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Nomenclature 
 

List of acronyms and abbreviations 
 

ADD: Antecedent dry days 

ABPM: Average based prediction model 

AMC1-3: Antecedent moisture condition 1 (dry) to 3 (wet) 

BCDEPS: Baltimore County Department of Environmental Protection and sustainability 

C: Cigarette butts 

CB: Chips bags 

CP: Configuration parameter 

CSO: Combined Sewer Overflows 

CWP: Center for Watershed Protection 

FP: Fixed parameter 

GLB: Glass bottles 

GRB: Grocery bags 

GSM: Greedy search method 

HRU: Hydrologic response units 

INT: Internal variable 

IDW: Inverse distance weighted interpolation 

IV: Input variable 

JFW: Jones Falls Watershed 

LR: Loading rate 

M1: Model one. Experimental model one with precipitation only 

M2: Model two. Experimental model two with surface runoff from precipitation only 

M3: Model three. Experimental model three which includes street sweeping and antecedent rainfall. 

M4: Model four. Experimental model four which includes wind. 

ML: Marine litter 

NN: Nearest neighbor (method/algorithm) 

OV: Output variable 

PB: Plastic bottles 

PT: Polystyrene 

PTM: Particle tracking method 
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SA: Simulated annealing 

SRD: Specific river discharge 

SWAT: Soil and Water Assessment Tool 

TP: Thiessen Polygon 

WPB: The Waterfront Partnership of Baltimore 

WWTP: Waste water treatment plant 

 

Conventions 
 

The following conventions apply: 

 A decimal separator is denoted with a point (.) 

 A thousands separator is denoted with a comma (,) 

 

List of symbols 
 

Symbol Description Unit 

𝐴 Area of drainage area (smallest HRU used) [m2] 

𝐶𝑁 Runoff coefficient for NRCS curve number method - 

𝐶𝑁1/𝐶𝑁𝐼  Runoff coefficient for AMC1 - 

𝐶𝑁2/𝐶𝑁𝐼𝐼 Runoff coefficient for AMC2 - 

𝐶𝑁3/𝐶𝑁𝐼𝐼𝐼 Runoff coefficient for AMC3 - 

𝐶𝑁1𝑆/𝐶𝑁2𝑆/𝐶𝑁3𝑆 Runoff coefficient for AMC1-3 incl. slope correction - 

𝐶𝑁𝑖,𝑘 CN value for land use group i belonging to sub watershed k - 

𝐶𝑁𝑖,𝑖𝑖 CN value for a specific land use group i and soil group ii - 

𝑑𝑡 Transport distance from input point [m] 

𝐸 Quantity of entrained debris [kg] 

𝑒𝑓(𝐹, 𝑅𝑒𝑡) Entrainment factor [kg/m] 

𝐹 River flow [m3/s] 

𝑓𝑓𝑖,𝑘 Fraction of sub watershed k allocated to land use i [%] 

𝑓𝑓𝑘,𝑖𝑖 Fraction of sub watershed k allocated to soil group ii [%] 

𝐺 Waste generation rate person [kg/person/day] 

𝐼𝑎  Initial abstraction (losses before surface runoff) [mm] 

𝑘𝑝 Coefficient which relates surface runoff to debris inputs [kg/m3] 

𝑘𝑤 Coefficient which relates wind speed and duration to debris 

inputs 

[kg s/m2] 
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𝑚𝐴𝐷,𝐺 Anthropogenic debris generated on land [kg] 

𝑚𝐷,𝐴 Quantity of available debris on land [kg] 

𝑚𝐷,𝐼 Land debris inputs into river [kg] 

𝑚𝐷,𝑃 Quantity of debris removed by precipitation (surface runoff) [kg] 

𝑚𝐷,𝑊 Quantity of  debris removed by wind (surface runoff) [kg] 

𝑚𝐷,𝑅 Quantity of  debris removed by sweeping or other cleaning 

methods 

[kg] 

𝑚𝑁𝐷,𝐺 Natural debris generated on land [kg] 

𝑁 Baseload natural debris (stem, bark, leaves etc.) [kg/day] 

𝑂 Model output: aggregated quantity of debris accumulated 

downstream 

[kg] 

𝑃𝑜𝑝 Population size along the river banks [persons] 

𝑃𝑜𝑝𝑟  Relative population size of sub watershed k to the whole 

watershed 

- 

𝑃𝑏 Precipitation threshold value [mm] 

𝑃 Precipitation total [mm] 

𝑝 Propagation factor - 

𝑃5 Total antecedent precipitation 5 days prior to  precipitation 

event 

[mm] 

𝑄𝑏 Surface runoff threshold value [m3/s] 

𝑄 Surface runoff over smallest HRU/drainage area used [m3/s] 

𝑟 Percentage of mismanaged debris [%] 

𝑟𝑓(𝐹) Retention factor [m-1] 

𝑅𝑒𝑡 Quantity of retained debris [kg] 

𝑆 Potential maximum soil moisture retention after runoff begins [mm] 

𝑆𝐹 Seasonal factor, accounts for differences in tourism and 

outdoor presence of population 

- 

𝑆𝑆 Seasonal shedding factor for natural debris - 

∆𝑡 Time interval [day] 

𝑉 Wind speed [m/s] 

𝑉0 Threshold wind speed for wind generated surface runoff [m/s] 

𝑊𝐴 Factor for wind generated anthropogenic debris - 

𝑊𝑁 Factor for wind generated natural debris - 

𝛼 Slope [m/m] 

𝜆 Initial abstraction ratio - 
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Abstract 
‘A planetary crisis’ [3], this ominous warning was given about the growing presence of anthropogenic 

debris in marine waters, plastic in particular. Debris accumulation in freshwater and marine water leads 

to a myriad of problems, such as decrease of aesthetic appeal, damage to nautical traffic, harm to flora 

and fauna and a potential risk to human health by contamination of human nutrition. Debris were 

defined in this report as all undesired synthetic, processed or natural items or fragments that are being 

transported by rivers from land towards the marine ecosystem.   

One of the remedies to this problem is the extraction of debris in downstream sections of a river. 

Removal of debris downstream is advantageous for several reasons. Firstly, rivers are an important 

pathway for debris transport to the marine ecosystem. Secondly, ports and harbors are frequently 

located downstream, facilitating the removal of debris due to intrinsic interest of the local operators. 

Thirdly, downstream removal covers debris inputs from the whole length of the river. Fourth and finally, 

the downstream section is the last location where debris are still heavily concentrated in one area, 

before spreading out over the vast expanse of the marine waters. 

In order to facilitate the effective removal of debris it is believed beneficial to perform removal 

operations during times of large accumulation of these debris. To achieve this, a prediction model can 

be developed aimed at predicting debris accumulation based on certain predictors.  

Debris removal operations and hence debris prediction models should focus on macro debris (>5mm) 

for several reasons. Firstly, macro debris, though less numerous, constitute the majority of the weight. 

Secondly, micro debris can be found throughout the water column while macro debris are predominant 

at the surface, which makes debris removal easier. Finally, micro debris (<5mm) removal is currently 

not worth the cost.  

Fluvial accumulation of debris fluctuates heavily due to the fluctuations of the factors causing this 

accumulation. From the observed datasets, accumulation can be categorized as a base accumulation 

with large pronounced jumps in the distribution, with peaks varying in size although other characteristics 

could be present as well. The following main characteristics were identified: jumps (temporary, fast 

change), seasonal fluctuations (temporary, slow change), trends (permanent, slow change), and steps 

(permanent, fast change). A prediction model should focus on jumps but will eventually, once 

implemented, need to account for the other characteristics, using time series analysis. 

Debris inputs are mainly influenced by precipitation induced surface runoff. Antecedent dry days (ADD), 

total rainfall volume and rainfall intensity influence the impact of precipitation. Local soil and land use 

characteristics have a large influence on the effect of precipitation. Other factors include wind, 

government legislation, temperature, special events, urban development, tourism, waste management 

and public mentality. The impact of each of these factors is always synergetic with the presence of other 

factors. The propagation of debris through the fluvial system is affected by river discharge, which is 

often strongly correlated with upstream precipitation. Other factors are the presence of hotspots, 

vegetation, the slope of the riverbanks and fluvial geo- or anthropogenic morphology. Lateral transport 
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of debris is influenced by wind, input locations and hydrodynamic events like watercourse obstacles, 

confluence of tributaries and river bends. 

Most existing debris input models are steady state and often consider a single source. If all micro debris 

models are excluded, Wan et al. (2018) [29] remains as the main benchmark spatio-temporal explicit 

model for the application envisioned in this report. This model proves its merit in the use of a detailed 

semi-distributed surface runoff model.  It only accounts for surface runoff, waste management and 

public mentality however. Armitage et al. (1998) [47], though steady state, is more inclusive by including 

ADD. Existing macro debris propagation models are rare. Spatio-temporally explicit propagation models 

are either empirical stochastic models, numerical or analytical models. Their focus however is mostly on 

specific areas (e.g. ports). The empirical model is impractical since a mechanistic model is desired. 

An analytical prediction model has been build and validated. Using the available data from the case 

study, the Jones Falls River (USA), the model was customized to this specific case study. During the 

development stage of the model, several issues were encountered. One of these issues pertained the 

accuracy of the weather data. Historic data, required for the model calibration and validation, was only 

available from distant weather stations, hence decreasing the accuracy of the data. Secondly, the data 

required to build the propagation model was unavailable and obtaining empirical by experiments was 

not feasible. Hence, the modelling of propagation was abandoned. 

Four versions of the model were tested. The first version directly linked precipitation to river inputs, 

ignoring surface runoff. The second included lumped surface runoff calculations. The third was based 

on the second but included ADD and historic inputs while the fourth included both lumped surface runoff 

calculations and wind. The model versions tested in this report obtained a mean relative error (MRE) of 

0.67 to 0.8 after validation and 0.59 to 0.65 after verification. A prediction model which simply uses 

historic daily average without any predictors, ranked lower with a MRE of 0.9. 

While weather inaccuracies are deemed to be the most relevant factor, model assumptions and 

simplifications may also have had a considerably impact on model performance. These assumptions 

include simplifications in surface runoff modelling and averaging precipitation data over each day instead 

of considering precipitation events. The latter would better represent rainfall intensity. Finally, the 

quality and interpretation of the accumulation data used for calibration and validation may have 

decreased model performance.  

The simplest model, which directly linked precipitation to debris inputs, managed to achieve an MRE of 

0.73. This is considerably higher than a model which assumes steady state accumulation and this model 

would hence offer an opportunity for more effective debris removal. Accurate precipitation data is 

however crucial. As such one can expect a MRE < 0.73 using a more accurate weather dataset. While 

Wan et al. (2018) achieved a MRE of 0.14 on a specific sub watershed, such a model would require 

complex surface runoff modelling and their model performance is not guaranteed to be achievable for 

other cases.  
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1. Introduction 

1.1. The problematic nature of debris in aquatic environments 
The world has become increasingly aware of the problematic nature of the abundant presence of 

anthropogenic debris in the worlds waters, illustrated by figure 1. Debris can be defined in this context 

as undesired inanimate objects contaminating aquatic ecosystems1. Many of these debris are generated 

inland and transported by rivers to end up in marine ecosystems, where these debris become known as 

marine litter (ML). The EU states: ‘Marine litter is a global 

concern, affecting all the oceans of the world. Every year, 

millions and millions of tons of litter end up in the ocean 

worldwide, turning it into the world's biggest landfill and 

thus posing environmental, economic, health and aesthetic 

problems’ [1]. A more recent and gloomy warning came 

from the UN oceans chief which called it ‘a planetary crisis’  

and mentioned that ‘in a few short decades since we 

discovered the convenience of plastics, we are ruining the 

ecosystem of the ocean’ [3]. Perhaps one of the most 

shocking illustrations of the ML problem is the recent 

discovery of at least 17.6 tons of ML on Henderson Island 

in 2015, a remote pacific island located 5000 km from the nearest industrial or residential area [4]. 

This is not solely a problem concentrated around and created by emerging economies with poor waste 

management but also in more developed areas like the North Sea: ‘Despite international, EU and 

national efforts to reduce the quantity of litter released into our seas over the last  two  decades,  in  

many  regions  such  as  the  North  Sea,  quantities  of  litter, especially  plastic,  are  increasing’ [5]. 

The quantity of ML on Dutch beaches for instance has barely declined, researchers concluded based on 

monitoring studies [6]. 

A critical category of debris is plastics, due to their quantity, their persistence and the fact that an 

estimated 46% of plastics are able to float [7]. The major driver for plastic contamination is logically 

the consumption of plastic. The world produces currently nearly 20.000 plastic bottles of water per 

second, with 20% production increase expected for 2021 [8]. The absence of a market, where those 

demanding reduction (of plastic production) and those generating it negotiate a solution, means there 

is few intention to take action [9]. At the same time negative side-effects of plastic contamination are 

not being internalized by the producers and users of plastic (i.e. they do not incur the costs of these 

consequences) [9]. It is not surprising that growth predictions regarding the oceanic accumulation of 

plastic debris reveal an equally worrying increase. A recent study in Science states that: ‘Without waste 

management infrastructure improvements, the cumulative quantity of plastic waste available to enter 

                                                
1 A more elaborate look at the definition of debris will follow in section 2. 

Fig. 1. Floating debris [2]. 
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the ocean from land is predicted to increase by an order 

of magnitude by 2025’ [10]. This is visualized in figure 2. 

Debris contamination brings a myriad of negative 

consequences. It damages living organisms either by 

entanglement, especially through ‘ghost nets’ or by 

ingestion [11]. It is especially worrying that ingested 

material can move up the trophic levels to end up in 

humans. Humans can also be injured by objects such as 

syringes and broken glass [12]. Other types of problems 

arise for the nautical traffic using these waters. Larger 

objects may damage propellers for instance, while intake pipes and valves may get blocked [12]. Certain 

debris, such as rope, fishing lines and nets may foul propellers and rudders [12]. Probably the most 

shocking illustration of the effects on nautical traffic is the sinking of a Korean passenger ferry in 1993 

and the resulting death of 292 passengers after having its propeller shafts and propeller entangled by 

a nylon rope [12]. Furthermore, it may also negatively impact fishery: ‘…torn nets, polluted traps and 

contaminated catches; if nets become choked with debris, the catch may be reduced’ [13]. The damage 

due to ML in the Asia Pacific Economic Cooperation (APEC) region, which includes most major economies 

around the pacific, has been estimated at 364 and 279 million dollars for the fishing and shipping 

industry respectively [14]. Since contamination is also not aesthetically appealing, it can damage tourism 

[15] and hence income to a region [16]. The damage of ML contamination on tourism in the Asia Pacific 

region has been estimated at 622 million dollars [14].  Following similar reasoning it can naturally also 

diminish perceived happiness among local residents.  

Different mitigation approaches can be opted for to deal with this problem. Stricter penalization, new 

regulations/guidelines, improved waste disposal, improved law enforcement and awareness campaigns 

can be implemented to decrease supply of debris. Some facets however take time to change or may be 

hard to control such as the careless attitude of humans and the natural supply such as the waste 

generated by floods, which also includes natural products such as wood and plant debris. Moreover, 

with developing countries in mind which often lack sufficient waste disposal while simultaneously 

increasing their plastic consumption, it is hard to see the ML problem disappear anytime soon. Once 

discharged in the aquatic environment removal operations remain the sole option.  

Removal operations are often performed in bays and ports downstream of rivers. A large benefit of 

removing downstream is that removed debris will not be discharged into the sea and oceans. It is 

estimated that approximately 80% of all ML in the global marine waters originate from land based 

sources [1]. A study of the coast of Europe has revealed that ML can even be found in large quantities 

at great depths of the Atlantic Ocean [17]. There is no doubt that cleaning these places would pose a 

tremendous challenge compared to the more confined and more accessible inland waters. Moreover, 

the closer cleaning operations are performed to the source, the less chance debris have to dissolve in 

Fig. 2. Scenarios for cumulative quantity 

of ML entering marine waters [10]. 
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smaller particles which are harder to remove. Finally, within inland waterbodies, contamination is more 

visible and nautical traffic is often more dense compared to seas and oceans which increases the 

nuisance and the risk of damage. In order to perform these operations with better effectiveness and 

efficiency, understanding debris accumulation from rivers is crucial.   

1.2. Related work and research objective 
Although recent discoveries and the growth of the problem in general have truly provoked the urgency 

to solve the problem of debris contamination, it should be noted that the cleaning of aquatic 

environments has begun far before the nature of the pollution problem was considered being 

problematic to the extent as it is perceived today. In 1942 already cleaning operations in the bay of San 

Francisco became common practice after an accident with a floatplane hitting some large floating debris 

[18]. In the US, the practice of using specialized equipment, so called skimmer boats, started in the 

early 1980’s [19]. Nowadays it is common practices in many rivers, bays and ports and even the ocean 

[20]. A project named ‘Port Waste Catch’ was recently launched by the port of Rotterdam. The aim of 

that project is to encourage the private sector to come up with solutions which would enable the Port 

of Rotterdam to remove debris from its waters 

and hence contribute to the prevention of the 

plastic accumulation in the oceans [21]. This 

shows that port authorities are becoming 

aware of the useful contribution they could 

make in mitigating ML. The academic field and 

research institutions have also been 

increasingly engaged in the topic of ML 

contamination. From figure 3 it can be seen 

that the number of publications related to 

marine debris has grown immensely in recent 

years.  

1.2.1. Solution approaches 
Several approaches can be conceived to make a contribution to improving debris removal operations in 

bays and ports downstream of rivers. Firstly, buying adequate/better equipment or adding equipment. 

Secondly, perform cleaning at locations with relatively high presence of debris. This means improving 

routing and smartly schedule the moments cleaning is performed. An example of this, is the study by 

Tol (2016) [23] which analyzed the performance of different routing methods of vessel in a port 

environment.  

Thirdly and finally, one can further enhance performance by improving data quality and data availability 

w.r.t. spatial and temporal distribution. This can be achieved in multiple ways. Firstly, one can study 

the behavior of debris inside the debris removal area to gain knowledge on the spatial distribution of 

debris, i.e. study the system behavior. Lammerts (2016) [24] used numerical modelling to investigate 

Fig. 3. Scientific publications related to marine debris [22]. 
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the influence of various factors, which included disturbances such as river flow rate and wind, on debris 

behavior in a port environment. Secondly, this can be done using historic data or monitoring equipment 

to improve knowledge about the spatial and temporal distribution of debris. Martens et al. (2012) [25] 

for instance used debris mapping to enhance the performance of lobster trap removal. Wang et al. 

(2014) [26] and Wang et al. (2015) [27] studied the possibilities of using RGB cameras to detect floating 

debris.  Thirdly, methods and technologies can be deployed which allows short term predictions 

regarding quantities of debris based on what is measured upstream. This approach could consist of 

using debris detection technology in the river, such as RGB cameras or infrared sensors. Alternatively, 

debris accumulation is not directly measured but linked to factors which contribute to and influence 

debris accumulation. Hence, debris accumulation is a latent variable which is inferred from other 

observable predictors. To achieve this, a debris prediction model can be developed which links data on 

the observable variable, the input, to a prediction value for the quantity of debris over time, the output.  

This prediction model will be the focus of this report. A more elaborate analysis of the various solution 

approaches can be found in appendix B. This analysis shows that each solution has its challenges and 

limits but it is currently still hard to compare the various solution approaches. It should be noted that, 

fortunately, these solutions are not mutually exclusive and can hence be applied to complement each 

other. 

1.2.2. Research question 
Existing debris prediction models are rare. Deltares (2015) [28] applied data from river discharge to 

estimate accumulation and support ML removal efforts in a downstream bay. Lammerts (2016) did not 

account for fluctuations in accumulation whereas Tol (2016) in contrast used a rough estimation based 

on wind statistics to model accumulation. In short, these approaches to model accumulation, if used at 

all, are fairly simplified and not generalized. Recently, a more sophisticated model was developed by 

Wan et al. (2018) [29]. The model is spatio-temporal explicit and uses a semi-distributed surface runoff 

model to model precipitation induced surface runoff. It did however not account for debris propagation 

in rivers and also did not incorporate wind induced accumulation. To get a better understanding of the 

accumulation of debris by rivers, a generalized set of predictors for land-to-river-inputs and river 

propagation can be identified. Subsequently these factors can be used to make predictions of 

downstream accumulation which can be used by sweeping vessel operators to adjust their deployment 

accordingly. If this approach is successful and vessels are deployed more effectively it can contribute to 

a mitigation of outflow of debris to marine waters and a reduced presence of debris inside ports and 

bays2. This approach may also lead to an increase in quantity of debris removed per operational hour 

increases, which means more efficient operations.  

 

 

                                                
2 An overview of debris removal systems can be found in appendix B 
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This leads to the following research question: 

Can a prediction model contribute to more accurate estimates of the accumulation of land to river debris 

at a downstream section of a river?  

This question will be answered with the following sub questions:   

1. What are debris and how can temporal fluctuations of debris accumulation from rivers be 

characterized? 

2. What factors influence the quantity of debris accumulating from a river? 

3. How can these factors be incorporated in a prediction model, what existing models and 

modelling techniques are available and what are the challenges? 

4. What is the performance of a prediction model, applied to a case study? 

1.3. Report structure and methodology 

An outline of the report is depicted in figure 4. In the left column, each number identifies the 

corresponding sub question answered. In the right column the section numbers can be found.  The 

problem analysis, covered in section 2, will address the definition of debris, the role of rivers in 

accumulation of ML and the temporal distribution of debris accumulation in rivers. A literature review 

will be conducted in section 3 to investigate which factors should be incorporated in an accumulation 

model. The next part of this literature study, section 4, will review existing accumulation models. 

Hereafter, a new model will be designed, which is covered in section 5. In section 6 this model will be 

verified and implemented and finally validated and evaluated in section 7. Modelling will follow a 

waterfall style design approach. A detailed overview of this modelling framework used to design, validate 

and evaluate the model can be found in Appendix J. The report finishes with the conclusions in section 

9.   

Fig. 4. Outline of the report. 
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2. Problem analysis 
This section will start with a definition of debris, used within the context of this report. Since the use of 

debris terminology is frequently inconsistent, this section will clarify the terminology for the rest of the 

report. Doing so can also help to reduce the scope to those classes relevant in the context of this study. 

Understanding the origins and characteristics is crucial to understand the pathways and transport 

phenomenon related to them. This section will also aim to qualify and preferably quantify the 

contribution of rivers to the debris stock downstream, such as marine ecosystems and ports/harbors 

located downstream. The rest of the subsections explores the characteristics of temporal distributions 

and analyze historic accumulation data from existing rivers.  

2.1 The definition of debris 
‘Debris’ in the context of aquatic environments, is an umbrella term for numerous undesired inanimate 

objects found in aquatic environments. The term debris is used in numerous reports and papers, such 

as Lavers and Bond (2017) [4], Barnes et al. (2009) [7], Gregory (2009) [11] and McIlgorm et al. (2009) 

[14]. Frequently, ‘debris’ is further specified with a specific adjective such as ‘anthropogenic’, ‘plastic’ 

or ‘marine’. Alternatively, marine litter (ML) is another term frequently used in reports and papers, such 

as Oosterhuis et al. (2014) [9], Mouat et al. (2010) [12], Lammerts (2016) [24] and Tol (2016) [23]. In 

the context of this study ML is however not the proper terminology as can be observed from the 

definition of ML: 

‘… all synthetic or processed items or fragments that have been discarded or lost either directly into the 

coastal and marine environments or somehow transported from land to the sea, e.g. by rivers or 

effluents, wind and land run-off’ [30].  

 

As the name suggest ML is specifically used in the context of marine ecosystems, which includes debris 

directly deposited in the marine ecosystem but inherently excludes riverine or any freshwater debris.  

Moreover, non-anthropogenic a.k.a. natural occurring items, such as wood trunks and branches, are 

not included in this definition, likely since they are naturally present and not as persistent as for instance 

plastic. Nonetheless, undesired natural items or fragments can still be harmful to nautical operations 

and negatively impact aesthetics so they should be included. The definition of ML can be rephrased as 

follows to obtain the definition for ‘debris’: 

All undesired synthetic, processed or natural items or fragments that are being transported by rivers 

from land towards the marine ecosystem.  

 

Henceforth, debris will be used throughout the report unless the context requires otherwise, in which 

case ML can be used, if applicable, or the term ‘debris’ will be extended with an adjective. 

An extensive analysis of debris can be found in appendix D.  
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From this analysis, several conclusions can be drawn: 

- Plastic waste is the most abundant waste category due to its slow decomposition and the high 

consumption of plastics globally. 

- Generally, natural debris account for the largest part of the mix of debris in developed nations 

while in developing populated nations, anthropogenic debris account for the majority of debris. 

- For the time being the focus ought to be directed towards cleaning macro sized surface debris, 

particles larger than 5 mm, since the removal of smaller sized debris is generally not cost 

effective with current technological advancement.  

- Quantified debris risk assessments are rare due to a lack of knowledge on certain harms and a 

lack of quantified data. Hence, it complicates the task of identifying the most critical debris. 

Currently, the goal should therefore remain to eliminate all macro sized debris from the river 

without distinguishing between specific debris. 

2.2. Contribution of rivers to debris stock downstream 
Since this report is centered on debris generated inland and aims to make a contribution to mitigating 

ML in marine waters, it is crucial to know the extent to which the creation of inland debris and rivers as 

a pathway contributes to this global contamination. Sherrington et al. (2016) estimated at least 5 up to 

at most 17 million tons of plastic per annum is introduced in total into the oceans [31] while Lebreton 

et al. (2017) estimated rivers introduced 1.15 to 2.41 million tons per annum [32]. This means at least 

7% up to at most 48% of the total can be contributed to rivers which is a considerable range. However, 

even with 7% the amounts are significant and worth reducing. It should be noted that the geographical 

differences are large. The Yangtze River for instance accounts for 23% of the total of riverine input [32]. 

However one must also look at a more local level. Chinese rivers will predominantly contaminate 

bordering waters, the Chinese Sea and the Pacific Ocean whereas European and American inputs will 

largely dominate the North Sea and the Atlantic Ocean accumulation as demonstrated by Lebreton et 

al. (2012), with the data shown in Table 1 [33]. Therefore 

reducing debris from European rivers for instance is still crucial 

to mitigate contamination of local marine ecosystems. The 

local effect of American, European rivers on coastal waters, 

seas, beaches and harbors has been demonstrated in many 

different studies, such as Galgani et al. (2000) [34], Lattin et 

al. (2004) [35] and Claessens et al. (2011) [36] and Maria et 

al. (2007) [37].  Furthermore, Maria et al. (2007) notes 80% 

of the presence of ML on all global beaches is estimated to 

originate from riverine input. Finally, it is also worth 

mentioning, that the annual influx of the Danube River is 

estimated to be larger than the total mass of plastic in the total North Atlantic Gyre [38].  This seems 

excessive but it is important to realize that the vast majority of marine plastic is located on the sea floor 

as previously stated [31]. 

Table 1. Regional contribution (in %) 

to floating debris in the North Atlantic 

Gyre under 2 scenarios [33]. 
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Understanding the influence of riverine influx of debris on bays and harbors downstream is crucial to 

their operators if presence of debris is to be mitigated. It is important for them to realize that proximity 

to a river does not inherently imply any or significant influence. This can be illustrated with the waters 

around Hong Kong, a bay/harbor area downstream of the Pearl River which was studied on multiple 

occasions regarding debris. It was for instance hypothesized that the ML in the Western waters of Hong 

Kong would see fluctuations according to the wet and dry season which would increase river 

accumulations into the Pearl River Delta. This theory was confirmed by beach surveys by Cheung et al. 

(2016) [39] and surface water surveys by Cheung et al. (2018) [40].3 An earlier study by Tsang et al. 

(2017) [41] in the waters more close to Hong Kong contradicted these results however by reaching 

opposite conclusions with respect to seasonality, i.e. a larger quantity during dry season was observed. 

It was suggested that the influence of point sources/local sources were more relevant in this case since 

the surveyed waters were relatively shielded from the outflow of the rivers. Noticeably, Tsang et al. 

unfortunately only surveyed micro plastics (<5 mm), these are generally more likely to originate from 

relatively steady state sources like sewage outflows. This seems more in line with the results obtained 

by Cheung et al. (2018) [40].  It is also plausible that some factors contributing to this particle presence 

were unknown and hence not accounted for in this study. In any case, these results prove being placed 

adjacent to a river (outflow) does not guarantee strong influence of the respective river. The origin of 

the accumulation in areas downstream should therefore be assessed separately for each case.  

2.3. Temporal distribution of debris accumulation 
Knowing the temporal distribution of debris entering the port/bay inlet over time, for instance on a day 

to day basis or even hour to hour, would eliminate uncertainty and cleaning operations can hence be 

optimized to deal with one predefined distribution. Differences in accumulation over time can be 

observed due to river characteristics and factors which determine the land to river inputs upstream, 

each with a certain variability over time. Furthermore, as a consequence of these factors each river will 

also show different debris characteristics [42] like quantity, variability and consistency. The route of 

debris which are generated upstream from land via a river towards a port/bay area is visualized in figure 

5. 

 

Fig. 5. The route of debris which are generated upstream and propagated through the river in downstream direction. 

If the inlet point of a river into a port/harbor is approximated as a point in space the spatial dimension 

is eliminated, i.e. it becomes zero dimensional, and only a time dimension is left. This means it is 

                                                
3 A more elaborate analysis of this study can be found in appendix C.4. 

Outflow to Marine ecosystem

Land-to-river inputs 

somewhere upstreamPropagation in riverPort/Bay area
Port/Bay inlet

downstream
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assumed that knowledge pertaining the exact point of entering along the width of the inlet/entrance of 

the cleaning area is not necessary. It should be noted that even if the spatial component at the inlet is 

(assumed to be) non relevant, spatial distribution along the width of a river can still influence temporal 

distribution before it passes the entry point. This will be discussed in later sections. Removing the spatial 

component leaves a temporal distribution which can be presented in a cumulative way to obtain the 

quantity of debris entering of a certain time period. For instance a certain volume V entering at each 

time unit t, summed over a certain period of interest T, e.g. one hour. This is a discrete formulation, it 

can also be written in a continuous form using an integral, with Q as the flow. Both formulations can be 

found below: 

∑𝑉𝑡
𝑇

0

𝑜𝑟∫
𝑉(𝑡)

𝑡

𝑇

0

𝑑𝑡 = ∫ 𝑄(𝑡)
𝑇

0

𝑑𝑡    (1) 

This volume of debris can also be defined for certain debris categories. In a similar way as the equation 

above a summation and integral can be formulated as follows with debris categories i as a subset of I: 

∑∑𝑉𝑖
𝑡     𝑖 ∈ 𝐼

𝐼

0

 𝑜𝑟 ∫
𝑉𝑖(𝑡)

𝑡

𝑇

0

𝑑𝑡 = ∫ 𝑄𝑖(𝑡)
𝑇

0

𝑑𝑡    𝑖 ∈ 𝐼    (2) 

𝑇

0

 

2.4. Characteristics of temporal distributions 

Temporal characteristics can be driven by events which are measurable or known to humans. These are 

the most interesting factors since these are plausible candidate input variables for predictive models. 

Some events however are hard to factor in and can be perceived as completely or highly random. A 

large illegal direct deposition of litter inside a river for instance or random stranding along the way. 

These events will give disruptions but their 

randomness imply they are best accounted for 

using statistics unless it is feasible to do 

continuous visual monitoring at strategic points 

along the way. For the first category of events, 

the length of the timespan over which their 

influences can be observed can be different. 

The smaller the timespan the more challenging 

it is to account for. The result of said influences 

can cause a temporary or permanent decrease 

or increase in the temporal distribution. Some 

events have time dependent probability 

distributions which often exhibit a seasonal 

tendency. This is illustrated in figure 6 for 

rainfall at a fictive location.   

 

Fig. 6. Fictive time independent probability distribution 

(Generated with MATLAB®). 
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Various typical features of a debris accumulation distribution can be observed. First of all, the seasonal 

fluctuation or seasonal jump. This is a reoccurring increase/decrease in the distribution. This is generally 

a slow change which spans a longer time, multiple days to several months. Secondly, jumps or peaks 

in the distribution. These jumps occur generally for a limited amount of time, less than a week, and 

these jumps can be characterized by a fast change in accumulated debris. Since a fast and short change 

is harder to adapt to, these jumps are preferably predicted. Thirdly, trends. A trend is an increase or 

decrease of the average accumulation over a particular period. This can for instance be found if an 

annual moving average is computed. A trend is a slow change and is hence best adapted to by recording 

data on accumulated debris and computing the moving average. Fourth and finally, a step in the 

distribution. A single sudden event could trigger a permanent increase/decrease in the average 

accumulation of debris. Example distributions can be found in appendix E. 

These features can be identified by two different characteristics: 

- Rate of change 

- Whether the change is permanent or temporary 

Table 2 lists the above features including characteristics.  

Table 2 Characteristics of temporal distributions of debris accumulation. 

Seasonal fluctuation/Jump Temporary Slow change 

Jump Temporary Fast change 

Trend Permanent Slow change 

Step Permanent Fast change 

 

In order to assess the added value of a prediction model, one can identify two particular metrics to 

assess the distribution of debris accumulation; the mean absolute deviation 𝑑, and the mean rate of 

change 𝑐𝑑.  If a distribution deviates more from a constant line, it becomes more crucial to continuously 

adapt the cleaning schedule to the distribution in order to be both effective and efficient. This deviation, 

which is hence an indicator of the degree of flatness of the distribution, between a particular distribution 

f and a constant distribution c can be written mathematically for both a discrete and continuous function.  

If there exists a constant distribution c with the following relation to distribution f: 

∑𝑐(𝑡)

𝑇

0

=∑𝑓(𝑡)    𝑜𝑟    ∫ 𝑐(𝑡) =  ∫ 𝑓(𝑡)
𝑇

0

𝑇

0

    (3) 

𝑇

0

 

Then deviation d can be written as follows: 

𝑑 =∑𝑎𝑏𝑠(𝑓(𝑡) − 𝑐(𝑡))    𝑜𝑟    𝑑 =  ∫ 𝑎𝑏𝑠(𝑓(𝑡) − 𝑐(𝑡))
𝑇

𝑜

    (4)

𝑇

0
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The rate of change is equally important. Adapting to slow changes is considerably easier than adapting 

to faster ones. Therefore the average absolute derivative can be used for a specific timespan T: 

𝑐𝑑 =
1

𝑇
∑𝑎𝑏𝑠(𝑓(𝑡 + 1) − 𝑓(𝑡))

𝑇−1

0

    𝑜𝑟    𝑐𝑑 =
1

𝑇
∫𝑎

𝑑𝑓

𝑑𝑥

𝑇

0

+ 𝐶, 

𝑤𝑖𝑡ℎ  𝑎 = 1 𝑖𝑓 
𝑑𝑓

𝑑𝑥
> 0 𝑎𝑛𝑑 𝑎 =  −1 𝑖𝑓 

𝑑𝑓

𝑑𝑥
< 0    (5) 

Two cases are to be identified since only the absolute value is relevant. 

2.5. Real world data from river accumulation 
Firstly, it must be demonstrated that river accumulation may indeed fluctuate over time and if so to 

what extent. Two investigate this, data from removal equipment can be used, for instance from 

stationary/passive removal systems. The 

first data source is depicted in Figure 7 [43] 

and shows debris weights observed at two 

debris retention booms in Hawaii. The 

second dataset has been retrieved from the 

website of the Harbor Wheel project in 

Baltimore (US) [44] which uses a passive 

removal system to collect debris flowing 

from the Jones Falls River. The Waterfront 

Partnership Baltimore (WPB) provided data 

for different dumpsters collected together 

with weight, volume, consistency and the 

date of removal. Because removal dates were irregular the weight of the dumpster(s) removed at a 

certain day have been divided by the number of preceding consecutive days without removal to obtain 

an accumulation per day. The results are shown in figure 8 for a seven months period (01-2015 until 

07-2015). Both the largest and smallest fraction have been highlighted. The average accumulation by 

weight, 0.56 tons/day, measured over 48 months (5-2014 until 4-2018). A more detailed description of 

this calculation and other data, e.g. volumetric and consistency data, provided by the WPB can be found 

in Appendix F.  

Fig. 7. Total anthropogenic debris (filled diamonds, solid 

lines) at debris retention booms in two watersheds in 

between monitoring events at the booms [43]. 
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Fig. 8. Average accumulation in between debris removal days at the Baltimore Harbor Wheel [44]. 

Both data sets show large variations over time. It should be noted that the quantities collected from the 

Hawai’ian watershed are small hence few random debris arrivals might in theory skew the data. The 

second data set from Baltimore however confirms the presence of large variations. The absolute and 

relative differences are so large they suggest the arrivals are not pure random, e.g. random stranding, 

but instead suggest the presence of underlying factors driving these differences in accumulation. 

The impact of such a distribution on the performance of debris removal operations depends on the goal 

of the operation, the equipment used and the removal strategy. The operations are likely to be a tradeoff 

between operation costs and removing debris. Since operating for peak accumulation is perhaps costly, 

a more reasonable strategy would aim to cover at least a certain percentage of the days with minimum 

effort. However, using the data used in figure 19, the 90% days ranked smallest by accumulation only 

account for 38% of the total accumulation. Hence the 10% days with the largest accumulation account 

for 62% of the accumulation, which proves the value of a prediction model.  

Figure 9 on the next page shows debris accumulated at the Harbor Wheel over a 48 month period. Each 

blue point represents one month of accumulation in one specific year, as such each month has four 

data points (note that some data points are largely overlapping and hence barely distinguishable from 

each other). The blue trend line is a 6th degree polynomial fitted to the data. This was chosen since it 

fitted the data the best. The orange dots are the average weights for each month. Although the data 

set is small, from the data available, a clear seasonal pattern seems to emerge.4 In total 813 tons of 

debris was removed over 48 months. The six months, April – Sept, account for 593 tons or 73% of the 

total. The three months, April - June, account for 383 tons or 47% of the total.  

                                                
4 To test the influence of outliers a trend line was fitted to the data after the largest data points for each month 

were removed, as shown in appendix E. Although less strong, the pattern remained clear.  
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Fig. 9. Weight of debris accumulated per month, measured over 48 months [44]. 

2.6. Section summary 

In short, plastic is globally the largest type of anthropogenic debris as commonly known. This is however 

location dependent with affluent regions of the world, due to being equipped with more capable waste 

management systems, facing more accumulation of natural debris with less affluent regions facing the 

opposite with anthropogenic waste being more abundant. Hence, both anthropogenic as natural debris 

should be accounted for. For the time being the focus ought to be directed towards cleaning macro 

sized surface debris, since the removal of smaller sized debris is generally not cost effective with current 

technological advancement. Most of the debris (in terms of weight), can be found in the top layer of 

the water column. 

Debris accumulation from rivers contributes mostly to local water contamination, both sea and oceans, 

which implies that the common argument, that any action from small contributors is useless if large 

global contributors are not being handled first, is mostly false. Contamination of marine ecosystems 

should hence be mitigated through regional sources and pathways, such as rivers.  

The accumulation characteristics observed downstream can be contributed to changes in the factors 

which cause land to rivers inputs and influence river transportation. This section identified four typical 

features which could be observed. Each of these features can be classified in two ways. Firstly, whether 

these changes are temporary or permanent and secondly, according to rate of change. Each of the four 

features are shown in table 3 on the next page. In the next section the factors as mentioned above will 

be classified according to these characteristics.  
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Table 3 Features and characteristics of temporal distributions of debris accumulation. 

Feature Characteristics 

Seasonal fluctuation/Jump Temporary Slow change 

Jump Temporary Fast change 

Trend Permanent Slow change 

Step Permanent Fast change 

 

Features which are classified as having fast temporary changes are the hardest to deal with w.r.t. debris 

removal since adjusting to these fluctuations, based on recorded removed quantities, is more difficult. 

Data from existing rivers shows large and fast deviations may indeed take place.  Jumps were observed, 

whereas others where not observed. This can also be contributed to the short timespan over which the 

data was observed.  
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3. Literature study: Factors influencing temporal distribution 
In this section factors influencing the temporal distribution of debris accumulation will be discussed. 

This way the possibilities of predicting this accumulation can be explored. There are multiple stages at 

which factors can exhibit any impact as depicted in figure 10. The terminology is discussed more in 

depth in appendix D.4. 

 

Fig. 10. Life cycle stages of debris from production to port/harbor. 

It should also be noted that the impact of these factors may to a large extent depend on the 

geographical location. Hence special attention should be given to this. Life cycle stage 1-3 will be 

handled with the focus on precipitation in subsection 3.1 and on other factors in 3.2 whereas subsection 

3.3 will discuss stage 4. The main focus will be on anthropogenic debris although the processes 

described in these subsections are also largely applicable to natural debris. Natural debris will be briefly 

separately discussed at the end of subsection 3.2.  

3.1. Introducing debris into the river: Precipitation 

Precipitation is the main factor driving seasonal differences in debris accumulation due to the seasonal 

tendency of rainfall in many areas around the world, as illustrated in figure 11. It shows estimates of 

the percentage of the total mass flow of debris discharging from each continent that can be contributed 

to the respective month. Note that the data has been smoothed to allow for a continuous graph. 

 

Fig. 11. Estimates of monthly contributions from rivers per continent [32]. 
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Although these are estimates these seasonal differences appear large, especially in Africa and the North 

and central Americas. The link between rainfall and debris accumulation has been demonstrated by 

numerous papers and studies [29] [32] [35] [39] [45] [46] [47] [48] [49], in various regions. Ryan et 

al. (2009) emphasized the temporal characteristics caused by rainfall events: ‘…the great temporal 

heterogeneity in plastic loads linked to rainfall events’ [50]. A study by Cheung et al (2016) at the mouth 

of the Pearl River delta found ‘…distinct seasonal variations in the spatial distribution of plastic debris 

on the beaches of Hong Kong and demonstrated the importance of rivers as a source of marine debris. 

The changes were primarily caused by the sharp reduction in rainfall from the wet season to the dry 

season…’ [39]. Wan et al. (2018) specifies the role of surface runoff during these events: ‘The mass of 

debris input from land is correlated with surface runoff values’ [29]. This heterogeneous temporal aspect 

of rainfall and the large potential influence it may have on the temporal distribution of debris 

accumulation implies it deserves a closer look.  Precipitation and surface runoff are two key elements 

of the hydrologic cycle. As such it is helpful to have an overview of this system and the stocks and flows 

within this system, which can be found in Appendix F. 

3.1.1. Antecedent dry days 
The distribution of rainfall events over the year, or more specifically the quantity of antecedent dry days 

(ADD),  plays an important role as mentioned by Prof. N. Harmitage, who has been extensively studying 

and characterizing solid waste from stormwater drains: ‘The Long dry spells give greater opportunity to 

the local authority to pick up the litter, but also tend to result in heavy concentrations of accumulated 

rubbish being brought down the channels with the first rains of the season – the so-called “first flush” ’ 

5 [51]. An earlier study from South Africa found that the first flush over a 3 year period introduced on 

average nearly four times the quantity of debris compared to regular storm flushes [47]. This is 

confirmed by a study in two watersheds of the Los Angeles County (US). One study saw the highest 

trash quantities, in both years studied, during the first rainfall event [48] whereas the other saw the 

highest quantities during the first and second rainfall event respectively [49]. For the latter watershed 

the second rainfall of that particular year was much larger in terms of volume than the first (at least 20 

times) which could explain why the second rainfall event delivered higher run-off of debris.  

                                                
5 ‘This definition of first flush is not to be confused with another definition which points to the comparably large 
litter runoff early in an individual storm event. 
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First flush characteristics were also 

observed by Carson et al. (2013) [43] 

as shown in figure 12. The graph 

shows the retention of anthropogenic 

debris in an urban waterway in Hawaii 

alongside the rainfall in the respective 

watershed.  Indeed, there seems to 

be a tendency of higher quantities of 

debris following the first flush (green 

arrow) compared to the second one, 

following it (red arrow). The last two 

peaks (blue arrow) however seem not 

to follow this trend. Reasons for this 

could be different rainfall patterns, both spatial and temporal. Higher intensity rains could create more 

runoff. It should also be noted the debris quantities are low hence large debris may skew the data.  In 

addition, not all debris might be completely flushed by the first event, hence following rainfall events 

might still produce considerable debris. Moreover, debris flushing is not linearly correlated with volume 

(mm) of rainfall since a threshold value has been observed below which no significant debris is moved 

[29]. Finally, wind can also contribute as a means of release and/or a transport mechanism. So, although 

the coefficient of determination r2 is merely 37%, i.e. 37% of the debris abundance can be explained 

by rainfall quantities, the data could be likely (much) better explained if one included more details on 

the rainfall patterns and perhaps other factors like tourism.  

An earlier study by Kim et al. (2004) [52] in the same area, about two years earlier, found also that 

ADD influenced run off of debris (>0.5cm). The correlation found was however not very meaningful 

since in absolute terms the correlation was not strong and the variance of the data was deemed fairly 

large which means predictions will be hard to make. The correlation between Event Mean Concentration 

(EMC) [g/l], a metric for measuring the litter concentration in storm water runoff and ADD was described 

as follows: 

𝐸𝑀𝐶𝑙𝑖𝑡𝑡𝑒𝑟 =  𝜀(𝐴𝐷𝐷)
𝑎(𝑇𝑅)𝑏    (6) 

TR represents the total rainfall (cm) and ε, a and b are fitting parameters. The study mentions: ‘There 

were few meaningful correlations of litter parameters with storm parameters such as total rainfall, 

antecedent dry days, etc. A decreasing trend in litter EMC was observed with total rainfall or total runoff 

volume. An increasing trend of EMC was observed with antecedent dry days’ [52]. 

 

3.1.2. Infiltration: soil characteristics and rainfall intensity 
Kataoka et al. (2013) [53] studied the grass flux in rivers discharging into the Tokyo Bay area.  The 

study found significant influence of flood events. The study estimated 24% of the annual inflow of grass 

Fig. 12. Total anthropogenic debris (filled diamonds, solid lines) at 

debris retention booms in two watersheds and accumulated rainfall 

(open squares, dashed lines) in between monitoring events at the 

booms [43].  
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occurred during one particular 10 day long flood event. The discharge during that particular time span 

was less significant, contributing 11% to the yearly input of freshwater. With such drastic short increases 

in influxes, increasing cleaning efforts during these days might very well be worth it from cost benefit 

point of view. An extreme example of the cumulative effect of long-lasting rainfall can be seen in figure 

24. Discharge rates keep increasing due to consecutive days of rainfall. 

 

Fig. 13. Generated discharge of Maas River during consecutive days of heavy rainfall [54]. 

 

The ground cover plays an important factor in the extent to which rainfall leads to surface runoff towards 

the river. Urban development brings clear ramifications to surface runoff since urban areas with mostly 

impervious ground cover are much more susceptible to this phenomenon than natural vegetation and 

agriculture lands with much more pervious ground cover as shown in figure 14. The severity of this 

problem will depend on the quality of storm water handling. 

 

Fig. 14. Differences in surface runoff between two different ground covers [55]. 
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Figure 14 shows typical numbers, however, infiltration behavior is extremely soil specific. In figure 15 

two graphs visualize the infiltration rate for two types of soil: sand and clayey. Different soil types 

behave differently, clayey soils might become saturated after rainfall but sandy soils do not. On the 

contrary, water intake may increase after saturation. This has a large consequence for runoff behavior 

after precipitation.     

 

Fig. 15. Infiltration rate for two types of soil, depending on compactness and saturation rate [56]. 

An uneven distribution of (heavy) rainfall events on clay soils, for instance with a distinct raining season, 

may hence lead to increased runoff due to increased saturation. This becomes immediately clear if one 

looks at the base discharge of the river Geul in summer, displayed in figure 16, which is closely related 

to precipitation during the previous winter. The ground hence proves to have a long term buffering 

effect. 

 

Fig. 16. Correlation base discharge summer of the river Geul and precipitation during previous winter [54]. 

Rain intensity is another critical factor to the level of surface run-off. High intensity rains may saturate 

the upper soil layer fairly quickly since water did not have time to infiltrate lower soil layers [56]. Finally 

heavier concentrated rain showers with large drops and hence high kinetic impact can generate crust 
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formation, especially in locations with low vegetative cover, low organic matter, weak top soils and silty, 

clayey ground. Crusts form an impermeable seal over the soil beneath which drastically reduces 

infiltration rates and increases run off [57] [58].  For developed urban areas high rain intensity can lead 

to storm sewers/storms drains reaching capacity forcing water to run over generally impervious urban 

soils hence creating more runoff. The overflow of combined sewer systems (CSS) is worse, which is 

unfortunately a common result of heavy precipitation events. They aggravate the problem by 

introducing more waste from the CSS into the environment [59]. Williams and Simmons (1999) [60] for 

instance showed CSS was a major contributor to litter in the river Taff (UK). Fortunately many cities are 

nowadays aware of this issue and multiple projects were started which aim to reduce these overflows 

in multiple ways. Capacity is for instance increased (e.g. adding retention basins), new sewer systems 

are built to accommodate separate discharge and green infrastructure is being added (e.g. permeable 

soil like grass) [61]. The difference between CSS and separate systems is illustrated in Figure 28 on the 

next page together with an example of grass concrete, which can be used a green infrastructure. 

 

Fig. 17. A combined and separate storm water systems under wet and dry weather conditions (Left) [62]. A 

permeable parking space as an example of green infrastructure (Right) [63]. 

3.2. Introducing debris into the river: other factors 
Other factors can also play a role: wind, temperature, special events, urban development, tourism, 

waste management and public mentality. 

