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DD-Pose - A large-scale Driver Head Pose Benchmark

Markus Roth!'%T and Dariu M. Gavrila®*

Abstract— We introduce DD-Pose, the Daimler TU Delft
Driver Head Pose Benchmark, a large-scale and diverse bench-
mark for image-based head pose estimation and driver analysis.
It contains 330k measurements from multiple cameras acquired
by an in-car setup during naturalistic drives. Large out-of-plane
head rotations and occlusions are induced by complex driving
scenarios, such as parking and driver-pedestrian interactions.
Precise head pose annotations are obtained by a motion capture
sensor and a novel calibration device. A high resolution stereo
driver camera is supplemented by a camera capturing the
driver cabin. Together with steering wheel and vehicle motion
information, DD-Pose paves the way for holistic driver analysis.

Our experiments show that the new dataset offers a broad
distribution of head poses, comprising an order of magnitude
more samples of rare poses than a comparable dataset. By an
analysis of a state-of-the-art head pose estimation method, we
demonstrate the challenges offered by the benchmark.

The dataset and evaluation code are made freely available
to academic and non-profit institutions for non-commercial
benchmarking purposes.

I. INTRODUCTION

Visual head pose estimation plays an essential role in
human understanding, as it is our natural cue for inferring
focus of attention, awareness and intention. For machine
vision, the task is to estimate position and orientation of
the head from images.

A wide range of uses exists for head pose estimation,
either directly or for derived tasks such as gaze estimation,
facial identification and expression analysis, when consid-
ering natural human-machine interfaces, augmented reality,
surveillance and automotive applications. In the automo-
tive domain, there are applications for driver convenience,
safety, and conditional automation. For convenience func-
tions, head pose can be used for virtual volumetric head-up
displays (HUD), auto-stereoscopic 3D displays and multi-
modal human-car interfaces. Inferring a driver’s pose can
benefit in safety applications, as it enables estimation of
distraction, intention, sleepiness and awareness. When taking
the vehicle’s surrounding into consideration, mutual gaze
with vulnerable road users (VRU) is of high interest for
warning and automatic braking systems [1]. SAE level 3
(conditional automation) involves a possible take-over re-
quest to the driver for a transition from autonomous to
manual driving mode. Currently, the driver’s ability to service
such request is maintained by requiring the driver to touch
the steering wheel periodically. This could be replaced by a
less obnoxious driver awareness recognition system.

Benchmarks (i.e. datasets and evaluation metrics) play a
crucial role in developing and evaluating robust head pose
estimation methods. A good benchmark not only allows
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Fig. 1: DD-Pose provides precise 6 DOF head pose an-
notation for 330k stereo image pairs acquired in an in-
car environment. The benchmark offers significant out-of-
plane rotations and occlusions from naturalistic behavior
introduced by complex driving scenarios. Annotations for
partial and full occlusions are available for each high reso-
lution driver camera image. An additional camera capturing
the interior of the car allows for further multi-sensor driver
analysis tasks.

to identify the challenges of a task, but also enables the
development of better methods for solving it. An in-car
head pose dataset provides difficult illumination conditions,
occlusions and extreme head poses. The recent popularity
of deep learning methods with their large model complexity
stresses the demand for a large dataset [2].

Available head pose datasets have drawbacks in terms
of size, annotation accuracy, resolution and diversity (see
Table I). To close this gap, we present DD-Pose, a large-
scale benchmark composed of 330k images from a high
resolution stereo driver camera with precise 6 degrees of
freedom (DOF) head pose annotations. DD-Pose includes
a variety of non-frontal poses and occlusions occurring in
complex driving scenarios. To extend its use from head pose
estimation to more holistic driver analysis, we also supply
images from a wide-angle interior camera and vehicle-data,
such as velocity, yaw rate and steering wheel angle.

Sample annotations of the benchmark can be found in
Figure 1.

II. RELATED WORK

There is an abundance of publicly available image-based
head pose datasets dating back nearly two decades [3]-[14]
(see Table I).
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Head pose datasets can be categorized by different aspects,
such as imaging characteristics, data diversity, acquisition
scenario, annotation type, and annotation technique. These
aspects play an important role on whether and how the
dataset identifies challenges of the head pose estimation task.

