenvalue problems (cf. cquation 2.12) are

Time Ty =t dp
Frequency Fou = wdy, (2.32)
Log modulation Coe = e,

and the resulting generalized eigenfunctions read in the temporal domain

Time dp(t) = 8(t —t')
Frequency du(t) = o= e (2.33)
Log modulation be(t) = = Heml2 > 0.
The representation of a function in the domain associated with these eigenfunctions,
reads
Time ) = ().t — )
Frequency flw)y = (f(), A= el (2.34)
Log modulation fle) = (f(1), T tie=1/2y

which are identified as the time domain representation, the frequency domain rep-
resentation, and the log-modulation domain representation, respectively. The fre-
quency domain representation is better known as the Fourier domain representation,
associated with the Fourier transform. The log-modulation domain representation is
also referred to as the Mellin domain representation, because f (¢) can be recognized
as the Mellin transform of f(#) with the complex argument —jc —1/2 (Cohen, 1995;
Dautray and Lions, 1990). The term log modulation becomes clear by rewriting the
cigenfunction ¢.(¢) as
1 adclogt

Ver Vit
whichi is recognized as a complex exponential with a logarithmic t-axis (see also
Figure 2.2).

The eigenfunctions of equation (2.33) are given in the time domain. Upon com-
parison of equation (2.34) with the first of equations (2.22) one directly recognizes
the unitary transformation kernel from time to time, time to frequency. and time to

(2.35)

Mellin, respectively. By explicitly defining the unitary transformation kernels'?
Ur(t'.t)=6(t—1")
Ur(w.f) = el (2.36)
U(j (F. f) =

1
27

—
~~
=
~
(™)

V2

¢ . . . . . . e
19T hese are of course equal to the temporal domain cigenfunctions given in equation (2.33).
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Fig. 2.2  The cigenfunctions of belonging to the time. frequency and Mellin representation.
(a) é-distribution. (b) Real part of a complex cxponential. (¢) Real part of a
Mellin eigenfunction. Note the logarithmic course of the modulation frequency.

the correspondence with equations (2.22) is even more apparent:

£ = Uy
fm - <uff>(wv> (2.37)
Ue

where U7, Ur and Ue are the transformation unitary operators corresponding to
the kernels Ur(#'.t), Ur(w,?) and Uc(e.t) respectively. In a similar way, following
equation (2.24) the representation of an operator K in the time domain, K(¢,¢') can
be transformed according to

K(t.t") = UrK Uz
K(w,w') = UrK Uz (2.38)
K(e,e') = UcK U "

Let me discuss here sowne obvious features of the representations associated with
these unitary transformations. Figure 2.2 shows (symbolically) a d-distribution, a
complex exponential and a Mellin cigenfunction. The time and frequency eigenfunc-
tions are extremes, in the sense that the former has an infinitely small temporal
influence arca and the latter has an infinitely long temporal influence area and the
other way around in the frequency representation. Another way to interpret the
eigenfinictions is by introducing a time-frequency plane (reminiscent of the phase-
space in classical or quantum mechanics) and by inspecting how the eigenfunctions
cover it. Figure 2.3 shows the time-frequency distribution of single eigenfunctions.
Note that the Mellin cigenfunction has a symumetry axis. This specific synunetry was
to be expected on the basis of the symmetric structure of the associated self-adjoint
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Fig. 2.3 The coverage in the time-frequency plane of the time (left), frequency (middle)
and log-modulation or Mellin eigenfunctions (right). The symmetry of the self-
adjoint operator associated with the latter is also clear from the syrmmetry in the
time-frequency plane.

operator C in equation (2.31). More properties of tlie representations are discussed
below.

Invariance and covariance properties —Using the apparatus developed in sec-
tion 2.2.1. the invariance and covariance properties of the transformations can be
ingpected. Invariance properties of a physical variable become mathematically clear
if the commutator of the governing self-adjoint operator and a parameterized unitary
operator equals zero. A number of straightforward parameterized unitary operators
can be made, following equation (2.28):

Frequency shift /modulation operator ~ M, = ¢/*7 (Mo f)(t) = 2 f(t)

- LT

L1me shitt operator op = € SpS Iy = Ju—10y
Nowo C 1 t
Dilation operator E. =ellowrC e Ay =——f( ).
p o =€ ( Uf)( ) \/Ef pu

The fact that the log-modulation operator C is the infinitesimal generator of the
dilation operator?’, is the most important reason for introducing it. The invariance

properties are now readily obtained, they are given by
M., T] =0 [Sp. F] =0 [Es.C] =0, (2.39)

which meauns that, up to a phase factor. the temporal representation of a function is
invariant under modulations, the spectrum of a function is invariant under transla-
tions. and the Mellin representation of a signal is invariant under dilations or scale

20Note that the € of expansion is used as a symbol for the dilation operator.
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changes. More mathematically, this denotes (Baraniuk and Jones, 1995)

[(Ur Ma )] = 1UT )] (2.40)
(UzS W) = Uz )] (2.41)
(UeEs FYA] = [Uef)e)]- (2.42)

The invariance properties of the time and frequency representation are well-known.
The invariance of the Mellin representation under scale changes of the original signal
is less well-known. Altes (1978) uses it in combination with the Fourier transform
to analyze mammalian hearing. Cohen (1993, 1995) pays a lot of attention to it.
He calls the Nellin representation the scale representation. In view of its invariance
under scale changes or dilations, Cohen chose an awkward terminology. On the
other hand, just because of their invariance under scaling the Mellin eigenfunctions
are useful objects in the analysis of self-similar phenomena, like (multi)fractals;

5, the

a conjecture worked out in more detail by Herrmann (1997). In chapter
Mellin transform will be used again while analyzing the wavelet transform of (scale
invariant) homogeneous distributions.

Covariance properties [ollow from other commutation relations. The counu-
tators of the frequency operator and the frequency shift, and of the time operator

and the time shift, read
[Sp. T =b8, and [M,,F] =aM,, (2.43)
which leads to the following covariance propertics

UrSLHI(E) = (ST FYE) = UT )L = b) (2.44)
UrMo f)(w) = Mullz f)(w) = Urf)(w — a). (2.45)

The last two relations make again clear that f(#') measures temporal content and
f(w) measures spectral content.

Cohen (1995) and Baraniuk and Jones (1995} discuss more propertics of the
different representations on the basis of the operator approach. Moreover, Baraniuk
and Jones introduce in a consistent way unitarily cquivalent self-adjoint operators A
(cf. equation 2.25) and a number of derived unitarily equivalent operators: unitar-
ily equivalent parameterized unitary operators exp(ja.d), and unitarily equivalent
transformation unitary operators U g. This approach opens up a whole class of rep-
resentations, which covers the time-frequency plane as introduced in Figure 2.3 in
a different adaptive way. However, the coverage of the time-frequency plance is still
carried out with eigenfunctions of infinite length in this planc. Is it possible to work
with more localized decomposition functions? This question will be addressed in the
next scction.
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2.3 Representations and transformations related to
coherent states

Gabor (1946) dealt with the question on more localized decomposition tunctions.
He worked in the field of communication theory and acoustics. He was aware of the
attractive properties of the frequency domain representation Fourier had provided.
At the same time Gabor realized, however, that Fourier integrals, which consider
intervals “sub specie aeternatis”, are far from our cvery day point of view. He realized
that measuring instruments, but also the human ear, sensc information in both time
and frequency together. A musical tone, for example, can be discriminated by the
human ear on the basis of the moment it is played but at the same time two tones
can be discriminated on the basis of their pitch. A musical score is based on this
idea. Different tones can be played at different times. Tt was also realized in the time
of Gabor that there are certain limitations on the simultancous discrimination of the
time and frequency of a tone. A toue of a certain pitch requires a certain minimum
amount of playing time in order to be recognized as that specific tone. Although it
could have been a limitation of the human ear, Gabor showed?! that the limitations
on a simultaneous time-frequency analysis are fundamental. He derived the time-
frequency equivalent of Heisenberg's uncertainty relation by stating that a signal
cannot be characterized infinitely accurate by its time and frequency localization
together. Given this fundamental uncertainty, Gabor derived the set of functions
for which the smallest uncertainty is obtained. These functions are translated and
modulated Gaussians, according to

gan(t) = (MaSpg)(t) = €' g(t — b). (2.16)

where ¢(t) is a normalized Gaussian function. For all values of a and & the functions
Jau(t) Occupy a minimum area with equal shape and size in the time-frequency
plaue??. Gabor intuitively understuod tiat a sCl of fuuctions {gep(i )| witle u, &
continuously varying, forms a redundant family. By choosing a = maq and b = nby,
he assumed that he could completely cover the time-frequency, i.e. that each function

f could be uniquely defined by the expansion coefficients on the discrete lattice??

<f g?nau.nb“> . (217)

Among the applications for his newly defined functions. Gabor especially focussed
on the accurate and efficient representation of the receiver characteristics of the ear.

2LAt this point Gabor (1946) gives credits to Stewart (1931) who after a suggestion of the
theoretical physicist A. Landeé brought the possibility of an acoustical version of Heisenberg's
uncertainty relation to the awarcness of the acousticians.

22The notion minimum area should be interpreted in the seuse of an energy concentration. This
notion will be elucidated on page 33.

23 Bastiaans (1980) showed that the lattice Gabor chose. does not lead to a stable reconstruction.
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With the benefit of the hindsight. it is easy o say that the constant-Q shape of the
aural filter can better be represented by constant-@ filters, like wavelets, than by
Gabor [unctions, which do not have a constant-() behavior.

The long introduction on the work of Gabor serves two goals: (1) it honors a
great paper; (2) it essentially introduces all the ingredients for a joint time-frequency
analysis. The ingredients are completeness, recoustruction and physical relevance
of particular divisions of the time-frequency plane. These ingredients can best be
dealt with in the framework of colhierent states. Although coherent states have their
origin in quantum physics (Glauber, 1963), the applicability of the associated theory
is elucidating enough to introduce theni. The general theory of coherent states will
be dealt with in section 2.3.1. Section 2.3.2 deals with translated and modulated
Gaussians, giving risce to the Gabor representation. In section 2.3.3 affine coherent
states will be dealt with, leading to the wavelet representation.

2.3.1 General theory

In their book, Klauder and Skagerstam (1985) give an extensive account of the
developments related to coherent states. Sets of coherent states share the following
properties:

L. Continuity . The state or vector g, is a continuous function of the (possibly
more dimensional) label a. Continuity denotes that when ¢ — o' — 0, it is
required that g, — go-. This requirement typically excludes all basis scts of
cigenfunctions related to self-adjoint operators?!.

2. Completeness (Resolution of identity). There exists an integration measure da
such that

f= /<.f,gn>.qa6a (2.48)

for any f in an appropriately chosen Hilbert space. Equation (2.48) has to be
understood in the sensc of distributions. Though (2.48) seems to be equivalent
to the closure relation (2.15), which shows a reconstruction from an expansion
in a complete set of orthogonal eigenfunctions, the lack of orthogonality of the
colerent states makes expansion (2.48) notably different.

Let me briefly list a number of properties that readily follow from the aforementioned
requirements and that can be directly applied to the continuous Gabor expansions
and the continuous wavelet expansions that follow.

241 the case of a discrete spectrum the labels are not continuous. In the case of a continuous
label the eigenfunctions are still not coherent states because they will always be orthogonal, and
henee g, will not approach g, infinitely close.
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1. Coherent states can always assumed to be normalized, i.e.

(9a:9a) =1, (2.49)

which is not true for generalized eigenfunctions. This is a physically appealing
property. One can thus associatc states with physical phienomena.

2. Just as f(a) = {(f,ga) is the functional representation of the measurable
function f in the coherent states, an operator X can be given a functional
representation according to

K(aﬁ (1’) = <K:gu,’e ga> 5 (250)

which is again reminiscent of the representation of an operator in an orthogonal
basis of eigenfunctions (see equation 2.17).

3. Due to the resolution of identity (2.48), the representation of a function f in
the coherent state set g, can be written as

(o) = [ {0 REa" )i (251)
where R(a’,a) L {gars ga) is the so-called reproducing kernel. In the case
of an orthonormal basis, equation (2.51) would represent a trivial identity
placing no extra restrictions on the representations in the transformed domain.

However, duc (o the continuity of g, the inner product {gas.ga) is ge
non-zero in a neighborhood of o’ around a. Consequently, the representation
fla') = {f.go) cannot be chosen arbitrarily; it has to be chosen ‘admissible’.
It means that the space of possible functions f(a) is in general larger than the
space of projections (f, ga) .

4. A set of coherent states is highly redundant. Any single coherent state can be
expressed as a linear combination of the other coherent states, according to

Ya = /(ga,gn’>gu’5al- (2.52)

The redundancy can be utilized to look for suitable subsets which still represent
the whole space. In section 2.5 discrete subsets will be discussed.

How can coherent states be constructed? They can be obtained by applying pa-
rameterized unitary operators I of an irreducible representation of a Lie group to
a ground state or fiducial vector (Perelomov, 1972)%%. T will limit the exposition to

25Roughly speaking, a representation is irreducible. if for any g # ). there docs not exist nrontrivial
f orthiogonal to all the g (Messiah. 1961: Daubechies, 1992).
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Fig. 2.4 Time-frequency distribution of three Weyl-Heisenberg coherent states or Gabor
functions. The top picture shows the three individual states (only the real parts)
in the lime domain. The left picture shows their power spectrum. The middle
picture shows their posilion and shape in the time-frequency plane. The bottom
picture shows the envelope of the three states. Nole that only positive frequencies
are considered in this example.

two types of coherent states. One is generated by applying translations and modu-
lations to a ground state, according to the ideas of Gabor (1946). but now placed in
the new coherent-state framework. Within this framework they will be called Weyl-
[eisenberg coherent states. The other one is generated by applying translations and
dilations to a ground state, yiclding wavelets. Within the coherent-state framework,
wavelets are called affine coherent states. For details on the group theoretical back-

ground of both types of coherent states, the reader is especially referred to Heil and
Walnut (1989).

2.3.2 Weyl-Heisenberg coherent states

The Weyl-Heisenberg coherent states are the quantum mechanical equivalents of
Gabor’s proposal for joint time-frequency analysis functions. They are created by
translations and modulations of a ground state. according to

(D) = (Gurg)(0) (2.53)
= olg(t—b). (a.b) € R?,

where the parameterized unitary operator Gy, is defined by

gal) é MQSIJ- (254>
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Fig. 2.5 (a) Reproducing kernel Ry(a’,b’; a,b) for the Gabor representation for lwo values
of a and b. (b) Reproducing kernel R, (a’,b';0,b) for two values of o and b for
the wavelel representalion. Both kernels are continuous in their parameters.

which is very closcly related to the Weyl operator of quantum mechanics (Klauder
and Skagerstam, 1985: Grossmann ct al., 1986). 1t is the representation of the Weyl-
Heisenberg group of phase-space translations with the following group multiplication
rule

gnbgu’b’ = C‘ga+a’Ab+b’~ (255)

where (' is a phase factor depending on a. @’, b, and ¥'. Following section 2.3.1, the
gronnd state g(1} is an arbitrary square-integrable function, which can be chosen to
one’s advantage. Figure 2.4 shows examples of Weyl-Heisenberg coherent states for a
number of values a, b (here with a > 0) and for the most commonly used ground state
both in signal analysis and quantum mechanics, the Gaussian function. Figure 2.4
shows the location of the coherent states in the time-frequency plane, which has been

- R ™ a oL -1 S N O 2 A T T NTEET |
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size and form, which is an limportant characteristic of these states in comparison
with affine coherent states (cf. section 2.3.3).

The requirements given in the beginning of section 2.3.1 for g.;(t) to be coherent
states, can be checked. The continuity in the labels a, b is easily seen by looking,
for example, at the reproducing kernel Ry (a’, 0’5 a,b), cf. equation (2.51), for a fixed
value of a,b. Figure 2.5a shows two Gabor reproducing kernels for two values of «
and b. Similarly, the resolution of identity can be checked. The decomposition of an
arbitrary function into Gabor functions reads

S g} (ab) 2 (fogu) = / F(Hge(t) dt. (2.56)

This decomposition goes under the name Gabor transform. It is also referred to as
the short-time or windowed Fourier transform. If there cannot be any confusion with
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respect to the decomposition function, &{ f, g}(a.b) will also be denoted by f(a,b)
and it will be called the Gabor representation of f. According to the resolutioun of
identity, the reconstruction of f from its Gabor representation reads

10 = [ Fa.b)gu(t)da (2.57)
where dadb is the invariant integration measure da of equation (2.48).

Properties of the Gabor representation —Let me discuss three important prop-
ertics of the Gabor representation (for other properties the reader is referred to
Vetterli and Kovacevié (1995)):

o Covariance under lranslations

The Gabor representation is covariant under translations in the time domain,
according to

<8£f, Mnsbg> = <;’(7 S*EM“SI”(}) (258)
= (?‘jﬂg <f, Man'ffg>
= e""’gf(a, b—¢).

o Couvariance under modulations
The Gabor representation is covariant under modulations (or translations in

the frequency domain), according to?°
(M f  MoSpg) = (f. M_c MoSig) (2.59)
= <f«Ma—£‘S(;9>
= fla=¢&b).

o Localizalion
In order to better understand how the Gabor representation is subdividing the
time-frequency plane, let me discuss in more detail the localization properties.
Suppose g(!) is concentrated around ¢ = 0 and its Fourier transform g(w)
around w = 0, which can be expressed by

~

2 /y‘|_q(f)|2<lf =0 (2.60)

: /
= w

25By including an appropriate phase factor in the Gabor decomposition functions, the covariance
properties for time and frequency translations can be symmetrized (Grossmann et al.. 1986). In
order to make it a correct representation of the Weyvl-ITeisenberg group. the phase factor is required.

€.

g(w)]? dw = 0. (2.61)
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The time width A, and frequency width A, are defined by
832 [t 0Rla(n ar (2.62)
828 [w-w2lp)f . (2.63)

and they take some finite value. The quantities A; and A, measure the energy
concentration in the time and frequency domain. In equations (2.60)-(2.63)
the function g(¢) is assumed to be normalized. By using a version of the proof
of Schwartz’ inequality due to Weyl (1931), Gabor (1946) was able to derive
the time-frequency equivalent of Heisenberg’s uncertainty relation:

AA, > % (2.64)

This inequality says that it is not possible to simultaneously measure the time
and frequency of a physical event with arbitrary precision. Equality is reached
for a Gaussian function

1 1/1 ) ;
g(t)—( : > A (2.65)

’\,27—1—

and its Fourier transform

~2 1/4 2 2
sy = (Z) e (2 66)
m

With this choice, the width in tine and frequency become

A 1
- -
A = 7 and A, o (2.67)

respectively. The temporal and [requency localization of the coherent states
are not affected by the modulatious and translations. Hence, the shape and
the width of the window functions do not change, but the shape of the actual
analyzing functions does change (see Figure 2.4). Finally, note that in the
limiting situation of 4 — 0, the Gabor representation reduces to the temporal
representation, while for v — oo the Gabor representation goes to the Fourier
representation.

2.3.3 Affine coherent states

The term affine coherent state has been introduced by Aslaksen and Klauder (1968,

1969). Affine coherent states are formed by applying parameterized unitary opera-

tors associated with the affine group to a ground state, i.e. by applying translations




2.3 Representations and transformations related to coherent states 35

and dilations to a ground state ¢({), according to
Vou(t) 2 (A, 0)(1) (2.68)
1 t—1
—= ( p )> o e R/{0}.beR.

|7

Il

. . . ~ Ay .
where the parameterized unitary operator A_, is defined by A, = §&,. It is
the representation of the affine or ‘ar + b’-group which fulfills the following group
wultiplication rule

Arrl:Arr’l;’ = Am‘r’«b+rrb’ . (2()())

In contrast with the ground state g(t) for the Weyl-Heisenberg coherent states, the
ground state ({) for the affine Cohcmnt state can not be chosen arbitrarily square-
integrable. It las to be chosen such that

dw
0<Cy / | yﬁ Y <. (2.70)
For sufficiently fast decaying functions ¢(t) this condition reduces to

/L"(f) dt =0, (2.71)

whicli is referred to as the admissibility condition. The fast decay in the time domain
means regularity in the frequency domain. Regularity is required for equation (2.71)
to be a sufficient condition. Albeit a limitation, equation (2.71) still allows for an
amazing amount of atfine coherent states. Various possibilities will be discussed in
the subsequent section. From here onwards, affine coherent states defined according
to equations (2.68) and (2.71) will be called wavelets. Figure 2.6 shows a number of
wavelets for different values of o and b. The ground state is here the second derivative
of a Gaussian, the Mexican hat. Figure 2.6 shows their positions and shapes in the
time-frequency plane as well. Tt is clear that, unlike the Gabor functions, wavelets
are not of constant width. The width varies as a function of o, while the shape
remains fixed.

The requirements given in the beginning of section 2.3.1 for the wavelets v, ()
to be coherent states can be easily checked. The continuity in the labels can be
intuitively understood by looking at the reproducing kernel R, (¢, b'; o, b) defined
by equation (2.51). Figure 2.5b shows it for two values of the pair (¢,b). The proof
of the resolution of identity can be found, for example, in Daubechies (1992). The
decomposition of an arbitrary function into wavelets can now be uniquely written
as

WF 0N b) 2 ([ ) = /,f(t)u;,,(z)dz. (2.72)
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Fig. 2.6 Affine cohcrent states or wavelels for three different values of o and b. The top
picture shows the three wavelets in the temporal domain. The left picture shows

the power spectrum of the three wavelels. The middle picture shows the time-
frequency distribution. The bollom picture contains the envclope of the three
wavelets. Note that the shape of the wavelets remains fized.

This decomposition goes under the name wavelet transform or coutinuous wavelet
transform. In the case that there is no Confuslon with respect to the choice of the
wavelet 728 I will Lt})lt'bCHt wIJ* (; J’\u u; U\ J \u u, i the remainder of the ﬂ‘.(“HlS
f(o.b) will be called the wavelet representation. According to the resolution of

identity, the reconstruction of f from its wavelet representation reads

f=c; /f (0. D)oy (t )dadb (2.73)

where 4242 is the integration measure da of equation (2.48).

Remark 2.1 The decomposition and subsequent composition do not strictly require

L2-normalized wavelcts as given in equation (2.68). Kaiser (1994) shows that similar
decompositions and compositions can be carried out for wavelets in L?, which are

of the form
1 t—0b
o [1p ¥ (——U ) . (2.74)

The decomposition of equation (2.72) now takes the form

([, 0} (o.b) = /.f(r)pj(lT“;L'*(%)dt. (2.75)
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In the next section and in later chapters, this frecedom will be used, to work for
example with an L'-normalization according to the choice p = 1.

Properties of the continuous wavelet representation —l.ct me discuss some
basic properties of wavelets and the wavelet representation.

o Covariance under translations
The wavelet representation f(o,b) of the function [ is covariant under trans-
lations, according to
<Sﬁf~ S()gale‘“’> = <f7 5—551»5nd‘> (276)
= f(a.b—¢).
Note that this important property disappears for the discrete wavelet transform
which will be discussed in section 2.5,
o Covariance under scaling
The wavelet representation f(e,b) of f is covariant under scaling. This be-
comes clear by looking at the wavelet representation of a scaled function, that
is
<(‘:gf Sz,gﬂlf?> <f & 581) o’ > (2.77)
<f Sb/fg Eg U>
<f Sl)/£é/a €L7>

A2

Note that this behavior is opposite to that of the Mellin representation under
scaling (see section 2.2.2). The Nellin representation is invariant under scale

changes of the original function. The derived property helps in understanding
4odb i the reconstruction of equation (2.73). Con-
sider the contribution of f in the region o € (0, 0g+¢€) and b € (bg, by +¢), see
Figure 2.7. Under dilation of the function f, according to f — E¢f, the same
contribution goes to the region o € (04/&, 00/E+¢ /&) and b € (by/E. by /E+¢€/E).

Consequently, the integration measure M is such that elementary squares
1 ) g p ) |

the integration measure

contribute equal energy to the inverse continuous wavelet transform (Vetterli

and Kovacevié, 1995).

o Localization
A better understanding of the position of the scale parameter ¢ with respect
to the frequency parameter w can be obtained by looking at the time and
frequency localization of the function vyp(¢). If ¢ is localized around ¢ = 0
and L,N'(;u) around w = wy. and if their widths in the time and frequency domain
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Fig. 2.7 The contribution of a function f to its wavelct representation f(o,b) around the
square at {0y, bo) is equal to the contribution of € f, with & > 0 around the
square at (oo/&, by /€) (Vetterls and Kovacevié, 1995).

are given by A, and A, respectively (see equations 2.62 and 2.63), then ()
is effectively supported in the time-frequency range

te(—Bn B we (wy— By y Be
' 27 9 0T Ty 0T )

What happens with the time-frequency localization if the basic wavelet is
translated and dilated? Due to the straightforward translation covariance of
wavelets given in equation (2.76), translations can be casily dealt with. Ac-

cording to equation (2.77) dilations influence both the time and frequency
location. For ¢245(t) the time and frequency localization become

l‘€<0b—% Ub+OA"“> g(ﬂlA“’o “’_“+_1_éﬂ)
o 2 0 o 2 o (9 7%)

2 2
respectively. Expressions (2.78) make clear that for increasing scale o the

temporal localization decreases and the spectral localization increases. Given
the time-frequency localization properties it is interesting to see which part of
the wavelet representation f(a, b) is influenced by the function f(¢) for t =#,?
The cone of influenice of the point ¢, is the set of points (7, b) that satisfies

. 1
{(o.b) e R® | Jt, — bl < 5780} (2.79)
It is the set of points (7, b) for which f(o.b) is influenced by the value of f(f)
at t = t; (Mallat and Hwang. 1992). The cone of influence turns out to be
an important quantity in the analysis of singularities which will be discussed
briefly in section (2.4) and in chapter 5 in full detail.
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Another aspect that directly follows from expression (2.78) is the constant-Q
property. It expresses that the ratio of bandwidth and central frequency is
unaltered by translations or dilations, according to

L s Ay Ao Ay,

— = ="t =" (2.80)

Q w LU(V)/O' @
This property is just another reason to consider the wavelet representation for
the analysis of seismic data, because the constant-¢) behavior is experimentally
observed in scismic reflection data (see, e.g. Engelhard, 1996; Kjartansson,
1979, and references therein).

2.4 Understanding the continuous wavelet trans-
form

In order to better understand the continuous wavelet transform and to give a sound
motivation for forthcoming applications, let me investigate a general physical sit-
uation where wavelets come into play. The general physical situation deals with
measurements of a physical variable and it is directly related to the theory of distri-
butions introduced by Schwartz (1951, 1952). Consider a measurement of a physical
variable obtained with a measuring device with a non-vanishing support. A question
concerning the dependence of the physical variable on the location of the measure-
ment or its dependence on the size of measuring device will naturally lead to the
wavelet transform of the physical variable. In section 2.4.1 the link between dis-
tributions and the wavelet transform will be explored. In section 2.4.2 a number
of properties will be discussed which determine the ability of wavelets to analyze
local points of rapid variatious. These properties turn out to be their degree of
differentiability and their munber of vanishing moments.

2.4.1 Wavelets and measurements

Normally, a physical variable is represented by a function f(¢). This notation sug-
gests that the physical variable is known for any (. However, due to the non-vanishing
support of a measuring device, a quantity can never be known for any £. Its average
behavior at and around ¢ is known. This observation, among other observations,
made Schwartz (1951, 1952) decide to introduce the concept functional instead of a
function. In addition, Schwartz introduced the concept test function to represent a
weasuring device. The weasuring process is given by the action of the functional
on the test function; it is called the testing operation. Hence, the functional gets a
meaning only if it is tested against the test function.

Example 2.3 Consider as a physical variable the temperature in a room. Measur-
ing the temperature at a certain location implics that a thermometer, which has
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a non-vanishing size, has to be placed in the room. The thermometer carries out
a local averaging process over its sizce. It can consequently be seen as a test func-
tion. The temperature in the room can be scen as the functional, and the measured
teniperature can be interpreted as the outcome of the test operation.

Following Zemanian (1965), I denote the functional by f. The complex number
that the functional f assigns to a particular test function ¢ is designated (f,¢).
Here, linear and continuous functionals arc considered?”, which are referred to as
distributions or generalized functions (the latter term has been coined by Gel'fand
and Shilow (1960)). Two types of distributions are generally discriminated: regular
and singular distributions. Regular distributions are locally integrable. For regular
distributions the testing operation is explicitly given by an integral according to

(1) = [ et ar (2.81)

Singular distributions are not locally integrable. For singular distributions the no-
tation on the right-hand side of equation (2.81) can be utilized. but in that case
it is a symbolic notation. A well-known example of a singular distribution is the
J-distribution. The action of the §-distribution on a test function is often expressed

by

o(0) = /5(00(0 dt, (2.82)

where the right-hand side is a svmbolic notation: expression (‘),Rz\ hag a meaning
K a8 A Mmeaning

via its left-hand side and not via its right-liand side. Other singular distributions
which can be given a meaning in the sense of distributions are (multi)fractals. Herr-
mann (1997) pays extensive attention to the proper distributional interpretation of
multifractals.

el Loe e . . LI 1 1 . IR IR T
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over, it is assumed that it has a non-vanishing and finite zeroth moment. i.e

0 </ (t) dt < . (2.83)

In other words, ¢(t) has a DC-component. Since ¢(t) is a representation of a mea-
suring device, it is generally of compact support or rapidly decaying. In the wavclet
literature the function ¢(¢) is referred to as the scaling or smoothing function.

The outcome of a measurement or a testing operation depends on the char-
acteristics of the distribution. but also on the test function. most notably on its

27TA linear functional fulfills (f.@1 + 02) = (f.01) 1 (f.02). A continuous [unctional fulfills
(f.ae) = a(f. o).

28Qufficient is a relative notion: the more irregular the distribution. the more regular the test
function should be.
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resolution or scale and on its location in time or space. A serics of measurcments in
the variable ¢ at a specific scale o can be written as (cf. equation 2.81)%Y

flot) = (=0 ("' - *)) — [ 120 (t'; ’) ar, (2.84)

a

where an L!-normalization is utilized for the scaling function. The tested distribu-
tion f(o,t) is an approximation of the distribution f at the scale o. It is also called
a regularized distribution. It is not the wavelet transform of f. hence the check ~
is correctly omitted. Equation (2.84) introduces the mathematical formulation of
a scale or resolution dependent physical measurement. A measurement at a single
time £ or a single scale ¢ can be of great value, however one is often interested in
how the measurement changes in the course of time or how it would have been if
taken at a different scale o, 'The next two paragraphs discuss what happens in those
situations.

The changes as a function of time become apparent by looking at the nth order
derivative 9]' of f(o,!). which is allowed for ¢(t) sufficiently smooth. Consider the
nth order derivative of the scaling function ¢(t). according to

00 () = 3 ().

It can be easily scen that 0" is a wavelet, by checking that its Fourier transform
anishes at w = 0, according to ¢/(0) = 0. It can now be derived that the changes
as function of time in f(o,t) are directly related to the wavelet transform of the
distribution f. accordiug to

W{f. v Yo, 1) :/f(z");ru(“) <f0t) dt’ (2.85)

= (~0)" 3 f(o.t).

Consequently, the nth derivative with respect to ¢t of f(o,t) corresponds to the
wavelet. representation of the distribution f with the nth derivative of ¢ as ana-
lyzing wavelet. Figure 2.8 illustrates the relation between a distribution, a tested
distribution and the wavelel representation at a particular scale. It is clear that the
wavelet representation senses changes in the distribution. Because of the fact that
essential information in a signal or image is generally carried by its points of rapid
variation, i.c. at points where the underlying physical process or physical system is
changing. the wavelet representation is of natural interest (Mallat and Hwang, 1992;
Mallat and Zhiong, 1992; Herrmann, 1997)3Y. It is able to delincate and characterize
the points of rapid variations. The points of rapid variation are also referred to as
singularitics.

29Note that I adopt the distributional concepts of Schwartz (1951, 1952), see also Zemanian
(1965), but that the notation is slightly altered in order to bring it more in line with the wavelet
representation.

#See also the quote of Maxwell (1882) on page 15.
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Fig. 2.8 The top picture shows the distribution f. The measurement or testing operation
yields the tested distribulion f(o,t) at a particular scale. The test function (or
scaling function in the wavelet literature) is chosen to be the Gauss function.
The scaled first derivative with respect to time yields ¥{ [, vV }(o.t), which
expresses how the distribution is changing as a function of time at the scale
o. The scaled second derivative W{f. v P }(o,t) expresses how the distribution
is changing in the scale direction, but it also expresses how W{ f, 'V }(o,t) is
changing as a function of time.

Generally a measurenent represented by (2.81) is taken at a single scale 0. Very
well developed measurement devices for seeing or hearing, for example the human
eve or ear, are, however, taking measurements at multiple scales (Marr, 1982: ter
Haar Romeny, 1994). The reason for this is related to the fact that singularities are,
besides location dependent, generally scale dependent as well (Nottale et al., 1997;
Herrmann, 1997). The question arises how the measurement is exactly changing as
a function of scale, i.e. what happens if we look at an infinitesimal different scale
Consider a function ¥ () given by v (t) = (t0; + 1)é(t). It can be easily seen that
for o(t) sufficiently smooth and sufficiently fast decaying, the function ¢ (¢) is a
wavelet. The wavelet transform with respect to this wavelet reads

/f(t’)le (L—l> dt’ (2.86)
‘ o o
= —00, f(o,1)
af
9 logo

w{f,v"}(o,t)

which is a result due to Holschneider (1995). Equation (2.86) expresses that the
logarithmic scale derivative (i.e. dogo) of f(o.t) iIs equal to the wavelet transform
of the distribution f at scale o with o/ as analyzing wavelet. Generally. this result
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holds only true for Li-normalized scaling functions, however for a Gaussian scaling
function, other normalizations yield equivalent results, which gives the Gaussian
scaling function a unique position.
In addition, for a Gaussian scaling function ¢(t), the wavelet ¥/ (¢) can also
be written as
I,
GH gy 42
o () =~ S7e(l). (2.87)
i.c. as asccond order temporal derivative. In the wavelet literature the latter function
is referred to as the Mexican hat (see, ¢.g. Daubechies, 1992) and in the geophysical
literature it is referred to as a Ricker wavelet. Cowmbining equations (2.85) and (2.86)
I obtain the following equality
. 1 22 p
— 00, f(o,t) = ~39 05 f(o,t), (2.88)
which expresses that changes in the (logarithmic) scale direction are equal to second
order changes in the time direction. A remarkable relation that has a clear physical
background, because if one substitutes o = v/47 it turns out that

0, f(r.1) = B f(7.1), (2.89)

which can be recognized as the diffusion equation. Heuce, if one chooses a Gaussian
smoothing function, the multiscale aunalysis fulfills the diffusion equation. Irom
an image analysis point of view, the diffusion cquation has a unique position (see,
Koenderink (1984), ter Haar Romeny (1994), and chapter 6).

Concluding, any physical measurement should be accompanied by a notion of
scale, because generally a measurement depends on the scale of the measuring device.
Changes of the measurement due to changing the scale or duc to changing the time
naturally lead to the wavelet transform of the underlying distribution. In the casec
that a Gaussian smoothing function is chosen, it can be shown that the changes
in the scale direction and in the time direction are closely related. The relation is
expressed in the diffusion equation.

2.4.2 Decay, regularity and vanishing moments

As argued in the previous subsection points of rapid variation, the singularities,
carry the important information in a signal. The strength of the singularity is
estimated via the local degree of differentiability or regularity. The local degree
of diflerentiability is given in terms of the Holder exponent . What requirements
have to be imposed on a wavelet to be able to analyze a certain range of Holder
exponents? This question has been addressed in considerable detail by Muzy et al.
(1993), Bacry et al. (1993), Staal (1995), and Herrmann (1997). Ilere, 1 will briefly
discuss the main aspects. The requirements on the wavelet are expressed in terms of
the regularity of the wavelet and the number of vanishing moments of the wavelet.
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Consider a distribution of the form f = g+ (t — tp)*. t > 0. It consists of
a relatively smooth background ¢ and a distortion on top. The local degree of
differentiability at t = t¢ is captured by the exponent a. For av < 1 the distribution
f gives rise to a singularity at t = #y. Despite the fact that it comprises a small
sample of possible singularities (namely of the algebraic type), it is generic enough
to be discussed.

The ability of a wavelet to analyze local points of irregularity, i.e. the singular-
ities, is based upon the fact that wavelets are able to “absorb” derivatives and/or
integrals, provided that an appropriate wavelet is chosen. Appropriate is here de-
fined in terms of its smoothness and number of vanishing moments. The smoothness
or regularity of the wavelet 1(t) refers of course to the degree of differentiability. The
wavelet ¢ (¢) has A vanishing moments if

/ t"Y(t)ydt=0 for m=0,...,M — 1. (2.90)

In the spectral domain regularity corresponds to decay behavior for w — oc, and
the number of vanishing moments correspond to the decay behavior for w — 0,
respectively. If I introduce the operators

A" m >0 for an mth order differentiation,
9" m =0 for the identity operator, and (2.91)

37" m <0 for an mth order integration,

then transferring derivatives or integrals, can be expressed by

Jorson Jo (50 ar= o froorte (S0) a

(2.92)

WLELC, GUC L0 LY UBdy PLUPELLICS UL LHL WavGith, Lo obuuih Luiinnd votsiois, i
tion (2.92) is only valid if the wavelet v is sufficiently many times differentiable or
integrable.

Example 2.4 Suppose a distribution [ has a local singularity at t = t, character-
ized by a Hélder exponent of —1 < a < 0. For m > 0 the distribution 0;" f has a
local negative singularity of a —m at ty. To be able to analyze the distribution 9;" f
via the wavelet transform, the m derivatives has to be passed over to the wavelet
according to equation (2.92). Hence, the wavclet has to be sufficiently many times
differentiable. On the other hand, for m > 0 the distribution 07 ™ f has a local
positive singularity of a + m at ty. To be able to analvze the underlying singularity
the integrations have to be passed over to the wavelet. Hence, the wavelet has to be
sufficiently many times integrable which is guaranteed by choosing a wavelet with
enough vanishing moments.
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temporal domain | spectral domain | analyzing effect T
decay regularity resolving power ’
regularity decay at w — o0 differentiability — negative singularities |
vanishing moments decay at w — 0 integrability — positive singularities y

Table 2.1 Relation between wavelet properties in the temporal domain and the spectral
domain, and their significance for the ability of wavelets to analyze singulari-

Lies.

It may be concluded that the choice of the wavelet determines the range of
singularitics that can be observed. On first thought, one is tempted to choose
as much vanishing moments and as much smoothiness as possible. However, both
more vanishing moments and more smoothness deteriorate the decay behavior in
the temporal domain. Consequently, there is a trade-off between the decay behavior
on the one hand and the number of vanishing moments and the smoothuess on the
other hand. Table 2.1 summarizes the observations; for examples and more details
the reader is referred to chapter 5 or to Herrmann (1997).

2.5 Frames and multiresolution approximations

2.5.1 General background

It may be concluded from the previous sections that the orthonormal representa-
tions related to self-adjoint operators, here especially the time representation and
the frequency representation, are fundamentally different from the highly redundant
coherent state representations, i.e. the Gabor representation and the wavelet repre-
sentation. The redundancy of the coherent states suggests that a suitably chosen
subset of the parameters defining the representation can be chosen such that the orig-
inal function is still uniquely represented. In the gencral notation of section 2.3.1,
the question is whether it is possible to find a ag € R" such that

1. the coeflicients (f, gima, ), with m chosen in a suitable discrete set J € Z", are
uniquely related to the function f. Hence, (fi, gmay) = (2. Gmay) Vi if and
only if fi = fo;

2. a reconustruction or dual function g,,,, exists with the property that

f = Z <}L* Unm“> inu“- (293)
m
Equation (2.93) can be seen as the discrete version of equation (2.48).

It is important to note that (1) g4, Is not a set of coherent states anymore; (2) the
discretization of the paramecters of the coherent states does not necessarily imply
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a discrete representation of f; both the coherent state representation of (2.48) and
the representation (2.93) can be discretized in the parameters of f; (3) the so-called
dual function gpq, is not necessarily equal to gma,- The term dual function refers
to the fact that g,.q, can also be seen as the decomposition function and gpq, as
the reconstruction function, according to

F=3"{f:gmay) Gmao- (2.94)

m

The condition which guarantces that the two aforementioned issues can be
positively answered is the frame condition:

Definition 2.2: Frames (Daubechies, 1992)
A family of functions {gma,. m € J} in a Hilbert spacc is called a frame il there exist
A > 0, B < oo so that, for all f in the Hilbert space,

ALFIZ < D 1 gmao) I < BILFIZ (2.95)

meJ

A and B are called the frame bounds.

If a family of functions {gmq,} forms a frame, functions g, can be found such
that (2.93) is truc. The role of the inequalitics in eq11ati0n—(2.95) can be intuitively
understood. The second inequality denotes that the sum of coefficients (f, gimag)
should be finite. The first incquality is related to stability: for a stable reconstruction

logical requirernent is that the coefficients (f, g, are only zero for all m e T if

Generally, a discrimination is made between four frame types (Daubechies,
1992).

1 Far A= B = 1theset {a... }iscalled a tieht frame. The reconstruction (2.93)
reads

f= AT Z {fs Gmag) Gmays (2.96)
m
at least in the weak sense. Hence the reconstruction or dual function and
the decomposition function are related by g, = A7'gima,. Note that a tight
frame is generally not cqual to an orthogonal basis. The value of A is a measure
for the redundancy of a tight frame.

2. For A = B = 1 and |gima,| = 1. {Gmea,} forms an orthonormal basis and
consequently

/= Z (f-Gmaqa) Gmay- (2.97)

m
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3. For A # B, and B/A closc to 1, {gina, } is called a snug {frame. For snug frames
Gmag 7 Gmay, DUt they are close. The reconstruction can be written by
2

'=4+35

Z <f? g"m(l> Gmaqg + small rest term. (298)

e

4. For B/A » 1, the dual function g¢,,,, can be very different from the decom-
position function®!. For a larger ratio B/A, the reconstruction becomes less

stable.

In section 2.5.2 the theory of frames will be applied to the Gabor representation.
Section 2.5.3 is devoted to general wavelet frames. In section 2.5.4 the theory of
multiresolution approximations will be introduced. A multiresolution approximation
gives naturally rise to a special class of wavelet frames, namely orthonorimal wavelet
bases. The latter will lead to the discrete wavelet transform as opposed to the
continuous wavelet transform discussed in section 2.3.3.

2.5.2 Gabor frames

For Weyl-Heiscnberg colherent states the frame decomposition takes the following
form (cf. equation 2.56)

@5{]‘:9}(77100«,”1)0) = (f\9mn) :/f(f)gz*nn(t) dt, (2.99)

where g,,,, () L e/Maotg(t —nby). Here, I will work with a Gaussian window function
g(t) given in equation (2.65)%?. The fact that Weyl-Heisenberg coherent states form
a redundant set, was already known to Gabor (1946). The regular frame decom-
position he chose, was based on the invariant shape of the functions g.;{t) in the
time-frequency plane and on Nyquist sampling density®*. For this choice, the first of
the requirements on page 45 is indeed fulfilled. Hence, any square-integrable func-
tion is uniquely described by its expansion in Gabor coefficients. Ilowever, a stable
reconstruction is not possible, because the dual function g,,, is not squarc-intcgrable
{(Bastiaans, 1980; Daubechies, 1990). Daubechies showed that for

(l,()b() S 27 (2100)

the set {gy,, } constitutes a frame, the so-called Gabor frame. Loosely speaking, for
aoby > 27 the time-frequency plane is not sampled dense cnough to represent all

31Daubechies (1990, 1992) shows that the dual function can be computed via the frame operator
T, according to gia, = (TTT)_lg,,,,V,“A where Tf = (f, gma,) and its adjoint The = D CmGmag -

32For other window functions, frames can be constructed as well (Daubechies, 1992).