Wind can play an important role in the temporal distribution of debris accumulation from rivers, in 

multiple ways. Firstly, wind can act as a means of release (see appendix D.4 for definition). During wind 

(gusts) objects can be blown away from their intended place, e.g. from tables or landfills. Secondly it 

can act as a transport mechanism (see appendix D.4 for definition). In this case it has been released 
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into the environment earlier, whether it is a landfill or any patch of street/land, and it is now being 

blown into the freshwater environment. Observations obtained by Alam et al. (2017) [45] for instance 

point to the influence of wind, especially during dry periods. Overall, quantitative studies w.r.t. wind as 

a means of release and a transport mechanism for debris are unfortunately rare. Subsection 3.3.2 will 

address wind more elaborately, especially in the context of river transport, including the temporal 

characteristics of wind. Wind applies to both anthropogenic and natural debris. The influence on the 

latter will also be touched upon later in this subsection when natural debris will be discussed. 

 

Temperature and cloudiness, is a factor which can lead to daily and seasonal fluctuations. In certain 

regions where day to day weather fluctuations are common, pleasant temperatures and sun could 

motivate people to stay outdoors which means chances increase that waste does not end up in waste 

bins. This is deemed so since people are outside their domiciles, outside their personal property where 

waste bins are in general in less close proximity. The effect would be the greatest if followed by a heavy 

rainfall event which tends to flush any abandoned litter. So day to day differences could be observed 

but also seasonal differences (summer versus winter). Also in this case the extent to which this influence 

on debris accumulation is observed depends on the geographical location. Locations with stable weather 

patterns would observe less difference.  This factor only applies to the accumulation of anthropogenic 

debris.  

Special events such as festivals could perhaps influence the debris accumulation [64]. During such 

events many disposable food and drink packages are often just thrown on the event grounds and this 

might bring significant contamination especially when combined with heavy rainfall and wind 

occurrences. This factor is also merely applicable to anthropogenic debris. 

Among long term influencing factors there is urban development and tourism or put in more general 

terms human presence. For tourism seasonal differences might be observed or sudden disruptions (e.g. 

due to terrorist attacks). For both, longer term trends might be observed. This factor is only applicable 

to the accumulation of anthropogenic litter although it can be argued increased urban development 

decreases biotic debris. This however is believed to be marginal since the accumulation pathways of 

debris such as rivers extent generally over a large distance which makes any observed decrease in biotic 

debris relatively small. Any changes in urban development and tourism can also fairly easily be 

compensated by another factor of relevance, namely the quality of local debris processing and presence 

of trash bins which can fall under the category waste management. This reasoning also applies to 

temperature and events. 

Waste management is a crucial factor. Adequate waste collection for instance could decrease the 

amount of fly tipping. The correlation between mismanaged plastic waste and plastic load in the rivers 

has been studied by Schmidt et al. (2017) [65] and was found to be clearly positive, even when adjusting 

for the size of the catchment area. A study by Marais et al. (2004) in South Africa found the quantity of 

debris removed by street sweeping 33 to 100 times the debris caught in storm water runoff systems 

hence proving the necessity for good waste management [66]. A study by Cheung et al (2016) at the 

mouth of the Pearl River concluded that poor waste management in the river catchment area is the 
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main culprit of the large quantity of litter and observed the toxic effect of combined precipitation and 

poor waste management: ‘The current waste management system in the Pearl River Delta region is 

clearly ineffective at preventing municipal waste from entering the waterways, particularly during the 

rainy season’ [39]. Hence the quality of the waste management affects the relative difference observed 

between dry and wet seasons. Waste management includes: 

- Availability and capacity of waste bins. The overflow of waste bins, see figure 18, create 

undesired uncontained litter which may be 

swept away by heavy rainfall. To avoid 

overflow of waste bins, waste collection 

should be done at a regular frequency. 

Absence of waste bins or waste collection 

may lead to fly tipping. 

- Frequency of waste collection. See above. 

- Landfills. Preferably landfills should be 

avoided but any existing ones should be well 

contained meaning they shouldn’t border 

flowing water or be placed at windy areas. 

Wind or overflowing may introduce debris 

directly or indirectly into the environment [7]. 

- Recycling rate and incineration rate. Landfill can be avoided through recycling and incineration 

[7]. 

- Street Sweeping. Regular street sweeping can prevent a lot of debris entering the storm water 

system as proved Marais et al. (2004) [66], in particular in areas with lack of waste bins, poor 

public awareness and poor waste collection. 

- Sewage treatment. A shown in subsection 3.1.2 combined sewage and storm water discharge 

may lead to severe increase in contamination if high precipitation events are not properly taken 

care of. 

Finally, public awareness might increase, for instance through education, which would make people less 

prone to discard their litter in public space or fly tipping.  This might also lead to a demand for improved 

garbage collection and increased presence of trash bins. Both reduce chance of litter being release into 

the environment. Public awareness can lead to political action to ban certain products. Research from 

Maes et al. (2018) [68] suggests legislative action on plastic bags use led to a perceived drop in the 

presence of plastic bags in the North Sea. Where mentality change is generally a slow process legislative 

action can have a much more sudden impact. Political action can also have wider implications. It may 

influence waste management, affect the influence of festivals, urban development, tourism but also the 

Fig. 18. Waste bin overflow [68]. 
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extent of urban runoff by introducing more permeable areas in urban areas or hindering debris 

propagation through rivers by introducing debris removal systems6.  

 

It is important to realize how all these factors may influence each other. A bad waste management 

system is for instance a multiplier for land to river debris inputs by precipitation and wind. In a country 

with little rain or wind, a bad waste management system will have a small effect on debris accumulation 

unless it is directly deposited in the river (tributaries). Likewise, the necessity for street sweeping 

depends on the local mentality vis-à-vis street littering and the availability of public waste bins.  

 

3.2.1. Natural debris 
Natural debris are different compared to anthropogenic debris in several ways. Many factors do not 

apply to natural debris such as public mentality, legislative action, waste management, events and 

tourism. Urban development might influence natural litter deposition since cities often develop at the 

cost of green areas. Natural debris will often include branches or leaves. For both, wind is crucial but 

leaves are also largely affected by the type of vegetation which determines whether leave shedding 

occurs. Three cases can be distinguished: 

- Non deciduous vegetation species; no shedding of leaves. 

- Temperate deciduous species; seasonal shedding of leaves, leaf drop in autumn. 

- Tropical and subtropical deciduous species; shedding during low rainfall period, often coincides 

with seasonality of precipitation patterns. 

 

In the second case and the last case to a less extent vegetative debris will have a seasonal characteristic 

as far as leaves is concerned. Like anthropogenic debris, precipitation runoff can lead to the introduction 

of leaves into the marine environment. If rainfall happens during the shedding period an increase in 

debris accumulation can likely be observed. Bilby and Heffner (2016) [69] have studied the factors 

contributing to leaf delivery to streams. It was found tree type, tree height, tree age, wind speed and 

topography of the riparian zone to be of largest importance. The paper further mentions the close 

proximity of the trees to the stream and an increased slope of the riparian zone which leads to increased 

litter delivery: ‘95% of annual litter input originates within 20 m of a stream in gentle terrain. Litter 

input can originate from beyond 25 m in steep riparian zones’ [69]. Precipitation was not mentioned 

however, perhaps since no strong runoff was observed, something more common in urban 

environments due to the impervious soil conditions.  

The findings of Kataoka et al. (2013) [53] pertaining grass accumulation have been mentioned before. 

Like anthropogenic litter, grass flows could be linked to flood events. The exact cause is unfortunately 

not elaborated upon, more specifically whether surface runoff leads to inputs of grass into the river or 

whether it is increased currents which clean the riverbanks. 

                                                
6 See appendix C for an overview of such systems. 
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3.3. River transport 
According to Barnes et al (2009) [7] the main flow pattern of debris in rivers can be generally linked to 

the flow rate of the river where a process similar to sediment transport may be observed. Precipitation 

influences river discharge which affects flow velocities and hence temporal distribution. Precipitation 

induced discharge may happen in four different ways as shown in figure 19.  

 

Fig. 19. Flow paths of precipitation P [70]. 

 

Each exhibits typical temporal characteristics. Surface runoff (Qo) is water which has not first infiltrated 

the soil. Together with direct riverine input (Qp) these cause a fast increase of river discharge during 

heavy rainfall events. Groundwater flow (Qg) and Throughflow (Qt) to a lesser extent have generally a 

much flatter discharge curve and the effects are hence felt over a longer time period with a lower 

discharge increase. Figure 20 shows a hydrograph which visualizes how a rain shower entails to 

additional river discharge and how different basin characteristics lead to different hydrograph shapes 

with different lag times. The lag time and shape could be an important consideration for prediction of 

debris after heavy rainfall.  

 

 

Fig. 20. Hydrograph of river discharge after heavy rainfall (L) and influence of basin characteristics (R) [71]. 
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The increase of base flow due to increased groundwater is smaller and has consequently fewer 

consequences. The large bulge created by surface runoff and direct input called stormflow will however 

have a significantly larger impact so these flows should be carefully considered. The influence of through 

flow or subsurface flow depends on the soil type, topography and climate. For humid climates with 

dense vegetation and steep hillslopes with deep, permeable soils and narrow valley bottoms subsurface 

flow can become one of the dominant processes in the formation of storm flow [72]. For heavily 

vegetated surfaces, runoff will be comparatively low whereas arid surfaces are more vulnerable to 

surface runoff. 

During fluvial transport of debris, a multitude of processes may take place, as depicted in figure 21. 

 

Fig. 21. Common processes involving debris during river transport [73]. 

 

Beaching and entrapment are processes which take place along the banks of the rivers which heavily 

influence the temporal distribution of the accumulation of individual debris items.  

 

3.3.1. Empirical studies on fluvial transport of debris 

Several studies have been dedicated to analyzing transport of debris in fluvial environments. The studies 

are summarized in table 4 (part 1) and table 5 (part 2) on the next page. These studies will be discussed 

more elaborately in this subsection and in appendix H. 
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Table 4. Empirical studies dedicated to transport of debris in fluvial environments (part 1). 

 Transport phenomenon analyzed Site characteristics 

Williams and Simmons 

(1997) [74] 
Transport time of debris 

Small river 1 (0.6 m3/s) and small river 2 

(5.4 to 74 m3/s) 

Williams and Simmons 

(1997) [74] 

Quantities and locations of debris on river 

banks, effect of flood events 
Small river 

Jang et al.  

(2014) [75] 

Locations of stranding, transport time 

and time spent immobile 

Large river (236 m3/s avg. upstream7 and 

728 m3/s avg. downstream8)  

Ivar do Sul et al.  

(2014) [76] 

Retention and transportation of debris 

from river/creek banks and occasionally 

flooded high ground 

Tidal creek (TC), River and high ground 

(HG). Bank slopes: 160° (river) and 110° 

(TC). Tides: 0-2.5 m. Flow: 0.005 m3/s 

(TC), 0.5-25 m3/s (river). Sediment: mud 

(TC), sand (river), sandy mud (HG). 

 

Table 5. Empirical studies dedicated to transport of debris in fluvial environments (part 2). 

 
Flow conditions Tracer(s) used 

Length of 

stretch 

Duration of 

measurement 

Williams and Simmons 

(1997) [74] 

Four different flow 

regimes 
180 LDPE plastic sheets 

1.3 and 2.2 

km 
n/a 

Williams and Simmons 

(1997) [74] 

Four flood events: 14, 

24, 29 and 75 m3/s 

No tracers used, numerous 

debris as accumulated 

100m bank 

length 

Two and three 

months   

Jang et al.  

(2014) [75] 

Varying over tracking 

period 

4(1st trial) and 11(2nd trial) 

tracking buoys, ≈250 mm 
n/a 

20, 24 and 55 

days 

Ivar do Sul et al. 

(2014) [76] 
 

Margarine tub, plastic bag 

and cup, polystyrene and 

open, open squashed and 

closed PET bottle, 9 items 

per category per site 

n/a 

144 days (main 

data) although 

up to 6 months 

is mentioned 

 

Williams and Simmons (1997) [74] studied temporal distribution of riverine debris and performed four 

separate experiments. During the experiments they released items distributed evenly over the width of 

the river. A strong correlation was found with the flow rate. At low flow rates entrapment and stranding 

was severe in a small river with high presence of vegetation. For a broader and deeper river, during 

high flow conditions items were much more mobile. A study on the same stretch of river during low flow 

conditions saw a much flatter response time. In general, for the arrival distribution, one can observe a 

more concentrated peak for the first arrivals with a long right tail. A high flow rate, low susceptibility of 

stranding of the items and a low level of vegetation will result in a more pronounced first arrival peak. 

More details on this study can be found in appendix H.  

Finally, riverbanks were also studied by Williams and Simmons. After the banks were cleaned 

accumulation was observed. Observation revealed the vast majority of deposition occurred during flood 

events. The site characteristics however were such that it was prone to trap debris, i.e. many vegetation, 

such as shown in figure 22 [77] on the next page. The effect was named the ‘Christmas tree effect’ due 

                                                
7 Average over 2012 and 2013 for Nakdong Observation station Q1 [75] 
 
8 Average for Samrangjin observation site (Q6) [75] 
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to wrapping of litter around the branches. It was hypothesized that open surfaces with little vegetation 

would see an opposite effect, meaning they would get cleansed with rising stage. Moreover, it was also 

observed that once dislodged the items were generally not 

frequently deposited closely downstream but they were 

transported more than 45 meter. In the height the 

riverbank was divided in three parts. Movement between 

banks was infrequent but if it happened it was mostly 

upwards from lower to middle (the river did not reach the 

upper part) during increased flow events. 

Ivar do Sul et al. (2014) [76] investigated retention and movements of debris in a Mangrove forest. 

Different type of debris were released in three different environments, namely: a creek, a river and high 

ground. The observed movements suggest the shape and buoyancy (as long as it floats) of debris has 

limited influence in general. Not entirely surprising, debris were least retained along the river, with the 

creek not far behind, while the higher grounds performed significantly better. This suggests again flow 

rate is a factor of influence. More details on this study can be found in appendix H. 

 

Long distance tracking has been studied by Jang et al. (2014) [75] which used satellite location tracking 

buoys to explore litter movements and found that debris tend to be trapped quite often, hence 

suggesting that relating discharge of litter to the flow rate of the river should be done with caution: 

‘Contrary to the generally held belief that most floating debris is quickly discharged during the rainy 

season, our results show that, at least in the Nakdong River, debris is frequently trapped on its path to 

the sea’ [76]. The study revealed that accumulation hotspots along the course of the river may trap 

debris for a certain undefined quantity of time. More detailed information such as the relation between 

specific reach characteristics and debris is unfortunately not present.  

On the size of debris Van der Wal et al. (2013) [78] mentioned stranding and entrapment are especially 

common for larger items9. Finally, Aguilera et al. (2016) found artificial coastal breakwaters to enhance 

trapping compared to natural rocky ones and concluded complex structures leads to increased trapping 

of debris [79]. As this study does not directly involve movement patterns of debris it was omitted from 

table 4 and 5. 

 

3.3.2. Wind 
The lateral displacement of debris, along the width of the river is probably mostly determined by the 

wind. Other factors are hydrodynamic events which will be discussed in 3.3.3. Wind induced forces can 

push debris into the bank of the river where it might get stuck behind vegetation or other obstacles. 

This might strand debris for an undetermined period of time as demonstrated before and hence 

interrupt/delay to flow of debris. Studies on spatial patterns of litter such as Browne et al. (2010) [80] 

                                                
9 For clarification see the quote in appendix D.3. 

Fig. 22. ML stranding on vegetation [77].  
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have already shown the tendency of certain debris to become stranded along downwind sites. Lastly, 

wind parallel to the direction of the river flow can influence travelling time along the river. The extent 

to which wind influenced debris propagation this way is however not known and could very well be 

negligible, especially over relatively short distances. Lack of high obstacles along the banks combined 

with a wide stream improves conditions in which wind transport can occur. The entry location of the 

item into the river will also play an important role in the displacement of debris during wind conditions. 

If dropped leeward it is likely to be transported further than if dropped downward since in the latter 

case immediate stranding is possible.  

Wind induced movements are caused by direct aerodynamic wind forces and wind induced surface 

currents. Debris with more buoyancy and more surface area above the water are logically more prone 

to direct wind forces.  Wind induced surface currents will affect any debris. Lammerts (2016) [24] 

conducted particle experiments using numerical modelling and observed a large influence on surface 

debris.  Kataoka et al. 2013 [53] demonstrated the effect of wind on surface currents in the Tokyo bay 

area and the resulting dynamics of floating debris. Since the study focused on grass the wind susceptible 

surface area was deemed negligible so it was estimated horizontal movements were largely due to 

currents. The dynamics of floating debris inside the bay showed a clear dependency on wind induced 

currents; at certain times these currents helped trapping the grass inside the bay while at other times 

the currents actually forced the grass out of the bay. Large debris (>0.05m2) were investigated by Moy 

et al. (2017) [81] who spatial accumulation on Hawaiian Islands. Windward sites accumulated 76% of 

the total amount whereas leeward side accounted merely for 8.6% of the total. Finally, Kako et al. 

(2010) found winds directed towards shore to increase ML coverage on a Japanese beach [82].  

Lammerts [24] demonstrated that wind speeds of 5 m/s (3 Beaufort) can already have a high impact 

on the horizontal spatial distribution of debris and described it as highly influential, although it is 

unfortunately not mentioned what the buoyancy and surface area of the particles were. Some parts in 

the world have annual means wind speeds (AMWS) which are significantly higher [83] than 5 m/s but 

some are also much lower. In general differences of AMWS between different global geographical areas 

is very large meaning this is a very location depended factor. However, not merely the mean but also 

occasional peak winds should be considered and local wind directions. For this reason, even if AMWS 

appears to be below the threshold of significance, wind should always be considered as a factor of 

influence. This raises the question how wind fluctuates over different timescales, this therefore deserves 

closer attention. Also with respect to monitoring frequency. 
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Wind is clearly a factor which needs to be monitored on a short time span as can be observed from 

figure 23 and 24. Figure 23 shows an example of a 24 hour measurement of wind speed and wind 

direction, measured at a weather station 

near Schiphol, Netherlands. It illustrates 

how wind speed and wind direction can 

fluctuate over a 24h period.  Figure 24 

shows similar data for a 10 minute period 

during a storm event which illustrates even 

better how fast significant wind velocity 

and wind direction fluctuations may occur, 

especially for storm events. 

 

Fig. 24. Wind recordings, velocity and direction, during a thunderstorm event in Livorno port, Italy [85]. 

In addition, wind can have strong seasonal characteristics as can be seen in figure 25 which shows 

mean wind speed and directions in fall and winter (period 1, left) and spring and summer (period 2, 

right) for West Canada [86].  

 

Fig. 25. Mean wind speeds and direction in period 1 (fall and winter) and period 2 (spring and summer) in West 

Canada [86]. 

Fig. 23. Wind speed and direction near Schiphol, NL [84]. 
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3.3.3. Hydrodynamic events 
Important hydrodynamic events may also play a role 

in lateral surface displacement, events like confluence 

of tributaries, watercourse obstructions and river 

bends [87].  Bends in the river create changes in the 

primary velocity profile as well an additional secondary 

velocity profile as illustrated in figure 26 [88]. The 

secondary profile Vs (in the red circle), induced by 

centrifugal forces will be directed outwards in the top 

section and inwards in the down section [89]. Multiple 

secondary currents can be found as shown in figure 27 

with the main currents highlighted with the white arrows and the surface currents highlighted with the 

black arrows. Figure 46 also shows the differences in primary velocity. 

Fig. 27 MATLAB® generated primary and secondary velocity profile in a river bend profile [90]. 

Watercourse obstructions, like small islands, pillars can direct the flow 

around the object and at the back of the object circular currents 

emerge as shown in figure 28 [91]. This can lead to turbulent 

entrapment [73]. Lastly, the confluence of rivers also leads to a range 

of different flow patterns as shown in figure 29 on the next page, 

which may lead to the deflection of the main flow and the existence 

of stagnation zones and the creation of turbulent eddies which can 

influence lateral displacements [92]. Additionally one could observe a 

set of two counter rotating secondary flow patterns [93]. The existence and importance of these is 

situation dependent. Influencing parameters are confluence angle and stream velocity, and velocity 

ratio between both tributaries [93]. 

 

Fig. 28 Formation of eddies 

behind water obstacles [91]. 

Fig. 26. Flow through river bends with primary, 

Us, and secondary, Vs, velocity profile [88]. 



31 
 

 

3.3.4. River discharge: velocity and water level 

Based on the empirical studies discussed in 3.3.1. it is hypothesized higher discharge may influence 

interaction of debris with the riverbanks in the following two ways: 

- A strong current (stream velocity) caused by stormflow makes it harder for debris to stick behind 

objects.   

- Rise of the water levels increases interactions with higher sections of the riverbanks as 

suggested by Williams and Simmons (1997) [74]. 

 

Therefore it useful to understand how velocity and water level rise increase with higher discharge. 

Indeed, the increase in mean velocity is not directly proportional to the additional mean discharge since 

part of the discharge is accommodated by an increase in cross section such as an increased water level 

as shown by an example in figure 30.  

Fig. 29 Confluence of the Solimoes and Negro rivers, Brazil (L) [93]. Flow patterns at confluence (R) [92]. 
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Fig. 30. Change in discharge, water surface elevation and mean flow velocity during a 10 month period at the 

Colorado River at Lees Ferry [94]. 

 

The mean river velocity can be calculated using equation 7, with the hydraulic radius R being defined 

as equation 8 [94]: 

𝑉 =  
𝑄

𝐴
= 
𝑅2/3𝑆1/2

𝑛
    (7) ,   𝑅 =

𝐴

𝑃
    (8) 

 

𝑉 = Mean velocity [m/s] 

𝑄 = Discharge rate or Flow rate [m3/s] 

𝐴 = cross-sectional area [m2] 

𝑅 = hydraulic radius ([m] 

𝑆 = Slope of the channel bed [m/m] 

𝑛 = Manning roughness coefficient [s/m1/3] 

𝑃 = wetted perimeter [m] 

 

It can be observed from both equations that the velocity grows less than linear with an increase of cross 

sectional area A. Since A is scaled down with P in equation 28 and with the power of 2/3 in equation 

27. This is however the mean velocity. The flow rate is in reality not evenly distributed over the cross 

section of the channel due to friction with the channel contour, which is especially true for larger and 

deeper rivers [95]. An example of a straight river cross section with a stream velocity contour plot 
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(isovel) is illustrated in figure 31. An isovel plot of a river bend was previously shown in figure 27 with 

the colors indicating primary velocities. 

 

Fig. 31. Isovel diagram of a symmetrical river cross section [96]. 

 

Mean velocity fluctuations will have likely limited effect on interaction with the banks since velocities are 

relatively low there. In addition it means lateral position along the cross section is a crucial factor for 

the speed of displacement of debris and hence the temporal distribution of debris.  

 

The hypothetic correlation between the loading rate, sometimes referred to as flux of debris in a river 

and river discharge has been investigated by Kataoka et al. 2013 [53] in the particular case of the rivers 

flowing into the Tokyo Bay area.  A statistically significant relationship was found albeit the variability 

was large. A comparison of both are shown in figure 32 with the regression formula in the top left corner. 

Both loading rate LR and river discharge have been divided by the specific catchment area of the river 

under consideration. This yields a specific loading rate and a specific river discharge SRD. Correlation 

however does not mean causation hence it is not clear whether the higher discharge is related to current 

cleaning the riverbanks or surface runoff creating river inputs.  

 

Fig. 32 A comparison between LR and SRD [53] using colored dots representing net samplings [97]. 
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A notable observation is the difference observed between the rising stage and the subsiding stage: ‘The 

LRs obtained by the net sampling in [97] were classified into two groups (i.e. the LRs in the rising stage 

and those in the subsiding stage). The rising (subsiding) stage is defined when the SRD increases 

(decreases) during the net sampling. The net sampling data indicates that the LRs in the rising stage 

were one order of magnitude larger than those in the subsiding stage’ [53]. This difference has however 

not been accounted for when calculating the regression formula. It is clear however from the 

observation that when observing the graph depicting the discharge over time, both the sign of the 

gradient and the value of the discharge itself should be taken into consideration. 

 

3.4 Summary 
For the introduction of debris into the river, runoff as a result of precipitation was found to be the largest 

factor. Important rainfall characteristics influencing the event mean concentration (EMS) were 

antecedent dry days (ADD), total rainfall volume and rain intensity. Governmental policies and legislation 

can logically also have major influence, especially on the usage of disposable items and waste 

management. Bans on or price steering of certain products proved a major contributor to reducing 

debris. Other factors include wind, temperature, special events, urban development, tourism, waste 

management and public mentality. In all cases the extent depends on the geographical location both 

with respect to physical topology, climate and anthropogenic related factors. Some combination of 

factors may have large synergetic effect, i.e. the combined effect is nonlinear. Especially the combination 

of climate factors and anthropogenic factors, such as precipitation and waste management, may have 

a reinforcing effect. For waste management, important characteristics are waste bin availability and 

capacity, waste collection, landfill characteristics, recycling and incineration rate, frequency of street 

sweeping and sewage treatment. Poor waste management can lead to more, public littering, fly tipping 

and CSO. 

For river transport the main flow of debris can be related to the velocity of water, which is correlated to 

river discharge caused by precipitation. Caution is however advised since debris may strand or beach 

often and for long periods of time. Stranding is essentially a fairly random process although riverbank 

and river course characteristics will influence the likelihood of stranding events. Hotspots have been 

identified in the large Nakdong River (South Korea) where debris tends to be temporarily trapped 

whereas in the small Taff River (UK) the trapping effect of vegetation and flat riverbanks was proven. 

Floods proved to significantly alter litter presence along the riverbanks. Large scale deposition occurred 

during flood events but removal also occurred. It was hypothesized deposition occurs mainly on sites 

with trapping characteristics while removal is mostly restricted to areas with less trapping capabilities. 

This was unfortunately not thoroughly investigated. Factors influencing lateral transport are wind, input 

location and hydrodynamic events like watercourse obstacles, confluence of tributaries and river bends. 

Table 6 on the next page summarizes all factors discussed above highlighting the corresponding stages 

it has influence on, according to figure 10 at the start of this section. Table 7 highlights the temporal 

characteristics as discussed in 2.4. The type of influence is categorized as peaks, trends and sudden 
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disruptions whereas the rate of the change in accumulation is categorized in order from slow to fast as 

yearly, seasonal, daily and hourly. 

 

Table 6. Effect of factor on respective life cycle stage(s). 

                           Stage 

  
 

 
 

 

 Factor 

Production 

and 
consumption 

(creation of 
product/item) 

 

Item is being 

released into 
the 

environment 
(means of 

release) 

 

Item is being 

released into 
the fresh 

water system 
(transport 

mechanism) 

 

Item is 

transported 
through fresh 

water system 
(transport 

mechanism/ 

pathway) 
 

Precipitation     

Wind     

Temperature     

Seasonal changes in 

vegetation (precipitation 

and temperature)  

    

Special events     

Urban development     

Tourism     

Waste management     

Public awareness     

Political policy/legislation     

 

Table 7. Temporal characteristics of factors. 

          Temporal character. 

  
 

 
 Factor 

Type of 

influence 

Rate of change∶ 
 

𝒄𝒅 =
𝟏

𝑻
∑𝒂𝒃𝒔(𝒇(𝒕 + 𝟏) − 𝒇(𝒕))

𝑻−𝟏

𝟎

 

Precipitation Jump Seasonal, hourly  

Wind Jump Seasonal, hourly 

Temperature Jump Seasonal, hourly 

Seasonal changes in vegetation 

(precipitation and temperature) 

Jump Seasonal 

Special events Jump Hourly 

Urban development Trend Yearly 

Tourism Trend, Peaks  Seasonal, Yearly 

Waste management Trend, Step Yearly (for trend), daily (for step) 

Public awareness Trend Yearly  

Political policy/ legislation Trend, step  Yearly for trend), daily (for step) 
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4. Literature study: Modelling debris accumulation 
All research and knowledge w.r.t. to debris accumulation by rivers has been described in subsection 3, 

whereas the modelling will be explored in this section. The debris accumulation model, which aims to 

model debris from source with the river as a pathway towards the downstream section of the river, can 

be subdivided in two parts as shown in figure 33: The riverine input model and the river propagation 

model. 

 

        Fig. 33. Overview accumulation model and sub models, including data inputs. 

From this figure it can be seen that each sub model relies on its own data input while the river 

propagation models also requires the output from the model above it. Modelling debris accumulation 

has multiple benefits. It does not only serve as a method to increase cleaning performance but may 

also improve knowledge pertaining the sources or geographical areas of debris over time, hence serving 

as a tool to pressure responsible authorities to act. Krelling et al. (2017) phrased it as follows: ‘This 

uncertainty undermines the recognition that marine debris may be a transboundary issue in certain 

regions. Consequently, marine debris may be treated as a low priority issue by decision makers, 

especially from locations that are sources, but not sinks’ [98]. 

Various types of models can be found in literature. Models can be divided in different main categories 

as shown in figure 34, with the bottom layer being the most complex. ‘Specific locations’ refers to the 

specific location of an event like stranding, point of entry (into the river), etc. Factor representation 

refers to factors mentioned in section 3. Multi source, multi type/material and multi factor can be 

logically further subdivided according the quantity of sources/types/materials accounted for. 

  

Fig. 34. Four ways of categorizing debris accumulation models. 

Debris accumulation model

River input model 

(incl. runoff model)

River propagation model

Output: Debris 

accumulation

Data: Precipitation, 

Wind, etc.

Data: Runoff, Wind, etc.

Time representation

Steady state

Dynamic/Time 

dependent

Space representation

Specific locations 

are not considered

Specific locations 

are defined explicitly 

Source 

representation

Single source

Multi source

Debris representation

Single type/material

Multi type/material

Factor representation

Single factor

Multi factor
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In addition to these categories which are specifically applicable to debris modelling, mathematical 

models can be further subdivided in sub categories. For instance whether these are statistical (empirical) 

or mechanistic, stochastic or deterministic and analytical or numerical [96]. Figure 35 highlights those 

modelling approaches. It should be noted that hybrid models exist, in which different approaches are 

combined. The reason is that the total process modeled may consist of different sub processes which 

may need different modelling approaches.  

 

Fig. 35. Three ways of categorizing debris accumulation models. 

In order to account for fluctuations in debris accumulation over a short time span, a dynamic model is 

required. Nonetheless, other models may give insight in how factors can be accounted for. 

In the following subsections solutions to the two models from figure 33 will be explored in literature and 

different approaches assessed. Additionally, augmentations to existing models will be suggested and 

discussed. These changes will be worked out in section 5.  

4.1. Modelling river inputs 
Measuring the riverine inputs of debris is hard, especially since the sources are diverse and largely 

uncertain [29]. Logically, riverine debris inputs are not widely surveyed as pointed out by Malik and 

Manaf (2018) [99] and Rech et al. (2014) [42], hence the quantification of riverine inputs needs to 

largely rely on quantification methods which can estimate these inputs. Several estimation methods 

have been proposed for both macro debris, Wan et al. (2018) [29] and Armitage et al. (1998) [47], and 

micro plastics, Kooi et al. (2018) [73]. The latter presents an overview of several input and transport 

methods which all have been recently developed. Nizzetto et al. (2016) [100] is the only input model in 

the overview which is dynamic and multi-source since the other models merely consider a single point 

source like wastewater treatment plant (WWTP) effluents or consider a few point sources but only 

steady state. These models, including Nizzetto et al., also lack spatial resolution since emissions are 

lumped over a large area. An overview of these models, including models which randomly assume a 

number of debris accumulation, can be found in table 8 and 9. Debris propagation models which are 

not specifically calculating river inputs but nonetheless use an estimate or even a quasi-random number 

for the quantity of river inputs were also included in table 8 and 9. Each column, except the last 

represents a category from figure 47. The last column shows whether river inputs are specifically 

included. In some cases the number is not specific, for instance if river inputs are lumped with river 

propagation. In other cases the calculation is not comprehensive, if only a sub calculation for river inputs 

is considered. 

 

Empirical

Mechanistic

Stochastic

Deterministic

Analytical

Numerical

Discrete

Continuous
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Table 8. Overview of debris models for river inputs, part 1. 

 
Table 9. Overview of debris models, part 2. 

                                                
10 The model allows to calculate the amount of debris generated for different land uses. How this translates to 
river inputs is not considered. 
11 Specific locations were not considered but quantities were specified for an area of 1250 km2. 
12 Specific locations were not considered but quantities were specified for each cell on a 0.5° latitude × 0.5° 

longitude grid. 
13 The smallest spatial unit considered are the hydrologic response units used by the Soil and Water Assessment 

Tool (SWAT), which are areas within sub-basins with similar soil, land use and slope characteristics.  

 Time Space Source(s) 

Armitage et al. 

(1998) [47] 
Steady state 

Specific locations 

not considered10 

Multi but lumped, uses a general 

figure for mismanaged debris 

Meesters et al. 

(2014) [101] 
Steady state, emissions assumed 

Specific locations 

not considered 
Soil, rain 

Van Wezel et al. 

(2015) [102] 
Steady state 

Specific locations 

not considered 

Sewage effluent (personal care, 

cleaning agents and paint) 

Nizzetto et al. 

(2016) [100] 
Dynamic, daily estimates 

Specific locations 

not considered11 

Multi source, sewage sludge, 

WWTP effluents, soil 

Tol (2016) [23] 

Dynamic, from a Weibull 

distribution fitted on historic 

data of debris removal 

Specific locations 

not considered 
Not considered 

Lammerts 

(2016) [24] 
Steady state, emissions assumed 

Specific locations 

not considered 
Not considered 

Siegfried et al. 

(2016) [103] 
Steady state, annual estimates 

Specific locations 

not considered12 

Point sources only. Sewage 

effluent (personal care, dust, 

tire wear and laundry inputs) 

Besseling et al. 

(2017) [104] 
Steady state, emissions assumed 

Specific locations 

not considered 
Not considered 

Wan et al. 

(2018) [29] 
Dynamic, daily estimates 

Specific locations 

considered13 

Multi but lumped, uses a general 

figure for mismanaged debris 

 Debris Factor 
River inputs considered 

specifically? 

Armitage et al. 

(1998) [47] 

All macro debris, natural and 

anthropogenic 

Rainfall volume, 

ADD and street 

sweeping 

No, calculates debris 

accumulation into drainage 

system.  

Meesters et al. 

(2014) [101] 
Nano and micro plastics Rainfall volume Yes 

Van Wezel et al. 

(2015) [102] 
Micro plastics Not considered Yes 

Nizzetto et al. 

(2016) [100] 

Non buoyant micro plastics, 

0.005-0.5 mm, five size classes 

Rainfall duration 

and intensity 
Yes 

Tol (2016) [23] Macro debris, buoyant Wind 
No, river inputs and river 

propagation are aggregated 

Lammerts 

(2016) [24] 
Macro debris Not considered 

No, random number for river 

accumulation 

Siegfried et al. 

(2016) [103] 
Micro plastics Not considered Yes 

Besseling et al. 

(2017) [104] 

Nano and micro plastics 100 nm 

to 10 mm, ten size classes 
Not considered 

No, random number for river 

accumulation 

Wan et al. 

(2018) [29] 

All macro debris, only 

anthropogenic 

Rainfall duration 

and intensity 
Yes 
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Henceforth, only the two macro debris models will be elaborated on since sources and input quantities 

are different for micro and macro debris. Moreover, Nizzetto et al. lacks sufficient spatial resolution. 

 

As shown in section 3 precipitation and consequential runoff is an important factor in the fluctuations 

of riverine inputs. Modelling rainfall induced surface runoff has been an important topic of interest due 

to its value in flood forecasting [105], which helped pushing forward the progress in runoff modelling. 

A crucial factor in the quality of these models are precipitation measurements, measurements which are 

also necessary for the estimation of output from combined sewer overflows. Zhao et al. (2015) mentions 

how this is notoriously difficult: ‘… Unfortunately, precipitation is also one of the most difficult 

atmospheric fields to measure, because of the limitations of surface-based observational networks and 

the large inherent variations in rainfall fields themselves’ [106]. Whether precipitation can be used in a 

useful way then depends on the level of detail required since a good estimate of the precipitation over 

the surface area might already be sufficient for a simple prediction model. Nizetto et al. (2016) for 

instance used a lumped model which spatially averages precipitation data over the whole catchment 

[100]. 

4.1.1. An estimation model for land to river inputs of macro debris 
The flowchart presented in figure 36 represents a fairly comprehensive land to river debris estimation 

method recently developed by Wan et al. (2018) [29]. The method relies largely on the modelling of 

surface runoff from precipitation which was performed using SWAT (Soil and Water Assessment Tool), 

a model with built in databases to input the model. This flowchart needs to be repeated for every river 

basin flowing into the main channel, for each time step, e.g. on a daily basis as is prescribed by the 

SWAT model. The equations mentioned in the flowchart will be subsequently discussed starting with 

the maximum quantity of debris available for input.  

 

 

Fig. 36. Comprehensive flowchart of the estimation method used to calculate the mass of land to river debris in a 

runoff basin [29]. 

 

Data input: 

- Waste generation rates

- Percentage of mismanaged land based debris

- Population along the river bank

Data input: 

- Digital elevation - Soil type

- Land use - Meteorological data

Equation 13 Modelling

Mass of debris 

generated on land

Surface runoff Q 

generated  

Q > threshold?

No

End

Mass of land to river debris in river

Equation 15
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The following equation gives the daily mass of debris generated on land 𝑚𝐷,𝐺 [kg] as given by Wan et 

al. [29]: 

𝑚𝐷,𝐺 = 𝑟 ∙ 𝐺 ∙ 𝑃 ∙ ∆𝑡    (9) 

𝑟 = percentage of mismanaged debris [%]  

𝐺 = Waste generation rate person [kg/person/day)  

𝑃 = Number of persons along the river banks [persons]  

∙ ∆𝑡 = time interval [day] 

The size of the bank zone for the main channel used for determining 𝑃 was defined as 50 km. This is 

an approximation for the average basin depths of the inflowing tributary rivers. Waste generation rates 

are obtained from Jambeck et al. (2015) [10] which defined mismanaged waste as follows: ‘… material 

that is either littered or inadequately disposed. Inadequately disposed waste is not formally managed 

and includes disposal in dumps or open, uncontrolled landfills, where it is not fully contained’ [10]. It is 

however not clear how street cleaning has been accounted for. In subsection 3.2 research showed that 

street cleaning may have a large impact. Furthermore, the location of dumps and landfills is crucial but 

this data can be hard to obtain, especially for random dumps.  

The daily accumulation of debris per day 𝑚𝐷,𝐺 was used by the Wan et al. (2018) to calculate the 

quantity of debris available for land to river inputs. This is the maximum quantity which can logically 

not be exceeded by surface runoff, i.e. land to river inputs 𝑚𝐷,𝐼 ≤ 𝑚𝐷,𝐴. Accumulation however is not 

the true quantity available for surface runoff, a better definition of the total presence of litter 𝑚𝐷,𝐴 should 

account for litter removed by street cleaning (or other) and surface runoff. Another shortcoming of the 

previous calculation method is that it does not include the number of antecedent dry days (ADD) and 

the ‘first flush’ effect discussed in subsection 3.1, which were deemed to be factors of influence.  

Hence a more appropriate method to calculate the quantity of land debris available, 𝑚𝐷,𝐴 is suggested: 

𝑚𝐷,𝐴(𝑡) = 𝑚𝐷,𝐺(𝑡) + 𝑚𝐷,𝐴(𝑡 − 1) − 𝑚𝐷,𝑆(𝑡 − 1) − 𝑚𝐷,𝑅(𝑡 − 1)    (10) 

𝑚𝐷,𝐺(𝑡) = Daily generated anthropogenic debris as calculated in equation 13 [kg]  

𝑚𝐷,𝑅(𝑡 − 1) = Daily quantity of debris removed (by sweeping or other) on the previous time step, e.g. day [kg] 

𝑚𝐷,𝑆(𝑡 − 1)  = Daily quantity of debris removed by surface runoff on the previous time step, e.g. day [kg] 

𝑚𝐷,𝐴(𝑡 − 1)  = Daily quantity of debris present at start of the previous time step, e.g. day [kg] 

This process is visualized in figure 37. 

Fig. 37. Flow model to determine land debris available for land to water transport at time t. 

Land debris available for land to water 

transport  at time t

Land debris available for land to water 

transport at time t-1

Land debris removed by surface 
runoff

Removed by street cleaning

Accumulation of mismanaged debris
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Following the calculation of the available mass of debris, mass of debris inputs from land to river 𝑚𝐷,𝐼 

[kg] can be calculated as follows [29]:  

𝑚𝐷,𝐼 = {
∑𝑘(𝑄𝑖 − 𝑄𝑏)∆𝑡

𝑛

𝑖=1

    𝑚𝐷,𝐼 < 𝑚𝐷,𝐺

𝑚𝐷,𝐺                                 𝑚𝐷,𝐼  ≥ 𝑚𝐷,𝐺

    (11) 

𝑄𝑖 = Surface runoff river basin [m3/s]  

𝑄𝑏  = Threshold for surface runoff, below it no surface runoff [m3/s]  

𝑘 = coefficient which relates surface runoff to debris inputs [kg/m3]  

∆𝑡 = time interval [s] 

𝑛 = number of outlets per river basin 

If equation 10 is used, 𝑚𝐷,𝐺 in equation 11 would be replaced by 𝑚𝐷,𝐴. 𝑄𝑏  and 𝑘 depend on composition 

of debris, land use amd slope and land use and slope respectively. Both parameters have to be 

determined by linear regression analysis using real world data. Figure 38 below illustrates the previous 

equation, especially with relation to surface runoff threshold 𝑄𝑏 and maximum available land to river 

debris 𝑚𝐷,𝐴.  

Fig. 38. Illustration of surface runoff threshold (A) and land debris available for land to river (B). 

4.1.2. Model augmentation using the missing factors 
Armitage et al. (1998) [47] presented an alternative set of steady state equations and in contrast to 

Wan et al. considered both street sweeping and ADD. The estimation method consists of a fixed debris 

loading rate and a variable debris loading rate to account for precipitation events. Equation 12 below 

calculates the fixed debris load in the waterways: 

𝑇 = ∑𝑓𝑠𝑐𝑖 ∙ (𝑉𝑖 + 𝐵𝑖) ∙ 𝐴𝑖     (12) 

𝑇 = total debris load in the waterways [m3/year]  

𝑓𝑠𝑐𝑖 =   street cleaning factor for each land use [N/A]  

𝑉𝑖 =vegetation load for each land use [m3/m2/year]  

𝐵𝑖 = basic debris load for each land use [m3/m2/year]  

𝐴𝑖 = area of each land use [m2] 

Available land 

debris mD,L 

Land to river debris 

generated after 

correction mD,I 

B A 

Surface runoff 

threshold Qb 

Land to river 

debris generated 
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A range of possible annual values  for different quality of cleaning services, different vegetation densities 

and different land use (like commercial, residential, industrial) respectively is given by Marais et al. 

(2004) [66]. Land use factors will be dependent on local mentality, availability of public waste bins, 

population density, local income, etc. Poor people will for instance be less likely to be concerned with 

litter disposal than rich people. The multitude of factors involved is adding to the complexity of defining 

these values and hence this geo dependency inherently means local surveys are necessary to acquire 

the local debris loading rates. In addition a variable storm load calculation is proposed to account for 

precipitation and resulting surface runoff [47]: 

𝑆 =  𝑓𝑠 ∙
𝑇

∑ 𝑓𝑠
   (13) 

𝑆 = storm load in the waterways [m3/storm]  

𝑓𝑠 = storm factor 

𝑇 = total debris load in the waterways [m3/year]  

∑𝑓𝑠 = sum of all the storm factors for all of the storms in the year 

Storm factors account for the numbers of ADD. In conclusion, Armitage et al. gives a simple analytical 

method and includes ADD and street sweeping, Wan et al. however uses a more detailed model which 

also includes mismanaged landfills which means none of both method is clearly preferential. Adapting 

the Wan et al. method to account for ADD and street sweeping seems the best option to achieve the 

most accurate estimates.  

Wind has not been accounted for in previous estimation methods although as argued in subsection 3.2 

wind could also be a contributing factor for fluctuations in land to river inputs, especially in the dry 

months [45]. Wind inputs can be calculated largely in a similar way as rain. Likewise, one would expect 

a threshold value for transporting mismanaged debris and creation of additional debris. In addition 

however, wind is able to generate additional debris on land since strong winds can detach previously 

fixed items or move items from places where they would have been removed (like from outdoor 

furniture). Equation 10 previously defined for the calculation of land debris can be modified by adding 

wind generated debris and debris removed by wind runoff which is illustrated in figure 39. The modified 

equation, equation 14, can be found on the next page. 

 

 

Fig. 39. Flow model to determine land debris available for land to water transport at time t, including wind. 
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𝑚𝐷,𝐴(𝑡) = 𝑚𝐷,𝐺(𝑡) + 𝑚𝐷,𝑊𝐺(𝑡) + 𝑚𝐷,𝐴(𝑡 − 1) − 𝑚𝐷,𝑊(𝑡 − 1) − 𝑚𝐷,𝑆(𝑡 − 1) − 𝑚𝐷,𝑅(𝑡 − 1)    (14) 

𝑚𝐷,𝑊𝐺(𝑡) = Daily generated anthropogenic debris by wind [kg]  

𝑚𝐷,𝑊(𝑡 − 1) = Daily quantity of debris removed by wind runoff on the previous time step, e.g. day [kg] 

 

Unfortunately as previously discussed in 3.2 research is extremely scarce w.r.t. to these processes. 

Modelling runoff could be performed using a CFD modelling program, e.g. Airflow Analysis, which 

requires data on local topography [107]. Such data can be obtained using airborne LIDAR data [107]. 

Unfortunately this type of computation is extremely computation intensive which makes sub daily or 

even sub hour calculations practically infeasible [107]. Therefore analytical approximations are perhaps 

more appropriate despite having a large discrepancy with the real values. This will be worked out in 

section 5, discussing detailed model design. 

Seasonal effects of tourism can simply be accounted for by a factor. This is possible by adjusting 𝑃 in 

equation 9 to account for the additional outdoor activity and tourists. For events roughly the same 

applies although events in general tend to generate more litter per person due to the large consumption 

of single use food packaging, plates, cutlery, cups, etc. which means an additional factor would be 

appropriate. One needs to take special consideration for weather conditions during the events since 

generally (depending on the type of event and location like country) event grounds are well cleaned 

after the event is finished.  

Urban development is a slowly changing factor. This can be accounted for by adjusting 𝑃. Vegetation 

developments need to be monitored. This may require updates on vegetation coverage which can be 

obtained using airborne sensing like LIDAR.  Shifts in public mentality can be measured in different 

ways.  Quantified data could be retrieved, such as plastic production and the consumption of certain 

(single use) products, like cutlery and plastic bags. Furthermore, data from street cleaning and the 

number of dump sites encountered could provide insights on incorrect littering behavior and changing 

attitudes.  

4.2. River propagation modelling 
River propagation models for debris have been developed for both macro debris, Balas et al. (2001) 

[77] and micro debris, Kooi et al. (2018) [73].14 An overview is presented in table 10 and 11. 

 

 

 

 

                                                
14 For an (exhaustive) overview of debris size classification, check appendix D.2. 
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Table 10. Overview of relevant river propagation models according to the categories specified in figure 34, part 1. 

 Time Space Debris 

Balas et al. 

(2001) [77] 

Dynamic, 3 hour 

window simulated 

Specific locations not considered, ≈2.2 

km stretch of river 

Plastic macro debris: 

LDPE sheets of 0.2x0.2 m 

Nizzetto et al. 

(2016) [100] 
Dynamic, daily 

Specific locations not considered, 

Thames river catchment, >100km 

Non buoyant Micro 

plastics, 0.005-0.5 mm  

Tol (2016) 

[23]15 
Dynamic, daily 

Specific locations considered, ≈13 km 

stretch of river 
Macro debris, buoyant 

Lammerts 

(2016) [24]16 

Dynamic, 7.5 

seconds 

Specific locations considered, ≈14 km 

stretch of river 

Macro debris, in the top 1 

meter of water 

Siegfried et al. 

(2016) [103] 
Steady state 

Specific locations not considered, river 

length from rivers in Europe and North 

Africa 

Micro plastic 

Besseling et al. 

(2017) [104] 

Dynamic, 36 

seconds 

Specific locations not considered, 40 km 

river stretch, divided in stretches of 

about 88 meter. 

Nano and micro plastics 

100 nm to 10 mm 

 

Table 11. Overview of relevant river propagation models according to the categories specified in figure 34, part 2. 

 River propagation 

considered specifically? 
Factor 

Modelling 

approach 

Balas et al. 

(2001) [77] 
Yes 

Advection, Stranding along 

reaches, hotspots and vegetation 

Empirical, 

stochastic 

Nizzetto et al. 

(2016) [100] 
Yes  

Advection, settling and 

resuspension 
Analytical 

Tol (2016) [23] Yes 
River flow, wind, port 

compartments 
Analytical 

Lammerts 

(2016) [24] 
Yes 

Wind, river flow, tides, port 

compartments 

Hydrodynamic, 

Numerical 

Siegfried et al. 

(2016) [103] 
Yes 

Water abstraction, general 

retention 
Analytical 

Besseling et al. 