Imaging characteristics relate to the image resolution,
number of cameras, bit depth, frame rate, modality (RGB,
grayscale, depth, infrared), geometric setup and field of view.

Data diversity incorporates aspects such as the number
of subjects, the distribution of age, gender, ethnicity, facial
expressions, occlusions (e.g. glasses, hands, facial hair) and
head pose angles. Data diversity is essential to training and
evaluating robust estimation models.

Acquisition scenario covers the circumstances under which
the acquisition of the head pose takes place. The most
important distinction is between in-laboratory [4,7,8,11]-[13]
vs. in-the-wild [5,6,9,10,14] acquisition. While the former
restricts the data by defining a rather well-defined, static
environment, the latter offers more variety through being
acquired in unconstrained environments such as outside,
thus covering many challenges like differing illumination
and variable background. Head movement can be staged
by following a predefined trajectory or can be naturalistic
by capturing head movement while the subject performs a
different task, such as driving a car.

Annotation type describes what meta-information, such as
head pose, comes alongside the image data and how it is
represented. Head pose is defined by a full 6 degrees of
freedom (DOF) transformation from the camera coordinate
system to the head coordinate system, covering 3 DOF for
translation and 3 DOF in rotation. Head pose datasets differ
in how many of those DOFs are provided alongside the
images, i.e. whether only a subset of the translation and
rotation parameters is given. Ultimately, annotation types
differ in their granularity of sampling the DOF space: there
are discrete annotation types which classify a finite set of
head poses, and there are continuous annotation types which
offer head pose annotations on a continuous scale for all
DOFs.

There are different annotation techniques for obtaining
the head pose annotation accompanying each image. The
annotation technique has a large impact on data quality. It can
be categorized into manual annotations vs. automatic anno-
tations. For manual annotations, human experts annotate the
image data according to a label specification [4]. Automatic
annotations can be divided into data-based annotations, com-
puted by algorithms on the image data [8,13], and sensor-
based annotations, which in turn use an additional hardware
sensor for obtaining the head pose for each image [7,11,14].

Manual annotations do not need additional hardware, but
are prone to introduce errors and biases. E.g. a human
annotator can only annotate in the image plane, thus needing
to guess the distance part of the translation of the head [6,10].
There is also inter-annotator variability through different
interpretation of the same scene. Additionally, as manual
annotations consume human time, its cost scales linearly with
the amount of to data to be annotated.

Automatic annotations based on algorithms computing the
annotations from the image data are fast to obtain, but induce

systematic errors of the underlying algorithm and will not
allow to disambiguate between annotation errors and errors
induced by the method under test.

Automatic annotations based on sensors make use of addi-
tional reference sensors during the data acquisition process.
The reference sensor measurements should be calibrated to
the head coordinate system and calibrated and synchronized
to the camera images. There are different types of reference
sensors which differ in their measurement method. Among
those are electromagnetic sensors [7,11], inertial sensors,
vision-based sensors, 3D scanners [4], optical marker track-
ing sensors [14], and hybrid combinations of them. An
optimal reference sensor for head pose estimation should be
accurate, free of drift, robust to disturbance, and measure all
6 DOFs on a continuous scale.

From the aspects mentioned above, we focus on datasets
with continuous head pose annotations for all 6 DOF which
offer naturalistic scenarios and a large data diversity.

Many recent models for classification and regression tasks
are based on deep convolutional neural networks [2]. Their
high model complexity demands for a very large number of
training examples. Therefore, we also focus on large datasets
in terms of number of images.

An overview of currently available datasets is given in
Table 1. Respective example data can be found in Figure 2.

We subdivide the datasets by their acquisition scenario into
two groups, namely generic head pose datasets vs. driving
head pose datasets. The latter come with desirable properties
such as naturalistic scenarios, a large data diversity and
challenging imaging characteristics.

A. Generic Head Pose Datasets

Bosphorus [4] contains S5k high resolution face scans
from 105 different subjects. The 3D scans are obtained by
a commercial structured-light based 3D digitizer. It offers
13 discrete head pose annotations and with different facial
expressions and occlusions.