33¥or a [unction with bandwidth [, Q] and with duration T', Nyquist sampling density is QT /7,
corresponding to the choice agbp = 27. In the sixties it was shown that Nyquist sampling density
actually denotes the number of possible independent functions in this time-frequency area (see
Daubechics, 1992).
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apgby = w/2

apby = 37 /4 agby — ™
BJ/A =1.02 B/A =113 B/A = L.11
A =397 A=25 A =1.67
0.2 0.2 02
0 0 0
0 0 0
agby = 37 /2 apby = 1.97 apgby = 2m
B/A =348, BJ/A =218
A'=0.596 A'=0.0026 ]
0.2 {
0

Fig. 2.9 Reconstruction functions goo for different values of anbo, with ap = Vaobo /7,
hence by = Vaoboy. The gray lines denote the decomposition function goo,
which is chosen equal for the siz values of agbo.

functions. The frame bounds A and B, and the dual function g,,,, can be numerically
estimated®!. Figure 2.9 shows a number of numerically estimated dual functions.
For a given value of 4 in equation (2.65). and for a number of values for the product
apbo, the decomposition and corresponding reconstruction function are shown for
m = n = 0. For smaller agby the redundancy increases. The ratio ﬁ denotes the
redundancy of the frame. For a large redundancy a snug frame is obtained and the

reconstruction or dual function is almost equal to the decomposition function. For
the famc paramctors chooon according do ok, <1 2 the oot of functione o 1
forms a stable frame and the reconstruction of f from its coefticients (f, gmn) 1is
possible according to equation (2.93).

The representation of an operator K in the Gabor domain reads (cf. equa-
tion 2.50)

K(m, U r"’lv Il/) - <ICgm’n’a .q'mn> ) (2101)

which can also be written as the transformation from a temporal (or spatial) repre-

sentation to the Gabor domain representation (cf. equation 2.23), according to

K(m,n;m',n'):// g (O KA g () dt dt'. (2.102)
t e

3For apby = 2n/n.n € N.n > 1 the frame bounds can be computed analytically (Daubechies,
1990).
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(b) K (¢) K

Fig. 2.10 (a) Spatial representation of a monochromatic Green’s operator. (b) Gabor do-

main representalion of a monochromatic Green's operator. (¢) Wavelet domain

representation of a monochromatic Green's operator.

For appropriately chosen frame parameters ag and by the elements of the transformed
kernel IA\'('m, nym'.n’') completely represent the operator K. For a monochromatic
Green’s operator in a homogencous medium, the Gabor domain kernel is shown in
Figure 2.10. The interpretation of the elements of IA((m, nym’,n’) will be left to the

next chapter.

2.5.3 Wavelet frames

For wavelet frames a general limitation as for the Gabor frames in equation (2.100)
does not exist. Looking at the way wavelets cover the time-frequency plane, a natural
choice for the frame parameters for wavelets is

o =0y b=nbyoy', for m,n¢€Z, (2.103)

with og > 1 and by > 0. This yields for the wavelet representation of equation (2.72)

w{f ‘/{’}(0(7)” y 77b00671) = (f L"mn> = / f(t)L”':z,n,(t) dt, (2‘104)

with

; A —m/2 ., — .

Ymn () = o ¢y ™t — nby). (2.105)
By adjusting the discretization interval of b to the actual value of o, one takes
into account that for larger ¢ the wavelet is more spread out than for smaller ¢
(cf. equation 2.78). Using the localization properties of section 2.3.3, the coverage
of the time-frequency plane takes the form shown in Figure 2.11. IHere, the scale
parameter is chosen to vary according to g = 2, giving rise to a dyadic wavelet
representation. It is compared with the regular time-frequency sampling natural for
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Fig. 2.11 Natural coverage of the time-frequency plane for wavelet frames (left) and Ga-
bor frames (right).

CGabor frames. Daubechies (1990) showed that for a wide range of values for oy and
by the wavelets 3, (1) constitute a wavelet frame, in which cases the reconstruction
of f from its wavclet representation ¥{ f, ¢’} (o(", nbpog") can be carried out.

For applications which require both efficiency and good temporal analysis prop-
erties, alternative frame samplings arc sometimes used. Of special interest is a frame
decomposition with a time sampling independent of the scale sampling, according
to

oc=o b = nby (2.106)
vielding a so-called non-downsampled dyadic wavelet transform (Mallat and Zhong,
1992; Saito, 1994). The efficiency gain with respect to the coherent state decom-
position is obtained by coarsely sampling the scale parameter. In chapter 6 this
snecific discretization will be discussed in relation to an efficient 3-D image analysis
procedure of migrated data.

In contrast to the Gabor frames with a Gaussian ground state, wavelet frames
can be chosen such that 4 = B = 1, and hence, such that the set {¥,,} forms an
orthonormal basis. This property is known for a long time already. Whereas the
term wavelets was only coined in the eighties, wavelets have been used in applied
mathematics for a much longer time (see e.g. Meyer, 1993). Onc of the earliest
examples is the Haar wavelet (Haar, 1910). The Haar wavelet is given by

1 0<t<1/2
ey =<{ -1 1/2<t<1

0 otherwise.

If one chooses in addition oy = 2 and by = 1 in equation (2.105) then the set {tyun}
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forms an orthonormal basis for LZ(R)*. The characteristic features of the Haar
wavelel are the discontinuity and the compactness of its support. The compactness
is an attractive property; the discontinuity is often a disadvantage because of the
limitation in analyzing power (scc section 2.4.2). Other orthonormal wavelets were
systematically pursued in the second half of the eighties. Within the theory of
multiresolution approximations, orthonormal wavelets can be most casily dealt with.
Let me briefly describe the wavelet representation of an operator before I turn
to the multiresolution approximations in the subsequent section. In the case that
the frame parameters o and by are chosen such that the set {v7,,} constitutes a
frame, an operator can be uniquely represented by (cf. equation 2.50 and 2.101)

K(m,nym’. 0"y = (Kt Ymn) « (2.107)

which can also be written as the transformation from a temiporal (or spatial) repre-
scntation to the wavelet representation, i.e.

K(m,n;nﬂ,n')z// O O K ) e (H) At dE. (2.108)
v

TFor appropriately chosen frame parameters og and by the wavelet domain represen-
tation K(m,n;m’.n’) completely represents the operator K. In Figure 2.10c the
representation of a monochromatic Green's operator in the wavelet transform do-
main is shown. The interpretation of the cocfficients of the kernel K(m.n;m', n') will
be left to the next chapter. There, T will also discuss other operator representations.

2.5.4 Multiresolution approximation

36 is to write a function f(t) as a limit of

The idea of a multiresolution approximation
successive approximations in a series of nested subspaces V;,,. Each of the approxima-
tions can be seen as a smoothed version of the original function. The approximation
in the subspace V,,, can be obtained by a projection on this subspace. The approx-
imation is said to be at resolution m or at scale 2. The difference between two
successive approximations is the detail at resolution m. Note that in section 2.4.1 a
similar reasoning yielded the continuous wavelet transform as the difference between
two approximations at an infinitesimal small different scale. The multiresolution ap-
proximation can be seen as a discrete counterpart of the diffusion cquation, although
the theory is quite different.

Definition 2.3: Multiresolution approximation (Adapted from Nallat, 1989b)
A multiresolution approxiniation consists of a sequence of successive approximation
spaces V; satisfying

351t can be shown that the Iaar wavelet family forms an orthonormal basis for LP(R), 1 < p < oo
(Daubechies, 1992, chapter 9).

36The term maultiresolution analysis is nowadays more often used. The term rmultiresolution
approzimation, however, better refers to its actual significance.
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1. "'CVQCV1CV()CV_1CV~2C"'
2. U V,, s dense in L*(R)
mez
3. () Vin = {0}
mez
1 fHyeVy << f(27™)eV,
5 ftyeVy <= flt—-n)eVy Vnei

6. there is a function g in Vp such that the set {g(x — k), k € Z} forms a Riesz
basis of Vj.

Let me briefly interpret these properties. The first property denotes that V;, is a
causal sequence. A projection of f in V,,, contains all the necessary information to
compute an approximation in a coarser subspace V,,, ;. This can be scen as a semi-
group property. When computing an approximation of f in the subspace V,,, some
information of f is lost. However the difference between f and its approximation can
be made arbitrarily small by choosing smaller values for m. This is what property
two says. On the other hand, for larger m the projection of f on V,,, contains less and
less detail and it will finally be zero, which is stated in the third property. The fourth
property denotes that V,,, is a scaled version of Vj. The fifth property expresses that
Vj is invariant under integer translations, and due to property four, V,,, is invariant
under translations by 27" n. Properties five and six together give rise to a so-called
sampling space (Holschneider. 1995). The sinc-function, for example, gives rise to a
satpling space, according to Shannon's sampling theoremn (Shannon, 1949).

It can be shown (Mallat, 1989b) that the presence of a Riesz basis®” guarantces
that a multiresolution approximation gives rise to a unique scaling function ¢(¢) such
that @, (1), defined by

A (1 E0mm2a(9mmy _p) (2.109)

with (m.,n) € 72, forms an orthonormal basis of V,,. The projection of f in the
subspace V,,,, denoted by A, {f, ¢}({), now reads (cf. equation 2.84)

Afn{f- U}(l‘) = Z <f ¢mn> G)mn(t)- (2.110)
n
In the case that no doubt exists with respect to the scaling function ¢, A,, f(t) will
be used as a shorthand notation for A, {f.¢}(t). The inuer products of f with the
scaling functions ¢,,,, with n € Z. completely characterize the approximation in
the subspace V,,. In addition. a measurement is normally given as a set of discrete
data. Hence, it is appealing to refer to a set of measurements at resolution m as

’A(I[Hf é { <f-omn> . ne Z} (2111)

37For a general introduction to different types of bases the reader is referred to Young (1980).
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Ad

@ f is called the discrete approximation of f at the resolution m.

Let me discuss two eye-catching aspects of a multiresolution approximation.
First, due to property 1 of Definition 2.3 and due to the fact that {¢,,_1,,n € Z}
is an orthonormal basis of Vj,,—, any function in V,,, can be expressed as a linear
combination of the basis functions of V,,,_, in particular

Qunn == 2112117/\'@)7171.]\" (2112)
]\'

where
T 2 {0001 ) (2.113)

Consequently, the discrete approximation in the subspace V,, can be derived from
the discrete approximation in the subspace V,,, | according to

<f~ d)mu> - Z h;,,f/\v <f le?lfl.]\') . (2114>
l\‘
or more syubolically

d

where h refers to the set of discrete filter elements h,,. In words, A%, f can be com-

puted from A¢,_, f by a convolution with the filter coefficients of h and, subsequently.
retaining every other sample.

Secondly, the difference between two successive approximations of f in V,,_;
and V,, is the projection of f on the orthogonal complement of V;, in V;,—,. The
orthogonal complement is denoted by O,,. Mathematically, this is expressed by

O LV, (2.116)
Onz & ‘/m = Vin—1- (2.117)

To compute the projection on the orthogonal complement O,,, a basis is required.
Mallat (1989a,b) shows that within a multiresolution approximation a function v:(t)
exists, such that the set of functions {4, n € Z} forms an orthonormal basis of
O,,. Not unexpectedly, the function 2(¢) turns out to be a wavelet, because the
difference between two (low-pass) approximations is clearly of a band-pass nature.
The functions v, (t) are defined according to equation (2.105) with oy = 2 and
by = 1. The projection of a function f on the subspace O, is given by

Dy [ ) = () Vo (1) (2.118)

n

In the case that there is no confusion about the nature of the wavelet v, D, { f. v} ()
is also denoted by D, f(t). The diserete detail in the subspace O,, is denoted by
Drl

1y

f. and it is defined by

D;{;f = { <f L'mn> . ne Z} (211())
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In analogy with the reasoning in the previous paragraph, it is casy to derive an
expression for the discrete detail in terms of the discrete approximation. It follows
from (2.117) that O,, C V;,,_1. Due to the fact that {¢,, 1,7 € Z} is an orthonor-
mal basis of O,,,_1, any function in V;, can be expressed as a linear combination of
the basis of V},,_1, in particular

Ymn = ZQQn—kam—Lk«, (2120)
k

where

gn = (Y, d—1n)- (2.121)

Conscquently, the discrete detail in the subspace O,,, can be derived form the discrete
approximation in the subspace V;,,_1 according to

(F¥mn) = Y Gt (Fs@m-1k) 5 (2.122)
k

or more symbolically

Al f &, pd 1. (2.123)

m—

where g refers to the set of discrete filter elements g,,. In words, D¢ f can be com-
puted from A%, f by a convolution with the filter cocfficients of g and, subsequently,
retaining every other sample.

Based upon the aforementioned theory, a function f in L?(R) can be repre-
sented, completely or up to a certain fine resolution, in various ways:

1. Due to property two of Definition 2.3 of a multiresolution approximation, and
using equation (2.117), it can be seen that {¢y,,, m.n € Z} forms an or-
thonormal basis of T4(R). Hence. any function in L#(IR} can be represented
according to

FO =D wmn) Cunt), (2.124)

m n

or, using equation (2.118),

F®)=> "Dy f(t). (2.125)

m

Consequently, using equation (2.119) it can be concluded that the set

{D?f. mez} (2.126)

m

completely characterizes the function f.
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2.

It is not necessary to do a decomposition up to an infinitely coarse resolution.
It is allowed to stop a decomposition at a certain resolution and to use a coarse
approximation in the subspace Vi, to represent the remaining part, i.e.

f(f) = Z Z <f~ I»“"m,n> Lﬁ‘"’mn([/) + Z <f (,’91\[,,> (/)]\1,,(29),

m<AM n (2127)
or, using equations (2.110) and (2.118),
F() =" Do ft)+ Anf(1). (2.128)

m< A

Consequently, the discrete representation of a function f in a combined wavelet
and approximation space reads

(oo DY o f DY DY 1AL T, (2.129)

If a representation of f at a certain finite resolution, which is for convenience
fixed at m = 0, is available, i.e. a projection of f in the subspace V., then it is
casy to sce that

Aﬂf(f) = Z Z <f I»‘"mn> L"mn([) + Z <f~ (;‘5]\[,,> @Mu(t)- Al > 0,
1<m<M n n {(2.130)

or in the compact notation of equation (2.128)

FO = Y Duft)+ Auft). (2.131)

1<m <Al

It is now clear that the discrete approximation A% f is completely equivalent
to D! f, which is given by

DUf EADIFDIF DY f AL (2.132)

Using equations (2.114) and (2.122) one can see that the discrete representa-
tion of (2.132) can be easily obtained from the discrete approximation Agf.
according to the schieme in Figure 2.12. This decomposition can be scen as a
unitary matrix operation. It can be carried out very eflicient in O(N) opera-
tious, where NV is the number of clements in the discrete approximation Agf.
The set DU f is often referred to as the diserete wavelet transform of AZf. The
action of going from the discrete approximation AZf to DUf is referred to as
the discrete wavelet transformation or discrete wavelet transform®®. Since the
discrete wavelet transforn is unitary, it is easily invertible.

3 The terminology with respect to transfori and transformation is elucidated in the introductory

chapter on page 5.
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Fig. 2.12 Decomposition scheme from the discrete approrimation ALf in the subspace
Vo to discrete details and discrete approximations in coarser approwimation

and detail subspaces. This decomposition is referred to as the discrete wavelet
transformation.

The filter coefficients of h and g, also called quadrature mirror filters, turn out
(Daubechies, 1988, 1992) to be related according to

n — (_1)11 /in+1' (2133)

The multiresolution approximation is completely determined by the scaling func-
tion ¢, but also by a specification of cither one of the filters h and g. Up to now
nothing has been said about the type of multiresolution approximation. In contrast
to the affine coherent states, which allow a continuous variation of the scale and
translation paramecter, or the wavelet frames, which allow a general sampling of the
scale-time plane, the sampling of the scale-time plane in a multiresolution approxi-
mation is fixed. There is, however, some freedom of choice with respect to the type
of wavelet  The gronnd state of an affine coherent state can be characterized by
looking at its decay properties, the number of vanishing moments and its regularity
(see section 2.1.2). These properties do apply to the wavelet of a multiresolution
approximation as well. Besides, requirements with respect to symumetry, boundary
treatment and efficiency further determine the choice for a specific multiresolution
approabaivi. Darticukar oo sOguiidindnts dotcrmine which proporticn provadl,
since a multiresolution approximation does not allow a complete frecedom of choice.
The wavelet of a multiresolution approximation can not be both C* (i.e. infinitely
regular) and exponentially decaying, whereas, for example, the derivative of a Gauss
function combines these properties. The derivate of a Gauss, however, can never
be part of a multiresolution approximation. MNoreover, within a multiresolution
approximation the regularity is proportional to the number of vanishing moments
(Daubechies, 1992, Corrolary 5.5.2 and 5.5.3). The treatment of all possible filter
types is far beyond the scope of this thesis. In the applications in chapter 4, I will
make use of the compactly supported wavelets of Daubechies (1988), a choice which
will be further clarified in that chapter. Compactly supported wavelets are very
efficient. but they have a limited regularity. In addition, theyv can not be symmetric,
except for the Haar wavelet. Figure 2.13 shows some wavelets and scaling functions
in the class of orthogonal compactly supported wavelets.
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Fig. 2.13 Examples of wavelet filters and scaling functions. (a) The Haar wavelet; (b)
the Haar scaling function; (c) a compactly supported Daubechies wavelet wilh
6 vanishing moments and as symmetric as possible; (d) corresponding scaling
function.

2.6 Applications of the wavelet transform

The rather theorctical framework that has been set down in the previous sections
requires a seismic veneer in order to be fully appreciated. The veneer will take the
form of a discussion of the five main groups of applications, in relation to the seis-
mic method, as I have come to sce them in the course of the past years. The main
groups of applications are: compression, time-frequency analysis, operator repre-
sentation, singularity analysis, and image analysis. Three of the five applications
(operator representation, singularity analysis and image analysis) are the subject of
separate chapters (chapter 4, 5 and 6 respectively). The reason for not discussing
the compression application in a separate chapter is mainly the fact that consid-
erable success has already been achicved without my contribution. The remaining
problems related to the compression application are not specifically associated to
the wavelet transform anymore. The reason for not discussing the time-frequency
analysis in a separate chapter is the fact that I have not been able to make a sig-
nificant contribution in this arca®”. In this section I will start with a deseription of
the guiding principle for the five application groups. 1 will subsequently deal with

%9In my opinion the wavelet trausform as a tool to carry out time-frequency analysis (especially
for the separation of differcnt types of events) has not proven its uselulness for the seismic method
yet. Especially the coherency of seismic reflection data over multiple traces is not easily dealt with.
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the different applications in five subscctions. For the applications that will be dealt
with in scparate chapters, T will only discuss the basic idea and refer to the sections
of the present chapter that should be used as background material. The other two
subjects will be dealt with in more detail in the present section.

The five applications, compression, time-frequency analysis, operator represen-
tation, singularity analysis and image analysis arc quite different, but note that they
are neither completely independent nor that they are put in a random order. The
common part of the applications is the fact that they rest on the principle that a
wavelet is “blind” to something that is slowly varying, and on the principle that
a wavelet transform allows for a natural subdivision in details and approximations
(at multiple scales). These principles have been given a mathematical basis in the
preceding sections. All the applications rest at least on a manifestation of one of the
two principles. The actual form and the importance will be discussed in cach of the
subscctions. The significance of the chosen order comes across if it is put next to a
standard seismic processing sequence as has been done in the introductory chapter
(Figure 1.3). A seismic processing sequence starts with the seismic reflection data
(compression), and via a preprocessing step (time-frequency analysis). an imaging
step (operator representation), and an optional characterization step (singularity
analysis), one will finally get an image of the subsurface (image analysis).

2.6.1 Compression

Seismic data volumes are rapidly growing due to ever increasing 3-D data acquisition
surveys. In gpite of the fact that storage and transmission capacities are growing as
well, there is an increasing demand for efficient and effective seisimic data compression
techniques to enhance the seismic processing sequence. The enhancement can be
obtaiuned for example by an ecasier quality control during acquisition, or by an easy
accessibility of the data during processing. Large compression ratios (up to a factor
oL LGG) ettt 1€ UDLALLUU WU CUE CULLLA Gao iUl ‘\\,\,lxlAlkiu(,u Qb UG COot Of somal 1onn
of information. In this subsection I will briefly describe the compression algorithm

10 At the end. the main issues

with a focus on the role of the wavelet transform
related to seismic data compression will be pointed out. The main issues are not
related to the wavelet transform anymore. Therefore, I did not devote a scparate
chapter to this subject.

A compression algorithm generally consists of three steps: a transformation 7T,
a quantization @ and an entropy coding E (Vetterli and Kovacevi¢, 1995). The first
two steps aim at reducing the entropy of the (possibly more dimensional) signal,
the entropy coding can be seen as an efficient reordering of the data on a bit-
level. Figure 2.14 shows the compression and decompression scheme. The next

10The contents of the present subsection is extracted from a Technical Report by Dessing and
Hoekstra (1997). which deals with the effect of seismic data compression on {(angle-dependent)
imaging.
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Fig. 2.14 Scheme of a data compression algorithm. The first step is a transformation T,
the second step a quantization () and the last step an entropy coding . Gen-
erally, this is an open-loop system, because the middle step is irreversible and
introduces errors. The inverse scheme dis shoun in the bottom graph. For the
lossy compression scheme discussed here the uncompressed data is in general

not equal to the input data.

three paragraphs subsequently deal with the transformation step, the quantization
step and the entropy coding step.

The reduction of the entropy through the transformation step can be viewed
upon as trying to realize an optimal decorrelation or an optimal concentration of
energy. A well-known result from information theory is the fact that the Karhunen-
Loeve transform can realize an optimal packing of the energy, i.e. the minimumn
entropy (Coifman and Wickerhauser, 1992; Vetterli and Kovacevié, 1995). However,
a major drawback concerning this transform is its inefficiency. Quite a few alterna-
tives exist. For seismic reflection data the discrete wavelet transform applied to the
time dependent coordinate as well as to the spatial coordinates turns out to be very
effective (Bosman and Reiter, 1993; Ergas et al., 1996; Reiter, 1996). It is able to
decorrelate the stream of input data, and consequently to reduce the entropy of the
input stream. The filter pairs that are generally used correspond to biorthogonal
wavelets (Daubechies, 1992), which have the advantage to be both of compact sup-
port and symmetric. These filter pairs are able to effectively capture a wide range of
reflection events and to make partially use of the trace-to-trace coherence of seismic
reflection data.

Although a transformation can help in packing the energy in a signal, a real
data reduction has not been obtained after the transformation step. The energy
is concentrated in less samples, but the same number of saples is still in play
with a wide range of output levels. Quantization reduces the number of output
levels. Unlike the transformation (and the entropy coding to be described in the
next paragraph), quantization results in a loss of information. It is an irreversible
non-linear step, that contributes largely and flexibly to the decrease in entropy.
Quantization consists of a mapping of a set of real valued samples into a discrete set.
i.e. it maps the real line into a countable discrete alphabet (Vetterli and Kovacevié,
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Fig. 2.15 Effect of compression on angle-dependent imaging. The shot records of a
real data set have been compressed and decompressed with a lossy compres-
sion scheme as described in the lext. Afler decompression an angle-dependent
imaging procedure has been carried. Around the target level of this specific
data set the angle-dependent behavior is shoun. (a) Angle-dependent behav-
ior without compression. (b)-(d) Angle-dependent behavior after compres-
sion/decompression with a compression ratio 30 (b), compression raito 50 {cj
and compression ratio 70 (d). (e) The amplitudes along the tracked lines. The
differences are small. The amplitudes have been tracked with an automatic
tracking algorithm based on the wavelet transform modulus mazima represen-
tation. The compression/decompression has been carried out with commercial
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Dessing and Hoekslra (1997).

1995). A well-known but primitive form of quantization is thresholding. Generally,
more advanced quantizations are utilized (Gersho and Gray, 1992).

Entropy coding is the final (reversible) step in a compression procedure. En-
tropy is the measure for the amount of concentration of encrgy. In the field of
information theory, it has been introduced by Shannon (1949). It consists of a map-
ping from the output set of the quantization step to a new set such that the average
number of bits per sample is minimized. Vetterli and Kovacevié (1995) write: “A
historical example is the Morse code which assigns short codes to letters that appear
frequently in English language while preserving long codes to less frequent ones.”
As such. Norse code is one of the first examples of entropy coding.




2.6 Applications of the wavelet transform 61

The compression procedure itself is regarded to be quite mature. As an example
Figure 2.15 is included. It shows the effects of the compression of shot records on
the AVO-behavior after imaging. Questions are especially related to the a priori
estimation of the propagation of errors to the structural image, to the AVO attributes
and to other amplitude- and phase-dependent features after iinaging. Some relatively
small questions are left open with respect to the wavelet transform. How to further
optimize the discrete filter pair? How to choose the sub-band division? How can the
efficiency of the forward and inverse transformation be improved? It is conjectured
that the recently developed Lifting Scheme might provide answers to some of these
questions. The Lifting Scheme is a very efficient and flexible variant of the discrete
wavelet transform (Sweldens, 1996).

2.6.2 Time-frequency analysis

The application of the wavelet transform for time-frequency analysis of seismic re-
flection data can be subdivided in two areas: (1) the analysis of the time, shape,
phase, etc. of reflection cvents; (2) the separation of different types of events, such
as primaries, multiples, ground-roll, noise, etc.

In the first application area one is aiming at extracting information concerning
the propagation and reflection process, from the scismic data. Here, the wavelet
transform is an analysis tool with little concern with respect to reconstruction and
efficiency. The results of Morlet ¢t al. (1982) can be placed in this application area.
Since I have explicitly focussed ou the relation between the subsurface complexity
and the structure of the reflection events I have ranged this time-frequency appli-
cation under the singularity analysis in chapter 5. For this application area I see
sufficient opportunities.

The second application area has attracted sowme attention over the past years
(Rappin and de Bazelaire, 1992; Grubb and Walden, 1994; Foster et al., 1994),
which were however not particularly successful. The requirements here are related
to cfficiency and reconstruction. One is consequently forced to appeal to the discrete
wavelet transform. The discrete wavelet transform however has three disadvantages:
it 1s not translation invariant, it provides a relatively bad temporal resolution, and
it does not sufficiently take the trace-to-trace coherency of reflection events into
account. These limitations do not stride well with the analysis properties required
for a good separation of events.

2.6.3 Operator representation

A model of a physical process given in terms of operators is abstract. However,
such an operator model allows for a clear separation of different aspects of the
physical model. Moreover, it allows for a conceptual treatiment of the problem under
consideration, using a genceralized formulation of the operators. As soon as it comes
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to actually solving a specific problem, a specific representation of the operators in a
particnlar domain has to be utilized. In chapter 4, such an approach will be followed
while dealing with the migration problem.

Migration is the most computer intensive part in a seismic processing sequence.
The seismic community is continuously looking for techniques that can improve the
efficiency. In chapter 4 the opportunities provided cspecially by the wavelet trans-
form will be worked out. The point of departure is the monochromatic representation
of seismic reflection data, which will be introduced in full detail in chapter 3. In
its basic form the data representation takes the following operator form (see also
chapter 1):

PT =W RTWTS.

Following the formulation of Berkhout (1982), in scismic migration the aim is to
remove the effects of the propagators W* and to estimate the reflection operator
R+. In chapter 4 the possibilitics to efficiently render the propagators in the wavelet
transform domain will be presented. Besides, a method will be shown that allows for
a coarse-to-fine reconstruction of the subsurface image via a division of the reflection
operator in a coarsc and a detail part.

The two guiding principles for this application are the fact that wavelets arc
“blind” to smooth parts of a kernel and the fact that the multiresolution approxi-
makion gives naturally rise to a division into a coarse part and a detail part. The

background material for chapter 4 is provided by sections 2.5.3 and 2.5.4.

2.6.4 Singularity analysis

Tha erhenrefaca etrietnre ic hichlv comnlex Reflection is the resnlt of a local interac-
tion process of the complex subsurface with a wave, propagating into the earth. The
interaction process takes place over the effective size of the probing seismic wave.
A good understanding of this interaction process can help in characterizing relevant
geologic boundaries. In chapter 5 analytic studies are carried out to analyze how
the complexity in the subsurface is transferrcd to the reflected seismic wave ficld
both for normal and oblique incidence. The subsurface complexity is considered to
consist of homogeneous distributions on top of a smooth background. The wavelet
transform is used here as a tool to characterize the subsurface complexities both
directly, and indirectly via the reflected scismic wave field.

The guiding principle for this application is the fact that the wavelet trans-
form senses rapid variations, the singularities. With the wavelet transform one can
relatively easy characterize the local singularities. The background material for
chapter 5 is mainly provided by section 2.4.
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2.6.5 Image analysis

Nowadays 3-D acquisition surveys are used routinely to collect seismic reflection
data. Such 3-D acquisition surveys naturally lead to 3-D migrated cubes. Whereas
the task of a seismic interpreter was surveyable for 2-D sections, the task gets much
more complicated as soon as it comes to 3-D migrated cubes, despite the fact that
powerful visualization tools have been developed in recent years. The interpreter is
faced with the task to extract stratigraphic features and faults from the 3-D data
sets, .. he or she has to integrate information from multiple slices and sections. Au-
tomatic extraction procedures which require an image analysis preprocessing step
will certainly be of advantage to the seismic interpreter. In chapter 6 the oppor-
tunities provided by the 3-D wavelet transformm for the delineation of interesting
geological features will be pointed out.

The guiding principles for this application are based upon the fact that the
wavelet transform senses rapid variations at the scale of the wavelet, and the fact
that the full 3-D data coherence or incoherence is utilized. The background material
for chapter 6 is provided by section 2.4.1 and by sections 2.5.3 and 2.5.4.

2.7 Summary

In this chapter T have presented an overview ol linear representations and trans-
formations to be utilized in subsequent chapters. A representation can be seen as
the rcalization of a function or operator in a particular domain. A transformation
is an operation that links two different representations. The representations have
been subdivided in two main classes: one is associated with self-adjoint operators,
the other with the irreducible representation of groups, yielding the coherent states.
The former class comprises the temporal domain representation, the Fourier domain
representation and the Mellin domain representation. The latter class generates the
Gabor representation or windowed Fourier representation and the wavelet represen-
tation. Table 2.2 summarizes the symbols associated with these domains. Whereas
sclf-adjoint operators generate orthonormal bases, coherent states generate a highly
redundant set of functions. For analysis purposes the redundancy is advantageous,
however for efficiency purposes a subset is looked for. The theory of frames provides
methods to extract subsets that still represent the complete space under considera-
tion. For the Gabor representation it is not possible to find complete and orthogonal
subsets. However, within the theory of multiresolution approximations it can be seen
that orthogonal and complete subscts of wavelets can be easily found.

A joint time-frequency plane has been introduced to better understand the
functionality of the different representations. The temporal representation provides
information on the temporal development of a variable, but it does not give informa-
tion on the frequency behavior. The Fourier representation provides the {requency
behavior, but it does not provide temporal information. The Gabor representa-



64 Representations, analysis techniques and operators

symbol | domain—|

g time

g frequency
g Gabor

g wavelet

g Mellin

Table 2.2 Shorthand transformaltion symbol list for the domains introduced in this chapter
for a general function g.

tion provides both temporal and frequency information within a window function
of constant shape and width. The wavelet representation is a decomposition with
constant-@ filters, i.e. for higher frequencies the temporal resolution improves. Be-
cause the analyzing functions have a constant shape and a variable width, the wavelet
transform acts as a mathematical microscope. A further understanding is obtained
by looking at the behavior of the different representations under the action of param-
cterized unitary operators, such as shifting, modulation and dilation. This procedure
yields invariance and covariance properties.

Whereas the wavelet transform can be seen as just another division of the time-
frequency plane with a number of properties, its fundamental significance deserves
a better motivation. The wavelet transform naturally arises as a result of an ob-
servation at different scales, or as a result of an observation at different times. The
changes in the scale direction or in the time direction are exactly the clewents thal
a wavelet representation is registering. This interpretation of the wavelet represen-
tation, makes the link with distribution theory manifest. Moreover, understanding
that the wavelet representation expresses the changes of a distribution under in-
finitesimal scale changes makes the introduction of a multiresolution approximation
just a logical step. A multiresolution approximation is a tormal systcm that relates
approximations of functions at different (dyadic) scales. Due to the fast wavelet
transform algorithims induced by a multiresolution approximation, this specific in-
terpretation of a multiresolution approximation is in danger of being overlooked.

The present chapter is finalized with an overview of the different application
areas for the wavelet transform in relation to the seismic method. The following
application groups are discriminated: compression, time-frequency analysis, opera-
tor representation, singularity analysis, and image analysis. All these applications
are based upon two guiding principles: (1) a wavelet is “blind” to something that is
slowly varyving: (2) the wavelet transform allows for a natural subdivision in details
and approximations at multiple scales.




Chapter 3

One-way representation
of seismic data

The content of this chapler is a result of work done in collaboralion with Grimbergen
and Wapenaar. During his stay at our laboratory as an M.Sc. student, Grimbergen
was asked to look for accurate solutions of the monochromatic wave equation in
laterally varying medium configurations. Together with Wapenaar and the author he
came up with an elegant solution based upon a modal decomposition, which is well-
kEnown in quantum physics, but whose usefulness for seismic applications seemed to
be overlooked. Grimbergen wrote a well received Master’s thesis (Grimbergen, 1995)
and later on the work has been accepted for publication (Grimbergen et al., 1998). In
this chapter the line of the accepted article will be roughly followed. The emphasis will
be put on a refined analysis of the spectrum of the Helmholtz operator. Moreover, a
more extensive introduction of the busic equations leading to the monochromatic one-
way weve equation and to the one-way data representation will be given for further
use in subsequenl chapters. Applications in wave field extrapolation and migration
will be briefly discussed.

3.1 Introduction

As described in the introductory chapter, the most important source of information
that an exploration geophysicist has at his disposal is seismic reflection data. Seismic
data carry the information of the structure and character of the subsurface in a
disguised form. The disguise is mainly due to propagation effects to and from the
reflecting boundaries and due to complex reflections at all reflecting boundaries.
These two effects cause the seismic data to be retarded and dispersed. As one is
mainly interested in the location and character of the seismic reflectors, one would
preferably like to have sources and receivers directly on top of all the reflecting
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boundarics. Thereby, one has actually solved the problem called migration. The
task of migration is to put sources and receivers virtually on top of the reflecting
houndaries. Which tools are required to relocate the sources and receivers from the
surface to the reflecting boundaries in the subsurface?

Firstly, an adequate model or theory describing the physical process under
consideration is indispensable. Generally, a physical theory can be casted in a dif-
ferential form according to (cf. equation 2.1)

Au = f, (3.1)

where f is the source function that brings the process into action, u is the actual field
caused by the action f, and where the operator A relates infinitesimal changes in u
to the source field f. In the case of acoustical remote sensing a theory is looked for!
describing the propagation and reflection of clastic waves in solids and fluids; hence,
I am looking for a wave operator A coupling the source wave field f with the wave
field v in the medium. The wave theory that I am referring to has been developed
by some great scientists living in the 17th, 18th and 19th century. Although giving
a full historical account of the scientific development of the theory of elastic and
acoustic waves falls outside the scope of the thesis, I would like to point out a few
highlights. Noteworthy to be mentioned is D’Alembert who wrote down the first
wave operator A for a vibrating string in 1747, but also Navier, Poisson and Cauchy
who developed in competition the basic theory of elastic waves in solids and, finally,
Lord Rayleigh who gave a rather thorough treatment of the theory of sound in his
two volume masterpicce (Rayleigh, 1877, 1878). Realizing that a shorter history ot
a scientific theory has almost never been written, I would like to refer the reader to
Rayleigh (1877) and Love (1927) for a more elaborate historical perspective. In this
thesis the theory of the propagation and reflection of compressional waves in fluids
will be emploved. The functional dependence of the wave operator or D’Alembertian
in cquation (3.1) can be expressed by A(p, #, 9,3 ), where p is the volume density
of mass [kgm™3], and « is the compressibility [Pa~1]. The other two symbols are
introduced in section 1.5. Further details concerning the actual form of the wave
operator follow in section 3.2.

Secondly, a method is required to reduce the set of observations, i.e. the seismic
data, such that one is able to pronounce upon the density and compressibility as a
function of the spatial coordinates. Is this a simple task? Not at all. First of all,
one has to be confident that the forward problem, symbolically represented by

poks [ — u,

INote that as soon as a theory has been successfully formulated, one can easily say what the
scientist has been looking for. If a theory is not present. one is not aware of the actual missing

link.




3.1 Introduction 67

and consisting of equation (3.1) together with appropriate Dirichlet or Neumann
boundary conditions and Cauchy conditions (see e.g. Dautray and lLions, 1992), is
well-posed? and valid for the actual configuration under consideration. Assuming
that the forward problem is well-posed the inverse problem can be formulated:

w, [ — p, K. (3.2)

Generally, this is however an ill-posed problem. To mention three reasons for the
ill-posedness: (1) seismic data are only acquired at the surface; (2) the seismic data
is band limited; (3) waves are not only propagating but are also partially diffused
due to the small scale heterogeneities, which is a semi-group action.

In the present thesis, the inverse problem of equation (3.2) is approached via
a one-way or directional decomposition of the wave fields. The keynote of the di-
rectional decomposition is the explicit discrimination between propagation in the
direction of preference and scattering in the direction of preference. This procedure
leads to a 3-D one-way forward model of seismic data related to reflections at all
depth levels .3 >0 in the subsurface according to (see also Figure 1.2)

P = / W_,R+W+S+ d;l';g. (33)

r3 >0

Here. ST is a representation of the source distribution, W7 is an operator which
brings the wave field from the surface to a specific depth level z3, R is an operator
denoting reflection at depth level x5, W™ denotes the upward propagation operator
from depth level 3 back to the surface, and P~ is a representation of the seismic data
measured at the surface related to the reflection at all depth levels. The operators
WT carry out a (generalized) spatial convolution. Equation (3.3) is valid for general
3-D configurations. In section 3.2 the data model of equation (3.3) will be dealt with
in more detail. For this introduction the important points are:

1. The data model for P~ is a first order equation in the reflection operator R+,
Swrface related multiples are not included in the model on the right-hand side
of equation (3.3): it is assumned that they have heen eliminated in the data at
the left-hand side of equation (3.3). Hence, R™ is not considered. Therefore,
the shorthand notation R is used for the subsurface reflection operator RT in
the sequel.

2. Inversion of equation (3.3) yields an estimation of the (angle-dependent) reflec-
tivity operator, which is a function of the rapid and significant changes in the

2A problem is well-posed if (1) there exists a solution, (2) the solution is unique and (3) the
solution depends continuously on the data. A problem is ill-posed if it is not well-posed (Renardy

and Rogers, 1993).
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subsurface parameters®. In the scismic literature, the estimation of the reflec-
tivity is called migration. As mentioned before migration does not make any
assumptions about the reflectivity R. Thercfore, migration is a less ambitious
process than the computation of the full profiles of the constitutive parameters,
which is generally the aim of the inverse scattering approach (c.g. Bleistein
and Cohen, 1979). The distinction between migration and the inverse scatter-
ing approach is discussed in considerable detail in Berkhout (1982), Tarantola
(1984), Stolt and Weglcin (1985) and Wapenaar (1996a).

3. The problem described in the first paragraph ol this section of finding the
reflecting boundaries has been “reduced” to the computation of the operators
W= and their inverses in a propagation or background mediumn characterized
by po and ko*. Hence, the inverse problem of cquation (3.2) can now be
reformulated as

Pm.§t 0D g (3.4)
which represents a (generalized) spatial and temporal deconvolution process.
Given P~ and ST, the reflectivity R can be extracted by appropriately apply-
ing the operators (W*)~1L,

4. Finally, the estimated subsurface reflection operator R can be used as input for
a lithologic inversion procedure in order to find the rock and pore parameters
or in order to characterize the subsurface boundaries.

The third point touclies upon the heart of the reason to write this chapter: the
computation of the operators W¥. The operators W* describe propagation from
one depth level 3, to another depth level x3 ,,. Henceforth, the opcrators W will
be referred to as propagators®.

The computation of the propagators basically boils down to the computation
ot

exp(—j v/ Ha Ay), (3.5)

where H» is the Helmholtz operator, which is the temporal Fourier transform of the
D’Alembertian; Azz = |23, — T3,m| is the depth step over which the wave field has

3The notions rapid and significant are not absolute quantities. Rapid changes are rapid with
respect to the resolution of the probing seismic wave fleld. Significant changes are able to reflect a
considerable amount of energy in a coherent way. Significant changes are not necessarily rapid and
the other way around.

iIn this thesis the question how to estimate the parameters pg and so will not be addressed.
It is however an important and not completely solved issuc; sce, for example, Kabir (1997) for a
recent treatment of this issuec.

5Normally, the propagator or evolution operator is referring to a development of a physical
system as a function of time, not as a function of one of the spatial coordinates (see ¢.g. Dautray

and Lions, 1992).
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to be extrapolated. The medium parameters are assumed not to vary as a function
of the x3-coordinate in the interval (23, x3,.,). A function of an operator requires
special care, because a simple evaluation as with exp(z) is not allowed, unless the
operator is a diagonal operator. Although analytic solutions exist for very specific
medium configurations (Fishman, 1992), they are in general not applicable in the
highly heterogeneous earth. Consequently, one is driven back on numerical methods.
The numerical nicthods are derived from two competing formally exact expressions
for the propagator in (3.5). The first one is based upou a Hamiltonian path integral
representation (Feynman and Hibbs, 1965; DeWitt-Morette et al., 1979; Fislunan
and MceCoy, 1984a; Fislhmau, 1992; de Hoop, 1992) and the sccond one is based
upon a normal mode or cigenvahie decomposition of the Ilelmholtz operator (Reed
and Simon, 1979; Dautray and Lions, 1990).

The first is the most general method in the sense that the depth step Axy in
which the parameters are assumed not to vary can be made arbitrarily small in a
natural way. Moreover, Fishman and McCoy (1984h) stated that the path integral
representation can be seen as a starting point to derive solutions, such as ratio-
nal approximations (Claerbout, 1971; Berkhout, 1982; de Hoop, 1992; van Stralen,
1997), such as the optimized operator methods (Holberg, 1988; Blacquiére et al.,
1989; Hale, 1991; Thorbecke, 1997), or such as the uniform expansion methods cur-
rently being developed (Fishman ct al., 1997). While performing well as long as the
lateral medium variations do not take place within the size of the derived operators,
the rational approximations and optimized operator methods fail to perform well if
significant lateral changes take place within the size of the operators: unreliable or
sometimes even unstable results (Etgen, 1994) may be expected.

The second method, based upon a modal decomposition of the Helmholtz oper-
ator, provides the possibility of an improved handling of lateral medium variations.
From optics, shallow-water acoustics, seismology and also in specific seismic applica-
tions, it is known that an expansion of the wave ficld into wave modes proves to be
an appropriate method of dealing with predominantly laterally varying media (e.g.
Weinberg and Burridge, 1974; Blok, 1995; Ernst and Ilerman, 1995). These appli-
cations are usually limited to wave guides or other structures with comparatively
small variations in the direction of preference. Morcover, in those applications the
medium parameters vary in such a way, that the guided wave modes dominate the
wave field. Clearly, this is not the case in reflection scismics, where wave guiding
situations seldom occur as a result of lateral variations. Here, the radiating part of
the wave field is generally more important than the guided wave modes.

As will be shown in this chapter, an extrapolation scheme based on a modal
expansion of the wave field into both guided and radiating wave field constituents.
significantly increases the lateral resolution of the result. The method is tested in
a synthetic migration example. The subsurface model of the migration example
contains a high velocity domal structure (salt) and a number of faults. It is shown
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that by using the modal expansion for the construction of the one-way wave field
operators, significant improvements can be achieved compared to the more local
methods. Besides the improved handling of lateral medium variations, the modal
decomposition has another advantageous property. It provides insight in the physical
structure of the problem at hand through a decomposition in orthogonal wave field
constituents.

Closc links exist between the method presented in this chapter and the work
of Pai (1985) and Kosloff and Kessler (1987). In Pai (1985), a modal decomposi-
tion in the wavenumber-frequency domain is carried out for laterally-varying media
and applied to the two-way wave equation. For laterally invariant media the result-
ing extrapolation operator reduces to the phase-shift operator. Kosloff and Kessler
(1987) mention the possibility of a modal decomposition applicd to the two-way wave
equation in the space-frequency domain, but they choose to make usc of Chebyshey
polynomials as an approximation. Both references take the discretized wave equa-
tion as a point of departure, whereas in the present chapter a derivation from the
continuous formulation is carried out. This derivation leans upon functional calculus
and it provides better insight in the physical nature of the problem at hand.

A general motivation has been given for the present chapter and I went by
seven-league strides through what will follow. Let me conclude this introduction
with an overview of the flow of the chapter. The chapter will continue in section 3.2
with the basic equations ruling the behavior of compressional waves. In the same
section the basic equations will be recasted such that the directional decomposition
can be carried out. The directional decomposition yields the so-called onc-way wave
equations and the primary data representation. Section 3.3 is devoted to the modal
decomposition of the Helmholtz operator. Special attention will be paid to the
definition of the mathematical space in which the Helmholtz operator is working,
the definition of the spectrum, and the derivation of the kernel of the propagator.
The attention in section 3.4 is dedicated to exawmples. In the light of the presented
examples, the proposed method is discussed in section 3.4.3, its advantages an
disadvantages; section 3.4.3 is as such the overture for chapter 4. Finally, section 3.5
sumumarizes what has been found.