(2017) [104] 
Yes 

Advection, dispersion, biofouling, 

aggregation, degradation, settling, 

resuspension, burial 

Hydrodynamic,  

Numerical 

 

The simplest model from the overview above, Siegfried et al. (2016), assumes a simple estimation 

method which calculates river outputs using distance dependent retention factors and removal factors 

by water consumption. Additionally, two spatiotemporally explicit models are included which also take 

into account hydrodynamic processes. Many processes relevant for micro debris propagation however, 

as modeled by Besseling et al. (2017) [104], are very different from those for macro debris, e.g. 

biofouling, aggregation, settling and burial. The basic general transport models are nonetheless very 

similar. This is illustrated by equation 15, defined by Nizzetto et al. (2016) [100], which calculates the 

quantity of suspended micro particles and equation 16 which is a macro debris interpretation of equation 

                                                
15 In this overview, only the river propagation modelling through the port was considered. For debris propagation 

along the river towards the Port, see table 8 in subsection 4.1, since debris transport towards the port and river 
inputs were lumped together.  
16 See above. 
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15. Many micro debris specific processes were not included by Nizzetto et al., the level of detail being 

less compared to Besseling et al. which makes a comparison with macro debris more tractable. 

𝑑𝑀𝑃𝑆𝑈𝑆
𝑑𝑡

= 𝑚𝑒𝑓𝑓 +∑(𝐴 ∙ 𝑚𝑂𝑈𝑇)

𝑢

+ 𝐿 ∙ 𝑊 ∙ (𝑚𝑒𝑛𝑡 −𝑚𝑑𝑒𝑝) + 𝑚𝑢𝑝 −𝑚𝑑𝑜𝑤𝑛     (15) 

𝑑𝐹𝐷

𝑑𝑡
= 𝑚𝑝𝑠 +∑(𝑚𝑠𝑢𝑟𝑓)

𝑏

+ 𝐿 ∙ (𝑚𝑒𝑛𝑡 −𝑚𝑟𝑒𝑡) + 𝑚𝑢𝑝 −𝑚𝑑𝑜𝑤𝑛    (16) 

𝐹𝐷 = Floating debris in river section [kg] 

𝑚𝑝𝑠 = Litter discharge from point sources along the reach [kg/s] 

𝑚𝑠𝑢𝑟𝑓 = surface runoff (wind and rain) from each adjacent basin b [kg/s] 

𝑚𝑒𝑛𝑡 = Entrainment of litter from reaches by river flow per reach length L [kg/m/s] 

𝑚𝑟𝑒𝑡 = Retention of litter by reaches per reach length L [kg/m/s] 

𝑚𝑢𝑝 = Litter entering from upstream [kg/s] 

𝑚𝑑𝑜𝑤𝑛 = Litter exiting downstream [kg/s] 

mps and msurf are output data from the land to river debris model, i.e. the river input model, whereas 

mup and mdown are determined by advection rates at the start and end of the river section. What remains 

are entrainment and retention flows. Entrainment is mainly depended on the river flow rate as discussed 

in subsection 3.3, more specifically stage (gage height of water surface) and flow velocity. Logically, 

the quantity of debris retained is also relevant.  

Retention, as discussed in subsection 3.3, is dependent on reach characteristics, watercourse 

obstructions, flow rate, wind induced displacement and river morphology which influences river 

hydrodynamics. Important hydrodynamic events which can influence lateral surface displacement are 

confluence of tributaries, watercourse obstructions and river bends [87] as discussed in subsection 4.3.3. 

In general all of these above hydrodynamic events above are complex, hence requiring intensive 

numerical modelling and more work is necessary on the integration of spatial and temporal scales of 

turbulent flows [87]. 

Some limited analytical methods exist however [108]. 

For instance on the lateral mixing of rivers. As visualized 

in figure 40 three types of transport phenomena in rivers 

can be identified: advection, turbulent diffusion, 

dispersion. Advection is transport due to bulk flow. 

Turbulent diffusion is due to turbulent motion and can 

for instance be created by ships, watercourse obstacles 

and river confluence as described above. Dispersion is 

displacement due to a non-uniform velocity profile in 

rivers, as visualized in figure 31 of subsection 3.3.4, 

which occurs due to shear with the riverbanks. It is a Fig. 40. Transport phenomena in rivers [108]. 
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combined effect of advection and lateral diffusion. Estimations concerning lateral movements could be 

for instance deduced from lateral mixing.  

The length Lm required for full mixing of a substance released in a river can be calculated with the 

following analytical equation [108]: 

𝐿𝑚 = 𝑘
𝑈 ∙ 𝑊2

𝑁𝑦
    (17) 

𝑘 = coefficient for entering point (side: 0.4, center: 0.1)  

𝑈 = Mean velocity [m/s] 

𝑊 = Mean channel width [m] 

𝑁𝑦 = Transverse mixing coefficient [m2/s] 

Where 𝑁𝑦 is defined as: 

𝑁𝑦 = 𝐶𝑚 ∙ 𝑌 ∙ 𝑢∗    (18) 

𝐶𝑚 = dimensionless coefficient, typically 0.6 for slowly meandering natural channels, ±50%  

𝑌 = mean depth [m] 

𝑢∗ = Shear velocity [m/s]  

With 𝑢∗ defined as: 

𝑢∗
2 = 𝑔 ∙ 𝑌 ∙ 𝑆𝑜    (19) 

𝑔 = gravitational constant [m/s2]  

𝑆𝑜 = bottom slope [m/m] 

The main issue with these analytical calculations are the uncertainties concerning the dimensionless 

transverse mixing coefficient 𝐶𝑚 and the bottom slope [89] [109]. Alternative proposals include the 

Manning roughness coefficient which estimation is also challenging [89].  

Since analytical and numerical models of river hydrodynamics have their limitations and complexities, 

an alternative method to model propagation is to use empirically based statistical models. Balas et al. 

(2001) [77] developed a statistical riverine propagation model for the river Taff and looked specifically 

at stranding of macro debris, i.e. retention. The authors used discrete probability distributions like the 

Poisson, Geometric and Binomial distribution to model similar reach sections and vegetation. The 

monitoring study by Williams and Simmons (1997) [74] was used to calibrate the results. Four separate 

reach characteristics were identified based on their vegetation densities and debris sorted and counted. 

Only plastic sheeting was further considered as a category to calibrate since data pertaining river 

movements for different flow conditions was only available for plastic sheeting. The downside of this 

approach is that one preferably needs to do this type of calibration for each litter category since each 

category may have different movement patterns as shown in subsection 6.4. It is also important to 

identify relevant hotspots as demonstrated by Jang et al. (2014) [75] for the Nakdong river. Movement 
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patterns for large rivers like the Nakdong will be less disturbed by vegetation compared to small rivers 

like the Taff. Hence hotspots likely play a more important role. Balas et al. did not account for wind 

induced movements since the river was small and well shielded by vegetation, however in large rivers 

these should certainly be included. Optionally, static debris removal operations can be included as 

retention. In this case these can be modelled as hotspots with probability of 1 of retention and 

probability 0 of entrainment.  

4.3. Summary 

Accumulation of debris from land to a downstream section of a river can be modelled using two separate 

sub models: a river input model (land to river) and a river propagation model. Estimation models exist 

for both micro and macro debris and can be divided into spatiotemporally explicit and steady state 

models. For the application envisioned in this report a spatiotemporally explicit is desired to observe 

fluctuations in time and space. Another feature is the number of sources considered by the models, 

many models consider for instance only one source. In this section two of the most promising existent 

models were presented for river inputs, namely Wan et al. (2018) and Armitage et al. (1998). Armitage 

is more inclusive since it incorporates ADD and street sweeping while Wan et al. uses a highly detailed 

river surface runoff model. To improve these models both can been combined. This can been achieved 

by augmenting the model of Wan with ADD and street sweeping. In addition, a solution has been 

proposed to include the following missing factors, as mentioned in section 3: wind runoff, urban 

development, events and tourism/temperature. For river propagation a statistical model can be used as 

developed by Balas et al. (2001). To complement that model, hotspots can be identified and wind can 

be modelled using windage factors. A detailed model will be worked out in the next section. 
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5. Model design 
The previous section reviewed existing models of land to river inputs and river propagation and 

suggested improvements. In this section these improvements will be worked out in detail so it can be 

directly implemented into a coding language. The goal is to design a generic model which is able to 

predict anthropogenic and natural debris outputs downstream of rivers. Subsection 5.1 will discuss the 

modelling approach and specify the various model objectives, requirements and specifications. Next, 

subsection 5.2 and 5.3 will elucidate both parts of the main model, i.e. the design of the land to river 

input model and the river propagation model. Finally, the section is summarized in subsection 5.4. 

5.1 Modelling approach 

It is important to establish a design approach to guide the modelling process. Hence, a modelling 

framework is proposed, based on the waterfall model17, which means it is generally a linear design 

process although iteration may be required. A simplified overview of the modelling approach without 

iterations is outlined in figure 41. 

The first step sets the objective for the model. This objective depends on the implementation the model 

is aimed to fulfill and which goal is aimed for, i.e. the objective depends on the final user. The output 

of the model should also be specified. The objectives are high level and can as such be stated more 

vaguely while the requirements in contrast are more concrete, detailed elements to be included in the 

design. The requirements follow from the analysis of the 

literature as performed in section 3 and 4. In the design phase 

the actual prediction model is build. After the model has been 

worked out on paper, it should be coded before proceeding to 

the next steps. The verification phase takes place to ensure 

the design works as intended after which the model can be 

trained using a historical datasets of weather and debris 

accumulation, which represent the inputs and the outputs of 

the model. Training the model will calibrate all unknown model 

parameters. Once the model is trained, the model can enter 

the validation process where the performance of the model is 

measured. In order to test the added value of the most 

complex model, stripped down versions of this model will be 

included. Validating multiple versions should demonstrate the 

value of the various factors being implemented in the model. 

This is crucial since stripped down versions will have less 

inputs and are therefore easier to implement and are hence 

more widely applicable. The interpretation of the validation 

results depends however on the size and quality of the dataset 

                                                
17 An illustration of the modelling approach in waterfall style can be found in appendix J. 

Fig. 41. The Modelling approach.  
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and the specific location of the dataset in general. This should be carefully assessed during the 

evaluation, where the validation results are evaluated. 

Some steps will need external data/information. These external sources are highlighted in figure 55 by 

the yellow boxes. The objective depends on the user, the requirements are based on the 

analysis/literature study, the design phase depends on the case study and finally, the training and 

validation of the model is performed use the case study sub datasets.   

5.1.1. Model objectives 

The high level objectives of the model is to make a contribution to the prevention of accumulation of 

debris in marine ecosystems and to contribute to a reduction of debris present at any time in the 

port/bay area located downstream. Every actor involved in debris removal, to which any of the above 

objectives applies, can be called a user. Several actors are involved in debris removal, each with different 

main concerns, debris of interest, geographical focus and objectives. An overview can be found in table 

12.  

Table 12.  User profiles of each actor involved in debris contamination. 

 City harbor operator Nautical port operator 

Main concern: Decreased aesthetic appeal Damage to nautical traffic 

Debris of interest: Any visible debris, i.e. macro debris, 

natural and anthropogenic. 

Any type, sizes prone to nautical traffic 

related damage, i.e. macro debris, natural 

and anthropogenic. 

Geographical focus: Respective harbor only Respective port only 

Main objective: Minimizing debris in harbor leading to 

decreasing aesthetic value of harbor.  

Minimizing debris in the harbor prone to 

cause damage to shipping vessels. 

 Political authorities (i.e. national, 

provincial, municipal) 

Research groups and academics 

Main concern: Economy and wellbeing of own citizens  Health and safety impact on Flora and 

Fauna, incl. humans.  

Debris of interest: Visible and debris, proven to inflict 

damage. 

Anthropogenic debris high in abundance 

and risk.  

Geographical focus: Local, national or regional National, regional or global 

Main objective: Minimizing presence of visible debris and 

minimizing presence and outflow of 

debris which has proved to inflict 

damage. 

Minimizing outflow of debris to the marine 

ecosystem, known or suspected to be a 

danger to the health of flora and fauna, 

incl. humans. 

 

Note that research groups and academics are not the operator or initiator of debris removal operations 

but may act as a lobby group to pressure and/or inform authorities. Even though these actors have 

dissimilar main objectives, they might share concerns as underlying motives or arguments to take action, 

hence creating secondary objectives. A port operator might very well feel he could contribute to a better 
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environment, if not out of pure environmental friendliness perhaps at least to promote a green image 

of his port. 

Each of the users described above (research groups and academics indirectly) are a potential user for 

the model and the model should be made to fit their needs. Users and applications can be from 

anywhere around the globe. The model is hence a general model, not custom build to a case. In order 

to make the model attractive and useful to the user several objectives can be added: 

- The model should be practical to implement for a user.  

- It should include the relevant factors, affecting land to river debris input and river propagation 

as discussed in the literature study.  

- The model should have enough detail to make a relevant impact, i.e. improve on the situation 

without a model. 

- The model design should be covered within a tractable timespan, i.e. within the context of this 

study. 

The user of the model is assumed to be able to access data from the available weather stations and 

weather predictions, which can be used as an input to the model. The model should be simple to use 

and implement but inclusive. The relevant factors influencing debris accumulation should hence be 

included but the model should not be too computationally intensive and not require the need of 

expensive complex computer modelling. The initial design will therefore be analytical. Such a design 

would also benefit the last objective. A simple design may however conflict with the third objective. This 

can be evaluated during the validation stage of the modelling process. It might indeed be worth to 

include complex modelling such as the inclusion of hydrologic computer models by Wan et al. (2018), 

especially for rivers with larger debris accumulation and/or river basins with a mountainous surface 

topography. Depending on the application, certain data, such as soil and land use data might be hard 

to obtain or simply too intractable in terms of the sheer amount of data required. Hence, stripped down 

versions of the model will be tested as well. 

The final model should output a quantity of debris, either mass or volume, arriving over a certain time 

window at a predefined section of the river. Removing debris in/after the most downstream cross section 

is obvious in many cases but in theory debris could be removed anywhere along the river. The unit for 

the quantity of debris and the length of the time window will follow Wan et al. (2018), i.e. mass and 

day respectively. 

5.1.2. Model requirements 

The model should calculate: 

- the quantity of available anthropogenic and natural debris in a specific area, based on: 

 The number of inhabitants; 

 Season (tourism/seasonal shedding/outdoor presence of inhabitants); 

 The mass of mismanaged debris per person; 



51 
 

 Wind force (wind generated debris). 

- The mass of land to river inputs at a specific point along the river, based on: 

 The available anthropogenic and natural debris in a specific area; 

 Surface runoff from rainfall; 

 The number of antecedent dry days; 

 Surface runoff from wind; 

 Street cleaning. 

- Calculate the mass of debris arriving over a day at the most downstream cross section of the 

river, based on: 

 The mass of land to river inputs at a specific point along the river  

 Retention of debris along river and reaches, based on: 

 River flow; 

 Hotspots; 

 Wind force and direction; 

 Passive removal devices placed along the river. 

 Entrainment of debris from reaches, based on: 

 River flow; 

 Hotspots. 

5.1.3. Model design specifications 

The following should be specified for the model: 

- Input variables (IV). The input variables are values related to the factors described in section 4 

and need regular updating. The timespan at which each input variable should be updated can 

differ. IV require the following specifications: 

 Units; 

 Domain; 

 Update scheme: Timespan between refreshing the input data. 

- Configuration parameters (CP). The configuration of the model requires data on the specified 

river and its catchment area, as such the configuration parameters define the geographic region. 

Parameters are related to land and fluvial geometry and topography but also to natural and 

anthropogenic features and activities present in the area. CP can be completely undefined or 

can be predefined as a list of optional values. This data needs to be entered by the user once, 

although revision may be necessary on the longer term, e.g. on a biennial basis. CP require the 

following specifications: 

 Units; 

 Domain; 

 If applicable, update scheme: timespan between refreshing the configuration of 

parameters. 
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- Fixed parameters (FP). Fixed parameters are parameters which are predefined, i.e. they cannot 

be configured by the user. As such these are not updated, unless with new versions of the 

model. FP require the following specifications: 

 Units; 

 Domain. 

- Internal variables (INT). Internal variables are relevant for internal calculations and are not 

visible to the user. Internal variables are dependent variables and depend on IV, CP, FP and/or 

other INT. Their update scheme and unit depends on these variables/parameters. The domain 

however can be predefined. Hence, INT require the following specification: 

 Domain. 

- Output variables (OV). One or multiple output variables can be assigned to a model. These 

output variable are presented to the user. Since there are two sub models in series, the output 

of the first is will become input for the second model. The output of the second sub model is 

also the output of the total model. Outputs require the following specifications: 

 Units; 

 Domain; 

 Update scheme: Timespan in between updates. 

- Model description. This is the actual model and includes the formulas, links, etc. which connect 

the inputs to the outputs. The model descriptions requires the following specifications: 

 Assumptions. 

5.2. River input model 

As concluded in section 4, the river input model will replicate the main structure of the model from 

Wan et al. (2018) [29] although modifications are necessary. Like the model described by Wan et al. 

the main structure of this model will have two branches. One branch calculates the available debris 

which are available for land to river inputs while the second branch calculates the inputs from land to 

river under the assumption that the available quantity of debris is limitless. An outline of the model is 

given in figure 42. 

The presented model in this section is fairly detailed. As mentioned earlier, a simplified model might 

be a necessity depending on the case. The added value of the additional complexity will be tested in 

the validation phase. 
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Fig. 42. Outline of the land to river input model. 

5.2.1. Quantity of mismanaged anthropogenic debris generated 

The following equation gives the daily mass of anthropogenic debris generated on land 𝑚𝐴𝐷,𝐺 [kg]: 

𝑚𝐴𝐷,𝐺 =
𝑟

100
∙ 𝐺 ∙ 𝑃𝑜𝑝 ∙ 𝑆𝐹 ∙ ∆𝑡    (20) 

This calculation is necessary to calculate an upper bound for the mass of generated anthropogenic 

debris available for land to river transport. 𝑟, the percentage of mismanaged debris, is a configuration 

parameter although it needs to be closely monitored. Especially governmental policy and legislation can 

have a major impact over a short time period. Recently the Waterfront Partnership in Baltimore used 

data from removal operations to support the ban on Styrofoam containers [110], a major category of 

debris in the Jones Falls River, traversing Baltimore18. Infrastructure improvements, like improved storm 

drains, can have a large effect on the quantity of debris observed in the river although such 

improvements take more time be implemented. Values for 𝑟 can be obtained from Jambeck et al. (2015) 

[10].  

𝐺, the quantity of waste generated per person per time unit, is a configuration parameter since it can 

be assumed this will only gradually change. The configuration parameter 𝑃𝑜𝑝 is the population in a 

respective area. Since urban development is accounted for by 𝑃𝑜𝑝 , it needs to be updated about every 

few years, the frequency of updating largely depending on the demographic changes in the specific 

area. An important consideration is the width of the river bank considered. This depends on local 

topography and the local storm drain system. The seasonal factor 𝑆𝐹 has not been included by Wan et 

al. The input variable 𝑆𝐹 has been included to account for tourism and the outdoor presence of the local 

population which may differ with different seasons. Tourism affects population size whereas outdoor 

presence increases littering. Whether this factor is relevant is largely dependent on the geographical 

area. The time interval ∆𝑡 is largely determined by the desired output interval and the interval at which 

other input variables can and need to be updated. An obvious time interval could be a 24 hour time 

                                                
18 See appendix F for data on common debris removed in Baltimore. 
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interval. The time interval is a configuration parameter. An overview of the aforementioned variables 

and parameters is listed in table 13. 

Table 13. Description of variables and parameters used in equation 20. 

 Description Unit Domain Type Update scheme  

𝒓 Percentage of mismanaged debris [%] 0-100 CP Once every few years 

𝑺𝑭 Seasonal factor, accounts for 

differences in tourism and outdoor 

presence of population 

- ≥1 IV Twice, sometimes a 

few times a year 

𝑮 Waste generation rate  [kg/person/day] ≥0 CP Once every few years 

𝑷𝒐𝒑 Population size along the river 

banks 

[persons] ≥0 CP Once every few years 

∆𝒕 Time interval [day] 1 CP Never, unless desired 

𝒎𝑨𝑫,𝑮 Anthrop. debris generated on land [kg] ≥0 INT - 

 

5.2.2. Available anthropogenic debris generated by wind 
Not included in equation 20 is wind generated debris. At regular wind speeds (<14m/s, <7 Beaufort) 

this is likely not playing any role of significance but it might certainly do so during storm conditions 

(>25m/s, >9 Beaufort) as becomes evident from the overview of damage characterizations at different 

wind speeds [111]. In severe storms, flying objects transported by wind may add additional risk of 

creating additional debris upon impact [112]. Estimation models of generated debris exist but have only 

been found for hurricane strength storms.  

The U.S. Army Corps of Engineers (USACE) Emergency Management staff has suggested the following 

equation for urban areas [113]: 

𝑄 = 𝐻 ∙ 𝐶 ∙ 𝑉 ∙ 𝐵 ∙ 𝑆    (21) 

𝑄 = Quantity of debris generated in an area [m3]  

𝐻 = Number of households 

𝐶 = storm factor, accounts for wind speeds [m3] 

𝑉 = vegetation multiplier 

𝐵 = commercial/business/industrial multiplier 

𝑆 = Precipitation multiplier 

There are some downsides however to this formula. This formula may work for large urban areas which 

includes a large portion of households. To investigate smaller areas which are generally or totally 

commercial/business/industrial however, this formula will not work very well, at least with the multipliers 

given in the document. The factors proposed for 𝐶, 𝑉, 𝐵 and 𝑆 where based on empirical data from 

historic storm events with hurricane strength. In order to extrapolate the data one has to assume the 
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data patterns continue at sub hurricane wind speeds. Due to the lack of other data sources it is assumed 

one can extrapolate data patterns into sub hurricane strengths. 

Figure 43 shows the storm factors C plotted for 5 different hurricane strengths. These 5 storm factors 

were divided over two data sets since it was hard to fit a trend line to a single data set.  

 

Fig. 43 Storm factors to estimate debris quantities as defined by USACE [113] with fitted trend lines. 

Using the exponential equation to extrapolate to lower wind speeds however gives unreasonable high 

estimates. A storm event of 10 m/s (5 Beaufort) in an area of almost 40,000 households (100,000 

people divided by 2.6 persons per household) would generate more than 3000 m3, which would be 

more than the quantity of debris collected by the Harbor Wheel (see Appendix F) in 48 months. It was 

also be at least 1000 times the quantity of debris calculated by equation 20 using US data from Jambeck 

et al. (2015) [10]. This approach is hence abandoned. Without other data sources, the remaining 

solution is to compare the outputs of the river accumulation model with actual accumulation data using 

meteorological data and conclude whether adjustments during wind events are necessary. To account 

for wind generated debris a factor WA could be added to equation 20:  

𝑚𝐴𝐷,𝐺 = 𝑟 ∙ 𝐺 ∙ 𝑃𝑜𝑝 ∙ 𝑆𝐹 ∙ 𝑊𝐴 ∙ ∆𝑡    (22) 

A description of WA can be found in table 14. 

Table 14. Description of additional variables and parameters used in equation 22. 

 Description Unit Domain Type Update scheme 

𝑾𝑨 Wind factor - ≥1 IV Every time interval Δt defined in table 13 

 

5.2.3. Available land to river debris, natural debris 

Vegetation load was not considered by Wan et al. The presence of natural debris depends on the amount 

and type of vegetation along the river banks, the occurrence of seasonal shedding and heavy wind 

events which can generate additional debris. Obtaining the necessary data to calculate the available 

natural debris in the same way as anthropogenic debris is significantly more tedious than anthropogenic 

y = 0,0136e0,1798x

y = 2,9935x - 95,089

0

10

20

30

40

50

60

70

80

90

20 30 40 50 60

S
to

rm
 f
a
ct

o
r 

[m
3
/h

o
u
se

h
o
ld

]

Windspeed [m/s]

Storm factors to estimate debris quantities defined by USACE  

Hurricane category
1 to 3

Hurricane category
3 to 5

Expon. (Hurricane
category 1 to 3)

Linear (Hurricane
category 3 to 5)



56 
 

debris however. This is because littering not only varies with species but also with meteorological 

conditions, altitude, stand age and site quality [114]. As such, surveys from certain sites cannot be 

readily translated to other areas [114] and large annual variations can be observed for the same tree 

and site [115]. As study into wind generated forest debris during storm conditions also reveals the 

complexity of factors contributing to debris production. Tree and stand characteristics appear to be the 

best predictors, above sustained wind speed [116]. For this reason, a preferred alternative is likely to 

use historic data on natural litter accumulation.  

𝑚𝑁𝐷,𝐺 = 𝑁 ∙ 𝑆𝑆 ∙ 𝑊𝑁 ∙ ∆𝑡    (23) 

A description of variables and parameters used in equation 23 can be found in table 15. 

Table 15. Description of variables and parameters used in equation 23. 

 Description Unit Domain Type Update scheme 

𝑵 Baseload natural debris [kg/day] ≥0 CP Every few years 

𝑺𝑺 Seasonal (shedding) factor - ≥1 IV Twice, sometimes a 

few times a year 

𝑾𝑵 Wind factor - ≥1 IV Every time interval Δt  

𝒎𝑵𝑫,𝑮 Quantity of natural debris generated on 

land 

[kg] ≥0 INT - 

 

5.2.4. Calculating the quantity of total available debris 

Following the calculation of the quantity of generated debris follows the calculation of the quantity of 

anthropogenic debris available for day t:  

𝑚𝐷,𝐴(𝑡) = 𝑚𝐴𝐷,𝐺(𝑡) + 𝑚𝐷,𝐴(𝑡 − 1) − 𝑚𝐷,𝑃(𝑡 − 1) − 𝑚𝐷,𝑊(𝑡 − 1) − 𝑚𝐷,𝑅(𝑡 − 1)    (24) 

𝑚𝐴𝐷,𝐺(𝑡) = Daily generated anthropogenic debris as calculated in equation 30 [kg] 

𝑚𝐷,𝑅(𝑡 − 1) = Quantity of litter removed (by sweeping or other cleaning methods) on the previous day [kg] 

𝑚𝐷,𝑃(𝑡 − 1)  = Quantity of  debris removed by precipitation on the previous day  [kg] 

𝑚𝐷,𝑊(𝑡 − 1) = Quantity of  debris removed by wind on the previous day  [kg] 

𝑚𝐷,𝐴(𝑡)  = Quantity of debris present at day t [kg] 

𝑚𝐷,𝐴(𝑡 − 1) = Quantity of debris present at start of the previous day [kg] 

This formula accounts for antecedent dry days by including historic surface runoff from rainfall. Wind 

runoff and sweeping has also been included. The calculation of debris inputs from wind is described in 

5.2.7, whereas the calculation of rainfall from surface runoff is described in 5.2.5 and 5.2.6 respectively. 

Data on sweeping quantities and sweeping schedules has to be provided by local authorities so it can 

estimated how much and when litter is removed from the streets.  This process is visualized in figure 

44. 
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Fig. 44. Flow model to determine land debris available for land to water transport at time t. 

A description of variables and parameters used in equation 24 can be found in table 16. 

Table 16. Description of variables and parameters used in equation 24. 

 Description Unit Domain Type Update scheme 

𝒎𝑫,𝑨 Debris available for land to water inputs [kg] ≥0 INT - 

𝒎𝑫,𝑷 Land debris removed by surface 

Runoff from precipitation 

[kg] ≥0 INT - 

𝒎𝑫,𝑹 Daily quantity of debris removed, by 

sweeping or other methods 

[kg] ≥0 CP Never, unless updated data 

is available 

𝒎𝑫,𝑾 Land debris removed by surface 

Runoff from wind 

[kg] ≥0 INT - 

 

5.2.5. Calculating river inputs from rainfall surface runoff 

Surface runoff from precipitation can be calculated using weather stations. The density of weather 

stations varies from region to region, largely according to population density but also according to local 

GDP as richer regions are likely better equipped. Data from available weather stations should henceforth 

be interpolated over the available watersheds. To obtain a grid of reliable rainfall data points may be 

challenging however, as brought forward in the previous section, due to the large fluctuations in the 

precipitation fields [106] but the only solution without increasing the number of rain gauges or using 

remote sensing data. The latter method however is more suitable for mean values and fails to cope with 

rainfall extremes [106]. Therefore, interpolation will be used using the available rain gauges.  Various 

methods can be used to do this: Nearest neighbor (NN), Spline, Thiessen Polygon (TP), Inverse Distance 

Weighted Interpolation (IDW) and Kriging [117] [118]. Their performance depends on various factors, 

such as rainfall intensity [117]. Among NN, TP, IDW and Kriging, Meiling et al. (2017) [117] found the 

best performance for NN during low rainfall events. The other methods in contrast performed better 

during high rainfall events which is not surprising since NN is almost by definition very sensitive to 

outliers. Overall there was not much difference between TP, IDW and Kriging as methods performed 

slightly better or worse depending on the error metric used. Keblouti et al. (2012) [118] assessed the 

performance of Spline, IDW and kriging and found IDW to perform best with IDW scoring a 6.9% mean 

error with a 4.9% standard deviation. It should be noted that both studies were performed over a large 

area, 1429 m2 and 5173 m2 respectively, with only 10 and 15 rain gauges respectively. Based on the 

results from these studies it is assumed that IDW and NN can be used with sufficient reliability. It is 

Land debris available for land to water 

transport  at time t

Land debris available for land to water 

transport at time t-1

Land debris removed by surface 
runoff (rainfall)

Removed by street cleaning

Generated anthropogenic debris, 
including wind generated debris

Land debris removed by surface 
runoff (wind)
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noteworthy however that IDW, although to a less extent than NN, may be sensitive to outliers. Moreover, 

the distribution of rain gauges is also important to consider as it generally preferred to have a more 

evenly distributed grid of measurements instead of clustered pairs spaced distant from each other. 

The NN method looks for each previously undefined data point on the grid which measurement is closest, 

in this case in Euclidean space, and simply copies that measurement. The IDW method calculates a 

spatial average from available measurements. Close measurements get a higher weight than distant 

measurements. As such a weighted average is defined: 

𝑧𝑝 = 
∑ 𝑧𝑖 ∙ 𝑑𝑖

−𝑝𝑛
𝑖=1

∑ 𝑑𝑖
−𝑝𝑛

𝑖=1

    (25) 

𝑧𝑝 = value of predicted point calculated with power function 𝑝 

𝑧𝑖 = value of measured point 𝑖 

𝑑𝑖 = distance between measured point 𝑖 and predicted point 

𝑝 = power parameter 

𝑛 = number of measurement points 

To be able to calculate zp a number of specifications are necessary. Firstly, the power parameter p should be 

defined. P defines the degree to which closer measurement points are given more weight with respect to more 

distant measurement points. IDW with p → ∞ equals NN. The second specifications defines which measurements 

are used. There are two extremes: fixed search radius and fixed number of measurements.  A combination could 

also be used. For instance if the number of measurements are fixed as long as the search radius does not exceed 

a certain threshold. Meiling et al. (2017) used a fixed radius and a power parameter of 2 although the latter may 

depend on the topographic profile of an area [117].  

Surface runoff from rainfall depends on population, soil characteristic, slope and land use within a sub watershed. 

Combining data on the latter three one can create areas of the similar soil characteristic, similar slope and similar 

land use. These areas are called hydrologic responds units (HRU) [29] and can be very small. Observing maps from 

the Jones Falls Watershed for instance in figure 45 this becomes immediately obvious as the spatial distributions of 

various land uses and soil groups are very heterogeneous. Each color represents a separate land use or soil group 

respectively. In order to keep the problem tractable one could decrease the number of categories, i.e. lump 

categories or lump the data over each sub watershed. If a high level of detail is desired it is recommended to use 

the SWAT model since this is specifically designed to perform this task. 
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Fig. 45. The Upper section of the Jones Falls watershed with sub watersheds (top left), soil groups (to right) and 

land use (bottom) [119]. 

If lumped quantified data is available for each sub watershed as opposed to graphical/mapped data as 

shown in figure 45 and if spatial distribution of land use, slopes and soil characteristics is very 

heterogeneous, one could make the decision to use this lumped quantified data instead. In that case it 

is assumed that this will not generate significantly different results compared to evaluating each smallest 

possible HRU separately as done by default in SWAT. This assumption may significantly decrease the 

quality of the estimation but a more accurate method would be a very time consuming operation.  

The calculation of rainfall induced land to river debris can now follow using equation 11 in subsection 

4.1.1:  

𝑚𝐷,𝑃 = 𝑘𝑝(𝑄 − 𝑄𝑏)∆𝑡    (26) 

Note that this formula, in contrast to equation 11, does not sum over the number outlets. Instead, the 

land to river input will be calculated separately for each outlet first as the location of the outlet is relevant 

for the river transport model. An outlet is equal to the smallest HRU used. This can be a river section in 
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a specific sub watershed. Inputs are then averaged over the river section. An overview of variables and 

parameters with description can be found in table 17. 

Table 17. Description of variables and parameters used in equation 26. 

 Description Unit Domain Type Update scheme 

𝒌𝒑 Coefficient which relates surface runoff to 

debris inputs 

[kg/m3] ≥0 CP Every few years 

𝑸 Surface runoff over smallest HRU/drainage 

area used 

[m3/day] ≥0 INT - 

𝑸𝒃 Surface runoff threshold value [m3/day] ≥0 CP Every few years  

 

The configuration parameters 𝑘𝑝 and 𝑄𝑏 depend on the amounts and composition of debris on land 

but also on land use and slope [29] and values can hence hardly be applied to other locations [29]. 

Wan et al. (2018) [29] has determined these values based on empirical observations in the same area 

as their prediction model was applied to. The established values for three regions differed quite a lot. 

The k values ranged between 0.67 and 2.71 kg/m3. The 𝑄𝑏 values ranged between 4.78 and 24.02 

m3/s. A higher 𝑘𝑝 value corresponded to a lower 𝑄𝑏 value which makes sense. More research is 

needed to create a database of 𝑘𝑝 and 𝑄𝑏 which can be then be applied without the need for 

empirical testing for each new application. This is complicated however due to large quantity factors 

influencing these values. Not only land use and slope should be accounted for, but also the way storm 

water is handled and the quantity of debris present on the ground. Hence, currently, values have to 

be determined empirically. Once data on debris quantities is obtained, linear regression can be used 

using a two-step iterative process described as follows [29]: 

‘The procedures begin with setting an arbitrary value for 𝑄𝑏 and proceed through two-step iteration: 

1. The sum of squared deviations of input mass from the line mi=0 is calculated for data for 𝑄𝑖< 

𝑄𝑏, and this sum is added to the sum of squared deviations of input mass from the least squares 

linear regression line, 𝑘(𝑄 − 𝑄𝑏)∆𝑡 +  𝜀 (where Qb is now fixed), then fitted to data for 𝑄𝑖  ≥ 𝑄𝑏. 

2. The value of 𝑄𝑏 is increased by a small amount and step 1 is repeated. 

The iteration stops when the minimum sum of squared deviations is found. The corresponding values 

of 𝑘𝑝 and 𝑄𝑏 are taken as the best estimates.’ 

5.2.6. Calculating surface runoff from precipitation 
The surface runoff 𝑄 is not equal to the rainfall. The volume of water from precipitation is distributed 

over surface storage, infiltration and evapotranspiration19. In figure 14 in subsection 3.1.2 a set of 

example values were shown for a natural and urban environment. The different values represent the 

                                                
19 See appendix G for the hydrologic cycle 
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extent to which rainfall has an effect on generating land to river debris. More specific numbers for 

various types of soil and land use however exist. 

A range of models exist to calculate surface runoff [120]: 

- Lumped parameter models, e.g. curve number method and the rational method [121]. 

- Semi-distributed models, e.g. TOPMODEL and SWAT. 

- Distributed models, e.g. MIKESHE, VELMA. 

Each model has its own drawbacks and advantages. Lumped parameter models require less detailed 

input data, hence ‘lumped’. Distributed are more complex, are data intense and computationally 

intensive. Semi-distributed models fall in between [120]. 

The NRCS (SCS) curve number method calculates an estimate for total runoff volume [121]. It is widely 

applied, as it is versatile and straightforward in its approach with a large database of empirical values 

which relates various soil types and land uses to surface runoff [122]. Nonetheless, it is not without 

limitations, as its discrete approach inherently leads to illogical jumps. The dependency of soil conditions 

on antecedent rainfall is also poorly described and discrete [122]. Moreover, one needs to consider its 

empirical origin meaning that certain parameters can be (slightly) different for certain areas. 

Adjustments have been suggested to adjust formulae and parameters but this generally complicates 

the model and these suggestions are based on empirical data which may not apply to all so these 

adjustments should considered carefully. Finally, the heterogeneous nature of the spatial distribution of 

precipitation should be considered. This can be a major contributor to deviations between the estimated 

and true surface runoff and also an important reason for differences in empirically obtained parameters 

and equations. It can be defined as follows [121]: 

𝑄 =
𝐴

1000
∙
(𝑃 − 0.2𝑆)2

(𝑃 + 0.8𝑆)
=

𝐴

1000
∙
(𝑃 − 𝐼𝑎)

2

(𝑃 − 𝐼𝑎) + 𝑆
  𝑓𝑜𝑟 𝑃 > 𝐼𝑎    (27) 

With 𝐼𝑎 defined as follows [146]: 

𝐼𝑎 = 𝜆 ∙ 𝑆    (28) 

In equation 32 the initial abstraction 𝐼𝑎 = 𝜆 ∙ 𝑆  with the initial abstraction ratio λ equal to 0.2, which is 

the number originally used after the development of this formula. Recent research however found lower 

estimates to be more appropriate with 𝜆 equal to 0.05 [123] [124] or even 0.01 [123]. According to 

Xiao et al. (2011), a dynamic ratio is likely better although it has been stressed that 𝑄 is more sensitive 

to 𝑆 (defined by CN, see equation 32 below) than 𝜆 [125]. The same paper also listed 𝜆 values between 

0.24 and 0.01 which were calculated as being optimal. Without any further evidence to support any of 

these values, it is hence assumed an initial abstraction ratio 𝜆 equal to 0.05 is appropriate for future 

calculations of runoff modelling. The potential maximum soil moisture retention 𝑆 for metric units is 

defined as follows [121]: 
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𝑆 =  
25400

𝐶𝑁
− 254    (29) 

A description of variables and parameters used in equations 27- 29 can be found in table 18.  

Table 18 Description of variables and parameters used in equations 30 - 32. 

 Description Unit Domain Type Update scheme 

𝑨 Total land area of drainage area [m2] ≥0 CP Never 

𝑪𝑵 Runoff coefficient  

 

- ≥30 and 

≤100 

CP Every few years 

𝑰𝒂 Initial abstraction 
[mm] 

≥0 and 

˂30 
INT 

- 

𝑺 Potential maximum soil moisture 

retention after runoff begins 
[mm] 

≥0 and 

˂593 
INT 

- 

𝑷 Rainfall total 
[mm] ≥0 IV 

Every time interval 

Δt 

𝝀 Initial abstraction ratio - 0.05 FP - 

 

𝐶𝑁 depends on soil and land use combination but also on the antecedent moisture condition (AMC) 

which depends on antecedent rainfall and slope [126]. Other factors such as air temperature (which 

affects evaporation) are generally ignored. Three moisture conditions exist: AMCI (dry), AMCII (average) 

and AMCIII (wet). The category can be assigned using the 5 day antecedent precipitation 𝑃5. A 𝑃5 

between 23 and 40 mm equals AMCII while more or less rainfall equals AMCIII and AMCI respectively 

[127].  CN factors are given for AMCII which can be converted into the other two. Hence, this procedure 

can defined as follows in mathematical formulation: 

𝐶𝑁 = {

𝐶𝑁𝐼                              𝑃5 < 23 𝑚𝑚
𝐶𝑁𝐼𝐼        23 𝑚𝑚 <  𝑃5 < 40 𝑚𝑚
 𝐶𝑁𝐼𝐼𝐼                            𝑃5 > 40 𝑚𝑚 

    (30) 

Multiple empirical formulae exist to achieve conversion from CN2 (belonging to AMCII) to CN1 and CN3 

[126]. The performance of various formulae was tested by Mishra et al. (2008) [126] and although the 

difference in performance was not large, the following equations performed best: 

𝐶𝑁𝐼 =
𝐶𝑁𝐼𝐼

2.2754 − 0.012754 ∙ 𝐶𝑁𝐼𝐼
    (31) 

𝐶𝑁𝐼𝐼𝐼 =
𝐶𝑁𝐼𝐼

0.430 +  0.0057 ∙ 𝐶𝑁𝐼𝐼
    (32) 

Slope can be accounted for by replacing 𝐶𝑁𝐼𝐼 with 𝐶𝑁2𝑠, where the latter is 𝐶𝑁𝐼𝐼 adjusted for slope 

[128]: 

𝐶𝑁2𝑠 = [
𝐶𝑁𝐼𝐼𝐼 − 𝐶𝑁𝐼𝐼

3
] ∙ [1 − 2 ∙ exp(−13.86 ∙ 𝛼)] + 𝐶𝑁𝐼𝐼   (33) 
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For steep slopes, 14% < α <140%, Huang et al. (2006) [129] found the following formula to yield 

better results: 

𝐶𝑁2𝑠 = 𝐶𝑁𝐼𝐼 ∙ (
322.79 + 15.63 ∙ 𝛼

𝛼 + 323.52
)    ∀ 0.14 < α < 1.4    (34) 

A description of variables and parameters used in equations 30-34 can be found in table 19. 

Table 19 Description of variables and parameters used in equations 33-37. 

 Description Unit Domain Type Update scheme 

𝑪𝑵𝑰𝑰  Runoff coefficient for AMC2 - ≥15 and 

≤100 

CP Every few years 

𝑪𝑵𝑰  and 𝑪𝑵𝑰𝑰𝑰 Runoff coefficient for AMC1 and 

AMC3 

- ≥15 and 

≤100 

INT - 

𝑪𝑵𝟏𝒔- 𝑪𝑵𝟑𝒔  Runoff coefficient for AMC1 to 

AMC3 incl. slope correction 

- ≥15 and 

≤100 

INT - 

𝑷𝟓 Total antecedent precipitation 5 

days prior to runoff calculation 

mm ≥0 IV Every time interval Δt 

𝜶 Slope m/m >0 CP Every few years 

 

The calculation of 𝑄 hence proceeds as follows, for each rainfall event: 

1. Find area for each HRU, i.e. land use, slope and soil combination, present in drainage area. 

2. Find 𝐶𝑁 factor for each HRU. Tables are available for AMCII. 

3. Find slope for each HRU. 

4. Calculate 𝐶𝑁2𝑠. 

a. For slopes >14%, use equation 34 

b. Otherwise, use equation 33 

5. Calculate 𝑃5. 

6. Use equation 30 to determine correct AMC. 

7. If AMCI on AMCII, use 31 or 32 using 𝐶𝑁2𝑠 calculated in step four. 

8. Use equation 29 to calculate potential maximum soil moisture retention S. 

9. Use equation 28 to calculate initial abstraction 𝐼𝑎. 

10. Finally, P > 𝐼𝑎 , calculate surface runoff volume 𝑄 using equation 27. 

5.2.7. Calculating river inputs from wind 

Modelling wind force near the ground is complex, especially in urban environments [130] as wind speed 

alters in the vertical plane depending on local surface roughness and objects surrounding the particular 

location [131], but also in the horizontal plane depending on surrounding objects [130]. Like rainfall, 

the relation between wind and debris removal from land is best understood through empirical research. 

An alternative may be CFD modelling to shed more light on this process. Unfortunately, any research 

on this topic was not found.  The quantity of debris blown from land could be modelled using a quadratic 
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relation between wind speed, due to the quadratic relation between wind speed and wind force. In 

addition, the quantity is increasing with the duration of the wind force since a longer duration means 

more chance for debris to reach the river. In the equation below a proportional relation is assumed 

which is an appropriate assumption if the wind direction is not fluctuating (significantly) as this would 

mean that wind forces (partially) cancel each other out. Under changing wind conditions the duration 

would have a relation with inputs which is less than linear.  For a specific area with predefined land use 

and population, the continuous measurement of wind speed the quantity of debris created by a single 

wind event would look as follows: 

𝑚𝐷,𝑊 = 𝑘𝑤 ∙ ∫(𝑉
2 − 𝑉0

2) ∙ 𝑡𝑤𝑑𝑡    (35) 

For a discrete measurement this would look as follows, with 𝑖 being a measurement: 

𝑚𝐷,𝑊 = 𝑘𝑤 ∙∑(𝑉𝑖
2 − 𝑉0

2) ∙ 𝑡𝑤,𝑖
𝑖

   (36) 

The parameter 𝑉0 is used in a similar way as the precipitation parameter 𝑄𝑏 in equation 26. It represents 

the minimum wind speed at which the debris of interest with smallest resistance to wind force start to 

move. The equation above assumes wind direction has no influence on the quantity of inputs. This can 

be assumed for a river with spatially well distributed tributaries branching of from the river and/or 

spatially well distributed inputs into the storm water system draining in the river. Finally, values of 𝑘𝑤 

and 𝑉0 differ with rainfall as both rainfall and wind influence land to river inputs. Therefore this formula 

is preferably first applied to wind events without rainfall. The presence of snow will also alter these 

values as debris tend to be trapped under and in snow which significantly increases resistance to wind 

force. 

It should be emphasized that wind speed differs altitude due to surface friction and turbulence or 

shielding effects of surrounding objects at low altitude. The values obtained for 𝑘𝑤 and 𝑉0 for a specific 

weather station (or combination of weather stations) are therefore not directly transferable to other 

weather stations (or another combination of weather stations). This makes interpolation also notoriously 

difficult. Keeping a fixed set of measurement station after 𝑘𝑤 and 𝑉0 have been established is therefore 

recommended. 

A description of variables and parameters used in equations 35 and 36 can be found in table 20 on the 

next page. 
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Table 20. Description of variables and parameters used in equation 36 and 36. 

 Description Unit Domain Type Update scheme 

kW Coefficient which relates wind speed 

and duration to debris inputs 

[kg s/m2] ≥0 CP Never, unless better 

estimates become available 

tW Duration of wind event  [s] ≥0 IV Every time interval Δt 

V Wind speed [m/s] ≥0 IV Every time interval Δt 

V0 Threshold wind speed for wind 

generated debris 

[m/s] ≥0 CP Never, unless better 

estimates become available 

 

5.2.8. The river input model: output 

The output from the river input model 𝑚𝐷,𝐼 is the cumulative quantity of wind and precipitation induced 

runoff. However, lastly, it should be checked that cumulative quantity of surface runoff from rainfall 

𝑚𝐷,𝑃 and surface runoff from wind 𝑚𝐷,𝑊 cannot exceed the mass of available debris on land: 

𝑚𝐷,𝐼 = {
𝑚𝐷,𝑃 +𝑚𝐷,𝑊    𝑚𝐷,𝑃 +𝑚𝐷,𝑊 < 𝑚𝐷,𝐴

𝑚𝐷,𝐴                    𝑚𝐷,𝑃 +𝑚𝐷,𝑊  ≥ 𝑚𝐷,𝐴
    (37) 

A description of variables and parameters used in equations 37 can be found in table 21. 

Table 21. Description of variables and parameters used in equation 37. 

 Description Unit Domain Type Update scheme 

𝒎𝑫,𝑰 Land debris inputs into the river [kg] ≥0 INT - 

 

5.3. River propagation model 
The quantity of river propagated debris is dependent on advection (speed of river), retention, and 

entrainment. In order to simplify the river transport modelling, a certain lumped retention and 

entrainment factor can be assumed. Hence, it is assumed debris composition is constant and no specific 

retention and entrainment factors for separate debris categories are accounted for. Besides these factors, 

retention and entrainment will depend on the distance from the downstream river section. A longer 

distance will result in more retention and entrainment since the chances of deposition and dislodging 

debris becomes larger if distance is longer. River discharge, i.e. the flow, is also a factor, as 

demonstrated in section 4.3 and can be accounted for by adjusting retention and entrainment factors 

accordingly. 

Retention of debris, in total weight, is proportional with the transport distance from discharge point to 

the downstream end of the river and the quantity of debris released in the river. The retention of debris 

can be described by the following formula: 

𝑅𝑒𝑡 = 𝑑𝑡 ∙ 𝑟𝑓(𝐹)  ∙ 𝑚𝐼   (38) 
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In this formula 𝑟𝑓 was included as a function of the flow F. Literature studies demonstrated an inverse 

relationship with the flow of water. However, it was also shown that during the subsiding stage of a 

flood event a lot of debris is deposited. This deposition is high as flood events carry a lot of debris 

carried from land. Noticeably, for rivers for which the discharge is not predominantly dependent on 

precipitation but also snow melt during the melting season, such as the Vistula in Poland [54] this 

statement logically does not hold to the same extent. Values for 𝑟𝑓(𝐹) need to be determined empirically. 

For channels with steep and smooth riverbanks zero retention could be assumed but hotspots may still 

need to be identified. For rivers with flat and unsmooth riverbanks empirical data is necessary and 

empirical studies like Williams and Simmons (1997) [74] can hence be conducted.  

Entrainment can be described in a similar way, now being proportional to the transport distance and an 

entrainment factor dependent on the flow of water. In contrast to 𝑟𝑓(𝐹), the parameter 𝑒𝑓(𝐹) will have 

a positive relationship with the flow F as the force of the water and the height of the water will dislodge 

more debris. Entrainment depends on historical retention also since the quantity of deposited debris 

determines how much debris are available to be dislodged. 