ICT-3DHP [7] provides 1400 images and depth data from
10 subjects acquired with a Kinect v1 sensor. 6 DOF head
pose annotations are measured by a magnetic reference
sensor. The authors do not detail on whether calibration and
synchronization of the reference sensor measurements to the
camera images is performed.

Biwi Kinect [8] consists of 16k VGA images and depth
data from 20 subjects depicting the upper body. The data was
acquired by a Kinect v1 sensor. 6 DOF head pose annotations
are provided by fitting user-specific 3D templates on depth
data, which has limitations when occlusions are present. As it
is recorded in a laboratory environment, it provides a uniform
and static background.

gi4e hpdb [11] contains 36k images from 10 subjects
recorded with a webcam in an in-laboratory environment.
Head pose annotations are given in 6 DOF using a magnetic
reference sensor. All transformations and camera intrinsics
are provided. Head pose annotations are given relative to an
initial subjective frontal pose of the subject.

SynHead [12] contains 511k synthetic images from 10
head models and 70 motion tracks. The rendered head mod-
els are composed with random background images, providing



TABLE I: 2D/3D face datasets with continuous head pose annotations.

Dataset GT Year #Cams x w xh #Images #Subjects f/m Head pose Reference Scenarios

Bosphorus [4] 3D 2008  1x1600x1200 Sk 45/60 relative guided choreographed facial expressions

ICT-3DHP [7] 3D 2012 1x640x480 1k 6/4 relative magnetic choreographed large rotations

Biwi Kinect [8] 3D 2013 1x640x480 16k 6/14 relative guided, ICP choreographed large rotations (yaw, pitch)
gide hpdb [11] 2D 2016  1x1280x720 36k 4/6 relative magnetic choreographed large rotations

SynHead [12] 3D 2017  1x400x400 511k 5/5 absolute synthetic data 70 different motion tracks

UbiPose [13] 3D 2018  1x1920x1080 14k 22¢ absolute 3DMM service desk interactions

RS-DMV [5] 2D 2010  1x960x480 13k 6¢ N/A N/A naturalistic driving

Lisa-P [6] 2D 2012 1x640x480 200k 14¢ relative POS [15] naturalistic driving, choreographed large yaw
NDS HPV [9] 2D 2015  1x720x480 2PB¢ >3100¢ N/A N/A naturalistic driving

VIVA [10] 2D 2016  1x*544 1k N/A relative POS [15] naturalistic driving

DriveAHead [14] 3D 2018  1x512x424¢ IM 4/16 absolute mo-cap naturalistic driving, parking

DD-Pose (ours)® 3D 2019  2x2048x2048 2x330k 6/21 absolute mo-cap naturalistic driving, large rotations and translations

“ only head image crops provided. Mean size 25x50

b additional data streams recorded: front facing camera, interior camera facing driver from the rear right

¢ female/male ratio not provided by the authors
4 number of images not provided. Assumed to be >10°

indoor/office scenery. As this is a generative method for data
synthesis, head pose annotations are very accurate. Making
use of 10 head models provides little diversity of human
facial expressions.

UbiPose [13] features natural role played interactions with
10k frames obtained by a Kinect v2 sensor. 22 subjects are
recorded. Head pose was annotated automatically based on
the raw footage using initial facial landmark annotations
and fitting a 3D morphable model. Annotations not fitting
the data were pruned by human annotators. Subjects were
captured from a relatively large distance.

B. Driving Head Pose Datasets

RS-DMV [5] contains 13k images from 6 subjects cap-
tured in naturalistic outdoor and simulator scenarios. Head
pose annotations are not provided.

Lisa-P [6] offers 200k images from 14 subjects with
a resolution of 640x480. Head orientation annotations are
obtained by using the Pose from Orthography and Scaling
(POS) algorithm [15] on manually labeled facial landmarks.
By using an orthographic projection, this approach only
allows for approximate position and orientation estimates.

NDS-HPV [9] contains 2PB of highly compressed, low
resolution images from a naturalistic driving study. It con-
tains images of over 3100 subjects collected over a period of
over 2 years. Head pose annotations are not provided, thus
restricting its use to qualitative analysis.

