
 
 

Delft University of Technology

Local Generalized Nash Equilibria with Nonconvex Coupling Constraints

Scarabaggio, Paolo; Carli, Raffaele; Grammatico, Sergio; Dotoli, Mariagrazia

DOI
10.1109/TAC.2024.3462553
Publication date
2025
Document Version
Final published version
Published in
IEEE Transactions on Automatic Control

Citation (APA)
Scarabaggio, P., Carli, R., Grammatico, S., & Dotoli, M. (2025). Local Generalized Nash Equilibria with
Nonconvex Coupling Constraints. IEEE Transactions on Automatic Control, 70(3), 1427-1439.
https://doi.org/10.1109/TAC.2024.3462553

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TAC.2024.3462553
https://doi.org/10.1109/TAC.2024.3462553


IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 70, NO. 3, MARCH 2025 1427

Local Generalized Nash Equilibria With
Nonconvex Coupling Constraints

Paolo Scarabaggio , Member, IEEE, Raffaele Carli , Senior Member, IEEE,
Sergio Grammatico , Senior Member, IEEE, and Mariagrazia Dotoli , Fellow, IEEE

Abstract—In this article, we address a class of Nash
games with nonconvex coupling constraints for which we
define a novel notion of local equilibrium, here named lo-
cal generalized Nash equilibrium (LGNE). Our first techni-
cal contribution is to show the stability in the game the-
oretic sense of these equilibria on a specific local subset
of the original feasible set. Remarkably, we show that the
proposed notion of local equilibrium can be equivalently
formulated as the solution of a quasi-variational inequality
with equal Lagrange multipliers. Next, under the additional
proximal smoothness assumption of the coupled feasible
set, we define conditions for the existence and local unique-
ness of an LGNE. To compute such an equilibrium, we
propose two discrete-time dynamics, or fixed-point itera-
tions implemented in a centralized fashion. Our third tech-
nical contribution is to prove convergence under (strongly)
monotone assumptions on the pseudogradient mapping of
the game and proximal smoothness of the coupled feasible
set. Finally, we apply our theoretical results to a noncoop-
erative version of the optimal power flow control problem.

Index Terms—Generalized Nash equilibrium (GNE), mul-
tiagent systems, nonconvex generalized games, variational
inequalities (VIs).

I. INTRODUCTION

IN NONCOOPERATIVE games, a number of self-interested
agents with their own individual dynamics and constraints

aim at optimizing their objective functions, possibly in
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competition with each other, e.g., due to the scarcity of shared
resources. In this context, one of the most important concepts
is the Nash equilibrium (NE) [1], which has been adopted
as a solution concept in many applications, from electricity
markets to mobile-edge computing [2], [3]. Whenever the
feasible set of an agent depends on the strategies of the other
agents, the concept of equilibrium is extended to the so-called
generalized Nash equilibrium (GNE) [4], which is recently
getting strong attention from researchers of different fields,
since the presence of coupled feasible sets is widespread in
real-world applications [5], [6], [7], [8], [9], [10].

From a control-theoretic perspective, the objective is to de-
velop a mechanism, namely, a discrete-time dynamical system,
for updating the strategies of the agents towards an equilibrium.
Solving this problem is difficult, since the objective function and
the constraints of each agent are interdependent. While the NE of
a game with compact local feasible sets and strongly monotone
pseudogradient is unique, uniqueness is instead not guaranteed
in games with shared constraints. Thus, most methods to reach
an equilibrium typically rely on the variational inequality (VI)
theory [11], which has the advantage of possibly selecting a
particular solution named normalized solution or variational
generalized Nash equilibrium (vGNE); the latter is usually
referred to as “economically meaningful” [11], “more socially
stable” or “fair” [12], [13].

Most of the related literature focuses on jointly convex (JC)
games that have locally convex objective functions and convex
feasible set [14]. These assumptions allow ensuring the existence
of equilibria and global convergence to solution algorithms [15],
[16]. Furthermore, thanks to convexity, the global convergence
of several classes of multiagent dynamics (centralized, decen-
tralized, and distributed) to a GNE can be guaranteed [14], [17],
[18], [19], [20].