𝐸 = 𝑑𝑡 ∙ 𝑒𝑓(𝐹, 𝑅𝑒𝑡)   (39) 

A description of variables and parameters used in equations 38 and 39 can be found in table 22. 

Table 22. Description of variables and parameters used in equation 38 and 39. 

 Description Unit Domain Type Update scheme 

𝒅𝒕 Transport distance from input 

point 

[m] ≥0 CP Never  

𝑬 Quantity of entrained debris [kg] ≥0 INT - 

𝒆𝒇(𝑭, 𝑹𝒆𝒕) Entrainment factor [kg/m] ≥0 CP Never, unless better estimate 

becomes available 

𝑭 River flow [m3/s] ≥0 IV Every time interval Δt 

𝑹𝒆𝒕 Quantity of retained debris [kg] ≥0 INT - 

𝒓𝒇(𝑭) Retention factor [m-1] ≥0 CP Never, unless better estimate 

becomes available 

 

Finally, the output of debris downstream can be computed as follows, by summing over all the debris 

input from each of the k sub watersheds: 

𝑂 =∑𝑚𝐷,𝐼 + 𝐸 − 𝑅𝑒𝑡

𝑘

    (40) 

A more simplified approach would be to combine 𝐸 and 𝑅𝑒𝑡 into a single factor, which also accounts 

for the distance from input location to downstream accumulation point. As such, the quantity of debris 

inputs is multiplied by a propagation factor. This factor would also have to be acquired by conducting 

an empirical study.  
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The output becomes now as follows: 

𝑂 = 𝑝 ∙∑𝑚𝐷,𝐼

𝑘

    (41) 

A description of variables and parameters used in equation 40 and 41 can be found in table 23. 

Table 23. Description of variables and parameters used in equation 40 and 41. 

 Description Unit Domain Type Update scheme 

𝑶 Model output: Aggregated quantity 

of debris accumulated downstream 

[kg] ≥0 OV Every time interval Δt 

𝒑 Propagation factor: Accounts for 

retention and entrainment during 

river transport 

- ≥0 CP Never, unless necessary, for 

instance if passive removal systems 

are created along the river 

 

 

5.4 Summary 

In this section the modelling approach was discussed for this and subsequent sections, and a model 

was worked out based on the objectives, requirements and desired specifications.  

The objectives of the model were defined, partly based on the user profile. The main objectives of the 

model is to reduce the outflow of debris towards the marine ecosystem and to limit the quantity of 

debris within a port/bay area downstream. Secondary objectives are as follows:   

- The model should be practical to implement for a user.  

- It should include the relevant factors, affecting land to river debris input and river propagation 

as discussed in the literature study.  

- The model should have enough detail to make a relevant impact. 

- The model design should be covered within a tractable timespan, i.e. within the context of this 

report. 

An analytical approach has been chosen, in order to satisfy the first and last objectives. Within an 

analytical approach, the second objective can still be achieved granted that the necessary data is 

available. It might conflict however with the third objective. After validation, the third objective can be 

evaluated and model adaptations can be proposed. 

Requirements where listed based on the literature report earlier in the report. First, the model should 

be able to calculate the quantity of available debris on land. Secondly, the model should calculate debris 

and specific points along the river. Finally, the model should be able to calculate daily arriving debris at 

a downstream section of a river. The model should account for wind, seasonality, street cleaning, fluvial 

hotspots and antecedent dry days among others. 
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The first part of the initial detailed design covered the modelling of generated debris on land. 

Anthropogenic debris has been a fairly straightforward copy of the formula used by Wan et al. (2018). 

An additional seasonal factor was proposed. This section looked into wind generated debris but found 

that data was severely lacking. A wind factor was proposed to account for this. This should however be 

studied more in dept. The available quantity of natural debris on land was also discussed. The synergy 

of factors leading to the presence of natural debris was found to be complex and not easily transferable 

to various places. It was proposed to include a base load and seasonal factor, based on historic data. 

For the total availability of debris, the quantity of debris available debris, a formula was presented which 

takes into account the historic inputs of debris and debris removal by street cleaning. 

Calculating the actual debris inputs from rainfall is complex. This section covered this process and also 

discussed suitable methods for interpolating weather stations. Calculating the actual debris inputs from 

wind is equally, if not more complex. A simplified formula was proposed, similar to the formula used for 

rainfall induced inputs. This formula linked the square of the wind speed to the inputs using a linear 

relationship and a threshold wind speed. 

Finally, river propagation was discussed. Modelling retention and entrainment of debris with existing 

empirical studies would be hard due to limited amount of studies.  It is also complicated by the fact that 

these processes are highly river specific and can hence not be readily used for other rivers. The proposed 

simplified method would simply use a multiplication factor for propagation. Such a factor would also 

account for the distant covered towards the downstream area. 
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6. Implementation 

In the previous section, a debris prediction model was designed. In this section, the model will be 

applied to a case study. First, subsection 6.1 lists the hardware and software used for implementation 

of the model. Subsequently, subsection 6.2 and 6.3 are dedicated to the case study and the 

implementation thereof. Necessary model adaptations will be discussed as well, since it might be 

necessary to make some adjustment to the model depending on the available data. Finally, the 

verification of this adapted model will be covered in subsection 6.4 and the section is summarized in 

subsection 6.5.    

6.1. Hardware and software used for implementation 

The implementation of the model is performed in MATLAB version R 2014a, running on a HP EliteBook 

8570w, with an Intel® core™ i7-3630QM 2.4 GHz processer and 8GB DDR3 PC3-10600 SDRAM memory. 

The operating system is Windows 7, 64 bit.  

6.2. Case study description 

In order to train and validate the model, the model will be applied to a case study. A dataset of debris 

accumulation large enough and sufficient in quality is hard to obtain but fortunately the WPB, the agency 

responsible for the Baltimore Harbor Wheel, a passive debris removal system in Baltimore, is providing 

debris accumulation data which should be both qualitatively and quantitatively sufficient to train and 

validate the model. Data has been recorded since May 2014. The date at which a certain threshold of 

debris has been accumulated is included in the data. This threshold is small enough and the timespan 

over which data has been collected is large enough to 

allow for training and validation. Moreover, the 

accumulation of debris, at an average of 565kg per day 

(see appendix E), is large enough to be useful. Figure 46 

shows the Jones Falls watershed (JFW) and the location 

of the debris removal system. The watershed can be 

described as having a relatively flat surface topography, 

with height differences of at most 100 meters, and is 

covered mostly by urban area and forest. More (detailed) 

information on the debris removal system and the Jones 

Falls Watershed can be found in appendix F and I 

respectively. 

Baltimore itself can be described as a seasonal location with a clear seasonal distribution of temperature 

[133]. It is relatively dry, monthly rainfall totals are low [133], but (heavy) rain and wind events do 

occur [134] [135]. On average days with precipitation occur 111 days per year [133].  

Fig. 46. The Baltimore Harbor Wheel and 

the Jones Falls Watershed [132]. 
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6.3 Case study parameters and model adjustments 
The Center for Watershed protection (CWP) and the Baltimore County Department of Environmental 

Protection and Sustainability (BCDEPS), responsible for compiling data on/managing the JFW, have 

subdivided the watershed in sub watersheds which were each grouped together in one of the three sets 

of sub watersheds. An overview of the different (sets of) sub watersheds can be found in figure 47 

below. The three watershed characterization reports published by the CWP and the BCDEPS list data 

separately for each sub watershed [119] [136] [137]. These reports also provide the population data 

for each sub watershed. 

 

 

Fig. 47 Overview of the sub watersheds of the JFW, as reported by the CWP and BCDEPS [119] [136] [137]. 
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Unfortunately, the dataset of accumulated debris provided by the WPB does not include separate data 

for natural debris. Hence, natural debris will not be considered for training and validation of the model. 

The data set provides aggregated mass, volume and separate data on the quantities of various 

anthropogenic debris. A second issue is that the mass and volume of debris includes natural debris. 

Hence, using quantities as a measurement is the sole option. In this case, equation 20 in subsection 

5.2.1 is unsuitable and the quantity of generated debris would have to be estimated based on the 

available data. This has also benefits however. Wan et al. (2018) did not account for 𝑀𝑎𝑑𝑔 during the 

calibration of their parameters, though in reality, better values may be found if it constraint was 

accounted. Furthermore, the value for 𝑀𝑎𝑑𝑔  were fixed based on national estimates for waste 

generation rates and percentage of mismanaged debris, defined by Jambeck et al. (2015). While these 

national estimates may be sufficiently accurate for getting rough estimates for the fluvial outflow of 

debris from any country, better results may be obtained by fitting the data to 𝑀𝑎𝑑𝑔, i.e. make 𝑀𝑎𝑑𝑔 

adapt to the data. A detailed overview of the WPB dataset data, including debris types, can be found in 

appendix F.  

Weather data is obtained from ‘weather underground’ 

[138]. Historic data is only available for weather 

stations located on the three airports surrounding 

Baltimore, namely Carroll Country Regional Airport, 

Martin State Airport and Baltimore/Washington 

International Thurgood Marshall Airport. A map is 

shown in figure 48. The weather data from each of 

these stations will be interpolated for the various sub 

watersheds using equation 25. It is assumed this can 

be performed with sufficient accuracy. The distance 

has been calculated using latitude and longitude data 

from the weather stations and the central points of 

each sub watersheds which have been approximated 

by manual selection. For each of the weather stations, 

the following is obtained: date, time of measurement, wind speed and rainfall. Rainfall measurements 

are summed over each day, weighted according to the timespan in between consecutive measurements. 

This means, to be more precise that hourly rainfall data are summed. Six measurements, taken every 

20 min, with each 1 mm of rainfall per hour registered, and all other measurements zero, yield a total 

of 2 mm rain.  A similar approach is adopted for wind measurements, with the main difference that 

wind speeds are squared before being summed. A better approach would be to account for a specific 

rain and wind events and account for intensity, since a short outburst of precipitation will likely yield 

more debris than a some volume of water spread over a long time span. Since this approach is more 

challenging, the first approach will be adopted. It is assumed that this yields sufficiently accurate results. 

Fig. 48. Overview of the three sets of sub 

watersheds and weather stations. 
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CN values required for the surface runoff from precipitation have been computed using land use, soil 

and topographic data for each sub watershed. Ideally, each combination of land use, hydrologic soil 

group and slope is considered as a separate HRU but the necessary data is hard to obtain and is deemed 

too intractable for the scope of this report. Instead 𝐶𝑁2𝑖,𝑘 values are first calculated for each land use 

group 𝑖 belonging to sub watershed 𝑘, using the amount of soil group 𝑖𝑖 as a percentage of the total 

area of sub watershed 𝑘: 

𝐶𝑁𝑖,𝑘 = ∑𝑓𝑓𝑘,𝑖𝑖 ∙ 𝐶𝑁𝑖,𝑖𝑖
𝑖𝑖

    (42) 

This method of calculation assumes the soil distribution of the total watershed is comparable to the soil 

distribution for each land use within that watershed. Potential maximum retention 𝑆, initial abstraction 

𝐼𝑎 and subsequent surface runoff 𝑄𝑖,𝑘 are now calculated separately for each land use group i belonging 

to sub watershed k. The surface runoff 𝑄𝑖,𝑘 is calculated as follows: 

𝑄𝑖,𝑘 = 𝑓𝑓𝑖,𝑘 ∙ 𝐴 ∙
(𝑃 − 𝐼𝑎)

2

𝑃 − 𝐼𝑎 + 𝑆
    (43) 

Finally all 𝑄 values are summed over the whole watershed. Infiltration through overland flow from other 

HRU are ignored. Hence, only direct vertical deposited is considered. The parameters of equation 42 

and 43 are being described in table 24. 

Table 24 Description of all new variables and parameters used in equation 42 and 43. 

 Description Unit Domain Type Update scheme 

𝑪𝑵𝒊,𝒌 CN value for land use group i belonging to 

sub watershed k 

- ≥15 and 

≤100 

INT Never 

𝑪𝑵𝒊,𝒊𝒊 CN value for a specific land use i and soil 

group ii 

- ≥15 and 

≤100 

FP Never 

𝒇𝒇𝒊,𝒌 Fraction of sub watershed allocated to land 

use i 

[%] ≥0 and 

≤100 

CP Never, unless 

deemed necessary 

𝒇𝒇𝒌,𝒊𝒊 Fraction of sub watershed k allocated to soil 

group ii 

[%] ≥0 and 

≤100 

CP Never, unless 

deemed necessary 

 

Modelling river propagation requires unfortunately data which is currently unavailable. It is likely that 

the amount of debris going downstream will be related to surface runoff, since the Jones Falls is fed by 

precipitation (and occasionally local snowmelt). This factor is hence for a large part covered by the 

parameters related to surface runoff, i.e. the value of 𝑝 from equation 41 is ignored and accounted for 

by adjusting the values of 𝑘𝑤 and 𝑘𝑝 in equation 26 and 36 respectively. Considering the riverbanks of 

the Jones Falls, and under low flow conditions also protruding vegetation throughout the river, it is likely 

that debris blew into the river from surface runoff will likely strand quickly and will only be brought after 
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a large rainfall event. It is hence expected that heavy wind events, if these have any effect at all, should 

add more debris after each rainfall event than would be expected, just based on rainfall data alone. 

6.4. Verification 
The verification of the model is performed by changing the model input and configuration parameters 

and checking whether the model generates sensible values for the internal variables and output 

variables. It will first be checked whether these variables do not exceed their domain. Secondly, for 

variables which have a technically unbounded domain, e.g. ≥0 for the 5 day antecedent rainfall, it will 

be checked whether these yield plausible values.  

In order to perform verification, the input parameters, namely wind speed (m/s) and rainfall (mm) will 

be varied in combinations, where each takes either zero or a large value for all entries. This is shown in 

table 25, which shows the verification test plan.  

Table 25. Verification test plan. 

 Rainfall [mm] Wind [m/s] 

Verification test 1 0 0 

Verification test 2 0 25 

Verification test 3 10 0 

Verification test 4 10 25 

 

In all of the above combinations it should be checked whether input variables and internal parameters 

for each weather station and each sub watershed yield correct/plausible results. Configuration 

parameters are checked only once since these do not depend on the processing of different data sources. 

Parameters will be assigned possible values or if not available plausible values and subsequently checked 

after running the model in one of the four test modes. Some additional internal parameters, used to 

implement the model in the software, are also included for verification.  

Verification will be performed over a six day time span. Due to recursive nature of the model and 

equation 24 in particular, day one is predefined, so the number of days fully processed by the model is 

confined to 5 consecutive days. The predefined value is zero, meaning zero debris are forced into the 

river. 

Special attention will be paid to the conservation of mass. First, the quantity of debris inputs from each 

sub watershed into the river is smaller or equal than the available quantity of debris on land. Secondly, 

the debris input from land to river are smaller or equal than the amount of debris generated by wind 

and/or rainfall (depending on the test mode). Thirdly, the output equals the sum over all debris inputs. 

The output of the last test should be larger or equal than the output of test 3 and 4. Lastly, input equals 

output, i.e. the quantity of generated debris after five days equals the quantity of debris equals the 

quantity of debris removed by wind and rain plus the quantity of debris removed street sweeping plus 
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the quantity of debris available on land. The latter are the debris not removed by wind and rain. A 

detailed overview of these equations per test and the parameters used for verification can be found in 

appendix L. 

An overview of the verification sheet used to check all values can be found in Appendix M. The model 

has passed each consecutive test and was hence approved for training and validation. 

6.5 Summary 
This section covered the implementation of the case study and the verification of the model. The Jones 

Falls River (Watershed) provides a suitable case study for the debris prediction model. The Waterfront 

Partnership of Baltimore (WPB) provided debris accumulation data which enables training and validation 

of the model. The dataset covers a timespan of circa 4 years. The dataset does unfortunately only 

contain data on full bins, i.e. if  a weather event creates less than one bin of debris, the data is not 

recorded until the bin is full.  

Data on the 14 separate sub watersheds the Jones Falls River watershed comprises of, is provided by 

watershed reports compiled by The Center for Watershed protection (CWP) and the Baltimore County 

Department of Environmental Protection and Sustainability (BCDEPS).  

Unfortunately, no historic weather data from within the watershed is available. Historic wind and rainfall 

data are hence collected from three weather stations surrounding the main watershed. Although 

interpolation will be applied, the distance of these weather stations from the watershed will significantly 

impact the reliability of the obtained weather data.  

The availability of certain data forces unfortunately several adjustments to the model. First, since natural 

and anthropogenic debris are lumped together in the weight measurements, debris quantities will have 

to be used. This means, the quantity of generated debris cannot be obtained in the original way. Instead 

this would have to be estimated as a model parameter. A benefit is that this offers the opportunity to 

better adjust this value to this specific area. 

Moreover, detailed data on soil composition and ground cover is not available, at least not in a format 

through which it can be readily implemented within a tractable timeframe. Hence, a formula is adopted 

which assumes a specific soil type is distributed over each soil cover according to its fraction in the total 

soil composition.  

The processing of weather is a tradeoff between model complexity and model accuracy. In order to 

reduce model complexity, daily rainfall measurements and the square of daily wind measurements are 

summed for each day. Hence, specific weather events are not considered. 

After the model, including the above adjustments have been implemented, the model has been 

successfully verified. 

  



75 
 

7. Model validation 

The previous section discussed a case study and model adjustment to the model designed in section 6, 

which was deemed necessary to process the case study. Section 7 also covered the verification of the 

model. In this section the model parameters will be calibrated, which is also referred to as ‘training the 

model’. Finally, the results of the model validation are presented and discussed. The section starts with 

a brief overview of forecasting theory in subsection 7.1 which supports the evaluation of model 

performance. Subsection 7.2 discusses the experimental plan for the training and validation of the model. 

It is followed by the theory and results for the calibration of the model parameters in subsection 8.3 

and the results of the validation process in subsection 7.4. The results are discussed in subsection 7.5. 

The section is summarized in subsection 7.6. 

7.1 Forecasting 
Since a debris prediction model concerns the prediction of an event into the future it makes sense to 

use forecasting theory to train said model and evaluate its forecasting errors. Forecasting differentiates 

itself from predictive modelling in the sense that it explicitly deals with the notion of time and the future 

in specific. It is often used to support decision making and is hence frequently used in governments, 

universities and businesses. Examples include air quality forecasts, climate forecasts, sales and demand 

forecasts and forecasting future behavior of processes in process control [139].  

The act of forecasting relies on the analysis of historic data, identifying a pattern and using this pattern 

to make a forecast. Forecasting is hence grounded on the assumption that this pattern remains true in 

the future [139]. Nonetheless, forecasting theory provides methods to detect pattern changes which 

enables the user to rerun the analysis and adapt the forecasting model to the outcome of the new 

analysis.  

Quantitative forecasting models can be categorized in two types of models [139]: 

- Univariate forecasting models. These models forecast solely on the basis of historic values. On 

the basis of a historic time series patterns have to be recognized and extrapolated. Any causal 

relationship with external variables is hence not explicitly included. 

- Causal forecasting models. These models revolve on the explicit relationship between the 

forecasting variable, i.e. the dependent variable and the causal variable, i.e. the independent 

variable. 

In the context of prediction of debris accumulation, both models are relevant although the focus will be 

on causal forecasting modelling. The independent variables identified by literature were: 

- Rainfall 

- Wind 

- Distribution of rainfall (and wind), i.e. to simulate first flush characteristics.  
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The causal relation between these factors and accumulation of debris may change however as for 

instance quantity of mismanaged waste changes. Such a variable is more difficult to track and measure 

and is hence preferably implicitly accounted for by using time series analysis.  Changes in the causal 

relation between the above factors and accumulation should be monitored and can be observed by 

continuously examining the data for trends or disruptions, i.e. data patterns. Solutions to this issue are 

discussed after discussing ‘forecasting errors’. 

7.1.1. Forecasting errors 
There are several ways to present forecasting errors. These can be used as a KPI to compare the 

performance of the prediction models. The definition of a forecasting error 𝑒𝑡  at time t, e.g. the 

discrepancy between predicted accumulation �̂�𝑡, and actual accumulation𝑦𝑡, is defined as follows [139]: 

𝑒𝑡 = 𝑦𝑡 − �̂�𝑡     (44) 

In literature several forecasting KPI are used/proposed: ME/MBE, MAE/MAD, MSE, RMSE, (M) APE and 

MRE/ARE [139] [140] [141] [29]. Summing these error over a timespan with n predictions, leads to the 

mean error ME: 

𝑀𝐸 =  
∑(𝑦𝑡 − �̂�𝑡)

𝑛
    (45) 

 A mean error shows whether the predictions tend to follow the mean of the actual values or whether 

values tend to be over or under predicted. Therefore, since it shows the bias in the model, it also 

referred to as the mean bias error (MBE). It does not show however the average size of the error.  For 

this purpose the mean absolute deviation/error, MAD/MAE, can be used: 

𝑀𝐴𝐸/𝑀𝐴𝐷 =  
∑ |𝑦𝑡 − �̂�𝑡|

𝑛
     (46) 

Another common metric is the mean square error MSE. Like MAE, MSE makes all errors positive. The 

difference is that larger errors have a larger impact on the overall metric due to the errors being squared. 

𝑀𝑆𝐸 =
∑(𝑦𝑡 − �̂�𝑡)

2

𝑛
    (47) 

Alternatively, the RMSD can be used, which is simply the square root of MSE. This metric has the same 

units as the data set. 

The absolute percentage error APE and mean absolute percentage error MAPE, are less interesting from 

the perspective of debris prediction as absolute deviations are more important than relative deviations, 

as seen over the whole time series. It is however useful to compare any of the above KPI with the mean 

actual accumulation (MAA). This is useful to compare with sites with different levels of accumulation. 

Comparison can be achieved by dividing any metric, e.g. MAE, by MAA: MAE/MAA. This value should be 

as small as possible. Wang et al. (2018) uses specifically this metric, named the average relative error 

ARE or alternatively the mean relative error MRE, which can be defined as follows [29]: 
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𝑀𝑅𝐸 =  
∑ |𝑦𝑡 − �̂�𝑡|

∑ 𝑦𝑡
    (48) 

ME/MBE, MAD and MRE will used to measure model performance. ME/MBE shows the model bias but 

does not reveal the size of the errors which is arguably the most relevant metric. The RSME measures 

the size of the error, although it specifically useful if outliers are undesired. In other circumstances, this 

metric can be hard to interpret [141]. Hence, the MAD is deemed more appropriate. MRE will be used 

as it reflects on the size of the error with respect to the mean of the actual values. A large error for a 

small mean is worse than a large error for a large mean. Moreover, this allows for comparison between 

studies. 

7.1.2. Monitoring forecast accuracies 
If forecasting will eventually be used to predict debris accumulation, model parameters may need to be 

adjusted to changes in the implicit independent variables. In order to trigger parameter adjustments or 

notify the user to make parameter adjustments, a tracking signal TS can be used. TS works for one 

sided errors, i.e. predictions which consistently overestimate or consistently underestimate reality, and 

is defined as follows [140]: 

𝑇𝑆 =  
∑(𝑦𝑡 − �̂�𝑡)

𝑀𝐴𝐷
    (49) 

A certain threshold for TS would then trigger a warning. For fluctuating errors this wouldn’t work, since 

errors would cancel each other out. A solution to this approach would be to use the absolute magnitude 

error over a period instead or in addition.  

Continuous forecast adjustments can be made without human intervention. This would not always work 

but it may work certain cases, such as when the errors grow in a linear matter. Adjusting for the errors 

could then be performed using moving linear regression and double exponential smoothing [140]. 

Whether this works depends on the type of causal model.  Revisiting the model parameters may be 

needed for more complex models, other than linear models. Storing historic data for the independent 

and dependent variables is therefore paramount.  

7.2. Experimental Plan 
The experimental plan consists of testing various versions of the river input model in order to check the 

added value of the numerous additions which add to model complexity. The base case is the simplest 

model, a model which merely accounts for rainfall, without taking surface runoff, street sweeping, 

antecedent rainfall and wind into account. The second case includes surface runoff calculations and is 

similar to the approach from Wan et al. (2018) [29]. The third case will introduce antecedent rainfall 

and antecedent removal of debris. The last case will introduce wind. These variations of the model will 

be tested in this order. For model M3 and M4 the best out of the previous two and three models 

respectively is used to build upon. An overview is shown in table 26. 
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Table 26. Overview of model variations used in experimental plan. 

Description model variation and main assumptions Model name and 

acronym 

Precipitation only.  𝒎𝑰 = 𝒎𝑫,𝑷 = 𝒌𝒑(𝑷 − 𝑷𝒃)∆𝒕. Main assumptions: rainfall 

is by far the dominant factor. Wind, antecedent removed debris, street 

sweeping and land use and soil data have limited influence. 

Model one (M1) 

Surface runoff from rainfall only.   𝒎𝑰 = 𝒎𝑫,𝑷 = 𝒌𝒑(𝑸 − 𝑸𝒃)∆𝒕. Approach 

Wan et al (2018) [73]. Main assumptions: rainfall is by far the dominant 

factor. Wind, antecedent removed debris and street sweeping have limited 

influence. 

Model two (M2) 

Complete model excluding wind. If better performance is generated with 

precipitation only, detailed surface runoff modelling will be ignored. Main 

assumption: Wind has negligible influence. 

Model three (M3) 

Wind included. Depending on the performance of the previous four 

experiments, the best will be used in E4. 

Model four (M4) 

  

In order to better assess the overall model performance of these models, a ‘clueless’ prediction model 

has been added during validation. This average based prediction model (ABPM) simply uses the daily 

average of the training set and predicts daily quantities of accumulation based on this daily average. 

Each of the models above should at least perform better than this model.  

The WPB dataset includes accumulation data for several debris categories. The aforementioned models 

will initially be applied to an aggregated set of debris categories. After concluding these results it will 

be evaluated whether separate debris categories should be included. Each debris category may have a 

slightly different behavior, especially with respect to wind or with how much ease each debris category 

manages to go through the grid spanning the storm water drain inlets. Cigarette butts for instance are 

sufficiently small to fit through the grid. Glass bottles for instance are less vulnerable to wind induced 

transport than plastic bottles, due to their higher weight. Plastic bags in contrast are highly vulnerable 

to wind induced transport.  

The following six debris categories are included in the WPB dataset, each listed with acronym: 

1. Plastic Bottles (PB) 

2. Polystyrene (PT) 

3. Cigarette Butts (C) 

4. Glass Bottles (GLB) 

5. Grocery Bags (GRB) 

6. Chips Bags (CB) 

7. Aggregated, PB + PT + GRB + CB 
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The aggregated category is the summation of a subset of the other categories. Not all categories have 

been included in the aggregated version since cigarette butts would dominate the data due to the much 

larger quantities involved whereas glass bottles are negligible in comparison to the other categories. 

Since the datasheets only provides data, i.e. date and number of items, once a full bin is removed, 

model output will need to match this. Hence, daily outputs of the model will be summed over the days 

where measurements in the datasheet are unavailable up to the date a bin of debris is removed. 

Furthermore, since some weather events generate so much debris that it can fill multiple bins, data 

from bins removed on the same day are added together. This is illustrated with the example in table 

27. In this example bins were removed on day 2 and 6. For day 6, for instance, the model outputs of 

day 3, 4, 5 and 6 were summed and compared with the actual data, which are the daily totals as shown 

in table 27. The summation of bins is done by preprocessing the WPB data set. 

Table 27. Example of a comparison between the model outputs and the actual data. 

 Day 

 1 2 3 4 5 6 

Quantity of debris in bin 1  110    80 

Quantity of debris in bin 2  100    120 

Quantity of debris in bin 3      150 

Totals actual data  210    350 

Daily outputs for the model 30 60 0 120 500 0 

Output totals for the model  90    620 

Absolute error  120    270 

 

The total WPB datasheet contains data from May 2014 to July 2018. May is skipped to make the dataset 

even numbered for convenience. This means there are 50 months of data. Half of these months will be 

used for training, i.e. the first 25 months, whereas the last 25 months are used for validation. More 

details can be found below in table 28. 

Table 28. Specifications training and validation data. 

 Training data Validation data 

Number of days 756 758 

Starting date  6-06-2014 1-07-2016 

End date  30-06-2016 28-07-2018 

 

7.3. Calibration of the model parameters 
In order to train the model, i.e. calibrate the model parameters, values for the parameters must be 

found which minimizes the error between the actual values of the dependent variables, here denoted 
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as 𝑦𝑡 and the predicted dependent values, here denoted as �̂�𝑡. In the initial debris prediction model 

defined by Wan et al. (2018), the predicted values were said to be defined by the following equation, 

formulated in the general form of a linear regression model: 

𝑦𝑡 = 𝛼 +  𝛽 ∙ 𝑥𝑡 + 𝜀𝑡   𝑓𝑜𝑟 𝑄 > 𝑄𝑏     (50)  

𝑤𝑖𝑡ℎ 𝛼 =  −𝑘𝑝 ∙ 𝑄𝑏  𝑎𝑛𝑑 𝛽 = 𝑘𝑝  

And: 

𝑦𝑡 = 0 + 𝜀𝑡     𝑓𝑜𝑟 𝑄 < 𝑄𝑏     (51)  

Constrained by the daily available debris: 

𝛼 +  𝛽 ∙ 𝑥𝑡 < 𝑐    (52) 

𝑤𝑖𝑡ℎ 𝑐 =  𝑀𝑎𝑑𝑔 

The goal in this optimization problem is to estimate the values for 𝑘𝑝 and 𝑄𝑏 and thus 𝛼 and 𝛽, which 

minimize the error terms. This leads to the following debris prediction model, with �̂� and �̂� being 

estimates for the parameters 𝛼 and 𝛽, and 𝜀�̂� being the residual at time t: 

𝑦𝑡 = �̂� + �̂� ∙ 𝑥𝑡⏟      
�̂�𝑡

+ 𝜀�̂�   𝑓𝑜𝑟 𝑄 > 𝑄𝑏     (53) 

𝑦𝑡 = 0 + 𝜀�̂�     𝑓𝑜𝑟 𝑄 < 𝑄𝑏     (54)  

Constrained by the daily available debris: 

�̂� +  �̂� ∙ 𝑥𝑡 < 𝑐    (55) 

𝑤𝑖𝑡ℎ 𝑐 =  𝑀𝑎𝑑𝑔 

Wan et al. (2018) applied linear regression analysis to find the values for 𝑘𝑝 and 𝑄𝑏 but did not account 

for the constraint in the process of fitting the data to this linear relationship, i.e. the following procedure 

was followed: 

1. Find estimates for 𝑘𝑝 and 𝑄𝑏 based on linear regression analysis, ignore 𝑀𝑎𝑑𝑔. 

2. Calculate debris inputs. 

3. Constrain if debris inputs exceed 𝑀𝑎𝑑𝑔. 

4. Calculate model performance. 

Including 𝑀𝑎𝑑𝑔 is necessary as was discussed in section 6. Since 𝑀𝑎𝑑𝑔 will now also be estimated, as 

argued for in subsection 6.3, the constraint becomes as follows: 

�̂� +  �̂� ∙ 𝑥𝑡 < �̂�    (56) 
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Now, best values (ideally the optimal values) are to be found for three parameters, namely 𝑘𝑝 , 𝑄𝑏 

and 𝑀𝑎𝑑𝑔 for the model variant using surface runoff as a predictor.  

7.3.1. Greedy search  
In order to find these optimal values, a first optimal solution will be acquired based on a basic greedy 

search method (GSM). This method converges to a minima of the function by decreasing the solution 

space of the model parameters in subsequent iterations. This method resembles a basic pattern search 

method described by Davidon (1991):  

‘Enrico Fermi and Nicholas Metropolis used one of the first digital computers, the Los Alamos Maniac, 

to determine which values of certain theoretical parameters (phase shifts) best fit experimental data 

(scattering cross sections). They varied one theoretical parameter at a time by steps of the same 

magnitude, and when no such increase or decrease in any one parameter further improved the fit to 

the experimental data, they halved the step size and repeated the process until the steps were deemed 

sufficiently small’ [142]. 

The idea is to select for each parameter a certain number of steps, or (exploratory) moves, for the 

algorithm to make, in such a way that it yields a tractable calculation time. In addition, a solution space 

should be selected and the matter in which the steps are divided over this solution space. The solution 

space is the space of all possible solutions from which a subset, or neighborhood structure, is chosen 

to be tested by the algorithm in subsequent steps/moves. This subset is called a lattice and the size of 

the number of steps on this lattice determines the lattice resolution. The steps/moves can be divided 

over this search space in different ways, for instance on a linear scale or on a logarithmic scale, as 

shown in the equations below for parameter 𝛼, with 𝑆𝛼 being the number of iterations performed for 

parameter 𝛼 : 

𝛼 = 𝑎 + 𝑏 ∙ 𝑠𝑡𝑒𝑝,    𝑓𝑜𝑟 𝑠𝑡𝑒𝑝 = 1, 2,… 𝑆𝛼     (57) 

𝛼 = 𝑏 ∙ 10𝑠𝑡𝑒𝑝,    𝑓𝑜𝑟 𝑠𝑡𝑒𝑝 = 1, 2, … 𝑆𝛼     (58) 

After all the solutions for each step have been computed, the solutions are observed and the regions 

with promising solutions are used for the next solution space. The best solution is the incumbent. Note 

that the combined solution space for all generated solutions is multi-dimensional, one dimension per 

parameter. 100 steps for each parameter will hence yield 1 million solutions in a three dimensional 

space.  In the next iteration, the step size is decreased accordingly, i.e. depending on the solution space. 

The best solution in this iteration becomes the new incumbent. Subsequent iterations are performed 

until improvements in new solutions compared to the incumbent become negligible.  

The advantage of this procedure is that it is simple and the procedural parameters are fairly 

straightforward to acquire, without the necessity for much experimentation. It is also flexible as the 

solution space is manually adjusted to promising regions.  
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The downside of this procedure is that it can only guarantee a local minimum. It solely proceeds to 

areas where the solutions are found to be better than the surrounding solutions, but since the step size 

is initially large, it may overlook a global optimum. It also becomes vastly more complex or intractable 

when the quantity of parameters increases. It is hardly suitable for a parameter space beyond three 

dimensions as multi-dimensional matrices are hard to analyze manually. For model 4, iterations are 

therefore run multiple times. Within each run, rainfall parameters are kept constant while the other 

parameters are varied. This is performed for a set of rainfall parameters, based on the outcome of the 

earlier models, i.e. with a smaller solution space. 

7.3.2. Simulated annealing 
A more sophisticated approach would include a non-greedy metaheuristic. Such a metaheuristic is 

simulated annealing (SA), an established algorithm part of a larger group of nature inspired 

metaheuristics, which moves to new solutions based on memory less probability, inspired by the 

annealing process of metals [143]. It uses the metropolis criterion a as an acceptance function, meaning 

all improving moves are accepted and all worse moves are accepted with a certain probability. This 

probability is initially large and moves slowly down, making the algorithm increasingly greedy.  

This algorithm requires the following algorithm parameters to be selected: 

- Starting temperature (T0) 

- Cooling schedule 

- Cooling rate/cooling factor 

In addition to the above algorithm parameters, a solution space/state space should be defined. This 

means defining the domain of each of the model parameters, i.e. three parameters in model 1 to 3 and 

five parameters for model 4. Moreover, a neighborhood structure should be selected in order to move 

to a candidate solution.  

The starting temperature and cooling schedule will be based on experimentation, together with results 

from the previous greedy search method. The neighborhood structure will be based on binary numbers. 

Each neighbor is essentially 1 digit away from the incumbent solution [144]. The changing digit is chosen 

based on stochastics. Using SA requires discretization of the solution space and also requires the solution 

space to be significantly reduced to make it more tractable for the algorithm to solve. This will be 

achieved based on results from the previous greedy search method and based on an analysis of the 

weather data and data on the downstream accumulation of debris. This procedure is elaborated on in 

appendix M, together with an overview of the simulated annealing algorithm.  

Building a simulated annealing method is time consuming, especially considering the time involved with 

tuning the algorithm parameters. For five dimensions, an adaptive neighborhood might even be required 

to cope with large solution space [145]. Therefore, this approach is first tested on model 1 and only 

considered for subsequent models if the quality of the solutions significantly outperforms the results of 

the greedy search method. 
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7.3.3. Training results 

The training results are shown below in table 29, with the population ratio 𝑃𝑜𝑝𝑟 equal the population 

of sub watershed k divided by the total population of all sub watersheds: 

𝑃𝑜𝑝𝑟 =
𝑃𝑜𝑝(𝑘)

𝑠𝑢𝑚(𝑃𝑜𝑝)
    (59) 

Below the calibrated values, the model performance can be found, represented by the MAD and MRE. 

Based on the values of M1 and M2, the M2 method of calculating the relation between rainfall debris 

inputs has been adopted for the subsequent two models. It should be noted however that the difference 

in performance is small. In the same way, based on the values between M2 and M3, the M2 method of 

calculating the quantity of available debris, has been adopted for M4. 

Table 29. Training results: values of the calibrated parameters and model performance. 

 M1(GSM) M1(SA) M2(GSM) M3(GSM) M4(GSM) 

𝒌𝒑 [#debris/mm/day] 0.06 0.0209 >=1 3.4E-05 0.002 

𝑷𝒃 [mm] 1.5 1.2 n/a n/a n/a 

𝑸𝒃 n/a n/a 0.01 0 0.012 

𝒌𝒘 n/a n/a n/a n/a 9E-06 

𝑽𝟎 n/a n/a n/a n/a 0 

𝑴𝒂𝒅𝒈 𝑃𝑜𝑝𝑟 ∙ 5598 𝑃𝑜𝑝𝑟 ∙ 5661 𝑃𝑜𝑝𝑟 ∙ 5822 𝑃𝑜𝑝𝑟 ∙ 812 𝑃𝑜𝑝𝑟 ∙ 5766 

MAD 6834 6820 6664 7360 6644 

MRE 0.61 0.6 0.59 0.65 0.59 

 

Figures depicting the actual and predicted series, with the parameter values as given above, can be 

found in Appendix N. 

7.4. Validation results  

The validation results are summarized in table 30 below. 

Table 30. Validation results: model performance. 

 M1(GSM) M1(SA) M2(GSM) M3(GSM) M4(GSM) ABPM 

ME -1107 -1237 -1600 -4921 -2154 858 

MAD 8997 8932 8509 9853 8278 11130 

MRE 0.73 0.72 0.69 0.8 0.67 0.9 
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Detailed results, specifically graphs, are included in appendix O. The following figures are included: 

- A comparison between the predicted and actual accumulation of debris (the dots representing 

the values were connected by lines to improve readability). This direct comparison gives a clear 

visual insight in how both time series compare to each other. 

- A comparison between the actual values of accumulation of debris with line fit and the predicted 

values with line fit in two separate graphs. A graph was added with the difference (residuals) 

between predicted and actual values with line fit. This shows the trend of the residuals.  

- The mean error (ME) for different validation sets, ranging from a short to a long time span. This 

shows if and how fast the bias of the model decreases towards zero. The following timespans 

are included: 

o 1 month 

o 2 months 

o 5 months 

o 9 months 

o 12 months 

o 15 months 

o 19 months 

o 22 months 

o 25 months  

-  The mean absolute deviation (MAD/MAE) for different validation sets as listed above. It shows 

if and how fast the MAD decreases towards zero for longer timespans.  

7.5 Analysis 

7.5.1. Validation analysis 
Overall, one can conclude that the performances of all models score comparable although the third 

model sticks clearly out as the worst. M1, M2 and M4 score considerably better than the average based 

prediction model. The performance of all models, MRE, is however much lower than the performance 

achieved by Wan et al. (2018), which scored an MRE between 0.14 and 0.22 depending on the region. 

The training performance is better than the validation performance, as it should be, but nonetheless, 

the performance remains underwhelming.   

The poor model performance could either be due to the data validity or model assumptions. If the 

weather stations are located too distant from the location of interest, inaccurate weather observations 

may render the data invalid. As mentioned earlier, rain showers may be very local. Data invalidity may 

also arise at the data source used to train and validate the model. For instance, if data is misinterpreted 

or incorrectly recorded. Finally, the large number of assumptions, especially for the calculation of surface 

runoff, may have severely affected model accuracy. Wan et al. (2018) used for instance a detailed 

hydraulic surface runoff model. Other important assumptions included the processing of rainfall and 

wind measurements. Threating these as events may have yielded significantly better results if data was 
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sufficiently accurate. An important model assumption which should not be overlooked is, that a 

forecasting model assumes that an historic trend propagates in the future, which might not be the case. 

Although trend adjustment techniques exist, these were not applied here. This would however not 

explain the poor training performance. 

The figures from the validation and sensitivity analysis will be discussed below. 

 

From these figures one can indeed observe that predictions do differ significantly from the actual values. 

Some peaks and values overlap but the majority of points appear random. 

 

For this series of graphs it is noteworthy to observe that while the actual values go down, the predicted 

values go up. The most straightforward explanation is that somehow, despite worse weather conditions, 

less debris manage to reach the river. Debris are either less present on land or better contained on land. 

This could for instance be due to regulatory changes for packaging or improvements in waste 

management and increased street sweeping. Improved storm drains can also have a tremendous impact. 

Measures include: less storm drain overflows, improved storm drain filters and sewage grids/storm drain 

covers.  

A closer look at the data in figure 50 reveals indeed a clear change in the trend of debris accumulation 

in the downstream area of the Jones Falls River. In contrast, this trend is not observed for precipitation 

in figure 49.  

A comparison between the predicted and actual accumulation of debris (the dots representing the 

values were connected by lines to improve readability). This direct comparison gives a clear visual 

insight in how both time series compare to each other. 

A comparison between the actual values of accumulation of debris with line fit and the predicted 

values with line fit in two separate graphs. A graph was added with the difference (residuals) 

between predicted and actual values with line fit. This shows the trend of the residuals. 
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Figure 49. 12 month moving averages precipitation over a four year period. 

 

Figure 50. 12 month moving averages accumulated debris over a four year period. 

As precipitation increases over the span of validation data, the predicted debris accumulation values 

also move (slightly) up. Since the actual debris accumulation data goes down, the mean of the residuals 

logically increases. 

If this trend is accounted for in the predictions, a MAD of 6013 can be obtained for the training of M4 

using the GSM. The MRE is 0.53. For the validation a MAD of 7163 is obtained and a MRE of 0.58. Hence, 

the performance is significantly better. 

 

The ME of all models moves towards zero for all models and similar speed, about 2000 debris quantities 

per 10 months. All models would reach a zero bias in 35 months if the trend continues, except M3 since 

it starts with a worse bias. 
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The mean error (ME) for different validation sets, ranging from a short to a long time span. This 

shows if and how fast the bias of the model decreases towards zero.  
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The MAD does not decrease over increasing timespans, and even increases in two cases. This can be 

explained, as for longer timespans more discrepancy between actual and predicted values would be 

incurred due to what was observed above, namely the observation that precipitation and debris show 

opposite trends. 

7.5.2. Sensitivity analysis 

For the sensitivity analysis the model parameters will be varied separately to test the influence of the 

parameter on the overall mode performance. It aims to answer the question to what extent the model 

performance is sensitive to a change in a specific parameter. In order to achieve this, each parameter 

will be varied separately while keeping the other parameters constant. M4 has been selected as it 

performed based during validation. MAD is used to evaluate model performance. For each parameter, 

two parameter models are used to evaluate each parameter: 

1. Linear. For the linear parameter model each parameter has been divided by 1000 to define the 

step size.  1000 iterations are evaluated below the optimal value and 1000 iterations are 

evaluated above the optimal value, hence 2000 iterations in total. Each iteration, the parameter 

is increased by the step size.  

2. Logarithmic. For the logarithmic parameter model, the first iteration is 1E-9 and subsequently 

multiplied by 10 until 1E10. 

For the threshold wind speed V0, a different linear parameter model is selected as the optimal value of 

V0 equals 0. For V0, 40 equally spaced values of V0 are selected, ranging from 1 to 40 m/s (hurricane 

strength). The results of the sensitivity analysis are given in appendix P. 

First of all it can be noticed that the optimal values generated by the training data set are not the 

optimal values for the validation data set. This is not surprising. The influence of 𝑘𝑝 is relatively small, 

as long as 𝑘𝑝 is ≥ 1E-5. The reason is that the influence of 𝑘𝑝 is eventually limited by 𝑀𝑎𝑑𝑔 which caps 

the total input of debris. In contrast, it can be observed that the influence of 𝑀𝑎𝑑𝑔 is relatively large. 

For values in the range of 1E5 and above, MAD increases excessively to eventually top out just over 

1.3E7. It is however not guaranteed to be always the case. Other configurations with comparable 

performance can be found which decrease the influence of 𝑀𝑎𝑑𝑔. Dividing 𝑘𝑝 by 100 for instance 

decreases MAD by 3% while dividing 𝑘𝑝 by 100 increases MAD by 17%. A lower 𝑘𝑝 value will 

inherently decrease the effect of 𝑀𝑎𝑑𝑔 as the current average value for 𝑀𝑑𝑝 stands at 1E5 debris per 

sub watershed per day, which is much higher than the value of 𝑀𝑎𝑑𝑔 which is 5766 debris for the 

whole watershed or 2888 per sub watershed on average.  

The mean absolute deviation (MAD/MAE) for different validation sets... It shows if and how fast the 

MAD decreases towards zero for longer timespans. 
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The effect of 𝑄𝑏 is limited as values above a certain threshold, means no surface runoff will be able to 

trigger debris inputs. This means that the effect of precipitation is zero. Below a certain value, the 

threshold values become extremely small compare to the actual surface runoff, which means its effect 

becomes negligible. 

The wind related coefficient 𝑘𝑤 has a small contribution to the overall performance around the optimal 

value. From both figures concerning 𝑘𝑤 it can be observed that the effect of halving or doubling 𝑘𝑤 has 

a minor effect. For values ≥ 10-6, the performance becomes quickly worse to eventually be bounded 

by 𝑀𝑎𝑑𝑔 between 4E5 and 5E5. The contribution of the wind related threshold value 𝑉0 is negligible for 

all values. One can hence conclude that the wind, using the data as provided and in accordance with 

the model assumptions, does not contribute in any way to the accumulation of debris. If it would be 

contributing, raising the threshold above all values in the dataset should decrease performance. 

Indeed, the average 𝑀𝑑𝑤 value is 1.8 quantities per sub watershed per day, while the average 𝑀𝑑𝑖 value 

equals 80 quantities per sub watershed per day and the average 𝑀𝑑𝑝 value equals 1E5 quantities per 

sub watershed per day. MAD for 𝑘𝑤 = 0, yields 8210 which is merely 0.8% different than the MAD for 

the calibrated, i.e. 8278. A simple plausible explanation could be that the wind speeds observed in this 

area are simply too low to influence debris deposition. The maximum daily average wind speed was 

merely 10.7 m/s and 8.8 m/s respectively, which counts as a fresh breeze. 

The reason that M4 performs significantly better than M2 seems to be coincidence. For this specific 

dataset, the calibrated values happen to fit the validation set better than the values calibrated for M2. 

This is a plausible hypothesis as the performance of the calibrated models for the training set, barely 

differ with 0.3% difference. 

7.5.3. Analysis of weather and accumulation data  

The analysis of the input data should set some light on whether the poor performance of the models 

can be contributed to the quality of the input data. 

For wind, the following correlations were obtained after an analysis of the training input data, i.e. 756 

daily wind averages of the three weather stations, North, South and West: 

Table 31. Correlation coefficients wind at weather stations North, South and West. 

  North South West 

North 1 
  

South 0.82 1 
 

West 0.85 0.81 1 

 

The correlations are strong and statistically significant. For precipitation, a similar analysis is pursued, 

now with daily rainfall totals over the same 756 day period. The correlation between the weather stations 

for rainfall is moderate. The correlation between West and North is at the low end of moderate. The 
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rest of the values are at the high end of moderate correlation. It is hence plausible that the precipitation 

data is not accurate enough. 

Table 32. Correlation coefficients precipitation at weather stations North, South and West. 

  North South West 

North 1 
  

South 0.59 1 
 

West 0.36 0.63 1 

 

A closer look was also given to the rainfall and accumulation data. Rainfall data was generated by the 

model, using the data from the weather stations and accumulation data is data provided by the WPB. 

This data is presented in figure 51 for a subset of the training data, 09-06-2015 to 08-09-2015.  The 

colored cells in the rainfall columns day 1 to 8 highlight the day at which bins of debris were registered. 

Each column marked with ‘rainfall…’ shows one of the days since the previous removal day, with the 

daily rainfall sums marked in each cell. The accumulation data column shows the amount of debris, as 

registered by the WPB.  In the methodology as used in this report, the second line would predict zero 

debris as the rainfall amount is zero. Hence, the obtaining a 27250 debris difference for that particular 

debris removal day.  It is interesting to observe that large quantities of debris accumulation were 

assigned to days without rainfall but directly following a day with significant rainfall. Debris removal at 

such days was marked in red with the other days marked in dark grey. These observations could arise 

for the following reasons: 

1. Rainfall has actually fallen on the watershed but is too local to be picked up by the weather 

stations. 

2. The accumulated debris actually corresponds to the rainfall at the previous day but was only 

collected the day afterwards. Not surprising if rainfall fell in the late evening, if river propagation 

takes a few hours or if removal operations takes so long, if multiple bins need to be removed, 

that operators also needed the next day. Bins could ten have been registered on these days. 