The VIVA head pose estimation benchmark [10] is a
test set consisting of images with 607 faces, out of which
323 are partially occluded. The naturalistic driving images
were selected both from research vehicle recordings and
YouTube videos to display harsh lighting conditions and fa-
cial occlusions. The head pose annotations of the test dataset
are not released, but evaluation is possible by submitting
hypotheses through a benchmark website. No training images
are provided.

DriveAHead [14] is the nearest neighbor of our proposed
benchmark. It features 1M images and depth information
acquired by a Kinect v2 sensor during naturalistic driv-
ing. 20 different subjects appear in the recordings. Images
were collected with a resolution of 512x424 pixels. 6 DOF
continuous head pose annotations are obtained by a mo-
tion capture system which measures the pose of a marker

fixated at the back of the subject’s head. The coordinate
transformation between the head mounted marker coordinate
system and the head coordinate system is calibrated per-
subject by measuring the position of 8 facial landmarks of
the face of each subject after fixating the head-mounted
marker. The transformation between the reference sensor
coordinate system and the camera coordinate systems are
known, although the calibration process is not described.
Alongside, per-image annotations for occlusions and whether
the subjects wears glasses or sunglasses is provided.

The large number of image samples enables training of
deep convolutional neural networks for head pose estimation.
Parking maneuvers and driving on a highway and through
a small town results in naturalistic head movements, thus
providing distributions of head orientation angles and head
positions which are typical for naturalistic drives.

As no intrinsic camera parameters are provided, 3D points
in the camera coordinate system cannot be projected into
the image space. Consequently, both head position and
orientation estimation methods have to implicitly adapt to
the specific dataset. DriveAHead provides cut-outs of faces
with a mean inter-pupil distance of 35 pixels, thus targeting
on methods for low-resolution head pose estimation.

III. DD-POSE - A LARGE-SCALE DRIVER HEAD POSE
BENCHMARK

We introduce DD-Pose!, a large scale head pose bench-
mark featuring driver camera images acquired during com-
plex naturalistic driving scenarios. The proposed benchmark
provides 330k high resolution images from 27 subjects with
precise continuous 6 DOF head position and orientation
annotations. Occlusions from steering wheel, hands, and ac-
cessories such glasses or sunglasses are present and manually
annotated as such on a per-frame basis.

High resolution images of the driver’s head are acquired
by a stereo camera setup mounted behind the steering wheel.
Continuous frame-wise head pose is obtained by a optical
marker tracker measuring the 6 DOF pose of a marker fixated
on the back of each subject’s head. We find the per-subject
transformation from the head mounted marker to the head
coordinate system by a novel calibration device.

! Available at https://dd-pose-dataset.tudelft.nl
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Fig. 2: Example data of the investigated 2D/3D head pose
datasets. The datasets differ in many aspects, such as sen-
sor modalities (RGB, IR, depth), in-lab vs. synthetic vs.
naturalistic driving, precision of head pose annotation and
resolution.

In addition to the driver stereo camera, the proposed setup
uses a wide angle RGB camera depicting the driver from the
rear side to allow for upper-body analysis of the driver action.
Vehicle parameters such as steering wheel angle, velocity and
yaw rate are also part of the benchmark.

All sensors are calibrated intrinsically and extrinsically,
such that the coordinate transformations between their co-
ordinate systems are known. Depth information can be
extracted from the provided stereo camera images by using
a disparity estimation algorithm, e.g. semi-global match-
ing [16]. The optical marker tracker and the stereo driver
camera are electrically synchronized, resulting in a head pose
measurement free of drift and latency.

DD-Pose offers a broad distribution of poses and challeng-
ing lighting conditions like dark nighttime driving, tunnel
entrances/exits and low standing sun. 12 driving scenarios
were conducted to gain highly variant, yet naturalistic images
of the driver. 9 driving scenarios comprise drives through a
big German city with lane merges, complex roundabouts,
parking, and pedestrian zones with pedestrian interactions.
In addition to driving scenarios, we provide 3 standstill
scenarios covering a broad range of head poses and a
scenario with mobile phone use.

Overall, DD-Pose offers a variety of naturalistic driving

data which we believe is crucial for development and eval-
uation of head pose estimation algorithms in unconstrained
environments. With 4 megapixels per camera and a mean
inter-pupil distance of 274px, DD-Pose offers around 60
times more face pixels than DriveAHead to extract features
from fine-grained face structures such as eye gaze and
evaluate whether high resolution is a benefit to the methods
under test.