Nevertheless, in many applications, convexity does not hold,
and thus, some alternative approaches have been proposed in the
literature. Among the works considering nonconvex games, let
us mention the equilibrium notions of weak NE [21], local NE
(LNE) [22], generalized equilibrium [23], and critical NE [15].
All these concepts focus on the Nash equilibrium problem
(NEP) and do not apply to games with coupling constraints. For
instance, in [16] and [24], the authors develop an optimization-
based theory for games with nonconvex objective functions and
nonconvex side constraints. Specifically, the authors define the
concept of quasi-Nash equilibrium (QNE), defined as the solu-
tion of the VI obtained by aggregating the first-order optimality
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conditions of the individual agents. This approach has been
applied to nonconvex power allocation games in cognitive radio
networks [24], [25].

Ratliff et al. [26] present a framework to characterize local
Nash equilibria in continuous games with nonconvex feasible
sets. The approach relies on necessary and sufficient first- and
second-order conditions to ensure optimality of the local equi-
librium point, thanks to the local convexity of the solution space
around the equilibrium point. Notably, Ratliff et al. [26] does
not propose any algorithm, nor demonstrate the convergence to
these equilibria.

Differently from the state of the art, in this article, we intro-
duce a novel local equilibrium concept that we call local gen-
eralized Nash equilibrium (LGNE). We define this equilibrium
over the linearized feasible directions set as a local subset, and
we show that it satisfies the first-order optimality conditions
of the optimization problems of the agents. By characterizing
such equilibria, we leverage on the theory of quasi-variational
inequalities (QVIs) to define locally variational, and thus, locally
fair, equilibrium points. Then, by introducing an additional
assumption on the proximal smoothness of the coupled feasi-
ble set, we demonstrate the existence of these equilibria and
their local uniqueness in a well-defined subset of the original
nonconvex feasible set. To compute a variational LGNE, we
design two discrete-time autonomous dynamics, or fixed-point
iterations, that we implement in a centralized fashion. We prove
convergence of our proposed dynamics to an equilibrium under
certain technical conditions, namely (strongly) monotone pseu-
dogradient mapping of the game and proximally smoothness
of the coupled feasible set. Finally, we apply our theoretical
results to power systems control and particularly to the optimal
power flow (OPF) problem. Several game-theoretic methods
have been proposed for solving this problem [12], yet most
disregard physical constraints due to their nonconvexity. Instead,
we propose a noncooperative version of the OPF including
the actual power flow equations, namely, a set of nonlinear
nonconvex algebraic equations. The resulting noncooperative
game with shared nonconvex constraints falls exactly in our
proposed framework, thus allowing us to analyze the proposed
concept in one of the most important problems in power systems
control.

The rest of this article is organized as follows. In Section II,
we define the problem setup, and we report the basic definitions
and assumptions used in the sequel. In Section III, we introduce
the novel theoretical concept of LGNE together with some
examples. Existence and uniqueness are discusses in Section IV,
while two algorithms to search for an equilibrium are presented
in Section V. In Section VI we show the illustrative applica-
tion of our framework and some related numerical examples.
Finally, Section VII concludes this article. Appendix A reports
some useful notions on cones theory. All proofs are given in
Appendix B.

Basic notation: Rn, Rn
>0, and Rn

≥0 denote the set of real,
positive real, and nonnegative real n-dimensional vectors, re-
spectively. N denotes the set of natural numbers. B denotes
the closed unit ball centered at zero. A� denotes the trans-
pose of A. ‖A‖ is the square norm of A. 0n and 1n indicate

the column vectors with n entries all equal to 0 and to 1,
i.e., 0n := (0, . . ., 0)� ∈ Rn and 1n := (1, . . ., 1)� ∈ Rn, re-
spectively. Moreover, x := col(x1, . . ..,xn) is equal to x :=
(x�

1 , . . ..,x
�
n)

�. We define the mapping projX (·) : Rn → X
as the projection into the generic closed nonempty set X ⊆
Rn, i.e., projX (y) = argminx∈X ‖x− y‖. Moreover, we de-
fine the mapping dist(x,y) := ‖x− y‖ as the distance oper-
ator between two points and dist(y,X ) := minx∈X ‖x− y‖
as the distance operator between a point and a set. For a
generic closed nonempty set X ⊆ Rn, we define the topo-
logical closure cl(X ) and the boundary bd(X ). The mapping
F (·) : Rn → Rn is Lipschitz continuous with a constant � ∈
R>0 if ‖F (x)− F (y)‖ ≤ �‖x− y‖ ∀x,y ∈ Rn. F is strongly
monotone with a constant μ ∈ R>0 if (F (x)− F (y))�(x−
y)) ≥ μ‖x− y‖2 ∀x,y ∈ Rn while F is pseudo monotone if
F (y)�(x− y)) ≥ 0 ⇒ F (x)�(x− y)) ≥ 0, ∀x,y ∈ Rn. Fi-
nally, we define F̄X := supx∈X ‖F (x)‖.