3.2 The wave equation

The two linearized partial differential equations forming a hyperbolic system and
governing the acoustic wave field, are given in a right-handed orthogoual coordinate
system by®
pocvy + Okp = fi. k=1,2.3. (3.6)
KO p 4+ O, = q. (3.7)

8The notational conventions and frequently used definitions are put together in section 1.5.
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where

p =p(x,t) is the acoustic pressure [Pal,

v = vp(x, 1) s the particle velocity in the ;-direction [ms” I,

p = p(x,t) is the volume density of mass [kgm™],

k= r(x,t) is the compressibility [Pa~!],
fi = fu(x,t) is the volume source density of force in the #i-direction [N m—?,

q = q(a,t) is the volume source density of volume injection rate [s71].

It is assumed that the constitutive parameters p and « are sufficiently smooth func-
tions of the spatial coordinates, that they are constant outside a sphere of finite
radius, and, finally, that they are isotropic and time independent. Equation (3.6) is
a manifestation of Newton’s second law of motion and equation (3.7) is the acoustic
version of Hooke’s law”. Substitution of the former into the latter yields

. . 1
D2p — 2 pde =0kp = h, (3.8)
P

where ¢ = 1//pr is identified as the velocity with which the compressional waves
are traveling and h is a notional source function depending on fr and ¢g. The
operator [1 = 97 — c?pd, /1—)0;\. is recognized as the wave operator or 1)’Alembertian.
A solution can be obtained if initial or Cauchy conditions, and boundary conditions
are specified. General solutions and general characteristics of the resulting Cauchy
problem?®, such as reversibility, no smoothing action, finite propagation speed, cte.,
can be found for example in Dautray and Lions (1992).

3.2.1 The two-way wave equation

The time independence of the constitutive parameters favors the use of the temporal
Fourier transform, which makes the time independence of the constitutive parame-
ters manifest. The application of the temporal Fourier transform (cf. equation 2.34)
to equations (3.6) and (3.7) yiclds

JwpVy + O P == Fy., (3.9)
JwrP + 0.V, = Q, (3.10)

"Hooke formulated his law of proportionality of stress and strain in 1678. He used the simple
words: “Ut tensio sic vis”.
8The Cauchy problem associated with the wave equation consists of equation (3.8) together with
Dirichlet or Neumann boundary conditions and Cauchy conditions, which can take the following
form
(&, 1)|pcr = 0 (Dirichlet condition) or Vp(x,t) - njpep =0 (Neumann condition)
p(x,0) = po(x) Oeplae, 0) = p1(e) (Cauchy condition).
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where V), = Vi (z,w), P = P(x,w), F, = F.(xz,w), and Q = Q(x,w) are the tempo-
ral Fourier transforms of v, p, fr and g, respectively. A subsequent elimination of
the horizontal components of the particle velocity Vi and V; yields a coupled system
of partial differential cquations for the pressure P and the vertical component of the
particle velocity V3 as stated by (Claerbout, 1971; Wapenaar and Berkhout, 1989)

5Q+jAQ = D, (3.11)

which is a special casec of the general matrix system discussed by Volterra, as Gilbert
and Backus (1966) point out. Equation (3.11) is referred to as the two-way wave
equation. The wave vector @ and the notional source vector D are defined by

o (e oo )

and the two-way (matrix) wave operator A is given by

0 wp
A= (ﬁ/—z(ﬂzﬂ‘”z') 0 ) ’

where the Helmholtz operator Ho can be written as
Ho = k*(x) + 9,0, (3.12)
with the modified wavenumber k(z) given by”

1) = (<) Z 30up) (0up) | (0uOp)
‘ \cle) ) 4p* 2p
If the density does not vary with respect to the lateral coordinates @, = (x,x2),
the modified wavenumber reduces to its normal form according to

W

k(x) = g
For further details concerning the substitutions required for the nice functional
form of Hs the reader should consult (Brekhovskikh, 1960, p. 162), Wapenaar and
Berkhout (1989) or de Hoop (1992).

Remark 3.1: Operator notation

Except for the operator O3, in this chapter an operator is working in the plane per-
pendicular to the direction of preference. The action of an operator A on the field
quantity y{ax;) can be explicitlv written as

(Av) (=) = /A(a:,,:a:,’t) o)) d2a;. (3.13)

Q

YThe introduction of the modified wavenumber is not strictly required. However, it is advanta-
geous since it results in the nice functional form of the Helmholtz operator.
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where the kernel Ax,;x;) is the spatial representation of the operator A (cf. sec-
tion 2.2). In this chapter the field ¢ (x,) represents a monochromatic wave field at
a fixed depth level. The operator A and its kernel arc svmbolically related by

Al a)) = Ad(x, — x;). (3.14)

What doces the solution of the two-way wave equation (3.11) look like? Consider
the homogeneous Cauchy problem associated with (3.11), which is given by

hQ +jAQ =0
Q|41-3:0 = Q-

In the case that the two-way wave operator is independent of the xs-coordinate,

(3.15)

which denotes the direction of prefercnce, the solution of the homogeneous Cauchy
problem can be written as

Q(r3) = exp(—Jj A x3) Q. (3.16)

Since the operator matrix A is neither self-adjoint nor normal'’, it is not a priori
clear that a meaning can be given to this expression in the sense of functional
calculus. A straightforward evaluation of the exponent in equation (3.16) vields a
structure well-known in time evolution problems (Reed and Simon, 1979; Wilcox,
1984; Dautray and Lions, 1990; Faris, 1995)

P2 cos(VHL x3)p~ /2 —jwpl 2, sin(yHg ws)p/?
Q(‘[?’) - 7 QO:
;;—[)117 o sin(v/Ha a3)p~ /2 P~ 2 cos(VH, x3)p'/?

but this expression does not result in a stable marching algorithm. The question
whether or not the functions of operators arising in this equation exist and how they
can be computed will be addressed in the next section where an alternative and
stable approach is followed. The important point to notice with respect to the last
equation is the fact that functions of the Helmholtz operator are required in order to
evolve the wave field from one depth level to another. What should one do in case Ho
is varying as a function of depth? In that case one would like to separate propagation
and scattering due to medium variations in the depth direction such that the wave
field can still be explicitly extrapolated. This objective can be achieved with the
help of the one-way wave equation to be derived in section 3.2.2. It turus out that
functions of the Helmholtz operator are essential in the one-way wave equation as
well. Consequently, in section 3.3 the attention will be focussed on the interpretation
of the Helmholtz operator and functions of the Helmholtz operator.

10A normal operator A commutes with its adjoint according to [A, Af] = 0, where the commu-
tator is defined in equation (2.29).
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3.2.2 The one-way wave equation

As stated at the end of the previous subscction, a method is looked for which explic-
itly separates the scattering process along the direction of preference and the prop-
agation process in the direction of preference. This separation can be achieved by
introducing a composition operator £ and a decomposition operator £~ ! which diag-
onalize the two-way wave operator A in equation (3.11). Analogous to the decompo-
sition approach in horizontally layered media (see Ursin, 1983, for an overview), op-
erators £ and H can be found such that (Claerbout, 1971; Wapenaar and Berkhout,
1989; de Hoop, 1992)

A=LHL, (3.17)

where H is the required diagonal operator given by

_(Ha 0
HW(O *H1>.

The operator H; is related to the Helmholtz operator Hy via
H‘Z = HIHM (318)

and it is referred to as the square-root opcrator. Note that #H; is a pseudodiffer-
ential operator (Fishman and McCoy, 1984a,b; Shubin, 1987; de Hoop, 1992). A
whole class of composition operators £, all leading to different representations of
the scattering process in the horizontal space, exist. Here, the vertical-acoustic-
power-flux normalization is utilized, which amounts to the following composition
and decomposition operators

r.:(‘cl ﬁ‘\ r*‘:l(ﬁi EQ_]\
\Ly —L2) ' 2\L, " Lo )

with

wp\ /2 —1/2 1 1z 1/2
51:(7) M d L= (g ) W

Other well-known normalizations are the acoustic-pressure normalization and the
vertical-particle-velocity normalization (de Hoop. 1992). They may lead to different
intermediate results but the expressions P and V3 will not depend on the choice of
the normalization. Substituting equation (3.17) in equation (3.11) and letting the
operator £ work on the left-hand and right-hand side yvield a coupled system of
partial differential equations

9P + jHP =S+ OP. (3.19)
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which is hereafter referred to as the one-way wave equation. The wave vectors Q
and P and the notional source vectors D and S are related by

Q(z,,r3,w) = LP(x;,r3,w), and D(x,,x3.w)=LS(x,2s,w).

Note that in the notation of the spatial coordinates, the separation between the hori-
zontal coordinates and the vertical coordinate is made explicit by writing (@, , x3) in-
stead of . In the remainder of this chapter the dependence on the angular frequency
w will be suppressed. The second term on the right-hand side of equation (3.19) is
defined by

OP=(-L'nL)PE (TR TR> P,

aud can be seen as a secondary source term accounting for scattering along the
direction of preference, i.e for the coupling between downgoing and upgoing waves.
The operator 7 is the transmission operator and R is the reflection operator. They
are given by

T = -—1/2 (,Cl_l((');;ﬁl -+ ,62_1(()352) )
and
R = 1/2 <£f1(9;;£1 - ,C;la;[,z) .

In the absence of vertical variations in the medium parameters the secondary source
term vanishes. Hence, the objective I have set myself, namely to separate the propa-
gation in the direction of preference and the scattering in the direction of preference,
is fulfilled. It is therefore justified to explicitly identify the elements of the one-way
wave vector P as a down- and upgoing wave field, i.e.

e (7).

where the plus-sign denotes a downgoing wave fleld and the minus-sign an upgo-
ing wave field. In a similar fashion the notional source vector S can be written
as § = (S1,57)7, where St (S7) is the notional source that initiates the down-
going (upgoing) wave field. The different roles the operator jH and @ play in
equation (3.19), are sunmarized in Table 3.1. The operator jH accounts for (down-
ward/npward) propagation and the operator @ for scattering due to vertical varia-
tions of the constitutive parameters. Both the operator jH and © account implicitly
for scattering due to horizontal variations in the constitutive parameters.
Notwithstanding the fact that the onc-way wave equation separates propaga-
tion and scattering in the direction of preference, nothing has been actually solved so
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JH | ©
Propagation X
Vertical scattering
Horizontal scattering | X X

Table 3.1 Downward/upward propagation is accounted for by the operator jH. Verti-
cal scattering is accounted for by the operator ©. Horizontal scallering is
accounted for by both operators (Wapenaar and Grimbergen, 1996).

far: the two-way wave equation (3.11) has only been replaced by the one-way wave
equation (3.19). The solution of the onc-way wave equation starts with the solu-
tion of the homogeneous one-way wave equation and with the all-important Green’s
function. The Green’s function or elementary solution G of equation (3.19) is the
solution in distributional sense of

3G + jJHG = §(x, — x))d(x3 — 2], (3.20)

where

10
Sla, — ) 2 6(xy — 2))6(xs — ah), and T2 (0 1) .
In equation (3.20) the coupling of downgoing and upgoing waves duc to medium
variations in the direction of preference has been set to zero. The matrix kernel

Gt 0
Gz, xz; @], 25) = ( 0 G‘) (0, w552, x5)

signifies propagation in the actual medium. In accordance with time evolution prob-
lems for the full wave equation (3.8) or equivalent time evolution problems in quan-
tum mechanics (Dautray and Lions, 1992; Reed and Sunon, 1979), the Green's ker-
nels G* can be written as

G (@, . wqi @) ah) = £H k(x5 — 24))WH (@ 35 ), %), (3.21)

Here H(x) is the Heaviside or step function defined by

1 ife>0
H{x) =1
0 ifx <0,
and the kernels W (x, . ry: @), r}). denoted as propagator kernels, are solutions of
the homogeneous Cauchy problem

W £ iH W = 0
{‘ JH (3.22)

(W), = 5(x, — ).

ry=ah r
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The kernel W is the propagator kernel for primary downgoing waves and the kernel
W~ is the propagator kernel for primary upgoing waves. In case the medium pa-
rameters arc not varying between xy and % 11 “the solution of this Cauchy problem

is casily recognized to be (cf. equations 3.15 and 3.16)
W (@, i), ) = exp(Fi(es — ah)H1) dla, — ), (3.23)
which can be written, using the symbolic notation of equation (3.14), as
WE(x, w552, ah) = Wh s ah)d(x, — ), (3.24)
and, consequently,
W () = exp(F(s — ) H1), (3.25)

Note that W= is referred to as the propagator, and W as the propagator kernel.
Am I ready? No, (1) T have to give a meaning to the rather symbolic expression
of equation (3.25) containing functions of operators, and (2) I still have to solve the
full one-way wave equation (3.19). After all, the goal is to infer information on the
niedium paramcters from the seismic data acquired at the surface. Let me start
with the latter. The expression for the Green’s kernel lias been found (but it has
not been computed vet). The sccond step in the solution of the one-way wave
equation consists of the incorporation of the scattering process in the direction of
preference through the secoudary source term P of equation (3.19). The Green’s
kernel of equation (3.21) is a solution for propagation in the real medium; it solves
the scattering process only in the plane perpendicular to the direction of preference.
Given the Green’s kernel and given a source distribution at one depth level, the
implicit solution for the wave field P can be derived from equations (3.19) and (3.20)

as

Pz, x3) = / GS d*z + / GOP d?z] d). (3.26)

U For the more general situation life is not that easy. The most general solution for the propagator
kernel can be derived via a path integral representation to be

1N2N N N-1
a2 ! ) — i _ 2.1 2,1
W (ep, a3, ) aNllﬁnLO <27r> /E dea; II:I() d kY
N-—1
exp <J |iz /\‘51(.1’6‘ - .rf/'H) + lzl(x‘il,kf,,x‘g + 1AC)AQ}> .
(=0

where fiy is the left symbol of the square-root operator (Fishman and MNcCoy, 1981b; Shubin, 1937;
de Hoop, 1992), where A¢ — |23 — 25]/N, and where ky. = (k1, k2) is the spatial Fourier pair of
@, . The contribution in (@r, x3) [rom (wﬁ,x'j) can be seen as the swuumation of the contributions
of all possible paths in phase space between the two points. The concept of path integrals has been
introduced by Feynman in the 1940s, scc, for example, Feynman and Hibbs {1965) or DeWitt-
AMorette et al. (1979).
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which has the same structure as a Lipmann-Schwinger cquation (Stolt and We-
glein, 1985; Fokkema and van den Berg, 1993). The implicit equation (3.26) can
be solved by a Neumann series expansion, also referred to as a Bremmer coupling
series (Bremmer, 1951; Corones, 1975). For the application in seismic migration,
a linearized version of the Bremmer coupling series will be utilized. The linearized
version is obtained if only the first term with the scattering opcrator R is taken
into account. Consider a configuration in which the upper half-space 23 < 23 is
hiomogeneous and choose sources and receivers in this upper half-space. In particu-
lar, we consider the primary upgoing response P~ (x},x%) for xy < x30, related to
the source function for downgoing waves S*(xf,x%) for x5 < x3,0. Then the model
for the primary upgoing response or the primary reflection data P~ (], x%) can be
easily derived from the Bremmer series

pens [ ]]

r3>T3.0 ] @ O
(T T - V(! e S p8) G (S
v (mLV J]5~ ., '13) R(iEL,l;;, I ,.T;g) W (:EL + L33 5'32» I‘%) S (lllbv 12)
2,8 32,00 12 1
d°x} ) d°x; dag,  (3.27)
which allows for a more compact notation if the kernels W* and R are replaced by

their operators W+ and R, respectively. The primary data representation can thus
be written as

D= (Wl ) / A" (4 e N ooy S TS A
4 \ Ly, L3) = j W (.4 3 .L;,) R{w,‘5> w (‘I 3e ..'/;5) S (.l;‘) dx 3.
L3230 (328)

It is the monochromatic one-way representation of the primary reflection data. It
is an adequate model of the scismic experiment after decomposition in up- and

1 P I e )
uun“hu...b woves and aftor surface rolated “li‘.lt:pl'.‘ alimination (n'“‘l’]""" 10520\

Refinements of the model on the right-hand side of equation (3 .27) can be obtained
by including fine-layering effects in the propagators, yielding the so-called generalized
primary data representation (Wapenaar, 1996b). The fine-layering effects influence
the amplitude and the travel time. In practice, the travel time delay is automatically
dealt with while looking for an optimum macro model in which the propagators have
to be defined.

The representation of a seismic experiment of equation (3.27) does not only
lead to a more compact notation but it allows also for an easy realization of the
operators in other mathematical domains, as has been discussed in chapter 2 in
considerable detail. Representations of the primary reflection data in other domains
will be discussed in chapter 4.

The second of the remaining two issues raised below equation (3.25) on the
preceding page has been addressed. The first issue concerns the interpretation of the
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Helmholtz operator and especially functions of the Helmholtz operator. Functions
of operators can be given a meaning by a modal or spectral decomposition, which
will be the subject of the next section.

3.3 Operators and modal decomposition

The previous section ended with the linearized model for a seismic experiment. Of
key importance here is the propagator, given by

W (1) = exp(TFi (g — 25)YH). (3.29)

The propagator is a function of an operator and we are faced with the question how
to give a meaning to it. An expansion of the Helmhollz operator in cigenfunctions
will be utilized in this section. The advantage of the decomposition in eigenfunctions
over competing methods, which have been briefly discussed in the introduction of
this chapter, is related to the aceuracy and stability and to the physical insight the
wethod provides. The advantages and disadvantages will be worked out in more
detail in section 3.4.3. The material presented in this section is closely related to
the general theory presented in section 2.2,

Example 3.1 Consider the clectron of a hydrogen atom'?. A discrete set of bound
states exists, corresponding to the situation where the electron is in the influence
region of the nucleus, and a continnous set of free states in which the electron can
move if it does not feel the influence of the nucleus anymore. The bound states
can in terms of waves be scen as states in which the wavelength of the clectron
fits an integer number of times. Free electrons, on the other hand, do not feel any
restrictions in their movements. A modal decomposition of the Hamiltonian of the
hiydrogen atom exactly shows which statcs can occur.

A similar situation can occur for acoustic waves. A modal decomposition kills two
(or more) birds with one stone:

1. A modal decomposition of the Helmholtz operator shows the states, the cigen-
functions, that are “allowed” to exist in the plane perpendicular to the direc-
tion of preference. Each physical wave field should be a linear combination of
the allowed states according to the superposition principle.

"2The non-relativistic Hamiltonian of the electron is given by (Messiah, 1958)
h N 2

— O¢lp — -,

2m r

e

where F is Planck’s constant, m is the mass of the clectron, e is the electron’s charge, and r is
the radial distance to the center of the proton. Note that the proton is considered to be infinitely
heavy.
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2. The action of an operator on one of its cigenfunctions reduces the action of
the operator to a simple multiplication with the eigenvalue corresponding to
the eigenfunction. Norcover, if an adequate function space is chosen, the set
of eigenfunctions forms an orthogonal basis. In the orthogonal basis the action
of a function of an operator reduces to a multiplication as well. Hence, the
following two important relations turn out to be at our disposal (cf. section 2.2)

Aoa(x) = Aoa(x),
f(A)oa(x) f(N)oa(x),

where A and ¢y(z) belong to the set of eigenvalues and the corresponding
sct of eigenfunctions, respectively. If the operator A has the aforementioned
properties, the kernel A of A or the kernel K of the operator f(.A) can be easily
obtained.

3. The set of cigenvalues forms the spectrum of the operator, a notion to be refined
in section 3.3.2. A close analysis of the spectrun reveals useful information
on the character of the problem at hand. For example, the type of fields to
be expected can be forecasted. But also, the well-posedness can be examined:
certain parts of the spectrum are especially sensitive to slight changes in the
operator. The absence of such a part of the spectrum ensures the stability of
the problem.

Though trivially stated. the real world is unfortunately a little bit more complex.
On which space of functions should the Helmholtz operator Ho work? In what
sensc and on what grounds can the spectrum be subdivided? Can every function
of the Helmholtz operator easily be computed? These questions will be addressed
here. While answering, the theory of the Hamiltonian in non-relativistic quantum
mochanice will ho hancilv laanad sinon hacanca the cimilarity (emalitv nn ta s factar)
of this operator and the Hclmhoitz operator is striking. Operators in quantuin
physics are subject of a vast amount of literature. With respect to operator theory
I madec significant use of Reed and Simon (1972, 1975, 1979, 1978). Dunford and
Schwartz (1963), Dautray and Lions (1992), and Souillard (1986). The analysis
applies to the Helmholtz operator for a 3-D medium configuration. The examples
in section 3.4 are carried out in 2-1) configurations.

The flow of the remainder of the section will be as follows. In section 3.3.1
a proper subspace of L?(R?) will be defined on which the Helmholtz operator has
the required propertics. Section 3.3.2 is devoted to theoretical cousiderations con-
cerning the spectrum of a sclf-adjoint operator and to the theory behind the modal
decomposition. In sections 3.3.3 and 3.3.4 the obtained kuowledge will be applied
1o the Helmholtz operator. In section 3.3.3 the spectrum of the Helmholtz operator
will be analyzed. In section 3.3.4 the attention is focused on the decomposition of
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an arbitrary wave ficld in terms of the eigenfunctions and on the computation of the
kernels of the square-root operator and the kernel of the propagator.

3.3.1 Self-adjoint operators

Berezin and Shubin (1991) replirased one of Von Neumann’s postulates (1932) ac-
cording to

“The states of a quantum mechanical system ave described by non-zero
vectors of a complex separable Hilbert space H, two veclors describing
the same state if and only if they differ only by a non-zero complex fac-
tor. Each observable corresponds to a certain (unique) linear self-adjoint
operator.”

This is one of the basic postulates of quantum mechanics and it shows the importance
of self-adjoint forms of operators. As soon as it is shown that an operator is self-
adjoint, it is known that the eigenvalues (in quantum mechanics the observables)
are real, that the eigenfunctions form an orthogonal basis, and consequently, that
functions of the self-adjoiut operator can be computed. This is only true for self-
adjoint operators (Reed and Simon, 1972).

In order to find out whether an operator is self-adjoint, the following notions
are of vital importance.

1. Adjoint operator
The adjoint operator AT of A can be introduced by

(Ap. vy = (0. Al V¢ ¢ dom(A) and V1 € dom(AT).
(3.30)

Generally the domains of A and A', dom(.A) and dom(A"), do not coincide.
They can even be quite different (Reed and Simon, 1972, p. 252).

2. Symmetric operator
An operator A is symmetric if

(Ap, v = (9, Av) YV ¢, 1 € dom(A), (3.31)
which is equivalent to stating that
Ao = Alo Y ¢ € dom(.A), and

dom(A) C dom(A").

3. Self-adjoint operator
An operator A is sclf-adjoint iff it is symmetric and

dom(A) = dom(A").
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This point makes clear that the definition of the domain is an essential part of
the definition of an operator. Without a domain, an operator does not have a
mweaning. For different domains an operator can have different effects.

Before I turn to the Helmholtz operator and check whether or not it is synunetric or
self-adjoint, let me briefly discuss as an example the second-order derivative operator.

Example 3.2 Consider the Hilbert space L*(R). The operator A = d?/dax? is
not well defined on the whole space; there certainly exist functions which second
derivative is not squarc-integrable any more. A proper subspace of L*(R) has to be
found on which the action is well defined. This subspace turns out to be the second
Sobolev space. The second Sobolev space H?(R) consists of functions the second
derivatives of which are square-integrable'*.

The symmetry of the Ilelmholtz operator is easily established. Let me take as
domain of Hy the space C§°(R?), i.e. the space of infinitely many times differential
functions having compact support*!. On this domain H, is well-defined and it can
be casily shown that it is symmetric on this domain, using the fact that the stock

terms vanish, i.e.
(Hao,v) = (o, Hov),

with ¢ € C3°(R?). Due to the fact that strong conditions are laid upon the choice
of o the choice for 17 is less restricted. Becanse if ¢ € C5°(R?) then Hao € C5°(R?).
It can be concluded that dom(Hy) C dom(’HE). Intuitively it can be understood
that in order to get a sclf-adjoint operator. dom(H>) has to be extended, such that
dom('HL) gets smaller, up to the moment that both domains “meet each other”. If
the extension of dom(Hs) = C3°(R?) can be done in a unique way, the operator
is called essentially self-adjoint (Reed and Simon, 1972, p. 256; 1975, Ch. X). The
domain of the Helmholtz operator can be enlarged from infinitely smooth compact
sappoit functions to functions of which the cocond dorivative fin dictribntional conce)
is square-integrable. This spacc is called the second Sobolev space and it is denoted
by H2(R?). More technically stated, if ¢ € dom(Hz) = H2(R?) then Hy¢ € L*(R?).
The self-adjointness of the Helmlioltz operator has been established, now we are able
to investigate the spectral properties.

3.3.2 The spectrum of a self-adjoint operator

The resolvent operator of the operator A is given by

A 1

T -A
I3For a clear and concise introduction on Sobolev spaces the reader is referred to Dautray and

Lions (1988).

4 A function with compact support vanishes outside a finite domain (Reed and Simon, 1972,
p. 111).

R A € p(A), (3.32)
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where the resolvent set p(A) defines the domain where the resolvent exists. The
spectrum o(A) is the complement in C of the resolvent set p(A4). Hence,

a(A) = C\p(A).

The resolvent operator is of course more than only a tool to find the spectrum of
an operator. The resolvent operator can be used to defiue, via a Dunford contour
integral, functions of the operator, in particular the spectral projection, which can
be scen as an operator generalization of Cauchy’s residue theorem. The role of the
resolvent will be discussed again in relation to the spectral theorem.

Hereinafter the operator A is assumed to be self-adjoint, which means that
the spectrum is a subset of the real line R. The spectrum of a self-adjoint operator
can be subdivided in different parts in various ways, providing as such knowledge of
the physical underlying system. The first subdivision has two attractive properties.
Firstly, the subspaces associated with the different parts of the spectrum of the
operator A, arc invariant under the action of A. Secondly, the functions in the
different subspaces clearly have a distinct physical nature. The second subdivision
provides less physical insight, but it can be casier obtained. It is a subdivision in
isolated and non-isolated eigenvalues.

Besides the fact that the spectrum of a self-adjoint operator is a subset of the
real line, another property of a self-adjoint operator is the fact that it is possible to
associate with its spectrum a continuous equivalent of an orthogonal basis. In the
sequel, the two possible subdivisions of the spectrum will be discussed first, then the
orthogonal decomposition associated with a sclf-adjoint operator will be dealt with.

Subdivision of spectrum I —Let me first turn to a part of the spectrum which is
well-known and which is denoted as the pure point spectrum op,,(A). It is defined
by those values A for which the following formula is valid

A (x) = Adr(z) for ér(z) € dom(A). (3.33)

Functions ¢, (x) fulfilling equation (3.33) are called cigenfunctions; the correspond-
ing A arc called eigenvalues. For unbounded operators, such as the Helmholtz op-
erator or such as the second derivative d?/dz?, the pure point spectrum generally
does not cover the whole spectrum or does not exist at all. The essential element
in equation (3.33) is “¢n € dom(A)". There may be points A in o(A) for which
the corresponding “cigenfunctions” do not belong to the domain of the operator
or which are even not in the space of square-integrable functions. These functions
will be called generalized eigenfunctions. The proper definition of generalized eigen-
functions requires the concept of the “equipped Hilbert space”, which allows the
gencralized eigenfunctions to lay in a space just a little bit larger than the domain
of the operator (Vilenkin, 1972, p. 89).
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Example 3.3 Consider again the second-order derivative A = d?/dz? (see Ex-
ample 3.2). By applying a Fourier transformation it can easily be shown that the
spectrum o(A) = (—o0,0]. However, the spectrum does not contain eigenvalues,
because the functions related to any A € o(A), do not belong to the domain of the
operator. The generalized eigenfunctions are given by the Fourier components

b e(a) = exp(ja)  VECR,

which are clearly not square-integrable. In distributional sense thev can be given a
meaning.

Example 3.4 Consider the multiplication operator A = z on functions ¢ € L?(a,b),
i.e. the space of square-integrable functions on the interval (a,b). Hence,

Ap(x) = zo(x) o(x) € L*(a,b).
The cigenvalue problem is given by
xox(z) = Aoa(x),

which is satisfied by functions ¢, (r) equal to zero except for x = X where it can
be different from zero. But in the domain there is no non-zero element having
this property. Eigenfunctions, however, exist, namely the d-distributions é(x — A)
which are not living in L?(a,b). The spectrum cquals 0(A) = (~o00,00). Sce also
section 2.2

Two possible parts of the spectrum that have been discussed so far, can be dis-
criminated on the basis of their mathematical structure. The pure point spectrum
opp(A) consists of the part of the spectrum with which the true eigenvalues can be
associated. Another part of the spectrum cannot be associated with functions in
the domain of the operator. This part has been discussed in the two examples. Tt is
called the absolute continuous spectrum o,.(A).

The above described division can be given a firm basis and can be refined
with the help of Lebesgue integral theory and the associated abstract measure the-
ory (Reed and Simon, 1972). This abstract theory results in the following refined
subdivision:

a(A) = opp(A) U oac(A) U o (A), (3.34)

where the ~ denotes the closure of o,,,(A). which consists of o,,(A) and its limiting
values: g4 (A) is the singular continuous spectrum and will be discussed below. Al-
though the above subdivision might seemingly appear out of the blue, the associated
subspaces of eigenfunctions have a relatively simple physical meaning. Noreover. the
associated subspaces are stable under the action of the operator.




3.3 Operators and modal decomposition 85

Let us define H,,, H,. and H. as the subspaces associated with o, (A), 7..(A)
and oy (A) respectively’®. The subspaces are invariant under the action of A:

A :Hypp = Hyp, (3.35)
A :Hup = (3.36)
A :HS(' — Hsm (337)

which shows that a useful subdivision has been chosen. The usefulness is emphasized
if the associated (gencralized) eigenfunctions are studied:

L. Functions ¢ € H,;, denote physical states which, in most cases!®, are expo-
nentially decaying outside a finite domain. They are called localized or bound
states. For the hydrogen atom these are the states with positive eigenvalues.
In acoustics these are the waves trapped in a wave guide. The so-called guided

wave modes.

2. Functions ¢ € H,. denote extended physical states showing almost no decaying
behavior. Free clectrons have a probability to be anywhere. In acoustics a
typical example is a plane wave component, having an infinite extension. In
acoustics, these states are called the radiating wave modes.

3. Functions ¢ € Hy. do not have a univocal interpretation (Reed and Simon,
1972, p. 23). Souillard (1986), although refusing to commit himself, writes that
these states “tend to present some kind of self-invariant structure, vanishing
over extremely large regions, and taking over again much farther.” He calls
these states exotic.

Some of the three subspaces can be empty, but not all. Tt is clear now that the
different parts of the spectrum are relevant to unravel the physical problem. A final
reason to make the aforementioned breakup is due to the fact that different parts
behave differently under perturbations of the parameters. Especially o4.(A) and the
correspouding subspace are known to be unstable under perturbations (Reed and
Simon, 1978).

Subdivision of spectrum II —Another breakup which turns out to be useful,
will be given now. The usefulness of the alternative stems from the fact that an
estimation of the bounds of the spectrum, i.e. which values can possibly be attained
by the eigenvalues, can be more casily given than in the case of the subdivision

The formal definition (Reed and Simon, 1972, p. 230) is the other way around. Abstract
measurce theory provides a subdivision of dom(.A), the domain of the operator A, into Hpy,, Hae
and /ls-. Theorem VIL4 in Reed and Siion (1972) states that cach of these subspaces is invariant
under the action of A and that cach of these subspaces have a complete set of cigenfunctions.

16 Exceptions can be found in Reed and Simon (1978), p. 222 and further, but also in the cxamples
in section 3.4.
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described before. The breakup is solely based upon the structure of the spectrum
and the dimension of the associated eigenfunctions and it results in an essential
spectrum oegs(A) and a discrete spectrum ogise (A).

An clement A € 0(A) is an element of the essential spectrum Tess(A) of Aif the
spectral projection in the region (A — e, A + €} (¢ > 0) is infinite dimensional'”. On
the other hand an clement X € o(A) is an element of the discrete spectrum iy (A)
of A if the spectral projection in the region (A — €, A + ¢€) is finite dimensional.
Unlike 0pp(A), 0ac(A), and oy (A), the newly defined spectra ges(A) and oqisc(A)
are necessarily disjoint. Although the definitions of the two alternative subdivisions
come from quite different directions, the subdivisions are certainly not completely
independent. Since the real physical insight is provided by the first subdivision it
is of considerable importance to relate the two subdivisions. Clearly an element
A € (0ac(A) Uy (A)) is also an element of the essential part of the spectrum. Also,
most eigenvalues —which form the pure point spectrum— are gencrally part of the
diserete spectrum (Reed and Simon, 1972; 1978, Ch. XIII).

Example 3.5 Consider again the second-order derivative operator A = d?/ dx?
(see also Examples 3.2 and 3.3). The spectrum only consists of an absolute contin-
uous part. The pure point spectrum and the singular continuous spectra arc empty.
The essential spectrum oqs(A) coincides with the absolute continuous spectrum.

Example 3.6 Cousider again the hydrogen atom (see also Example 3.1). The spec-
frun consists of a pure point spoctrum and an absolute continuous spectrum. The
discrete spectrum coincides with the pure point spectrum and the cssential spectrum
coincides with the absolute continuous spectrum.

Questions to be answered —A quantitative analysis of the full spectrum would
ideally answer which Kmds of Spectra are prescut amd would ideaily 1esull i au
exact localization of all different kinds of spectra. Due to the fact that we are
dealing with an earth that is even in the laterally dircction quite irregular, by far
not as regular as for example a single hydrogen atony, it is not of interest to answer
all questions for the Helmholtz operator in the next section in full quantitative detail.
For particular medium configurations, however, a quantitative analysis can be useful
for completely understanding the nature of the observed phenomena. A number of
interesting rather general questions remain:

e What are the bounds of the essential spectrum?

o What are the bounds of the discrete spectrum?

17The formal definition can be found in Reed and Simon (1972, p. 236).
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e Can the singular continmous spectrum be excluded? This is an important
question, because this part of the spectrum (if present) is relatively unstable
under perturbations (Reed and Simon, 1978; Faris, 1995). Here, it is assumed
that the singular continuous spectrum docs not exist.

The first two questions will be addressed while studying the spectrum of the Helm-
holtz operator in section 3.3.3.

Spectral theorem and spcctral representation —In this section a brief outline
will be given of two mutually closely related consequences of self-adjointness. The
first one goes under the name of “spectral representation™'® and it says that to a
self-adjoint operator an orthonormal basis is associated in which every function in
the domain of the operator can be expanded (Dunford and Schwartz, 1963, Th.5,
p. 1209). The second one goes under the name “spectral theorem” aund it comes in
different forms. It says that the action of a self-adjoint operator to a function in the
domain of the operator reduces to a simple multiplication aud that the action of a
function of a self-adjoint operator reduces to a multiplication with the function of
the eigenvalues. The form of the spectral theorem I like most, that is also the most
abstract one, is called the “spectral theorem — projection valued measure” (Reed
and Simon, 1972, Th.VIIL6, p. 263) given by

_/41;,7 = /)\({PAL' (338)

where, loosely speaking, dPy is the infinitesimal projection operator which projects
the function ¢ on a space spanned by the (generalized) eigenfunctions corresponding
to the part of the spectrum (A, A + dA). The projection operator is defined via the

19 Seemingly abstract, equation (3.38) combines in one simple

resolvent operator
formula the action of the operator A for all physical parts of the spectrum: the
purc point spectrum, the absolute continuous spectrum and the singular continu-

20

ous spectrum. For example for a non-degenerate’ point spectrum the integral in

equation (3.38) takes the form of a summation according to
(Aw) () = > w(A) Ai ox, (), (3.39)
i
where Q?’(/\;) = (i, ¢x,) is the representation of ¢ in the modal domain. In the case
of a non-degencrate absolute continuous spectrum, the abstract integral (3.38) takes

I8 The spectral representation is actually a part of the cited spectral theorem.

MGee equation (3.32) and the remark concerning the resolvent on page 82. The evaluation of the
projection operator goes under the name “Stone’s formula” (Reed and Simon, 1972, Th.V11.13),
which can be recognized as a Dunford contour integral around the eigenvalue. Sce also Dunford
and Schwartz (1963), de Hoop (1992), and Blok (1995).

207 'he order of degeneracy is defined by the number of independent. (generalized) cigenfunctions
corresponding to the same cigenvalue. An eigenvaluce is called non-degencrate if the degeneracy is
of order 1.
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the following form
(Av) (1) = / B(A) Aba(x) dA. (3.40)

where QT'(/\) = (¢, ¢y) is the representation of ¢+ in the modal domain. Whercas
a division into the pure point, the absolute continuous and the singular continuous
spectrum provides the most physical insight, it has been argued that a more practical
road uses a division in the essential part of the spectrum and the discrete part of
the spectrum. Provided that the spectrum of A is completely non-degenerate, the
action of the operator A on the function 1 in the domain of A takes the following
form

(Av) (z) = / COYAGA() A+ DT B Xion, (2),
A€Teea(A) A €0 disc(A) (341)

which will be written in shorthand symbolic notation as

(Ag) (x) = j G(A) Ao (z) AN (3.42)

AET e (A)
AETHinc (A)

Substitution of ¥'(\) and Lkv(/\,-), and changing the order of iutegration vield in ex-
tended format

(Ay) (x) = '/" (/ oy (@Y Noa(x) d)\> Pl da' +
/ (Z o5, () N by, (r)) el )yde',  (3.43)

which wpon comparieon writh (2 12) mivace an evnrescinn far the kernel Al ') of A
2 — - \ ;o s . . “

aa CULLIPOOL T

according to

Alz,x') = z o3 (&) Apa(x) dA. {3.44)
A€o (A)
A€o disc (A)
Note that this expression has to be interpreted in the sense of gencralized functions.
For operators K given by K = f(.A) similar equations can be derived with the only
difference that A has to be replaced by f(A). The action of K = f(A) on ¢(x) thus
vields (cf. equation 3.42)

(flA)O) (o) = Zz U(A) SN ox(r) dA, (3.45)

Ao (A)
A€T e (A)
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and an expression for the kernel K(x, ') of K can be derived as (cf. equation 3.44)

K(z,2') = 2 AN (") F(N) ox(a) d. (3.46)

A€o (A)
/\E”(Ii«’(-A)

Remark 3.2 In the case that one or all of the spectral parts are degenerate, ex-
pressions (3.41)-(3.46) should be adjusted accordinglyv (Messiah, 1958. Sec. 7.13).
Let me give a specific example for a spectrun consisting of an absolute continmous
part (coinciding with the essential spectrum) and a pure point spectrum (coincid-
ing with the discrete spectrum). Suppose that the absolute continuous part of the
spoctrum is infinitely degenerate. Assume now that the set of eigenfunctions be-
longing to one ecigenvalue in the absolute contimious spectrum can be labeled with a
continuous parameter. If it is possible to write the eigenvalue A in the absolute con-
tinuous spectruni as A = AM(k) with K = (#, ~2), then one cau rewrite for example
equation (3.41) according to

(Av) () = / (k) M) Oy () d? K+ Z () A o, ().
K,(/\(K.)&CFUM(A) /\;Ef"(li.-('(-A) (347)

where (k) should be interpreted as (k) = (v, @aw)) - The other cquations have
to be adjusted accordingly. In the case of the Helmholtz operator a degencracy as
discussed in this remark will occur.

3.3.3 Spectrum of the Helmholtz operator

Now that the tools have been developed, the attention will be focused on the Helin-
holtz operator?!. A gencral quantitative analysis will be applied to the spectrum
of the Helmholtz operator. It has been assumed that the medium is constant in
the planc perpendicular to the direction of preference outside some finite circle (see
section 3.2). In other words, the medium is embedded in some homogeneous back-
ground. In addition, in this section the depth level is considered to be fixed. There-
fore the dependency on x3 is suppressed in this subsection. As a result of these
prewises, the operator Hy (ef. equation 3.12) can be written as

Ho = K (x,) + 0,0, = HS + k3, (3.18)

where &g is the wavenumber of the homogeneous embedding. and where the per-
turbed Helmholtz operator HY is given by

2V The theory presented in section 3.3.2 is equally well applicable to any self-adjoint operator, for
example to the reduced wave operator arising in wave time evolution problems (Reed and Simon,
1979; Wilcox. 1984).
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The function V(x,) = k*(x,) — k%, is the potential and it is a function of compact
support. It can be seen as a perturbation of the homogeneous Helmholtz operator.
The operator HJ bears a lot of resemblance with the Hamiltonian operator in non-
relativistic quantum mechanics. The latter is for a general potential V, in a two

dimensional?? setting given by
I:I(mL) = ’_0;10” + V/z (mr) (350)
The Hamiltonian equals (with Vj, = —V and with an opposite sign) the operator

HY. In Reed and Simon (1978) the spectrum of the Hamiltonian is quantified. Based
upon their work it is possible to express upon the bounds of the complete spectrum
of HY, the bounds of the essential spectrum of the perturbed Helmholtz operator
HS. the bounds of the discrete spectrum of HY, and the bounds of the spectrum of
the Helmholtz operator Ho itself.

Bounded or unbounded operator —The first thing to establish is whether the
operator under consideration is a bounded. unbounded or semi-bounded operator.
The bounds are the spectral bounds. Consider a function ¢ in the domain of H3 3.
The bounds arc defined by the minimum and maximum value that (H9y,¢) can
reach:

(30,4 = (0F0.v) + (B30,0) + (Vo).

The first two terms in the right-hand side can be partially integrated to obtain

R2

(Hyv,¢) = — /(‘)1 V(o) dfe, — /Gza’f (or)" A%,
RQ

<0 <0
r .
Vie vy~ da, .

3
©

<max{V") (¥.4h)

Tt can be concluded that the spectrum is semi-bounded from above, according to

a(HY) € (—oo,max(V)]. (3.51)

Weyl’s essential spectrum theorem —DBounds on the essential spectrum are
relatively easy obtained. It docs not tell much about the physical nature of the
problem. because, generally, g consists of the absolute continuous spectrum, the

22In the general theory a Hamiltonian in R” is considered.
23The domain of HY equals the domain of Ha. It is discussed in section 3.3.1.
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Fig. 3.1 The essential spectrum of the perturbed Helmholtz operator HY. The essential
spectrum. equals the essential spectrum of the Laplacian in one or more dimen-

SL07LS.

singular continnous spectrum and the end points of the pure point spectrun (see
section 3.3.2). Since it has been assumed that the singular continuous spectrum
is empty, the significance of the estimates of the bounds of the essential spectrum
increases. The keynote of Weyl's essential spectrum theorem (Reed and Simon, 1978,
Th.XIII.14, Cor.2¢, p. 112 and 113) is that if A is a self-adjoint operator and C is a
relatively compact perturbation of A, the following relation holds

chs(A + C) = UQSS(A>‘

This theorem can be applied to HY as defined in equation (3.49): A should be
replaced by the two-dimensional Laplacian 9,0, and V(x,) should replace the rel-
atively compact?®! perturbation C of the Laplacian. On that account the essential
spectrum of HY equals the essential spectrum of the two-dimensional Laplacian (see
also Example 3.5 on page 86):

Tess(HY) = Toss(0,0,) = (—00.0]. (3.52)

The essential spectrum of the perturbed Helmholtz operator covers the negative
real axis; it is shown in Figure 3.1. The essential spectrum of HY has an infinite
degeneracy. The set of cigenfunctions corresponding to a single eigenvalue can be
labeled with a continuous parameter. According to Remark 3.2 on page 89 this can
be achiceved by choosing A = A(k). Another consequence of Weyl's essential spectrun
theorew is the fact that the degeneracy of the essential spectrui is unaltered by the
perturbation V.

24y (@) itself is compact and hence automatically relatively compact. Consequently, the classical
Weyl theorem is actually dealt with (Reed and Simon, 1978, Example 3, p. 117).
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Fig. 3.2 The spectrum of the perturbed Helmholtz operator HY is divided into an essential
part and a discrete part. The discrete part consists of a finite number of isolated
eigenvalues in the interval marked out by the bound of the cssential spectrum
and the bound of the full spectrum.