 

Figure 51. A closer look at the rainfall data generated by the model and accumulation data provided by the WPB. 
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7.6 Summary 

In this section the model was trained, validated and the results were subsequently discussed.  For the 

calibration of the model parameters and the validation of the model, forecasting theory was applied to 

evaluate model performance. ME, MAD and MRE were selected as suitable KPI to evaluate model 

performance. 

Four versions of the model were tested, in order to evaluate to added value of model extensions and 

complexity. Model M1 uses precipitation as the sole independent factor and ignores surface runoff. 

Model M2 uses a simple surface runoff model to test the benefit of a more detailed approach to 

calculating rainfall induced debris inputs. Model M3 takes into account historic inputs and model M4 

included wind as a predictor for debris inputs. Finally, a baseline prediction model (ABPM) was added 

for comparison. This model, based its predictions on the average daily inputs of the training dataset. 

The exact form of M3 and M4 was based on the training performance of M1 and M2 for M3 and the 

training performance of M1 to M3 respectively for M4. 

The models were trained and validated using aggregated debris quantities of plastic bottles, polystyrene, 

grocery bags and chips bags. Each category was more or less similar in size. The training data included 

756 days and the validation data included 758 days. 

The models were calibrated using a greedy manual search method (GSM) and simulated annealing (SA) 

respectively. Since GSM performed comparable to SA for parameter calibration of M1, only GSM was 

applied for the subsequent models. The MRE obtained after training of the models, ranged from 0.59 

to 0.61 for M1, M2 and M4 while M3 achieved 0.65. The validation of the models yielded the following 

MRE: 0.73 (M1 GSM), 0.72 (M1 SA), 0.69 (M2), 0.8 (M3), 0.67 (M4) and 0.9 (ABPM). 

Though all models scored better than the baseline ABPM model, they scored much worse than Wan et 

al. 2018), which scored between 0.14 and 0.22 for various sub watersheds. From the analysis it 

appeared that accurateness of weather data is a likely cause, as rainfall data from the three weather 

stations were only moderately correlated. But several model assumptions may also have severely 

decreased the achievable performance with these models, most noticeably the processing of rainfall 

measurements and the simplification of the surface runoff process.  From observations in the dataset 

as obtained from the WPB, it was found that the quality of said dataset with respect to this study may 

have hampered a successful analysis of the data. 

Upon analysis of the graphs and data generated by the model and a sensitivity analysis of the 

parameters it was found that wind was negligible. The reason is likely the low wind forces registered 

within the dataset. M4 scored however better than M2 but this can simply due to parameter values 

which favor the validation dataset. The MRE achieved at the parameter calibration was similar, both 

0.59. 
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8. Conclusions and future research recommendations 

‘A planetary crisis’ [3], this ominous warning was given about the growing presence of anthropogenic 

debris in marine waters, plastic in particular. Debris accumulation in freshwater and marine water leads 

to a myriad of problems, such as decrease of aesthetic appeal, damage to nautical traffic, harm to flora 

and fauna and a potential risk to human health by pollution of human nutrition.  

Remedies are looked for in different areas but this report focuses specifically on the extraction of debris 

in downstream sections of a river. Downstream removal of debris is advantageous for several reasons. 

Firstly, rivers are an important pathway for debris transport to the marine ecosystem. Secondly, ports 

and harbors are frequently located downstream, facilitating the removal of debris due to intrinsic interest 

of the local operators. Thirdly, downstream removal covers the debris inputs from the whole length of 

the river. Fourth and finally, the downstream section is the last location where debris are still heavily 

concentrated in one area, before spreading out over the vast expanse of the marine waters. 

In order to facilitate the effective removal of debris it is believed beneficial to perform removal 

operations during times of large accumulation of these debris. To achieve this, a prediction model can 

has been developed aimed at predicting debris accumulation based on certain predictors. An answer to 

each of the proposed research questions, will be formulated in subsection 8.1. Future research 

recommendations are addressed in subsection 8.2.  

8.1. Conclusions 

● What are debris and how can temporal fluctuations of debris accumulation from rivers be 

characterized? 

Debris can be categorized in many ways, with the top level categories dominating literature being 

location, size, material, type/product, risk and origin. 

Debris can be categorized in two main categories: anthropogenic debris and natural debris. The mix of 

debris in areas with adequate waste management and low human presence is generally skewed towards 

natural debris, while areas with poor waste management and high human presence face the opposite. 

With current technology, debris removal operations generally focus on macro debris, >5mm, which 

constitutes the largest amount of debris in terms of weight and especially in the top layer of the water, 

which is where debris removal equipment generally operates. The removal of micro debris, <5mm, from 

freshwater ecosystems is currently not worth the costs. 

Debris which are found in marine waters are predominately originated from neighboring land masses, 

even if these land masses contribute relatively less to the global supply of marine debris. The exact 

number for the fluvial contribution of debris to the marine ecosystem remains unclear but estimates 

range from 7% to 48% of the total.  
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Risk assessments of debris are rare due to the lack of knowledge, data and the difficulty of monetizing 

certain harm. Hence, risk assessments are often performed in qualitative way. The most crucial debris 

are plastics due to their abundance, toxicity and longevity. Types with particular shapes pose additional 

risk such as monofilament, plastic bags, fruit nets and other debris with holes. Their shape poses risk 

to rudders, propellers and marine life. Certain brittle materials like foam need to be removed as soon 

possible since their brittle nature makes them highly vulnerable to mechanical degradation. Though the 

degree of risk may differ, all anthropogenic debris and also many natural debris pose a certain risk to 

human activities and/or marine life. 

Fluvial accumulation of debris fluctuates heavily due to the fluctuations of the factors causing this 

accumulation. From the observed data, accumulation can be categorized as a base accumulation with 

large pronounced jumps in the distribution, with peaks varying in size. This can for instance be related 

to weather events. Over a longer time span, one or multiple years, seasonal effects can be observed. 

This can be due to seasonal presence of human activity or due to weather events. Moreover, trends can 

emerge with the mean accumulation gradually growing or declining. This can be due to growing human 

presence, increase public awareness or improving waste management. Finally, one can observe an 

abrupt step in the mean accumulation, likely due to infrastructure adaptations or legislation. Briefly 

summarized, the following characteristics can be found: jumps (temporary, fast change), seasonal 

fluctuations (temporary, slow change), trends (permanent, slow change), and steps (permanent, fast 

change). A prediction model should focus on jumps but will eventually, once implemented, need to 

account for the other characteristics, using analysis of historic data or tracking tools. 

● What factors influence the quantity of debris accumulating from a river? 

Debris inputs are mainly influenced by precipitation induced surface runoff. Precipitation related factors 

are antecedent dry days, total rainfall volume and rainfall intensity. The effect is jumps in the distribution 

of debris accumulation. Government legislation mainly affects trends and steps through the impact on 

consumption of disposable products and incorrect waste disposal. Other factors include wind, 

temperature, special events, urban development, tourism, waste management and public mentality. 

Each of these factors has their own temporal effect and place in the life cycle of waste it acts upon. The 

impact of each of these factors is always synergetic with the presence of other factors. The impact of 

heavy rainfall with poor waste management and poor public mentality is particularly severe. Local soil 

and land use characteristics have a large influence on the impact of precipitation. Soils which are more 

hydrophobic inhibit the percolation of water and will force more overland flow, creating more surface 

runoff. 

Once debris enter the fluvial system, river transport of debris is related to the velocity of water, which 

is correlated with the river discharge. River discharge is often directly related with upstream rainfall. 

Stranding of debris may occur, especially in so called ‘hotspots’, areas which facilitate the retention of 

debris. Chance of stranding is increased by flat or shallow riverbanks, presence of vegetation and fluvial 



93 
 

geo- or anthropogenic morphology. Lateral transport of debris is influenced by wind, input locations and 

hydrodynamic events like watercourse obstacles, confluence of tributaries and river bends. 

● How can these factors be incorporated in a prediction model, what existing models and modelling 

techniques are available and what are the challenges? 

Accumulation of debris can be modeled with two separate sub models: a river input model and a river 

propagation model. Currently, some models exist for micro and macro debris and can be divided into 

spatiotemporally explicit and steady state models. A spatiotemporally explicit model is desired to observe 

fluctuations in time and space.  

Most existing input models are steady state and often consider a single source. If all micro debris models 

are excluded, Wan et al. (2018) remains as the main benchmark model for the application envisioned 

in this report. This model proves its merit in the use of a detailed semi-distributed surface runoff model.  

This model is however not exhaustive as it only takes into account surface runoff. Armitage et al (1998), 

though steady state, is more inclusive in some respects as it includes ADD and street sweeping. While 

ADD is fairly straightforward to implement, street sweeping would require detailed sweeping schedules 

and would be intractable for large river basins with many municipalities. Modelling surface runoff poses 

a major challenge as developing and operating a detailed surface runoff model requires a large amount 

of data and expert knowledge. Simple models may be insufficient. Obtaining accurate rainfall data may 

also be challenging in certain areas since precipitation fields can be fairly concentrated. The numerous 

points of entry to a river also means that severe simplifications of the model are often hard to avoid.   

Introducing the other factors into the model can be challenging as it leads to an excess of parameters 

to be estimated. Permanent changes in accumulation are best adapted to by recording accumulation 

and applying tracking tools. Seasonal effects are fairly easily implemented and can best be implemented 

by introducing a seasonal multiplication factor, after studying historic data. Studies on wind induced 

debris movements are extremely rare, except for hurricane strength winds, but simple analytical 

estimation models can be developed for areas with high medium wind speeds.  

Natural debris was not considered by Wan et al. (2018). Estimating the natural debris production on 

land is significantly more tedious than estimating the presence of anthropogenic debris on land. 

Therefore, historic data in combination with observations is preferably used to adapt removal operations. 

For river propagation models several modelling techniques were observed: numerical modelling, 

analytical modelling, stochastic and deterministic. While small river sections can be approached 

numerically, large sections of rivers are best approached by obtaining empirical data. Hotspots would 

also have to be identified using either numerical modelling or visual observations. Discharge 

characteristics are also crucial to link propagation to discharge and precipitation. General numbers for 

propagation are unfortunately barely available as studies are rare and whatever data is available is not 

readily used for other rivers as it tends to be very site specific.   
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● What is the performance of a prediction model, applied to a case study? 

In order to test the performance of a prediction model, an analytical model was designed, implemented, 

calibrated and validated. The case study provided the necessary data and hence, the model was 

customized to the specific case study and the available data. During the development stage of the model, 

several issues were encountered. One of these issues pertained the accuracy of the weather data. 

Historic data, required for the model calibration and validation, was only available from distant weather 

stations, hence decreasing the accuracy of the data. Secondly, the data required to build the propagation 

model was unavailable and obtaining empirical by experiments was not feasible. Hence, the modelling 

of propagation was abandoned. 

Four versions of the model were tested. The first version directly linked precipitation to river inputs, 

ignoring surface runoff. The second included lumped surface runoff calculations. The third was based 

on the second but included ADD and historic inputs while the fourth included both lumped surface runoff 

calculations and wind. The model versions tested in this report obtained an MRE of 0.67 to 0.8 after 

validation and 0.59 to 0.65 after verification. A prediction model which simply uses historic daily average 

without any predictors, ranked lower with an MRE of 0.9. 

While weather inaccuracies are deemed to be the most relevant factor, model assumptions and 

simplifications may also have had a considerably impact on model performance. These assumptions 

include simplifications in surface runoff modelling and averaging precipitation data over each day instead 

of considering precipitation events. The latter would better represent rainfall intensity. Finally, the 

quality and interpretation of the accumulation data used for calibration and validation may have 

decreased model performance.  

● Can a prediction model contribute to more accurate estimates of the accumulation of land to river 

debris at a downstream section of a river?  

The simplest model, which directly linked precipitation to debris inputs, managed to achieve an MRE of 

0.73 on this specific case study. This is considerably higher than a model which assumes steady state 

accumulation and this model would hence offer an opportunity for more effective debris removal. 

Accurate precipitation data is however crucial. As such one can expect an MRE < 0.73 using a more 

accurate weather dataset. While Wan et al. (2018) achieved an MRE of 0.14 on a specific sub watershed, 

such a model would require complex surface runoff modelling and their model performance is not 

guaranteed to be achievable for other cases. Finally, while the more complex models did not generate 

added value in this study, it is important to stress that better performance may be obtained when 

applied in other locations and/or using more accurate weather data. 
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8.2. Future research recommendations 
 

Several future research recommendations can be proposed: 

 Currently debris surface runoff from wind has not been well studied, especially for wind speeds 

below hurricane speed. While wind is generally not considered the main predictor for debris 

accumulation, it may be relevant in certain areas. One could study the effect of wind for different 

debris on different soils.  

 More empirical data should be gathered on the movement of debris in rivers. If more empirical 

data becomes available it becomes possible to build a database of different types of river 

sections.  Ideally, even a propagation model is built and tested.  

 The current dataset of accumulation set used for this model was not build with the intention of 

calibrating and validating a prediction model. Ideally, such a dataset should be build. In addition, 

data from relevant weather stations should be stored as weather stations often perform 

measurements but fail to store the data. The area researched in this report, counted dozens of 

weather stations but only a minor part had stored historic data. Using this data, another attempt 

can be given to test the modelling approach in this report. 

 This study explored whether a prediction model could help to better understand debris 

accumulation and obtain a more accurate estimate of this accumulation. However, it also useful 

to understand to which extent this information can contribute to a more effective removal of 

debris. In order to accomplish this, simulations can for instance be performed.  

 Other areas of debris removal could be researched. Many areas such as debris removal with 

RGB camera guided autonomous vessels are currently being investigated. While it shows 

promising results, more testing is needed, for instance on operating under nocturnal conditions, 

as debris outflow does not stop at night.  

  



96 
 

Bibliography 
For convenience, book (section) s, reports and conference/journal papers are indicated as follows: 

- Book (section)s: (BK). Number of books: 15. 

- Papers: (P). Number of papers: 94. 

- Reports: (R). Number of reports: 26. 

Moreover, due to the large amount of literature, the most important literature/data sources have been 

emphasized using the bold red capital letter I in between brackets: (I). 

1. Descriptor 10: Marine Litter. European Commission Environment. View date: 04-2017. 

http://ec.europa.eu/environment/marine/good-environmental-status/descriptor-10/index_en.htm. 

2. Casagrand, Tina. How 1,000 volunteers save the Blue River from itself each year. Missouri stream 

team 25th anniversary.  Publication date: 07-04-2014. View date: 04-2018. 

https://mostreamteam25.wordpress.com/category/event/litter-pick-up/page/2/. 

3. Harrabin, Roger. Ocean plastic a 'planetary crisis' - UN. BBC News. Publication date: 05-12-2017. 

http://www.bbc.com/news/science-environment-42225915. 

4. (P) Lavers, Jennifer L. and Bond, Alexander L. Exceptional and rapid accumulation of 

anthropogenic debris on one of the world’s most remote and pristine islands. National Academy of 

Sciences, PNAS, 2017, 114(23).  

5. (R) European Commission. Overview of EU policies, legislation and initiatives related to marine 

litter. Brussels, 2012. 

6. (R) Boonstra, M., Hest, F. van and Hougee, M. Resultaten van 12 jaar onderzoek naar afval op de 

Nederlandse stranden. Stichting De Noordzee, Utrecht, 2016. 

7. (P) Barnes, David K. A., Galgani, Francois, Thompson, Richard C. and Barlaz, Morton. Accumulation 

and fragmentation of plastic debris in global environments. Royal Society Publishing, Philosophical 

Transactions of the Royal Society B, 2009, 364(1526).  

8. Laville, Sandra and Taylor, Matthew. A million bottles a minute: world's plastic binge 'as dangerous 

as climate change' . The Guardian. Publication date: 28-06-2017. 

https://www.theguardian.com/environment/2017/jun/28/a-million-a-minute-worlds-plastic-bottle-

binge-as-dangerous-as-climate-change. 

9. (P) Oosterhuis, Frans, Papyrakis, Elissaios and Boteler, Benjamin. Economic instruments and 

marine litter control. Elsevier, Ocean & Coastal Management, 2014, 102(Part A). 

10. (P) (I)  Jambeck, Jenna R., et al. Plastic waste inputs from land into the ocean. American 

Association for the Advancement of Science, Science, 2015, 347(6223). Online ISSN: 1095-9203. 

11. (P) Gregory, Murray R. Environmental implications of plastic debris in marine settings—

entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Royal Society 

Publishing, Philosophical Transactions of the Royal Society B, 2009, 364(1526).  

12. (R) Mouat, John, Lozano, Rebeca L. and Bateson, Hannah. Economic Impacts of Marine Litter. 

KIMO, 2010. 

13. Pollution - Litter. World Ocean Review. View date: 04-2017. http://worldoceanreview.com/en/wor-

1/pollution/litter/. 

14. (R) McIlgorm, A., Campbell, H.F. and Rule, M. J. Understanding the economic benefits and costs 

of controlling marine debris in the APEC region. APEC Marine Resources Conservation Working Group, 

Singapore, 2009.  



97 
 

15. (R) Kershaw, P.J., et al. (GESAMP). Sources, fate and effects of microplastics in the marine 

environment: Part 2 of a global assessment. International Maritime Organization, London, 2015. ISSN: 

1020-4873. 

16. (P) Gregory, Murray R. Plastics and South Pacific Island shores: environmental implications. 

Elsevier, Ocean & Coastal Management, 1999, Vol. 42(6-7). ISSN: 0964-5691. 

17. (P) Pham, C.K., Ramirez-Llodra E., Alt C.H.S., Amaro T., Bergmann M., et al. Marine Litter 

Distribution and Density in European Seas, from the Shelves to Deep Basins. PLOS, PLOS ONE, 2014, 

9(4).  

18. Debris collection onsite after Bay Bridge struck. US Army Corps of Engineers. Publication date: 07-

11-2007. 

https://web.archive.org/web/20090109084709/http://www.spn.usace.army.mil/newsrelease/newsrele

ase_11_07_07.html. 

19. River cleaning trash skimmers: review. BLUEBIRD MARINE SYSTEMS LTD. Date of last 

modification: 24-02-2016. View date: 04-2017. http://www.bluebird-

electric.net/oceanography/Ocean_Plastic_International_Rescue/River_Trash_Skimmers_Skips_Waterw

ays_Cleaning_Work_Boats.htm. 

20. The Ocean Cleanup. View date: 04-2017. https://www.theoceancleanup.com/. 

21. Port Waste Catch. Port of Rotterdam. Publication date: 23-09-2015. 

https://www.portofrotterdam.com/en/business-opportunities/smartest-port/cases/port-waste-catch. 

22. (P) Vegter, A. C., et al. Global research priorities to mitigate plastic pollution impacts on marine 

wildlife. Inter-Research, ENDANGERED SPECIES RESEARCH, 2014, 25(Pages 225-247).  

23. (P) Tol, M.C.M. van. Vessel routing for sweeping of marine litter in a port area. ASIASIM, Asian 

Simulation Conference SCS Autumn Simulation Multi-Conference, Beijing, 2016. 

24. (R) Lammerts, M.W. Marine litter in port areas – Developing a propagation model. TU Delft, Delft 

(NL), 2016. 

25. (P) Martens, Justin and Huntington, Brittany E. Creating a GIS-based model of marine debris “hot 

spots” to improve efficiency of a lobster trap debris removal program. Elsevier, Marine Pollution 

Bulletin, 2012, 64(5). 

26. (P) Wang, Yu, Tan, Rui, Xing, Guoliang, Wang, Jianxun, Tan, Xiaobo, Liu, Xiaoming, Chang, 

Xiangmao. Aquatic Debris Monitoring Using Smartphone-Based Robotic Sensors. IEEE, IPSN-14 

Proceedings of the 13th International Symposium on Information Processing in Sensor Networks, 

Berlin, 2014. Electronic ISBN: 978-1-4799-3147-7. 

27. (P) Wang, Yong, Wang, Dianhong, Lu, Qian, Luo, Dapeng and Fang, Wu. Aquatic Debris 

Detection Using Embedded Camera Sensors. MDPI, Sensors, 2015, 15(2). 

28. Deltares. Project Guanabara Limpa: Operational Modelling and Monitoring System of Floating 

Material and Water Quality in Guanabara Bay, Rio de Janeiro. Deltares. Modification date: 04-03-2015. 

View date: 05-2017. https://www.deltares.nl/app/uploads/2015/03/Guanabara-bay-.pdf. 

29. (P)(I)  Wan, Jing, Wang, Yonggui, Cheng, Meiling. Engel, Bernard A., Zhang, Wanshun and Peng, 

Hong. Assessment of debris inputs from land into the river in the Three Gorges. Springer Berlin 

Heidelberg, Environmental Science and Pollution Research, 2018, 25(6). 

30. (R) Veiga, J.M., Fleet, D., Kinsey, S., Nilsson, P., Vlachogianni, T., Werner, S., Galgani, F., 

Thompson, R.C., Dagevos, J., Gago, J., Sobral, P. and Cronin, R. Identifying sources of marine litter 

MSFD GES TG Marine Litter Thematic Report. European Union, Luxemburg, 2009. ISBN 978-92-79-

64521-1 (Print). 

https://www.deltares.nl/app/uploads/2015/03/Guanabara-bay-.pdf


98 
 

31. (R) Sherrington, Dr. Chris. Plastics in the Marine Environment. Eunomia Research & Consulting 

Ltd, Bristol, 2016. 

32. (P) Lebreton, L.C.M., van der Zwet, J., Damsteeg, J., Slat, B., Andrady, A. and Reisser, J. River 

plastic emissions to the world’s oceans. Nature Publishing Group, Nature Communications, 2017, 8. 

33. (P) Lebreton, L.C.-M., Greer, S.D. and Borrero, J.C. Numerical modelling of floating debris in the 

world’s oceans. Elsevier, Marine Pollution Bulletin, 2012, 64(3). 

34. (P) Galgani, F., et al. Litter on the Sea Floor Along European Coasts. Elsevier, Marine Pollution 

Bulletin, 2000, 40(6). 

35. (P) Lattin, G.L., Moore, C.J., Zellers, A.F., Moore, S.L., Weisberg, S.B. A comparison of neustonic 

plastic and zooplankton at different depths near the southern California shore. Elsevier, Marine 

Pollution Bulletin, 2004, 49(4). 

36. (P) Claessens, Michiel, de Meester, Steven, Janssen, Colin and van Landuyt, Lieve. Occurrence 

and distribution of microplastics in marine sediments along the Belgian coast. Elsevier, Marine 

Pollution Bulletin, 2011, 62(10). 

37. (P) Maria, Christina, Araújo, Monica and Costa, Monica F. An analysis of the riverine contribution 

to the solid wastes contamination of an isolated beach at the Brazilian Northeast. Emerald Publishing, 

Management of Environmental Quality An International Journal, 2007, 18(1). 

38. (P) Lechner, Aaron, et al. The Danube so colourful: A potpourri of plastic litter outnumbers fish 

larvae in Europe's second largest river. Elsevier, 2014, Environmental Pollution, 188. 

39. (P) Cheung, Pui Kwan, Cheung, Lewis Ting On and Fok, Lincoln. Seasonal variation in the 

abundance of marine plastic debris in the estuary of a subtropical macro-scale drainage basin in South 

China. Elsevier, Science of The Total Environment, 2016, 562. 

40. (P) Cheung, Pui Kwan, Cheung, Lewis Ting On, Hung, Pui Lam and Fok, Lincoln. Spatio-temporal 

comparison of neustonic microplastic density in Hong Kong waters under the influence of the Pearl 

River Estuary. Elsevier, Science of the Total Environment, 2018, 628-629. 

41. (P) Tsang, Y.Y., Mak, C.W., Liebich, C., Lam, S.W., Sze, E. T-P. and Chan, K.M. Microplastic 

pollution in the marine waters and sediments of Hong Kong. Elsevier, Marine Pollution Bulletin, 2017, 

115(1). 

42. (P) Rech, S., Macaya-Caquilpán, V., Pantoja, J.F., Rivadeneira, M.M., Jofre Madariaga, D. and 

Thiel, M. Rivers as a source of marine litter – A study from the SE Pacific. Elsevier, 2014, Marine 

Pollution Bulletin, 82(1). 

43. (P) S. Carson, Henry, et al. Tracking the sources and sinks of local marine debris in Hawai. 

Elsevier, Marine Environmental Research, 2013, 84. 

44. (I)  Trash wheel project. Waterfront partnership of Baltimore. View date: 06-2017. 

http://baltimorewaterfront.com/healthy-harbor/water-wheel/. 

45. (P) Alam, Md Zahanggir, et al. Characterising stormwater gross pollutants captured in catch basin 

inserts. Elsevier, Science of The Total Environment, 2017,  586. 

46. (R) Allison, R.A., et al. From roads to rivers. Cooperative Research Centre for Catchment 

Hydrology, Canberra, 1998. ISBN 1 876006 32 3. 

47. (R)(I) Armitage, Neil, et al. The removal of urban litter from stormwater conduits and streams. 

Water Research Commission, Pretoria, 1998. ISBN 1 86845 367 7. 

http://baltimorewaterfront.com/healthy-harbor/water-wheel/


99 
 

48. (R) Weston Solutions, Inc. LOS ANGELES RIVER WATERSHED MANAGMENT AREA. LA County 

Department of Public Works. Published: 08-2005. http://dpw.lacounty.gov/wmd/NPDES/1994-

05_report/Report%20PDF/Section%205%20Los%20Angeles%20River%20Watershed.pdf. 

49. (R) Weston Solutions, Inc. BALLONA CREEK WATERSHED MANAGEMENT AREA. LA County 

Department of Public Works. Published: 08-2005. http://dpw.lacounty.gov/wmd/NPDES/1994-

05_report/Report%20PDF/Section%207%20Ballona%20Creek%20Watershed.pdf. 

50.  (P) Ryan, Peter G., Moore, Charles J., van Franeker, Jan A., and Moloney, Coleen L. Monitoring 

the abundance of plastic debris in the marine environment. Ryan, Peter G., et al. The Royal Society 

Publishing, Philosophical Transactions of the Royal Society B, 2009, 364(1526). 

51. (R) Armitage, Neil. The removal of urban solid waste from stormwater drains. ResearchGate. 

Publication date: 01-2003. 

https://www.researchgate.net/publication/228794779_The_removal_of_urban_solid_waste_from_stor

mwater_drains. 

52. (P) Kim, Lee-Hyung, Kayhanian, Masoud and Stenstrom, Michael K. Event mean concentration 

and loading of litter from highways during storms. Elsevier, Science of the Total Environment, 2004, 

330(1). 

53. (P) (I)  Kataoka, T., Hinata, H. and Nihei, Y. Tokyo. Numerical estimation of inflow flux of floating 

natural macro-debris into Tokyo Bay. Elsevier, Estuarine, Coastal and Shelf Science, 2013, 134. 

54. (BK) Wit, Marcel de. Van Regen tot Maas, Grensoverschijdend waterbeheer in droge en natte 

tijden. Uitgeverij Veen Magazines, Diemen, 2008. ISBN-9789085712305. 

55. Protecting Water Quality from urban runoff. EPA. Publication date: 02-2003. 

https://www3.epa.gov/npdes/pubs/nps_urban-facts_final.pdf. 

56. (P) Pitt, Robert, O'Conner., Thomas P. and Lantrip, Janice. Infiltration Through Disturbed Urban 

Soils. ASCE, Joint Conference on Water Resource Engineering and Water Resources Planning and 

Management 2000, Minneapolis, 2000. 

57. Morin, J. Chapter 5 Soil crusting and sealing. Food and Agriculture Organization of the United 

Nations. Last modification date: 09-01-2007. http://www.fao.org/docrep/T1696E/t1696e06.htm. 

58. (BK) Simmers, Ian. Understanding Water in a dry envornment - hydrological processes in arid and 

semi-arid zones. A.A. Balkema Publisher, Lisse, 2003. ISBN 90 5809 618 14. 

59. Combined Sewer Overflows (CSOs). United States Environment Protection Agency. View date: 10-

2017. https://www.epa.gov/npdes/combined-sewer-overflows-csos. 

60. (P) (I)  Williams, A. T. and Simmons, S. L. Sources of Riverine Litter: The River Taff, South 

Wales, UK. Springer,Water, Air, and Soil Pollution, 1999, 112(1-2). 

61. Jefferson, Anne. Combined sewer overflows: Solving a 19th century problem in the 21st century. 

Highly allochtonous. Publication date: 12-03-2013. http://all-geo.org/highlyallochthonous/2013 

/03/combined-sewer-overflows-solving-a-19th-century-problem-in-the-21st-century/. 

62. COMBINED SEWER OVERFLOWS - WHAT IS A COMBINED SEWER OVERFLOW (CSO)? Mystic river 

watershed association. View date: 05-2018. https://mysticriver.org/csos/. 

63. Grass Concrete Ltd. Growing concerns by Grass Concrete Limited.. Specification product update 

blog. Publication date: 22-09-2017. https://specificationproductupdate.com/2017/09/22/growing-

concerns-grass-concrete-limited/. 

 

http://dpw.lacounty.gov/wmd/NPDES/1994-05_report/Report%20PDF/Section%207%20Ballona%20Creek%20Watershed.pdf
http://dpw.lacounty.gov/wmd/NPDES/1994-05_report/Report%20PDF/Section%207%20Ballona%20Creek%20Watershed.pdf
https://www.researchgate.net/publication/228794779_The_removal_of_urban_solid_waste_from_stormwater_drains
https://www.researchgate.net/publication/228794779_The_removal_of_urban_solid_waste_from_stormwater_drains
https://www3.epa.gov/npdes/pubs/nps_urban-facts_final.pdf
http://www.fao.org/docrep/T1696E/t1696e06.htm
https://www.epa.gov/npdes/combined-sewer-overflows-csos
https://specificationproductupdate.com/2017/09/22/growing-concerns-grass-concrete-limited/
https://specificationproductupdate.com/2017/09/22/growing-concerns-grass-concrete-limited/


100 
 

64. Charnock, Matt. What Happens to Plastic Water Bottles After Festival Season? . 7x7. [Online] 10 

14, 2016. http://www.7x7.com/what-happens-to-plastic-water-bottles-after-festival-season-

2040867553.html. 

65. (P) Schmidt, Christian, Krauth, Tobias and Wagner, Stephan. Export of Plastic Debris by Rivers 

into the Sea. ACS publications, Environmental Science & Technology, 2017, 51(21). 

66. (P) Marais, Mark, Armitage, Neil and Wise, Chris. The measurement and reduction of urban litter 

entering stormwater drainage systems : Paper 1 - Quantifying the problem using the City of Cape 

Town as a case study. Water Research Commission (WRC), Water SA, 2004, 30(4). 

67. Tom (Student). Connecting Waste. Technology and Operations. Publication date: 18-11-2016. 

https://rctom.hbs.org/submission/connecting-waste/. 

68. (P) T. Maes, et al. Below the surface: Twenty-five years of seafloor litter monitoring in coastal 

seas of North West Europe (1992–2017). Elsevier, Science of the Total Environment, 2018, 630. 

69. (P) Bilby, Robert E. and T.Heffner, John. Factors influencing litter delivery to streams. Elsevier, 

Forest Ecology and Management, 2016, 369. 

70. (BK) Robinson, Mark and Ward, Roy. Hydrology - Principles and processes. IWA Publishing, 

London, 2017. ISBN: 9781780407289. 

71. Rivers and flooding. BBC. View date: 09-2017. 

http://www.bbc.co.uk/education/guides/zgycwmn/revision/2. 

72. (BK) Beven, Keith J. Rainfall - Runoff Modelling. John Wiley & Sons Ltd, Chichester(UK), 2001. 

ISBN-10 0-470-86671-3. 

73. (BK) (I)  Kooi, Merel, Besseling, Ellen, Kroeze, Carolien, van Wezel, Annemarie, Koelmans, Albert. 

Modeling the Fate and Transport of Plastic. Book authors: M. Wagner and S. Lambert. Springer 

International Publishing, Freshwater Microplastics, 2018, Pages 125-152. ISBN 978-3-319-61614-8 

(Print). 

74. (P) (I)  Williams, A. T. and Simmons, S. L. Movement patterns of riverine litter. Springer, Water, 

Air and Soil Pollution, 1997, 98(1).  

75. (P) (I)  Jang, Seon Woong, Kim, Dae Hyun, Seong, Ki Taek, Chung, Yong Hyun, Yoon, Hong Joo. 

Analysis of floating debris behaviour in the Nakdong River basin of the southern Korean peninsula 

using satellite location tracking buoys. Elsevier, Marine Pollution Bulletin, 2014, 88(1). 

76. (P) Sul, Juliana A. Ivar do, Costa, Monica F., Silva-Cavalcanti, Jacqueline S. and Araújo, Maria 

Christina B. Plastic debris retention and exportation by a mangrove forest patch. Elsevier, Marine 

Pollution Bulletin, 2014, 78(1-2). 

77. (P) (I)  Balas, C.E., Williams, A.T., Simmons, S.L., Ergin, A. A statistical riverine litter propagation 

model. Elsevier, Marine Pollution Bulletin,  2001, 42(11). 

78. (R) Wal, M. van der, van der Meulen, M., Roex, E., Wolthuis, Y., Tweehuijsen, G. and Vethaak, D. 

Plastic litter in the rivers Rhine, Meuse and Scheldt: Contribution to plastic waste in the North Sea. 

Deltares, 2013. 

79. (P) Aguilera, Moisés A., Broitman, Bernardo R. and Thiel, Martin. Artificial breakwaters as garbage 

bins: Structural complexity enhances anthropogenic litter accumulation in marine intertidal habitats. 

Elsevier, Environmental Pollution, 2016, 214. 

80. (P) Browne, Mark A., Galloway, Tamara S. and Thompson, Richard C. Spatial Patterns of Plastic 

Debris along Estuarine Shorelines. ACS publications, Environmental Science & Technology, 2010, 

44(9). 

http://www.7x7.com/what-happens-to-plastic-water-bottles-after-festival-season-2040867553.html
http://www.7x7.com/what-happens-to-plastic-water-bottles-after-festival-season-2040867553.html
http://www.bbc.co.uk/education/guides/zgycwmn/revision/2


101 
 

81. (P) Moy, Kirsten, Neilson, Brian, Chung, Anne, Meadows, Amber, Castrence, Miguel, Ambagis, 

Stephen and Davidson, Kristine. Mapping coastal marine debris using aerial imagery and spatial 

analysis. Elsevier, Marine Pollution Bulletin, 2017, 132. 

82. (P) Kako, Shin’ichiro, Isobe, Atsuhiko and Magome, Shinya. Sequential monitoring of beach litter 

using webcams. Elsevier, 2010, Marine Pollution Bulletin, 60(5). 

83. Chandler, William S., et al. Surface meteorology and Solar Energy (SSE) Release 6.0 Methodology 

Version 3.2.0. NASA Prediction of Worldwide Energy Resources. Publication date: 02-06-2016. Page 

43. https://power.larc.nasa.gov/documents/SSE_Methodology.pdf 

84. (P) Eleveld, Marieke A. Wind-induced resuspension in a shallow lake from Medium Resolution 

Imaging Spectrometer (MERIS) full-resolution reflectances. AGU Publications, Water Resources 

Research, 2012, 48(4). 

85. (P) Solari, Giovanni, et al. The wind forecast for safety management of port areas. Elsevier, 

Journal of Wind Engineering and Industrial Aerodynamics, 2012, 104-106. 

86. (P) Kataoka, Tomoya, Murray, Cathryn Clarke and Isobe, Atsuhiko. Quantification of marine 

macro-debris abundance around Vancouver Island, Canada, based on archived aerial photographs 

processed by projective transformation. Elsevier, Marine Pollution Bulletin, 2017,  132. 

87. (BK) Buffin-Bélanger, T., Roy, A.G. and Demers, S. Turbulence in River Flows. Book author: 

Shroder, John. Academic Press, Treatise on Geomorphology, 2013, 9. ISBN: 978-0-08-088522-3. 

88. (P) Njenga, Kaguchwa John, Kioko, Kwanza Jackson and Wanjiru, Patricia. Secondary Current and 

Classification of River Channels. Hindawi Publishing Corporation, Applied Mathematics, 2013, 4(1). 

89. (BK) Roberts, Philip J. W. and Webster, Donald R. Turbulent diffusion. Book authors: Hayley H. 

Shen, et al. American Society of Civil Engineers, Environmental Fluid Mechanics: Theories and 

Applications, Reston (USA), 2002. ISBN 978-0-7844-0629-8 (ISBN-13). 

90. Fricker, Paul. Analyzing and Visualizing Flows in Rivers and Lakes with MATLAB. MathWorks. View 

date: 05-2018. https://nl.mathworks.com/company/newsletters/articles/analyzing-and-visualizing-

flows-in-rivers-and-lakes-with-matlab.html. 

91. Where to Fish: Rivers and Streams. Department of Environmental Conservation. View date: 01, 

2018. https://www.dec.ny.gov/outdoor/81401.html. 

92. (P) Ghobadian, R. and Bajestan, M. Shafai. Investigation of Sediment Patterns at River 

Confluence. Asian Network for Scientific Information, Journal of Applied Sciences, 2007, 7(1). 

93. Constantinescu, G. On the influence of coherent structures on flow hydrodynamics, transport and 

mixing at river confluences. International Association for Hydro-Environment Engineering and 

Research (IAHR). Last modification date: 24-01-2018. 

http://iahr.org/Pdf/IPPEN_IAHR_CONSTANTINESCU.pdf. 

94. (BK) Leopold, L.B. A view of the river. Harvard University Press, London, 1994. ISBN 0-674-

93732-5. 

95. (BK) Ji, Zhen-Gang. Hydrodynamics and water quality - Modeling rivers, lakes and estuaries. 

Hoboken, New Jersey : John Wiley & Sons, 2008. p. 479. ISBN 978-0-470-13543-3. 

96. (BK) Hickin, Edward J. River Geomorphology. Wiley, 1995. ISBN: 9780471955313. 

97. (P) Nihei, Yasuo, Shirakawa, Akihiro, Suzuki, Tatsuhiro. Field Measurements of Floating-Litter 

Transport in a Large River under Flooding Conditions and its relation to DO Environments in an Inner 

Bay. Japan Society of Civil Engineers (JSCE), Journal of JSCE, 2010, 66(1). 

https://power.larc.nasa.gov/documents/SSE_Methodology.pdf


102 
 

98. (P) Krelling, Allan Paul, Souza, Mihael Machado, Williams, Allan Thomas and Turra, Alexander 

Transboundary movement of marine litter in an estuarine gradient: Evaluating sources and sinks using 

hydrodynamic modelling and ground truthing estimates. Elsevier, Marine Pollution Bulletin, 2017, 

119(1). 

99. (P) Malik , Nur Khaliesah Abdul and Manaf, Latifah Abd. Potential recyclable materials derived 

from riverine litter at log boom Sungai Batu in Kuala Lumpur. Springer Japan, Journal of Material 

Cycles and Waste Management, 2018, 20(2). 

100. (P) (I)  Nizzetto, Luca, Bussi, Gianbattista, Futter, Martyn N., Butterfield, Dan and Whitehead, 

Paul G. A theoretical assessment of microplastic transport in river catchments and their retention by 

soils and river sediments. Royal Society of Chemistry, Environmental Science: Processes and Impacts, 

2016, 18(8). 

101. (P) Meesters, J.A.J, et al. Multimedia Modeling of Engineered Nanoparticles with 

SimpleBox4nano: Model Definition and Evaluation. ACS Publications, Environmental Science and 

Technology, 2014, 48(10). 

102. (P) Van Wezel, A., Caris, I. and Kools, S.A.E. Release of primary microplastics from consumer 

products to wastewater in The Netherlands. SETAC, Environmental Toxicology and Chemistry, 2016, 

35(7). 

103. (P) Siegfried, M., Koelmas, A.A., Besseling, E. And Kroeze, C. Export of microplastics from land 

to sea. A modelling approach. Elsevier, Water Research, 2017, 127.  

104. (P) (P) Besseling, Ellen, Quik, Joris T.K., Sun, Muzhi, Koelmans, Albert A. Fate of nano- and 

microplastic in freshwater systems: A modeling study. Elsevier, Environmental Pollution, 2017, 220A. 

105. (P) Kauffeldt, A., Wetterhall, F., Pappenberger, F., Salamon, P., Thielen, J. Technical review of 

large-scale hydrological models for implementation in operational flood forecasting schemes on 

continental level. Elsevier, Environmental Modelling & Software, 2016, 75. 

106. (P) Zhao, Haigen, Yang, Shengtian, Wang, Zhiwei, Zhou, Xu, Luo, Ya, Wu, Linna. Evaluating the 

suitability of TRMM satellite rainfall data for hydrological simulation using a distributed hydrological 

model in the Weihe River catchment in China. Springer, Journal of Geographical Sciences, 2015, 

25(2). 

107. (P) Peng, Fen, Wong, Man Sing, Wan, Yiliang and Nichol, Janet E. Modeling of urban wind 

ventilation using high resolution airborne LiDAR data. Elsevier, Computers, Environment and Urban 

Systems, 2017, 64. 

108. (BK) Martin, James L. and McCutcheon, Steven C. Hydrodynamics and transport for water 

quality modeling. CRC Press LLC (Lewis Publishers), Boca Raton (USA), 1999. ISBN 0-07371-612-4. 

109. (P) Baek, Kyong Oh and Seo, Il Won. Estimation of the transverse dispersion coefficient for two-

dimensional models of mixing in natural streams. Elsevier, Journal of Hydro-environment Research, 

2017, 15. 

110. Snow, Jackie. Googly-Eyed Trash Eaters May Clean a Harbor Near You. National Geographic. 

Publication date: 17-02-2017. https://news.nationalgeographic.com/2017/02/mr-trash-wheels-

professor-trash-wheels-baltimore-harbor-ocean-trash-pickup/ 

111. The Beaufort scale as a tool in risk management. Forbes-Laird Arboricultural Consultancy. Last 

modification date: 01-12-2009. http://www.flac.uk.com/wp-content/uploads/2009/12/The-Beaufort-

Scale-in-Arboriculture.pdf 

112. (P) Lin, N. and Vanmarcke, E. Windborne debris risk analysis - Part I. Introduction and 

methodology. Techno Press, Wind and Structures, 2010, 13(2), pages 191-206. 

https://news.nationalgeographic.com/2017/02/mr-trash-wheels-professor-trash-wheels-baltimore-harbor-ocean-trash-pickup/
https://news.nationalgeographic.com/2017/02/mr-trash-wheels-professor-trash-wheels-baltimore-harbor-ocean-trash-pickup/
http://www.flac.uk.com/wp-content/uploads/2009/12/The-Beaufort-Scale-in-Arboriculture.pdf
http://www.flac.uk.com/wp-content/uploads/2009/12/The-Beaufort-Scale-in-Arboriculture.pdf


103 
 

113. Appendix A: USACE Hurricane Debris Estimating Model. South Dakota Department of Public 

Safety. Last modification date: 02-11-2018. 

https://dps.sd.gov/application/files/1615/0161/4318/Appendix-A-USACE-Hurricane-Debris-Estimating-

Model.pdf 

114. (P) Yang, Y.S., et al. Litter production, seasonal pattern and nutrient return in seven natural 

forests compared with a plantation in southern China. Oxford University Press, Forestry: An 

International Journal of Forest Research, 2005, 78(4), pages 403–415. 

115. (P) Ukonmaanaho, L., Merilä, P., Nöjd, P. and Nieminen, T.M. Litter fall production and nutrient 

return to the forest floor in Scots pine and Norway spruce stands in Finland. Boreal Environment 

Research Publishing Board, Boreal Environment Research, 2008, 13, pages 67-91. 

116. (P) Escobedo, F.J., et al. Hurricane Debris and Damage Assessment for Florida Urban Forests. 

ISA, Arboriculture & Urban Forestry, 2009, 35(2), pages 100-106. 

117. (P) Meiling, C. et al. Performance assessment of spatial interpolation of precipitation for 

hydrological process simulation in the Three Gorges Basin. MDPI, Water, 2017, 9(11). 

118. (P) Keblouti, M., Ouerdachi, L. and Boutaghane, H. Spatial interpolation of annual precipitation 

in Annaba-Algeria - Comparison and evaluation of methods. Elsevier, Energy Procedia, 2012, 18.  

119. (R) Center for Watershed Protection, Inc., KCI Technologies, Inc. and Coastal Resources Inc. 

Upper Jones Falls watershed characterization report. Lake Roland nature council. Publication date: 

2015. https://lakeroland.org/wp-content/uploads/2018/05/Upper-Jones-Falls-SWAP-2.pdf 

120. (R) Sitterson, J. et al. An Overview of Rainfall-Runoff Model Types. Office of research and 

development for the EPA, Athens (USA), 2017. EPA/600/R-14/152. 

121. (BK) DeBarrt, Paul A. Watersheds Processes, Assessment and Management. John Willey and 

Sons, Inc, Hoboken (USA), 2004. ISBN 0-471-26423-7. 

122. (P) Walega, A., et al. Comparison of SCS-CN determination methodologies in a heterogeneous 

catchment. Springer, Journal of Mountain Science, 2015, 12(5). 

123. (P) Mishra, S.K. and Singh, V.P. A relook at NEH‐4 curve number data and antecedent moisture 

condition criteria. John Wiley & Sons Ltd, Hydrological Processes, 2006, 20(13).  

124. (P) Hawkins, R. et al. Runoff curve number method: examination of the initial abstraction ratio. 

ASCE, World Water and Environmental Resources Congress, Philadelphia (US), 2003.  

125. (P) Xiao, B. et al. Application of the SCS-CN Model to Runoff Estimation in a Small Watershed 

with High Spatial Heterogeneity. Elsevier, Pedosphere, 2011, 21(6). 

126. (P) Mishra, S.K., et al. Comparison of AMC-dependent CN-conversion Formulae. Springer, Water 
Resources Management, 2008, 22(10). 

127. (P) Istanbulluoglu, A. et al. Effects of Antecedent Precipitation Index on the Rainfall-Runoff 
Relationship. Agricultural Academy in Bulgaria. Bulgarian Journal of Agricultural Science, 2006, 12. 

128. (R) Neitsch S.L., Arnold J.G., Kiniry J.R., Williams J.R. Soil and water assessment tool (SWAT): 
theoretical documentation, version 2009. Texas Water Resources Institute, College Station (USA), 

2011, TWRI Report TR-191. 

129. (P) Huang, M., et al. A modification to the Soil Conservation Service curve number method for 

steep slopes in the Loess Plateau of China. John Wiley & Sons Ltd, Hydrological Processes, 2006, 
20(3). 

130. (R) Johansson, L. Modelling near ground wind speed in urban environments using high-resolution 

digital surface models and statistical methods. Lund University, Lund (Sweden), 2012. 

https://dps.sd.gov/application/files/1615/0161/4318/Appendix-A-USACE-Hurricane-Debris-Estimating-Model.pdf
https://dps.sd.gov/application/files/1615/0161/4318/Appendix-A-USACE-Hurricane-Debris-Estimating-Model.pdf
https://lakeroland.org/wp-content/uploads/2018/05/Upper-Jones-Falls-SWAP-2.pdf


104 
 

131. (P) Sozzi, R.A., Georgiadis, T. and Favaron, M. Method for Estimation of Surface Roughness and 

Similarity Function of Wind Speed Vertical Profile. AMS, Journal of Applied Meteorology, 1998, 37(5). 

132. Stern, Jake. Rebranding Baltimore: How we see our rivers and streams affects how we treat 

them. B More Urban. Publication date: 09-02-2012. https://bmoreurban.wordpress.com/tag/jones-
falls/ 

133. Climate Baltimore. U.S. climate data. View date: 12-12-2018. 
https://www.usclimatedata.com/climate/baltimore/maryland/united-states/usmd0591 

134. Dance, S. As Baltimore-area rainfall surpasses summer records, meteorologists predict more wet 

weather next week. Baltimore Sun. Publication date: 25-07-2018. 

135. Bowie, L and Richman, T. Wind storm knocks out power in Maryland, closes bridges, topples 

trees; Hogan declares emergency. Baltimore Sun. Publication date: 02-03-2018. 

https://www.baltimoresun.com/news/weather/weather-blog/bs-md-high-winds-march-20180228-

story.html 

136. (R) Baltimore County Department of Environmental Protection and Sustainability. Northeastern 

Jones Falls Small Watershed Action Plan, Volume 2: Appendices D&E. Lake Roland nature council. 

Publication date: 2012. https://lakeroland.org/wp-content/uploads/2018/05/Northeastern-Jones-Falls-

SWAP-2.pdf 

137. (R) Center for Watershed Protection. Lower Jones Falls Watershed, Small Watershed Action 

Plan. Lake Roland nature council. Publication date: 2008. https://lakeroland.org/wp-

content/uploads/2018/05/Lower-Jones-Falls-SWAP.pdf 

138. Baltimore MD, Change. Weather Underground. View date: 16-12-2018. 

https://www.wunderground.com/weather/us/md/Baltimore 

139. (BK) Bowerman, B.L., O’Connell, R.T. and Koehler, A.B. Forecasting, time series and regression. 

Brooks/Cole, Belmont (USA), 2005. 

140. (BK) Martinich, J.S. Production and operations management. John Wiley & Sons, Inc., New York, 

1997. 

141. (P) Willmott, C. J. and Matsuura, K. Advantages of the Mean Absolute Error (MAE) over the Root 
Mean Square Error (RMSE) in Assessing Average Model Performance. Inter-Research, Climate Research, 

2005, 30(1). 

142. (P) W.C. Davidon. Variable metric method for minimization. SIAM Journal on Optimization, 1991, 

1–17. 