A. Contributions

Our contributions by supplying DD-Pose to the scientific
community are manyfold: (a) the driver analysis benchmark
from naturalistic driving scenarios features a broad distri-
bution of head orientations and positions with an order of
magnitude more samples of rare poses than comparable
datasets (see Figures 5 and 6), (b) the high resolution
stereo images allow for analysis of resolution, depth, and
taking image context around faces into account, (c) the
supplemental camera of the driver cabin, combined with
steering wheel and vehicle motion information, pave the way
for holistic driver analysis, rather than head pose only.

Example data of the proposed benchmark is shown in
Figure 1.

B. Scenarios

The definition of driving scenarios has an essential impact
on the distribution of the head pose and textural variability
of the data. E.g., a drive along the highway would be very
biased towards a frontal pose and not be beneficial to train
and evaluate head pose estimation methods. We favor non-
frontal poses by implicitly forcing the driver have to look
out of the car, e.g. by interacting with pedestrians in a
pedestrian zone, and instructing the driver to read shop
names on the side of the street. Yet, to be representative
of naturalistic drives, we included scenarios of standard
traffic manoeuvres, such as passing zebra crossings, highway
merges, roundabouts, parking and turning the vehicle. To
provide more extensive poses, scenarios while standing are
included, where the driver is instructed to fixate his or her
gaze on predefined locations within the car, forcing large
head rotations and translations, and making a phone call.

The scenarios of DD-Pose are defined in Table II, along-
side with their intended properties on data variability.

For the in-car gaze fixation scenario (Table II, #9) we
define the following protocol: the car stands still with the
steering wheel in straight position. The subject is asked to
turn the head to point at a predefined set of targets in the car.
A button is to be pressed by the subject for the period he or
she is fixating the object, thus annotating the time stamps of
fixation ad-hoc. Among the targets are mirrors, in-car buttons
and displays.

In summary, these carefully-chosen scenario definitions re-
sult in a large variance in head rotation and head translation,
but also facial expressions.

C. Hardware Setup and Coordinate Systems

We equipped a research vehicle with a stereo camera
facing the driver (each 2048x2048 px, 16 bit, IR sensitive).
It is mounted near the speedometer. An infra-red LED
illuminates the driver. A wide angle interior camera (RGB)



# Description Rot Trans  Occl  Stw Occl  Facial ex  Illum var  Ped inter =~ Remark

0 generic driving low low low med high med low talking

1 zebra crossing low low low low med med high crossings and bus stops

2 merge high  med low low med med low mirrors, look over shoulder
3 tunnel low low low low med high low entrance, exit

4 roundabout high  med low low med med low also multi-lane roundabout
5 ped zone high  med low high med med high incl. two-step turn

6 intentional occl med med high  med high med low occlusions, facial expressions
7 shop name reading  high  med med  low high med high shops left and right

8 parking high  high med  high high med med parking in

9 in-car fixation high  med med no high med low no driving

10 large translations med  high med no med med low no driving

11 large rotations high  med med no med med low no driving

12 hand-held calling high  med high no med med low no driving

Rot: rotation; Trans: translation; Occl: occlusion; Stw occl: steering wheel occlusions;
Facial ex: facial expressions; Illum var: illumination variance; Ped inter: pedestrian interaction.

TABLE II: Driving scenario definitions and the resulting features of the proposed benchmark. 12 scenarios are defined to
implicitly enforce a broad distribution of head poses and texture.

captures the driver’s cabin from the rear side. We mounted
an optical marker tracker on the rear right behind the driver.
The optical marker tracker can measure the 6 DOF pose of a
marker consisting of multiple IR retroreflective spheres. The
subject wears such a marker on the back of his or her head,
which is fixated using a rubber band.

The driver stereo camera, LED illumination and optical
marker tracker are electrically triggered at 15 Hz. The other
sensors are synchronized.

We designed a head calibration device which defines the
head coordinate system when attached to the driver’s head
while being simultaneously being measured by the optical
marker tracker.