The discrete spectrum - The definition of the upper bound of the spectrum
in (3.51) and the location of the essential spectrum in cquation (3.52) determine the
interval where the elements of the discrete spectrum might lic:

Oaise (HY) € (0, max(V)].
It can be shown (Reed and Simoun (1978), Th.XIIL6, p. 87; Dunford and Schwartz

7o ea e —~ - Y 1 [T I - s 1 0o 1 N o .
(1904, Lor.oq )™ that within thls 1mterval a Inite nunoper of cigenvalues exist, if
V() is decaying sufficiently fast at the borders of its support. Figure 3.2 shows
the schematic structure of the spectrum of 5.

Spectrum of H, —So far, the discussion concerned the spectruun of H(j The
spectrinm of Ha is related to the spectrum of ‘HY through a simple shitt. Heurstically,
this can be understood by considering the resolvent defined in equation (3.32). The
resolvent of HY is given by
oy 1
Ry = m
For A\; outside the resolvent set of HY, i.c. for Ay € o(HY), the resolvent is not
well-defined. On account of equation (3.48) the resolvent of the Helmholtz operator
Ho can be written as
RE\/HQ) =3 ! = 21 270"

A—Ho (A= kg) —H

25Reed and Simon (1978) actually consider a 3-1D Hamiltonian. while the operator H‘j is defined in

two dimensions. On a later page it is stated that the theorem can be extended to other dimensions
as well (Reed and Simon. 1978, p. 119).
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Fig. 3.3 The spectrum of the Helmholtz operalor Hy is obtained by shifting lhe spec-
trumn of the perturbed Helinholtz operator Hy, as shown in Figure 3.2, over a

distance k& .

The resolvent of Hy is not well-defined if A — k3 € o(HY). Cousequently, A =
A+ k2 € o(Hs). which is the expected shift by k2.

in Figure 3.3.

The spectrum of Hy is shown

The shift applies equally well to the essential and discrete spectrum: gy (Ha) =
(=00, hE] and agise(Hy) C (k3. max(k?)]. The generalized eigenfunctions of HY and
‘H, are the same, but note that they have different phase velocities, since they belong
to different eigenvalues. The degeneracy of the essential spectrum of the Helmholtz
operator 18, just as the perturbed Helmholtz operator, infinite. The degencracy can
be taken into account by choosing A = A(k) as discussed in Remark 3.2 on page 89.

3.3.4 Expanding the Helmholtz operator and functions of the
Helmholtz operator

Tn this section the spectral theory of the last part of section 3.3.2 will be applied.
The theory in that scction has been worked out for a non-degenerate spectrunl in one
dimension. The Helimholtz operator is working in the 2-D plane perpendicular to the
direction of preference. Due to the completeness of the basis of eigenfunctions, any
function (@, ) from the domain of Hy can be expanded in terms of the cigenfunctions
of H,. Taking into account the degeneracy of the essential spectrum and assuming
that the discrete spectruin is non-degenerate, the expausion can be written as

v = [ o le) et Y T00en (@) (359

®2 Ai €0 dinc
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On account of the results of the previous subsection with respect to the essential
part of the spectrum, the relation between the eigenvalue A and the parameters & is

MK) = k3 — Kk, (3.54)
0 Kuhy

whence the integral in equation (3.53) over R?. The expansion cocfficients () in
the second term on the right-hand side of (3.53) correspond to the discrete eigen-
values A;. The first term on the right-hand side contains the expansion coefficients
¥(k), which correspond to the essential part of the spectrum. Together, J’(Ai } and
z,B(n) form the representation of v in the domain defined by the operator Hs. Equa-
tion (3.53) can also be interpreted as an inverse transformation from the modal
domain to the space domain. Using the orthogonality of the eigenfunctions and a
proper normalization, the related forward transform, i.c. the modal decomposition,
can thus be written as

(k) = (¥, o)) (3.55)
— [ vl e
J
and
(N) = (W) (3.56)
= [ vt (@) a.

Example 3.7 As au example, consider the laterally invariant case. In this case,
the discrete spectrum disappears. It is easily scen then, that the following complex
exnonential functions are the eigenfunctions of Ho»:

1 . .
Pr2—r ik (x) = % exp{_] /“';1417;1}” (3.57)

In the right-hand side of equation (3.57) a plane wave can be recognized for each k.
The parameters k are recognized as the horizontal wavenumbers, and X is recognized
as the square of the vertical wavenumber. For the laterally invariant case, an infinite
number of plane waves have the same cigenvalue. This property corresponds to
an infinite degeneracy. Consequently, at a single depth level an observer cannot
pronounce upon the propagation direction of two plane waves for which the norms
of k are equal. Since Ho is a real-valued self-adjoint operator having a real spectruu,
we can alternatively choose the eigenfunctions given in (3.57) to be real-valued:

1 ]
Ok, (Tr) = — = cos{kyry, — w/4}. (3.58)

™2
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Note that in this equation, the w/4 phase-shift is cssential for the construction of
both odd- and even functions v(x,). Substitution of (3.57) iu (3.55) vields the 2-D
spatial Fourier transformation, and substitution of (3.58) in (3.55) yields the 2-D
spatial Hartley transformation (Bracewell, 1986).

In the domain which is constituted by its eigenfunctions, Hs becomes a multiplica-
tion operator. Therefore, according to (3.41) we may write

(Hot") (x) = /q‘z(n) A(K) (f)/\(n)(m,‘) Pk + Z L:‘Nv()\,-) i o (@)

2 A €T (359)

On account of equations (3.13) and (3.41) the kernel I (] ) can be written as

Ha(za]) = [ oxio(@) MK) 65 (a])
@

+ Y on(m) oy (@), (3.60)
A,G(T(hh(('}{‘))

which has to be interpreted in the sense of generalized functions.

Expanding the one-way propagator —-Using equations (3.18) and (3.46), it is
easily seen that the kernel of the square-root operator can be written as

I (. x)) = /Qx(n)($u)/\l/2(ﬁ) Priwy (@) PR
R2
+ 3 on(@m)N?6} (x]), (3.61)
Ai €T diuc

where for later convenience, the signs of the square-root are chosen according to

Re(\
(A

> 0 for\ >0, (3.62)
< 0 for\<O. (3.63)

= ol
—

—
—
=
=

Figure 3.4 shows schematically the spectrum of the square-root operator.

Assume now that the constitutive parameters are independent of the direction
of preference between 2% and 3. In that case, the kernel of the propagator as defined
in equation (3.25) can be derived in a similar way, on account of equation (3.46),

WE(x,  ryxl . 2h) = / Oy (@) expi{Fj(rs — ah) N2 ()} c>§(n)(m£) d’k
L

+ ) on (@) exp{Fj(es — 25 A PY R (z)). (3.64)

A Cagixe
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Fig. 3.4 The spectrum of the square-root operator.

Equation (3.61) can be interpreted as a transformation from the modal domain
to the spatial domain representation. The modal representation of the propagator
W (x3; %) reads

V\’Ti("‘» T35 K, 3) = exp{Fj(rs — l':/s))\l/z(’*)}v (3.65)

where A can be in the essential part of the spectrum or in the discrete part of the
spectruim.

For the laterally invariant situation, the eigenfunctions of the Helmholtz opera-
tor becowe plane waves {see Dxaniple 3.7) and the discercte spectrun vauishios. Since
the parameters £ can be interpreted as horizontal wavenumbers in this situation,
the square-root of the eigenvalues A can be recoguized as the vertical wavenumber.
The vertical wavenumniber gives the vertical phase velocity of the plane wave via the
relation \/2 = w/es, where ¢3 is the phase velocity in the direction of preference.
I'he representation W reduces to the wel-Knowl phasc-siiit Operator {dTolt, 19103;
Gazdag. 1978) describing the propagation of plane waves from 2§ to rz. For x,x,
larger than k¢ the plane waves become vertically evanescent?®. The propagating
plane waves propagate changelessly through the medinm, except for a phase change.

For the laterally variant situation, the squarc-root of the eigenvalue can be
interpreted as a gencralized vertical wavenumber. Hence, X'/ gives the effective
vertical phase velocity of the cigenfunetion, via the relation A'/2 = w/c5. The prop-
agation of the eigenfunctions from depth level .}y to iy is described by the generalized
phase shift operator W. For A > 0, propagating eigenfunctious are considered. The
propagating eigenfunctions propagate changelessly through the medium, except for
a phase change. For A < 0, the eigenfunctions become vertically evanescent. just as
in the laterally invariant situation.

20N . . . .
Z6Note, however. that “evanescent waves™ propagate perpendicular to the direction of preference.
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Fig. 3.5 The spectrum of the propagator W for two depth steps (v —xb). In this figure
wy = exp{—jmax(k) (xs — 13)} and we = exp{—jko(rs — %)}

Figure 3.5 shows schematically the spectruun of the propagator for two depth
steps (a3 — «f). Elements of the spectrum corresponding (o non-evanescent wave
modes lie on the unit circle. The vertically evanescent waves lic on the real axis

between 0 and 1.

3.4 Examples

The theory developed in the previous two sections requires some examples to be
fully appreciated. For that purpose the numerical equivalent of the thecory has
been lmplemented. The numerical examples apply to the Ilelmholtz operator, but
are equally valid (with minor modifications) for the wave operator in (wave) time

evolution problems. The examples are primarily chosen

1. toillustrate the physical meaning and usefulness of (a) the eigenfunctions and
{(b) the distinction between different kind of eigenfunctions related to different
parts of the spectra (see section 3.4.1),

2. toillustrate the accuracy of a modal decomposition if applied in migration (see

section 3.4.2) .

The numerical computations are carried out in a 2-D configuration. For details
concerning the implementation of the second-order derivative and the numerical
eigenvalue decomposition. the reader is referred to Golub and van Loan (1984),
Grimbergen (1995) or Grimbergen et al. (1998).
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o ko k2 max(k) | max(k?)
[m/s] | [rad/m] | [rad®/m?] | [rad/m] | [rad®/m?]
(1) | 2000 | 0.094 0.009 0.094 0.009
(2} | 2000 | 0.094 0.009 0.166 0.027
(3) | 2000 | 0.094 0.009 0.094 0.009

(4) | 1633 | 0.115 0.013 0.232 0.054

Table 3.2 Some relevant quantities for the profiles (1) to (4) shown in Figure 3.6. The
angular frequency is taken w = 21 x 30 rad/s.

3.4.1 Spectrum and eigenfunctions

In order to illustrate the usc of the theoretical considerations concerning the spec-
trunt. the eigenvalue decomposition is applied to a number of medium configurations.
The attention will be focussed on the spectrum of the Helinholtz operator, the asso-
ciated spectra of functions of the Helmholtz operator, being the square-root operator
and the propagator, and the associated eigenfunctions.

Consider a 2-D medium configuration. In a 2-D medium the Ilelimholtz oper-
ator of equation (3.12) takes the form

Ho = AZ(ULL ;1‘3) + 0% (366)

with A2 (i ,ry) = wz/CQ(.rl . r3). The density is chosen to be constant. In this section

tho frognones i
the requency

o

chosen to be w = 27 f = 27 x 30rad/« The essential spectrum is
degenerate with a multiplicity of two, instead of an infinite mmltiplicity for the 3-D
medium. A left and right propagating wave mode corresponds to one eigenvalue.
The medium profiles that will be studied in this section arc taken at a certain fixed

depth level ry, and they are sampled with a sampling distance Az; = 10m. The
PLOILICS @it SLHOW L Lt 1 Iguie 0.0, L e Wi Lot eliowe die Labcral velocity profiics

c(xy. r3) and the right column shows the squared wavenumber functions k*{ry,ry)
arising in the Ilelmholtz operator. The medium profiles are numbered from top
to bottom (1) to (4). The profiles are discussed in the caption. Recalling the
structure of the spectruin of the Helmholtz operator as discussed in section 3.3.3
and as schematically shown in Figure 3.3, one can conclude that the variables A3
and max(k?) are the ruling quantities of the discrete and essential spectrum. For
the four profiles of Figure 3.6 these quantities arc shown in Table 3.2 in addition to
ko and max(k).

Profile (1) —Figure 3.7a shows the speetrun of the Helnholtz operator for the
constant velocity profile. It is a degenerate spectrunm with a multiplicity of two,
except for the first and last eigenvalue. The spectrum of the square-root opera-
tor is shown in Figure 3.7b. If it is asswmned that the medium properties do not
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Fig. 3.6 Velocity profiles ¢(x1,x3) (left column) and the squared wavenumber profiles
k21, x3), which is the potential in the Helmholtz operator (right column). The
profiles are numbered (1) to (4). Profile (1) is a constant velocity medium. Pro-
file (2) has a local low velocity region which acts as a wave guide. Profile (3)
has a local high velocity region, which acts as a anti-wave guide. Profile (1) is
a slowly decaying oscillalory velocity profile.

change within a small depth range around a3, it makes sense to compute the spec-
trumn of the propagator. For two different extrapolation steps (23 — x%) = 10m and
(x3 — %) = 201, the spectrum of W is shown in Figures 3.7¢c-d. As expected the
discrete spectrum ogise(H2) is empty, and there are only radiating wave modes cor-
responding to the absolute continuous spectrum. The absolute continuous spectrum
equals the essential spectrum in this case. The essential spectrum covers (~oo, k2]
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of generalized cigenfunctions for Profile (1). (a)

Spectrum of the Helmholtz opem[,or. The discrete spectrum is emply. (b) Spec-
trum of the square-rool operator obtained by applying AYZ {0 the elements of

the spectrum of Ha.

(c¢) and (d) Spectrum of the propagator W' for lwo dif-

foromt demth ctone (ro — v0) = I0m and (ra — y5) = 20 oblained bu avvluinag

exp{—j{zs — z3)A" 2} to elements of the spectrum of Ha. Note that propagai-
ent

ing wave modes lie on the unit circle in the complex plane and evanesc

L wave

modes on the real axis between 0 and 1. (e), (f), (g) and (h) A number of

generalized cigenfunctions.

The theoretical maximum is nuwerically confirmed. The limit —oo is in practical

computations never reached.

The lowest value reached depends on the sampling

rate, in the same way as the Nyquist frequency depends on the sampling rate. Note
that the continuous part of the spectrum is seewmingly discrete. This is due to the

limited aperture size. The other expectations are completely fulfilled, including the

character of the eigenfunctions. according to Figures 3.7e-h. Figures 3.7¢-h show a
number of generalized eigenfunctions: (e) shows the eigenfunction corresponding to
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the maximum eigenvalue; this is one of the two non-degenerate eigenfunctions. (f)
shows the eigenfunction corresponding to the 100th eigenvalue. This is an evanes-
cent wave mode. (g) and (h) show two pair of eigenfunctions corresponding to one
eigenvalue each, illustrating the degeneracy of the spectrum. The two eigenfunctions
have a phase difference of 7/2.

Profile (2) —Figure 3.8a shows the spectrum of the Helmholtz operator corre-
sponding to profile (2) in Figure 3.6. The spectrum of the square-root operator and
the spectrum of the propagator for two different extrapolation steps are shown in
Figures 3.8D-d. Looking at the values in Table 3.2 aud remembering that for a suf-
ficiently fast decaying perturbation a finite number of bound states are expected in
the region (k3. max(k?)], the rcader can verify the theory by observing the spectrum
in Figure 3.8a or, equivalently, Figures 3.8b-d. Figures 3.8¢-f show two radialing
modes corresponding to elements in the essential spectrum. Figures 3.8g-1 show the
first six of seven guided wave modes for this configuration. The guided wave modes
can clearly only exist within the perturbation. Outside the perturbation they are
cvanescent in the lateral direction. The single multiplicity of the guided modes and
the number of zero crossings is forecasted by Theorem 55 of Dunford and Schwartz
(1963). Note that the number of guided wave modes and the structure of the guided
wave modes only depend on the structure of the disturbance. They do not depend
on sampling issues or on the size of the medium around the perturbation. They do,
however, depend on the frequency.

Profile (3) —This medium profile is opposite o the medium configuration of pro-
file (2). It is shown in Figure 3.6. It is an anti-wave-guide structure, which means
that all energy will be radiated out of the perturbation. Figure 3.9a shows the
spectrum of the IHelmholtz operator. Figures 3.9b-d show the spectra of functions
of the Ilelmholtz operator. The essential spectrum is undisturbed by the pertur-
bation and there is not a discrete spectrum, i.e. ou(Ha) = o(Ha) = (—oo, k.
Consequently, only radiating wave modes are expected. The expectation is indeed
fulfilled (see Figures 3.9e-h). The first part of the spectrum consists of radiating
wave modes which are laterally evanescent, i.e. exponentially decaying, in the region
of the perturbation.
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Spectrum. of the Helmholtz operator Ha, spectra of functions of the Helmholtz op-

crator and a number of (generalized) cigenfunctions corresponding to Profile (2).

(a)-(d) See caption of Figure 3.7 for a general descriplion. In addition to the

essential speclrum, which coincides with the specirum of Profile (1). there are a

number of eigenvalues corresponding to guided wave modes present. (e)-(f) Two
radiating wave modes. (g)-(1) The first six of seven guided wave modes. The
number and the structure of the guided wave modes depend on the frequency.
and on the structure of the disturbance.
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Fig. 3.9 Spectrum of the llelmholtz operator Ha, spectra of functions of the Helmholtz op-
erator and a number of generalized eigenfunctions corresponding to Profile (3).
(a)-(d) See caption of Figure 3.7. The essenlial spectrum is not changed by
the disturbance, and there is not a discrete spectrum. The eigenfunctions how-
ever are disturbed as is clear in (e)-(h). The eigenvalues corresponding to the
eigenfunctions shown here, are the same as the eigenvalues of the eigenfunctions
shown in the homogeneous example in Figure 3.7.
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Profile (4) -It has been mentioned a number of times in section 3.3 that the dis-
crete spectrum is not necessarily equal to the pure point spectrum. There may even
be clements of the point spectrum that lie within the essential spectrum, or within
the absolute continuous spectrum if the singular continuous spectrum is excluded.
These strange wave constituents are guided modes with an infinite support. “Guided
modes with infinite support” seems to be a contradiction in terms, but as this ex-
ample shows, these objects can exist. The function k?(xy,x3) has been constructed
according to

sin (2z1 /(4Ax1))

ith Az =1
/B wit 1 Om

E*(xy,x3) = ki + k2 C

where C' is an appropriately chosen constant. The cxpression for k?(x;,23) is a
free adjustment of the potential function proposed for the Hamiltonian by Reed and
Simon (1978, p. 223). In Figure 3.6 the velocity profile and k?(z;,x3) are plotted.
Figurc 3.10a shows the spectrum of the Helmholtz operator. The transition from
guided wave modes to other wave modes is not very clear. Such a transition cor-
responds to a clear cut difference between the discrete and the essential spectrum,
which is absent for this profile. This observation is not that strange if one realizes
that the decay properties of the potential given by the equation above is not fast
enough for the thecory described on page 92 and further, to be valid. There are
both guided wave modes (Figures 3.10e-h), quasi-guided modes (Figure 3.10i), and
radiating wave modes (Figure 3.10j and 1). The strange object which was hinted
at above is observed in Figure 3.10k. This object corresponds to an eigenvalue
A = 0.0i02rad’m * which lies within the essential spectrum. It has a low ampli-
tude radiating structure and a high amplitude guided structure. The eigenfunctions
belonging to the eigenvalues just neighboring this eigenvalue are again radiating
modes. Figure 3.101 displays one of the two. This example illustrates that strange
things can happen. A computation of the guided wave modes on the basis of eigen-
values in the discrete part of the spectrum will certainly lead to an underestimation

of the amount of trapped energy.

3.4.2 Wave field extrapolation and migration

The previous section showed how the modal decomposition can be used to unravel
the complexity of the lateral medium structure. Another property of the modal
decomposition is the fact that the kernel of the propagator can be computed accu-
rately (see equation 3.64). The propagator plays a key role in the data representation
of (3.28). In this section it will be illustrated that the computation of the propa-
gator kernel with the help of a modal decomposition yields an accurate migration
scheme. The algorithms are compared with schemes in which the propagator kernel
is computed with the local explicit method (Holberg, 1988; Blacquiere et al., 1989;
Thorbecke, 1997). For an example of an accurate well-to-well wave field extrapola-
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Fig. 3.10 Spectrum of the Helmholtz operator Ha and spectra of functions of the Helm-
holtz operator and a number of (generalized) eigenfunctions corresponding to
Profile (4). (a)-(d) See caption of Figure 8.7. (c)-(h) Some guided wave modes.
(i) An intermediate wave mode. (j)-(1) Three gencralized eigenfunctions cor-
responding to eigenvalues in the essential part of the spectrum. Note that the
eigenfunction shown in (k) has a clear guided structure, despile the fact that
its eigenvalue lies in the essential part of the spectrum.
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Fig. 3.11 The velocity model for the migration. Velocities are indicated in the corre-
sponding layers.

tion the reader is referred to Grimbergen et al. (1998).

Migration example —A set of synthetic shot records have been migrated?”. The
shot records have been generated by finite-difference modeling using the subsurface
model in Figure 3.11. In this case both lateral (i.c., horizontal) variations and depth
variations are present in the model. The model contains a high velocity layer (salt),
i nber of layors. The salt dome is a high velocity striecture act-
ing as an anti-wave guide. To the right of this structure, the block-shaped elevation
implies yet another lateral discontinuity. The acquisition parameters are summa-
rized in Table 3.3. Because we are now dealing with depth variations, the wave
field is cxtrapolated in small steps (i.e. recursive extrapolation), using the complex
CONJUZALL LIANSPOSEd Of LIIE LEPIESEULAlULD UL LLS plupagatuss W The madium
within each step is assumed to be depth invariant.

The migration has been carried out with two spatial representations of the
propagator. One is computed via the modal domain according to equation (3.64).
The other is computed with the local explicit operators. The local explicit operator
method assumes that the medium parameters are constant within the size of the
operator. A local explicit operator has two important free parameters: its length
and the optimization angle. The optimization angle is the angle up to which the
extrapolation has to fulfill a certain accuracy.

The stacked result of the separate shot record migrations using modal expansion
is shown in Figure 3.12. The flanks of the salt as well as the faults are clearly

27This example has been first presented in a Technical Report by Dessing and Grimbergen (1996).
Sce also Grimbergen et al. (1998).
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geometry

fixed spread

number of shots

11

shot spacing 500 m
number of detectors per shot 251
receiver spacing 20 m
recording time 35
time sanpling 4 ms

frequency content wavelet

up to 35 Hz

Table 3.3 The acquisition parameters for the migration example
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Fig. 3.12 Migrated section using modal expansion exlrapolalion operalors.

imaged due to the absence of dip limitation. Note the overall crisp character of the
result.  An unambiguous comparison with the available local explicit method is not
straightforward because both the length and the optimization angle can be varied.
Choosing these parameters may lead to conflicting requirements. In case of strong
lateral variations, short operators are needed in order to avoid instabilities. Imaging
of steep dips however, asks for longer operators that allow for higher optimization
angles. Figure 3.13 shows the results for several choices of these parameters. Note
that a higher optimization angle improves the lmaging of steep dips bul causes
stronger artifacts at the same time. These artifacts are caused by the increased
spatial length of the operator. Note that all results in Figure 3.13 arc inferior to the
modal expansion result in Figure 3.12.
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Fig. 3.13 Migrated sections ustng local explicit operators. Operator length 27. optimiza-
tion up to 60 degrees (top); operator length 27, optimization up to 80 degrees
(middle) and operator length 37, optimization up to 80 degrees (bottom). For
details with respect to the local explicit operators the reader is referred to Hol-
berg (1988). or Thorbecke (1997).




3.4 Examples 109

3.4.3 Discussion

Analysis of spectrum and eigenfunctions —In relation to the examples in
section 3.4.1, one might be tempted to say that the profiles discussed so far are
rather hypothetical. Profiles with exactly the same functional form as discussed
will indeed never be met in the real world. However, similar structures can locally
occur in the carth, for example in a well-to-well configuration, where the direction
of preference is taken along a horizontal axis (Grimbergen et al., 1998). Since in
well-to-well configurations the major changes are perpendicular to the direction of
preference, guided and radiating wave modes are equally probable. Hence, for those
configurations it is even more important to realize which quantities rule the wave
field, and which are relatively unimportant, but also where the energy is expected
to be trapped, ete. Finally, it is noted that a similar analysis is, mutatis mutandis,
also applicable in time evolution problews in a layered earth (Wilcox, 1984; TFaris,
1995; Herrmann, 1997) for which the guided wave fields with a radiating structure
should be expected.

Migration —It has been shown that the proposed method to calculate one-way
operators has desirable properties such as the absence of a dip limitation, the accu-
rate handling of lateral variations and the unconditional stability of the operators.
The obvious drawback of the method is the computational cost of a full cigenvalue
decomposition, which is considerable compared to the construction of the local ex-
plicit operators. However, the following considerations may help to overcome this
problenu:

e The Helmholtz matrix operator is a sparse symunetric band matrix. For a full
symmetric A x A matrix, the number of floating point opcrations necessary
to calculate all eigenvalues and all eigenvectors will increase with the third
power of M. However, in case of a matrix operator with a fixed number of
non-zero diagonals independent of A/, the number of floating point operations
will increase only with the square of A (Golub and van Loan, 1984).

o Not all eigenvalues need to be calculated. Calculating only the positive cigen-
alues (propagating modes) still leads to accurate results, as the evanescent
part of the wave ficld decays exponentially with the extrapolation distance
(in inverse extrapolation, the evanescent field is suppressed anyway to obtain
stable operators). This argument holds in particular for low temporal frequen-
cies, where a large number of the eigenvalues are associated to evanescent wave
modes.

The modal expansion method also provides an interesting scope for turning wave
migration. In some references (Claerbout, 1985; Hale ct al., 1992), the phase-shift
method is applied because it has no dip limitation, which is an essential requirement
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for turning wave migration. However, the phase-shift method is applicable only
in laterally invariant media (which was acknowledged by the authors). The modal
expansion method combines both the ability to deal with lateral variations and the
ability to handle dips up to 90 degrees.

The implementation of the modal decomposition in a 3-D medium configuration
is straightforward (Grimbergen et al., 1998). The advantages as discussed before are
equally true in a 3-D configuration. Efficient algorithms as discussed in the previous
paragraph are of vital importance if one wants to compute the 2-D eigenfunctions
in a 3-D medium.

3.5 Summary

In this chapter the linearized partial differential equations. forming a hyperbolic
system and governing the acoustic wave ficld, have been introduced. Via the two-
way wave equation the one-way wave equation has been arrived at. The one-way
wave equation comprises a separation between downgoing and upgoing waves. In
addition, the one-way decomposition separates propagation along the direction of
preference and scattering along the direction of preference. A subsequent use of the
Green's function concept and the first term of a Bremmer coupling series yield the
monochromatic one-way representation of primary seismic reflection data. The one-
way representation is a model for the seiswmic reflection data in terms of a downward
propagator, a reflection operator, and an npward propagator. Both the propagators
and the reflection operator can be written as a function of the Helmmholtz operator.

The second part of this chapter has been devoted to the interpretation of the
Helmholtz operator and functions of the Helmholtz operator. To this end I have
made use of functional calculus. The first step here is the derivation of a nice
self-adjoint form of the Helmholtz operator. As a result of the self-adjoint form, the
speetrum of the ITelmholtz operator is a subset of the real axis and the eigenfunctions
rum of the Helmholtz operator ,
either in a pure point spectrum, an absolute continuous spectrum and a singular
continuous spectrum, or in a essential spectrum and a discrete spectrum. The first
subdivision provides direct insight in the type of wave fields that can occur and the
second subdivision provides clear spectral bounds. The two subdivisions are related.
Besides the physical insight via an analysis of the spectral properties, the complete
set of eigenfunctions cnables an easy and accurate calculation of functions of the
Helmbholtz operator, such as the propagator.

In the third part of this chapter the examples illustrate that the spectral anal-
vsis provides physical insight on the one hand and the possibility to carry out an
unconditionally stable and accurate migration scheme on the other hand.




Chapter 4

Generalized data representations
and generalized migration

In the present chapter the opportunities of transformation techniques for the repre-
sentation of seismic data and a subsequent migration are discussed. The emphasis
is put on a wavelet domain approach to migration. The results of this chapter has
been dealt with in a number of conference proceedings., most notably Dessing and
Wapenaar (1994, 1995).

4.1 Introduction

Seismic migration is the most time conswning step in a seismic processing sequence.
The geophysical community is continuously looking for methods and tools to improve
the efficiency and quality of this step. New and promising tools are in general
wholcheartedly embraced. One of those promiseful tools is the wavelet transform.
The question is what the wavelet transform can do for migration?

In order to be able to answer this question one has to know what the new
tool comprises. What are its properties and how is it positioned with respect to
other tools? These issues have been dealt with in chapter 2, where T introduced
the spatial domain representation, the Fourier domain representation, the Gabor
domain representation, and the wavelet domain representation, their properties and
their mutual relationships. Oune does not only have to know the ins and outs of the
new tool, but one has to know to which system the tool has to be applied as well. 1
have chosen to take the one-way representation of primary seismic reflection data as a
point of departure for wavelet trausform based seismic migration. The one-way data
representation has been introduced in chapter 3, it is given by (cf. equation 3.28)

P =W RWHS'. (4.1)
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It is a model in terms of propagators W+, and a reflection operator R. St denotes
the one-way downgoing source distribution and P~ represents the seisniic reflection
data at the surface after decomposition and surface-related multiple elimination.
The conceptual physical model of equation (4.1) clearly discriminates between prop-
agation and reflection with the help of an operator notation. Besides, the operator
notation makes it trivial to derive representations in an arbitrary domain.

A good overview of the use of wavelets for representing operators is given by
Beylkin (1996). He discriminates between their use for integral equations and their
use for partial differential cquations. An integral equation generally leads after
discretization to a dense system of linear algebraic equations with a small coudition
number. On the other hand, a partial differential equation leads via finite-difference
or finite-clement methods to a sparse linear system. The cost of this sparsity is, as
Beylkin (1996) points out, a large condition number. Wavelet bases can be used for
both types of equations. The integral opecrators associated with integral equations
can be rendered sparsely in wavelet bases. For the finite-difference or finite-element
methods the wavelet bases provide diagonal preconditioners. Since the system of
equation (4.1) contains a number of integral operators, I will focus on results related
to integral operators.

The integral operators that are successfully dealt with by wavelet transform
methods are associated with elliptic problems. These operators are characterized by
the fact that they are smooth away from the diagonal. A well-known example is the
operator of the Calderén-Zygmund type. Such an operator is given by an integral
kernel K(x, y) that is indeed simooth away from the diagonal, according to

1
K. y)] <
|z — |
|81\[K(r l)| + |?A1K( < Ai
- B2y 0y K(x.y)| < lo — gyt

for M > 1. Sparse representations of Calderén-Zygmund operators in wavelet bases
and efficient algorithms for these operators in the wavelet domain have been dis-
cussed for the first time in a consistent way by Beylkin et al. (1991). They showed
how O(N?)-algorithms can be reduced to O(N)-algorithms by utilizing wavelet
bases.

The propagators W* are integral operators associated with a hyperbolic prob-
lem. They are oscillatory. Hence, they do not belong to the class of operators that
arc smooth away from the diagonal. Dramatic savings as with integral operators
of elliptic problems can not be expected. Results of the use of wavelets bases in
electromagnetic and acoustic integral equations have been reported on by several
authors (Steinberg and Leviatan, 1993: Goswami et al.. 1995: Wagner and Chew,
1995: Kim et al., 1996). These authors discuss first-kind integral equations of the
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form (cf. equations 2.1 and 3.1)

b
/A(;I',J,")u(r')dr' = f(x),

where A(x,2’) is a known kernel of an integral equation, f(x) is a known source
distribution and u(x) is the unknown field or response. For the kernel, the referred
authors take the 2-D monochromatic Green’s function associated with eclectromag-
netic and acoustic problems in a homogencous medium, and project it on a set of
wavelets. In this way they generalize the method of moments.

In the present chapter, the actual problem is to derive from equation (4.1) an
explicit expression for the reflectivity operator R in terms of the data, which is of
course a different problem than the determination of the unknown field u(x). Since
the wavelet domain does not provide dramatic sparseness for the propagators, I have
concentrated on efficiently subdividing the reflectivity operator in approximations
and details, and on getting explicit expressions for the different parts in terms of the
measured data. This method resembles the homogenization approach by Brewster
and Beylkin (1995), and the multiscale scattering approach of Steinberg (1994) and
Steinberg and MNcCoy (1994).

The contents of the present chapter is as follows. In section 4.2 T will commence
the discussion with a representation of primary seismic reflection data in general
domains. In the subsections the discussion will be specified to the data representation
in the space domain (section 4.2.1), the spatial Fourier domain (section 4.2.2), the
Gabor domain (section 4.2.3), and the wavelet domain (section 4.2.4). The physical
significance of the different representations and the relation with existing solution
methods will be pointed out. In section 4.3 the properties of the propagators in
the wavelet domain for a homogeneous medium will be discussed in more detail.
This analysis helps in understanding how the wavelet transform decomposes a wave
field. In section 4.4 a recursive depth migration scheme will be discussed, both in
the space domain and in the wavelet domain. Section 4.5 is devoted to examples. In
section 4.6 I will discuss a number of limitations and open questions of the presented
method. Finally, in section 4.7 the findings of this chapter will be summarized.

4.2 Data representations revisited

Consider the monochromatic description of primary seismic reflection data related
to the reflection at a single depth level 2y with sources and receivers at one and the
same depth level vy (cf. equation 3.28)
- ) — il ! ol Al ‘
P (x, x3) = W™ (&g ) R{rs) W (xy;203) ST (3). (4.2)

Remember that the operators W™. R and W are working in the horizontal planc.
Hence, equation (4.2) is a full 3-D representation of the seismic reflection at a single
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depth level. In this chapter, however, I will only consider 2-1) configurations. Equa-
tion (4.2) is the point of departurc for representations in the domains introduced in
chapter 2: the spatial domain representation, the spatial Fourier domain representa-
tion, the Gabor domain representation and the wavelet domain representation. The
latter will be most extensively dealt with. In gencral terms, the transformations
that lead to the four representations, are medium independent. The representa-
tions themselves are not medium independent. In the previous chapter the modal
decomposition has been introduced, for which both the transformation and the rep-
resentation are medium dependent!.

Before 1 treat the four domains separately, let me first consider the represen-
tation of the seismic reflection data in an arbitrary domain. Suppose {1} forms
a complete sct, where the variable ¢ is chosen in a suitable, possibly more dimen-
sional, discrete or continuous set J. It can be concluded from chapter 2 that the
kernel K(a;a') of the operator K can be obtained via

Kla,a") = (Ko, t4) (4.3)

and that the representation of a function f in the domain constituted by the set
{vn} can be obtained via the inner product according to

fla) = (f.¥a). (4.4)

At this stage the symbol ~ refers to either of the four representations to be discussed
in subsequent subsections. With equations (4.3) and (4.4) in mind, the data rep-
resentation of equation (4.2) takes the following form in the domain constituted by
the functions ¥,

pwa¥ ¥ ¥

ae.J a’'elg aseJ

V(@' x3;a.05) Ria, rh;a’. o) W (a' 2l a%, 23) ST (. x3)

da®*da’ da.  (4.5)

The quantities in equation (4.5) can be interpreted in the following way. The [unction
S*(a®,x3) = (ST(x3),¢q) is the source distribution for downgoing waves®. The
source distribution is expressed in terms of the basis functions yr,-. The propagator
kernel \;\"L(a’ . rhia®, x3) denotes the response of a downgoing wave field of the type

1Tt is interesting to observe that the approaches that lead to certain predefined wave fields in
the subsurface can also be seen as medinm independent transformations. For example. the method
of controlled illumination (Rietveld, 1995) always leads to a plane wave in the subsurface, and the
common focus point ilumination (Thorbecke, 1997: Berkhout. 1997ab) always leads to a point
source in the subsurface.

2In the sequel the source distribution for downgoing waves is also referred to as the downgoing
source distribution.
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Fig. 4.1 Representation of a monochromatic setsmic experiment in the domain consti-
tuted by the complete set of functions {1q}.

Yos at xz. The downgoing wave field is measured at z§ with a set of receivers
weighted with the function .. The kernel R(a, xh;ad, 2%) denotes the response due
to a downgoing wave field of the type ¥, at x%. The upgoing response is measured
with a set of receivers weighted with ¢, also at depth level 2. The propagator
kernel W‘(a,r,:l;g; a,z5) denotes the upgoing response at xs related to an upgoing
wave field of the type ¥, at z5. The wave ficld is measured with a sct of reccivers
weighted with 1, at depth level x3. The upgoing wave field related to the source
distribution S*(a®,x3) is denoted by P~(a*,z3). In practice a discretization with
respect to the variable a is utilized via an appropriate discretization scheme, which
reduces the kernel equation (4.5) to a matrix-vector equation according to®

P (23) = W (3;2%) R(2%) W+(T'3, r3)§T (x3). (4.6)
This is the discrete seismic data representation constituted by the set {1, }. In Fig-
ure 4.1, the interpretation of a single experiment in the 1,-domain is schematically
illustrated. Moreover, it shows how the propagator matrices Wi and the reflectivity
matrix R are filled. For example, one column of the matrix W+ denotes the response
at x4 measured in terms of the discrete set of functions 1, due to a downgoing source
wave field at x3 of the form ,-.

3The matrix-vector notation is introduced in appendix A.
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In the next four subsections I will discuss the representations in the four do-
mains mentioned previously and extensively dealt with in chapter 2. The repre-
sentation in the wavelet domain will be discussed in more detail than the other
representations.

4.2.1 Spatial domain representation

The spatial domain representation has already been discussed in chapter 2. For
completeness, I repeat it here for the specific configuration considered in this chapter
(cf. equation 3.27)

Praha) = [ [ f

1 xf T
WT_(xli’$3; 2131,1‘:/3) R(‘Tl’wllz;‘rllv J%)W+(Ii>$gvl‘?’x3) S+('T?7 I3)

dz dz) dx;. (4.7)

The funection S (x5, z3) denotes the spatial downgoing source distribution at depth
level z3. The propagator kernel for downgoing waves W (], z%; 21, 23) denotes
the spatial response at x; as a function of z} due to a downgoing point source?
at (z35,x3). The reflection kernel R(x1,2%; 2}, x5) denotes the upgoing response
measured at (zy,z5) due to a downgoing point source at (z},z%). The nature of
the reflection kernel will be discussed in more detail in section 4.4. The propagator
kernel for upgoing waves W~ (2, z3; 21, %) denotes the response measured at depth
level 3 as a funciion of #} due to a upgoing poiui source at (wy,x5). The function
P~ (2%, 23) contains the upgoing wave field at x3 as a function of xj.

[n the case that the lateral spatial coordinates are discretized equation (4.7)
reduces to a matrix-vector equation according to (cf. equation 4.6)

\ar—/ YRR YL YE AN

—7 \ ! N \ a
M \3) — ¥¥ (L, EN LG W (L Lf S (L 0y

A more general notation can be obtained if we put the responses due to a series of
scismic experiments together in this system, according to (Berkhout, 1982)

P~ (3) = W (23; 25) R(23) W (235 23) 7 (23), (4.9)

where for a series of N, shots the source matrix ST and the data matrix P~ are
given by

P~ =(p,p;,..-,Py,) and St = (s{r,sg,...,sﬁs).

1The flux-normalized decomposition that has been utilized in chapter 3 does not allow for an
interpretation in terms of dipole sources and monopole receivers, which is the case if an acoustic
pressure normalization would have been used. Without specifying the exact nature of the source
and receiver characteristic, 1 refer to them as one-way, downgoing or upgoing, point sources.
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One element of the data matrix P~ denotes one scismic experiment in the space
domain. The interpretation of such an experiment in terms of the propagator matrix
W, reflectivity matrix R, and propagator matrix W™ is shown in Figure 4.2a.

In section 4.3 T will study the behavior of the propagator kernel for a homo-
geneous medium under the wavelet transform. I will give now the expressions for
the propagator kernel in the homogeneous situation. The kernels W are oscillatory
integral kernels. For a 2-D medium, homogeneous between x3 and x5, the kernels
take the following form

W (2, w3; ), 24) = —% cos HP (kr), (4.10)
where Hfz) is the first order Hankel function of the second kind, the wavenumber
k is given by k = w/e, the distance r between (xy,x3) and (zf,a}) is given by

r=+/(x; — 2})? + (3 — %)%, and the angle ¢ denotes the angle between the vector

i3 and the vector pointing from (2}, z}) to (z1,73), hence cosy = lI:‘—rLI In the

far-field, where kr >» 1, the propagator kernel is given by

ik lfjlcr
W (@, agiah af) =4[ cow“ﬁ . (4.11)

In the recursive depth migration, to be discussed in this chapter, the propagator ma-
trices are filled with the help of local explicit operators (Holberg, 1988; Thorbecke,
1997). Because in recursive depth migration the depth step is small, propagator
matrices constructed in this way arc here referred to as near-ficld matrices®. Fig-
urc 4.3 shows a near-field and far-field propagator matrix for (3 — %) = 10m and
(z3 — x4) = 500 m, respectively.

4.2.2 Spatial Fourier domain representation

In chapter 2 I have dealt in some detail with the Fourier transform and its properties.
For the application to the lateral spatial coordinate the Fourier transform takes the
following form®

o
~ 1
Fky = 7 / F(xy) exp(jkizy) day, (4.12)
and its inverse by
F(x, 7_— / Yexp(—jghkixy) dky, (4.13)

5Note, however, that a near-field approximation has not been carried out.

5Note that the spatial Fourier transforms have an opposite sign in the complex exponential with
respect to the temporal Fourier transform. With this choice, one can associate with positive ky
and w, waves propagating in the positive ;-direction (Aki and Richards, 1980, p. 129).
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(a) Spatial domain

(b) Spatial Fourier domain
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Fig. 4.2 An artist impression of the representation of a monochromatic seismic experi-
ment in different domains. (a) A single experiment in the space domain (sec-
tion 4.2.1, eq. 4.9). (b) A single plane-wave experiment (section 4.2.2, eq. 4.17).
(c) A single beam experiment (section 4.2.3, eq. 4.22). (d) A single multiscale
experiment (section 4.2.4, eq. 4.28).
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Fig. 4.8 Propagator kernel in the near-field and far-field. The frequency is chosen
to be 301z the velocity is taken ¢ = 2km/s. (a) The propagator kernel
W (z1,z3; 21, 2%) for (w3 — x4) = 10m constructed with local explicit opera-
tors of 19 points. (b) The propagator kernel for (z3 — x3) = 500 m obtained
with the far-field expression of equation (4.11). Note that x1 and T\ are given
in sample numbers. The sampling distance is 25 m.

where k) is the lateral spatial Fourier variable associated with @1. The function F (k1)
is the realization of F' in the spatial Fourier domain. The spatial Fourier transform
decomposes a wave field at a certain depth level in planc wave components. In the
spatial Fourier domain the data representation of equation (4.5) can be written as

P = [ [ [
ki kK3
W’(k?,wg;kl,wg)R(k’l,wg; {,JS)W+( 4,k ‘T,fﬂg)x§'+(k§,fli;3)
dks Ak, dky. (4.14)

Equation (4.14) is the monochromatic one-way representation of primary reflection
data in the spatial Fourier domain. On the right-hand side, one encounters, from
right to left the downgoing source distribution, downward propagation from depth
level 23 to xf, reflection at depth level zf, upward propagation from depth level 2
to x3, all in terms of plane wave components. The left-hand side of equation (4.14)
denotes the seismic reflection data decomposed in plane wave components. The
representation of the kernels in the spatial Fourier domain can be obtained via
equation (4.3). Alternatively, a kernel in the spatial Fourier domain can be obtained
by applying a double Fourier transform to the kernel representation in the spatial
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domain. For example, the propagator kernel W+ can be obtained via
W (kl,l’3,k1 .T‘j

—//exp jkix)) W (x}, o4 21, 23) exp(—jklxlldail\dm'l. (4.15)

In the case that the spatial Fourier coordinates are discretized equation (4.14)
reduces to a matrix-vector equation according to (cf. equation 4.8)

P (23) = W (23: %) R(a}) W (2 23) 8% (23). (4.16)

A more general notation in the spatial Fourier domain can be obtained if we put the
responses due to a series of seismic plane-wave experiments together in this system,
according to (cf. equation 4.9)

P (x5) =W (z3;2%) R(zh) W (2}25) 8 (z3). (4.17)

Note that this procedure requires an additional spatial Fourier transform along the
source coordinate. One element of the double Fourier transformed data matrix P~
represents one cxperiment in the spatial Fourier domain. The structure of such an
experiment is illustrated in Figure 4.2b on page 118.