II. GENERALIZED NASH EQUILIBRIUM PROBLEMS

We consider a game composed of a set of N agents,
indexed by i ∈ N := {1, . . ., N} ⊆ N each with deci-
sion variables xi ∈ Rn. Moreover, we define vectors
x−i := col(x1, . . ..,xi−1,xi+1, . . .,xN ) ∈ R(N−1)n and x :=
col(x1, . . ..,xi, . . .,xN ) ∈ RNn, collecting the strategies of all
agents different from i and the strategies of all agents, respec-
tively. Each agent i ∈ N tries to minimize its cost function
fi(xi,x−i) : Rn × R(N−1)n → R by choosing a strategy in its
local feasible set xi ∈ Ωi ⊆ Rn, hence, x ∈ Ω =

∏N
i=1 Ωi.

In addition, let us consider a finite number of constraints
indexed by m ∈ M := {1, . . .,M}⊆N, each denoted as
gm(x) ≤ 0, defining the coupled feasible set as follows:

X = Ω ∩
{
x∈RNn | g(x) ≤ 0M

}
(1)

where g(x) := ((gm(x))m∈M). By defining the set-valued map-
ping Xi(x−i) := {yi∈Rn | (yi,x−i) ∈ X}, one can define the
N interdependent optimization problems as follows:

∀i ∈ N :

{
min
xi

fi(xi,x−i)

s.t. xi ∈ Xi(x−i).
(2)

To make the notation easier to follow, in the rest of this article,
we ignore the presence of local constraints. However, they can
be included directly in the coupled feasible set or approximated
via barrier functions in the objective function.

The latter problem is a GNEP whose solution is the GNE,
formally defined as follows.

Definition 1 (GNE): A GNE is a collective strategy x∗ ∈ X
such that for each i ∈ N it holds

fi(x
∗
i ,x

∗
−i)≤ inf

{
fi(xi,x

∗
−i) |xi ∈ Xi(x

∗
−i)

}
. (3)

�
In other words, a GNE is a collective strategy profile satisfying

the property that no single agent in the game can improve its
objective function by unilaterally changing its strategy with
another feasible one.

Properties such as stability, uniqueness, and optimality of
the GNE have been studied under different assumptions. The
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convexity of the coupling feasible set X in (1) is one of the most
employed assumptions [27]. Due to the nature of several appli-
cations, this set may be nonconvex. Here, we aim to analyze the
particular case of nonconvex feasible sets. Let us first introduce
some preliminary assumptions used in the rest of this article.

Assumption 1: For each i ∈ N and for everyx−i, the function
fi(·,x−i) in (2) is convex and continuously differentiable. �

Assumption 2: For each m ∈ M and for every x−i, the func-
tion gm(·,x−i) in (1) is continuously differentiable (possibly
nonconvex). The coupled feasible set X in (1) is nonempty,
compact, and satisfies the Mangasarian–Fromovitz constraint
qualification (MFCQ), i.e., for each x ∈ X , the gradients of the
equality constraints are linearly independent and there exists
a ∈ Rn such that ∇gi(x)

�a < 0 for all active inequality con-
straints and ∇gj(x)

�a = 0 for all equality constraints [28]. �

III. LOCAL GENERALIZED NASH EQUILIBRIA: DEFINITION AND

CHARACTERIZATION

Let us search for weaker equilibrium conditions, following
the approach commonly used in nonconvex optimization, which
consists of looking for a stationary (possibly locally optimal)
solution. In particular, let us propose a novel concept, namely
LGNE problem (LGNEP) and let us search for its possible
solution, i.e., the LGNE. Our approach relies on the definition
of the linearized feasible directions set at a point x for the
(nonconvex) set X in (1), denoted as F(X ,x). We note that
F(X ,x) is convex even if X is not, while due to Assumption 2,
it equals the so-called tangent cone, i.e., F(X ,x) = T (X ,x)
(see Appendix A for technical details). For the sake of keeping
the notation light, let us define X̃ (x) := x+ F(X ,x).