Each camera, the optical marker tracker, the head mounted
marker, the driver’s head and the car’s chassis define a
coordinate system. We define a transformation between two
coordinate systems A and B as a homogeneous matrix
TA~8B which transforms a homogeneous point p? into p*
by pA — TA—>B _pB'

See Figure 3 for a visual overview of the sensors, their
coordinate systems and the transformations in between them.

D. Optical Marker Tracker to Driver Camera Calibration

Tcam,drivcr,lcft—>markcr,trackcr and the camera intrinsic pa-
rameters are obtained simultaneously by a calibration routine
which makes use of 3D checkerboard corner positions.
We obtain the 3D checkerboard corner positions inside the
marker tracker coordinate system by attaching retro-reflective
spheres to the checkerboard, thus making it a marker
measurable by the optical marker tracker. With the 3D
checkerboard corner positions and their corresponding 2D
projections in the image, a bundle adjustment method is used
to optimize intrinsic and extrinsic camera parameters, such
as focal lengths, principal points, distortion parameters and
rectification parameters [17] Tcam,driver,left%marker,tracker
is obtained as a by-product of the optimization.

E. Marker to Head Calibration

We define the head coordinate system as follows. The
origin is located in the nasion of the head. The z-axis points
in frontal direction. The y-axis points towards the left ear.
The z-axis points upwards; it touches the chin centrally. The
xz-plane mirrors the head.

cam_interior

N

marker_tracker

Tmal‘ker_trackerama rker
t

chassis

Tma rker-head

cam_driver_right
camfdriverﬁleft(/ - g

Fig. 3: In-car hardware setup, coordinate systems and trans-
formations. White arcs denote static transformations ac-
quired once during the setup calibration process. The yellow
arc denotes the transformation Tmarker-tracker—marker peino
measured by the optical marker tracker for each frame at time
t. The orange arc denotes the transformation 7' marker—head
being calibrated once per subject s. All transformations are
provided with DD-Pose.

We designed a calibrator to attach to the driver’s head
during the per-subject calibration process. It provides a
notch to touch the nasion. A chin slider is adjusted such
that it touches the chin centrally. Two cheek sliders are
slid against the head such that they touch the cheeks with
equal force, thus defining symmetry about the xz-plane. It
is also equipped with retroreflective spheres such that its
pose can be measured by the optical marker tracker. Its
coordinate system is defined such that it coincides with the
head coordinate system above. When it is attached properly,
the per-subject transformation between marker and head is
then T;narker—mead = T;narker—)calibrator. This process has
to be performed once per subject and is valid as long as
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Fig. 4: The per-subject head calibration process. A calibrator
whose pose can be measured by the optical marker tracker
is attached to the head by touching the nasion and both chin
and cheek sliders in proper position.

the marker is fixated at the subject’s head. The calibration
process is illustrated in Figure 4.

FE. Data Preprocessing

Depending on the driver’s head pose, the retroreflective
spheres of the head-worn marker are visible in the camera
image. To avoid models to overfit to these, we remove
them. We extend the approach of [14], where the projected
locations of the spheres are filled with interpolations of the
values of their surroundings. As markers will mostly be
hidden behind the subjects’ head, we employ a heuristic to
only blur the spheres which are likely visible. The heuristic
is based on an empirically found range of head poses and
conservatively set, i.e. rather fill hair or face border than
leave spheres visible.

G. Occlusion Annotations

We manually annotated each driver camera images for its
occlusions based on the visibility of facial landmarks, as
defined in [18]. none: all 68 landmarks visible; partial: at
least one landmark occluded; full: all landmarks occluded.

H. Dataset splits

To allow for a fine-grained evaluation, we split the data
into the disjoint subsets easy, moderate, and hard depending
on the angular distance of the measured head pose from a
frontal pose (looking directly into the driver camera) oy and
the presence of occlusion. easy: a¢€[0,35)° Aoccle{none};
moderate: (a;€[0,35)° Aoccle{partial}) V (o f€[35, 60)° A
occle{none, partial}); hard: a;€[60, 00)° V occle{full};

IV. DATASET ANALYSIS

DD-Pose comprises recordings of 27 subjects, of which
21 are male and 6 are female. The average age is 36 years.
The youngest and oldest driver are 20 and 64 years old.