Let me discuss the structure of the propagator Wt (z%;x3) in the Fourier do-
main again. The kernel W+ (K}, x4; k1, x3) denotes the downgoing response of a
downgoing plane wave at x3 measured with plane wave receivers at depth level 3.
For a homogeneous medium or a lateraily invariant medium the propagator in the
spatial Fourier domain gets a diagonal structure and reduces to the so-called phase-
shift operator. This property can be used advantageously in scismic migration as
has been shown by Gazdag (1978) and by Stolt (1978). In chapter 3, section 3.3.4, it
has been derived that in this situation the spatial Fourier transform is equal to the
modal decomposition. For laterally varying medium configurations plane wave inter-
action takes place, which means that a plane wave gets distorted while propagating
in the vertical direction’. The numerical computation of the kernel in that situation
is approached in various ways, for example via the phase-shift plus interpolation
method or via a so-called split-step Fourier method (Gazdag and Sguazzero, 1984;
Pai, 1988; Stoffa et al., 1990; Pai, 1991; Lee et al., 1991).

4.2.3 Gabor domain representation

In equation (4.7} a pure spatial description of a seismic experiment is given. On the
other hand, in equation (4.14) a description of a scismic experiment is given in terms
of plane waves of infinite lateral size. A natural intermediate domain is provided

7The modal decomposition of chapter 3 still leads to a diagonal kernel, under the condition that
the medium is not varying in the vertical direction between x3 and 5.
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by the Gabor transform which has been introduced in full detail in chapter 2. The
spatial discrete Gabor transform of a wave field is given by (cf. equation 2.99)

o
F(m,n) = AF, gimn) = / F(z1) exp{(jmaozi)g*(x; — nby) day,
S (1.18)

which can be interpreted as a local spatial Fourier transform for each (m, n)-pair with
a spatial concentration around x; = nby and a wavenumber concentration around
k1 = may. Hence, a wave field is locally decomposed into its plane wave components.
The window function g(x) is generally chosen to be a Gaussian function as described
in chapter 2. For a stable reconstruction of F(xy) the parameters ag and by have
to be chosen such that apby < 2w. The reconstruction of F(z,) from its Gabor
coefficients reads

F(x;) = Z F(m,n) Imn (1), (4.19)

T,

where g, is given by
gmn (1) = exp(—jmaox1)g(wy — nbp).

The function g(z;) is referred to as the dual function of g(xy). Its actual form
depends on the function g and on the values ag and bg. A number of dual functions of
a Gaussian function g have been shown in Figure 2.9. Note that the Gabor transform
used here necessarily leads to a discrete function in the transformed domain.

Due to the discrete nature of the Gabor transform the seismic data representa-
tion of equation (4.5) automatically takes a matrix-vector form . The Gabor domain
representation reads

B () =W (25;2%) R(zh) W (i 25) 8 (). (4:20)
Equation (4.20) is the monochromatic one-way representation of the primary reflec-
tion data related to reflecting depth level &y in the Gabor domain. On the right-hand
side, one encounters, from right to left, the downgoing source distribution, downward
propagation from x3 to x4, reflection at depth level 2%, and upward propagation from
x% to 3, all expressed in Gabor cocfficients. More specifically, each of the matrices

W (23;2%), R(z%), and W (24;23) consists of elements denoting the interaction

. . YV
between different Gabor functions. For example, the propagator matrix W (x4; x3)

consists of clements W, (u4;x3) which are given by
A7+ PV 4ol
Wmnm’n' ('LB* ‘1’3) - <W (‘7"37 1;3) gm'n’ .(]m'n> . (421)

The other matrices arc defined accordingly. The element W;nmn, denotes a re-

sponse of a beam departing at depth level xz around position z; = n'by with a
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central wavenumber k, = m’ag. The response is measured at depth level z/; around
location z; = nby and around a wavenumber k), = maq.

The significance of the Gabor domain representation comes across if one re-
alizes that the Gabor transform leads to a division of the data in Gaussian beam
experiments (Einziger et al., 1986; Bastiaans, 1980). The Gaussian beam is an ad-
vantageous mathematical entity. First, because the Gaussian beam is a solution of
the parabolic wave equation with a source point in the complex planc (Deschamps,
1971). Secondly, the central ray of a Gaussian beam adheres to the eikonal and
transport equation of geometrical optics (Cerveny et al., 1982). These two aspects
allow for a relatively easy computation of Gaussian beams even in complex media.
That is why Gaussian beams can be advantageously used in migration (Raz, 1987;
Hill, 1990). However, generally Gaussian beam migration is carried out with a re-
dundant set of beams. The added value of the Gabor domain approach lies in the
flexibility with respect to window type, window size and window distance, giving a
good mathematical control over the amount of redundancy.

Let me finally discuss the multi-source beam version. For a series of seismic ex-
periments the Gabor transform can also be applied to the source coordinate, yielding
a double Gabor transformed source matrix and a double Gabor transformed data
matrix. The data representation takes the following form (cf. equation 4.9 and 4.17)

P (23) = W (3;2}) R(zy) W (2 25) § ' (z3). (4.22)

The physical meaning of the Gabor domain approach is illustrated in Figure 4.2¢
R \ Lo 1. PRI = M TRPE P E TS DRSNS SRR IS
o1 page 11o. Ulle elelelnt 01 LIe data matlix © U LIE Wabol dolialil actioves one

Gaussian beam experiment.

4.2.4 Wavelet domain representation

Whereas the nrevious three data representations have obtained directly or indirectly
significant attention, the wavelet trausform® is a relatively new tool and its usefulness
for the data representation of equation (4.2) has not been studied in great detail yet.
In chapter 2 two main assets of the wavelet transform have been identified:

1. a wavelet is blind to something smoothly varying;

2. a wavelet transform allows for a natural decomposition in approximations and
details.

Before I address these assets in relation to the seismic data representation, the use
of the discrete wavelet transform in two dimensions has to be treated. Following the
results of chapter 2, especially section 2.5.4, the discrete wavelet transform within a
multiresolution approximation starts with a representation of a function in a certain

8Since I am aiming for reasonably efficient schemes I have to use the discrete wavelet transform.
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fine approximation space V;. The discrete approximation can be obtained by taking
the inner product of the function with a set of smoothing functions {¢,,,} with
m = 0 and n € Z. The smoothing functions are given by (cf. equation 2.109)

¢mn($) — 2—m/2¢(2—mm _ TL)

Accordingly, a representation of an operator X (or a two-dimensional function) on
a certain fine scale amounts to taking inner products with smoothing functions in
Vo = Vo ® W, according to

Knn’ = <K:§b0n’ 5 ¢(Jn> - (423)

Together, the elements Ky, with n,n" € {0,..., N — 1} form a discrete approxima-
tion matrix K2. The value of N depends on the aperture size and on the resolution
m. For larger resolutions less functions ¢,,, “fit” within the aperture. The de-
composition of the matrix K in a coarser approximation and details can be done
in different ways. Here, I distinguish between the standard and non-standard 2-D
decomposition (Beylkin et al., 1991; Beylkin, 1992; Daubechies, 1992). The stan-
dard 2-D decomposition is obtained by applying the discrete decomposition to the
two directions in the matrix independently, which means that the two-dimensional
subspace V' is decomposed according to (cf. equations 2.116 and 2.117)

Vo=VeW
=(VudOuPOmM-_1® P01 (VMBOM®Opm-1D---01).

Alternatively, the non-standard 2-D decomposition is such that it uncouples scales,
which means that V¢ is decomposed step by step. The first step takes the following
form

Vo=WeW
= ae01)® (V100
=(VeVi))ea(Vie0)s (01 V)0 (0, ®0)
=V, ® 0,

where Vi = Vi @ Vi, and O1 = (V; @ O1) © (01 @ V1) & (07 ® O1). Subsequent
steps can be used to further decompose V). The decomposition of the space Vo up
to a certain coarse resolution M can thus be written as

Vo=Vus&O0yd - @02 0;.

9The matrix K can be seen as the two-dimensional version of the discrete approximation Agf
of a function f introduced in equation (2.111).
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The uncoupling of scales in the non-standard wavelet transform turns out to be
advantageous for the scismic data representation in the wavelet domain. Hence, 1
will further consider the non-standard 2-D wavelet transform!?. B

Since the set {¢1,} forms an orthonormal basis of V} and the sct {1, } forms
an orthonormal basis of O1, one step of the non-standard decomposition of Vg yields
for the matrix K the following structure

. Kro, K
K, = w ””) , 4.24
' (KC(U KA(I) ( )

where, in gencral, the submatrices Kz .y, Kgim), Koo, and K, are given by

KT(m) - <}C¢mn’7¢mn> KB(m) = <K:1/)mn’7¢'mwn> (425)
Kc'(m) = <Ic¢mn’7'l//’mn> KA(m) = (’Cwmn’vwmn> y (4-26)

wherem € {1,2,...,log N},and n,n’ € {0,...,N/2™—1}. The submatrix K., can
be further decomposed yielding the matrix K, consisting of the submatrices Kre,
K, Koy, and Ky s, ete. It is interesting to observe that Ky, equals the matrix
K defined via equation (4.23). Since Ky, is referred to as the approximation at
resolution m = 0, the matrices K, are referred as the approximations at resolution
m. The submatrices Ky ,..,, Ky Kacn, are referred to as the detail parts at the
resolution m. The decomposition from an approximation at a particular resolution
to approximations and details at coarser resolutions is carried out with the fast
wavelet transform in O(N?) operations for an (N x N)-matrix.

The application of one step of the non-standard wavelet transform to the data
representation of equation (4.2}, according to the scheme of the previous paragraph,
yields

P (23) = W (233 ) Ry () WY (s 3) 87 (a), (4.27)

or in extended form, using equation (4.24),

- - + +
‘3—(:173) - (a”f‘(l) \\:Vvli(l)) (g'l‘(l) 23(1)> (wi(” vai(l)> §+($3).

cm A1) ca A1) cm A1) (4.28)
Equation (4.28) is the monochromatic one-way representation of the primary reflec-
tion related to reflecting depth level z} in the wavelet domain. On the right-hand
side, one encounters, from right to left, the downgoing source distribution, downward
propagation from z3 to 4, reflection at depth level %, and upward propagation from
x} to x3, all expressed in wavelet coefficients at resolution 1. More specifically, the

10For more details with respect to difference between the standard and non-standard form the
reader is referred to Beylkin ct al. (1991) or Beylkin (1992). There it is also described how the
standard form can be computed from the non-standard form.
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. it . .
submatrices of the propagator matrix W, in the wavelet domain can be interpreted
in the following way: WF |
source wave fields at resolution 1, measured with (laterally) smooth receivers at res-

contains the response of (laterally) smooth downgoing

olution 1; the submatrix W:[m represents the response of downgoing source wave
fields laterally weighted with a wavelet at resolution 1, also referred to as downgoing

detail source wave fields, measured by smooth receivers at the same resolution; ng

is opposite to w;gm: Wim is a submatrix representing the response of a number

of downgoing laterally smooth wave fields at x3, measured with a set of receivers
weighted with a wavelet at resolution 1 at x%, also referred to as detail receivers at
%; finally, the submatrix W,
at x3, measured with a number of detail receivers at x%.

contains the response of a number of detail sources

In scction 4.5 T will make use of the multi-source version introduced in equa-
tion (4.9). For an appropriately chosen source and receiver geometry the data rep-
resentation in the wavelet transform domain takes the form

PT (23) = W (45 2%) Ry (24) WY (2;23) S (3), (4.29)

or in extended form, using equation (4.24),
(PT(l) PB<1>> —
PC(I) PA(I)

(Wl—(]) Wgu)) <R'1'(1> RB(l)) <W£(1> Wﬁtu)) (S%:(l) Sz(1)>. (4_30)
W W,/ \R., R,/ \W w S’ Si.

(1) () (1) A1)

Each element of the data matrix P, denotes a single scale experiment in the wavelet
transform domain. Figure 4.2d on page 118 schematically illustrates the structure of
a single seismic experiment in the wavelet domain. Equation (4.30) will be the point
of departure for seismic migration in the wavelet transform domain. Note that the
submatrices denoted with the subscript T'(1) can be further decomposed in details
and approximations.

Although I have been able to obtain a seismic data representation in the wavelet
domain, 1 did not explicitly address the assets of the wavelet transform as given on
page 122. In order to do so, the structure of the propagator in the wavelet domain
has to be studied in more detail. This issue will be discussed in the next section.

4.3 Properties of the propagator in the wavelet do-
main

In this section the non-standard wavelet transform of the propagator matrices w
will be studied. The emphasis will be put on the general structure of the propagator
in the wavelet domain and whether one of the assets listed in the previous section
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Fig. 4.4 Quadrature mirror filters h (left) and g (right) at different scales for nearly
symmetric Daubechies scaling functions and wavelets for 10 vanishing moments.
See Daubechies (1992) for details concerning this type of wavelet and scaling
function.

can be used. The study will be limited to homogeneous medium configurations.
Since analytic solutions of the propagator in the wavelet domain are not available,
all of the wavelet domain propagators are numerically transformed from their space
domain realizations.

Let me start to fix the choice of the wavelet filter pair h and g. In chapter 2
it has been explained how the filter pair is related to the wavelet and scaling func-
tion. Since the propagator matrix is symmetric, the wavelet and scaling function
should be symmetric as well. Since the propagator matrix has a certain (oscillatory)

i mmdlhnmmn dlha wvrnrenlak dhaasld hasen o s har Af cranichine marmanto +A fcantnira at
DaaCOeaiiCo0 VAT VWOANTCLTY CACNALT LONT O INNLOCUD U VRIALIDIALLILG RIULIIOIILT LU LA s

least partially the structure of the propagator. Since the wavelet transforms should
be carried out efficiently, short filter pairs are required. Since the sources and re-
ceivers should be interpreted in the same way, orthogonality is required (in contrast
to bi-orthogonal wavelets). This is a set of conflicting requirements. Without claim-
ing that T have made the absolute best choice, I decided to use nearly symmetric
Daubechies wavelets and scaling functions with 10 vanishing moments. Wagner
and Chew (1995) report reasonably good results with similar wavelets. Alternative
wavelet choices are discussed in Alpert et al. (1993), and Goswami et al. (1995). The
filter pairs are shown in Figure 4.4 at three different resolutions m.

Consider the propagator kernel for the far-field given in equation (4.11). The
propagator matrix in the space domain and its non-standard wavelet transform for
one, two and three steps are shown in Figure 4.5. The frequency is here 30 Hz. The
lateral sampling is Az; = 25m, and the compressional wave velocity is 2500 m/s.




4.3 Properties of the propagator in the wavelet domain 127

W+,m=1 W+,m:2 W+,7n,23
' : I
16
32 32 HH N
f (A
64 64 e
I |
| | |
I I |
128 128 128
64 128 64 128 32 64 128 1632 64 128
x 107
5 0.01 0.02 0.04
0.005 oon 0.03
’ 0.02
0 0
01
0 0.0
-0.005 o
-5 -0.01 -0.01 -0.01
0 64 128 0 64 128 0 64 128 0 64 128

Fig. 4.5 Propagator matriz for the far-field in the space domain and in the wavelet do-
main for one, two and three steps of the non-standard wavelet transform. The
axis labels are in sample numbers. The spatial propagator matric has been gener-
ated for f = 30 Hz, a depth step of 500 m, and a lateral sampling of Az, = 25 m.
The top row shows the absolute values of the matrices and the bottom row shows
one column of each of the matrices.

The depth step is taken |zg — 25| = 500m. Due to the oscillatory nature of the
propagator kernel, the realizations in the wavelet domain are not much sparser.
It is also clear that interaction between scaling functions and wavelets takes place.
Wagner and Chew (1995) and Goswami et al. (1995) carry out more detailed analyscs
with respect to the sparseness. I will not repeat their results here.

Consider the ncar-field realization of the propagator in the space domain, ob-
tained with the local explicit operator method. The frequency, the compressional
wave velocity and the lateral sampling are taken the same as for the far-field ma-
trix. The depth step is taken |z — 4| = 10 m. The propagator matrix is shown in
Figure 4.6. For one, two and three steps of the non-standard wavelet transform, the
propagator matrices are shown in the same figure. The top row shows the absolute
values of the matrices, the middle row the sparsity structure, and the bottom row
shows one column of cach of the matrices. For small depth steps the off-diagonal ma-
trices, W;L(m) and W;L(m) are small with respect to the diagonal submatrices W;m)
and Wj(m ,» depending on the velocity and frequency. In the remainder of this chap-
ter I will neglect the off-diagonal submatrices. From the structure of the propagators
in the far-field I conclude that the neglect will certainly introduce some distortions.
I decided to accept this error for the sake of a tractable algorithm.
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Fig. 4.6 Near-ficld expression for the propagator matriz in the space domain and in the

wavelet domain for one, two and three steps of the non-standard wavelet trans-
form. The depth step is 10 m. The other parameters are equal as for the far-field
matriz. The top row shows the absolute values of the matriz. The middle row
shows the sparsity structure and the bottom row shows a single column of each
of the matrices.
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4.4 Migration

The result of a migration procedure is a so-called structural image of the subsur-
face. A structural image consists of the locations of the reflecting boundaries. The
reflecting boundaries can be derived by extracting the reflectivity operator R in
one of the representations discussed before. In the space domain, the reflectivity
kernel R(xq,x%; 21, %) of the reflectivity operator R expresses the upgoing response
at the point (z1,%) due to a downgoing source at (&}, x%). It is a symmetric ker-
nel containing the full angle-dependent reflectivity. In structural imaging, however,
one is interested iu the angle-averaged reflectivity, which is given by the diagonal
Rz, x4; 21, 25) of the reflectivity kernel. For a locally-reacting boundary the di-
agonal of the reflectivity kernel does completely determine the refiection behavior.
Such a situation does only occur if the medium parameters are not changing as a
function of the lateral coordinates and if the velocity is constant, i.e. only the den-
sity is changing in the vertical direction. In all other situations the boundary is not
locally-reacting, hence the reflectivity is angle dependent (Aki and Richards, 1980).
The diagonal of the spatial reflectivity kernel is also referred to as the zero-offset
or angle-averaged reflectivity. In the subsequent subsections the extraction of the
reflectivity operator in the space domain and the wavelet domain will be discussed.

4.4.1 Migration in the space domain

Consider the data representation of equation (4.9) in a fixed-spread configuration
with the same number of sources as receivers on a regular grid'!. Hence, in equa-
tion (4.9) the matrices are square. Migration comes to the extraction of the re-
flectivity matrix R. This can be accomplished by removing the propagation effects
through the overburden and a subsequent imaging step (Clacrbout, 1971; Berkhout,
1082).

Using Berkhout’s formulation, the removal of the propagation effects through
the overburden is realized through

R(z%) = F (ah; a3)P ™ (v3)F T (235 2%), (4.31)

which is also referred to as the redatuming step. The matrix F' is the representation
of an operator which inverts for the propagation from the surface at depth level
x3 to the reflecting boundary at depth level &, and for the source geometry and
source signature. The matrix F~ is a representation of an operator which inverts
for the propagation from the reflecting boundary at depth level 2/ to the surface at
depth level @3, and for the receiver geometry and receiver signature. Since a fixed-
spread geometry is assumed here, one can take for F* the band-limited inverses

HFor the subsequent derivations in the space domain these requirements are not necessary. In
the wavelet domain, these properties are advantageously used.
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of the propagator matrices W 12, The inverse of the propagator matrices can be
approximated via a least-squares inversion, according to (Berkhout, 1982)

P = [ wE ] W) (4.32

where €21 is a stabilization term and where the superscript H denotes complex
conjugation and transposition. The kinematic effects are taken into account by the
last factor in the right-hand side of equation (4.32). For the regularly sampled flux-
normalized propagators derived in chapter 3 it can be shown that [(Wi)u Wi] ~ |

(Wapenaar, 1997b), therefore the following approximation is utilized®®

F(zh;ms) = (W (zs;2h)]” Fr(za;ah) = [WH(ahzs)] "
(4.33)

which is referred to as the matched-filter approach.
The imaging step consists of an estimate of the angle-averaged reflectivity. At
depth z§ it is obtained by an averaging over all frequencies according to

(R(z3)) diag = N% Re (Z R(:c{;)diag> , (4.34)

where N, is the number of frequencies, and where the subscript ‘diag’ refers to the

fort that th m i i i
fact that the summation over all frequencies is carried out for the diagonal elements

only. Henceforth, the subscript diagonal will be omitted for notational convenience.

A few remarks apply to the above derivations. First, the summation over
all frequencies is only meaningful for the diagonal of the reflectivity matrix, which
is exactly where I am interested in for structural imaging. Berkhout and Wape-
Naar (1995) ave SLOWL Lldl Witll vie teip of tie Radort Lrausioris e ol-diaguual
elements, hence the angle-dependent effects, can be extracted in a similar way. Sec-
ondly, if the migration is carried out per gather, especially the imaging step has to
be slightly adjusted (Claerbout, 1971; Rietveld, 1995). Finally, note that (z—w)-
migration is generally carried out recursively with small depth steps. At each depth
level the reflectivity is extracted.

12Note that the source and receiver signature has been left out. It is assumed that they have
been removed during the preprocessing of the seismic reflection data.

131f an acoustic-pressure normalization would have been used in the decomposition from the
two-way wave equation to the one-way wave equation in chapter 3, the matched-filter approach
would take the following form

F~(ah;as) = (WH(ahias)]”  F(zg;ah) = W (zs;25)] "
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4.4.2 Migration in the wavelet domain

The point of departure for migration in the wavelet domain is equation (4.29). Just
as in the space domain, migration in the wavelet domain consists of a redatuming
step and a subsequent imaging step. For one step of the non-standard wavelet
transform the redatuming step can be written as (cf. equations 4.30 and 4.31)

<RT(1) Ru(1)> — (F’;(l) F;(l)) (P:v_"(l) P;(l)) <F§(1) FE(I))_

R("(l) RA(I) FC'(I) FA(I) P('(l) P/l(l) F('(l) FA(I) <4.35)
. =t .

The matrices F| , given by

F F

(1) A1)

+ +
Fli _ (Fi'm szx:m) , (4.36)

arc the wavelet transforms of the matched-filter matrices F¥. Due to the orthogo-
nality of the wavclet transform they can also be derived as the matched filter of the
wavelet transform of W*. An efficient redatuming scheme is achieved either if the
inverse propagator matrices are sparser than in the space domain, or if it is possible
to neglect certain parts of the propagator matrices at the cost of some accuracy.
The former is unfortunately not true; the latter is possible as can be concluded from
section 4.3. The neglect of the off-diagonal submatrices Wj};m and me or, equiv-
alently, the off-diagonal submatrices Fim and Ff“),
independent redatuming cquations for Rz, Rz, Re), and R,y according to

yields for equation (4.35) four

Rro, = Fr, Pro, Fa, (4.37)
Row, =Fro, Proy Fho, (4.38)
Rea) = Fo ., Py, Fio, (4.39)
Raio =Fi, Pao Fio- (4.40)

Since the elements of equation (4.37) can be further decomposed into approximations
and details, the redatuming equations in the wavelet domain can be written more
generally at resolution m as

RT(’"> = F'l—'(m) P;(m) F;(m) (4~41)
Rui = Fro Phon Flon (4.42)
Reon =Fai Pl From (4.43)
Raim = Fa Pac F:\L(m)' (4.44)

The imaging step is a little bit more subtle. In the space domain it is given by
equation (4.34). Below equation (4.26) it has been noted that there is no conceptual
difference between an approximation at resolution m = 0, which is seen as the



132 Generalized data representations and generalized migration

normal spatial representation, and any of the representations at coarser resolutions.
Therefore, the imaging step for the diagonal of the matrices Ry (..., Is equal to the
spatial imaging of equation (4.34), i.e.

1
<RT(7n)>diag = N_ Re (Z RT(m)diag) y (4.45)

where the subscript ‘diag’ will again be omitted in the sequel. Before the imaging
step for the other parts of the reflectivity matrix can be carried out, their contri-
butions to the specific resolution of interest has to be computed. Nevertheless, I
represent the imaging for the other submatrices in a similar way as equation (4.45),
according to

w

1
(Reim)) = N Re <Z Rcr(m)) (4.47)

1
<RA("1)> = _N— R’e (Z RA(m)) . (448)

For example, for the contribution of (Ry,,) to the structural image at resolution
m = 1, an inverse wavelet transform has to be carried out first and then the diagonals

can he summed. From eanations (441)—(448) it is clear that migration can he

1
(Raim) = N Re (Z RU(m)) (4.46)

carried out at different lateral scales and for different parts of the reflectivity matrix
independently. Preferably migration starts at a certain coarse scale M with the
approximation (Ry.,). The structural image at that particular scale is given by
the diagonal of (R ) at all depth levels. If more detail in the resulting image
o Loguiod, Gb Chin DO GOacd GOCONGing bO bho pioccos in Migure 4714 This prociss
is an inverse 2-D wavelet transform which can be carried out efficiently. It should
be noted that at a low resolution the matrices involved in the migration are much
smaller than the original reflectivity matrix in the subspace V. For each lower
resolution step the size of the matrices reduces with a factor of four. Hence, the
matrices involved in computing (Ry,,_;,) are 4M times as small.

14Since in the derivation of this procedure, the scale interaction quantities have been neglected
one can not expect to be able to carry out the reconstruction process from very coarse scale all the
way to very fine scales.
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(Rran) —% (Rray) — (Rroy) = (R)

(Roany) / .. Roa) /
(Reany) (Rey)
<RA(I\[)> . /l(l)

Fig. 4.7 Schemalic representation of a migration scheme in the wavelet domain. starting

at a low resolution. Via an inverse wavelet transform the different parts of the
reflectivity operator can be combined to the full reflectivity.

4.5 Examples

This section secrves as an illustration for the derivations presented in the previous
scctions. As examples I will use an “unrealistic” synthetic model and a marine data
set. I will illustrate the method with two steps of the wavelet transform approach.
The results of a step by step approach will be compared with a full prestack (z —w)-
migration. Both data sets consist of a single 2-D line.

4.5.1 Synthetic data set

The model used for the synthetic experiment is given in Figure 4.8a. It is a constant
density model, the compressional wave velocity ranges from ¢ = 1500m/s up to
¢ = 3400m/s. 128 shot records have been created with a finite-difference program,
second order in space and second order in time, in a fixed-spread configuration.
The source and receiver positions were ranging from z; = 0 m up to z; = 3175 m
with Az; = 25 m. The sampling in the model for the finite-difference modeling
was 5 m. The macro model for the recursive prestack depth migration is sampled
with Az; = 25 m and Azs = 10 m. The shot records have been sampled with
At = 4 ms; the total amount of samples per trace is 512. The seismic wavelet has its
peak at a frequency of 20 Hz. The maximum frequency is 70 Hz. A number of shot
records after surface related multiple elimination for source positions x5 = 200 m,
2§ = 1575 m and z§ = 2950 m are shown in Figure 4.8b.

For the redatuming procedure a smoothed version of the exact model has been
used. The full prestack migration result, carried out recursively in the space domain
according to equations (4.31) and (4.34), is shown in Figure 4.8c. Migration in the
wavelet domain has been carried out according to the scheme of Figure 4.7 where
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Fig. 4.8 (a) Acoustical model with velocities ranging from 1500m/s to 3400m/s. (b)
Three shot records at source positions x5 = 200m, z] = 1575m and 2§ =
2050 m. (c) The full prestack migration result. The migration has been carried
out in the space domain.
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thie submatrices arc computed according to equations (4.41)-(4.48). The coarsest
resolution used is m = 3. At this resolution the propagator matrices and the re-
flection matrices are 64 times as small as those at the original resolution m = 0.
The zero-offsel reflectivity resulting from the submatrices (Rr). (Rpis)s (Regw)s
and (R,;,) at all depth levels is shown in Figure 4.9a-d. In Figure 4.9¢, the sum
of these results is depicted, which equals (Rz.,,). Note that the summation of the
submatrices improves the image of the dipping flanks. Grey circles denote these
regions.

Alternatively, one can start the procedure at vesolution m = 2. In this step
the submatrices are 16 times as small as the matrices at the original resolution. The
zero-offset reflectivity resulting from the submatrices (Re.)), (Rys). (Re,), and
(R.2) is shown in Figure 4.10a-d. The sum of the images yields the iimage related
to (Ry(,,) at all depth levels, which is shown in Figure 4.10e.

The final optional step can be used to further increase the lateral resolution
of the subsurface image by computing the zero-offset reflectivity related to (Rpy,).
(Ri1y), and (R,,), and adding these images to that of (Ry,). For this example,
these parts do no add much new information. Hence, I have omitted the results
Lere.

Looking at the results of this section it is allowed to conclude that at least for
this data set the proposed scheme works. The wavelet transform allows to start with
a coarse approximation of the reflectivity. The image can be improved by adding the
contributions to the structural image of the detail parts of the reflectivity matrix.
The basic process up to the finest possible accuracy is two times as fast as the
migration process in the space domain. The amount of computations rclated to the
wavelet transform and the sparseness of the propagator matrices in the space domain
are not accounted for. The efficiency ncreases if one is satisfied with a lower lateral
resolution.
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Fig. 4.9 Zero-offset reflectivity for a full prestack migration in the wavelet domain. The

migration is carried out at resolution m = 3 (the original data is at resolution
m = 0). i.e. malrices arc 64 times as small. Before the imaging slep is carried
out the submalrices are transformed back to resolution m = 2, in order to be
able to compute their structural contribution at that resolution. (a) The mi-
grated result according o equations (4.41) and (4.45). (b) The migrated result
according to equalions (4.42) and (4.16). (c) The migrated result according Lo
equations (1.43) and (4.47). The migrated result according to equations (4.44)
and (1.18). (e) The sum of the migrated results of (a)-(d). The grey circles
denole regions. where the image particularly improves in going from resolution
3 to resolution 2.
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Fig. 4.10 Zero-offset reflecti
migration is carried out at resolution . = 2, i.e. malrices are 16 times as small.

rity for a full prestack migralion in the wavelel domain. The

The results are transformed back to resolution m = 1 before the imaging step 1s
carried out. (a) The migrated result according to equations (1.41) and (1.15).
(b) The migrated result according to equations (1.42) and (1.16). (c¢) The
migraled result according to equations (4.43) and (1.A7). The migrated result
according to equations (1.14) and (4.48). (e) The sum of the migraled results
of (a)-(d).
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4.5.2 Marine data set

The same procedure as described in the previous section has been applied to a
marine data set on top of the Midgard field in the Haltenbanken area, offshore
Norway (Data Courtesy SAGA). For a gencral description of the Midgard field the
reader is referred to Ekern (1987). The main acquisition parameters arc shown in
Table 4.1. The near-offset data have heen interpolated. Surface related multiples
have been eliminated and the data have been deconvolved for the source wavelet.
For the application under study, the data have been rcordered in a number of fixed-
spread data scts covering a part of the full line. A macro model Las been estimated
using the common focus point velocity estimation (Kabir, 1997). The estimated
macro model for a part of the illuminated subsurface is shown in Figure 4.11a. In
the model no steep dips are present. Hence, one can expect that already at coarse
scales a relatively good estimation of the structure can be obtained.

The full prestack migration result carried out recursively according to the mi-
gration scheme of cquations (4.31) and (4.34) is shown in Figure 4.11b. Migration
in the wavelet domain has been carried out according to the scheme described in
Figure 4.7. More specifically, I have followed the procedure which yielded Figure 4.9
to obtain a structural image for the SAGA data set at resolution m = 2. To create
this image, matrices 64 times as small as the original size have been used. The result
is shown in Figure 4.12a. The main structural information is already present. For
example, the reflector at depth 2.5km with the fault around the lateral distance of
16 km can be identified. On the other hand, the structure between depth 1.5 km and
2lam is not very clear. Their is not enough lateral coherency.

The same procedure has been carried out at resolution m = 2 just as has
been done in the synthetic data example. This step yields the structural image at
resolution m = 1. At this resolution the matrices are 16 times as small as at the
finest resolution m = 0. The result is shown in Figure 1.12h. Upon comparison with

vie atigraviun teauie «b the Guost rosclution, which o chown aasin in Figure 4 190

geometry fixed spread
number of shots 387
shot spacing 25 m
number of detectors per shot 126 ﬂ[
receiver spacing 25 m

Lr‘ocording time 4s
time sampling 1 ms

Table 4.1 The acquisition parameters for the marine data set.
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Fig. 4.11 (a) A part of the estimated macro model for the marine data set (Data Courtesy
SAGA). One of the target areas is at a depth larger than 2km al a lateral
position of 17.7km. (b) The full prestack migralion result of the same part.
The migration has been carried out recursively in the space domain.

it can be concluded that at this resolution all structural information secms to be
present, which is quite remarkable if one keeps in mind the crude estimates of the
propagator matrices that have been used. In practice one will stop at this resolution,

which T did.
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Fig. 4.12 Structural migration results at three different lateral resolutions. (a) Structural
image at resolution m = 2, obtained va equations (4.41)-(1.48). and carried
out at resolution m = 3 in the wavelet domain. (b) Structural image at resolu-
tion m = 1. obtained via equations (1.11)-(1.48), and carried out al resolution
m = 2 in the wavelet domain. (¢) The full prestack migration result carried
out in the space domain.




4.6 Discussion 141

4.6 Discussion

In this section I will discuss some open questions and drawbacks of the presented
wavelet transform approach to migration and I will consider alternatives that I have
come aware of.

Drawbacks and open questions —A first drawback is related to the fact that
the propagators are not directly computed in the wavelet domain. The propagators
are obtained in the wavelet domain by transforming their realizations in the space
domain. Their are no efficient numerical schemes to directly compute the response
of a wavelet or scaling function as source. This is of course dne to the fact that
there are no analytic solutions. Such solutions are known in homogeneous media for
point sources, for plane waves and Gabor functions (the Gaussian beams). Analytic
solutions can be used as a reference and often lead to cfficient schemes.

A second drawback is related to the fact that the propagators are not rendered
very sparsely in the wavelet domain. The oscillatory nature of the monochromatic
Green’s functions forbids real sparseness, as discussed in section 4.3, and hence
a rcally eflicient migration scheme. In my view it is not easy to overcome this
drawback. A good way to, at least partially, deal with this problem is to compute
only those cocflicients that are above a certain threshold, as pointed out by scveral
authors (Goswami et al.. 1995; Wagner and Chew, 1995). To my knowledge such
schemes have not been developed vet. Here, T followed another road to obtain
efficiency. I neglected the ofl-diagonal parts of the recursive propagator matrices
in the wavelet domain, which is a rather crude step. This step can be refined by
looking for wavelets which minimize the scale interaction.

A third drawback of the presented method is related to the fact that the method
is not gather-oriented. A whole data set divided into monochromatic components is
used as input. Such an iuput requires quite some data rcordering. Note here that a
shot gather oriented approach has been developed as well (Dessing, 1995). This shot
gather oriented approach allows for an imaging at multiple lateral scales, but it does
not give a possibility for a recursive build up, as discussed in the present chapter.

A fourth, easily surmountable, drawback is related to the fact that periodic
boundary couditions have been used in the wavelet transform. Since in general the
two opposite ends of a subsurface geometry can be quite different, periodic boundary
conditions are not correct.  Alternatively, one can use orthonormal wavelet bases
defined on an interval, sce for example Cohen et al. (1993) and Goswami ct al.
(1995).

Alternatives -Lspecially since people are aware of the great opportunities the
wavelet transform provides for seisiic data compression (see section 2.6), the inter-
est in wavelet transform based migration algorithms has increased. I am aware of
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two definite alternatives, which arc both based on a wavelet transform applied to
the depth or time coordinate, instead of an application to the lateral spatial coordi-
nates prescnted here. Very interesting, Wang and Pann (1996) develop a Kirchhoff
migration scheme for seismic data that are efficiently represented with the help of
a matching pursuit decomposition scheme. The matching pursuit decomposition
scheme represents a seismic trace as a relatively sparse sequence of reflection events.
Especially, for velocity analysis the authors argue that their approach might be ad-
vantageous. Another approach is followed by Song et al. (1996). They discuss a
multiscale version of the Kirchhoff based reflector imaging method (Bleistein, 1987).

4.7 Summary

In this chapter, I have presented a wavelet transform approach to seismic migration
in the frequency domain. The point of departure is the representation of primary
reflection data in arbitrary domains. The space domain representation leads to an
interpretation of the seismic data in terms of point source experiments, the spatial
Fourier domain represcntation leads to an interprctation in terms of plane wave
experiments, the Gabor domain representation leads to an interpretation of the
seismic data in terms of Gaussian beam experiments, and the wavelet transform
leads to an interpretation of the seismic data in terms of multiscale experiments.

For migration, the application of the non-standard form of the 2-D wavclet
transform provides a scheme that is in principle efficient. The migration scheme in
the wavelet transform domain consists of similar steps as the migration scheme in
the space-frequency domain, i.e. redatuming and imaging.

The asset of the wavelet transform for migration lies in the fact that the re-
flectivity can be extracted step by step if one neglects the scale interaction in the
propagator matrices. The process starts with a coarse approximation of the re-
flectivity. Ry addineg detail parts of the reflectivitv onerator the resolution can be
improved. The step by step approach gives the user a handle to choose hetween res-
olution and efficiency. The applicability of the proposed method has been illustrated
with a synthctic data set and a real marine data set.

In the discussion a number of drawbacks of the presented scheme has been
pointed out. Some of them are easily surmountable, others less. Especially, the
absence of analytic solutions or direct numerical methods in relation to the fact
that the propagator is not rendered sparsely in the wavelet domain is seen as an
important drawback.




Chapter 5

Boundary description by
singularity characterization

The present thesis is completely written in the I-form. Especially, in this chapter the
we-form would have been more appropriate. The current chapter can be seen as the
cumulative effect of a long and intensive collaboration with former Ph.D. students
and M.Sc. students, most notably, Feliz Herrmann, Edo Hoekstra and Joes Staal.
It deals with the effect of singularitics on waves reflecting at those singularities.
Besides an amplitude effect it is revealed that singularities —especially a-symmetric
singularities cause a deterministic change of the signature of the seismic wavelet.
The signature change can be extracted from the seismic data via a complexr trace
analysis. The extraction of the strength and signature of the singularity allows for
the formulation of a singularity driven inversion scheme (SD1). The results have
been submitled for publication in two parts. In Hoekstra and Dessing (1998), the
first half of this chapter is roughly covered. Dessing and Hockstra (1998) deal with
the second half of this chapter.

5.1 Introduction

Reflection and propagation are the two processes underlying the seismic reflection
method. Propagation is required to bring energy into the subsurface, reflection is
required to revert the propagation direction of the energy transfer. The better a
geophysicist understands the physical mechanisms underlying these processes, the
more successful the seismic reflection method can be applied to infer the structure
and the material properties of the subsurface. Whercas in the previous chapter the
attention has been focused on the role of the wavelet transform in delineating the
structure of the subsurface, in the present chapter multiscale analysis tools will be
utilized to better understand and characterize the complex process of reflection.
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Fig. 5.1 Five representations for a transition in the earth subsurface. The middle tran-
sition is the commonly considered step function. On the left and on the right
‘sharper’ and ‘smoother’ transitions are plotted. These transitions are a priori
as likely to occur as the step function. The reflectivity of the latter four pro-
files turns out to be clearly distinctive from the reflectivity related to the step

Junclion.

The point of departure is the work of Felix Herrmann (1997), who showed
via a wavelet transformi modulus maxima analysis of well-log data that the eartl’s
subsurface behaves as a multifractal, which means that it consists of a hierarchy of
singularitics!. This ohservation has two important consequences. First, the descrip-
tion of a seismic reflector as a discontinuity, a step function, is just a special case
of the more general concept singularity. Secondly, a singular medium necessarily
implies that the measurement process depends on the scale of the measuring device
(Nottale et al., 1997). The measuring or observing object is, for the geophysicist, an
(l(.ULlDLik, (W18 tf;(i‘b‘l‘i(/ Wy (‘77 W ‘111( ‘11 lldh illi;t‘l(l‘\ i»(i\l \\’lL‘Ll e bill%tl‘id& LJU;ILL ill bllC Du‘UDlllf(L\,C.

Conscquently, the thesis of Herrmann (1997) necessitates the introduction of
more general transitions than step functions alone, as a model for the boundaries
in the earth. Figure 5.1 shows four examples of the kind of generalization I am
referring at. In the middle, the commonly used step function is shown, on the left
and on the right, four different velocity or density profiles are displayed: the left-
hand side shows two ‘sharper’ transitions; the right-hand side shows two ‘smoother’
transitions?. It can not be expected that the latter four profiles reflect an incoming
wave in the same way as the step function does. What is the nature and size of
the difference in the reflectivity? The geophysical relevance of this question stems

LA function f(t) is singular at tq if its derivative is not bounded at ty. The function f(#) is said
to have a singularity at fy. In section 5.2 the concept singularity will be dealt with in more detail.

2The nations ‘sharp” and *smooth’ will get a meaning in the sequel via the definition of the
Holder exponent.
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Fig. 5.2 Four clearly distinctive geological depositional setlings. Kindly provided by Fre-

deric Verhelst.

from the fact that geological boundaries do in general not bchave as simple step

functions. In Figure 5.2. schematic models of four depositional settings are given

(provided by Frederic Verhelst). Note that different depositional environments vield

clearly distinctive profiles.

The refinement of the model of the carth causes a further complication of the

process of reflection. Let me briefly summarize the main complexities:

1.

Since Snell in 1621, while he was professor in Leiden, empirically discovered his
law of refraction, it is known that the reflection of a wave at a discontinuity or
step function in the velocity is in general angle dependent. The actual angle-
dependent behavior depends on the size and the direction of the transition.

A single singular transition either in the density or in the compressional wave
speed is scale dependent. A discontinuity, however, does not result in a scale-
dependent reflection behavior®.

Another important process ruling the reflection process is interference. Two or
more singular transitions closely to each other, result in a different reflection
pattern than all of them apart. In the highly complex carth, which is probed
by a wave with a pulse train the central wavelength of which lies in the seisiic
scale range, the interference process plays a significant role.

3In this chapter, another situation will be discussed which results in a scale-independent reflec-
tivity as well.
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(a) (b)

2000

p[kg/m®]
amplitude

1000 3

150 200 250 300 350 400 0 0.1 0.2 03 0.4
depth [m] p[ms/m]

Fig. 5.3 The amplitude of the reflectivity as a function of ray parameter, shows a clear
angle-dependent behavior (b) for the densily profile shown in (a). The velocity
is kept constant. The ray parameter is related to the angle and the local velocity
by p = Si—’;@, where (3 is the angle of incidence and ¢ is the local velocity.

In order to be able to derive the propertics of geological boundaries in a deterministic
way, understanding and disentangling the different effects are of great importance.
Otherwise confusing situations can occur. An example of a confusing situation is
shown in Figure 5.3. It is the response of a constant velocity medium with a varying
density. For a constant velocity medium having only step functions as transitions in
the density, the reflection docs not depend on the angle of incidence. The transition
of Figure 5.3 shows, however, an angle-dependent reflection behavior. This effect
has to be attributed to the fact that a singularity is intrinsically scale dependent,
and to the fact that the scale of a seismic wave increases with increasing angle
of incidence. Herrmann (1995) made this observation, that is closely related to
the effect of interference, and Wapenaar et al. (1997) proposed an angle-dependent
imaging technique to separate angle dependency resulting from interference and
intrinsic angle-dependent behavior. Another confusing situation can occur in the
casc that two quite different structures result in the same angle-dependent behavior.
A situation like that is shown in Figure 5.4. One of the aforementioned effects
might be the reason that the commonly used Zoeppritz model for angle-dependent
reflection does not always work in the real world (Herrmann, 1997; van Wijngaarden,
1997), especially if a single inversion is carried out per single reflection event?.

In this chapter, the attention is mainly focused on the reflection at singular
structures in a laterally-invariant medium. I will not deal with the effects of inter-
ference. Whereas the importance of singularities has been recognized for a long time
(see for example the quote from Maxwell on page 15), techniques to extract both

4 Alternatively, for high quality data one can invert per sample, in which case it should be
possible to recover a band-limited version of the medium.
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Fig. 5.4 The angle-dependent reflectivily for a step function and for o singular structure
(shown in grey) approzimate each other very closely in the region where the
linearized Zoeppritz model for angle-dependent reflectivity is assumed to be valid.
This example will be discussed in more detail in section 5.6.

the strength and the signature of a transition with the help of seismic reflection data
are not well-developed yet. From several points of departure, it is tried to make life
more deterministic. Most notably, Wapcenaar (1997a) has taken the wave equation
as a point of departure to derive the angle-dependent reflectivity for a specific type
of singularity. In this chapter, another approach is taken. It is based upou the
observation that homogencous distributions, which are algebraic singularities of the
form®

f(ﬂ = tnv aCR, t>0, (51)

carry out a fractional integration or differentiation. The fractional integration or
differentiation manifests itself, amongst others, as a phase change in the reflected
wave field®. The phase, which is associated with the travel time, is a stable element
in seismic reflection data. It can be easily extracted with the help of a complex
trace analysis (Gabor, 1946). The use of phase information has been recognized for
a long time as a promising seismic attribute (Neidell and Taner, 1971; Tancer et al.,
1979; Robertson and Nogami, 1984; Berkhiout, 1984). In this chapter, a theory is
presented relating the induced phase change of the probing seismic wave field to
the underlying transition in the subsurface in a clarifying way. It is expected that
the results will help to better understand the pressing question how singularities in
depth map to singularities in time.