143. (BK) Yang, Xin-She. Nature-Inspired Metaheuristic algorithms. Luniver Press, 2010. ISBN-10: 1-

905986-28-9. 

144. (BK) Hendriks, Th. H. B. Decision Science: Theory and Applications. Wageningen Academic 
Publishers, 2007. ISBN: 9789086860012. 

145. (P) Xinchao, Zhao. Simulated annealing algorithm with adaptive neighborhood. Applied Soft 
Computing, 2011, 11(2). 

146. WasteShark™. RANMARINE Technology. View date: 06-2017. 
https://www.ranmarine.io/aquadrone-wasteshark. 

147. (P) Bennett-Martin, Paulita, Visaggi, Christy C. and Hawthorne, Timothy L. Mapping marine 

debris across coastal communities in Belize: developing a baseline for understanding the distribution 

of litter on beaches using geographic information systems. Springer Nature, Environmental Monitoring 

and Assessment, 2016, 188(10). 

148. (P) H.Mace, Thomas. At-sea detection of marine debris: Overview of technologies, processes, 

issues, and options. Elsevier, 2012, Marine Pollution Bulletin, 65(1). 

https://bmoreurban.wordpress.com/tag/jones-falls/
https://bmoreurban.wordpress.com/tag/jones-falls/
https://www.usclimatedata.com/climate/baltimore/maryland/united-states/usmd0591
https://www.baltimoresun.com/news/weather/weather-blog/bs-md-high-winds-march-20180228-story.html
https://www.baltimoresun.com/news/weather/weather-blog/bs-md-high-winds-march-20180228-story.html
https://lakeroland.org/wp-content/uploads/2018/05/Northeastern-Jones-Falls-SWAP-2.pdf
https://lakeroland.org/wp-content/uploads/2018/05/Northeastern-Jones-Falls-SWAP-2.pdf
https://lakeroland.org/wp-content/uploads/2018/05/Lower-Jones-Falls-SWAP.pdf
https://lakeroland.org/wp-content/uploads/2018/05/Lower-Jones-Falls-SWAP.pdf
https://www.wunderground.com/weather/us/md/Baltimore
https://www.ranmarine.io/aquadrone-wasteshark


105 
 

149. (P) P. Garaba, Shungudzemwoyo and M.Dierssen, Heidi. An airborne remote sensing case study 

of synthetic hydrocarbon detection using short wave infrared absorption features identified from 

marine-harvested macro- and microplastics. Elsevier, 2018, Remote Sensing of Environment, 205. 

150. (P) S.Veenstra, Timothy and H.Churnside, James. Airborne sensors for detecting large marine 

debris at sea. Elsevier, Marine Pollution Bulletin, 2012, 65(1). 

151. (BK) Fernando, Harindra Joseph. Handbook of Environmental Fluid Dynamics, Volume One: 

Overview and Fundamentals. CRC Press LLC (Lewis Publishers), Boca Raton(USA), 2013. ISBN 978-1-

4398-1669-1. 

152. (P) Thoe, W., Chan, S.N. and Lee, J.H.W. Daily prediction of marine beach water quality in Hong 

Kong. Elsevier, 2012, Journal of Hydro-environment Research, 6(3). 

153. (P) Kako, Shin’ichiro, Isobe, Atsuhiko, Kataoka, Tomoya and Hinata, Hirofumi. A decadal 

prediction of the quantity of plastic marine debris littered on beaches of the East Asian marginal seas. 

Elsevier, Marine Pollution Bulletin, 2014, 81(1). 

154. (R) International Maritime Organization. Marine litter in wastes dumped at sea. International 

Maritime Organization, London, 2016. 

155. Driftwood service. Port of London Authority. View date: 04-2017. http://www.pla.co.uk/About-

Us/Driftwood-Service. 

156. Wilschut, Marianne. Nu ook de plastic soep te lijf in rivieren met uitvinding van student uit Delft. 

TROUW. Publication date: 28-06-2017. View date: 28-06-2017. https://www.trouw.nl/groen/nu-ook-

de-plastic-soep-te-lijf-in-rivieren-met-uitvinding-van-student-uit-delft~a508a243/. 

157. Zwerfvuil uit de rivier: Het CTU systeem. View date: 03-2018. 

http://www.skinternational.nl/producten/zwerfvuil-uit-de-rivier.html. 

158. The Great Bubble Barrier. View date: 01-2018. http://thegreatbubblebarrier.com/en/. 

159. Klein, Alice. Ocean-cleaning sea bins will gobble up plastic waste to recycle. New Scientist. 

Publication date: 29-07-2016. https://www.newscientist.com/article/2099339-ocean-cleaning-sea-

bins-will-gobble-up-plastic-waste-to-recycle/. 

160. TrashCat™ Model #MS16-12000B. MUD CAT. View date: 04-2017. 

http://www.mudcatdredge.com/trashcat-model-ms16-12000b/. 

161. Mk. 2 / Mk. 3 Water Witch Workboats. Water Witch Waterway maintenance solutions. Last 

modification date image: 20-10-2017. http://waterwitch.com/en/products/waterwitch/  

162. Waste Shark: this 'shark' eats plastic. Port of Rotterdam. Publication date: 07-07-2016. 

https://www.portofrotterdam.com/en/news-and-press-releases/waste-shark-this-shark-eats-plastic 

163. SEAVAX™ - ROBOTIC VACUUM SHIP. Bluebird Electric. View date: 04-2017. 

http://www.bluebird-electric.net/oceanography/ 

Ocean_Plastic_International_Rescue/SeaVax_Ocean_Clean_Up_Robot_Drone_Ship_Sea_Vacuum.htm. 

164. Bluebird Marine Systems. View date: 04-2017. http://www.bluebird-electric.net/. 

165. Micu, Alexandru. Rotterdam’s new sharks will eat all the trash in the port’s waters. ZME Science. 

Publication date: 09-09-2016. http://www.zmescience.com/ecology/pollution-ecology/waste-sharks-

61016/. 

166. Reubold, Todd. 8 maps show plastic’s impact on the world’s oceans — and what’s being done 

about it. ENSIA. Publication date: 15-08-2016. https://ensia.com/photos/plastics-impact-worlds-

oceans-outlined-8-maps/. 

http://www.zmescience.com/ecology/pollution-ecology/waste-sharks-61016/
http://www.zmescience.com/ecology/pollution-ecology/waste-sharks-61016/


106 
 

167. (R) European Commission. GREEN PAPER: On a European Strategy on Plastic Waste in the 

Environment. European Commission, Brussels, 2013. 

168. (P) Di-Méglio, Nathalie and Campana, Ilaria. French coast: Composition, density, distribution and 

overlap with cetacean range. Elsevier, Marine Pollution Bulletin, 2017, 118(1-2). 

169. (P) Moore, C.J., Lattin, G.L. and Zellers, A.F. Quantity and type of plastic debris flowing from two 

urban rivers to coastal waters and beaches of Southern California. UNIVALI (Universidade do Vale do 

Itajai), Journal of integrated coastal zone managment, 2011, 11(1). 

170. (P) Gasperi, Johnny, Dris, Rachid, Bonin, Tiffany, Rocher, Vincent and Tassin, Bruno. 

Assessment of floating plastic debris in surface water along the Seine River. Elsevier, Environmental 

Pollution, 2014, 195(Pages 163-166). 

171. (R) Ten Brink, P., Schweitzer, J.P. Watkins, E. and Howe, M. Plastics Marine Litter and the 

Circular Economy. Institute for European Environmental Policy (IEEP), Brussels, 2016. 

172. (BK) Galgani, François, Maes, Thomas and Hanke, Georg. Global Distribution, Composition and 

Abundance of Marine Litter. Book authors: Bergmann, M., Gutow, L., and Klages, M. Springer 

International Publishing, Marine Anthropogenic Litter, 2015, Pages 29-56. ISBN 978-3-319-16509-7 

(Print). 

173. (R) Werner, S., et al. Harm caused by Marine Litter. Publications Office of the European Union, 

Luxemburg, 2016. EUR 28317 EN. ISBN 978-92-79-64534-1 (Print). 

174. (P) Critchell, Kay and Lambrechts, Jonathan. Modelling accumulation of marine plastics in the 

coastal zone; what are the dominant physical processes? Elsevier, Estuarine, Coastal and Shelf 

Science, 2016, 171. 

175. (P) Schuyler, Q.A., Wilcox, C., Townsend, K.A., Wedemeyer-Strombel, K.R., Balazs, G., van 

Sebille, E. and Hardesty, B.D. Risk analysis reveals global hotspots for marine debris ingestion by sea 

turtles. Wiley-Blackwell, Global Change Biology, 2015, 22(2). 

176. (P) Rochman, Chelsea M., Hoh, Eunha, Hentschel, Brian T. and Kaye, Shawn. Long-Term Field 

Measurement of Sorption of Organic Contaminants to Five Types of Plastic Pellets: Implications for 

Plastic Marine Debris. ACS Publications, Environmental Science and Technology, 2013, 47(3).  

177. (P) Engler, Richard E. The Complex Interaction between Marine Debris and Toxic Chemicals in 

the Ocean. ACS Publications, Environmental Science and Technology, 2012, 46(22). 

178. (P) Teuten, Emma L., et al.Transport and release of chemicals from plastics to the environment 

and to wildlife. The Royal Society Publishing, 2009, 364(1526). 

179. (R) Wienhoven, Manfred, Flier, Marius van der and Groeningen, Maarten van. Cleaning Costs 

Marine Strategy Framework Directive: Damage from marine litter to nets and screws. ECORYS, 

Rotterdam, 2012. 

180. (P) Krelling, A.P., Williams, A.T. and Turra, Al. Differences in perception and reaction of tourist 

groups to beach marine debris that can influence a loss of tourism revenue in coastal areas. Elsevier, 

Marine Policy, 2017, 85. 

181. (P) Bertram, Christine; Dworak, Thomas, Görlitz, Stefan, Interwies, Eduard and Rehdanz, Katrin. 

Cost benefit analysis in the context of the EU Marine Strategy Framework Directive: The case of 

Germany. Elsevier, Marine Policy, 2014, 43. 

182. (R) Lord, Rick. Plastics and Sustainability: A Valuation of Environmental Benefits, Costs. Trucost, 

2016. 



107 
 

183. (P) Gilardi, Kirsten V.K., Carlson-Bremer, Daphne, June, Jeffrey A., Antonelis, Kyle, Broadhurst, 

Ginny and Cowan, Tom. Marine species mortality in derelict fishing nets in Puget Sound, WA and the 

cost/benefits of derelict net removal. Elsevier, Marine Pollution Bulletin, 2009, 60(3). 

184. (R) Secretariat of the Convention on Biological Diversity and the Scientific and Technical 
Advisory Panel—GEF. Impacts of Marine Debris on Biodiversity: Current Status and Potential Solutions. 

Secretariat of the Convention on Biological Diversity, Montreal, 2012, ISBN 92-9225-444-8. 
 

185. (P) van Franeker, Jan A., et al. Monitoring plastic ingestion by the northern fulmar Fulmarus 

glacialis in the North Sea. Elsevier, Environmental Pollution, 2011, 159(10).  

186. (P) Jahnke, Annika, et al. Reducing Uncertainty and Confronting Ignorance about the Possible 

Impacts of Weathering Plastic in the Marine Environment. ACS publications, Environmental Science 

and Technology, 2017, 4(3). 

187. (P) Wilcox, Chris, Mallos, Nicholas J., Leonard, George H., Rodriguez, Alba and Hardesty, Britta 

Denise. Using expert elicitation to estimate the impacts of plastic pollution on marine wildlife. Elsevier, 

Marine Policy, 2016, 65.  

188. Bacic, Ryan. With unhealthy stream pollution, Jones Falls targeted for restoration and 

maintenance projects. The Baltimore Sun. Publication date: 20-09-2014. 

www.baltimoresun.com/sports/outdoors/bs-sp-outdoors-jones-falls-watershed-restoration-0-

20140920-story.html 

189. (R) Maryland Department of the Environment (MDE). Water Quality Analysis of Eutrophication 

for the Jones Falls Watershed in Baltimore City and Baltimore County, Maryland. MDE, Baltimore (US), 

2009.  

190. Fedkin, Mark V. EME 807: Technologies for Sustainability Systems - 6.1 Understanding water 

cycle. Pennsylvania State University. View date: 08-2017. https://www.e-

education.psu.edu/eme807/node/636. 

191. (BK) Veeke, Hans P.M., Ottjes, Jaap A. and Lodewijks, Gabriël. The Delft Systems Approach. 

Springer, Delft, 2008. ISBN 978-1-84800-176-3. 

192. Williamson, Rhea and Klamut, John. Surface Water Hydrology and Watersheds. University of 

California Division of Agriculture and Natural Resources: Groundwater. Publication date: 09-2001. 

http://groundwater.ucdavis.edu/files/136253.pdf. 

193. Free Baltimore County, Maryland Topo Maps & Elevations. Anyplace America.com. View date: 13-

12-2018. https://www.anyplaceamerica.com/directory/md/baltimore-county-24005/ 

 

  

http://webcache.googleusercontent.com/search?q=cache:tRzB-AT_ZpEJ:www.baltimoresun.com/sports/outdoors/bs-sp-outdoors-jones-falls-watershed-restoration-0-20140920-story.html+&cd=1&hl=nl&ct=clnk&gl=nl&client=firefox-b-ab
http://webcache.googleusercontent.com/search?q=cache:tRzB-AT_ZpEJ:www.baltimoresun.com/sports/outdoors/bs-sp-outdoors-jones-falls-watershed-restoration-0-20140920-story.html+&cd=1&hl=nl&ct=clnk&gl=nl&client=firefox-b-ab
https://www.e-education.psu.edu/eme807/node/636
https://www.e-education.psu.edu/eme807/node/636
https://www.anyplaceamerica.com/directory/md/baltimore-county-24005/


108 
 

Appendices 

Appendix A: Scientific Paper 
 

This appendix contains the scientific paper, a compulsory part of the thesis.  



109 
 

A prediction model for the accumulation of debris in rivers 

Abstract – The accumulation of natural and persistent anthropogenic debris in particular, 

within aquatic ecosystems, brings along a myriad of ramifications. By reducing these debris, 

damage to nautical vessels and harm to marine life can be mitigated. Rivers are an 

important pathway of debris towards coastal harbors, ports and marine ecosystems. To 

contribute to a more effective proactive removal of these debris from rivers, a prediction 

model can be developed, which can identify a temporal distribution of accumulation. This 

paper proposes a new prediction model by identifying a comprehensive set of predictors, 

through which land to river inputs can be predicted. A case study is used to evaluate the 

performance of several model versions, differing in complexity and predictors. 

Index terms – Forecasting, predicting, marine litter, anthropogenic debris 

I.  Introduction 

Within the context of this paper, debris are considered as all undesired synthetic, processed or natural 

items or fragments that are being transported by rivers from land towards the marine ecosystem. Once 

these debris have entered the marine ecosystem, the anthropogenic debris become known as marine 

litter. Rivers are an important pathway for marine litter. Plastics are the most significant category of 

debris, accounting for 50 to 80% of all debris, due to their consumption, floating capabilities and 

persistence. It is estimated that globally 1.14 to 2.41 million tons of plastic is yearly transported from 

land to the marine ecosystems [1]. The rest of the items includes a wide range of mostly low density 

debris, including Styrofoam [2], rubber, glass (bottles), metal (cans), paper, textile, processed wood 

and aluminum-plastic hybrids (chips bags) [3] [4]. A few examples of damage resulting from debris 

contamination in aquatic ecosystems includes fouling of rudders and propellers [5], blockage of intake 

pipes and valves [5], ingestion, suffocation and entanglement of marine life [6] and reduction of 

aesthetic appeal [7].  

A broad range of remedies can be conceived, such as stricter penalization, new regulations/guidelines, 

improved waste disposal, improved storm water treatment, better law enforcement and awareness 

campaigns.  Once discharged in the aquatic environment, removal operations remain the sole option. 

In this case, passive removal devices can be considered, especially for rivers without nautical traffic. 

Finally, active removal of debris can be attempted. Multiple solution directions can be researched to 

achieve more effective active debris removal operations. These solution directions include vessel routing 

[8], modelling spatial distribution [9], mapping debris presence using historic data [10] [11], 

autonomous debris recognition and removal [12] [13] [14] and the prediction of debris accumulation 

[15] [16]. The latest development in debris accumulation prediction modelling is currently the most 

sophisticated spatio-temporally explicit attempt and focuses on detailed precipitation induced surface 

runoff modelling [16]. Nonetheless, despite being detailed in the approach of modelling one particular 

factor, it is not comprehensive in terms of predictors. The objective of the research in this paper is the 
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development of a more comprehensive prediction model for the accumulation of debris from rivers 

which means expanding the set of predictors used by the model. This research aims to identify these 

predictors, explore existing modelling approaches and test the performance of several versions of the 

prediction model developed in this study. 

The paper is structured as follows. A literature review, discussing literature related to predictors and 

modelling approaches, is presented in section II. In section III, a model is developed and model versions 

are presented. In section IV the models are validated using a case study and performance levels are 

compared. Conclusions and recommendations are presented in section V. 

II. Literature review 

A. Predictors for land to river inputs 

Predictors can be categorized according to their impact on the temporal distribution of debris 

accumulation. Firstly, the rate of change caused by a predictor, i.e. the derivative as a function of time. 

Secondly, whether the induced impact is temporary/cyclic or permanent. Predictors may have a large 

synergetic effect. 

The main predictor for land to river inputs is precipitation induced surface runoff, as proven by many 

studies [17] [18] [19]. Surface runoff is related to the duration of rainfall event, the intensity of an 

event, slope, land use and soil (state). The duration influences the chance of debris to be displaced 

from their initial location to the storm drains/rivers. It also increases the chance of soil saturation, which 

reduces the ability for a soil to absorb the water, hence causing more overland flow. High intensity 

rainfall can quickly saturate the top layer of the soil [20] and may induce crust formation which 

decreases the permeability of the top soil [21]. A major factor can also be the distribution of antecedent 

dry days (ADD). Dry periods in between precipitation events give time for debris to build up in between 

these events, giving rise to a so called ‘first flush’. This phenomenon was registered in several studies 

[22] [23] [24] [25]. Waste management is a crucial factor [18] [26]. Waste management includes 

availability and capacity of waste bins, frequency of waste collection, landfill quality, recycling and 

incineration rate, frequency of street sweeping and sewage treatment. For areas with more pronounced 

wind events, wind can become a relevant factor, especially during periods of minor precipitation [19].  

Unfortunately few research has been performed on this. This is also true for other predictors which have 

less impact. Several predictors have been conceived as having potential impact: public mentality, 

legislation, large events, temperature, tourism and urban development. 

B. Factors for river propagation of debris 

River propagation is strongly correlated to river discharge [27] [28], which is generally correlated to 

local precipitation [29]. Discharge controls water velocity and water level. Other factors including 

vegetation levels, riverbank slopes and fluvial geo-/anthropogenic morphology. Debris might be trapped 

for long times at so called hotspots [30]. Lateral displacement of debris is further influenced by wind, 
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input location and hydrodynamic events like watercourse obstacles, confluence of tributaries and river 

bends. 

C. Land to river inputs, modelling approaches 

Existing debris accumulation estimation and prediction models have been evaluated, including those for 

micro particles. Many of these models are either steady state, account for a subset of sources, account 

only for a subset of the factors or are not spatially detailed [8] [9] [31] [32] [33] [34] [35] [36] [36]. 

The most promising models are Wan et al. (2018) [16] and Armitage et al. (1998) [31]. Wan et al. 

(2018) does however not consider other factors other than precipitation and estimates of daily 

generated debris. Waste management is incorporated by calibration of a parameter. It succeeded 

however in achieving a decent model performance. Armitage et al. (1998) is not a prediction model but 

an estimation model and is therefore steady state. It however includes street sweeping explicitly and 

ADD. Neither of those models include any of the other suggested predictors as these models, most likely 

because these predictors are not relevant to the location these models apply to.  

D. River propagation of debris, modelling approaches 

Existing macro debris propagation models are rare. Spatio-temporally explicit propagation models are 

either empirical stochastic models, numerical or analytical models [8] [9] [32] [37] [38] [39]. The focus 

of the numerical and analytical macro debris models however is mostly on specific areas (ports). 

Numerical modelling of large river stretches would also be impractical.  The empirical model is not 

suitable since a more mechanistic model is desired in order to make a model more generic. Propagation 

models for micro debris are not suitable due to large difference in processes involved. 

III. Development of a prediction model  

A. Model design 

Modelling propagation was abandoned as obtaining empirical data required to calibrate a model was 

not feasible.  Instead, the model of Wan et al. (2018) was augmented with the missing factors from 

Armitage et al. (1998). The calculation of the quantity of anthropogenic debris available for day t is 

obtained as follows:  

𝑚𝐷,𝐴(𝑡) = 𝑚𝐴𝐷,𝐺(𝑡) + 𝑚𝐷,𝐴(𝑡 − 1) − 𝑚𝐷,𝑃(𝑡 − 1) − 𝑚𝐷,𝑊(𝑡 − 1) − 𝑚𝐷,𝑅(𝑡 − 1)    (1) 

Using the available quantity of debris after the previous day 𝑚𝐷,𝐴(𝑡 − 1), it is feasible to represent 

antecedent dry days. An overview of variables and parameters with description can be found in table 1. 
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Table 1. Description of variables and parameters used in equation 1. 

Name Description Unit 

𝒎𝑨𝑫,𝑮 Quantity of anthropogenic debris generated on land [m3], [kg] or [#debris] 

𝒎𝑫,𝑨 Debris available for land to water inputs [m3], [kg] or [#debris] 

𝒎𝑫,𝑷 Land debris removed by surface runoff from precipitation [m3], [kg] or [#debris] 

𝒎𝑫,𝑹 Daily quantity of debris removed, e.g. by sweeping  [m3], [kg] or [#debris] 

𝒎𝑫,𝑾 Land debris removed by surface runoff from wind [m3], [kg] or [#debris] 

 

This formula accounts for antecedent dry days by including historic surface runoff from rainfall. Wind 

runoff and sweeping has also been included. The calculation of debris inputs from wind is described in 

6.2.7, whereas the calculation of rainfall from surface runoff is described in 6.2.5 and 6.2.6 respectively. 

Data on sweeping quantities and sweeping schedules has to be provided by local authorities so it can 

estimate how much and when litter is removed from the streets.  This process is visualized in figure 1. 

 

Figure 1. Flow model to determine land debris available for land to water transport at time t. 

Similar to Wan et al. (2018), the quantity of rainfall induced land to river debris is calculated as follows:  

𝑚𝐷,𝑃 = 𝑘𝑝(𝑄 − 𝑄𝑏) ∙ ∆𝑡    (2) 

Note that this formula, in contrast to Wan et al. (2018), does not sum over the number outlets. Instead, 

the land to river input will be calculated separately for each outlet first as the location of the outlet is 

relevant for the river transport model. An outlet is equal to the smallest HRU used. This can be a river 

section in a specific sub watershed. Inputs are then averaged over the river section. An overview of 

variables and parameters with description can be found in table 2. 

Table 2. Description of variables and parameters used in equation 2. 

 Description Unit 

𝒌𝒑 Coefficient which relates surface runoff to debris inputs [m3/m3], [kg/m3] or [#debris/m3] 

𝑸 Surface runoff over the smallest HRU/drainage area 

used 

[m3/day] 

𝑸𝒃 Surface runoff threshold value [m3/day] 

 

The quantity of debris blown from land could be modelled using a quadratic relation with the wind speed, 

Land debris available for land to water 

transport  at time t

Land debris available for land to water 

transport at time t-1

Land debris removed by surface 
runoff (rainfall)

Removed by street cleaning

Generated anthropogenic debris, 
including wind generated debris

Land debris removed by surface 
runoff (wind)
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due to the quadratic relation between wind speed and wind force. In addition, the quantity is increasing 

with the duration of the wind force since a longer duration means more chance for debris to reach the 

river. For discrete measurements, the estimated quantity of debris from a single event would look as 

follows, with 𝑖 being a measurement: 

𝑚𝐷,𝑊 = 𝑘𝑤 ∙∑(𝑉𝑖
2 − 𝑉0

2) ∙ 𝑡𝑤,𝑖
𝑖

   (3) 

An overview of variables and parameters with description can be found in table 3. 

Table 3. Description of variables and parameters used in equation 3. 

 Description Unit 

𝒌𝒘 Coefficient which relates wind speed and duration to debris inputs [kg · s/m2] 

𝒕𝒘,𝒊 Time in between measurements [s] 

𝑽𝒊 Wind speed for measurement 𝑖 [m/s] 

𝑽𝟎 Threshold wind speed for wind generated debris [m/s] 

 

The quantity of debris inputs is calculated as follows:  

𝑚𝐷,𝐼 = {
𝑚𝐷,𝑊 +𝑚𝐷,𝑃                𝑚𝐷,𝑊 +𝑚𝐷,𝑃 < 𝑚𝐷,𝐴

  𝑚𝐷,𝐴                              𝑚𝐷,𝑊 +𝑚𝐷,𝑃  ≥ 𝑚𝐷,𝐴
    (4) 

An overview of variables and parameters with description can be found in table 4. 

Table 4. Description of variables and parameters used in equation 4. 

 Description Unit 

𝒎𝑫,𝑰 Quantity of land to river inputs [m3], [kg] or [#debris] 

  

The above formulas need to be applied for all sub watersheds. Once these inputs have been calculated 

for all sub watersheds, all inputs can be summed to obtain the quantity of daily accumulated debris. 

B. Model versions 

Various versions of the river input model are tested in order to check the added value of the numerous 

additions which add to model complexity. The base case is the simplest model, a model which merely 

accounts for rainfall, without taking surface runoff, street sweeping, antecedent rainfall and wind into 

account. The second case includes surface runoff calculations and is similar to the approach from Wan 

et al. (2018) [73]. The third case will introduce antecedent rainfall and antecedent removal of debris. 

The last case will introduce wind. These variations of the model will be tested in this order. For model 

M3 and M4, the best one out of the previous two and three models respectively is used to build upon. 

An overview is shown in table 5. 
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Table 5. Overview of model variations used in experimental plan. 

Description model variation and main assumptions Model  version 

Precipitation only.  𝒎𝑰 = 𝒎𝑫,𝑷 = 𝒌𝒑(𝑷 − 𝑷𝒃)∆𝒕. Main assumptions: rainfall is by 

far the dominant factor. Wind, antecedent removed debris, street sweeping 

and land use and soil data have limited influence. 

M1 

Surface runoff from rainfall only.  𝒎𝑰 = 𝒎𝑫,𝑷 = 𝒌𝒑(𝑸 − 𝑸𝒃)∆𝒕. Approach used by 

Wan et al (2018) [73]. Main assumptions: rainfall is by far the dominant factor. 

Wind, antecedent removed debris and street sweeping have limited influence. 

M2 

The complete model excluding wind. If better performance is generated with 

precipitation only, detailed surface runoff modelling will be ignored. Main 

assumption: Wind has negligible influence. 

M3 

Wind included. Depending on the performance of the previous four experiments, 

the best will be used in E4. 

M4 

  

In order to better assess the overall model performance of these models, a ‘clueless’ prediction model 

has been added during validation. This average based prediction model (ABPM) simply uses the daily 

average of the training set and predicts daily quantities of accumulation based on this daily average. 

Each of the models above should at least perform better than this model.  

IV. Model validation  

A. Case study 

In order to train and validate the model, the model will be 

applied to a case study. A dataset of debris accumulation 

large enough and sufficient in quality is hard to obtain but 

fortunately The Waterfront Partnership of Baltimore, the 

agency responsible for the Baltimore Harbor Wheel, a 

passive debris removal system in Baltimore, is providing 

debris accumulation data which should be both 

qualitatively and quantitatively sufficient to train and 

validate the model [40]. Data has been recorded since May 

2014. The date at which a certain quantity of debris has 

been accumulated is included in the data. This threshold is 

small enough and the timespan over which data has been 

collected is large enough to allow for training and validation. Moreover, the accumulation of debris, at 

an average of 565kg per, is large enough to be useful. Figure 2 shows the Jones Falls watershed (JFW) 

and the location of the debris removal system. The watershed can be described as having a relatively 

Figure 2. The Baltimore Harbor Wheel and 
the Jones Falls Watershed [41]. 
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flat surface topography, with height differences of at most 100 meters, and is covered mostly by urban 

area and forest. Four sub watersheds can be identified.  

The availability of certain data forces unfortunately several adjustments to the model. First, since natural 

and anthropogenic debris are lumped together in the weight measurements, therefore quantities of 

several debris categories are used instead. These categories are; plastic bottles, polystyrene, grocery 

bags and chips bags. The quantity of generated debris is calibrated. A benefit is that this offers the 

opportunity to better adjust this value to this specific area. Since the street cleaning schedule is too 

complex to include, it will be lumped together with the quantity of generated debris. Moreover, detailed 

data on soil composition and ground cover is not available, at least not in a format through which it can 

be readily implemented within a tractable timeframe. Hence, a formula is adopted which assumes a 

specific soil type is distributed over each soil cover according to its fraction in the total soil composition. 

The processing of weather is a tradeoff between model complexity and model accuracy. In order to 

reduce model complexity, daily rainfall measurements 

and the square of daily wind measurements are 

summed for each day. Hence, specific weather events 

are not considered. Weather data is obtained from 

‘weather underground’’ [42]. Historic data is only 

available for weather stations located on the three 

airports surrounding Baltimore, namely Carroll 

Country Regional Airport, Martin State Airport and 

Baltimore/Washington International Thurgood 

Marshall Airport. A map is shown in figure 3. The 

weather data from each of these stations will be 

interpolated for the various sub watersheds using 

inverse distance weighted Interpolation. 

B. Experimental plan 

The implementation of the model is performed in MATLAB version R 2014a, running on a HP EliteBook 

8570w, with an Intel® core™ i7-3630QM 2.4 GHz processer and 8GB DDR3 PC3-10600 SDRAM memory. 

The operating system is Windows 7, 64 bit. The model versions are first calibrated using a greedy search 

method (GSM) and simulated annealing.  Since simulated annealing achieved comparable results as the 

GSM after calibrating M1, subsequent models were calibrated using GSM only. After calibrating the 

model parameters and validating the model, a sensitivity analysis is applied to all model parameters. 

Figure 3. Overview of the three sets of sub 
watersheds and weather stations. 
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 C. Results 

The training results are shown below in table 6, with the population ratio 𝑃𝑜𝑝𝑟 equal to the population 

of sub watershed k divided by the total population of all sub watersheds: 

𝑃𝑜𝑝𝑟 =
𝑃𝑜𝑝(𝑘)

𝑠𝑢𝑚(𝑃𝑜𝑝)
    (5) 

Below the calibrated values, the model performance can be found, represented by the MAD (mean 

average deviation) and MRE (mean relative error). Based on the values of M1 and M2, the M2 method 

of calculating the relation between rainfall debris inputs has been adopted for the subsequent two 

models. It should be noted however that the difference in performance is small. In the same way, based 

on the values between M2 and M3, the M2 method of calculating the quantity of available debris, has 

been adopted for M4. The validation results are summarized in table 7. 

Table 6. Calibration results: values of the calibrated parameters and model performance. 

 M1(GSM) M1(SA) M2(GSM) M3(GSM) M4(GSM) 

𝒌𝒑 [#debris/mm/day] 0.06 0.0209 n/a n/a n/a 

𝒌𝒑 [#debris/m3/day] n/a n/a >=1 3.4E-05 0.002 

𝑷𝒃 [mm] 1.5 1.2 n/a n/a n/a 

𝑸𝒃 n/a n/a 0.01 0 0.012 

𝒌𝒘 [#debris · s/m2] n/a n/a n/a n/a 9E-06 

𝑽𝟎 [m/s] n/a n/a n/a n/a 0 

𝑴𝒂𝒅𝒈 [#debris] 𝑃𝑜𝑝𝑟 ∙ 5598 𝑃𝑜𝑝𝑟 ∙ 5661 𝑃𝑜𝑝𝑟 ∙ 5822 𝑃𝑜𝑝𝑟 ∙ 812 𝑃𝑜𝑝𝑟 ∙ 5766 

MAD [# debris] 6834 6820 6664 7360 6644 

MRE 0.61 0.6 0.59 0.65 0.59 

 

Table 7. Validation results: model performance. 

 M1(GSM) M1(SA) M2(GSM) M3(GSM) M4(GSM) ABPM 

ME -1107 -1237 -1600 -4921 -2154 858 

MAD 8997 8932 8509 9853 8278 11130 

MRE 0.73 0.72 0.69 0.8 0.67 0.9 

 

Though all models scored better than the baseline ABPM model, they scored much worse than Wan et 

al. 2018), which scored between 0.14 and 0.22 for various sub watersheds. Based on the results it could 

be concluded that wind did not have any influence which can largely be contributed to the lack of wind 

in the case study area during the studied period. It is likely that weather inaccuracies may have 

decreased model performance significantly, as the precipitation from the weather stations was 

moderately correlated. Nonetheless, model assumptions and simplifications may also have had a 
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considerably impact on model performance. These assumptions include simplifications in surface runoff 

modelling and averaging precipitation data over each day instead of considering precipitation events. 

The latter would better represent rainfall intensity. Finally, the quality and interpretation of the 

accumulation data used for calibration and validation may have prevented good results. 

V. Conclusions and recommendations 

Four versions of the model were tested. The first version directly linked precipitation to river inputs, 

ignoring surface runoff. The second included lumped surface runoff calculations. The third was based 

on the second but included ADD and historic inputs and the fourth included wind. While Wan et al. 

(2018) obtained MRE values between 0.14 and 0.22, the model versions tested in this report obtained 

a MRE of 0.67 to 0.8. A prediction model which simply uses historic daily average without any predictors, 

ranked lower however with a MRE of 0.9. Despite the relatively poor performance obtained by all 

versions of the proposed prediction model, the simplest model, which directly linked precipitation to 

debris inputs, managed to achieve a MRE of 0.73. This is considerably higher than a model which 

assumes steady state accumulation and this model would hence offer an opportunity for more effective 

debris removal. Accurate precipitation data is however crucial. As such one can expect a MRE < 0.73 

with more accurate weather data. While Wan et al. (2018) achieved a MRE of 0.14 on a specific sub 

watershed, such a model would require complex surface runoff modelling.  

Several research recommendations can be proposed. Currently debris surface runoff from wind has not 

been well studied, especially for wind speeds below hurricane speed. While wind is generally not 

considered the main predictor for debris accumulation, it may be relevant in certain areas. One could 

study the effect of wind for different debris on different soils. More empirical data should be gathered 

on the movement of debris in rivers. If more empirical data becomes available it becomes possible to 

build a database of different types of river section.  Ideally, even a propagation model is built and tested. 

Secondly, the current dataset of accumulation set used for this model was not build with the intention 

of calibrating and validating a prediction model. Ideally, such a dataset should be build. In addition, 

data from relevant weather stations should be stored as weather stations often perform measurements 

but fail to store the data. The area researched in this report, counted dozens of weather stations but 

only a minor part had stored historic data. Using this data, another attempt can be given to test the 

modelling approach in this report. Thirdly, as a lumped surface runoff model was used, better results 

could be achieved using a semi-(distributed) debris surface runoff model, like SWAT. Other areas of 

debris removal could be researched. For instance, debris removal with RGB camera guided autonomous 

vessels is currently being investigated. While it shows promising results, more testing is needed, for 

instance on operating under nocturnal conditions, as debris outflow does not stop at night.  
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Appendix B: solution approaches to enhance debris removal operations 
Since the costs of debris removal may costs an enormous amount of time and effort [45] and debris 

contamination is a major issue as was demonstrated, it is worth investigating debris removal 

performance can be further enhanced. Assuming debris removal is with an active, i.e. non stationary, 

system20 there are multiple ways to achieve this, which will be explored in this section. Human controlled 

vessels would likely benefit most from this solution due to the labor costs involved although it would 

certainly also benefit operations with autonomous vessels. An overview of existing methods of debris 

removal can be found in appendix B. Subsection B.1 will present overview of the conceivable solution 

approaches using system representation. Subsections B.2, B.3 and B.4 will subsequently elaborate on 

each of these approaches. 

B.1. Debris removal as a system: different solution approaches 
To understand the different solution approaches it is helpful to represent debris removal as a system, 

as shown in figure 52. The disturbances to the system are the accumulation of debris, wind and flow 

rate, whereas the inputs are the routing and scheduling of the sweeping vessel. The outputs at time t 

are the outflow 𝑂(𝑡) of debris towards the marine ecosystem and the debris accumulated 𝐴(𝑡) inside 

the removal area. As debris outflow and accumulated debris fluctuate over time as debris is 

accumulating and removed, the total outflow of debris and the total debris accumulated can be 

represented as the integral of 𝑂(𝑡) and 𝐴(𝑡). The desired (total) output is in both cases equal to zero. 

The feasible routing and scheduling options depend on the equipment available. 

 

Fig. 52. General system representation (A), System representation of debris removal, open loop system (B). 

Various approaches can now be attempted to improve the performance.  Firstly, buying adequate/better 

equipment or adding equipment. Secondly improving the presence of cleaning in a spatial way, i.e. 

perform cleaning at locations with relatively high presence of litter. This means improving routing and 

smartly schedule the moments cleaning is performed. An example of this, is the study by Tol (2016) 

[23] which analyzed the performance of different routing methods of vessel in a port environment. This 

work focused on the inputs while make assumptions about system behavior.   

One can further enhance performance by improving data quality and data availability w.r.t. spatial and 

temporal distribution. This can be done in multiple ways. Firstly, one can study the behavior of debris 

inside the debris removal area to gain knowledge on the spatial distribution of debris, i.e. study the 

system behavior.  Lammerts (2016) [24] used numerical modelling to investigate the influence of various 

                                                
20 There are two types of debris removal systems: passive and active systems. For more, see appendix B. 
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factors, which included disturbances such as river flow rate and wind, on debris behavior in a port 

environment. This way disturbances like wind and river flow rate fluctuations are measured and input 

(routing) is adapted. The relation between the disturbances and location of debris is inferred from work 

like Lammerts. Secondly, this can be done using historic data or monitoring equipment to improve 

knowledge about the spatial and temporal distribution of debris. Output is used to adapt input at the 

next debris removal attempt, which is depicted in figure 53A on the page. Finally, methods and 

technologies can be deployed which allows short term predictions regarding quantities of debris based 

on what is measured upstream. This is a feedforward approach, depicted in figure 53B, since information 

regarding anticipated accumulation of debris becomes available before debris removal has started. A 

feedforward approach could consist of using debris detection technology in the river, such as RGB 

camera’s or infrared sensors. Alternatively, debris accumulation is not directly measured but linked to 

factors which contribute to the accumulation. Hence, debris accumulation is a latent variable which is 

inferred from other observable variables.  

 

Fig. 53. Improved debris removal system; historic data approach (A) and feedforward approach (B). 

B.2. Using historic data 
Tol (2016) used an educated guess on the debris accumulation. Spatial distribution was modelled using 

zero dimensional hotspots. In reality debris hotspots may indeed exist but will in contrast be more 

spread out. If for instance detailed historic data can be collected on the exact litter quantities and 

locations where debris have been found debris removal can be improved. It is even possible to find 

temporal data patterns which can be linked to factors deemed relevant in the accumulation of debris. 

Ranmarine technology [146] for instance aims to collect data from their autonomous sweeping vessels 

to focus operations at locations where litter has been historically abundant.  

Figure 64 on the next page illustrates how such a hotspot map could be visualized using a geographical 

information system (GIS). Martens and Huntington (2012) [25] investigated whether lobster trap 

removal could be performed more effectively and efficiently using a spatial map of likely debris 

accumulation hotspots. The area surrounded by the blue line shows the cleaning area where red to 

green denotes areas of high to low probability of finding litter. The researchers managed to decrease 
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the search area by 95%. Performing spatial analysis 

using such mappings can hence contribute to 

performance assessments and steer future cleaning 

operations.   

Another illustration of GIS based spatial mapping of 

historic data is Bennet-Martin et al. (2016) [147] who 

visualized litter densities for coastal sites as shown in 

figure 65. In literature, GIS based spatial mappings of 

debris have also been used to link factors like Ekman 

flows and winds to the spatial distribution of debris on 

coastal land. Examples are Kataoka et al. (2017) [86] 

and Moy et al. (2017) [81]. 

There are downsides to this approach however. Using 

historic data is unfortunately not very robust to fast 

fluctuations. Trends and steps in the accumulation to a 

lesser extent, could be adequately dealt with using a moving average or single/double exponential 

smoothing which uses respectively k historic data points and exponentially decreasing weight factors to 

decrease the importance of older values. Temporary peaks in the distribution with a large rate of change 

however, are harder to deal with. As demonstrated in section 2, accumulation may fluctuate in a very 

short span of time, by several magnitudes. Hence, this approach may be useful to detect spatial 

distribution patterns but its contribution towards addressing accumulation, is likely limited. 

The second downside is the required equipment to detect debris quantities. In order to create a GIS 

spatial mapping of debris, each piece of debris must be recognized in situ so it can be linked to a specific 

location. For small debris this may prove challenging.  

B.3. The feedforward approach: Using sensors to monitor debris 
Detection of debris before they accumulate downstream is an attractive solution since it involves a direct 

measurement of the expected flow of debris. The feasibility of this approach depends however on the 

performance of the sensor system.  

Fig. 54. Spatial map visualizing likelihood of 

finding lobster traps. Red to green denotes 

high to low probability of finding traps [25]. 

Fig. 55. Spatial mapping of plastic items in Belize [147]. 
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The performance of such sensor systems on the detection of debris can be assessed based on the 

following performance criteria [148]: 

1. Spatial resolution; 

2. Spectral resolution; 

3. Temporal resolution; 

4. Quality of post processing. 

Spatial resolution refers to area per pixels available. High spatial resolutions means smaller objects can 

be detected. Spatial resolution depends on the equipment but it can also be improved by decreasing 

the distance between the object and the equipment. Spectral resolution refers to the quantity of 

available bandwidths within the electromagnetic spectrum. RGB cameras have three, multispectral has 

more and hyperspectral equipment has the most. A higher spectral resolution means spectral signatures 

can be more easily distinguished from each other, hence undesired objects are easier identified. Even 

specific plastics can be identified [149]. Temporal resolution influences detection rate. It refers to how 

often the desired area to be monitored is covered. This is for instance relevant for sensors which have 

a certain rotation schedule to cover a certain surface. For expensive sensors it is most likely desired to 

scan the surface instead of having more sensors with a fixed angle and position. The quality of the post 

processing and availability of (spectral) databases is also crucial as the algorithm involved should 

translate sensor data into useful information. If machine leaning is used, the quantity and quality of 

training plays are role. Trade-offs may be involved such as between performance and memory 

requirements, energy demand and computational intensity [27]. 

Various technologies can be applied to detect debris. An overview by Veenstra and Churnside (2012) 

[150] can be found in table 33. These sensors can generally be classified into active and passive types. 

Passive sensors merely receive signals whereas active sensors transmit and receive.  Other relevant 

factors, namely size, costs and the existence of debris (Shape/material) data sets for post processing, 

where also considered. 

Table 33. Overview available sensors for sensing of floating debris [150]. 

 Sensor Type Class Relative size Existence data set Cost 

1 RGB video Passive Small Yes Low 

2 RGB (high-res) camera Passive Small Yes Low 

3 Thermal imaging/IR Passive Small Limited Medium 

4 Multispectral imaging Passive Small No Medium 

5 Hyperspectral imaging Passive Large/Medium No High 

6 LIDAR Active Large Yes High 

7 Radar Active Large/Medium No High 

 

Active sensors are attractive since these can be used both at night and under all weather conditions. 

These types of sensors are however expensive and large. Hyperspectral imaging is attractive as it can 
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collect many spectral signatures. Unfortunately it also expensive and impractical.  Thermal imaging has 

benefits for nocturnal operations during which floating debris may be observed. It is questionable 

however how this would work for small surfaces. RGB is limited in functionality but overall cheap and 

practical.  

Literature pertaining the close distance monitoring of floating debris is scarce and has only recently 

been published. Due to the low costs and compact size, RGB is the only technology which has been 

considered so far in this context. Tan et al. (2014) proposed an unmanned surface vehicle (USV) system 

with RGB sensors dedicated to debris observation [26]. To cope with the limited angle of a single camera 

a rotating schedule has been developed to minimize rotating energy while decreasing the chance of 

missing debris, based on arrival probability of said debris. Since it concerns a floating platform able to 

perform long term operations, it was faced with additional challenges which are generally not applicable 

to cameras mounted on fixed structures. Nonetheless, the designers achieved their goal of developing 

an algorithm which successfully identifies many debris.  

Wang et al. (2015) [27] aimed to build and study a monitoring system placed on a buoy. The main 

achievements of this work have been the computationally efficient method of debris detection and the 

energy efficient method of transmission. 

Both algorithms revolved around background subtraction or equivalently foreground extraction. The aim 

is to have the foreground equal all debris captured in the image. This task is complicated by changing 

light reflections in the water which might result in false positives. These reflections can occur for instance 

due to waves or swaying trees [27]. False negatives generally occur due to a large distance between 

object and sensor and/or high color similarity [26]. Results from both papers are presented in figure 56. 

 

Fig. 56 Original image and foreground obtained from experiments using method A [27] and B [26]. 

Both methods perform reasonably well with different debris. For 56A it seems all macros debris can be 

detected (>5mm) however smaller objects, smaller than circa 30mm, are not detected. The foreground 

image in the middle of figure 56A shows some environmental reflections obtained a false detection 
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whereas the foreground image in 56B is larger than the real object, largely due to reflections. It is also 

not clear how performance deteriorates with decreased sunlight, for instance sunset or dawn. 

To be able to monitor fluvial debris, monitoring equipment can mounted on fixed structures like bridges. 

Even if it does not span every part of the river, it can still be relevant under the assumption that the 

observed flow of debris along a partial width of the river is indicative of the flow of debris as a whole. 

More research is however needed. How well does it perform other various circumstances, for instance 

during nocturnal operations. For RGB, the support of lights could for instance be tested under nocturnal 

conditions. 

B.4. The feedforward approach: Using a predictive model 
The third solution is an indirect approach to obtain an estimate of the flow of debris. To achieve this, 

data on the factors driving the accumulation of debris should be obtained. This data can then be fed 

into a model which ten outputs an indication of the debris accumulation which can be expected. The 

underlying assumption behind this approach is that these factors are measured with more ease than 

then the flow of debris floating in the river. Once the data is fed into a probability model, the model 

calculates a number for or a range of values for the predicted flow of debris. The value of the output 

variable can hence be discrete or continuous.  Models can include a numerous modelling techniques 

ranging from relatively simple like decisions trees, fuzzy logic, and a simple set of analytical equations 

to more complex like stochastic discrete modelling, neural networks, numerical modelling other complex 

time stepped dynamic simulation. Depending how the model is built, the output value will be discrete 

or continuous.  

Prediction modelling has been used in various forms in the context of water quality of which solid debris 

contamination is a subset. A daily water quality forecasting system, the WATERMAN system has been 

developed for coastal waters in Hong Kong [151]. With the application of neural networks and linear 

regression the relevant parameters influencing bacterial concentration could be identified, for instance 

antecedent rainfall, hydro dynamical conditions and 

historic concentrations [152]. Simple decision trees could 

be used for predictions, illustrated in figure 57 for the 

likelihood of algae bloom. Long term predictions of ML 

accumulation has been attempted by Kako et al. (2014) 

[153] who estimated future ML beach accumulation 

developments using numerical hydrodynamic modelling 

and particle tracking models (PTM). Modelling approaches 

which have been developed for land to river debris and 

river propagation, are discussed in the section 4. This 

method has also some downsides. There must be a 

sufficiently strong link between the factors contributing to land to river inputs and the accumulation of 

Fig. 57 Decision tree for algae bloom 

likelihood predictions [151]. 
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debris downstream. Moreover, it should be feasible to obtain, for instance though measurements, 

quantitative data on these factors. 

B.5. Appendix B summary 
Three solution approaches were proposed in order to improve the removal of debris better anticipate 

debris accumulation, one feedback approach and two feedforward approaches. The feedback approach 

uses historic data to discover patterns in the spatial distribution of debris. This data can be used to 

locate debris likelihoods on a map. The downside is that this approach is not suitable to anticipate on 

large a fast fluctuations in debris quantity over time. It requires also certain technological advancement 

in debris sensing.  

Two feedforward approaches were considered. The first approach consists of direct detection of debris 

using sensors. RGB cameras are the most likely technology, costs and practicality considered. It is 

however limited in functionality, although the full capabilities have not all been tested yet. It also lacks 

in terms of spatial performance, which means there is a relatively large size threshold for debris to 

become visible.  

In the last feedforward approach a predictive model is considered which enables users to obtain an 

estimate on debris accumulation. This can be achieved by collecting data on, e.g. measuring, factors 

contributing to this accumulation. The success of this approach depends however on the strength of 

the link between these factors and the actual accumulation and whether these factors can be measured 

adequately.  