There are 330k measurements of the driver stereo im-
age camera along with interior camera images. Head pose
measurements are available for 93% of the images. The
proportion of the dataset splits is (easy, moderate, hard) =
(55%, 33%, 12%).

For the left driver camera images, 5% are fully occluded,
19% are partially occluded (not counting glasses or sun

glasses) and 76% have no occlusion. In 41% of the images,
the driver wears glasses, in 1% sunglasses.

There are 13 scenarios, out of which 9 are driving sce-
narios (#0 - #8) and 4 are non-driving scenarios (#9 - #12);
see Table II. The shortest scenario (#3, tunnel entrance/exit)
is on average 24s long. The longest scenario (#5, pedestrian
zone) is on average 211s long.

The mean inter-pupil distance is 274px (cf. DriveAHead:
35px [14]).

The distribution of head orientation angles of DD-Pose
and DriveAHead [14] is depicted in Figure 5. The angles
vary in the following ranges, ignoring outliers with less than
10 measurements in a 3° neighborhood: roll € [—63..60]°;
pitch € [—69..57]°; yaw € [—138..126]°. The mean pitch
angle is —20°, caused by the driver camera mounted at the
speedometer.

The distribution of head position occurrences of DD-Pose
and DriveAHead [14] is depicted in Figure 6. DD-Pose
covers a broad volume of head locations.

Overall, DD-Pose offers an order of magnitude more data
for off-centered head poses than comparable datasets [14].

V. EVALUATION

To show that the proposed benchmark contains challenging
imagery, we evaluate the performance of two head pose
estimation methods on it.

A. Head Pose Estimation Methods

One method is the head pose prior, which always assumes
the head to be present in the mean pose obtained from the
dataset. The second method performs head pose estimation
by localizing facial landmarks and solving the Perspective-
n-Point (PnP) Problem.

Prior: on a dataset with a large amount of frontal poses,
this method is expected to perform very well, despite per-
forming bad on rare poses. The mean head position of DD-
Pose wrt. the camera is ¢ = (0.011m,0.006m, 0.608m).
The mean rotation is yaw = —6.6°, pitch = —20.1°,
roll = 0.7°.

OpenFace 2.0: the second method we evaluate is Open-
Face 2.0 [19], a state-of-the-art face analysis toolkit. Head
pose estimation is performed by localization of facial land-
marks via Convolutional Experts Constrained Local Model
(CE-CLM). The facial landmarks are assigned to a 3D
landmark model in head coordinates. The pose is found via
solving the Perspective-n-Point (PnP) problem, i.e. finding
the pose of the head coordinate system with respect to the
camera coordinate system which minimizes the projection
error. We use the pretrained models from the authors [19], but
transform the pose such that it fits the head coordinate system
defined above. The model uses multi-view initialization to
account for extreme poses.

B. Evaluation Metrics

Evaluation metrics play an important role on evaluating
the performance of the methods for the specific task. The
task of head pose estimation is evaluated for position and
orientation separately.

Recall: recall defines on which percentage of the images
a head hypothesis from head pose estimation method exists.
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Fig. 5: Distribution of head orientation angles of the proposed benchmark DD-Pose and DriveAHead [14] with respect
to a frontal pose into the camera. While both datasets cover a broad range of orientations, DD-Pose supplies an order of

magnitude more data for non-frontal head orientations.
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Fig. 6: Distribution of head positions of DD-Pose and DriveAHead [14] in the camera coordinate system. Although the
action volume of the driver is limited in the driver’s seat, the datasets differ in their position distribution. DD-Pose covers
a larger lateral space, is unbiased in y-direction and also depicts very nearby heads.

Images without a hypothesis are left out when evaluating
position and orientation.

Position: we evaluate the mean Euclidean distance for
each axis and the Euclidean distance between ground truth
head origin and hypothesis head origin.