The contents of the chapter is as follows. In section 5.2 the concepts regularity
and singularity will be introduced. The role of the wavelet transform in character-

5A more refined definition follows in section 5.2.4.
6The phase of the transmitted wave field. however. is not directly effected.
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izing the singularity strength of isolated and non-isolated singularities will be ex-
plained. Here, the results of Mallat and Hwang (1992), Staal (1995) and Herrmann
(1997) will be utilized. At the end of section 5.2 it is argued that the singularity
strength is far from sufficient to characterize algebraic singularities of the form (5.1).
In section 5.3 the wavelet transform of those singularities will be treated in full de-
tail. It will be clear that the phase and amplitude together completely characterize
a one-sided singularity. A complex trace analysis is introduced to extract the phase
information. In section 5.4 the influence of a seismic wavelet will be analyzed.
Whereas in sections 5.2 and 5.3 the attention is focused on characterizing singular-
ities themselves, in section 5.5 the attention is tuned to the reflectivity related to
singular medium profiles for normal-incident waves. Both analytic and numerical
derivations will be presented. The reflectivity at singularities for oblique-incident
waves is discussed in section 5.6. In scction 5.7 a singularity driven inversion (SDI)
scheme is proposed. In section 5.8 I will briefly discuss what has been accomplished.

5.2 Local regularity and the wavelet transform

Local points of rapid variation can be intuitively associated with reflection. A wave
will be reflected if the change in the medium parameters is fast with respect to the
scale of the propagating wave”. In the current models used in seismic processing,
the points of rapid variation are represented by step functions. Herrmann (1997),
however, showed that the earth subsurface does not consist of step functions alone.
It merely consists of a hierarchy of singularitics, of which the step function is just
a special case. This section is devoted to a brief introduction of the concept singu-
larity and to the way the wavelet transform is utilized to measure the strength of a
singularity. The mathematical theory will be briefly dealt with; for a more exten-
sive treatment of this subject the reader is referred to Mallat and Hwang (1992) or
Herrmann (1997). For a more general treatment of the wavelet transform the reader
t

HPRNY SR |
Is 1ccrred

5.2.1 Local and global regularity

Let me start with a definition to precisely introduce the concepts singularity and
regularity for positive Holder exponents.

Definition 5.1: Local and global regularity with positive Holder exponents (Mallat
and Hwang,1992)

e Let n be a positive integer and n < o < n + 1. A function f(t) is said to have
a local Hélder exponent a, at ty, if and only if there exist two constants A

“Of course. as soon as the medium parameters are changing in the rj-direction some cnergy is
reflected. However a rapid change with respect to the size of the probing wave field is required to
reflect a significant amount of energy in a coherent way. See also the remarks on page 68.
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and hy > 0, and a polynomial of order n, P, (t), such that for h < hy
|f(to + h) — Pu(h)| < AlR|™ (5.2)

e A function f(t) has a global Holder exponent o over the interval {ay,as), if
and only if equation (5.2} is satisfied for to + h € (a1, a2).

e The nth derivative of a function f(t) is singular at to if f(t) has a Hélder
exponent n < o < n+ 1. The nth derivative is said to have a singularity at t,.

e The Holder regularity of f(t) at tq is the superior bound of all values o such
that f(1) has a Holder exponent «v at tg.

Note that in this definition a clear distinction is made between local and global
regularity. Local regularity is defined in a point, whereas global regularity is defined
in an interval. The relevance of this distinction lies in the fact that for propagation
global regularity is important, and for reflection local regularity, because propagation
can be seen as a global averaging process, and reflection as a local averaging process
(Herrmanmn, 1997). As I want to focus the attention on boundary characterization,
the local regularity is here of greater interest.

The above definition is only valid for positive Holder exponents a. For negative
values of o a tempered distribution® is on the right-hand side of equation (5.2). For
tempered distributions, a separate definition of the Hélder exponent is required.

Definition 5.2: Negative global Holder exponents (Mallat and Hwang,1992)

Let f(t) be a tempered distribution of finite order. Let o be a non-integer real num-
ber and [ay, as] an interval of R. The distribution f(t) is said to have a global Holder
exponent o on (ay, az), if and only if its primitive has a global Hélder exponent o+ 1
on (a,as).

The proper incorporation of negative Holder exponents is important, because they
can be naturally associated with sudden outbursts in the measured phenomena, and
they are frequently encountered in practice, for example in well-log measurements.
Definition 5.2 applies to global negative Iolder exponents. It does not allow to draw
conclusions on the local regularity. Local negative Holder exponents are dealt with
in the wmicrolocalization theory deseribed by Bony (1983) and Jaffard (1991). In the
case of an isolated negative Holder exponent it is possible to assign locally negative
H6lder exponents in the sense of Definition 5.19.

®For a concise and clear treatment of tempered distributions, introduced by Schwartz (1951,
1952), sce Zemanian (1965). Functions form a subclass of the set of distributions.

YA distribution f(¢) is said to have an isolated Holder exponent o at tg, if and only if f(¢) has
a global Holder exponent a over an interval (a1, as2), with g € (a1,a2), and if f(¢) has a global
Hoélder exponent 3 > 1 over any subinterval of (a1, a2) that does not include ¢y (Mallat and Hwang,

1992).
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The following three examples illustrate the concepts described in Definitions 5.1
and 5.2.

Example 5.1 Consider the function fi(t) given by

0 for t<0
t) = - 5.3
ht {t for t>0. (5.3)

The derivative of fi(t) is the Heaviside or step function. Since the step function is
bounded, fi(t) is not singular according to Definition 5.1. It has a Ilélder exponent
a =1 att =0. The step function is singular and has a Holder exponent o« = 0 at
t=0.

Example 5.2 Cousider the function fo(t) given by

0 for t<0
L) =9, .
t? ftor t>0,

—
<t
e

Z

with 1 < 3 < 2. This function has a local Holder exponent of o = 3 at t = 0, but
is not singular. Its derivative has a local Holder exponent o« = 3 — 1 at t = 0; it Is
singular at t = 0. The second derivative of f2(t) is not bounded and can only be
defined in the sense of distributions. Considered as a tempered distribution

0 for t<0

. :('2 2iL) —
A {3(,3—1>w—2 for t>0

can be shown to have an Isolated, hence local, negative Hélder exponent of o = 3—2.
Hence f3(t) is singnlar at t = 0.

Example 5.3 Consider the §-distribution, 8(t). The sccond primitive of the §-
distribution is a function which is piece-wise linear, i.e the function described in
the first example above. Becanse of Definition 5.2 it can be concluded that the
§-distribution has a global Holder exponent of o < —1. To couclude that the local
Hélder exponent o = —1 at t = 0, the fourth item of the first definition is required,
and the elements in the discussion after Definition 5.2 should be used.

5.2.2 Measuring Holder exponents

A well-known tool to measure the Hélder regularity of a tempered distribution f(t)
is the Fourier transform. From the discussion on page 13 in chapter 2, it is clear that
regularity in one domain corresponds to decay properties in the associated Fourier
domain. It can be shown that the Holder exponent is the superior bound of all
values a for which the Fourier transform f(w) of f(#) satisfies

/'f<w><1+

W) de < 4. (5.6)
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Unfortunately, the estimates provided via the Fourier transform are global. It is not
allowed to draw conclusions on the local regularity properties, because one cannot
say whether an analyzed function is locally more regular at a particular point. For a
local regularity analysis the wavelet transform has turned out to be well-cquipped.
Let me recall the continuous wavelet transform of f(¢) with respect to a wavelet
1(t), see chapter 2 for more details,

wf et~y [ s (“b) a, (5.7)

where p refers to the normalization of the wavelet. In this chapter T will work with
p = 1, which means that an L'-normalization will be utilized'”. Knowing that
the scale paramcter o is inversely proportional to the frequency parameter w (see
seetion 2.3.3), it can be understood that the wavelet transform can serve as a tool
for measuring local regularity properties.

The relationship between the local regularity at a point ¢t = ty and the decay
properties of the wavelet transform of the function or distribution is expressed in
the following theorem, which is taken from Holschueider aud Tchamitchian (1990),
and which was proved by Jaffard (1989)'".

Theorem 5.1: Local regularity and the wavelet transform

Suppose that () is a wavelet with n vanishing moments and that ¥(t) is n times
continuously differentiable. The wavelet y(t) is, moreover, assumed to be of compact
support.

(i) Let f(t) € L*(R) and Iet o < n. If f(t) has a local Hilder exponent o at t,
then there exists a positive constant A such that for ty + ¢ in the ncighborhood
of ty, and for any o

W{f, v} (o, to+ )| < Ale™ + [¢|Y). (5.8)

(ii) Let o < n be a non-integer value and let A and B be two positive constants.
The function f(t) is said to have a local Hélder exponent « at lo, if for some
¢ > 0 the following two conditions hold for ty + ¢ in the neighborhood of t,
aud any scale o

IQU{_}, L"}(O’. ty + ()‘ < Ac¢ (59)

and
el
[og el

1WA L2-normalization can be used cqually well {Daubechies, 1992; Kaiser, 1994).
HGimpler theorems for the relation between global regularity in an interval and the wavelet
transform can be found in the cited references.

W f, v}(o.ty + )| < B ). (5.10)
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The proof of the first part of Theorem 5.1 can be easily obtained, by writing out
the wavelet transform around ty, and by using equation (5.2). The second part
of the proof is slightly more involved and 1 will not discuss it here. What does
Theorem 5.1 mean? Equation (5.9) denotes that the distribution f(t) has a global
Hélder exponent ¢ in a neighborhood of tg. For the interpretation of (5.8) and (5.9),
the definition of the cone of points (o, b) in the scale-time space according to

b—ty] <o = |d<o (5.11)

is required. For points within the cone, the right-hand sides of equations (5.8)
and (5.10) is dominated by the behavior of ¢®. For |¢| > &, the decay behavior
is dominated by ¢. Equations (5.8) and (5.10) behave differently for these regions.
However, for isolated singularities it suffices to inspect the decay behavior of the
wavelet transform within the cone!?.

The requirement of enough vanishing moments and of smoothness for ¥(#) has
been discussed on page 43 in chapter 2. There, I have described, that it is possible,
via partial integration, to transfer derivatives or integrations from the distribution to
be analyzed, to the analyzing wavelet such that the resulting Hélder exponent is in
the range (—1,0). The smoothness and the number of vanishing moments guarantee
that the action of partial integration or differentiation is well-behaving.

Theorem 5.1 shows that estimates of the local regularity of a distribution can
be obtained with the wavelet transform. It docs, however, not provide an effec-
tive algorithm, because a measurement in the two dimensional (o, b)-plane in the
neighborhoad of # = 4 is reauired to estimate the local Halder exponent. at £, Nlal-
lat and Hwang (1992) proposed an effective partitioning of the (o, b)-plane via the
local maxima of the wavelet transform. The amplitudes along a connected set of
local maxima, forming a wavelet transform modulus maxima line, characterize the
strength of the local singularity.

5.2.3 Wavelet Transform Modulus Maxima Lines

Trom chapter 2, Figure 2.8, it can be concluded that the wavelet transform reaches
a local maximum at or near a point of rapid variation, i.e. a locally irregular point.
In the previous subsecction, it has been shown that the decay behavior of the wavelet
transform in the (o, b)-planc is related to the regularity of the function. These two
elements made Mallat and Hwang (1992) decide to consider the modulus maxima of
the wavelet transform for regularity estimates.

L2For rapidly oscillating functions, for example sin(1/¢) near t = (). the decay behavior within the
cone cannot be utilized. Mallat and Hwang (1992) and Arneodo et al. (1997) discuss the detection
of oscillating singularities. I will not deal with oscillating singularities.
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Definition 5.3: Wavelet Transform Modulus MNaxima (WTMN)

o A local extremuin of W{ f, ¥ }{oy,b) is that point (oy,t,) such that its partial
derivative OW{ f, 1} (oo, b)/Ob has a zero-crossing at b = tg, when b varies.

e A modulus maximum is any point (0q,to) such that the following inequality
W{f 0o, b)| < [W{[, v} (o0, lo)| holds, when b belongs to either the right
or the left neighborhood of ty, and [W{f, v} oo, b)| < [W{f, '} (00, to)| when b
belongs to the other neighborhood of t,. A modulus maximum Is referred to
as Wavelet Transform Modulus Maximum or WTMAML.

o A Wavelet Transform Modulus Maxima Line or WTNAL is any connected curve
in the (o, b)-plane along which all points are WTMMIs.

Figure 5.5 illustrates the concept of the wrainiLs. In Figure 5.5a a function is
shown with three local singularities. The wavelet transform of the functions is given
in Figure 5.5b. Figure 5.5¢ shows on top of the wavelet transform the connected
WS forming four wTnbLs in total. Let me further elucidate the relation between
a WTMM and a singularity: a function is not singular in a ncighborhood where its
wavelet transform does not have modulus maxima at fine scales (Mallat and Hwang,
1992, Theorem 3). The reverse, however, is not always true: a modulus maximum in
the wavelet transform of a function does not necessarily imply that the function or
one of its derivatives is singular. For example, the wavelet transform of sint certainly
has wTaIns, although it is infinitely many times continuously differentiable. The
following theorem relates the decay behavior aloug a WTMAL to the local Holder
expouent in the case that the function does not oscillate in the neighborhood of the
singularity. This theorem has been proven by Mallat and Hwang (1992).

Theorem 5.2: Isolated singularities and wTaIMLs (Mallat and Hwang, 1992)
Suppose that the wavelet (t) is n times continuously differentiable, and that it is
the nth derivative of a smoothing functionu (Lence, it has n vanishing moments), and
it is of compact support. Let f(t) be a distribution whose wavelet transform is well
defined over (ay,as) and let ty € (ay,a2). It is assumed that there exists a scale
op > 0 and a constant I\, such that for b € (a,,az) and o < oy, all the modulus
waxima of W{ f,¢'}(o,b) belonug to a cone defined by

|b—to] < Ko. (5.12)

Then at all points £, € (ay, a2}, t; # to, f(1) has a global Holder exponeut n in
a neighborhood of t;. Let o« < n be a non-integer. The function f(t) has a local
Hdélder exponent o at tyy, if and only if there exists a constant C' such that at each
modulus maximum (o.b) in the cone defined by equation (5.12)

WIS, 0Hob)| < Cov. (5.13)
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(a) (b)
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Fig. 5.5 The wavelet transform of a signal and the extracted WTNMMLs. (a) The function
contains three singular points. (b) The wavelet transform of the function shown
in (a) has only significant amplitudes at points where the function is changing
rapidly. (c¢) The extracted WTNMLs on top of the same wavelet transform, now
depicted in grey scale colors.

The latter incaualitv can also be written as
log [W{f, v} (0, )| < log €'+ alog . (5.14)

which is a linear relationship between the natural logarithm of the amplitude of the
wavelet transform and the natural logarithm of the scale parameter . Theorem 5.2
proofs that the local Holder exponent can be estimated by taking the maximum
slope of straight lines that remain above log [W{f, ¥ }(o,b)|. T will refer to the set of
all modulus maxima lines of f(¢) fulfilling the cone distribution as

WTMMR = { X;(0) }icJ, (5.15)

with J C N, as the Wavelet Transform Modulus Maxima Representation WTMMR.
Each clement X;(a) of the set WTMMR is a WTMAML. Following Staal (1995) and
Herrmann (1997), a wavelet transform modulus maxima analysis consists of the
following steps:
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Procedure 5.1: Wavelet Transform Modulus MNMaxima Analysis

1.

Compute the continuous wavelet transform of f with an appropriately cho-
sen wavelet, i.e. having enough vanishing moments and being enough times
continuously differentiable for the selected goal.

Find the WTMIMNs for cach scale.

Interconnect the Wrh\Is such that the cone distribution is fulfilled, thus yield-
ing the set WTMMR of WTMMILS.

Study the behavior of W{f,v}(o, X;(c)) as a function of ¢. In particular,
find, via a linear regression, the maximum slope of the straight lines that
remain above the logarithm of the amplitude of the modulus maxima line, on
a logarithmic scalc.

Remark 5.1: Terminology

The local Hélder exponent is also referred to as the local scaling cxponent or the

strength « of the singularity. The strength of a singularity should not be confused
with the offset log C in equation (5.14).

There are a few practical and theoretical aspects relevant for the further appli-

cation of the described algorithm:

1.

The number of vanishing moments of the analyzing wavelet determines the
maximuin I6lder exponent that can be detected (see also the discussion fol-
lowing Theorem 5.1). Hence, if the detected slope yields a Holder exponent
cqual to the number of vanishing moments m than the result tells us that the
analyzed function is at least m times differentiable (Bacry et al., 1993).

. The number of vanishing moments should be kept as small as possible. More

vanishing moments yield more wrhaiLs for the same analyzed function. The
algorithm will consequently be less efficient.

. The cone distribution of cquation (5.12) implies that we are dealing with iso-

lated singularities. For non-oscillating functions or distributions the theory can
be extended relatively easy to non-isolated singularities (Mallat and Hwang,
1992). In this situation it may be better to talk about an effective (and possibly
scale-dependent) singularity strength (Herrmann, 1997).

Although counter examples can be formulated, the set WIMMR of all WTNMLs
is generally complete (Mallat and Hwang, 1992). The function f can be recon-
structed up to the finest scale where WTMMs are available, under the condition
that a coarse approximation of the function is kept in memory, in addition to
the set WTMMR.
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5.2.4 Homogeneous distributions

The introduction of positive Holder exponents in Definition 5.1 and its extension
to negative Holder exponents in Definition 5.2 suggests that a special role is played
by functions or distributions of the form " as parameterizing objects. The wavelet
transform of these objects should cxactly fulfill the decay behavior derived in sec-
tions 5.2.2 and 5.2.3. In practice, a signal will never exactly behave as such an
object, but a good understanding of the behavior of the idealized objects under the
wavelet transform might improve the interpretation of the wavelet transform of more
general distributions.
Consider the homogeneous distributions

It
) — S 5.1
w0 - (5.16)
where!?
0 t<0 —H™ t<0
s = SO e 20D (5.17)
Yt >0 0 t>0.

An overview of some important properties of homogeneous distributions is given in
appendix B. Here the most relevant aspects are discussed. The distributions x4 (¢)
are well defined if they are set to work on highly localized and regular functions.
More specifically, they are set to work on the set of wavelets ¥ (t), that is rapidly de-
creasing in one domain and arbitrarily polynomial localized in the associated Fourier
domain. If the Fourier transform of (t), v(w), is only supported for w > 0, then
this set is denoted by S;(R). On the other hand, if the Fourier transform z,A(w)
of ©(t) is only supported for w < 0, then this set is denoted by S_(R). Wavelets
that are only supported for w > 0 are called progressive wavelets. Wavelets whose
Fourier transform is onlv supported for w < 0 are referred to as regressive wavelets
TO essive wavelets are complex. The direct
sum of S+ (R) and S_(R) is denoted by Sy(R). The Morlet wavelet (Morlet et al.,
1982) given by

[TT A lcmliimmidar TOQOEY Tt ]
\llUlbLllllL'lLl(.rl, LUUU} i t.’l(,bbl\/(: 11l Lt‘gl

Y (t) = ¢~ 2eiwot, (5.18)
with wy > 5, is, for example, a wavelet in Sy (R) !*. The subscript p in ¢,(t) refers

to the fact that the Morlet wavelet is a progressive wavelet. First or higher order
derivatives of the Gaussian are wavelets in Sy(R).

13The introduction of the Euler-Gamma function T'(a + 1) is nicely explained by Hérmander
(1983, Section 3.2). It takes care of the simple poles in [t|} for a = —1,-2,....

11 have chosen the Morlet wavelet as an example, because it is important from a historical
perspective, and because it is very easy to usc. Strictly speaking, it is not a progressive wavelet
due to the fact that it does not completely vanish for w < 0. In practice, however, it does vanish.
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Although the distributions x% () arc well defined for a € C, I will only consider
a € R'. The interpretation of the homogeneous distributions can be most easily
carried out by first discussing a specific subset. Consider x% (t) with o € R and o ¢
Z¢. The distributions x¢ (¢) are invariant under dilations, except for an amplitude
factor, i.e.

WO = AN\G(E), A >0, (5.19)

The exponent « is the (local) scaling exponent. The wavelet transform of a homo-
geneous distribution can be casily derived to be (using equation (5.7), with p = 1)

i (t—b
WG, o b) = = /\‘j_(t)u“v' <—> dt

o o
0
oC
t(\
=% [ ———— " (t =D 1t
o [ - bl
0
=o"U,(b/o), (5.20)
where
ok tu ‘
U+(U) = ‘/0 I\(—a;—l—)‘?ﬂ*(t — U) dl‘ (521)

It is interesting to sce that U4 (u) can also be interpreted as the Mellin transform of
the wavelet . From equation (5.20) it is clear that along a line of b/ is constant
the amplitudes of the wavelet transform is only varying as a function of the scale pa-
rameter o, according to the factor o™. It can be seen that wrainiLs of homogencous
distributions fulfill the prescription b/o constant. Ilence, for (7,b) chosen such that
they form a wTaIML of a hiomogeneous distribution it is found that

log [W{\, v }o.b)] = log|U(b/o)] + alogo, (5.22)

which is relationship (5.14) derived in the previous subscction.

Anotlier interesting subclass is obtained by choosing a = n € Z. For these val-
ues of «, the distributions \} () can be shown (Gel'fand and Shilow, 1960; Horman-
der, 1983) to reduce to the distributions §(="=1 They can be scen as differentiated
or integrated d-distributions. For n = —1, hence m = —n — 1 = 0. § is the
well-known d-distribution, which fulfills in distributional sense the following scaling
relation:

S = A7) A > 0. (5.23)

5For a € C\R, oscillating homogencous distributions are obtained.
16Note that for a > —1, X (t) is a regular distribution. A regular distribution is locally integrable
(Zemanian, 1965).
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Incasen = -2,—-3,..., hence m = —n —1=1,2,..., 6(™(¢) should be interpreted
as an mth order derivative in the weak sense, i.e.
/ 58y F(1) dt = (~1)™ [0 fl, g (5.24)
2 (1™ arf(o). (5.25)
Incasen =0,1,...,hencem = —n—1=—1,-2,..., §)(¢) should be interpreted
as a —mth order integration operator, i.e.
(m) (_1)m —m. A m gm
SVt f(t)dt = ) tTm ) de = (=1)™ o f(0). (5.26)
. M 0

The scaling relation of the distributions §("(t) reads

SO = A8 A > 0. (5.27)

The wavelet transform of XI"_I (t), and hence of 6(”)(75), thus reads
Wi (), v e, b) =0 / 8™ty (t —b/o) dt (5.28)
=g " (—1)" of{(=b/o). (5.29)

Note again that along lines of b/o is constant, the amplitude of the wavelet transform
of x;"” (t) is ruled by the factor 07", The WTM\ILs are among the lines for which
b/ is constant. Equations (5.20) and (5.29) describe together the decay hehavior of

tha wauvnlat trancfarm of homaocononne dictributione v for o € R In cection 2.1
LC waveiet transiorm ¢ homogeneous distriputions o Ior o € K. In section 2.2.20

(62

the wavelet transform of homogeneous distributions will be worked out in more
detail.
The most general homogenecous distribution of degree « is given by

Yomen(t) = o XT(H) + eox2(2), (5.30)

which fulfills indecd the following scaling relation

Xcusp(A) = A"XCusp(8)s A >0, (5.31)
For cy =0 or e_ = 0, x&p(t) reduces to c_x(t) and ¢y x5 (t) respectively'”. The

wavelet transform of the cusp has a decay behavior equal to the one-sided homoge-
neous distribution. It is interesting to observe that independent of the shape, the
cusp and the one-sided homogencous distributions will yield equal Holder exponents.
In order to be able to pronounce upon the signature of a singularity with a specific
Holder exponent. more information is required. In the examples this issuc will be
addressed again.

17Note that in case that ¢y # 0 as well as c_ # 0, a slightly different denominator is required,
in order to get rid of the simple poles (Gel'fand and Shilow, 1960, page 64). To circumvent this
problem it is assumed that o &€ 7 for the cusp. See also appendix B.
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5.2.5 Examples

The examples in this subscction serve a threefold goal. First, I want to pay attention
to the numerical implementation of homogencous distributions. Secondly, I want
to illustrate that the presented theory for determining the Holder exponent via a
WTMAM analysis works. As this has been done by quite some authors before me
as well (Grossmann ct al., 1987; Mallat and Hwang, 1992; Staal, 1995; Herrmann,
1997), this should not be a big surprise. Thirdly, the limitations of the multiscale
amplitude analysis will be pointed out, especially in determining the exact signature
of the singularity.

Numerical aspects —Numerically, it scems not to be uscful to talk about singu-
larities, or discontinuities. A set of samples with a uniform sampling distance can
always be interpolated to form a smooth function on a finer sampling grid. This
kind of reasoning is not wrong, but it is too limited. Mallat and Hwang (1992) and
Herrmann (1997) argue that one should consider a set of samples at the resolution it
is observed, or at coarser resolutions. One can pronounce upon the decay behavior
for resolutions coarser than the observed resolution, but one can not enunciate the
decay behavior in the scale range smaller than the resolution. Questions about the
latter scale range can be regarded as metaphysical, unless a priori information of the
type of the signal is available.

Another numerical aspect is specifically related to the interpretation of singu-
larities with negative Holder exponents. Negative Holder exponents are associated
with distributions, which do not have an explicit functional form. They can, how-
cver, be numerically implemented in a consistent way. Consider, for example, the
§-distribution. The numerical representation of the §-distribution consists of a set
of zeros and a single 1/At at the location of the §-distribution, where At is the
sampling distance. If implemented like that, the expected scaling behavior given by
a Holder exponent of —1 will be found.

For other homogeneous distributions, with a > —1, I have chosen a numerical
implementation'®, which yields Hélder exponents very close to the theoretical results
(sce examples below). Note that the straightforward numerical implementation of
[t]¢ yiclds deviating Holder exponents, especially for negative scaling exponents.

Examples —Figure 5.6a shows the numerical implementation of five homogeneous
distributions according to the numerical implementation described above. The
wavelet transform (in grey scale) with the extracted WTNNLs on top are shown
in Figure 5.6b. The wavelet transform is carried out with the first derivative of a

18The numerical implementation takes in casily checkable MATLAB-code the following form:
X7.(t) — chi = diff(J0:N]."(alpha+1));chi=chi/max(chi);
where N is the number of samples. The corresponding sample values should be chosen according
to [1/2,3/2,...,N —1/2].
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Fig. 5.6 (a) Five homogeneous distributions with, from left to right, local scaling expo-
nents a = 0.3,0,—0.3, —1,—1.3. (b) The wavelet transform of the five distri-
butions with the extracted WTNMLs on top. (c¢) The natural logarithm of the
amplitudes along five WIMMLs plotted as a function of the natural logarithm of
the scale parameter. The estimated local IlGlder exponents are very close to the
actual exponents.

Gaussian function. The amplitudes along five WTMMILs are shown iu the bottom row
of Figure 5.6. The estimated Holder exponents are very close to the expected val-
ues. Looking at the number of WTMMLs emerging at the singularities with Holder
CXPOLENTS —1 & G < U, 1L cal be couciuded vlial [or s type of singularicy vie
analysis could have been done, more efficiently, with the Gaussian function itself as
well. Hereinafter, when seismic reflection data is analyzed this property will be used
(see also section 5.1).

Limitation —Life seems to be beautiful, with the above described theory in onc
hand and the correct numerical implementation in the other hand, but the method
has one clear limitation: it is not able to distinguish between singularities of a
different signature but with the same Hélder exponent. Figure 5.7 shows the modulus
maxima analysis for four homogeneous distributions:

\10.3([) \:Oi(l) _ \I(J.ii([) _ \:U.li(t)-

The distributions are shown in Figure 5.7a: their wavelet transforms and the ex-
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Fig. 5.7 (a) Four homogenecous distributions all with the same Hélder exponent of o =
—0.3, but with clearly distinctive signature. (b) The wavelel transform of the four
distributions with the extracted WTNNILs on lop. (¢) The natural logarithm of
the amplitudes along four wNNLs plotted as a function of the natural logarithm
of the scale parameler. The four singularities cannot be discriminated on lhe
basis of their Hélder exponents.

tracted WTMNMILs are shown in Figure 5.7b. On the basis of the estimated IIélder
exponents the four distributions can not be discriminated (bottom row of Figure 5.7).
If the distributions in Figure 5.7a are interpreted as the acoustic propagation ve-
locity or the acoustic impedance as a function of depth, a geologist would associate
them with notably different geological settings (Verhelst, 1997).

Is there more information in the wavelet transform of a homogencous distribu-
tion or, more generally, in a signal that has interacted with a homogeneous distri-
bution (such as a wave), which can be used advantageously to analyze singularities
more deterministically? In the wavelet transform of the homogencous distribution
in equation (5.20), I have used up to now only the factor o and I have not looked
at the actual structure of U(u). In the next section, the structure of U(w) will be
analyzed, and it will be found that the clue is the instantaneous phase.
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Fig. 5.8 The basic phase idea. (a) A column of three numerical representations of three
homogeneous distributions of the type x5 (t). The top one has o = —1.33; the
middle is a §-distribution, hence here is a = —1; the bottom one has a scaling
cxponent o = —0.33. (b) The three homogeneous distributions in the first column
are convolved with a Ricker wavelet. (¢) The result of the convolution. It shows
that a §-distribution does not affect the shape of the Ricker wavelet, whereas the

R A
OLILCT Lo o,

5.3 Phase and homogeneous distributions
In 1992, Mallat and Hwang wrote:

"It 1s thus necessary to combine the modulus and the phase information
to characterize the different singularities, but no effective method has
been derived yet.”

Not aware of this statement and a little bit tired of looking at the rather popular
amplitudes alone, Hoekstra (Hoekstra and Dessing, 1998) decided to look how sin-
gularitics induce phase changes. Rather simple relations came out. It was later dis-
covered that similar results were obtained by Holschneider (1995) as well, although
Holschneider did not utilize the results.

The idea of the singularity-induced phase changes is illustrated in Figure 5.8.
It shows three homogenecous distributions: one with a scaling exponent of —1.33,
a d-distribution, and one with a scaling exponent of —0.33. The convolution of
the distributions with a Ricker wavelet (Figure 5.8b), i.e. the second derivative of
a Gaussian. vields the signals in Figure 5.8c. As expected, the d-distribution does
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not affect the shape of the Ricker wavelet. The other two distributions do change
the shape of the Ricker wavelet. Two effects can be distinguished: (1) a fractional
differentiation (for &« = —1.33), or a fractional integration {for & = —0.33); (2) a
phase change. It will be shown in the sequel that these cffects are closely linked.
The simple example of Figure 5.8 suggests that singularities of the type =x§ ({) are
uniquely characterized by looking at:

e the amplitude behavior across different scales for determining the singularity
strength, in terms of the local Holder exponent a;

e the induced phase change to determine the signature of the singularity.

In order to make the latter statement more precise, I will present in section 5.3.1
the analytic wavelet transform of a homogencous distribution with respect to a
progressive wavelet'?, in full detail. In scction 5.3.2, a method to detect the phase
will be preseuted. It is based on the analytic signal (Gabor, 1946). In that section, I
will also show that singularities of different strength and signature can be uniquely
placed in a so-called (¢ — «)-diamond.

5.3.1 Wavelet transform of homogeneous distributions

In section 5.2.4 the wavelet transform of homogeneous distributions has been dis-
cussed for the first time in this chapter. I ended the analysis of the wavelet transform
of homogeneous distributions for an arbitrary wavelet v in S4(R) or Sp(R) with
(cf. equation 5.20)

WG, v o, b) =" Ur(b/o). (5.32)

The factor Uy(u) can be most casily resolved, if a progressive wavelet, ¥,(¢), is
used in the wavelet transform. T comsider U/, (u) given by cquation (5.21) first.
Substitution of the inverse Fourier transform of 1,(w) for ¢,(¢), and using the fact
that i (w) = 0 for w < 0, yield

o
L 1 > : ’
Up(u) = ——— t° Oy (w) eI dw| dt 5.
() a1 2 / {/0 Uy (w) e C ¢ (5.33)
0

11 ™ . *
= v (w) eIv t e dt| dw, 5.34
I‘(a+1)27r/0 Yy (w)e {/0 e C } dw, (5.34)

where the order of integration has been changed on account of Fubini’s theorem
(Daubechies, 1992). The integral f“% t@ e7Jwt dt should be read as (Holschneider,
1995)

1 OC
1;11&/ e MTIWt gt (5.35)
0

9Pprogressive and regressive wavelets are discussed on page 156.
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for convergence reasons. Using the fact that (Abramowitz and Stegun, 1970)
oC
MNa+1)= / tr et dt
0
OO
— ,ya—f-l/ t(:ve—'yl, dt

0

one can find, with v = e/ w, that

1 (™ e islatl) .
Uy (u) / ——— Up(w) e/ dw. (5.36)
0

= % w(y+l

Along similar lines one can find for U_(u)

1 00 otj 3 (atl) )
— iR Jwu ' =
U_(u) = 5 /0 T Yy (w) e dw. (5.37)
Putting equations (5.32), (5.36), and (5.37) together, the wavelet transform of x4 (t)
with respect to a progressive wavelet?? can be written as

W{x%,vp}o,b) = 0°Us(b/0)
(5.38)

1 o0 e;j%(u—}—l) . o
, ; W ,
Uslu) = 27 /o watl Uy (w) e duw.

The important clements in the wavelet transform, depending on the signature and
strength of the singularity, are:

o Amplitude: o
This [actor has been discussed in the previous section: it is directly related to
the singularity strength and it expresses the decay behavior as a function of
P PN

Y YT R TS VCRRT S VA

. . . . . +iFta+)
e Fractional integration or differentiation: A = —(\Tﬂ—

1. The complex factor A in the Fourier integral results in a fractional inte-
gration for a > —1, and in a fractional differentiation for o« < —1. For
a = —1, x4 (t) reduces to the d-distribution, and, consequently, the shape
of the analyzing wavelet is not affected.

2. The homogeneous distributions y4 () induce, in addition, a phase change.
Observe that this phase change cannot be scen apart from the fractional
integration or differentiation. Along a WTMML the phase change is con-
stant. This can be easily seen since b/o is constant along a WTMMIL.

20Note that equivalent derivations can be carried out for non-progressive. but real wavelets. In
that case it is used that v(t) = LR [[J° v(w)exp(jwt) dw]. and that \{ is real.

o
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+X4 +x2 —x§ —xZ

o) S(—a — 1) sla+1) F(—a+1) Sla=1)

(S

S~ tqit 1)+8 Sla+qg—1)+0 Fl—at+qg—1)+ 8 Z(a+qg+1)4+6

AY

Table 5.1 Relation between the signature of the singularity and the induced phase change.
The top row gives the type of singularitics. The middle row gives the induced
phase changes for the different singularity lypes as a function of the scaling
exponent . The botlaom row is discussed in section 5.4. It gives the induced
phase changes of the singularity convolved with a seismic wavelet with g van-
ishing moments (defined according to equation 5.53) and an additional phase
change 6.

Therefore the induced phase change can be derived from the numerator
of A to be

,;:%(awy (5.39)

In Table 5.1, the induced phase changes for singularities with the same
&, but with different signatures are concisely put together.

Figure 5.9 summarizes tlie described relation between the phase change and the
Holder exponent on the one hand, and the signature and strength of the singularity
on the other hand, in a (p — a)-diamond. In analyzing the reflectivity of waves at
singularities the (¢ — a)-diamond will be utilized to uniquely determine the strength
and signature of a singularity at which a wave is reflected.

In section 5.2.4, the most general homogeneous distribution of degree o has

been introduced (cf. equation 5.30)

X?llﬁ[)(f) = (’+\(}Y (f) + ('—\(—‘(t)'

Using the scaling relation for the cusp of equation (5.31). and the results of equa-
& I { 1

tion (5.38), oue can casily find that the wavelet transform of \{, () with respect

to a progressive wavelet is

w{ X usp CpHo,b) = 0 Ucusp(b/o)

Ucusp(u) = ((?+ + e e"”(“H)) Uy (u).
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Fig. 5.9 Relation between the induced phase change on the one hand, and the singularity
strength and signalure for a one-sided homogeneous distributions on the other
hand. The vertical azis denotes the induced phase and the horizontal aris the
scaling exponent of the homogencous distribulion. i.e. the singularity strength.
For cach scaling exponent four signatures are considered. in line with the four
profiles for one cxponent depicted in Figure 5.7. Note that the phase isin degrees.
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Following the interpretation of the factors of the wavelet transform of the one-sided
homogeneous distributions, onc can easily identify:

o Amplitude: o¢
See the discussion for the one-sided homogencous distributions on page 164.

. . . . Lo —JiZ(ai ) .
e Fractional integration or differentiation: A = (iw—ﬂr) (e + c_edmat)

1. The first factor of A between brackets carries out the fractional inte-
gration or differentiation according to the discussion for the one-sided
homogeneous distributions on page 164.

2. On top of the phase change induced by the munerator of the first factor
of A, the second factor influences the signature of the wavelet that has
interacted with the cusp. For the actual induced phase change ¢, the
following two cases are discriminated only:

() co =0 or ey = 00 X8, () reduces to cpx§(t) or c-x(t) respec-
tively, and the apparatus developed on page 164 can be utilized.

(b) ¢y =c_ # 0: for this case, A reduces to

A

_ 2y cos(m(a + 1)/2)

w,(\+1

which means that the induced phase change equals ¢ = 0 or p = 7.

(¢) ey = —c— #0: for this case A reduces to
—2jey sin(m(a+ 1)/2)
A= i : (5.42)

which means that the induced phase change equals ¢ = /2.

5.3.2 Complex trace analysis

Several methods exist to extract phase information. A possible method is to carry
out a wavelet transformation with a progressive wavelet exactly according to the the-
ory deseribed in section 5.3.1. The Morlet wavelet (Morlet et al., 1982; Daubechies,
1992) is a good and easy to use candidate for such an analysis; Holschneider (1995)
discusses a number of alternative progressive wavelets. The phase (o, b) in the
whole (7, b)-plane of the wavelet transform of a function f is given by

(\\S[w{fn L‘f'p}(a- b)J )
RV f, v o, b)] )

The phase change induced by a singularity should be extracted along the WTMMLS.

(o, b) = arctan ( (5.13)

For a single homogeneous distribution the induced phase change along a WIMML is
independent of the scale (Grossmann ot al., 1987; Holschneider, 1995). Although
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f(t) = R[F ()]

9(t) = S[F(1))]

Fig. 5.10 Original function f(t) and the function in quadrature g(1). Together they form
a complex trace F (1), which can be characlerized by an instantaneous amplitude
and an instantaneous phase.

the results obtained according to this method are fully consistent with the theory, I
prefer to use a different method based upon the analytic signal, primarily because
the signal to which the metlhiod will finally be applied has alrcady interacted with the
singularity. The method to be proposed hereinafter turns out to be slightly simpler
to use in that situation. It requires less user dependent options.

Gabor (1946), him again, introduced the concept analytic signal for the analysis
of time-dependent signals. The relevance of the analytic signal as the basis for
complex trace analysis and attribute extraction has long been recogunized in the
seismic comnunity (see for example, Neidell and Taner, 1971; Taner et al., 1979;
Robertson and Nogami, 1984; Berkhout, 1984).

] 3o 3 Al N AR s 3] oo ey Tsarioddio )
Following Engelhard (1996) and Gabor (1946), consider a non-periodic, real

time signal f(¢). It can be expressed in the form
f(t) = a(t) cos p(t). (5.44)

where a(t) is the instantaneous amplitude or envelope, and where o(t) is the in-
stantaneous phase. A representation like that is far from being unique. One can
associate an infinity of pairs (a(t), ¢(t)) to a given real signal f(#), such that (5.44)
holds (Picinbono and Martin, 1983; Delprat ct al., 1992). Among the possible pairs,
the couple (a(t), »(t)) for which

F(t) = a(t) e = £(1) + jg(t). (5.45)

with ¢(t) the Hilbert transform of f(¢) is a canonical choice. F(#) is called the
analytic signal. The real part of F(¢) is the original time signal. and the imaginary
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part is called the signal in quadrature, i.e.
g(t) = a(t) sinp(t). (5.16)

The fuuction g(¢) is 90 degrees phase shifted with respect to f(t); it is orthogonal
to f(t). Figure 5.10 illustrates the idea of a complex trace. The complex trace
F(t) forms a rotating vector. With the help of the rotating complex vector, one can
uniquely assign an amplitude and a phase to f(¢) for all values of 7. The instan-
taneous angular {requency of f(t) is defined by the derivative of the instantaneous
phase, 1.c.

Iy de(t)

Q(t
(*) dt

(5.47)

Though the signal in quadrature can be computed with the help of the Hilbert
transforn, a more practical road uses the Fourier transform. The analytic signal is
related to the Fourier spectrun of the signal as follows:

F(t) = }T Slw) et dw. (5.48)

0

Given the analytic signal. it Is easy to derive the envelope a(t) and the instantaneous
phase (1), according to

A(t) = f2(t) + g%(t) = F()F(!) (5.49)

tan (i) = 9(t) _ [F(t) — I (t)]

LIF() = I (1))
) JE@G+F)]

The phase of an event —The described algorithm provides the instantancous
phase, ¢({). and the envelope, a(t). Actually, one wants to assign to a single event,
for example a reflection from a single boundary, a unique phase. The unique phase
is extracted, via an interpolating algorithm, at the point where the envelope reaches
its maximum. The phase at this point exactly corresponds with the phase one would
intuitively assign to an event. It corresponds to the phase that will be determined
at a WTMM point according to the theory of section 5.3.1. Figure 5.11 illustrates
how a unique pliase is assigned to an cvent.

5.4 Influence of seismic wavelet

Before I turn to the analysis of the reflectivity of waves at isolated singularities one
issue has to be addressed. A seisinic measurement consists of the impulse response of
the earth convolved with a band-limited seismic wavelet. How does a seismic wavelet
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Fig. 5.11 To a single seismic event, one can uniquely assign a phase by extracting the
phase at the point where the envelope reaches its maximum. The top picture
shows the original function f(t) and the function in quadrature (its Hilbert
transform), g(t). The middle picture shows the instantaneous amplitude or
envelope, a(t). The bottom picture shows the instantaneous phase, w(t); the
phase at the mazimum of the envelope is assigned as the phase of the event.

influence the detection of a singularity? Seemingly a strange question, because the
seismic wavelet is actually the measuring object. However, since different seismic
wavelets yield different reflection responses for the same subsurface structure, it is
important to exactly characterize the influence of the seismic wavelet. For that

reason the ceale and nhage hehavinr af an denlatad cinomlarits (f,g an ovamnle of
the impulse response of the earth) is compared with the scale and phase behavior
of the isolated singularity convolved with a seismic wavelet. MNore mathematically, 1
want to compare W{x%, 1, }(o,b), for which an cxplicit expression has been derived

=

in equation (5.38), and W{=%, v, } (7, b), where

ZU() = (X * o) (1) (5.51)

is the convolution of the homogeneous distribution \§(¢) with a seismic wavclet
vg(t). Equation (5.51) can also be written as the real part of the convolution of
the homogeneous distribution with the analytic signal, z4(t). of the seismic wavelet
wal(t). Le.

SN = RN *20)(1)] - (5.52)
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In the sequel of this section a realistic seismic wavelet is constructed first. Then
W{=Y, ¥, (o, b) is computed and compared with W{x%,v,}(0,0). 1 finalize this
section with an exaniple.

For the scismic wavelet ¥y(t) a broad class of functions is allowed. They are
constructed in the following way:

Procedure 5.2: Construction of realistic seismic wavelet g (t)

1. Define a basis scismic wavelet i,(t) as the qth derivative of a smoothing func-
tion of compact support, according to

Uu(t) = ~ 07 a(1), (5.53)

where the minus-sign is for later convenience. Hence, the basis seismic wavelet
; S 9
¥4 () has q vanishing moments?!.