Definition 2 (LGNE): An LGNE is a collective strategy x∗ ∈
X such that for each i ∈ N

fi(x
∗
i ,x

∗
−i)≤ inf

{
fi(y,x

∗
−i) |y ∈ X̃i(x

∗
−i)

}
(4)

where the set-valued mapping X̃i(x−i) := {yi∈Rn |
(yi,x−i) ∈ X̃ (x)} is the linearized feasible directions set
of the ith agent and thus X̃ (x) =

∏N
i=1 X̃i(x−i). �

In other words, an LGNE is a stable collective strategy profile
with the property that no single agent can benefit by unilaterally
changing its strategy with another feasible one contained in the
linearized feasible directions set.

Remark 1: Whenever the feasible set X in (1) is convex, the
LGNEP is equivalent to the GNEP, since the set of LGNEs is
equal to that of GNEs. Indeed, the linearized feasible directions
set of a convex set includes the convex set itself [29]. �

Note that, in general, we may have multiple LGNEs for the
game and the sets of GNEs might be a subset of LGNEs.

A first approach to characterize an LGNE x∗ ∈ X is based on
employing normal cone N(X ,x∗) = T ◦(X ,x∗) = F◦(X ,x∗);
see Appendix A. For each agent i ∈ N , the following optimality
condition must be verified: −∇fi(x

∗
i ,x

∗
−i) ∈ N(Xi(x

∗
−i),x

∗
i ).

This version of the optimality conditions is however not useful
enough, due to the difficulty of constructing the normal cone
in the nonconvex case. Thus, let us characterize the LGNE by
deriving the Karush–Kuhn–Tucker (KKT) conditions for each

agent i ∈ N . For a constrained nonlinear program with a differ-
entiable objective function, the KKT conditions are necessary
conditions to be satisfied by a locally optimal solution under
an appropriate constraint qualification. More formally, the KKT
conditions for each agent are

KKTi :

{
0 ∈ ∇xi

fi(x
∗
i ,x

∗
−i) +∇xi

g(x∗
i ,x

∗
−i)λi

0M ≤ λi ⊥ g(x∗
i ,x

∗
−i) ≤ 0M

(5)

where we assume the existence of dual variables λi =
col(λ1

i , . . ., λ
m
i , . . ., λM

i ) ∈ RM
≥0 satisfying the KKT optimality

conditions for each individual optimization problem in (2). Note
that, if a constraint gm is not active at x, then the corresponding
Lagrangian multiplier λm

i is necessarily zero for all agents
i ∈ N . On the other hand, multipliers corresponding to the same
active constraint can have different values among agents.

Before exploiting the aforementioned optimality conditions,
let us make the following remark.

Theorem 1: Let Assumptions 1 and 2 hold. Then, the follow-
ing statements are equivalent:

1) x∗ ∈ X is an LGNE;
2) for each i ∈ N , −∇fi(x

∗
i ,x

∗
−i) ∈ N(Xi(x

∗
−i),x

∗
i );

3) for each i ∈ N , there exists a vector λi =
col(λ1

i , . . ., λ
m
i , . . ., λM

i ) ∈ RM
≥0 satisfying the KKT

conditions in (5). �
The KKT conditions are, in general, only necessary conditions

for optimality. Nevertheless, these are both necessary and suf-
ficient in our setting, due to Assumptions 1 and 2. Specifically,
we can ensure that at each point x ∈ X , the LGNEP is convex
even though the original problem is nonconvex. Consequently,
the optimization problems of all agents i ∈ N become convex,
complying with Slater’s condition (via MFCQ) [30], [31].

In the related literature [32], JC games are usually solved by
finding a solution to the associated variational inequality prob-
lem (VIP), since the resulting vGNE not only exists but is also
unique whenever the cost functions are strongly monotone [33].
By relaxing the convexity condition on the coupling feasible set
X in (1), we can no longer rely on the existence and uniqueness
of a vGNE. However, we can still obtain a first-order necessary
condition for a local minimizer. To this aim, by introducing the
pseudogradient mapping

F (x) =

⎡
⎢⎢⎣

∇x1
f1(x1,x−1)

...

∇xN
fN (xN ,x−N )

⎤
⎥⎥⎦ (6)

we consider the following QVI associated with the LGNEP in
(2).