Orientation: the commonly used metric mean angular
error (MAE) can be performed on each of the three rotation
angles separately or by computing a single rotation angle
between ground truth and hypotheses. In both cases, outliers
will have a small weight on biased datasets, e.g. with many
frontal poses and a few extreme poses. For an unbiased
evaluation of head rotation, we use balanced mean angular
error (BMAE) introduced in [14]. It splits the dataset in bins
based on the angular difference from the frontal pose and
averages the MAE of each of the bins:

d
BMAE j == > $iirari € ANN[0, k]

where ¢; ;1 q is the MAE of all hypotheses, where the angular
difference between ground truth and frontal pose is between
i and i + d. During evaluation, we use bin size d := 5° and
maximum angle k := 75°.

C. Recall

The prior method, by construction, has a recall of 1.0.
The recall of OpenFace 2.0 on the whole dataset is 0.76 and
for the subsets (easy, moderate, hard) = (0.95, 0.65, 0.16).
A more fine grained analysis on the recall value depending
on the angular distance from the frontal pose is found in
Figure 7. One can see the influence of the definition of the
subsets. While the easy subset offers a large recall as it covers
unoccluded heads with angles up to 35°, the moderate subset
covers the partial occlusions in this range with a lower recall.
The overall recall drops with increasing angle.
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Fig. 7: Recall depending on angular difference from frontal
pose. The recall of OpenFace 2.0 on the whole dataset drops
with increasing rotation from the frontal pose.

Prior OpenFace 2.0
Subset Y . Lo - Y . Lo
all 40 21 36 66 8 8 41 44
easy 23 19 32 49 5 6 31 33
moderate 54 21 38 78 12 10 58 63
hard 83 27 46 107 44 30 134 148

TABLE III: Position errors (mm). Errors along all axes and
Euclidean Distance Lo for the subsets.

D. Position

The errors in head position estimation are listed in Ta-
ble III. The errors on the prior method implicitly denote
statistics of the distribution of the subsets. The Lo error
increases from 5cm to llcm from the easy to the hard
subset, caused by a larger position variance around the mean
position in the measurements. OpenFace 2.0 localizes the
head position in x and y direction for the easy and moderate
subsets within 1cm, increasing up to 4cm for the hard subset.
OpenFace 2.0 has approximately 4-5 times larger errors in 2
direction than for the other two dimensions.



Prior OpenFace 2.0
Subset -
MAE BMAE MAE BMAE roll pitch yaw
all 20 32 9 16 5 4 4
easy 11 14 5 5 3 3 2
moderate 27 26 14 13 8 6 8
hard 45 34 33 31 13 9 27

TABLE IV: Overall mean angular errors (MAE) and bal-
anced mean angular errors (BMAE;5 75) in degrees of the
head pose estimation methods for the subsets; MAE for roll,
pitch, yaw of OpenFace 2.0 (deg).
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Fig. 8: Mean angular errors (MAE). All methods increase in
terms of MAE for more extreme poses.

E. Orientation

An overview of the mean angular errors (MAE) and
balanced mean angular errors (BMAE) of the methods on
DD-Pose is given in Table IV. Figure 8 depicts the MAE
depending on the angular difference from a frontal pose.

The prior method implicitly denotes statistics on the orien-
tation measurement distribution around the mean orientation.
The MAE increases from 11° to 45° from the easy subset
to the hard subset, showing the increasing variance for the
more difficult subset.

The MAE of OpenFace 2.0 ranges from 5° on the easy
subset to 33° on the hard subset, i.e. the error increases
by more than a factor of 6 when facing more challenging
poses and occlusions. For comparison: the reported MAE of
OpenFace 2.0 is 2.6° on the BU dataset [3] and 3.2° on the
ICT-3DHP dataset [19].

VI. CONCLUSIONS

In this paper, we introduced DD-Pose, a large-scale driver
head pose benchmark featuring multi-camera images of 27
drivers captured during 12 naturalistic driving scenarios. The
benchmark contains 330k frames with high resolution stereo
images from a driver camera, accompanied by an interior
camera and driving meta data such as velocity and yaw
rate. It provides per-frame head pose measurements and
occlusion annotations. Precise head pose is measured by a
novel calibration device. All sensors are fully-calibrated and
synchronized.

The experiments showed, that DD-Pose provides chal-
lenges for a current state-of-the-art method due to its richness
in extreme non-frontal head poses.

We therefore recommend DD-Pose for training and bench-
marking of head pose estimation methods which have to
perform robustly in challenging conditions.
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