It is clear all methods have their limits. In order to deal with fluctuations, a feedforward approach can 

certainly bring large benefits. Experience with both feedforward approaches is too limited and research 

too scarce to make solid conclusions on which approach would be the better alternative. It can also be 

argued all three approaches could complemented each other. In this report however the last 

feedforward approach will be explored. 
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Appendix C: Debris Removal equipment and operations 
The cleaning of debris in different environments has become an increasingly applied practice. So far, 

most of the cleaning has been performed in inland waters. Passive and active cleaning methods are 

applied. Passive means use a stationary location where debris are being collected. ML is being supplied 

by the current of the water. Active means use a cleaning vessel which can be moved around, for instance 

after visual observation of ML. Passive systems are mostly suitable for locations with significant currents 

such as rivers and oceanic currents, whereas active systems are often used in more confined areas 

where debris tend to accumulate, such as ports. In general passive systems are used proactively, they 

operate in a continued near uninterrupted manner, whereas active systems are mostly reactive, meaning 

after visual inspection, since operating costs are higher. The latter applies especially to operations which 

have high human involvement. Another way of operating active systems is to clean at predefined 

intervals which is not necessarily reactive but it would make sense to change the cleaning route and 

schedule accordingly to save time and money. It should be noted that ML cleaning systems also exist 

for riverbed/harbor bed litter. These operations only exist as active systems and are often performed in 

litter prone waters (canals) or before dredging operations to clear the waterbed from obstructive litter 

[154]. Tol (2016) [23] provided an overview of some common passive and active ML cleaning systems 

currently in operation however this overview was far from comprehensive and many new systems have 

recently been designed and applied.  

Appendix C.1 discusses a classification of ML systems and Appendix C.2 and C.3 will complement the 

overview of Tol and present actual state of the art concepts and existing technology for passive and 

active systems respectively.  

C.1 Classification of ML removal systems 
Table 34 on the next page shows a classification of passive and active systems based on different levels 

of technical advancement. Note that skimming the water surface with a sieve, illustrated in figure 58, is 

included as mechanized removal to emphasize manual removal does not occur in the specific type of 

operation. 

Fig. 58 skimming the water surface, a simple method of active debris removal. 

Furthermore, it should be clarified that systems with intelligent navigation have the ability to intelligently 

adjust their routes, for instance based on previous collection locations of debris. This geo-localization of 

debris when these are being encountered and collected is called passive tracking. A more advanced 

method applies active tracking or ML detection, i.e. detecting debris from a distance, before they have 

been caught. The most advanced system would then also apply direct identification of debris. 

Inside of cleaning vessel 
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Identification is useful for performance assessment but this is generally not necessary to perform before 

the item has been removed. Both passive and active cleaning can also have onboard sorting facilities 

which is shown in the last column. 

Table 34 Level of technical advancement of different passive and active cleaning systems. 

 Passive cleaning  Active cleaning Sorting facility 

Simple 

 

 

 

 

 

Advanced 

1. No moving 

elements 

2. Moving elements 

(e.g. propelled by 

river current) 

3. Engine powered 

moving elements 

(e.g. with solar 

polar and electric 

motor) 

 

1. Manual onboard navigation, no onboard 

engine, manual removal of ML. 

2. Manual onboard navigation, onboard engine, 

manual removal of ML. 

3. Manual onboard navigation, onboard engine, 

mechanized removal of ML. 

4. Remote controlled navigation (human 

onshore), onboard engine, mechanized removal of 

ML. 

5. Automated navigation (no human involved), 

onboard engine, and mechanized removal of ML. 

6. Automated and intelligent navigation, passive 

tracking, onboard engine, mechanized removal of 

ML. 

7. Automated and intelligent navigation, 

automated debris detection, active tracking, 

onboard engine, mechanized removal of ML. 

8. Automated and intelligent navigation, 

automated debris identification, active tracking, 

onboard engine, mechanized removal of ML.   

1. No Sorting 

2. (Semi-)manual 

sorting of debris 

3. Automated 

sorting of debris 

 

C.2 Passive systems 
Passive systems can be generally put in four categories: no moving elements, with moving elements 

and moving elements powered by an engine. An example of the first and simplest method of passive 

cleaning can be found in the river Thames where the Port of London Authority (PLA) placed stationary, 

passive marine litter collectors at 16 carefully selected locations. These so called ‘Passive driftwood 

collectors (PDCs)’ collect around 400 tons of litter annually in the river Thames [155]. These collectors 

contain no moving elements and are fed by the water current which moves through a sieve.  

An example of a more advanced system is the ‘Inner Harbor Water Wheel’, pictured in figure 59A. This 

single device, installed in Baltimore (USA) around 2014 collected an average of 15.25 tons per month 

over 38 months, i.e. 183 tons per annum [44]. The device has been smartly placed at the exit of the 
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river, just before the river flows into larger waters. Floating barriers extend as arms to guide litter 

towards to collector. The conveyor which transports the ML into a trash bin is actuated by the stream 

of water. Additional power can be provided by solar panels. More information on this inner harbor water 

wheel can be found in appendix F, including a more detailed illustration of the system.  

Another example which works in a similar way is a recent invention from the Netherlands [156]. The 

working principle is explained as follows: The river water powers a waterwheel which drives a gear 

connected to two larger teethed wheels. Each wheels has four vanes which work as scooping platforms 

scooping the debris out of the water. Once a vane has reached an upright/vertical position the debris 

fall into a gutter which drains into two accumulation pools. The water in the pools ensures the survival 

of fish which are to be removed manually. 

A functionally advanced passive system is the ‘CTU system’ from SK international [157]. It is equipped 

with a waste processing system which enables personnel to separate waste and is capable of shredding 

the plastic waste. 

The above systems have the main disadvantage that they obstruct the waterway which can be a 

nuisance to marine traffic or it requires the systems to be deployed at the cost of effectiveness. The 

bubble barrier [158] is a recent invention currently test which aims to solve this problem. It uses a 

screen of bubbles released from an underwater pipe located at the bottom of the river to block ML. By 

placing it an angle the flow of the river naturally guides it towards collection equipment along the 

riverbanks. This working principle is illustrated in figure 59B. The system can cover the complete width 

of the river and does not disturb the marine traffic doing so. 

The above systems all require surface currents to deliver ML which is not the case for the following 

system. The people behind the Seabin Project developed submerged trash bins [159], pictured in figure 

59C, where water and rubbish flow in at the top and a pump removes the water at the bottom so the 

water continues streaming in. The pump can be powered by solar energy for instance. The system can 

be attached to the quay or mooring emplacements at locations prone to see accumulation of ML. The 

working principle enables the user to place it at locations which do not or barely experience naturally 

flowing water like lakes and bays. 

 

Fig. 59. Three passive systems: the Baltimore harbor wheel [44] (A), the bubble barrier [158] (modified) (B) and 

the sea bin project [159] (C). 
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From the first two examples it is clear that even with passive collection methods large quantities of litter 

can be collected. Data provided by the operators from both systems also illustrate and support the 

statement that rivers, as an entry point of marine litter to the oceans and seas, should not be ignored. 

C.3 Active Systems 
Active operations are mostly performed with special purpose designed ships. The advantage is that they 

are less obstructive but they are deemed more costly in operations [23]. Different levels of technologic 

advancement exist for active cleaning. 

The first level is a type of operation where the navigation and the removal of litter requires human 

interference/operation. This is typical for removal operations of non-standardized larger items such as 

shopping carts and bikes. Manual sweeping of smaller items is also possible but would only be a viable 

choice if the operations are occasional and small scale.  

The second level requires special purpose cleaning vessels which are generally larger. Port authorities 

or other parties responsible for cleaning larger waterbodies, like bays, would generally benefit from 

these type of vessels. That way the litter can be scooped out of the water by navigating through the 

litter as illustrated in figure 58 at the start of this section. The system can be as simple as just a hole 

between two sealed hulls through which the litter enters. A little more advanced could be a system 

which uses an automated conveyor to lift the litter and drops it in a bin, as illustrated in figure 60A. 

Another option, illustrated in 60B, is a floating front loader which can also dredge litter further below 

the water surface, carried in the water suspension, or even on the bedload. For the latter the front 

loader needs to be controlled by the navigator.  

Fig. 60 An active cleaning system with automated conveyor [160] (A) and front loader [161] (B). 

The third level is a fully automated system. These type of systems are still state of the art technology. 

Recently (halfway 2016) testing has started to use automated cleaning vessels from RanMarine 

Technology, called WasteShark, in the port of Rotterdam [162] which are able to clean garbage, up to 

500kg or 550 liter in one time for the larger version, by themselves. The drones can navigate either by 

remote control or autonomous (predefined path). One of the large benefits is long operation times (16 

hours per day) and machine learning [146]. If data can be stored on the quantity of litter removed at 

different locations, the litter density over the port surface can be mapped and accumulation spots can 

be better identified for future cleaning operations.  

A B 
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Another novelty in this class of automated systems is SeaVax from Bluebird marine systems, another 

cleaning vessel which should be able to contribute to cleaning oceanic litter [163]. This system also 

aims to recycle recovered plastic. The inventors claim a modified version should be able to operate in 

rivers as well. The vessels are currently in the small scale testing phase and the inventors are looking 

for investors. The aforementioned WasteShark and the SeaVax can be seen in figure 61A and 61B 

respectively. 

The advantage of automated solutions is that they can be deployed more often since costs are much 

cheaper. For inland waters it can be argued that removing the necessity for human operation makes it 

more attractive to deploy smaller vessels (without steering cabin) which are more energy efficient due 

to their size. A fleet of these vessels which are being deployed more often means the chances of marine 

debris escaping to open water or becoming a hinder diminishes. 

 

Fig. 61. Two active automated sweeping solutions, the SeaVax [164] (A) and the WasteShark [165] (B). 

 

C.5. Appendix C summary 

In recent years a range of new designs was released for ML removal systems, spurred by the growing 

awareness concerning ML pollution. Most of these designs are still in the concept or test phase but they 

prove ML removal may radically improve in the next decade. The main directions of improved are sought 

in a larger focus on automation, scaled up deployment and improved methods of removal, which all 

may highly increase removal efforts. Careful site selection remains crucial to make sure the litter streams 

are tackled which are either large or inconvenient with respect to their location.    
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Appendix D: Analysis of debris  
This appendix is a supplement to section 2. It elaborates on the classification of the various 

characteristics of debris. Doing so can help to reduce the scope to those classes relevant in the context 

of this study. Understanding the origins and characteristics is also crucial to understand the pathways 

and transport phenomenon related to them. Moreover, since the interpretation of debris terminology is 

often inconsistent, this section will also clarify the terminology for the rest of the sections. An overview 

of the classifications for debris as discussed in this appendix, can be found in Figure 62 below.  

 

Fig. 62. Debris classification overview. 

The second level, highlighted in bold, describes the main categories used for classification found in 

research papers. Thereunder sub classifications follow which represent a characteristic implied by the 

level above. The red numbers denote the subsection from this appendix in which the corresponding 

category is being described in. Note that different categories falling under ‘material’ are discussed in 

one or more subsections to which it is relevant, with toxicity for instance being discussed in subsection 

D.5. After addressing the classifications, the appendix is finished with a short summary highlighting the 

important points. 

D.1. Type/product and material 
A primary classification of debris is according to type/product and/or material. The product itself and 

the material it is made of are often labeled together as a category, e.g. ‘plastic bottles’ or ‘paper towels’. 

This is the reason these are also grouped together in this subsection. Type/product can be relevant in 

terms of shape. Fishing nets for instance are particularly harmful since they can lead to ‘ghost fishing’, 

when sea animals get trapped inside. Important material characteristics are density, toxicity, (chemical) 

degradability and rate of mechanical fragmentation, i.e. brittleness. Toxicity will be discussed in 

subsection D.5.  
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Object with a significantly higher density than water, such as metal, will immediately sink whereas light 

plastics and wood will float. Hence fluvial transport of floating debris only concerns low density materials. 

The density of various types of marine litter materials are shown in figure 63. US data revealed that 

around half (46%) of the plastic waste was buoyant in 2006 [7].  

 

Fig. 63. Density of various types of marine waste [166]. 

Degradability shows the extent to which a material persist in the environment. Figure 64 highlights a 

range of typical marine litter items and their degradation rate. Among the worst scoring types of waste 

are plastic products. Unfortunately, the majority of all anthropogenic ML added to the environment can 

be classified as plastic [167]. More elaborately: ‘Despite the uncertainty, estimates from around the 

world are reasonably consistent in estimating plastics to comprise approximately 10 per cent of 

municipal waste mass. In contrast, plastics comprise 50–80% of the waste stranded on beaches, floating 

on the ocean surface and on the seabed’ [7]. For this reason many papers focus solely on plastic ML. 

Natural debris have generally a much higher degradation rate than synthetic anthropogenic items. 



135 
 

 

Fig. 64. Marine waste degradability [13]. 

Brittleness is important since it is an indicator for short term fragmentation. Noticeable chemical 

degradation may take decades whereas mechanical fragmentation can go much faster. Weak brittle 

materials, like glass and foam polystyrene, are particularly vulnerable. Foam polystyrene, like Styrofoam, 

is often used for (food)-packaging and insulation and is vulnerable to wind forces due to its low density. 

This is likely the reason it is often found in aquatic environments, for instance in the coastal waters of 

France where about 10% of the items consisted of foam polystyrene [168]. In Southern California foams 

accounted for over 70% of the number of particles surveyed from river accumulation and foamed 

polystyrene accounted for 11% of the total mass [169]. 

D.1.1. Geographical differences 

The geographical differences are major, especially if the ratio between anthropogenic and natural debris 

is considered. Debris collection data from the Tokyo bay reveals that merely 4% (by volume) of all 

debris are from anthropogenic origin as can been seen in figure 8, left. A study in the river seine in Paris 

revealed a comparable number. ‘…vegetal debris was predominant and represented between 92.0% 

and 99.1% of total floating debris by weight.’ ‘Plastic debris represented 0.8–5.1% of total debris by 

weight...’ [170]. Japan and France are developed countries whereas in developing countries 

anthropogenic debris may account for a much larger part of the total. For Malaysia for instance Malik 

and Manaf 2018 [99] identified an average rate of over 70% for non-natural, non-organic debris, as 

shown in figure 65, right.  
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Fig. 65. Distribution of debris origin in Tokyo bay (L) [53] and Sungai Batu watershed (R) [99]. 

It can be seen natural debris can certainly not be discarded, even though their environmental impact 

will be lower. Among anthropogenic debris, fishing equipment becomes a marginal group however since 

its origin and presence is heavily skewed towards marine waters.  It should be noted that many studies, 

for instance on litter movements, will consider specific types of debris, often plastics, which is often 

carefully chosen based on surveys on abundance of debris types. Hence conclusions may have to be 

extrapolated to other debris groups. 

D.2. Size 
Size is a relevant classification since it affects the ease at which it can be removed from the waters. 

Furthermore, size affects the threat it poses to aquatic life and nautical traffic. Large objects might 

damage rudders and propellers while smaller object are prone to be ingested by aquatic life and block 

intake pipes of boats and ships. Additionally, particle size does influence litter movements. Van der Wal 

et al. (2013) notes that larger plastic waste in the Meuse, discharged somewhere upstream, tends to 

be removed quite often: ‘It seems that larger plastic items that float at the water surface are prone to 

stick to vegetation on river flood plain, dykes and pile up against hydraulic structures, like sluices and 

hydropower stations. Items are often remove from these locations because they block water flow, 

damage dyke slopes, hamper the use of an area or decrease its aesthetic value. For the river Meuse, it 

is suspected that these larger items are removed or rapidly degrade to smaller particles, micro plastics, 

since relatively small amounts of larger plastic items are only found up to Dordrecht’  [78]. This 

observation makes sense as larger items are more susceptible to stranding such items are generally 

removed upstream. Size is also a crucial vector in vertical distribution, as will be explained in appendix 

D.3. Consequently, data about particle size might help to improve modelling of particle behavior which 

in turn helps to improve spatial and temporal predictions.  

According to Ten Brink et al. (2016) [171] common classification separates ML by defining micro litter 

(<5 mm) and macro litter (>5 mm), occasionally extended with ‘nano’(<1μm),  ‘meso’ (<25 mm) 

and ‘mega’ (>1 m).  

The latest report of the Joint Group of Experts on the Scientific Aspects of Marine Environmental 

Protection (GESAMP) mentions that in contrast to downstream micro plastics removal, the downstream 
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macro plastics removal is generally worth the effort of taking action: ‘Whilst  the  benefits  of  action  

against  macro plastics  often  outweigh  their  costs,  downstream  clean-up actions  focusing  on  micro 

plastics  are  unlikely  to  be  cost-effective,  underlining  the  need  for  upstream  preventative measures 

on sources…. Acting on macro plastics may be easier to justify, as the social, ecological and economic 

effects are easier to demonstrate’ [15]. The removal of macro plastics however also benefits the 

mitigation of micro plastics since plastics tend to degrade and fragment into smaller pieces [15]. Small 

particles should not be neglected however if the combined weight of small particles is comparable or 

larger than large ones.  A sampling study from Moore et al. (2011) [169] reveals that in general small 

particles (1 mm – 4.75 mm) largely exceeded large particles (>4.75 mm) while in terms of weight large 

particles largely exceeded small particles. 85% of all weight could be contributed to large particles 

despite large particles merely contributing 9% of all particles. A similar observation was found in the 

waters around Hong Kong. As shown in table 2 and 3 in subsection 2.4, during the rainy season in the 

east section over 99% of all weight could be contributed to macro plastics whereas they only accounted 

for 16% of the total count. 

Nonetheless, removing smaller particles may become cost efficient in the future. For this reason, larger 

micro particles (1-5 mm) should not be simply ignored although the main focus should be on macro 

particles. 

D.3. Location 
The spatial distribution of debris in both the vertical and the horizontal component, impacts the 

transportation of debris and how and where it can be removed from the waterbody. For the vertical 

component, generally three distinguishable positions could be identified, here elaborated by Van der 

Wal et al. (2013) for the specific case of rivers: 

‘The transport of plastic litter in rivers occurs through different transport modes: a minor fraction floats 

on the water surface, a major fraction is transported in suspension in the water column and a small 

fraction is transported as part of the bed load transport near the bottom of a river’ [78]. 

The water surface can be further subdivided into different states of buoyancy, defined below in figure 

66. This is especially relevant for the susceptibility of a particle to wind induced transportation and 

hence horizontal spatial distribution. Additionally, one can add non transport states like sediment [36]. 

Sediment is relevant as this can be used to perform research on spatio-temporal behavior of debris.  

 

Fig. 66. Three different surface states of ML particles [76]. 

From surveys in numerous rivers it appeared that the majority of debris in rivers is located near the 

surface: ‘In the presented research performed by SK International it appeared that 98% of all the debris 

was present in the most upper meter of the water column, whereby the majority of the debris appeared 

in the upper halve meter of the water column. Therefore, marine litter can effectively be removed in 
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the port of Rotterdam by cleaning vessels that only filter the upper layer of the water column’ [23]. For 

marine waters in contrast, 94% of all debris by estimates [31], is located on the sea floor. This underlines 

the argument to remove riverine litter, as soon as possible, before it sinks and becomes virtually 

inaccessible. 

Size is an important indicator for vertical distribution, generally larger sized debris are predominantly 

located at the surface whereas smaller particles can be found more spread throughout the water column. 

A survey by Lattin et al. (2004) [35] found that large particles, > 4.750 mm, accounted for over 87% 

of the total weight at the surface, whereas 0.355-0.709 mm accounted for merely 1.3%. In the mid 

column these numbers where respectively 25% and just over 30% while at the bottom large particles 

dropped to 3.9% whereas small particles increased to 42%, hence skewing heavily towards smaller 

particles. Density of particles is logically also affecting vertical distribution. Since important plastic groups 

have a density smaller than water, see subsection 2.1 figure 6, plastics generally float.  

In terms of horizontal locations one can distinguish specific waterbodies or subsets thereof. Examples 

would include rivers, ports, bays, river mouths, seas and oceans. Other important distinguishable 

locations for debris (particles) are floodplains/riverbanks [78], beaches [39].  These are non-transport 

states but as debris may be transported both to and from these states to and from water they are still 

relevant in the transport of debris. Moreover, as these are subject of many research studies w.r.t. ML, 

they may be indicators of ML pathways and temporal and spatial distribution.  

D.4. Origin 
The ‘origin’ of debris can be conceived on different levels. On a global scale the extent of the plastic 

contamination problem and the contribution thereof to the world’s largest waterbodies can first of all 

be related to different countries. From figure 67 it can be observed that the quantity of mismanaged 

plastic varies significantly from country to country. The most significant quantities of mismanaged plastic 

can be found in developing Asian nations whereas in developed areas like the United States or the EU 

the percentage of mismanaged plastic is much smaller. Consequently this leads to regional differences 

in terms of ML quantity: ‘In European waters, up to 100,000 pieces of litter visible to the naked eye 

were counted per square kilometer on the sea floor. In Indonesia, the figure was even higher – up to 

690,000 pieces per square kilometer’ [13].  
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Fig. 67. Worldwide map of produced and mismanaged plastic [10]. 

Several sources of litter can be identified which shows the origin of debris. An exhaustive terminology 

(highlighted in bold) is used in a report by the Joint Research Centre of the EU to identify how debris 

ends up in our oceans: ‘…source to indicate the economic sector or human activity from which litter 

originates but specify further the means of release to indicate the mechanism or the way in which a 

given item leaves the intended cycle and/or enters the natural or urban environment and becomes a 

problem. The geographic origin can thus be defined by the geographic location of the source and 

where the release took place’ [30].  Hence geographic origin can be a country but also on a sub country 

level such as a beach or the riparian zone of a river. Rivers are sometimes identified as a source or entry 

point of ML even if they act largely as a way to transport it, which makes sense from the point of view 

of the water body the river is discharging in. However, from a more holistic viewpoint ‘pathway’ is the 

appropriate terminology to use. To avoid this confusing terminology, it is useful to extend the 

terminology with ‘transport mechanism’ and ‘pathway’: ‘… transport mechanisms, which move litter 

into and within the marine environment from various land- and sea-based sources. We consider a 

pathway to be the physical and/or technical means by which litter enters the marine environment’ [30].  

In general most scientific papers also distinguish between terrestrial sources and marine based sources. 

Galgani et al. (2015) [172] list an exhaustive group of potential terrestrial sources: recreational use in 

coastal areas, general public litter, industry, harbors, unprotected landfills, fly tipping, sewage overflows, 

extreme events and introduction by accidental loss [172]. Globally the majority of the litter is estimated 

to be land-based although the book also warns clear geographical differences should not be overlooked. 

Regions with a litter mix skewed more towards ocean based sources include the North Sea and the US 
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West coast. Other regions, such as the Mediterranean Sea and the South Chinese Sea exhibited larger 

quantities of land-based sources [172]. This can be illustrated by surveys in the Celtic sea which linked 

65% of the litter to fishing whereas in the Gulf of Lion for instance merely 2.7% on average was linked 

to fishing [34]. Therefore locally different courses of action are perhaps appropriate.  

D.4.2. Contribution of rivers to debris stock in downstream bays and ports 

The influence of riverine influx of debris on bays and harbors downstream has been already discussed 

in section 2. Here, the results of Cheung et al. (2018) [40] will be discussed more elaborately. The 

results are presented in table 35, for large debris, and table 36, for micro particles, also reveal interesting 

differences between small and large particles. Particles are indeed more numerous and heavier in all 

locations and all size classes in rainy season compared to dry season. For large particles a larger increase 

in weight can be observed, both mean and median, which suggests a skew towards heavier debris. 

Median values have been included since mean values can be severely skewed by outliers. Moreover, 

West shows a larger increase compared to East. Micro plastics however show a tendency towards 

smaller particles, since weight shows considerably less increase than count. Moreover, East shows a 

larger increase compared to West. Hence micro particles might be more affected by local sources, such 

as traffic or sewage outflows for instance. Differences between small and large particles reveal 

precaution is warranted when considering such micro plastic surveys to make conclusions for larger 

debris. 

Table 35. Quantity of large litter (≥4.75 mm) found in the waters around Hong Kong [40]. 

 Rainy season Dry season 

West 

(x times dry season) 

East 

(x times dry season) 

West 

 

East 

Mean number [count/m3] 1.450 (22) 0.911 (12) 0.066 0.079 

Mean weight [mg/ m3] 198.768 (28) 79.767 (38) 7.001 2.098 

Median weight [mg/ m3] 9.274 (30) 20.111 (19) 0.308  1.070 

 

Table 36. Quantity of micro plastics (0.355–4.75 mm) found in the waters around Hong Kong [40]. 

 Rainy season Dry season 

West 

(x times dry season) 

East 

(x times dry season) 

West 

 

East 

Mean number [count/m3] 6.932 (22) 4.911 (31) 0.322  0.158 

Mean weight [mg/ m3] 0.370 (1.3) 0.210 (9) 0.289  0.023 

Median weight [mg/ m3] 0.325 (6) 0.221 (13) 0.051  0.018 

 

D.5. Risk 
Risk assessments are rare [173], which can be contributed to a scarcity of data and knowledge 

pertaining certain processes. Hence, risk is not often included as a classification but it is of crucial 
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relevance nonetheless. Removing the debris with the highest risk is after all the most effective method 

of removal if one aims to mitigate the burden of ML. The risk R is defined as the probability of a harmful 

event E occurring, P(E), times the loss in case of a harmful event, LE. This can be denoted as follows, 

summed over all possible events: 

𝑅 = ∑ 𝑃(𝐸)

𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑒𝑣𝑒𝑛𝑡𝑠

∙ 𝐿𝐸     (60) 

As demonstrated, the risk consists of two parts, the probability part and the loss part. The probability 

is the quantification of the number of incidents expected while the loss is the monetization of said 

incidents. The probability depends on the following: 

- Characteristics of the debris. Determines the type of events possible and how likely the event 

is when it encounters life (e.g. marine animals) or maritime operations (e.g. fishing or shipping).  

It also determine the physical processes taking place during the existence of the debris (e.g. 

biofouling or degradation).  

- Pathway (the route a debris will take through the environment), which depends on: 

 Geographic origin; 

 Time of release; 

 Characteristics of the debris (buoyancy for instance); 

 Removal efforts along the route;  

 Random component for horizontal diffusion [33]. 

- Geographic presence of life or maritime operations the harm is inflicted upon. If the pathway 

of the debris crosses any of these geographic presences, interaction may occur. 

It is not surprising assessing this probability is difficult. Pathways can be modelled using numerical 

modelling [33][24]. This should however be done for each port/fluvial outflow and under various 

climatological scenarios. Physical processes could also be modelled, although knowledge on some 

processes like sinking of ML fragments through biofouling is still premature [174]. Pathways of debris 

would have to be subsequently be mapped onto areas of maritime activity, nautical routes and fish and 

marine life habitats. This approach has been attempted by Schuyler et al. (2015) [175] for several sea 

turtle species. Habitat maps were mapped onto global marine plastic distributions, which was modelled 

based on data obtained from ocean drifting buoys, to predict exposure levels to plastic pollution.  

C.5.1. Qualifying harms  

Another approach is to merely look at historic data, i.e. registered incidents. The number of incidents 

can help to estimate the probability of an incident. This approach not without flaws since it may be a 

challenging task to trace back the origin of the debris. A certain debris released in one place may pose 

problems in one place while the same debris released elsewhere may not pose any problem since the 

pathway is different. In other cases the specific debris involved in the incident or even the incidents 

themselves may not be registered at all. Nonetheless this is the most straightforward way to get a first 

glance at problematic debris. Various harms can be identified. Harms are a qualification of an event 
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whereas an incident is a harmful event, a single realization of a harm. The main harms can be classified 

as follows [173]:  

- Harm to biota 

 Ingestion; 

 Entanglement; 

 Smothering; 

 Transport of biota/invasive species. 

- Socio economic harms 

 Harms to nautical traffic; 

 Harms to fisheries and aquaculture; 

 Harms to human health; 

 Decrease in aesthetics (beaches, water banks and water surface). 

Ingestion may lead to rupture of intestines, choking, blocking of the digestive system and effects related 

to the release of toxic elements [173]. Not only the toxicity level of the material plays a role but also 

the ability of the material to adsorb hazardous particles. Research has shown that different plastics 

show very different adsorption rates and capacities [176]. Also additives, such as toxic chemicals for 

enhancing material performance can add to the level of risk [177]. Different studies on animals have 

revealed harmful effects of certain additives used in plastics. Examples include hormonal effects such 

as increased estrogen levels and reduced testosterone productions [178]. Size plays a role since only 

specific size ranges of plastics can be ingested. It also affects the risk of blockage and rupture of 

intestines. The size would also play a role in whether the animal would be able to mistake it for food. 

Furthermore, degradability is also relevant. A shorter presence in the aquatic environment naturally 

decreases chances of coming in contact with marine life. The vertical location is a factor, which is 

influenced by density. Surface based debris can be seen by birds, whereas debris located on the ocean 

floor are much less susceptible of ingestion by marine life. Close to shore the chances increase that 

debris are blown ashore and become a risk for livestock [12]. Hence the horizontal component, 

influenced by buoyancy affects the class of animals affected.  Finally the shape of the object could be 

relevant in the sense that it can be more susceptible to blockage or cause internal bleeding. Similarly, 

the same factors except toxicity are relevant for the extent of the risk of entanglement [11]. Long 

flexible debris and debris with holes are particularly risk prone. Hence, entanglement can often be 

contributed to ropes and nets, of which many are discarded or lost by fisheries [173]. Some inland 

generated debris may also pose a risk such as plastic ribbons, plastic bags and packaging with holes 

like cup carriers, plastics bags and fruit nets. Smothering occurs when organisms, like sponges and 

corals are covered by for instance plastic sheeting. This may lead to reduced fitness and mortality [173]. 

Transport of biota may lead to transport of invasive species and disruption of ecosystems. This risk is 

amplified by debris with low degradability such as plastics [173]. Other risks exists but these seem 

largely related to fishing equipment and larger debris. 
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Harms to nautical traffic include fouled propellers and rudders and blocked intake pipes [12] [173]. The 

risk of fouling is clearly with debris which are long and flexible, like ropes and nets. In general, nautical 

harms are affected by size, shape, degradability and location of the debris. The horizontal location is 

perhaps even more relevant as a factor compared to marine life since nautical traffic is more bound to 

traffic routes, transport hubs and as such the spatial spread of nautical traffic is very homogeneous. In 

port environments traffic for instance is very dense. Out in the open seas and oceans, especially away 

from the marine traffic routes the risk posed by objects drastically diminishes. However, if an incident 

occurs in such remote locations, ramifications for the crew might also be more severe, rescue becomes 

more costly. Surveys identified risk prone areas as shallow waters like rivers, river mouths and ports 

[173]. Logically, vertical position influences the risks involved. Debris at the depth of intake pipes, 

propellers and rudders are most likely to inflict damage. According to a Dutch survey from 2012 [179], 

found that smaller ships are more susceptible to perceiving inconvenience due to debris since propellers 

and intake pipes from larger vessels are deeper below the surface of the water. The focus of that study 

was however on sea litter and it does not clarify which type of litter has caused the damage, which 

would understandably be hard to point out in some cases when damage is only noticed at a later 

moment. Japanese fishing studies also reached a comparable conclusion concerning the vulnerability of 

ship sizes [14]. Risks of blocking intake pipes is related to size and shape.  

Fishing is mostly affected by similar harms as nautical traffic. Fishing specific harms include 

contaminated catches, debris accumulated in fishing hauls, blocked sorting/selectivity grids used by 

trawlers or damaged equipment like teared nets [12] [173]. Sharp and heavy objects, like oil drums 

[12], may damage nets while all types of large macro debris may contaminate and block fishing 

equipment. Within aquaculture, harms include contamination of fish farm sites and fouled propellers. 

Hence any floating debris and debris prone to foul propellers will affect aquaculture.  

Human health is affected in various ways. Firstly life may be at stake due to fouled propellers and 

rudders as the Korean accident mentioned in the introduction proved. Removing debris from fouled 

propellers and rudders is a dangerous job [12]. Swimmers might become entangled, with the biggest 

risk posed by derelict fishing gear like ropes, nets, lines and wires [12] [173]. Furthermore, on beaches 

there is a risk for visitors to hurt themselves on sharp objects such as glass and needles [12]. Finally, 

ML, especially (contaminated) micro plastics, may be unintentionally ingested after eating contaminated 

shell (fish). These (contaminated) particles may be toxic, carcinogenic or mutagenic [173].  

Decrease in aesthetic value is brought by any floating debris or debris in suspension which is washed 

ashore. Macro particles, especially larger macro particles are most visible and hence lead to the largest 

decrease in aesthetic value. Surveys indicate visible litter on beaches is considered a serious source of 

annoyance by visitors [173] [180]. These surveys do not distinguish between natural and anthropogenic 

litter, but it is highly plausible that anthropogenic litter would be considered worse if similar quantities 

are considered. 
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D.5.2. Quantification and monetization 

The next step is quantifying and especially monetizing these harms. Monetizing the harm equals 

calculating the expected loss in case of a harmful events in risk terminology. According to Bertram et 

al. (2014) monetizing is feasible in specific cases but in many cases it is a gross approximation or simply 

infeasible [181]. Since studies have usually a limited geographic scope, it is often necessary to translate 

the results into the area of interest. Methodologies such as benefit transfer are however hard to apply 

with sufficient reliability [181]. 

Entanglement is the most easy to quantify due to visible presence of litter, but it is predominantly caused 

by abandoned fishing gear which is not the litter typically supplied by rivers and floating in port 

environments which decreases the relevance to this study. Moreover, direct mortality appears to be 

irrelevant on animal populations as a whole [173]. Ingestion is another important harm, which is deemed 

to me much more relevant but for which quantified effects are unfortunately considerably more difficult 

to obtain. Sub lethal effects are hard to quantify since other factors contribute to decreased fitness level 

of animals [173]. Quantitative data for smothering and transportation of invasive species is also not 

sufficiently available to make reliable estimates [182]. In general, monetizing of harms on animal life 

and ecosystems is extremely hard although it works well in specific cases, if the animal has direct 

commercial value. Gilardi et al. (2009) [183] for instance performed a cost benefit analysis by calculating 

monetized benefits of removing derelict fishing gear merely by examining the commercial value of crab, 

a marine animal prone to get entangled. For non-commercialized animals the only remaining option is 

to obtain an estimate of the financial value marine life via willingness- to-pay surveys. Such surveys 

were used by Lord (2016) to estimate the effects of plastics on marine ecosystems but data is 

unfortunately not available [182]. It is far from ideal to rely on such data however, especially if these 

values of harms which are directly quantifiable in terms of money. Costs responders say they are willing 

to pay via these surveys and costs they are actually willing to pay if implemented might differ 

significantly. 

Data on registered incidents of entanglements and ingestion is available for certain species [173] [184]. 

Figure 68 below shows the type of debris affecting individuals and species. Encounters with individuals 

was mostly with rope and netting (57%), followed by plastic fragments (11%), plastic packaging (10%), 

other fishing related debris (8%) and finally micro plastics (6%). Other categories except other or 

unknown, were each less than 0.04% and hence negligible. It shows shipping and fishing debris 

dominate, especially for entanglement whereas plastic fragments and micro plastics largely dominate 

for ingestion. Encounters by species is less skewed: 24%, 20%, 17%, 16% and 11% respectively. Glass, 

metal and paper score between 0.38% and 0.65%, not negligible but small nonetheless. 
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Fig. 68. Incidents of entanglement and ingestion reported by debris class, for individuals and species [184]. 

Thresholds could be established with the maximum percentage of animals which are allowed to be 

affected. Once the threshold is breached, urgent action on mitigating relevant debris is advised. 

Examples of thresholds are very limited however and those which exist are more or less arbitrary. The 

EcoQO target [185] specifies plastic particles in Fulmar stomachs in the OSPAR region; less than 10% 

should carry more than 0.1 grams of plastic. This is however more based on what is practically 

achievable than on the true level of risk. This is not surprising as it was demonstrated the effects of 

ingestion are hard to quantify. A recent publication [186] did an attempt to assess the impact of plastic 

debris on earth’s ecosystem using the ‘Planetary boundary concept’. Chemical pollution, one of the 

boundary threats most related to plastic pollution has however not been quantified yet. Standards, for 

instance for toxic metals leaching from plastic litter, however do exist. Kako et al. (2014) [153] suggests 

that within 10 years a small but significant number of beaches the standard might be exceeded.  

Instead of quantifying, an elegant approach to assess risk could be ranking which can be obtained by 

expert elucidation. Wilcox et al. (2015) [187] used over 200 expert opinions to create a ranking of 

various ML debris based on the threat they pose on three types of marine animals, as shown in figure 

69. The paper ranks chemical contamination (here mentioned as separate category) lower than 

entanglement or ingestion. It emphasizes however that the understanding of ecotoxicology is limited. 



146 
 

 

Fig. 69. Ranking of ML debris based on expected impact to marine life [189]. 

Harms to nautical traffic, fishing and aquaculture are considerably easier to put financial value on. A 

survey among UK ports revealed fouled propellers was by far the most common harm [12], followed by 

blocked intake pipes. A survey among Portuguese fishing vessels found the same. For the UK, ropes 

were the most important culprit of fouling, followed by nets, plastic and wire. Another UK survey 

revealed the most common types of debris accumulated in fishing hauls were ropes, plastic, bottles and 

wire [12]. A Spanish survey found plastic bottles to be the most common type of debris [12]. The most 

common types of debris found to be of nuisance in UK fish farms were ropes, plastic and wood [12]. 

Costs are available, like the costs of rescue missions due to fouled propellers, costs of lost fishing time 

and costs of the actual disentangling. Overall, cost estimates remain however limited in quantity and 

geographical spread and if available, data is often aggregated.  

For human health quantifying and monetizing is harder. Loss of human life is very rare and putting a 

financial value on human life is obviously not trivial. Moreover, minor incidents like cuts are rarely 

registered. Regarding the intake of contaminated food, concentrations are generally so low the risk is 

deemed negligible, especially since fish stomachs are often removed before served. A larger risk is 

present however with shellfish, like mussels or oysters which are consumed with the complete digestive 

system [49]. Nonetheless, consumption of these is generally low. 

Aesthetic value is in some cases hard to quantify. Signs of contamination can lead to a perceived 

degradation of life quality of the local community. This type of parameter is not very suitable for 

monetization. However, removal costs could be used instead [12]. Since debris are often removed, for 

instance from beaches, removal costs could be used to monetize the presence of debris.  

Loss of tourism can be estimated with surveys. Surveys can provide answers with respects to the 

behavior of tourists and the average spending of tourists can then be used to monetize. The 
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quantification through surveys may however lead to some inaccuracy since the opinions of the 

respondents might not be constant over time and their travel choice will also depend on information 

provided on the presence of litter which introduces a bias into the surveys. It may also be hard to 

translate the results of said surveys to other geographical areas, especially because it largely depends 

on the available alternatives in the region. A survey like this was put out by Krelling et al. (2017) [182] 

and found that 15 litter items/m2 would deter 85% of users causing up to US$8.5 million local losses. 

Such data can be used to put a financial value on litter. It is however nonlinear and as mentioned earlier, 

it depends on the available alternatives.  

Data on risk for specific items is unfortunately too scarce to make comparisons. Lord (2016) [184] made 

calculations on the risk of plastics and obtained a cost of $56 per metric ton of plastic and $21 per 

metric ton of alternatives. A closer look however at the calculation reveals it simply looked at loss 

estimated due to ML for several economic sectors and multiplied this with estimates of the percentage 

of plastics in ML (50%-80%). It ignores however which debris actually contributed to the damage. 

Hence this figure is too vague to be practical. 

One can conclude risk assessments are rare due to a lack of knowledge on certain harms and a lack of 

quantified data. Data is simply too scarce to make reliable comparisons based on costs per debris. 

Incidents have not been researched or incidents or debris involved in incidents are simply not registered. 

Many harms are also not very suited to be monetized since these include harms to ecosystems and 

biota. This in contrast to loss of man hours or repairs, which can be easily monetized. It is possible 

however to indicate the debris most prone to affect certain harms as summarized in table 37. 

Table 37. Summary of the types of debris responsible for different harms.  

 Type of debris responsible Example debris 

Ingestion Small macro debris and micro 

particles. 

Cigarette butts, plastic bottle caps, primary 

and secondary micro plastics. 

Entanglement Long flexible debris and debris 

with holes. 

Ropes and nets, plastic packaging, plastic 

ribbons, plastic bags and packaging with 

holes like cup carriers, plastics bags and 

fruit nets. 

Smothering Large sheets. (Large) plastic bags. 

Transport of biota/ 

invasive species 

Any long lasting floating debris Plastic fragments and items. 

Harms to nautical traffic Long flexible debris Ropes, nets, plastic bags. 

Harms to fishing and 

aquaculture 

Long flexible debris, heavy sharp 

objects and floating litter. 

Ropes, nets, plastic bags, oil barrels, wood, 

household plastic and foam. 

Harms to human health Mostly sharp objects. Glass and needles. 

Decrease in aesthetics All types of floating litter. Natural debris, household plastic, foam. 
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Ranking of debris is a possible alternative since this avoids putting a value to debris. This can be 

achieved by expert elucidation. Such surveys are limited however. Moreover, since these are ordinal 

scales their applicability is limited compared to interval and ratio scales. Another alternative is standards, 

one standard and one target was reviewed in this subsection but the target reviewed in this subsection 

was essentially based on feasibility instead being a scientifically established threshold to minimize risk. 

This means the usage of standards is limited, especially in the geographical sense since feasibility is 

geographically depended. The standard concerned toxic leaching from plastic. Prediction models 

revealed this threshold may be breached on many Japanese beaches in the future. 

Within the marine environment fishing debris, like ropes, nets and monofilaments, pose the biggest risk, 

whereas plastics are second. Certain plastic items are of bigger risk, predominantly single use plastics 

from household garbage/disposal and single use plastics used in public, e.g. bags, fruit nets and 

products with holes as these can lead to entanglement. Fishing debris are however mostly discarded at 

sea. Natural debris are only relevant in downstream areas of a river like bays and ports where there are 

mostly affecting aesthetic value and aquaculture.  

D.6. Appendix C: summary 
In short, plastic is globally the largest type of anthropogenic debris as commonly known. This is however 

location dependent with affluent regions of the world, due to being equipped with more capable waste 

management systems, facing more accumulation of natural litter with less affluent regions facing the 

opposite with anthropogenic waste being more abundant. Hence, both anthropogenic as natural litter 

should be accounted for. 

Debris accumulation contributes mostly to local water contamination, both sea and oceans which implies 

the common argument, that any action from small contributors is useless if large global contributors are 

not being handled first, is largely untrue. Contamination of ecosystems should hence be mitigated 

through regional sources and pathways.  

For the time being the focus ought to be directed towards cleaning macro sized surface litter, since the 

removal of smaller sized litter is generally not cost effective with current technological advancement.  

Finally, risk assessments are rare due to a lack of knowledge on certain harms and a lack of quantified 

data. Many harms are also not very suited to be monetized since these include harms to ecosystems 

and biota. This in contrast to loss of man hours or repairs, which can be easily monetized. For the 

aforementioned reasons standards, which indicate a certain threshold value for each debris category, 

are also rare. The alternative could be to use ranking, for instance through expert elucidation. The 

downside is the limitation of ordinal scales compared to interval and ratio scales. Such rankings are also 

very scarce and are not comprehensive. The only ranking discussed in this section is not comprehensive 

as it only pertains a subset of harms. Since performing a quantitative comparison for all debris on all 

harms is infeasible, a qualitative comparison was performed to identify the most critical debris w.r.t. to 

various harm categories. One of the most crucial debris categories are plastics, especially bags, fruit 
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nets and products which contain holes. The most crucial debris are fishing debris such as ropes, nets 

and monofilament fishing line. These items however are generally to originating from land based sources. 

Natural debris are mostly harming inland nautical traffic and aesthetics and play a crucial role due to 

their abundant presence. Plastic items can be found on the streets as these are frequently littered as 

single use plastics or around public waste bins which reached maximum capacity. These plastics can 

also be found on dumping grounds for general household waste. Natural debris are logically originating 

from areas with vegetation which means their abundancy depends on vegetation levels. 
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Appendix E: Example distributions 

This is a supplement to subsection 2.4. Figure 70 below shows a fictive example of a temporal 

distribution of debris accumulation influenced by one or multiple factors with such characteristics. If the 

timeline is measured in weeks weekly differences can be observed but in addition there also appear to 

be seasonal tendency with a considerable surge in accumulation from somewhere around week 14 to 

25 and week 39 to 49. Hence, there can be jumps in the distributions which span a short time while 

there can also be seasonal fluctuations or seasonal Jumps. In figure 70, the reference accumulation 

quantity is zero whereas a larger reference quantity is also possible. In that case jumps can logically be 

negative. 

Fig. 70. Visualization of a temporal litter distribution with repetitive nature. 

The graph in figure 71 shows an accumulation pattern which can be seen as a trend where accumulation 

rates are slowly increasing over time and an accumulation pattern where a sudden event leads to a step 

in the accumulation rate. Both are permanent, i.e. not repetitive in nature. 

Fig. 71. Visualization of varying litter quantities over time due to trends or single sudden events. 

Secondly, the shape and size of different distributions can be analyzed. Figure 72 below shows two 

arbitrary distributions of debris accumulation, distribution 1 and 2 respectively. Distribution 1 and 2 

essentially have equal cumulative accumulation over the timespan shown but their shape differ 

significantly from each other. Distribution 1 has two small peaks whereas distribution 2 has a single 
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large peak.  Distribution 3 is a scaled version of 1, this means the cumulative accumulation is also scaled, 

in this case with a factor 2. The shape is exactly similar. Distribution 4 has the same cumulative 

accumulation as distribution 2. The shape however has changed. The accumulation is less concentrated 

around a single point but more spread out, the distribution is more flattened. The extreme version is 

the brown distribution which is completely constant over time. Finally, any of these accumulation 

patterns with similar shape and size could be observed but then shifted over time. 

 

Fig. 72. Visualization of different temporal distributions of marine litter accumulation. 
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Appendix F: The Baltimore Trash Wheel: background and calculations  
 

The Waterfront Partnership of Baltimore (WPB) has 

been removing debris flowing from the Jones Falls 

River using a passive removal system since may 2014 

[110]. The Jones Falls riverwatershed, depicted in 

figure 73, is 103 km2 to 150 km2 large [44] and is 

home to about 200.000 people [188]. The Jones Falls 

itself is 28.8 km long. The system, depicted in figure 

74, is located in a tidally activated location [189] and 

scoops the debris from the water using a water wheel 

activated conveyor which transports the debris into a 

dumpster. In case the water wheel is not sufficient the  

conveyor can be powered by solar panels. Dumpsters 

can be removed from the back after which trashed can 

be properly disposed off. 

  

 

Fig. 74 Illustration of the Baltimore Harbor Wheel Project [110]. 

Dumpster 

Conveyor 

Accumulation 

of debris 

Dumpster 

removal 

Fig. 73. Drainage basin of the Jones Falls River [44]. 
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The WPB has provided data on its website pertaining the weight, volume and consistency of dumpsters 

since the start of the operations in may 2014. This data can be used to perform calculations and 

statistical analyses. The weight and volumetric data provided by the WPB is aggregated data which 

includes natural debris, like twigs, leaves and branches. On several important items, separate data is 

given on the number of important debris items. A snip of the excel data file provided is shown in figure 

75.  

 

Fig. 75. A snip of the excel data file provided by the WPB. 

F.1 Calculation method subsection 2.5 

The data points in figure 8 of subsection 2.5 were calculated using the data provided by WPB for a 

seven month period (01-2015 until 07-2015). The calculation of the first eleven data points can be found 

in table 38. These data points, shown in the last column (column E), were calculated by dividing column 

D by column C. Column D represents the cumulative weights. This means each day at which 

measurements occurred where considered as a separate data point. Days at which multiple 

measurements occurred (due to large accumulation), like 20-4-2015, where aggregated (see column D, 

row 11). Row C is the number of consecutive days in between measurements. C2 for instance notes 11 

days, as the measurement on 23-1-2015 occurred 11 days after the previous measurement, 12-11-2015. 

In total 29 data points where considered. 

Table 38. Data and calculation steps used to calculate data points in figure 19 in subsection 3.2. 

 Date Weight 

[kg x 1000] 

Consecutive 

Days 

Cumulative 

Weight 
 [kg x 1000] 

Scaled 

Cumulative 
Weight  

[kg x 1000] 

Column: A B C D E 

Data 

Provided 
by WPB or 

calculated? 

 

Provided by 
WPB [67] 

 

Provided by 
WPB [67] 

 

Calculated 

 

Calculated 

 

Calculated 

1 12-1-2015 2.87 13 2.87 0.22 

2 23-1-2015 2.00 11 2.00 0.18 

3 26-1-2015 2.14 3 2.14 0.71 

4 4-2-2015 2.54 9 2.54 0.28 

5 9-3-2015 3.82 5 3.82 0.76 

6 13-3-2015 1.83 4 1.83 0.46 

7 27-3-2015 2.02 14 2.02 0.14 

8 8-4-2015 2.50 9 2.50 0.28 

9 10-4-2015 3.41 2 3.41 1.71 

10 19-4-2015 1.83 9 1.83 0.20 

11 20-4-2015 3.84 1 16.27 16.27 
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 20-4-2015 3.22  
  

20-4-2015 3.03 
   

20-4-2015 2.64 
   

20-4-2015 3.54 
   

 

This way of calculating is not optimal however as days with large quantities accumulated are not always 

properly handled. This is because days with large amounts of accumulated debris and a long period 

preceding without dumpsters being removed will score low as the amount removed on that day is 

divided by the consecutive days in column C. Among the data points used in figure 8, 76 and 77 this is 

specifically true for data point 17. A cumulative weight of 18.20 tons was measured on that day but due 

to the 8 preceding consecutive days the scaled cumulative weight was only 2.28. As such peaks in the 

distribution may be underestimated. 