2. Derive the analvtic signal z,(t) of v(t) according to equation (5.48), yielding
2a(t) = a(t) W,
3. An additional phasc term 6 is allowed to be present in the actual seismic

wavelet. The additional phase change is easily accounted for by multiplyiug
zs(t) by ¢ ie

20(t) = 25 (1) ",

The actual seismic wavelet, 12¢(l), is now given by the real part of the analytic
signal, zg(t).

4. Optionally, one can allow for an additional dilation to allow for propagation
losses or to bring the wavelet in the appropriate frequency range. This opera-
tion cau be easily carried out with the dilation operator &, (see section 2.2).

The Fourier transform of zg(t) is given by

—2(jw)io(w) e’ w >0

Zp(w) = (5.54)
) 0 w < 0.
Now, using equations (5.38), with o = 1, one can see that
ST =R (N * 20)(t)]
1 O e—j%((v-{—l) joot
— . iy = RR
=R li%A —WZ()(»U) C dwl . (0.0\J)

21The parameter g in the definition of the basic seismic wavelet rules its decay behavior towards
w = 0. The decay properties for w — oo are not specified and should be adjusted to the source
signature and the presence of non-clastic losses.
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Substitution of (5.54), and the fact that j = e/™/2 yield

1 /% e—if(atl) , o
i) =3 [—- / A (—2) eI 29 p(w) e7f ! dw}
0

2 w(v—}»] ’
" (5.56)
1 o —j%(u—q+1) .
- [Z/ eTa-qTeJ‘%—%(w))e“’} (5.57)
= R[(NGT 7w 2)(1)] (5.58)

where T have introduced z,(t) as the analytic signal of —2¢(t). The last expression
shows that Z9(t) can also be interpreted as the convolution of a homogencous dis-
tribution x§ ?(t) and —¢(t), with an additional phase change 6. For —x$({), and
for £y (¢t) similar expressions can be found. Hence, using equations (5.38) again,
it is found that

WIEL. 0} (0.h) = 0104 (b/o)

, X WTis(aTq—1) _
Ut(u) = ! /U —W(Q@(w))u’;p(u) e’ dw.
The influence of the seismic wavelet ¥p(t) can be seen by comparing this result with
the results for the homogeneous distributions without a prior convolution with a
seisiic wavelet. as derived in equation (5.38) on page 164. The different elements
can be interpreted exactly according to the interpretation given after equation (5.38).
[t is clear that the seismic wavelet has severe impact on the multiscale amplitude
behavior, which changes from ¢® to ®~9. The bottom row of Table 5.1 summarizes
the phase changes induced by the combination of a homogeneous distribution y§,
and the seismic wavelet, characterized by ¢, 8 and ¢(t), derived from equation (5.59).

In Figure 5.12 the effect of a seismic wavelat is illnstratod for the hrannconosmie
distribution y I” ()%, Two different seismic wavelets vy (t) have been used. The
first is given by v (1) = —9;¢(t), and the second by v2(t) = —82¢(t). The smoothing
function ¢(t) is a Gaussian function. Hence, ¥»(t) is a Ricker wavelet, which is
from a physical point of view a well-chosen representation for a scismic wavelet??.
Note that the additional phase change is zero, i.e. # = 0. Figures 5.12a-¢ show
\;0'7(1‘), the convolution of x;(”(t) with the first derivative of the Ganssian, and
the convolution of x;O‘T(z‘) with the Ricker wavelet, respectively. In Figure 5.12d
the modulus maxima analysis has been carried out with a Gaussian on the functions
of 5.12a, 5.12b and 5.12c , and in Figure 5.12¢ with the first derivative of a Gaussian

22Hence. the homogeneous distribution \:)‘7(0 is assumed to be a (band-limited) impulse re-
sponse of the carth.

23The second derivative has a decay behavior of 12dB/octave towards w = 0, which corresponds
to two vanishing moments.
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Fig. 5.12 Influence of a seismic wavelet on the estimaled strength of a singularily. (a)
The homogeneous distribution \10'7(t). (b) The homogeneous distribution of
(a) convolved with ¥1(t). (c) The homogencous distribution of (a) convolved
with ¥ (t). (d) Amplitude along WTNML of (a)-(¢). The ‘wavelel lransform’
has been carried out with a Gaussian. which is allowed because we are dealing
with negative singularitics only. (e) Amplitude along wTMML of (a)-(c). The
wavelet transform has been carried out with the first derivative of a Gaussian.
The slopes of the lines is clearly in agreement with the theory, as is the phase.
The extracted phases are shown in the lower lefl corners of (b) and (c). They
are in agreemend with the theory.

. . 9
on the same three functions?*.

Both analyses yield the results predicted by the
theory, both with respect to the decay behavior as a function of o and with respect
to the induced phase change. Due to the fact that a Gaussian gives rise to less
WTMMLs it is preferred to use the Gaussian instead of any of its derivatives in a
WTINM analysis of seismic data. Finally note that the (—a)-diamond for (£ *i7%),
with 1% a Ricker wavelet, has exactly the same structure as the (¢ — a)-diamond for
4x§ as shown in Figure 5.9.

Remark 5.2 It is conjectured that the wavelet yy(t) that results from carrving
out procedure 5.2 is the ideal decomposing block for analvzing a seismic reflection
response.

21The double analysis is carried out to show that the analyzing wavelet does not influence the
analysis results.
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5.5 Normal-incidence reflectivity at isolated singu-
larities

Suppose that locally a vertical acoustic velocity profile can be written as an infinite
asymptotic series of homogeneous distributions on top of a smooth (polynomial)
background

o0
claz) = co+ 3 [eamX§ (23— 230) + 00 X2 (23 — 30)] +
n=1
oC

771(51'3 - 173‘0)71, (560)
1

n=

with a,, # 0,1,2,..., and &; > o;_1, and 7, arbitrary constants?®. The simplest
local expansion takes the following form

c(xy) = co + ey XG (w3 — 23,0) + e xE (23 — 23,0),5 (5.61)
in which case the principal part of (5.60) is considered only, hence ¢y = ey,
¢ = c_1,and « = ;. Equation (5.61) describes a vertical velocity profile with a

constant background velocily ¢o; a distortion in the form of a homogencous distri-
bution is superposed on the background velocity, yicelding a singularity at x3 = x3,0.
The strength of the singularity o is not disturbed by adding a background velocity,
although a strict scaling behavior of the form ¢(Ax3) = A%¢(x3) is not present any-
more; the scaling behavior is present for (¢(x3)—c¢p). The signature of the singularity
is set by the values ¢, and c_. Here, I only consider —1 < o < 1, and the following
cases for ¢4 and c_:

e ¢, =0or c_ =0, giving rise to a one-sided singularity,
e ¢, =c_ > 0, giving rise to a cusp, and
e ¢, = c_ <0, giving rise to an ‘inverse’ cusp.

I am interested in the signature and the amplitude of a wave reflected at singularities
of the form given by equation (5.61), both for normal and oblique incidence. Espe-
cially, the relation with and the deviation from the reflectivity of waves impinging on
traditionally considered step functions (for which & = 0, ¢4 # ¢_) will be studied.

250ne can object to a model consisting of a smooth background and a distortion for two major
reasons. A first objection is the fact that such a model does not accord with the fact that the
velocity as a function of depth in the earth’s subsurface is multifractal (Herrmann, 1997), which
implies that it is changing at all scales. Another objection is the fact that for negative c4 the
velocity profile can become negative, which is regarded to be unphysical. One has to take special
care to prevent negative velocities.
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The road I have followed to derive the forthcoming results can be called heuris-
tic. It is not based on a solid derivation from first principles. It is merely based
on advanced back-of-the-envelope calculations supported with appropriately chosen
numerical experiments. The results are consistent with the wave equation based
derivation of Wapenaar (1997a), which is a derivation for the limit ¢y — 0.

The reader Lias to remember that the velocity profile of (5.61) is a mathematical
construct, which gets a meaning only in the sense of distributions. It should be tested
against a properly chosen sct of test functions (Schwartz, 1951, 1952; Zemanian,
1965). The natural test function is the wave which interacts at a certain scale
depending on the local velocity, with the singular structure. But, since the local
velocity depends again on the spatial scale of the wave, the wave is seemingly trapped
in a vicious circle of scale and velocity. Since I wish to carry out some analytic
computations, which require a tested distribution, I enforce a certain spatial scale
o1, according to (cf. equation 2.84)

) 1 o s — - .
ooy, xg) = - e(ay) @ Y dazi, (5.62)

or, using equation (5.61),
6(0'1,1‘3) =y + Cy X‘_:_(O’l.,.’l‘;} — 1‘35(7)) + (f_)((_y (0’1, T3 — ;I?;;‘()). (563)

For the expansions in the next subsection it turns out to be couvenient to define a

(scale-dependent) peak distortion velocity ¢,q by?

max [clor,23) — ¢ if ¢ >0
Cpd = _ el ) ol B = (5.64)
min [e(o1, 23) — ¢o] if ey <0.

Figure 5.13 shows how the peak distortion velocity can be interpreted. For homoge-
neous distributions with negative exponents, the peak distortion velocity is reached
close to the singular poiut x3 = x5, (Figure 5.13a and 5.13b). For homogeneous
distributions with pesitive exponents, the peak distortion velocity is rcached at the
boundaries of the depth range (Figure 5.13¢ and 5.13d).

A few remarks apply to the definition of a peak distortion:

1. The actual peak distortion is determined by both the value of ¢4 and the value
of o,. Henee, a small peak distortion does not necessarily mean a coarse scale
paranieter o, it can also mean that ¢y is relatively small.

2. For scales larger than the scale ¢, at which the velocity profile is considered,
the scaling behavior is not affected. Tor smaller scales the regularity of the
scaling function will be observed.

267he definition of a peak distortion is more difficult in the case ¢4 and ¢ have opposite signs.
Such a situation is not considered here (see the items on the facing page).
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Fig. 5.13 Interpretation of the peak distortion velocity of homogeneous distributions with
negative and positive exponents. (a-b) For negative exponents the peak dis-
tortion s reached close to the singular poinl. The exact location depends on
the scaling function ¢ and the scale o. (c-d) For positive exponents the peak
distortion is reached at the boundaries of the depth range.

3. The introduction of a peak distortion at a snecific scale mv does nat. mean
that the wave is interacting with the hiumogeneous distribution at that specific
scale. The reasoning should be turned around: if the wave is living at that
specific scale thau it will see a velocity profile corresponding to that scale. The

wave Is i the driving seat!

4. The approach which Verhelst and van Wijngaarden (1997) follow, might be
uscful to refine the peak distortion value. They iteratively go through the
mutually related pair of scale and velocity to find a representation of well-log
measurenients at a seismic scale range.
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5.5.1 Analytic considerations
The reflectivity for a normal-incident acoustic wave is given by (Brekhovskikh and
Godin, 1990)

dlog pc .
Rp=0,z3) = —25% (5.

where p denotes the ray parameter; for normal incidence, p = 0. Throughout this

5

section normal-incident waves are considered. Hence, in the sequel the dependence
on the ray parameter will be omitted, for notational convenience. The density p is
assumed to be constant and the vertical acoustic velocity profile is given by e(oy,x3)
of equation (5.63). Under these conditions, the reflectivity takes the following form:

i\ o — as0) — o XY (o, — ws0)

2 (co+ e Y012 — r3.0) + oo X (o, 03 — 230)) (5.66)

R(.I';;) -

For the further analysis it is assmued that ¢y = 0 or ¢ = 0. At the end of the
analysis the effects for the two-sided homogeneous distributions will be pointed out.
Equation (5.66) reduces to

o—1

:tC_L X:t (r’

TR 67
(x3) 2 (co+ cx x2) -

where the dependency of v& on (07,23 — x30) has been omitted, for notational
convenience.  The introduction of the peak distortion, ¢,, naturally allows for a
distinction between ¢),q < ¢y and ¢pq > ¢o. Furthermore, a distinction has to be
made between positive (cx > 0) and negative (¢4 < 0) distortions. Let me first
consider two cases with positive distortions.

CASE 1 : Positive distortion: peak distortion smaller than background velocity
Mathematically the following situation is considered:

cx >0, and ¢pq < ¢, (5.68)

Because ¢g is now always larger than the distortion ¢4 x$ (o1, 23 — 23.0),
the reflectivity 2(x3) can be written in a series expansion according to

+ep 07! ey !
fing = 57 (1 1)

2¢y Co

N x~—1 . 2 2
ISR U SR ¢ I

2(‘(; o (‘(2)

(5.69)

I the limit that ¢y > c¢,q the local scaling behavior of the reflectivity at
ry = X3 is dominated by the first term, i.c.

Ct Xi_ !

R(.T‘;g) ~ + 2(3()

(5.70)
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Fig. 5.14 Influence of the background welocity co on the singularity strength in the re-
flectivity for normal-incident waves for the siluation that ¢+ > 0. (a) The
singularity strength of R(x3) at x3 = x3,0 (in the figure denoted by ap) as a
function of the scaling exponent « in the velocity profile (in the figure denoted
by avc) and the background velocity co . Note Lthat in the limiting case that the
background velocity goes to zero the scaling in the reflectivity is independent of
the singularity strength of the velocity profile. (b-c¢) Representative examples
of the considered distributions for different background velocities, for a = —-0.4
(b) and for a =04 (c).
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Caske 11 :

Hence, the reflectivity has a local scaling behavior o — 1 at x3 = x30.
Following the derivations in section 5.3.1, it can be concluded that the
singularity will also induce a phase change. The phase change is given
by Table 5.1.

Positive distortion; peak distortion larger than background velocity
Mathematically, the following situation is considered

c+ >0, and, ¢pq > cp.

Because the background velocity g is now smaller than the distortion
ca Yo, x5 — w50) around 1y = @y, the reflectivity can be written in
a series expansion according to

+¢ a—1 . -1
R(xs) = e (1 L )

204 X$ ¢+ X$
1 .
ot (0 G
2c4 x4 caxd ey '

(5.71)

which is valid for x3 in the neighborhood of x5, and for x5 > x5, if a
right-sided distribution (plus-sign) is considered, and for x3 < a3 if a
left-sided distribution (minus-sign) is considered. In the limit c,q > ¢o,
for example in the case ¢p | 0, the reflectivity takes the following form

+er XY o, 23 — 7a0)
2c4 x§ (01,03 — T30)

R(x3) ~ , (5.72)
where the dependency of x§ on (o), 3—x3,0) has been included again, for
completeness. It is expected that the scaling behavior of the reflectivity
will he —1 at 23 = 23,9, independent of the local scaling behavior of the
velocity distribution. This remarkable behavior for cpq 3 ¢y has earlier
been observed by Wapenaar (1997a).

In Figure 5.14, the derivations are numerically validated with the help of the wran
analysis of section 5.2.2. The scaling exponent of the velocity profile is —0.5 <

a < 0.5, the peak distortion ¢,y = 1'km/s, and the background velocity is 0 <
co < 3km/s. The sampling distance is taken Axy = 1m. Figure 5.14a shows
the computed local scaling exponent of R(wy) at xy = wyg. denoted by ap, as a

function of the local scaling exponent « of the velocity profile, denoted by a.., and
as a function of the background velocity. The limits of equation (5.70) of CASE I and
equation (5.72) of CASE II are found for ¢g = 3km/s, and ¢y J 0km/s, respectively.

Figures 5.14b and 5.14¢ show examples of the considered velocity profiles for o =
—0.4 and a = 0.4, respectively.
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Fig. 5.15 Influence of the background velocity co on the singularity strength in the re-
fectivity for normal-incident waves for the situation that c+ < 0. (a) The
singularity strength of R(x3) at x3 = w30 (in the figurc denoted by ar) as a
Junction of the scaling exponent o in the velocity profile (in the figure denoted
by o) and the background velocity co. (b-c) Representative cxamples of the
considered distributions for different background velocilies, for a = —0.4 and
for o =0.4. Note that ¢y is always larger than —cpq.
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For negative distortions (cx < 0), one is always bound to a background velocity
larger than the absolute value of the peak distortion. Negative velocities are generally
not considered physical. For negative distortions the following situation applies:

CAsE III : Negative distortions
Consider

c+ <0, and ¢g > —cpa-

Now, the series expansion described in CASE I, equation (5.69), applies,

i.c.
j:(’ /,(\71 cp K (,2 2
Rlry) = =22 (1\ S el —) :
2¢0 o H

HCIIC(?, one expects in the limit of ¢ 2 —Cpd, A local scaling behavior
I 9] 1 =
a—1 at €T3 = T3.0-

Figure 5.15 shows the results of a munerical validation of the derivation for negative
distortions. Ilere, the peak distortion ¢,; = —1kmn/s; the scaling exponent in the
velocity distribution varies according to —0.5 < o < 0.5, and the background velocity
varies according to —ep,g < ¢g < —cpq + 3km/s. The derived behavior is confirmed,
i.c. a scaling behavior of a — I is derived. Hence, the scaling exponent of the medium
is inherited by the reflected normal-incident wave. The behavior for o < 0 and
co > —cpq is not completely understood yet. It is however a situation where the
required conditions do not apply. Moreover, hiere the velocity goes to zero. 1 will
not bother about this part. The limits of CASE I, CAsE II, and CaSE III are put
together in Table 5.2.

Remark 5.3: Reflection at a cusp I

For the cusp with ¢, = c_, the situation is slightly different. In the case that the
conditions of the limit of CAseE 1 or CASE III apply, it can be derived from cqua-
tion (5.66) that

e (NG
2¢y

R("usp<<ri§> — (574)
where I have introduced the reflectivity Regp(as) as the reflectivity of a cusp. Now
the results of equation (5.40) can be utilized. According to that result the reflectivity
of a cusp can be expected to depend on the scale parameter as 0@~ !
a phase change of either /2 or —7 /2.

In the case that the limiting conditions of CASE 11 apply, 1 obtain

, and to induce

\u—l o \n -1
R('uh’)(IR) = ‘—+*——’; (575)
’ 2(\G +x2)
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Conditions R(x3)
Cixu—l
Case I ¢+ >0 o> cpg 7%—
. cy X“_l
Case 11 e+ >0 ¢ K Cpd iﬁ-
XL
exx1!
Case 111 | cx <0 ¢p>» —cpy 20

Table 5.2 The limiting situations of Case 1, CAsE 11, and CASE III as discussed in
section 5.5.1.

L as a function of the scale

which can be expected to have a decay bchavior of ¢~
parameter o, and to carry out an additional phase change of +n/2. Numecrical
experiments carried out for the cusps, with the same parameters as those yielding

Figure 5.14 and 5.15 for the one-sided singularities, confirm the above derivations.

5.5.2 Numerical considerations: ¢ —« diamonds of the reflec-
tivity

The conclusions of the previous section require a further numerical validation. The
validation ig neceseary in arder ta wno whothoar the T‘Q‘(_‘;\'l\nu comcidorad v Clace T
CASE 11, and CASE 111 make scnse. These regions can be discriminated because
of the enforcement of a spatial scale via equation (5.63). The enforced scale is not
necessarily the scale at which the wave is considering the singular structures. For the
numerical validation the (¢ — «)-diamond introduced in section 5.3 will be utilized,
and a layercode modeling scheme.

The (i — «)-diamond has revealed a unique relationship between the signature
and strength of a one-sided singularity on the one hand, and the phase change
the singularity induces on an analyzing wavelet on the other hand. The diamond,
which is derived from a convolution of a wavelet with singularities, can not be
transferred directly to the interaction of a seismic wavelet with the same singularities.
For that rcason the derivations in the previous subsection have been carried out.
The derivations show that if CASE 1 applies. the reflectivity behaves as if it is a
homogeneous distributions of degree a — 1 with an additional amplitude factor in
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i,

| M¢=-180 [

Fig. 5.16 Dxpected relation between the velocity c(ws), and the induced phase change by
the corresponding reflectivity. The velocity is given by c(as) = c¢o + cxx& with
the scaling exponent a in the range —1 < o < L. ¢o > ¢pa for c+ > 0, and
co > —cCpa for ey < 0.




184 Boundary description by singularity characterization

front. For the velocity profiles, homogencous distributions of degree —1 < o < 1
have been examined, hence the reflectivity acts as a homogeneous distribution with
-2 < a—1 < 0. Consequently, the phase change induced in this situation should be
such that the lines of the (p— «)-diamond of Figure 5.9 are closely followed. In order
to make the relation with the underlying velocity profile manifest, an alternative
(p — «)-diamond is shown in Figure 5.16. It shows the expected relation betwecen
the singularity strength and signature in the velocity profile on the one hand, and
the induced phase changes in the reflected data on the other hand?7.

In a layercode modeling scheme the earth is represented by a set of discrete
layers, each with a constant density, a constant compressional-wave velocity, and,
if applicable, a constant shear-wave velocity. A representation of the homogeneous
distributions by a set of discrete layers is intuitively difficult. However, the consis-
tency of the results obtained with the discrete representations in the convolution
approach in section 5.2 and 5.3, and the fact that the point to point decay behavior
is the actual ruling factor, gives sufficient trust in the numerical approach (see also
the discussion in section 5.2.5).

The following procedure is carried out in the numerical experiments.

Procedure 5.3: Validation of (¢ — a)-diamonds

1. A velocity profile
c(ag) = co + e\ (g — ra0)

is constructed according to the implementation discussed on page 159. The
subsequent layers are 1m thick?®. The background velocity is chosen such
that

I r. -~ N
Gy T e naaas s Frva [ Y

co=2km/s—cpg for ¢y <0

The degree of the homogeneous distribution varies according to —1 < a < 1,
which means that the most singular velocity profile is the representation of a
0-distribution, and that the least singular velocity profile is piecewise linear.
The factor cy varies such that the peak distortion is in the following range:

0.1km/s <c¢pg <10km/s for cx >0
—0.1km/s > cpy> —10km/s for cx <.

2"Note that Figure 5.16 does not introduce anything new: it is just another way of presenting
the diamond-concept.
2¥Note that a specific sampling distance necessarily implies a certain minimum scale.
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Fig. 5.17 Lzample of procedure 5.3 for a single onc-sided homogencous distribution on

top of a background velocity co = 2 km/s. Step 1: The homogencous distribution
is of the form ,\1”'2(1';; — r3.0) with k.0 = 256 m. The peak distortion is given
by cpa = 0.2km/s. Step 2,3: The computed response for normal incidence
1§ convolved with a Ricker wavelet with o cenlral frequency of 40 Hz. Step 4:
Phase estimation; for a relatiwely small peak distortion the (¢, «)-point falls on

top of one of the diamond lines.

2. A lavercode modeling is carried out for normal-incident waves ouly, yielding
the reflection response r(p = 0,t)%°. The temporal sampling rate is I ms.
The reflection response is convolved with a Ricker wavelet v with a central
frequency of 40 I1z. The convolved response is represented by ry,(t) = (r+)(L).

3. The reflection response 1, (1) is led into the phase detection scheme as described
in section 5.3.2, Figure 5.11, in order to determine the phase p of the reflection
response.

1. The set of points (y, «) is plotted in a (p — a)-diamond.

The procedure is summarized for o = —0.2, ¢y — 0.2km/s (sampling 1m), c_
Okm/s in Figure 5.17. The results of procedure 5.3 are presented in Figures 5.18
and 5.19.
The results of passing through the procedure for
cpa =0.1km/s  cx >0 (¢ = 2km/s)
cpd = —0.1km/s cp <0 (cp =2.1km/s)

20 . . .
29The ray parameter p will again be omitted.
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Fig. 5.18 (p—a)-diamond for one-sided singularities. The phase is given in degrees. The
background velocity co = 2km/s. The peak distortion is 0.1 km/s. Note, that
their is a very clear relationship between the structure, the scaling cxponent in

the velocity function and the resulting phase change.

is shown in Figure 5.18. The derived values for ¢ for a given a correspond with
the limits of CASE I, CASE I, and Cask III of the previous subsection, which are
summarized in Table 5.2. On the left-hand aud right-hand side of Figure 5.18 typical
velocity profiles are given.

e . a0 L il o . v N 1 -
I ‘Z“)“lt" J. 1T DUIUWD LLIC 1EDULLD WL l}dmblllg lJllUllgll P ULUUULIL O.e) 1UL

Cpd

Cpd

1,2,5,10km/s

—1,-2, -5, —10km/s

cy >0
cy <0

The following conclusions can be drawn:

(co = 2km/s)
(co = 3.5,7,12km/s).

e Irrespective of the values of ¢y and ¢pq the step functions are located quite
accurately at (¢,a) = (£180,0) and (0,0). Hence, a step function induces
a phase change of 180 degrees for a step downwards, and does not induce a
phase change at all for a step upwards, which is not a big surprise.

e The distortions in the shape of the (p — a)-diamonds is relatively small for

lepd| < 2km/s. The deviations are in the order of 25 percent maximum.
Hence. the pcak distortion for a sampling distance of Ary = 1m, aud for the
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Fig. 5.19

(¢ — a)-diamonds for different valucs of the peak distortion velocity. The phase
is given in degrees. The background velocily is kept constant at co = 2km/s.
For larger peak distorlion values the diamonds deviate from the “ideal” di-
amond structure shown in Figure 5.18 and shown as grey lines on the back-
ground. Note. however, that for a peak distortion in the order of the background
velocily (Lop right picture) the distortions are still small.



188 Boundary description by singularity characterization

chosen frequency range is a reasonable measure for the distinetion between the
different cases.

e For

¢pd| = 5, 10km/s the points (¢, a) move away from their “idcal” positions,
especially for negative . For o < 0 and ¢ > 0, CasE II of section 5.5.1
applics. In this part the extracted phases move to phases related to a scaling
cxponent of —1. For a < 0 and ¢ < 0, the extracted phases tend to ¢ = —90
degrees, which can be associated with a scaling exponent of —2 which secins
to correspond to the limit observed in Figure 5.15.

¢ The behavior of the points (¢, ) for |c,q| = 5,10km/s and a > 0 is surpris-
ingly stable. In this part the deviations from the ideal diamond are seemingly
smaller than for « < 0.

Remark 5.4: Reflectivity at a cusp II

For the reflectivity at a cusp (see Remark 5.3 on page 181) the numerical validation
has to be carried out in a slightly different wayv due to the fact that the phase in-
formation does not give any clue. The induced phase change is either w/2 or —m /2.
I have validated the limits discussed on page 181 with a WTMN analvsis on the
lavercode-reflection response of the cusps. and concluded that the derived liniits are
confirmed.

5.5.3 Reconsideration of the peak distortion

The experiments vielding Figures 5.18 and 5.19 have been carried out for a single
central frequeney. It is not expected that the results are independent of the central
frequency. For a larger central frequency the scale of the probing wave field reduces,
due to the relation A = 27¢/w, where X is the wavelength. A smaller scale is expected
to “observe” a larger effective peak distortion. For a Ricker wavelet with a central

frequency ranging from 2 to 256 Hz thig A v

<

(3 — x3.0) 18 used with a sampling distance of

o

profile of the tvpe ¢ 4 ¢y \;0‘
Ary = 0.25m., with ¢o = 2km/s, aud with ¢, chosen such that the peak distortion,
cpa = 0.1.0.5.1.2. 5 km/s, if a sampling distance of Ary = 1m would have been
chosen. Figure 5.20 shows the results. The conjecture is confirmed. because, for
larger central frequencies. the induced phase change moves towards o = 0. A o-
distribution does not induce a phase change. Therefore, one can conclude that the
singular transition is seen more and more as if it is a d-distribution. The cffect is
more pronounced for larger peak distortions.

5.5.4 Peak distortion in well-log data?
The effective singularity of the reflectivity function depends on the relative peak
distortion and on the effective size of the probing scismic wave field.  Although
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Fig. 5.20 The phase o as a function of the central frequency of the seismic wavelet for
a velocity with a homogeneous distribution of negative degree defined according
to co + c1 "B (
vVarying.

Iy — 23.0), with ¢co = 2km/s and the peak distortion velocily

it can be argued that the data themseclves tell what the wave has seen, it is in
my opinion important to demarcate the possible (¢ — «) combinations as much as
possible to allow for a practical singularity driven inversion algorithm. Hence, il is
important to know whether a normal-incident wave is inheriting the singularity in
the medium or not. i.e. whether it is reflected in the sitnation where the conditions
of CASE I or Case IIT on the one hand apply. or those of CASE II on the other
hand apply. For this purpose. I will consider two acoustic impedances®’ taken from
real well-logs offshore Norway, one is in the Midgard field (Courtesy SAGA). and
the other is in the North Viking Graben (Courtesy Mobil). Nore specifically. the
relative distortion g of the background acoustic impedance and the distortion with
respect to the background will be analyzed, i.e.

0 = abs Z(oz.r3) = Z(3)

‘ S or i) (5.76)

where the acoustic impedance is denoted by Z(ry). and where Z(a,.03) denotes
an estintate of the background acoustic impedance. It is obtained by smoothing
the acoustic impedance to a scale oo with a Gaussian function. The results of the
procedure for the acoustic impedances of both well-logs are compactly shown in

3UIn the analysis in the first part of this scction, the density has been taken constant.
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Z(x3), the background acoustic impedance Z(og,x3), and their difference. The bottom picture shows the ratio o given by

equation (5.76), together with its histogram.
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Figure 5.21 and 5.22 for the SAGA log and the Mobil log. respectively. The general
trend in p is such that c,q < ¢o. As a conscquence, the analysis of the previous
subscctions allows to conclude that the scaling behavior of the acoustic impedance
is inherited by the seismic reflection data, even for normal-incident waves. If one
takes into account the numerical experiments of the previous subsection, then one
can conclude that a scismic wave is generally reflected in the region described by the
limits of CASE I and CASE III in Table 5.2.

5.6 Angle-dependent reflectivity at isolated singu-
larities

The role of phase in the analysis of amplitude-versus-angle behavior of seismic re-
flection data is generally limited to the simple situation that the phase is either 0 or
. which means that the reflection amplitude is either positive or negative (see, for
example, Verm and Hilterman, 1995). The neglect of the role of phase is also stated
by Castagna ct al. (1995)!, who write

the effects of phase changes are not yet readily dealt with ... ",

From the previous section, however, it can be concluded that a one-sided transition
other than a step function causes a phase change to the normal-incident wave field.
What happens for other than normal-incident waves with respect to the induced
phase change and with respect to the amplitude? The aim of this section is to shed
light on this question. Whereas for normal-incident waves analytic derivations have
been carried out, the approach for oblique-incident waves is of a more phenomeno-
logical character®?. The phenomenons subject to analysis are

e the phase change as a function of ray parameter, and
e the amplitude as a function of ray parameter.

There are two handles at my disposal to link the observed phenomenon to. The first
one is the relation between the phase change and the signature of the singularity as
revealed in the previous section. The second one is the Zoeppritz model for angle-
dependent reflection at a step function. In the sequel, T will commence with the
phenomenological analysis in section 5.6.1. T will limit the analysis to one type of
structure. On the basis of the observed phenomenon, I will introduce the concept of
an cquivalent Zoeppritz boundary in section 5.6.2.

31T hanks to Aart-Jan van Wijngaarden for pointing out the AVO references to me.
$2For the situation that the background velocity ¢ is much smaller than the peak distortion
velocity ¢,,4. analytic results have been derived (Wapenaar, 1997a).
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Fig. 5.23 Velocity profiles subject to an AVO analysis.

5.6.1 Phenomecnological analysis

Consider a finite-scale representation of a velocity profile given by
3 I8 ) )
('(.l“;}) = (’()+('+\+(.l;g "*.I;),_())A (577)

The background velocity is taken ¢g = 2km/s. The singularity of the homogencons
distribution is at @39 = 256 m. The sampling distance is taken Ary = ILm. The
factor ¢4 in front of the homogeneous distribution is taken positive. It is chosen
such that the peak distortion velocity takes the value ¢pq = 0.5km/s. For this
choice the limit of CAsE I applies (see Table 5.2). The scale parameter a in the
homogeneous distribution varies from —0.5 to 0.5 with steps of 0.05. Five examples
of the considered velocity profiles are shown in Figure 5.23. The middle picture
shows the traditionally studied step [unction.

With the help of an acoustic layercode modeling scheme, the reflected pressure
as a function of ray parameter and time has been computed and, subsequently,
convolved with a seismic wavelet vy(¢). yielding rp(p. ) for all 21 velocity functions
c{ry)s the density is taken constant. The general construction of a seismic wavelet
has been introduced in procedure 5.2 on page 171: here a Ricker wavelet with a
central frequencey of 40 Hz is chosen. The response for the step function is shown in
Figure 5.2, The analysis of the amplitude-versus-ray-parameter (AVP) reflection™?
is carried out with the help of the complex trace analysis, yvielding one amplitude,
a{p). and one phase, ¢(p), for each ray parameter value p. Normally, the AVDP
analysis is carried out with the local maxima for each event and for cach p-value.
The reassessment of the role of the phase of reflection events forced me to consider

33Depending on the type of the second parameter considered, AVP is also referred (o as amplitude
versus offset (AVO) or annplitude versus angle (AVA), see Castagna (1993) for details.
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Fig. 5.24 Reflection at a step function. (a) The velocity profile. (b) The response as
a function of ray parameter and intercept time. (¢) The amplitude of the
maximum of the envelope as a function of ray parameter (top) and the induced
phase as a function of ray parameter (bottom).

the maximum of the envelope, and not the local maximun. The extracted phase
and amplitude as a function of the ray parameter are showl in the two pictures
of Figure 5.24c. The dash-dotted line in these pictures delimits pre-critical and
post-critical reflection. In the pre-critical area the phase is approximately constant.
In the post-critical area the amplitude is approximately constant. Note that the
analysis can be carried out directly on the reflection data without doing a normal

move-out correction or a redatuming step, because the reflection data consist of a
single reflection event only. In generally varying media, the effects of propagation
through the overburden have to be corrected for first. Note, moreover, that due
to the fact that local velocities are quite difficult to estimate, the AVP analysis is
normally carried out on time domain data, sce the SEG-book on AVO (for example,
Castagna, 1993). or the Special Issue on AVO of The Leading Edge (for example,
Peddy et al.. 1995).

The same analysis has been carried out to the responses of the other ¢(ay)
functions. For a few velocity profiles the maximum of the envelope, a(p) and the
induced phase change. #(p). as a function of ray parameter are shown in Iigure 5.25.
In this figure the analvsis results for the step function are shown as well. The
following observations are made:

1. The amplitude. a(p). for the reflection at a step function is larger than the
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Fig. 5.25 Analysis of the amplitude and the induced phase of the angle-dependent reflection response. The top row shows the con-
sidered velocity profiles. The middle row shows the amplitude of the envelope as a function of ray parameter for the five
velocity profiles. The bottom row shows the induced phase as a function of ray parameter for the five velocity profiles.
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anmiplitudes of the reflection at the other profiles for a fixed peak distortion.

2. In the pre-critical reflection area, the induced phase change does hardly change
as a function of ray parameter for any of the velocity profiles. This has two
consequences. First, phases at multiple angles can be utilized to stably extract
the induced phase change, i.e. the induced phase change can be averaged. Sec-
ondly, if the induced phase change is changing as a function of ray parameter,
it cither means that the wave is post-critical, or, more importantly, that inter-
ferencc is occuring. For larger p-values the vertical wavelength of the probing
seismic wave is increasing. If the medium parameters are significantly different
for larger vertical wavelengths, interference will play a significant role. Wape-
naar et al. (1997) are discussing the interference effect in considerable detail.
They especially pay attention to an imaging scheme correcting for the inter-
ference effect. The phase change as a function of ray parameter can be utilized
to a priori assess the necessity of an adjusted imaging scheme.

3. Both for positive and for negative exponents « the actual post-critical reflection
area is progressing to higher p-values.

4. For pre-critical p-values the amplitude behavior can not be distinguished a
priori from that of step function, especially if the induced phase change is not
considered.

The last observation suggests that in the case the phase is not considered, a Zoeppritz
inversion will automatically yield an equivalent Zoeppritz boundary. An equivalent
Zoeppritz boundary is considered to be a step function that behaves the same as
the singular transition with respect to AVP behavior. In the next subsection, I will
briefly elucidate the idea of an equivalent Zoeppritz boundary.

5.6.2 Equivalent Zoeppritz boundaries

Suppose a plane wave impinges on a plane boundary. It is partially reflected and
partially transinitted at the boundary. The Zoeppritz equations are relations for the
ratio between the displacement of the reflected or transmitted plane wave and the
displacement of the plane wave impinging on that plane boundary. More specifically,
they express the amplitude ratio between reflected or transmitted shear or compres-
sional waves on the one hand and incident shear waves or compressional waves on
the other hand (Aki and Richards, 1980). A linearized Zoeppritz model assumes
relatively small angles of incidence (Bortfeld, 1961).

In Zoceppritz inversion the aim is to estimnate the relative contrast parameters
for the compressional-wave velocity, the shear-wave velocity and the density. Here.
I only use the so-called PP-reflection for the Zoeppritz inversion. i.c. the ampli-
tude ratio between a compressional wave reflected from a plane interface and the
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The left column shows in grey lines the singular structures. The right col-
wmn, shows in grey lincs the angle-dependent amplitudes extracled from the
numerically computed reflection vesponse of lhe three singular siruclures on
the left-hand side. The angle-dependent amplitudes have been used as input for
a linearized (PP) Zoeppritz inversion. The black lines on the left-hand side
denote the estimated step functions which have the same amplilude behavior in
the linear region. The amplitude behavior as a function of ray parameter for
the estimated step functions is shown in the right colwmn in black lines. The
linear region is delineated with the dolted line.
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corresponding compressional wave impinging on that plane interface. A Zoeppritz
inversion with the amplitudes extracted in the previous subsection as input, yields an
equivalent Zoeppritz boundary. An equivalent Zoeppritz boundary is one which has
the same angle-dependent reflection behavior for relatively low p-values. Here, I will
not discuss the Zoeppritz inversion scheme in detail. T refer to the cited references
for more details.

For three velocity profiles, one with a negative, onc with a positive and onc
with zero scaling exponent (hence a step function), Zoeppritz inversion has been
carried out. As a result, a relative contrast is found for the density and for the
compressional wave velocity. The shear wave velocity is assumed to be negligible.
The estimated density contrast is very small, which is in correspondence with the
constant density that has been used for the modeling. The estimated contrast of the
compressional wave velocity is shown in Figure 5.26. It is clear that the equivalent
Zocppritz boundary for transitions other than step functions, is smaller than the
peak distortion. It makes also manifest that a singular transition can not be distin-
guished from a step function if one observes it at a single scale or, more importantly,
if one neglects the phase information. This qualitative observation will be subject
of future quantitative research.

5.7 Singularity driven inversion

The results of sectious 5.5 and 5.6 suggest the following Singularity Driven Inversion
(sp1) scheme.

Procedure 5.4: Singularity Driven Inversion
A singularity driven inversion cousists of the following steps:

1. Carry out an angle-dependent imaging scheme. Keep the data in the time
dOLIAIN., A BUOU Caudidais (1l sucis au augio-uopeaacaie auaging schicme In the

bifocal imaging procedure described by Berkhout (1997b).

2. Extract the phases and the maxima of the envelope of all reflection events. A
reflection event is a point where the envelope rcaches a local maxinum. The
phase provides inforiation on the signature of the singularity.

3. Extract the local scaling exponent to estimate the local strength of the sin-
gularity. This is done with the help of a wavelet transform modulus maxima
analysis. Note that the extraction is done only for those modulus maxima lines
the location of which corresponds to the location of a local maxinnun of the
envelope.

1. Combine the phase and the local scaling exponent to estimate the type of
transition with the help of the (p — a)-diamond. For a stable extraction of the
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phase, one can combine the extracted phase for multiple angles of incidence as
long as Interference does not dominate.

5. Estimate the equivalent Zoeppritz boundary via the extracted multi-angle am-
plitudes.

6. Combine the results of (4) and (5) to obtain an estimate of the type and size
of the singular transition that has causcd the reflection.

Steps (2), (3) and (4) of procedure 5.4, which are regarded especially new, are
illustrated with two synthetic examples. In the examples, steps (1), (5) and (6) will
not be carried out.

Consider the velocity profile in the top picture of Figure 5.27. It consists of
a number of isolated one-sided algebraic singularities of the type given by equa-
tion (5.61). The normal-incidence response has been computed with a layercode
modeling scheme, and subsequently convolved with a Ricker wavelet with a central
frequency of 100 Hz, yielding the response in the middle picture of Figure 5.27. Ac-
cording to the procedure described in section 5.3.2, the induced phase change has
been determined. The stars in this picture denote the locations of the computed
phases. These are the locations where the envelope of the reflection trace reaches
a local maximum. According to the procedure described in section 5.4, the singu-
larity strength of the reflected wave at the location of the stars has been computed.
The phase and the singularity strength have been combined to determine in the
(¢ — «)-diamond of Figure 5.16 the most likcly singular structure that has induced
the phase change. The estimated structures of the interfaces have been put together
in the bottom picturc of Figure 5.27. Note that, without any prior knowledge, the
general structure of the subsurface singularities arc already very well recovered by
using only the normal-incidence reflection response.

A similar procedure has been carried out, but now for a less synthetic velocity
and density profile. In a part of well-log 6407/2 of the Midgard field around the
target zone at x3 = 2500m 34, the responsc for normal-incident waves has been
modeled. The acoustic impedance in that specific part is shown in the top picture
of Figure 5.28. The impulse response has been convolved with a Ricker wavelet
with a central frequency of 100 Hz. The convolved impulse response is shown in
the middle picture of Figure 5.28. The interface structures have been estimated
from the convolved impulse response, according to the procedure described in the
previous paragraph. The reconstructed interfaces have been put in a single trace as
a function of time in the bottom picture of Figure 5.28. Note that the reconstructed
interfaces have been plotted at a scale smaller than the scale of the seismic wavelet.
If one keeps that in mind one can find quite a fow striking similarities between the

34The well-log data have been provided by SAGA. See Ekern (1987) for an extensive description
of this region.
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Fig. 5.27 Top picture: synthetic velocity profile consisting of a set of one-sided singularities of different strength and signature.

Middle picture: acoustic pressure response for normal-incident waves. Bottorn picture: reconstructed interfaces (still in

the time domain).
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acoustic impedance profile and the reconstructed interfaces. Obscrve, for example,
how the first reflecting layers between z3 = 2425m and x3 = 2475 m, and the large
peak around z3 = 2575 m are reasonably well estimated via the singularity driven
inversion procedure.

5.8 Summary

In this chapter, I have discussed two tools that together can be utilized to charac-
terize singularities. The first tool is the wavelet transform modulus maxima analysis
to determine the strength of a singularity on the basis of the amplitude decay as a
function of the scale parameter. The second tool is a phase analysis to determine
the signature of the singularity. For algebraic singularities, the relation between the
strength and the signature of a singularity on the one hand and the induced phase
changc on the other hand has been made transparent with the help of a so-called
(¢ — @)-diamond.

A model of the subsurface is proposed consisting of a background velocity with
an algebraic singularity on top. Analytic derivations are presented which show how
the (algebraic) singularitics in the subsurface are inherited by a normal-incident
wave reflected at such a singularity. The ratio of the background velocity and the
distortion velocity is the ruling factor. If the background velocity is much smaller
than the distortion the reflectivity behaves as a d-distribution, independent of the
type of singularity. On the other hand, if the background velocity is larger than
the distortion velocity, the reflectivity has a scaling behavior equal to the scaling
behavior of the derivative of the velocity function. The analytic derivations are
confirmed by numerical layercode-expcriments.

The reflection at algebraic singularities for oblique-incident waves is carried out
on a phenomenological level. The important observation, here, is the fact that for
Adictartinne emallar than the hackeronnd velocity. the induced nhase change does not
depend on the angle of incidence (in the pre-critical area). A changing phase as a
function of the angle of incidence either refers to post-critical angles of incidence or
refers to interference. Another important observation is the fact that if the phase
information is neglected, it is a priori difficult to discriminate between the reflection
of a wave at a step function and the reflection at more general transitions. This ob-
servation induced me to introduce the concept of an equivalent Zoeppritz boundary.
An equivalent Zoeppritz boundary is a step function having the same AVP behavior
as the singular transition.

The tools presented in the first part of this chapter and the analytic and nu-
merical derivations of the reflectivity at algebraic singularities in the second part
motivated me to sketch a singularity driven inversion scheme, allowing for a re-
construction of the singularity type and the singularity strength of the subsurface
boundaries. This idea is illustrated with two examples.