The same calculation was also performed for volumetric data, except that the units have been converted 

from cubic yards to cubic meters. The data points can be found in figure 76 below. It can be seen the 

distribution of volumetric data points shows a similar pattern as the weight data points. The smallest 

and largest number have been highlighted and coincide with the smallest and largest number for the 

weight data. The average volumetric accumulation, 2.1 m3, measured over 48 months (5-2014 until 4-

2018) has been plotted as a green line on the top of the data points.  

 

Fig. 76. Average accumulation in between debris removal days, in volumetric terms [44]. 

 

In figure 77 the ratio between volume and weight has been plotted. The smallest and largest number 

have been highlighted again. The data shows the can vary significantly which means the consistency of 

the debris can also vary significantly. The average ratio, measured over 48 months (5-2014 until 4-2018) 

has been plotted as a green line on the top of the data points. 

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30

A
C
C
U

M
U

L
A
T
IO

N
 [

M
3
/D

A
Y
]

DAY AT WHICH REMOVAL OCCURED

Average accumulation in between debris removal days

0.3 

73.4 



155 
 

 

Fig. 77. Ratio between cumulative volume and cumulative weight of debris [44]. 

F.2 General Data on the Harbor Wheel debris removals 

In the period May 2014 to April 2018 a total of 813 tons was removed and 3006 m3 of natural and 

anthropogenic debris [44]. 

Table 39 shows the consistency of the dumpsters illustrated using various main categories of debris. 

The quantities have been summed of the period May 2014 until April 2018 by counting the number of 

items corresponding to each category. The percentages have been calculated as a percentage of the 

sum of all quantities. Unfortunately it excludes natural debris. Cigarette butts are by far the largest 

category in terms of numbers but are likely to be much smaller in terms of volume and weight.  If 

cigarette butts are excluded, plastic and polystyrene dominate all categories, at least with the data 

provided by the WPB. 

Table 39. Consistency of dumpsters aggregated over 5-2014 to 4-2018 period [44]. 

 Plastic 
Bottles 

Polysty-
rene 

Cigarette 
Butts 

Glass 
Bottles 

Grocery 
Bags 

Chip 
Bags 

Sports 
Balls 

Quantity 519,010 618,837 10,003,600 7,851 383,707 505,739 3,520 

Percentage 4.31% 5.14% 83.07% 0.07% 3.19% 4.20% 0.03% 

 

In addition to the above mentioned figures, one website [110] mentioned 140.000 Styrofoam containers 

are removed monthly. This would add up to 6,720,000 items over 48 months and make it second, not 

far behind cigarette butts. 

Figure 78 shows the weight of debris per month as described in subsection 2.5. For the grey data set 

the largest numbers were removed for each month to test the influence of outliers. A bulge around the 

summer months remains. 
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Fig. 78. Weight of debris accumulated per month, measured over 48 months [44]. 

Appendix G: The hydrologic cycle 

This is a supplement to section 3. To understand the relations between precipitation and debris 

accumulation and the origins of river discharge, it is necessary to understand the hydrologic processes 

involved. The main processes happening between the rainfall event and the eventual discharge are 

shown in figure 79.  

 

Fig. 79. Comprehensive overview of hydrologic processes [190]. 
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This schematic overview can be viewed as being a system representation since it can be described as a 

system, using the Delft Systems Approach terminology: ‘a collection of elements that is discernable 

within the total reality. These discernable elements have mutual relationships and (eventually) 

relationships with other elements from the total reality’ [191]. The systems overview shows the internal 

relationships (e.g. processes such as rainfall) between the different elements (e.g. river/stream). Two 

main subsystems are highlighted in red and blue, namely natural and anthropogenic reservoirs. Both 

contain elements of interest. With this system representation, arbitrary black boxes can be drawn over 

different parts of the hydrologic system. Basic equations of preservation of continuity can now be 

established [192], also referred to as the hydrologic budget: 

𝐼 − 𝑂 = 𝛥𝑆    (61) 

I = Inputs 

O = Outputs 

ΔS = Change in Storage 

Hence, drawing a black box around river/stream, our subsystem of interest, will yield equation 8 

below.  

𝑏𝑎𝑠𝑒𝑓𝑙𝑜𝑤 (𝑠𝑜𝑢𝑟𝑐𝑒 𝑜𝑓 𝑟𝑖𝑣𝑒𝑟 +  𝑔𝑟𝑜𝑢𝑛𝑑𝑤𝑎𝑡𝑒𝑟 𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡) +  𝑟𝑢𝑛𝑜𝑓𝑓 + 𝑚𝑒𝑙𝑡𝑖𝑛𝑔 + 𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙

+ (𝑤𝑎𝑠𝑡𝑒𝑤𝑎𝑡𝑒𝑟 + 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑤𝑎𝑠𝑡𝑒𝑤𝑎𝑡𝑒𝑟 + 𝑠𝑡𝑜𝑟𝑚𝑤𝑎𝑡𝑒𝑟)𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 − 𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛

− 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑓𝑙𝑜𝑤 𝑡𝑜 𝑙𝑎𝑘𝑒 − 𝑓𝑙𝑜𝑤 𝑡𝑜 𝑜𝑐𝑒𝑎𝑛 − 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 − 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑜𝑛

= 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑟𝑖𝑣𝑒𝑟 𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑜𝑟𝑎𝑔𝑒    (62) 

The flows within this equation are relevant for understanding the flow of debris but also to understand 

the discharge velocity of a river which influences the movement of debris through the system. The size 

of these streams are depended on the respective river and season. Wide shallow rivers in warm weather 

might for instance see more evaporation, relatively, than deep rivers in colder weather. Also due the 

seasonal characteristics of rainfall and melting, the significance of wastewater discharge might increase 

significantly during low flow conditions as noted by Ji et al. (2008): ‘For example, wastewater discharges 

to the Blackstone River can account for up to 80% of the total river flow in summer’ [95].  

Since it was ascertained that surface runoff is a crucial component of debris transport a black box can 

also be drawn around surface water which yields the following equation: 

𝑑𝑟𝑖𝑝𝑝𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 + 𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙 + 𝑠𝑛𝑜𝑤 𝑎𝑛𝑑 𝑖𝑐𝑒 𝑚𝑒𝑙𝑡 − 𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑟𝑢𝑛𝑜𝑓𝑓 − 𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛

= 𝑡𝑜𝑡𝑎𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑜𝑟𝑎𝑔𝑒    (63)  

It is important here to consider which part of the rainfall is being infiltrated, what is the quantity of 

water which can be stored at the surface and which part leads to runoff.  
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Appendix H: Details empirical studies fluvial transport of debris 

This appendix expands on the study of Williams and Simmons (1997) [74] and Ivar do Sul et al. (2014) 

[76]. Williams and Simmons (1997) [74] studied temporal distribution of riverine litter and performed 

four separate experiments, which are summarized in table 40. 

Table 40. Overview of experiments on riverine litter movements performed by Williams and Simmons [74]. 

Study River Stretch Length Flow conditions Number and type of tracers 

1 River Cynon 1.3 Low, 0.6m3/s 180 LDPE sheets 

2 River Taff, Radyr Reach 2.2 High, 74 m3/s 180 LDPE sheets 

3 River Taff, Radyr Reach 2.2 Low, 5.4 m3/s 180 LDPE sh. + 180 pantyliners 

4 River Taff, Radyr Reach 2.2 Moderate, 17.7 m3/s 180 LDPE sh. + 180 pantyliners 

 

During the experiments they released items distributed evenly over the width of the river. A strong 

correlation was found with the flow rate. At low flow rates, study 1, entrapment and stranding was 

severe, all plastic sheets released were entangled before 80 meter and even after one month the vast 

majority had still travelled less than 100m.  The second study was performed at another river, broader 

and deeper, during high flow conditions and found 80 out of 180 sheets to arrive within 3 hours, the 

vast majority in a time span of 15 minutes. The third study on the same stretch of river during low flow 

conditions saw a much flatter response time. A couple of plastic sheets arrived after almost 3 hours 

whereas the first pantyliners (smaller in size), also released, arrived 30 minutes later.  Merely 9 tracers 

arrived after the following 7 hours. The fourth experiment during moderate flow conditions saw 59 

plastic sheets and 30 pantyliners arrive within 4 hours. 

The temporal distribution of litter items for study 2 and 4 is visualized in figure 80. Three observations 

can be made. Firstly, both show a clear positive skew (a long right tail). Secondly, the distribution under 

high flow conditions is much narrower, as far as the main bulk of the arrivals is concerned. Thirdly, 

regarding study 4, pantyliners were lower in number in comparison to the sheeting, even though the 

same number was released which indicates higher stranding susceptibility. 

 

Fig. 80. Arrival pattern study 2 (left) and study 4 (right) [101]. 
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Ivar do Sul et al. (2014) [76] investigated retention and movements of debris in a Mangrove forest. 

Different type of debris were released in three different environments and the movements during 144 

hours were observed around the deposition area of 20m2. Firstly, a tidal creek was observed with low 

flow rate, bank slope of 110 degree from water surface and width 20m. Secondly a river with high flow 

rate, bank slope of 160 degree from water surface and width 400m. Thirdly and finally high ground 

which was occasionally flooded during high tides. The items surveyed were cap closed plastic bottles 

(negatively buoyant), open plastic bottles (negatively buoyant), squashed plastic bottles (neutrally 

buoyant), plastic bags, 200ml cups, polystyrene blocks and open margarine tubs. 27 items of each 

category were released with each deposition area starting with 21 items, 3 items per category. As shown 

in figure 81B Margarine tubs were transported most easily while the bags and cups were initially fairly 

well retained but once moved they were not observed somewhere else which means they moved 

significantly.  The other types did not show significant differences, especially not the bottles among 

them. The results suggest the shape and buoyancy (as long as it floats) of debris has limited influence 

in general. After 144 hours 75% of the items disappeared completely from the surveyed area although 

after six months the higher ground still contained seven items. Not entirely surprising, litter was least 

retained along the river, with the creek not far behind, while the higher grounds performed significantly 

better, see figure 81A. This suggest again flow rate is a factor of influence. 

 

Fig. 81. Average numbers of items per deposition area over time for each habitat (A) [76]. Number of items 

surveyed in, near or far from the deposition area, per litter category (B) [76]. 
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Appendix I: Data on the Jones Falls watershed  
 

Figure 82 below shows a rough land use map of the JFW. Figure 83 on the next page shows a map of 

the JFW watershed plotted over an elevation map of the area. 

 

Fig. 82. Land use map Jones Falls watershed [191]. 
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Fig. 83. Elevation map with JFW, modified from [193] and [44]. 
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Table 41 shows land use data for all 14 Jones Falls sub watersheds [119] [136] [137]. The numerical 

order of the sub watersheds (e.g. U1 to U4) is identical to the order presented in the report, i.e. U1 

corresponds to the sub watershed in the first row and U4 corresponds to the sub watershed in the last 

row. 

Table 41. Land use data for all 14 Jones Falls sub watersheds. 

Land use Percentage of total area of sub watershed belonging to corresponding 

land use [%] 

 Upper JF North East JF Lower JF 
U1 U2 U3 U4 E1 E2 E3 E4 L1 L2 L3 L4 L5 L6 

Agricultural 
facilities 

0 0.8 0 0 0 0 0 0 0 0 0 0 0 0 

Cropland 5.4 7.4 9.6 19.9 0 0 0 0 0 0 0 0 0 0 

Orchards 0 1.6 0 0 0 0 0 0 0 0 0 0 0 0 

Pasture 1.1 7.2 3.2 0 1 0 0 0 0 0 0 0 0 0 

Ultra low 
residential 

(agriculture) 

0.9 5.1 6.9 2.8 0 0 0 0 0 0 0 0 0 0 

Ultra low 

residential 

(forested) 

9.2 5.4 7 5.1 0 0 0 0 0 0 0 0 0 0 

Low density 

residential 

44.7 35.6 36.8 42.1 19 11 53 27 47.9 21 11.3 7.6 5 6 

Medium 
density 

residential 

1.2 0 2.9 0.4 41 25 12 16 8.8 21.6 8.6 46.8 50.2 8.6 

High density 
residential 

2.3 0 4.7 0 6 12 0 8 7.4 13.3 18.3 17.9 11.1 32.3 

Forest 0 0 0 0 0 0 0 0 24 27.9 43.5 5.1 4.9 12.3 

Decidious 
forest 

14.6 24.1 15.2 18.7 6 7 0 19 0 0 0 0 0 0 

Evergreen 

forest 

0 0 0 0.1 0 0 0 0 0 0 0 0 0 0 

Large lot 

forest 

0 0 0 0 1 2 6 11 0 0 0 0 0 0 

Wetlands 0 0 0.1 0 0 0 0 4 0 0 0 0 0 0 

Open urban 

land 

12.7 10.2 4.1 9.4 6 2 11 8 0 0 2.2 11.1 3.8 7.1 

Commercial 6 0 1.9 0.3 10 17 1 1 0 0.9 2.4 5.6 2.3 11.8 

Industrial 0 0 0 0.2 4 0 0 0 0 7.3 5.3 0 0 4.7 

Institutional 2 2.6 6.4 1 2 23 15 4 2.1 11 0.2 5.5 20.6 12.2 

Transportati

on 

0 0 1.2 0 3 0 0 0 0 0 0 0 0 0 

Bare ground 0 0 0 0 0 0 0 0 0 2.3 0.8 0 0 0.8 

Extractive21 0 0 0 0 0 0 0 0 0 7.3 0 0 0 0 

Water 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0.7 

Highway 0 0 0 0 0 0 0 0 0 0 0 0.3 1.8 3.6 

Agriculture 0 0 0 0 0 0 0 0 14.1 2.3 0 0 0 0 

Brush 0 0 0 0 0 0 1 1 0 0 0 0 0 0 

 

 

                                                
21 Extractive has been converted to medium to high density residential areas. 
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Table 42 shows hydrological soil group data for all 14 Jones Falls sub watersheds [119] [136] [137]. 

The values are given as a percentage of the total area. 

Table 42 Land use data for all 14 Jones Falls sub watersheds. 

Soil 

Group 

Percentage of total area of sub watershed belonging to corresponding soil 

group [%] 

Upper Jones Falls North East JF Lower JF 
U1 U2 U3 U4 NE1 NE2 NE3 NE4 L1 L2 L3 L4 L5 L6 

A 2.3 0 2.9 0 9.8 0 0 0 0 0 0 0 1.3 1.7 

B 70.
1 

63.3 70.1 69 63.7 60.5 75.2 43 82.9 74.5 61.8 22.4 14.6 19 

C 22.
2 

35.8 17 21.9 16.2 32.5 16.7 46.6 7.7 9.8 5.1 14.5 5 5.5 

D 4.7 0.7 7.3 8.6 10.3 7 8.2 10.5 9.3 15.7 33.1 63.2 79.1 73.8 

 

Table 43 shows how land use as given in the reports, was matched with land uses as defined in literature 

[128]. The land uses defined in literature are listed with corresponding empirically obtained CN values.  

Table 43 Corresponding land uses as given in literature with known CN values for specific soil group and land use 

combination. 

Land use defined 

by reports 

Matching land use as 

defined for 
corresponding CN 

values 

CN value for specific soil group and land 

use combination 

Soil group 

A 

Soil group 

B 

Soil group 

C 

Soil group 

D 
Agricultural facilities Farmsteads Page 327 59 74 82 86 

Cropland Agricultural land general, 
average 

(77+51)/2 (86+67)/2 (91+76)/2 (94+80)/2 

 Orchards Orchard or treefarm, fair 43 65 76 82 

Pasture Pasture, fair 49 69 79 84 

Ultra low residential 
(agriculture) 

Residential, lot size: 2 
acres 

46 65 77 82 

Ultra low residential 
(forested) 

Residential, lot size: 2 
acres 

46 65 77 82 

Low density residential Residential, lot size: 1 
acres 

51 68 79 84 

Medium density 
residential 

Residential, lot size:  ¼ 
acres 

61 75 83 87 

High density residential Residential, lot size: 1/8 
acres 

77 85 90 92 

Forest Forest, fair 36 60 73 79 

Decidious forest Forest, fair 36 60 73 79 

Evergreen forest Forest, fair 36 60 73 79 

Large lot forest Forest, fair 36 60 73 79 

Wetlands - 100 100 100 100 

Open urban land Open space, fair 49 69 79 84 

Commercial Urban districts: commercial 

and business 

89 92 94 95 

Industrial Urban districts: Industrial 81 88 91 93 

Institutional Residential, lot size: 1/8 
acres 

77 85 90 92 

Transportation Impervious areas: Paved; 
Open ditches 

83 89 92 93 

Bare ground Fallow: Bare soil 77 86 91 94 

Extractive Average of medium and 
high density residential 

(77+61)/2 (85+75)/2 (90+83)/2 (92+87)/2 

Water - 100 100 100 100 
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Highway Impervious areas: Paved 
driveways 

98 98 98 98 

Agriculture Agricultural land general, 
avg 

(77+51)/2 (86+67)/2 (91+76)/2 (94+80)/2 

Brush Brush, fair 35 56 70 77 

 

Table 44 shows latitudinal and longitudinal coordinates of the 14 sub watersheds present in the JFW. 

Column three and four show population and area respectively [119] [136] [137]. 

Table 44. Geographical coordinates, population and area of the sub watersheds within the JFW. 

 Longitude Latitude Population Area [km2] 

Deep Run Jones Falls 39.43179 -76.66764 1374 5.8145 

Dipping Pond Run 39.42967 -76.68961 1045 7.1160 

Jones Falls 39.41435 -76.70755 7253 22.0449 

Jones Falls North Branch 39.43371 -76.72343 2914 18.3922 

Roland Run 39.42085 -76.64385 15025 15.4687 

Towson Run 39.39229 -76.62893 13726 7.4713 

Ruxton Run 39.40032 -76.63573 1248 1.9089 

Lake Roland Direct Drainage 39.37767 -76.63388 2216 3.0784 

Slaughterhouse Run 39.40009 -76.68125 1967 5.1476 

Moores branch 39.38728 -76.68348 4515 5.6454 

Jones Falls A 39.38467 -76.66318 4244 3.4884 

Western Run 39.36546 -76.67247 31745 14.1155 

Stony Run 39.34185 -76.62617 23087 9.0731 

Lower Jones Falls 39.3366 -76.63183 110663 29.4895 
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Appendix J: Modelling Framework 
The modelling process used in this report is based on the waterfall model, as depicted in figure 84, 

which means it is generally a linear design process although iteration may be involved. The curved 

arrows show the sequential waterfall process while the rectangular feedback arrows indicate an iteration 

step may take place.  

 

Fig. 84. Framework for the modelling process. 
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Appendix K: Weather data 
Figure 85 shows screenshots of the weather data files in excel which are used as an input to the Matlab 

model. The grey columns with bold text are output columns which are used as an input to the Matlab 

model. The columns with orange text are used to process the data. The other columns contain the raw 

data as retrieved from the historic weather database used by the website ‘weather underground’ [138].  

 

 

 

 

Figure 85. Excel data file for one weather station. 
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Appendix L: Verification equations and verification parameters 
 

The mass conservation equations described in subsection 6.4 can be defined as follows, first for 

verification test 1: 

𝑀𝐷,𝐼 ≤ 𝑀𝐴𝐷,𝐴    (64)    𝑎𝑛𝑑     𝑀𝐷,𝐼 = 0    (65)     

𝑂 = ∑ 𝑀𝐷,𝐼
𝑠𝑢𝑏𝑤𝑎𝑡𝑒𝑟𝑠ℎ𝑒𝑑𝑠

    (66)    𝑎𝑛𝑑    𝑂 = 0    (67) 

𝑀𝐴𝐷,𝐺 = 𝑀𝐷,𝐼 +𝑀𝐷,𝑅 +𝑀𝐴𝐷,𝐴    (68)    𝑎𝑛𝑑    ∑ 𝑀𝐴𝐷,𝐺
𝑠𝑢𝑏𝑤𝑎𝑡𝑒𝑟.

= 𝑂 + ∑ 𝑀𝐷,𝑅
𝑠𝑢𝑏𝑤𝑎𝑡𝑒𝑟.

+ ∑ 𝑀𝐴𝐷,𝐴
𝑠𝑢𝑏𝑤𝑎𝑡𝑒𝑟.

    (69) 

For verification test 2: 

𝑀𝐷,𝐼 ≤ 𝑀𝐴𝐷,𝐴     𝑎𝑛𝑑     𝑀𝐷,𝐼  ≤ 𝑀𝐷,𝑊    (70)   𝑎𝑛𝑑    𝑀𝐷,𝐼  ≥ 0    (71) 

𝑂 = ∑ 𝑀𝐷,𝐼   

𝑠𝑢𝑏𝑤𝑎𝑡𝑒𝑟𝑠ℎ𝑒𝑑𝑠

𝑎𝑛𝑑     𝑂 ≥ 0    (72) 

𝑀𝐴𝐷,𝐺 = 𝑀𝐷,𝐼 +𝑀𝐷,𝑅 +𝑀𝐴𝐷,𝐴    𝑎𝑛𝑑    ∑ 𝑀𝐴𝐷,𝐺
𝑠𝑢𝑏𝑤𝑎𝑡𝑒𝑟.

= 𝑂 + ∑ 𝑀𝐷,𝑅
𝑠𝑢𝑏𝑤𝑎𝑡𝑒𝑟.

+ ∑ 𝑀𝐴𝐷,𝐴
𝑠𝑢𝑏𝑤𝑎𝑡𝑒𝑟.

 

For verification test 3: 

𝑀𝐷,𝐼 ≤ 𝑀𝐴𝐷,𝐴     𝑎𝑛𝑑    𝑀𝐷,𝐼  ≤ 𝑀𝐷,𝑃     (73)    𝑎𝑛𝑑     𝑀𝐷,𝐼  ≥ 0 

𝑂 = ∑ 𝑀𝐷,𝐼
𝑠𝑢𝑏𝑤𝑎𝑡𝑒𝑟𝑠ℎ𝑒𝑑𝑠

    𝑎𝑛𝑑    𝑂 ≥ 0 

𝑀𝐴𝐷,𝐺 = 𝑀𝐷,𝐼 +𝑀𝐷,𝑅 +𝑀𝐴𝐷,𝐴    𝑎𝑛𝑑    ∑ 𝑀𝐴𝐷,𝐺
𝑠𝑢𝑏𝑤𝑎𝑡𝑒𝑟.

= 𝑂 + ∑ 𝑀𝐷,𝑅
𝑠𝑢𝑏𝑤𝑎𝑡𝑒𝑟.

+ ∑ 𝑀𝐴𝐷,𝐴
𝑠𝑢𝑏𝑤𝑎𝑡𝑒𝑟.

 

Finally, for verification test 4: 

𝑀𝐷,𝐼 ≤ 𝑀𝐴𝐷,𝐴 𝑎𝑛𝑑 𝑀𝐷,𝐼  ≤ 𝑀𝐷,𝑃 +𝑀𝐷,𝑊    (74)    𝑎𝑛𝑑 𝑀𝐷,𝐼  ≥ 0 

𝑂 = ∑ 𝑀𝐷,𝐼
𝑠𝑢𝑏𝑤𝑎𝑡𝑒𝑟𝑠ℎ𝑒𝑑𝑠

    𝑎𝑛𝑑     𝑂 ≥ 0     𝑎𝑛𝑑     𝑂 ≥ 𝑂 𝑜𝑓 𝑡𝑒𝑠𝑡 2 𝑎𝑛𝑑 3    (75)  

𝑀𝐴𝐷,𝐺 = 𝑀𝐷,𝐼 +𝑀𝐷,𝑅 +𝑀𝐴𝐷,𝐴    𝑎𝑛𝑑    ∑ 𝑀𝐴𝐷,𝐺
𝑠𝑢𝑏𝑤𝑎𝑡𝑒𝑟.

= 𝑂 + ∑ 𝑀𝐷,𝑅
𝑠𝑢𝑏𝑤𝑎𝑡𝑒𝑟.

+ ∑ 𝑀𝐴𝐷,𝐴
𝑠𝑢𝑏𝑤𝑎𝑡𝑒𝑟.

 

 

The verification is performed for four versions of the model, which are discussed in sub section 7.2. 

Experimental plan’. For the models which do not use the available debris on land 𝑀𝐴𝐷,𝐴 nor the removal 

of debris by street sweeping 𝑀𝐷,𝑅, i.e. the approach adopted by Wan et al. (2018) [29], some equations 

are different: 
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Equation 46 becomes: 𝑀𝐷,𝐼 ≤ 𝑀𝐴𝐷,𝐺     (76) 

Equation 50 becomes: 𝑀𝐴𝐷,𝐺 = 𝑀𝐷,𝐼 +𝑀𝐴𝐷,𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑜𝑛 𝑙𝑎𝑛𝑑     (77) 

Equation 51 becomes: ∑ MAD,Gsubwater. = O + ∑ MAD,remaining on landsubwater.     (78) 

 

For the verification, the following configuration parameters will be used:  

Table 45. Parameter values for verification. 

Parameter22 Value 

𝒎𝒂𝒅𝒈 [kg] 𝟏 ∙ 𝑷𝒐𝒑 

Number of sub watersheds 3 

Population of sub watersheds 10000 

𝒌𝒑 [kg/m3] 1 

𝒌𝒘 [kg· s2/m2] 1 

𝑸𝒃 [mm] 1 

𝑽𝟎 [m/s] 1 

𝒎𝑫,𝑹 [kg]23 0.009 ∙ 𝑃𝑜𝑝  

𝜶_𝒑𝒆𝒓𝒄/𝜶_𝒑𝒆𝒓𝒄𝟏𝟓 (% of area with slope <15% and >15%) 50% 

𝜶 (Average slope <15%) 1 

𝜶𝟏𝟓 (Average slope >15%) 20 

Area of sub watershed [m2] 106 

Distance sub watershed to any of the weather stations [m] 103 

Percentage of area allocated to each of the four soil groups 100/4 = 25% 

Percentage of area allocated to each of the 18 land use groups 100/18 = 5.6% 

 

Note that each parameter applies to every sub watershed. 

 

  

                                                
22 Note that for the model calibration and validation, the units are different, [kg] = [#debris]. 
23 For the calibration of the model parameters and the model validation, 𝑀𝐷,𝑅 has not been separately estimated 

but included as part of 𝑀𝑎𝑑𝑔. 
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Appendix M: Verification data and verification sheets 

Verification is performed for T = 6 days. The verification data for debris accumulation and the weather 

data can be found below. All weather stations use the same weather measurements. 

Table 46. Verification data for debris accumulation. 

Date Day Month Year Aggregated totals for PB, PS, 

GrB and ChB 

Cumulative totals for 

PB, PS, GrB and ChB 

3-1-2019 3 1 2019 5000 10000 

3-1-2019 3 1 2019 5000 0 

6-1-2019 6 1 2019 5000 25000 

6-1-2019 6 1 2019 5000 0 

6-1-2019 6 1 2019 5000 0 

6-1-2019 6 1 2019 5000 0 

6-1-2019 6 1 2019 5000 0 

 

Table 47. Verification data for the weather stations. 

Day Month Year Hour Min P_0 [mm] V_0 [m/s] P_max [mm] Vmax [m/s] 

1 1 2019 0 30 0 0 10 25 

1 1 2019 1 30 0 0 10 25 

1 1 2019 2 30 0 0 10 25 

1 1 2019 3 30 0 0 10 25 

1 1 2019 4 30 0 0 10 25 

1 1 2019 5 30 0 0 10 25 

1 1 2019 6 30 0 0 10 25 

1 1 2019 7 30 0 0 10 25 

1 1 2019 8 30 0 0 10 25 

1 1 2019 9 30 0 0 10 25 

1 1 2019 10 30 0 0 10 25 

1 1 2019 11 30 0 0 10 25 

1 1 2019 12 30 0 0 10 25 

 

The verification sheets of model M1, M2, M3 and M4 are shown on the next subsequent pages. 
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Table 48. Verification sheet parameters M1. 

 

 

Table 49. Verification sheet balance equations M1. 

 

 

 

 

 

 

 

 

 

 Type 
Possible/ 

Pausible value ranges 
Matrix 

dimensions 

Tests 

1 3 

MAD test 1 [kg] INT 35000    

MAD test 3 [kg] INT 26600    

DN, DS, DW IV 1, 2, 3, 4, 5, 6 144x1  

ME test 1 [kg] INT -35000    

ME test 3 [kg] INT -26600    

HN, HS, HW  IV {0,1,....,23} 144x1  

Madg [kg] INT 100 14x1  

Mdi [kg] test 1 INT 0 6x14   

Mdi [kg] test 3 INT [0,  100] 6x14   

Mdp [kg] test 1 INT 0 6x14   

Mdp [kg] test 3 INT 0,  2390000 6x14   

MmN, MmS, MmW INT 30 144x1  

MN, MS, MW IV 1 144x1  

n1  INT 144 1x1  

n0 INT 121 1x1  

normdist INT 1/3 14x3  

O test 1 [kg] OV 0 6x1   

O test 3 [kg] OV 1400 6x1   

Outputmodel test 1 [kg] OV 0 2x1   

Outputmodel test 2 [kg] OV 4200 2x1   

P [mm] test 1 INT 0 6x14   

P [mm] test 3 INT 10·24 = 240 6x14   

Pn, Ps, Pw [mm]  test 1 INT 0 6x1   

Pn, Ps, Pw [mm]  test 3 INT 10·24 = 240 6x1   

PN, PS, PW [mm]  test 1 IV 0 144x1   

PN, PS, PW [mm]  test 3 IV 10 144x1   

Realdata [number of debris] IV 10000, 25000 2x1  

tspanN, tspanS, tspanW [min] INT 60 144x1  

YN, YS, YW IV 2019 144x1  

Equation Tests Test 1 Test 3 
𝑴𝑫,𝑰 ≤ 𝑴𝑨𝑫,𝑮 all   

𝑴𝑫,𝑰 ≤ 𝑴𝑫,𝑷 Test 3   

𝑴𝑨𝑫,𝑮 = 𝑴𝑫,𝑰 +𝑴𝑨𝑫,𝒓𝒆𝒎𝒂𝒊𝒏𝒊𝒏𝒈 𝒐𝒏 𝒍𝒂𝒏𝒅 all   

∑ 𝑴𝑨𝑫,𝑮

𝒔𝒖𝒃𝒘𝒂𝒕𝒆𝒓.

= 𝑶+ ∑ 𝑴𝑨𝑫,𝒓𝒆𝒎𝒂𝒊𝒏𝒊𝒏𝒈 𝒐𝒏 𝒍𝒂𝒏𝒅

𝒔𝒖𝒃𝒘𝒂𝒕𝒆𝒓.

 
all   
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Table 50. Verification sheet parameters M2. 

 

 

 

 

 

 

 

 Type 
Possible/ 

Pausible value ranges 
Matrix 

dimensions 

Tests 

1 3 

Absolute error test 1 [kg] INT 35000 2x1   

Absolute error test 3 [kg] INT 26600 2x1   

CN values INT [30, 100]    

DN, DS, DW IV 1, 2, 3, 4, 5, 6 144x1  

Error test 1 [kg] INT -35000    

Error test 3 [kg] INT -26600    

HN, HS, HW  IV {0,1,....,23} 144x1  

Ia [mm] INT [0, 30) -   

Madg [kg] INT 100 14x1  

Mdi [kg] test 1 INT 0 6x14   

Mdi [kg] test 3 INT [0,  100] 6x14   

Mdp [kg] test 1 INT 0 6x14   

Mdp [kg] test 3 INT 0,  2390000 6x14   

MmN, MmS, MmW INT 30 144x1  

MN, MS, MW IV 1 144x1  

n1  INT 144 1x1  

n0 INT 121 1x1  

normdist INT 1/3 14x3  

O test 1 [kg] OV 0 6x1   

O test 3 [kg] OV 1400 6x1   

Outputmodel test 1 [kg] OV 0 2x1   

Outputmodel test 2 [kg] OV 4200 2x1   

P [mm] test 1 INT 0 6x14   

P [mm] test 3 INT 10·24 = 240 6x14   

P5 [mm]  test 1 INT 0 -   

P5 [mm]  test 3 INT 1200 -   

Pn, Ps, Pw [mm]  test 1 INT 0 6x1   

Pn, Ps, Pw [mm]  test 3 INT 10·24 = 240 6x1   

PN, PS, PW [mm]  test 1 IV 0 144x1   

PN, PS, PW [mm]  test 3 IV 10 144x1   

Q [m3]  test 1 INT (0 , 7.08·106) 6x14   

Q [m3]  test 3 INT (0 , 7.08·106) 6x14   

Realdata [number of debris] IV 10000, 25000 2x1  

S [mm] INT [0, 593) -   

S [mm] INT [0, 593) -   

tspanN, tspanS, tspanW [min] INT 60 144x1  

YN, YS, YW IV 2019 144x1  
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Table 51. Verification sheet balance equations M2. 

 

 

 

 

 

  

Equation Tests Test 1 Test 3 
𝑴𝑫,𝑰 ≤ 𝑴𝑨𝑫,𝑮 all   

𝑴𝑫,𝑰 ≤ 𝑴𝑫,𝑷 Test 3   

𝑴𝑨𝑫,𝑮 = 𝑴𝑫,𝑰 +𝑴𝑨𝑫,𝒓𝒆𝒎𝒂𝒊𝒏𝒊𝒏𝒈 𝒐𝒏 𝒍𝒂𝒏𝒅 all   

∑ 𝑴𝑨𝑫,𝑮

𝒔𝒖𝒃𝒘𝒂𝒕𝒆𝒓.

= 𝑶+ ∑ 𝑴𝑨𝑫,𝒓𝒆𝒎𝒂𝒊𝒏𝒊𝒏𝒈 𝒐𝒏 𝒍𝒂𝒏𝒅

𝒔𝒖𝒃𝒘𝒂𝒕𝒆𝒓.

 
all   
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Table 52. Verification sheet parameters M3. 

  

 

Table 53. Verification sheet balance equations M3. 

 

 

 

 

  

 Type 
Possible/ 

Pausible value ranges 

Matrix 

dimensions 

Tests 

1 3 

Absolute error test 1 [kg] INT 35000    

Absolute error test 3 [kg] INT 27440    

DN, DS, DW IV 1, 2, 3, 4, 5, 6 144x1  

Error test 1 [kg] INT -35000    

Error test 3 [kg] INT -26600    

HN, HS, HW  IV {0,1,....,23} 144x1  

Madg [kg] INT 100 14x1  

Mda [kg] test 1 INT 90, 540 6x14   

Mda [kg] test 3 INT 90, 180 6x14   

Mdi [kg] test 1 INT 0 6x14   

Mdi [kg] test 3 INT 0,  90, 180 6x14   

Mdp [kg] test 1 INT 0 6x14   

Mdp [kg] test 3 INT 0,  2390000 6x14   

Mdr [kg] test 1 INT 10 6x14   

MmN, MmS, MmW INT 30 144x1  

MN, MS, MW IV 1 144x1  

n1  INT 144 1x1  

n0 INT 121 1x1  

normdist INT 1/3 14x3  

O test 1 [kg] OV 0 6x1   

O test 3 [kg] OV 1260, 2520 6x1   

Outputmodel test 1 [kg] OV 0 2x1   

Outputmodel test 3[kg] OV 3780 2x1   

P [mm] test 1 INT 0 6x14   

P [mm] test 3 INT 10·24 = 240 6x14   

Pn, Ps, Pw [mm]  test 1 INT 0 6x1   

Pn, Ps, Pw [mm]  test 3 INT 10·24 = 240 6x1   

PN, PS, PW [mm]  test 1 IV 0 144x1   

PN, PS, PW [mm]  test 3 IV 10 144x1   

Realdata [number of debris] IV 10000, 25000 2x1  

tspanN, tspanS, tspanW [min] INT 60 144x1  

YN, YS, YW IV 2019 144x1  

Equation Tests Test 1 Test 3 
𝑴𝑫,𝑰 ≤ 𝑴𝑨𝑫,𝑨 all   

𝑴𝑫,𝑰 ≤ 𝑴𝑫,𝑷 Test 3   

𝑴𝑨𝑫,𝑮 = 𝑴𝑫,𝑰 +𝑴𝑫,𝑹 +𝑴𝑨𝑫,𝑨 all   

∑ 𝑴𝑨𝑫,𝑮

𝒔𝒖𝒃𝒘𝒂𝒕𝒆𝒓.

= 𝑶+ ∑ 𝑴𝑫,𝑹

𝒔𝒖𝒃𝒘𝒂𝒕𝒆𝒓.

+ ∑ 𝑴𝑨𝑫,𝑨

𝒔𝒖𝒃𝒘𝒂𝒕𝒆𝒓.

 
all   
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Table 54. Verification sheet balance equations M4. 

 
Type 

Possible/Pausible 
value ranges 

Matrix 
dimensions 

Experiment 

 1 2 3 4 

Absolute error test 1 [kg] INT 35000 2x1     

Absolute error test 2 [kg] INT 27440 2x1     

Absolute error test 3 [kg] INT 27440 2x1     

Absolute error test 4 [kg] INT 27440 2x1     

DN, DS, DW  IV 1, 2, 3, 4, 5, 6 144x1  

Error  test 1 [kg] INT -35000 2x1     

Error  test 2 [kg] INT -27440 2x1     

Error  test 3 [kg] INT -27440 2x1     

Error  test 4 [kg] INT -27440 2x1     

HN, HS, HW [hour] IV {0,1,....,23} 144x1  

Madg [kg] INT 100 14x1  

Mda [kg] INT [90, 540] 6x14     

Mda [kg] INT 90, 180 6x14     

Mda [kg] INT 90, 180 6x14     

Mda [kg] INT 90, 180 6x14     

Mdi [kg] test 1 INT 0 6x14     

Mdi [kg] test 2 INT 0,90,180 6x14     

Mdi [kg] test 3 INT 0,90,180 6x14     

Mdi [kg] test 4 INT 0,90,180 6x14     

Mdp [kg] test 1 INT 0 6x14     

Mdp [kg] test 2 INT 0 6x14     

Mdp [kg] test 3 INT 0,  2390000 6x14     

Mdp [kg] test 4 INT 0,  2390000 6x14     

Mdr [kg]  INT 10 14x1  

Mdw [kg] test 1 INT 0 6x14     

Mdw [kg] test 2 INT 0, 6.24·106 6x14     

Mdw [kg] test 3 INT 0 6x14     

Mdw [kg] test 4 INT 0, 6.24·106 6x14     

MmN, MmS, MmW INT 30 144x1  

MN, MS, MW IV 1 144x1  

n1  INT 144 1x1  

n0 INT 121 1x1  

normdist INT 1/3 14x3  

O test 1 [kg] OV 0 6x1     

O test 2 [kg] OV 1260, 2520 6x1     

O test 3 [kg] OV 1260, 2520 6x1     

O test 4 [kg] OV 1260, 2520 6x1     

Outputmodel test 1 [kg] OV 0 2x1     

Outputmodel test 2 [kg] OV 3780 2x1     

Outputmodel test 3 [kg] OV 3780 2x1     

Outputmodel test 4 [kg] OV 3780 2x1     

P [mm] test 1 INT 0 6x14     

P [mm] test 2 INT 0 6x14     

P [mm] test 3 INT 10·24 = 240 6x14     

P [mm] test 4 INT 10·24 = 240 6x14     



175 
 

 

Table 55. Verification sheet balance equations M3. 

Equation Tests Test 1 Test 2 Test 3 Test 4 
𝑴𝑫,𝑰 ≤ 𝑴𝑨𝑫,𝑨 all     

𝑴𝑫,𝑰 ≤ 𝑴𝑫,𝑾 Test 2     

𝑴𝑫,𝑰 ≤ 𝑴𝑫,𝑷 Test 3     

𝑴𝑫,𝑰 ≤ 𝑴𝑫,𝑷 +𝑴𝑫,𝑾 Test 4     

𝑴𝑨𝑫,𝑮 = 𝑴𝑫,𝑰 +𝑴𝑫,𝑹 +𝑴𝑨𝑫,𝑨 all     

∑ 𝑴𝑨𝑫,𝑮

𝒔𝒖𝒃𝒘𝒂𝒕𝒆𝒓.

= 𝑶+ ∑ 𝑴𝑫,𝑹

𝒔𝒖𝒃𝒘𝒂𝒕𝒆𝒓.

+ ∑ 𝑴𝑨𝑫,𝑨

𝒔𝒖𝒃𝒘𝒂𝒕𝒆𝒓.

 
all     

O (test 4) ≥ O (test 3) and ≥ O (test 2) Test 4     

 

 

 

 

Pop CP 10000 14x1  

Pn, Ps, Pw [mm]  test 1 INT 0 6x1     

Pn, Ps, Pw [mm]  test 2 INT 0 6x1     

Pn, Ps, Pw [mm]  test 3 INT 10·24 = 240 6x1     

Pn, Ps, Pw [mm]  test 4 INT 10·24 = 240 6x1     

PN, PS, PW [mm]  test 1 IV 0 144x1     

PN, PS, PW [mm]  test 2 IV 0 144x1     

PN, PS, PW [mm]  test 3 IV 10 144x1     

PN, PS, PW [mm]  test 4 IV 10 144x1     

Realdata [number of 

debris] 
IV 10000, 25000 2x1  

tspanN, tspanS, tspanW 
[min] 

INT 60 144x1  

Vn, Vs, Vw [m/s]  test 1 INT 0 6x1     

Vn, Vs, Vw [m/s]  test 2 INT 252 = 625 6x1     

Vn, Vs, Vw [m/s]  test 3 INT 0 6x1     

Vn, Vs, Vw [m/s]   test 4 INT 252 = 625 6x1     

Vsq [m/s]  test 1 INT 0 6x14     

Vsq [m/s]  test 2 INT 252 = 625 6x14     

Vsq [m/s]  test 3 INT 0 6x14     

Vsq [m/s]  test 4 INT 252 = 625 6x14     

WN, WNraw, WS, WSraw, 

WWraw, WWraw test 1 
IV 0 144x1     

WN, WNraw, WS, WSraw, 
WWraw, WWraw test 2 

IV 25 144x1     

WN, WNraw, WS, WSraw, 

WWraw, WWraw test 3 
IV 0 144x1     

WN, WNraw, WS, WSraw, 

WWraw, WWraw test 4 
IV 25 144x1     

YN, YS, YW IV 2019 -  
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Appendix N: Calibration of model parameters 

N.1. Simulated annealing 

The following parameters, cooling schedule and neighborhood function were applied after tuning the 

algorithm: 

Table 56. Simulated annealing parameters, cooling schedule and neighborhood function. 

SA parameters Value/definition 

Starting temperature 𝑻𝟎 1,000,000 

Cooling schedule Geometric, 𝑇 = 𝑇0 ∙ 𝛼
𝑡 

Cooling factor 𝜶 0.99998 

Total iterations 1E6 

Neighborhood function Binary numbers 

 

The solution space was determined separately for each parameter. For  𝑘𝑝 , it was determined by 

calculating a first estimate, dividing the average total accumulation of debris by the average precipitation 

over the same period and the total watershed population:  

𝑘𝑝 =
 𝑚𝐼

𝑃𝑜𝑝 ∙ 𝑃
    (79) 

This is because the population of each sub watershed was used as a weight factor in the debris input 

equation: 

 𝑚𝐼 = 𝑚𝐷,𝑃 = 𝑘𝑝 ∙ 𝑃𝑜𝑝 ∙ (𝑃 − 𝑃𝑏) ∙ ∆𝑡    (80) 

The obtained number is subsequently divided by 10 and multiplied by 10 to obtain the lower and upper 

bound of the solution space. It is assumed 𝑘𝑝 will operate between these numbers. Subsequently, once 

the step size was chosen, the quantity of steps determined the amount of bits required, in this case 13. 

For  𝑀𝑎𝑑𝑔 , the lower and upper bound were obtained by using the maximum daily accumulation 

registered, namely 55980 debris items. The maximum and 1% of the maximum determined the lower 

and upper bound. A similar approach was used to acquire the number of bits, namely 16. For the 

precipitation threshold 𝑃𝑏, 100 steps were selected, ranging from 0 to 9.9 mm. This requires 7 bits. An 

overview of all the lower, upper bounds, step sizes, bits and parameter functions can be found below 

in table 57 below. The upper bound has been adjusted upwards for the number of steps available by 

the number of bits. 

Table 57. Lower, upper bounds, step sizes, bits and parameter functions used for simulated annealing. 

  𝑴𝒂𝒅𝒈 𝒌𝒑  𝑷𝒃 

Lower bound desired 560 0.000567 0 

Upper bound desired 55980 0.0567 9.9 

Step size 1 0.00001 0.1 

Steps 55421 5618 100 

Minimum bits needed 16 13 7 

Steps available 65536 8192 128 

Upper bound with selected bits 66096 0.08759 12.7 

Parameter function 560+ step 0.000567 + 0.00001·step 0 + 0.1·(step-1) 
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The simulated annealing algorithm as defined for model two (M2) is defined as follows: 

Objective function 𝑀2(𝑥1, 𝑥2, 𝑥3), with 𝑥1 =  𝑀𝑎𝑑𝑔 , 𝑥2 = 𝑘𝑝 𝑎𝑛𝑑 𝑥3 = 𝑄𝑏 

Initialize initial temperature 𝑇0 and initial guess 𝑥1
(0)
, 𝑥2
(0)
, 𝑥3
(0)

 

Set maximum number of iterations N 
Define cooling constant 𝛼 

 
for n = 1: N 

 
Move to new location: 

Choose randomly one parameter to change, parameter 𝑥𝑖, 𝑖 ∈ {1,2,3} 
Choose randomly one bit to change 
Change parameter 𝑥𝑖 

Calculate difference in performance ∆𝑀2 = 𝑀2(𝑥𝑖
(𝑛), 𝑥𝑖𝑖

(𝑛), 𝑥𝑖𝑖
(𝑛)) − 𝑀2(𝑥𝑖

(𝑛−1), 𝑥𝑖𝑖
(𝑛−1), 𝑥𝑖𝑖

(𝑛−1)),  

with 𝑥𝑖
(𝑛) ≠ 𝑥𝑖

(𝑛) 𝑎𝑛𝑑 𝑥𝑖𝑖
(𝑛) ≠ 𝑥𝑖𝑖

(𝑛), 𝑤𝑖𝑡ℎ 𝑖𝑖 ∈ {1,2,3} ∪ 𝑖𝑖 ≠ 𝑖 

if ∆𝑀2 > 0, accept new solution 

else  

 Generate a random number 

 Accept if 𝑒𝑥𝑝 (−
∆𝑀2

𝑇
) > 1 

end 

Update new best 𝑥𝑖 if necessary 

Update temperature: 𝑇𝑛 = 𝑇𝑛−1 ∙ 𝛼 

end 
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N.2. Figures model training 

The figures below show the actual debris accumulation and predicted debris accumulation for the 

calibrated values obtained through model training. 

 

Fig. 86. Actual and predicted debris accumulation after training of model (M1). 

 

Fig. 87. Actual and predicted debris accumulation after training of model 1 (M1), SA. 
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Fig. 88. Actual and predicted debris accumulation after training of model 2 (M2), GSM. 

 

 

Fig. 89. Actual and predicted debris accumulation after training of model 3 (M3). 
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Fig. 90 Actual and predicted debris accumulation after training of model 4 (M4). 
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Appendix O: Graphs validation analysis 

In this appendix the graphs can be found, as discussed in subsection 7.5.1. 

 

Fig. 91. A comparison between the predicted and actual accumulation of debris for M1, GSM (the dots 

representing the values were connected by lines to improve readability). 

 

 

Fig. 92. A comparison between the predicted and actual accumulation of debris for M1, SA (the dots representing 

the values were connected by lines to improve readability). 
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Fig. 93. A comparison between the predicted and actual accumulation of debris for M2, GSM (the dots 

representing the values were connected by lines to improve readability). 

 

Fig. 94. A comparison between the predicted and actual accumulation of debris for M3, GSM (the dots 

representing the values were connected by lines to improve readability). 
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Fig. 95. A comparison between the predicted and actual accumulation of debris for M4, GSM (the dots 

representing the values were connected by lines to improve readability). 

 

Fig. 96. A comparison between the predicted and actual accumulation of debris for ABPM (the dots representing 

the values were connected by lines to improve readability). 
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Fig. 97. Time series with line fit, actual values.  

 

Fig. 98. Time series with line fit, M1 (GSM).  

 

Fig. 99. Residuals, M1 (GSM).  

 

Fig. 100. Time series with line fit, M1 (SA).  
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Fig. 101.  Residuals, M1 (SA).  

 

Fig. 102. Time series with line fit, M2 (GSM). 

 

Fig. 103.  Residuals, M2 (GSM).  

 

Fig. 104. Time series with line fit, M3 (GSM).  
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Fig. 105.  Residuals, M3 (GSM).  

 

Fig. 106. Time series with line fit, M4 (GSM).  

 

Fig. 107.  Residuals, M4 (GSM).  
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Fig. 108. Mean errors for various timespans, all models. 
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Fig. 109. Mean absolute deviation (MAD/MAE) for various timespans, all models. 
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Appendix P: Graphs sensitivity analysis 

The results of the sensitivity analysis are given below. These results are discussed in subsection 7.5.2. 

 

 

Fig. 110. Model performance (MAD) for various values of 𝑘𝑝. 

 

 

Fig. 111. Model performance (MAD) for various values of 𝑀𝑎𝑑𝑔. 
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Fig. 112. Model performance (MAD) for various values of 𝑄𝑏. 

 

 

Fig. 113. Model performance (MAD) for various values of 𝑘𝑤. 
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Fig. 114. Model performance (MAD) for various values of 𝑉0. 

 