Chapter 6

3-D multiscale image analysis of
migrated data

The present chapler is a result of o close cooperation with Edo Hoekstra. While
he was writing his M.Sc. thesis, Edo Hoekstra and the author implemented wavelet
transform based algorithms for 2-D image analysis of migrated data. The resulls of
this procedure have been shown in Hockstra (1996) and Dessing et al. (1996). For
the delineation of stratigraphic features and faults the 2-D algorithm turned out not
to be the appropriate tool. Triggered by olher successful 53-D algorithms, Hoekstra
and the euthor decided to develop 5-D wavelet transform based algorithims for the full
3-D analysis of migrated data. Those results are presented here and will be submitted

for publication.

6.1 Introduction

In the seismic processing sequence shown in Figure 1.3 and discussed in more detail
in section 2.6, I have now arrived at the last stage. In this stage the location and size
of potential reservoirs have to be estimated from the migrated data, i.e. from the
reflectivity R''. The very nature of the migration process implics that boundaries
with a significant amount of reflection energy are clearly visible in the migrated data.
The location of the reflectors is important, but from the point of view of a seisimic
interpreter it is even more important to locate stratigraphic features such as fluvial-
deltaic systems, tidal channels, beaches, but also to locate faults. These features
are essential in delineating the reservoirs. Unfortunately, they are not necessarily
present as strong reflectors, think of faults. An experienced interpreter. however, is
very well able to extract that “hidden™ information in & migrated seismic section.

INote that at this stage of the processing sequence one does not have to bother about wave
propagation anyimore. since the propagators WT have been removed.
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As soon as it comes to 3-D migrated data sets, the task an interpreter is faced with,
gets much more involved. Information from multiple slices or multiple sections has
to be combined. An automatic extraction procedure would significantly simplify and
accclerate the interpretation task. A 3-D image analysis tool is required to make an
automatic extraction feasible.

The search for useful 3-D seismic image analysis tools has boomed enormously
since the presentation of the results of the coherency cube analysis (Bahorich and
Farmer, 1995; Gersztenkorn and Marfurt, 1996; Gersztenkorn et al., 1996). All of a
sudden the seismic community realized that an advanced image analysis can reveal
significant amounts of “hidden™ information. From various points of departure, it
is tried to obtain similar or better results (Luo et al., 1996; Steeghs, 1997). Steeghs
(1997) shows how a local Radon-Wigner decomposition yiclds good results. Luo
et al. (1996) pursuc an edge detection approach, however without using the wavelet
transform. Their method has similarities to the wavelet transform approach de-
scribed in the present chapter. The common denominator of the different methods
is the search for local incoherences. The essence of the wavelet transform is its
sensitivity to changes or incoherences at multiple scales. The wavelet transform,
consequently, scems to be a natural tool to analyze migrated data for the extraction
of ~hidden” features.

For the analysis of a 3-D migrated volume a 1-I) or 2-D wavelet transform
does not suffice, although interesting information can be extracted (Hockstra, 1996;
Dessing et al., 1996). Both the 1-D and 2-D wavelet transform do not sufficiently
take advantage of the 3-D coherency and 3-D incoherence present in a migrated
volume. Hence, the use of the 3-D wavelet transform is essential. The extension of
the wavelet transform to more dimensions is mathematically not very difficultr (but
certainly not unique), especially if a separable wavelet is chosen?. Ignorance with
respect to the opportunities provided by the 3-D wavelet transform have prevented
noanle fram ngine the wavelet transform in three dimensions.

The utilization of thie wavelet transform for multiscale image analysis is from
a historical perspective a completely logical step. Mainly, because it has soon been
recognized that the wavelet transform is closely related to already existing multiscale
image recognition algorithms. For example, Rosenfeld and Thurston (1971). Marr
(1982). Witkin (1983), and Buwrt and Adelson (1983) explicitly used information
at multiple scales to analyze amongst others local intensity changes in an image.
The relationship between the “older™ multiscale iimage analysis techniques and the
wavelet {ransform has been made especially manifest by the work of Mallat (1989Db)
and Mallat and Zhong (1992). The mathematics underlying the wavelet transform
allow the formalization of a munber of existing analysis technigues.

2A separable function f(rp.ra.23) can be written as the multiplication of three functions,
for each coordinate one. i.e. flri ra.x3) = fUy ) f2(e2) f3 (). where the superseripts denote
functions for the -, 42- and é3-direction, respectively.
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The reason to take recourse to multiscale analysis techniques in image analysis
is twoflold. First, useful information in an image does not necessarily come to us at
one specific scale. In relation to the earth’s subsurface, one can think of a salt dome
and a tidal channel, which are objects clearly living on different scales. The second
rcason is originated in the way mammals, and hence the human kind, see. The
maniualian retina and visual cortex can be well modeled by a multiscale smoothing
function and a set of wavelets (ter Haar Romeny., 1994). Since maimmals are very well
able to extract features and structures at multiple scales, mimicking the manmnnal’s
visual system is not a bad idea.

Before the wavelet transform can be used for image analysis, a number of
choices has to be made. First, with respect to the type of transform. and then
with respect to the type of simoothing function and wavelet. Concerning the type of
wavelet transform I discriminate between the continnous wavelet trausform (see sec-
tions 2.3 and 2.4, in particular). and the discrete wavelet transform (sce section 2.5,
in particular). The discrete wavelet transform is very efficient and casily invertible.
However, the advantages of the discrete wavelet trausform do not weigh up against
its disadvantages. The discrete wavelet trausform is net translation invariant, and
the scale parameter is changing dyadically, i.e. in a rather coarse way. The first
disadvantage can be removed by introducing the so-called non-downsampled dis-
crete wavelet trausform (Mallat and Zhong. 1992: Saito, 1994) at the cost of some
cfficiency. In the latter form, the discrete wavelet transform can cowmpete with the
continuous wavelet transform. The possibility to continuously vary the scale param-
cter made me decide to use the continuous wavelet transform in the first stage,

The clhioice of a particular wavelet aud smoothing function paiv depends on the
type of data to be analyvzed, on the number and tvpe of features that have to be
extracted, and on the amount of a priori knowledge. Although quite some a priori
knowledge of migrated sections is present. the munber of different features (both in
type and in shape) that might be of interest, is so large, that I have decided to usc
the ideal pair for an uncommitted image analysis: a Gaussian smoothing function
and its first or higher order derivatives as wavelets®,

3The requirement of an uncommitted image analysis can be translated into requirements of
causality, homogeneity and isotropy. Causality in a multiscale image analysis means that new
details are not created at coarser scales (for 1-D functions). Homogeneity means that all scales
are treated in a similar manner, ie. there is not a preferred scale. Isotropy means of course that
there is not a preferred direction. If a multiscale image analysis scheme has to fulfill the three
requirenients, the multiscale image I(r, @), with I(0.x) the original image. is the solution of the
diffusion equation with the original image as initial condition, i.e.

Orl(r,2) = Vii(r.@) with 10, 2) = I(z). (6.1)

‘t'he Gaussian function is the Green's function of the diffusion equation. Hence the Gaussian and
its derivatives should be used for an uncommitted multiscale mage analysis (Koenderink, 1984:
ter Haar Romeny. 1994). Note that the relation between the ‘time’ parameter 7 and the scale
paramcter ¢ is explained in equations (2.88) and (2.89) on page 43.
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Fig. 6.1 The interpretation of the angles ® and ©. The first is referred to as the azimuth
and is given by equation (6.11). the second is referred to as the dip and is given
by equalion (6.12).

In the sequel T will first introduce the wavelet trausform for data depending on
three parameters in section 6.2. The introduced material is illustrated with the help
of a simple example: the analysis of a sphere in three dimensions. In section 6.3
the application of the algorithm to a 3-D migrated volume from the Gulf of NMexico
is shown. The results will be qualitatively compared with the results from other
methods in section 6.1.

6.2 Three-dimensional wavelet transform

Consider a 3-D mmage I(x), with & = (r1.r.23). An image analysis procedure is
aiming at particular features in the data. The main quest for the image analyzer
is to translate the search for a particular feature in a mathematical operation. In
the field of scale-space computer vision, this quest is very systematically dealt with
through a search for differential invariants (Florack et al., 1991). Here, [ will use one
of those invariauts, namely the amplitude of the gradient in the image I(x) at scale
o. where the 3-D scale parameter is given by o = (o, 0y, 03). ere, it is explicitly
allowed to make use of different scale parameters oy, oo and a3 for the .- .-
and az-axis. respectively. The amplitude of the gradient is denoted by A{/}(o. x).
Since the wavelet transform is sensitive to changes. the amplitude of the gradient
can be casily derived with the help of the wavelet transform.

In a 3-D space. the wavelet transform takes the form of an inner produet of
the original image and three wavelets. for cach direction one. Using the apparatus
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developed in chapter 2 (in particular, section 2.4) I can introduce the L'-normalized
smoothing function ¢(o, @) and the first-order spatial derivatives of o(e,z) as
wavelets v, (o, &), n = 1,2, 3, according to

1 T, To I .
oo, 2) = —o<i,2,§), (6.2)

J10203
and
l ‘ Iy 2 I3 v
L"”(O',.’B) = | —- [ (()‘3)
TVT203 :

=0,0,¢(a,x), (6.4)

respectively. Remember that g, refers to a derivative with respect to the a,,-variable,
and note that the summation convention for Roman subscripts does not apply. By
introducing the wavelet vector ¥ (o, ) as

Plo.x) = (1. v, v’ (6.5)

the wavelel transform @{I} of the image I(x) with respect to the wavelet (o, x)
takes the form

| w {1}
Wiy~ (wa(1) | = (1= ) (o 2). (6.6)
ws{I}

where {7} is a shorthand notation for W{I.9}(a.x), which has beeu introduced
in equation (2.75) for a 1-D wavelet transform. Lach of the elements of the vector
W{I} can be written in an explicit form by (cf. equation 2.85)

1 ¥h—axy oah —re xh -
Ty AR T 5% Ia I T3
W, {1} = /1(1/11/21/;) W . .ﬁ duy dahy day.

J10203 T (o] (6 7)

Duc to relation (6.4). it is also possible to write the wavelet transform as the gradient
of a smoothed image, according to

WAl = —0,0,(I x0) = —0,0,1{c. x). (6.8)

The smoothed image I(e. @) is given by the iuner product of 7{x) with the smoothing
function ¢(o, x). according to (cf. equation 2.84)

1 o= = v —
(o x) = / 1) o (T L ) g g,
3

T10203 1 gy a2 (()' ())

The quantity ¥,, {7} expresses the amount of change in the 7,,-direction at the scale
o of the image I. The wavelet transform vector W{I} is also referred to as the
gradient vector.
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The amplitude of the gradient vector, M{I}(o, ), is now given by the norm
of the vector W{I}, i.e.

M{I}(o,x) = B{I}| = VB {1}2 + W,{1}2 + W, {I}2. (6.10)

Associated to the amplitude of the gradient is the direction of the gradient. In three
dimensions the direction is given by two angles. The angle ®{I} is referred to as
the azimuth, and is given by

®{I} = atan (g%-%) , (6.11)

and the angle @{/} is referred to as the dip, and is given by

W, {1}
VIR F 0, {1}

The meaning of the angles ®{I} and ©{I} is illustrated in Figure 6.1. In addition
to its importance in its own sake, the angle information can be used to extract the
modulus maximum points or edges. The edge detection can be seen as a more-
dimensional generalization of the wavelet transforin modulus maximum extraction
dealt with in the previous chapter. In two dimensions, edge detection has been
discussed by quite some authors (for example, Canny, 1986; Mallat and Zhong,
1992). In three or more dimensions the edge detection algorithms get more involved,
but are conceptually not different.

{1} = atan

(6.12)

The idea of a 3-D wavelet transform is illustrated with the help of a synthetic ex-
ample, namely a sphere as shown in Figure 6.2. The application of the wavelet traws-
form in the three directions according to equation (6.6) yields the amount of change
in the three directions. It is clear that the result is in accordance with the expecta-
tions (Figure 6.2, bottom row). By applying either of the operations (6.10), (6.11),
ar /\@ I‘)}) tha ')H\I\“fnr]u of tha gm.limlf in tha ul\]\nv‘n’ the azimnth and thao r“}\ nf

the changes can be extracted, respectively.

6.2.1 Implementation aspects

Although the computer memory size of a migrated cube is generally much smaller
than the corresponding surface seismic data sct, it can still easily occupy a GigaByte
or more of computer memory. An efficient algorithm which allows for a fast, almost
real time, feature extraction in a cube of that size can significantly coutribute to a
reduced interpretation time.

A first requirement for an cfficient algorithm is a separable smoothing func-
tion and wavelet. A separable function allows for a treatment of all coordinates
separately. A separable smoothing function takes the following form

O(O’. 513) = C)l (O’[ e )02(0'2. I )0:3(0'3. ,I';;). (()13)
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w{r} w,{l} WL {I}

Fig. 6.2 A sphere I in three dimensions on top. The 3-1 wavelet transform of the sphere
n the bottom row. From left to right: W {1}, Wo{l}. and W3{I}. which are
the wavelet transform in lhe €1-. 13-, and ¥3-dircction respectively. It can be
concluded that the three transforms are sensitive to changes in the three different
directions.
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where the superscript n denotes the smoothing function for the axis z,,. The corre-
sponding separable wavelets v, ()}, n = 1,2, 3, take the following form

Oy (o, ) = v (o), 21)0% (02, 22)0% (03, 13) (6.14)
Un(o,z) = ¢' (o1, 21 (02, 22)0° (03, 73)
U3(o.x) = ¢ (01, 21)0% (00, 1) (03, 13), (6.16)

where " (o, x,) denotes the wavelet for the axis x,. The wavelet v, and the
smoothing function ¢ arc related accordiug to equation (6.4). Note the difference
between the superscripted and subscripted wavelets. In the introductory section
of the present chapter, it has been arguecd that an uncommitted image analysis
necessitates the use of the Gaussian as smoothing function, and, consequently, one of
its derivatives as wavelet. Hence, the L'-normalized smoothing function ¢™(a,,, ,,
is given by
1

On \/ﬁ

and the wavelet 3" (o, 1,,) is given by its first derivative with respect to x,,., accord-
ing to

O (o 10) = o/ G, (6.17)

'l‘»"”'(o-n ) l‘n) = On,an o" (O—n ) 17",)- (618>

A second requirement for an efficient algorithm is the limitation of the number
of scale values o ai which {{o. @) is compuied. A limitation is conputationally nec-
cssary, despite the fact that a thorough integration of information obtained at multi-
ple scales is expected to yield superior results (Koenderink, 1984; ter Haar Romeny,
1994). The type of data and the type of features of interest determine, probably via
a trial-and-crror cycle, the scale that reveals the information of interest?,

For a single scale and tor a Gaussian simoothing tunction and tor corresponding
wavelets, the computation of the wavelet transform and its derived quantities takes
roughly 2N log N operations, where N is the total number of data in the 3-D vol-
ume. Here, the wavelet transform is carried out with via the Fourier domain. The
efficiency of the algorithin can be improved by choosing at a particular scale spatial
filters that closely approximate the action of the Gaussian and its derivatives. The
biorthogonal cubic spline filters described by Mallat and Zhong (1992) seem to be
excellent candidates, which can be concluded from the results obtained on 2-D seis-
mic sections with those filters (Hoekstra, 1996). Such an implementation will lead
to a O(N)-algorithm. Let me summarize the algorithim.

*A refinement of the algorithm which is still computationally reasonably easy to accomplish.
can be obtained by combining information at two or three scales. For example. the global dip and
azimuth information on a coarse scale, combined with stratigraphic features and faults extracted
on a fine scale.
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Procedure 6.1: 3-D image analysis with the wavelet transform

1. Choose a smoothing function and three associated wavclets for each direction
one.

2. Choose an appropriate scale o = (01,02, 03).

3. Compute the wavelet transform in all directions for that particular scale, re-
sulting in W {I}, Wo{I}, and W3 {I}.

4. Compute a differential invariant and the associated quantities of interest. Here,
the amplitude of the gradient, together with the dip and the azimuth.

Combine the information from multiple slices to extract the faults and strati-

<

graphic features of interest.

6.3 Application to a real data set

The present section is devoted to the opportunities of the presented method for the
analysis of a real 3-D migrated volume. The migrated volume has been provided hy
Geco-Prakla®. It is a time migrated data set from the Gulf of Mexico. Tt is located
on the continental shelf, west and adjacent to the present-day Mississippi delta. The
data set has been used for the geological evaluation of the coherency cube analysis
(Bahorich and Farmer, 1995; Haskell et al., 1995; Nissen et al., 1995; Gersztenkorn
and Marfurt, 1996; Gersztenkorn ct al., 1996). The general structure of the volume is
shown in Figure 6.3. Due to the fact that a time migrated data set is dealt with, the
third coordinate w3 is replaced here by the time coordinate t. The fat lines denote
the vertical cross sections and the time slices that will be depicted in subsequent
figures. Figure 6.4 shows the vertical cross sections for constant zy, namely Y
and Y,. Figure 6.5 shows two vertical cross section for constant w;, namely X;
and X,. The structure is generally quite flat except for the salt dome region. The
whole volume is criss-crossed by faults. They arc cspecially clear in vertical cross
section Y. For example, at x; = 6km a normal fault is cutting through the entire
section. Above and below the layer of reworked material at 900 ms, i.e. a submarinc
canyon in-fill (Steeghs, 1997), lots of channels from the former Mississippi declta
are present®. These channels are, however, not clearly visible in the vertical cross
sections.

Procedure 6.1 has been carried out with the first derivative of a Gauss function
in all three directions at a single small scale, according to equations (6.6) and (6.7).
At a coarse scale the general structure in terms of the dip and the azimuth is high-
lighted better, but that information is not of interest to me in this chapter. The

5 Amoco Production Company is acknowledged for making the data available.
61r. W. Peet is acknowledged for interpreting a large portion of the 3-D volume and for pointing
out a number of interesting stratigraphic features.
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xre =0 — 14.5km

Fig. 6.3 The general structure of the analyzed 3-D migrated volume I(z,,x2,t). Note
that a time migraled data volume is dealt with, therefore the coordinate 3 is
replaced by t. In Figure 6.4, the vertical cross sections Yy at x2 = 1km and
Yz at x2 = 9km are shown. In Figure 6.5, the vertical cross sections X at
Ty = S5km and X2 at x1 = 14 km are shown. The resulls of the 3-D wavelel
transform analysis s specifically illustrated with the help of the four time slices
Ty, T2, Tz and T4 at t = 1284 ms, 1292 ms, 1316 ms and 1348 ms, respectively.

differential invariant computed here is the amplitude of the gradient for all points
in the volume. The weighted addition of multiple slices is the final step.

Figure 6.7 up to and including Figure 6.14 give the results of the method for
the four time slices T1, To, T3 and T4. For comparison the original time slices
arc given as well. A number of features that become clearly visible by applying the
3-D wavelet transform has been highlighted with arrows. Horizontal arrows denote
channels and vertical arrows denote faults. It is clear that the method significantly
helps in extracting stratigraphic features and faults. Especially the channels are very
well extracted. In the captions of the figures a number of interesting fecatures are
discussed in more detail. Note that the method can still be improved with respect
to the separation of dip information and stratigraphic information. This can be
concluded from the relatively high amplitudes in the processed time slices at the
flanks of the salt dome.
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z1 [km)]

sub-marine canyon in-fi

vertical cross section Y

X1 —WQL

vertical cross section Yo

Fig. 6.4 The two vertical cross sections Y1 at x2 = 1 km and Y2 at x2 = 9km. Y1 clearly shows a number of faults. and the reworked
material approzimately at t = 900 ms. Yz clearly shows the lifting influence of the salt dome. Data Courtesy Geco-Prakla.
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z3 [km)

vertical cross section X

z2 [km]

vertical cross section X2

Fig. 6.5 The two vertical cross sections X1 at z1 = Skm and Xo at 1 = 14km. X,
especially highlights the salt dome. X2 shows a slight syncline structure and the
reworked material.




6.4 Discussion 215

Fig. 6.6 The application of different differential operators allows for a flexible feature-
dependent processing of a migrated cube. The top picture shows in a 3-1) view
amplitude changes; the bottom picture shows local dips.
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29 [km]
0 4 8 12

slice T4

Fig. 6.7 Time slice att = 1284 ms from the unprocessed migrated volume. To be compared

)

with the same time slice from the processed volume in Figure 6.
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F)
=
)
slice T
Fig. 6.8 Time slice al t = 1281 ms from the processed migrated volume.  The arrows

denote interesting stratigraphic features and faults.  Vertical arrows point to
faults, horizontal arrows to channels. Whereas a number of features can be easily
identified with the benefit of the hindsight in the time slice from the unprocessed
volume. others scem to appear out of the blue. For example. the channel denoted

by @ is not visible in the original time slice.
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29 [km]
4 8

12

x7 [km)]

slice T

Fig. 6.9 Time slice att = 1292 ms from the unprocessed migrated volume. To be compared
with the same time slice from the processed volume in Figure 6.10.
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21 [km]

slice Ty

Fig. 6.10 Time slice at t = 1292 ms from the processed migrated volume. Note that the
channels and faults are at the same positions with respect to their positions in
time slice Ty, which is 8 ms above the present time slice. The two channels
with @ are part of one big channel crossing the volume. This can be concluded
by looking at slices T3 and Ty from the processed volume in consecutive figures.
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z [km]

xo [km]
8

12

slice Ty

Fig. 6.11

Time slice at t = 1316 ms from the unprocessed migrated volume. To be com-

pared with the same time slice from the processed volume in Figure 6.12.
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x7 [km)

slice Ty

Fig. 6.12

Time slice at t = 1316 1ms from the processed migrated volume. Besides the

faults, the large channel going from bollom middle to the top lefl is clearly

delineated with respect Lo its presence in the time slice from the unprocessed

volume. At the point denoted by @ the channel is “cut” away by two faults.
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x2 [km]
0 4 8 12

glice T4

Fig. 6.13 Time slice at t = 1348 ms from the unprocessed migrated volume. To be com-
pared with the same time slice from the processed volume in Figure 6.14.
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slice Ty

Fig. 6.14 Time slice at t = 1348 ms from processed migrated volume. Fspecially inler-
esting here are the channels. The channel in the middle completes the channel
observed in the previous time slices. Note also that even the tiny channels,

denoted by @, arc extracled.
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6.4 Discussion

Comparison —How docs the wavelet transform approach to 3-D image analysis
comipare to other methods? Due to the fact that the computational details of com-
peting methods are not known to the author, it is in general difficult to carry out
a comparison on a quantitative level. A qualitative comparison however is feasible,
because several publications deal with the same data set (Bahorich and Farmer,
1995; Gersztenkorn and Marfurt, 1996; Steeghs, 1997). The method presented in
the first reference will be referred to as the three-trace-coherency-algorithm. The
mcethod presented by Gersztenkorn and Marfurt (1996) will be referred to as the
eigenstructure-algorithm. The last method of Steeghs (1997) will be referred to
as the local-Radon-Wigner-algorithm. The algorithm presented in this chapter is
referred to as the wavelet-transform-algorithm”.

Bahorich and Farmer (1995) show the first results of the coherency cube analy-
sis. The algorithm measures the coherency of three traces in an appropriately chosen
time window. The left part of figure 6 of Bahorich and Farmer (1995) is roughly the
same slice as dealt with in Figurce 6.7 and 6.8. The three-trace-coherency-algorithm
shows good results for faults, however channels are relatively poorly extracted. The
wavelet-transform-algorithm does a better job with respect to the channels. Another
difference between the two algoritluns is the preseuce of the salt dome. In the salt
dome the coherency is clearly low and consequently it will be clearly visible in the co-
Lierency measure. The wavelet-transform-algorithm is more sensitive to amplitudes.
Within the salt the amplitudes are low.
sztenkorn and Marfurt (1996) compute the cigenstructure of the covariant
matrix of a nunber of subsequent traces. Their ecigenstructurc-algorithm is very
well able to delineate hoth stratigraphic features and faults on a very detailed level.
I consider their results slightly better than the results presented in this chapter,
especially with respect to the fault delineation. The wavelet-transforin algorithm
1b L Lllt‘ IO IL oL illbt‘llDiLi\U L'UUL(BII i\,‘ ‘Urtl‘l\gluluu‘( (lll}n. FHL (,lltfl JYLUIR O 1L ib
interesting to observe that the sensitivity of the cigenstructure-algorithm is the same
in the salt-dome region as the sensitivity of the wavelet-transform-algorithm.

Steeghs (1997) extracts the stratigraphic features and faults by determining
the dip via a local 3-D Radon transform. His local-Radon-Wigner-algorithm vields
equally good results with respect to delineating faults, however his results are slightly
less with respect to rendering channels. The high quality of the wavelet-transform-
algorithm with respect to extracting channels is especially due to its sensitivity to
amplitude changes. In the Mississippi delta, channels cut through clay layers having
clearly different impedance. This is the reason why an amplitude-sensitive algorithm

“Remember that a wavelet-transform-algorithm is not necessarily referring to a single unique

method. The features that will be extracted depend on the tyvpe of differential invariant computed.
Here. I used the amplitude of the gradient.
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vields good results for such features.

Computational aspects — Let me finalize with mentioning a number of important
computational advantages of the presented wavelet-transform-algorithm. First, it is
very efficient. It hias been pointed out in section 6.2.1 that it can be carried out as an
O(N)-algorithm in the case that a diserete spatial filter is used as an approximation
for a Gaussian function and its derivative. The efficiency allows for an almost real
time implementation. Furthermore, the algorithin is conceptually simple. It extracts
changes. The changes are combined to compute a differential invariant, such as the
amplitude. If a more detailed extraction of faults is required, angle information
in terms of the quantities ®{7} and ©{I'} can be incorporated without making
the algorithm more complicated. Oun the other hand, one can also compute other
differential invariants and associated attributes, which might be sensitive to other
stratigraphic features or structures. For example. Figure 6.6 shows some slices in a
3-D view for two different differential operators.

Future rescarch —The delineation of stratigraphic features and faults in an oth-
erwise strong-reflector-dominated migrated volume is the first step in facilitating
the work of a seismic interpreter.  Especially. if consceutive time slices from the
migrated volume are inspected, those features become even more manifest, as can
be concluded from the view provided by Figure 6.6. Despite the fact that the in-
terpretation simplifies with the help of the time slices from the processed migrated
volume, the proposed procedure is just the first step in facilitating the work of an
interpreter. The sccond step consists of the automatic extraction of the stratigraphic
features and faults. The result of the presented method might be used as input.

6.5 Summary

In this chapter I have presented a wavelet transform approach to 3-D limage analysis
of migrated data. The goal is to make stratigraphic features and faults manifest.
Since these features are not always present as strong reflection events, identifying
them is often a diflicult and time consuming task. Image analysis techniques facili-
tate this task.

The presented method is based upon the realization that useful information
does 1ot necessarily come to us at one specific seale. In the field of image analysis this
is a well-known fact. A wavelet transform carries out a decomposition in multiple
scales, and thus incorporates the multiscale nature of the carth’s subsurface in a
natural way. Nore specifically, the wavelet transform has been utilized to extract
a particular differential invariant. namely the amplitude of the 3-D gradient. The
choice of amplitude of the gradient is suggested by the fact that local incoherences are
characteristic of the features that are looked for. The first order spatial derivatives
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of the Gaussian function have been used as wavelets.

The method has been applied to a migrated volume of the Gulf of Mexico.
Faults and channels are very well delineated. Especially the channels are equally well
or even better extracted with the wavelet transform approach than with competing
methods. The efficiency of the presented algorithm is an additional advantage with
respect to competing methods.




Appendix A

Matrix notation for
transformations and
representations

The present appendix links up to chapter 2 and serves as a practical guide to chap-
ter 4. In the former, representations and transformations have heen introduced, in
the latter the transformations have been applied to the imaging problem. Just as I
have done in chapter 2, the terminology is engraved onto transformations from the
time domain to another domain, and vice versa. Note, however, that the equations
are certainly valid for other configurations as well. In chapter 4 the transformations
are applied, for example, to the lateral spatial coordinates of the monochromatic
representation of primary seismic reflection data. Of course, in such a situation the
interpretation has to be adjusted.

A.1 Transformation of vectors

In the realm of multiresolution approximations (sce scetion 2.5.4), regularly sampled
discrete data sets have gained a natural position. Discrete data sets can be seen as
the coefficients of a projection of a function f(#) in an approximation space Vy. The
coeflicients A f of equation (2.111) will be put in a vector and will be notified here
by f. Note again that this discretization is different from the discretization in the
coherent state parameters, yielding (rames. The time, frequency, Gabor and wavelet
transformations disenssed in chapter 2 now take the following form.

1. From time-to-time domain:

f = Urf, (A1)
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which can be scen as the discrete counterpart of the first of equations (2.37),
which I repeat here for convenience

f) = (UrH).

Of course, the unitary transformation matrix is equal to the identity matrix I,
because f is already in the time domain.

From time-to-frequency domain:
f = Uxf. (A.2)
which is the discrete counterpart of the second of equations (2.37), i.e.

Fw) = (Ugf)(w).

The unitary matrix Uz contains the discretized Fourier comiponents from
—WNyquist TO FWNyquist- It is a unitary matrix which can be efficiently im-
plemented via the Fast Fourier Transform (Bracewell, 1986). Its inverse is just
the Hermitiaun, i.e.

f = (Uy)HF. (A.3)

Note that the fast Fourier transform asswnes a definition of a function on the
torus.

From time-to-Gabor domuain:
In sect

function will never give rise to an orthogonal decomposition. The discrete
counterpart of equation (2.99), which is repeated here

a{f g}(???(l(), nbO) = <f .(]mn> = / -f.(]:m (t) dt,
reads
f - V,f. (A1)

where, in general. a matrix V denotes an invertible, but non-unitary matrix
and where the subscript g refers to the Gabor transform. The vector f denotes
the temporal Gabor domain data. It is generally not of the same length as f,
because V, is in general not a square matrix. The actual form of the Gabor
transforim matrix requires the specification of the temporal and frequency shift
parameters ag and by in equation (2.99) and the specification of the shape of
the Gaussian function via the parameter 5 in equation (2.65). The inverse

transform from the temporal Gabor domain to the temporal domain reads

f=(v,) 'f. (A.5)
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1. From lime-lo-wavelet domain:
The wavelet transform in matrix terms depends on the chosen type of wavelet
transform. A distinetion is made between a frame decomposition and a wnul-
tiresolution decomposition:

(a) The general wavelet frame decomposition. similar to the Gabor frame
decomposition. is given by (cf. equation 2.104)

WS ool nbaal)y = . o) = / S, (.
[ts discrete equivalent reads
f=V,f. (A.G)

where V. denotes the discrete fraue wavelet transformation matrix. Its
inverse reads

f=(V,)"'f. (A7)

(b) In the case that the wavelets are chosen as a part of a multiresolution
approximation. the matrix transformation becomes wnitary, according (o

f=U,f. (A.8)

where f is a vector containing the elements of {D{ .- DY, [. AL, [}
which is introduced in equation (2.132). A specific multiresolution ap-
proximation and a specific value Al are required to fix the actual wavelet
trausformn.  LEquation (A.8) is referred to as the discrete wavelet trans-
form. It can be implemented efficiently!. The inverse discrete wavelet
transform reads

f = (U,.)"f. (A.9)

(¢) A frequently encountered variation of the discrete wavelet transforms is
the biorthogonal wavelet transform. A slight increase in complexity of
the forward and inverse wavelet transform. especially due to the fact that
different filter pairs are used for the forward and inverse transform, is
rewarded by symmetric filters. and thus symmetric scaling functions and
(anti-)symnetric wavelets.

I'The diserete wavelet transform can be carried ont in roughly (N x L) operations, where N is
the number of samples in a vector, and L the length of the filter g or h, introduced in section 2.5.4.
With respect to efficiency. but also with respect to flexibility, the recently introduced LiftPack
scheme is very promising (Sweldens. 1996). It is more cflicient in terms ol (loating point operations
and memory usage.
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A.2 Matrix transformations

Equation (2.23) shows how the representation of a kernel in one domain can be
transformed to another domain. The discrete equivalent of this scheme can be
straightforwardly obtained. The discrete representation of a kernel can be seen as
the projection of the keruel in a specific multiresolution subspace, which is fixed here
at Vg, i.e.

Kok = (Kédon, dok) (A.10)

and consequently the matrix K consists of the matrix elements K,;. The matrix
element K, expresses the response of the physical system of a source at a time?
represented by k measured at a time represented by n. The transformation of
matrices to the domains discussed in the first part of this section reads (for morc
comments see the previous paragraph) for a unitary transformation matrix U

K = UKU®, (A.11)
and its inverse reads
K = UPKuU. (A.12)

Here, the matrix U can be any of the previously discussed transformation matrices,
and the breve ~ can represent any of the aforementioned domains, except the Ga-
bor domain. For the Gabor transform, which is invertible but which can never be
orthonormal, a slightly different form has to be used

K = VKV, (A.13)
and its inverse reads
K =V!KV. (A.14)

In chapter 4, the interpretation of the matrix representations in different domains is
discussed in more detail. For the wavelet transform, I have introduced also a slight
variation giving rise to the so-called non-standard wavelet representation (Beylkin
et al., 1991).

2Note that the actual physical interpretation depends on the functional parameters in the matrix,
but the basic structure of the matrix remains for any variable the same.




Appendix B

Homogeneous distributions

This appendix provides background material for chapter 5. It gives a nunber of prop-
erties of homogencous distributions. These propertics are extracted from Gel'fand
and Shilow (1960) and Hormander (1983). For proofs and derivations the reader is
referred to the cited references.

The one-sided distributions [¢t|} are given by

. [0 t<o ., () t<0
1S = , 11 = (B.1)
t >0 0 t>0.

They are locally integrable for Ra > —1. For R < —~1 and o # =1,-2,..., [t|¢
has to be interpreted in the distributional sense.

Let me first consider |t| in distributional sense. For a rcal function ¢ € C5°(R)
and any integer k > 0, the differential operators in an integral can be transferred
according to

(815, 6) = /f“(;)(z‘)dt (B.2)
0

(0t ]

—1)* g

= t o o) dt. B.3
((}+1)...((,1+A‘),/ colt) (B.3)

0
The integrand at the right-hand side of equation (13.3) is analytic for Ra > —k — 1,
except for a = —1,-2,..., where it has simple poles. The residue of J#¢ at those
Kkl .
poles is given by ((_k]_)])! SE=D(H) for o = —k.

In a similar way one can extend left-sided homogencous distributions |¢{[* to
aeR a#—1,-2,... by iuspecting
0
(|t|1¢,0) = /(—f)“o(f)df. (B.4)

—DG
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. . . th=1)
The residue of [t turns out to be given by 6(/\7)("2 for o = —k.

From the one-sided homogeneous distributions one can construct even and odd
combinations according to

s = 115+ 1112, (B.5)
and

Hlaie = 5 — 12, (B.6)
respectively. Since the poles of [t|% and [#* differ with a factor (—1)*, the distri-
butions [¢[8,, have only poles for a = —1. -3, -5,.... The residue at the poles is

S(2m)
given by 20 (2"1)(!{' ), where a and m are related by o« = —2m — 1. For a = —2m,
the distributions [¢]3,, exist. Analogous onc finds for the odd combination [t[54
(2m—L1)

of the one-sided distributions, poles for a — —2m with residues 72%7—1%}. For
a = —2m — 1, the distributions ||, exist.

Normalization of the distributions [t[{, |t]3,, and |t|;

The poles for negative integers a, can be removed by dividing the discussed distribu-
tions by regular functions of a, which have a pole at the point where the distributions
have a pole. Moreover, the pole should be of equal strength. A good candidate for
such a function is the Gamma function. This can be casily understood if we choose
o(t) = ¢! in equation (B.2), yielding

o

wm@>:/wwﬂn:ua+n. (B.7)

0

Therefore. the approvriate normalization fiunction for 1 is T + 1) The naor-
malization for 2|2 is T{a + 1), as well. Since (|2, and [t{Giy do not have poles
for all negative integers, here slightly different normalizations have to be chosen:
T (“—ZLI) and I’ (“b%?) respectively. The normalized distributions defined for o € R

conseql 1ently, are

It
Y= —"= B.8
G (1) Mo+ 1) (B.8)

1l
)= B.9
A=) I'a+1) (B.9)
\eusp(f) = Jf|+11 (B.10)

r ()

f (\‘ X

\dig(t) = M (B.11)
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For the values of o where the numerator has a pole, it is found for an integer k& > 0

X‘J‘r(f)|(‘;7k — 5(1\-—1)(1;)
VO], = CDE IS

o B (=D)kSCRI (R
\(‘ll.\])(f)l”:_zk_l = T

— )R SEE D () (e —
\Riii‘(t”(\f—‘zk:( i (2 _(1))1(

Differentiation of the distributions \4, |4

cusp

The derivatives of the normalized distributions are given by

O () =\ ()
I = 27N
(9/ \E"nsp(f) Q \-:lyxffl(t)

01\((;111"( ) Z\ZV\h}l)( )

which have been used in chapter 5.

and |t’31ff

(B.12)

(B.13)

(B.11)

(B.16)

(B.17)

(B.18)

(B.19)
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Samenvatting

Seismische-dataverwerking door
middel van de wavelet-
transformatie!

Een exploratie-geofysicus houdt zich bezig met het lokaliseren en karakteriseren van
fossicle-brandstofvoorraden in de ondergrond. Door een toenemende vraag naar
energie moet deze taak cfficiénter en nauwkeuriger volbracht worden. Iet onder-
havige procfschrift besclirij{t de rol van de wavelettransformatie hierin. De nadruk
wordt gelegd op de betekenis van de wavelettransformatie voor de bewerking en ana-
Jvse van seismische data. Bij deze verwerking wordt cen onderscheid gemaakt tussen
(1) de acquisitic van seismische data, (2) de voorbewerking van de seismische data.
(3) de seismische beeldvorming van de ondergrond. (4) de geologische karakterisatie
van de ondergrond en (5) de evaluatie van het potentiéle reservoir.

In hoofdstuk 2 worden algemene lineaire transformatics geitroduceerd. Deze
worden onderverdeeld in twee categoricén. De ecrste categorie wordt geassocicerd
met zelf-geadjungeerde operatoren. Deze operatoren leiden tot orthogonale en om-
keorbare transformatics. De tweede categorie wordt gerelateerd aan representaties
vau het wiskundige begrip groep. Een groep leidt tot een redundante famnilie van
colhierente toestanden. Onder deze categorie vallen de Gabor-transformatie en de wa-
velettransformatic. De wavelettransformatie is cen inwendig produkt van cen signaal
met cen set van analysefuncties die een constante vorm hebben. maar een variabele
breedte en cen variabele lokatie. Het gemiddelde van elk van deze analvsefuncties
is mul. De breedte wordt aangeduid door het begrip schaal. Na cen hehandeling
van de belangrijkste cigenschappen van de wavelettransformatie wordt hoofdstuk 2
besloten met ecn korte discussic over de toepassingen van de wavelettransformatic

fDutch summary of 4 warelet transform approach to seismic processing.
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op de seismische-dataverwerking. zoals in de eerste alinea besproken. Ilet nitgangs-
punt van de toepassingen is de eigenschap dat de wavelettransformatie “blind” is
voor cen signaal dat niet of langzaam verandert. en de eigenschap dat de wave-
lettransformatie op een natuurlijke wijze een signaal in details en benaderingen op
verschillende schalen ontbindt. De onderstaande figunr vat de toepassingen van de
wavelettransformatie samen.

In hoofdstuk 3 wordt de golfvergelijking voor één-weg golven afgeleid. Deze
dient als basis voor de afleiding van de één-weg representatic van seismische reflec-
tiedata. hetgeen het zogenaamde WRW-model oplevert. Dit is een model in ter-
men van propagatie-operatoren en een reflectic-operator. De propagatie-operatoren
zijn functies van de Helmholtz-operator. Aan functies van een operator wordt iu
hoofdstuk 3 een betekenis gegeven met bellp van een spectrale decompositie. Dit
is cen decompositic van het golfveld in eigenfunctics. Essentiecl hierbij is dat de
Helmholtz-operator een zelf-geadjungeerde operator is. Het gebruik van een spec-
trale decompositie heeft twee voordelen. Ten eerste geeft zij een nauwkeurige, maar
niet zeer efficiénte. representatic van de propagatie-operatoren, ook voor een sterk
lateraal variérende ondergrond. Een svnthetisch voorbeeld laat zien dat deze repre-
sentatie cen accurate beeldvorming van de ondergrond mogelijk maakt. Ten tweede
levert zij door middel van het spectrum cen beter begrip van golfpropagatic op.

De betekenis van de wavelettransformatie voor de in hoofdstuk 3 afgeleide
representatie van seismische reflectiedata wordt in hoofdstuk 4 geanalyscerd. De re-
presentatic van scismische reflectiedata kan gegeneraliscerd worden door gebruik te
maken van een operatornotatie. De transformaties die in hoofdstuk 2 geintroduceerd
zijn. kunnen nu gebruikt worden om seismische reflectiedata in andere domeinen te

representeren. Er wordt in detail cen datarepresentatie in termen van wavelets uit-

Data compressic LU LU e wpctar SUIEULALCILS- Beeldbowerkine
o pres: anaiyse representatie analyse T <
Acquisitie van Voorbewerking Scismische Geologische Evaluatic van
seismische data scismische data beeldvorming karakterisatic reservoir
Hoofdstuk 2 Hoofdstuk 2 Hoofdstuk 4 Hoofdstuk 5 Hoofdstuk 6
(kort) (kort) (uitgebreid) (uitgebreid) (uitgebreid)

Len overzicht van de toepassingsgebicden van de wavelettransformatic (bovenste rij). de
corresponderende stappen bij de analyse en bewerking van scismische data (middelste vij)

en de hoofdstukken waar de verschillende toepassingen worden besproken {onderste rij).
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gewerkt. Dit leidt tot een onderverdeling van de seismische data in een set van
multi-schaalexperimenten. De datarepresentatic in het wavelet domein wordt ge-
bruikt als uitgangspunt voor cen beeldvormingsschema met behulp van wavelets.
Een voordeel van de voorgestelde methode is het feit dat de seismische beeldvorming
op verschillende schalen kan worden uitgevoerd. Een duidelijk nadeel is het feit dat
de propagatic-operatoren geen ijle representatie in het wavelet domein hebben.

De betekenis van de wavelet transformatie voor het karakteriseren van reflectie-
cigenschappen van de ondergrond wordt in hoofdstuk 5 besproken. Iier worden
snelheidsproficlen beschouwd bestaande uit de som van cen constante achtergrond-
snelheid en cen functie met cen lokale geisoleerde singulariteit. De singulariteiten
zijn met name enkelzijdige homogene distributies.  Net hehulp van een wavelet-
transformatic-modulus-maxima-analyse (WTMM-analvse) en cen fasc-analyse is het
mogelijk enkelzijdige homogene distributies unick te karakteriseren in termen van
een singulariteitssterkte a en een geinduceerde fase . Dit leidt tot de zogenaamde
(p — a)-diamant. De reflectie aan dergelijke snelheidsproficlen voor loodrechte inval
is in sterke mate afhankelijk van de aclitergrondsnelhieid. Als de singuliere versto-
ring veel kleiner is dan de achtergrondsnelheid. dan is de soort van singulariteit uit
het karakter van de gereflecteerde respous af te leiden. Anderzijds. als de achter-
grondsnelheid veel kleiner is dan de singulicere verstoring. dan geeft het karakter van
de gereflecteerde golf geen uitsluitsel over de soort van singulariteit. Op basis van
akoestische impedanties. berekend uit snelheids- en dichtheidsmetingen in boorga-
ten, wordt geconcludeerd dat de singuliere verstoring in het algemeen kleiner is dan
de achtergrondsnelheid. De numerick gevalideerde analyse leidt tot de formulering
-an een equivalente Zoeppritz-grenslaag en van cen singulariteiten-gest uurde inversie
(sp1).

Ten slotte wordt in hoofdstuk 6 de rol van de wavelettransformatie bij de inter-
pretatie van 3-D gemigreerde seismische data heschreven. Hierbij is het essenticel dat
de wavelettransformatie “blind™ is voor iets wat langzaam verandert op de schaal
waarop het wavelet “kijkt”". Deze eigenschap helpt om uit een 3-D volume stra-
tigrafische gegevens en breuken in de geologische lagen te extraheren die normaal
gesproken slecht zichtbaar zijn. De wavelettransformatie wordt hicr tocgepast in drie
onafhankelijke vichtingen. Dit geeft de mate van verandering in de drie richtingen.
Een kwadratische optelling van de drie veranderingen geeft de totale verandering.
op cen specificke schaal en op cen specifieke lokatie. Uit het voorbeeld met cen ge-
migreerde dataset uit de Golf van Mexico blijkt dat breuken in de geologische Tagen
en met name rivierbeddingen uitstekend gelokaliseerd kunnen worden met deze ef-

ficiénte methode.
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