Definition 3 (QVI [34]): Given the set X̃ (x) and the mapping
F in (6), the quasi-variational inequality problem QVIP(X̃ , F )
consists in finding a vector x∗ ∈ X̃ (x∗), the so-called quasi-
variational equilibrium (QVE), such that

inf
y∈X̃ (x∗)

(y − x∗)�F (x∗) ≥ 0. (7)

�
We can now define the variational LGNE (vLGNE).
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Definition 4 (Variational LGNE): A vLGNE is an LGNE in
(4) that satisfies the QVIP in (7). �

Similarly to the relation between GNEP and VIP, not all
solutions of the LGNEP are a solution of the QVIP; viceversa, a
solution of the QVIP is always a solution of the original LGNEP.

Furthermore, if we consider the KKT conditions of the cor-
responding QVIP(X̃ (x), F (x)), we have that{

0 ∈ F (x) +∇xg(x)λ

λ ≥ 0 ⊥ g(x) ≤ 0
(8)

where the solutions of the LGNEP that are preserved passing
to the QVIP are exactly those for which all agents have the
same multipliers for the respective constraints. Thus, we have
the following results.

Theorem 2: Let Assumptions 1 and 2 hold.
1) Let x∗ be a solution of the LGNEP in (2), where the

KKT conditions in (5) for all agents hold with the same
Lagrangian multipliers λ = λi ∀i ∈ N . Then, x∗ is a
solution of the QVI in (7), and thus, it is a vLGNE.

2) Viceversa, let x∗ be a solution of the QVI in (7), and thus,
be a vLGNE. Then, x∗ is a solution of the LGNEP in (2)
at which the KKT conditions in (5) hold with the same
Lagrangian multipliers, λ = λi ∀i ∈ N . �

In other words, at a vLGNE, we have that in a local subset
of X in (1) each agent cannot unilaterally minimize their own
function while keeping the strategies of the other agents fixed.
Moreover, when at this point, the common optimal multiplier
for all the agents associated with the individual constraints are
the same, λ = λi ∀i ∈ N , then the point is a QVE, and thus, a
locally fair equilibrium point [12], [13].

We can also characterize a vLGNE by employing the normal
cone. By Theorem 1 we have that in a LGNE −∇fi(x

∗
i ,x

∗
−i) ∈

N(Xi(x
∗
−i),x

∗
i ) ∀i ∈ N . Thus, by leveraging on Theorem 2, we

can prove the following corollary.
Corollary 1: Let Assumptions 1 and 2 hold. x∗ is a vLGNE

if and only if

−F (x∗) ∈ N(X ,x∗) (9)

with F as in (6) and X as in (1). �
To illustrate the proposed concept of vLGNE, let us present

the following examples.
Example 1: Let us consider two agents, with strategies x1 ∈

R and x2 ∈ R with the same cost function. Both agents must re-
spect the global constraint x2

1 + x2
2 ≥ 1, represented in Fig. 1(a)

by the setX of points outside the unit circle, which is clearly non-
convex. Moreover, we include further constraints −2 ≤ xi ≤ 2
(∀i = 1, 2) to ensure the compactness of the set. Thus, we can
formally define the game as

∀i ∈ {1, 2} :

{
min

−2≤xi≤2
fi(xi) = x2

i

s.t. x2
1 + x2

2 ≥ 1.
(10)

Hence, the cost functions of the agents are decoupled and
strictly convex, while the coupling constraint is nonconvex. It
is easy to note that the game has an infinite number of LGNEs.

Fig. 1. Illustration of LGNE points in (a) Example 1 and (b) Example 2.

Moreover, by studying the KKT conditions, we get

∀i ∈ {1, 2} :

{
2xi − λi2xi = 0

λi ≥ 0 ⊥ x2
1 + x2

2 ≥ 1.
(11)

From the aforementioned equation, we have for all points on
the unitary circle λ1 = λ2 = 1; hence, all these points are also
vLGNE. In this example, the analysis of local equilibrium points
is still useful, since we can ensure the uniqueness of each vLGNE
in their respective linearized feasible directions set (indicated in
light gray in Fig. 1). �

Example 2: Let us now consider a modified version of the
game described in Example 1. In particular, we modify the
coupling constraint as shown in Fig. 1(b), thus formulating the
following game:

∀i ∈ {1, 2} :
{

min
−2≤xi≤2

fi(xi) = x2
i

s.t. (x1−1/4)2 + (x2−1/4)2≥1.
(12)

Here, the KKT conditions are

∀i∈{1, 2} :
{
2xi − λi(2xi − 1/2) = 0

λi≥0 ⊥ 1−(x1−1/4)2 −(x2−1/4)2≤0.

(13)
From (13), we have that not all points on the circle are LGNE;
moreover, only two vLGNE exist that are x1 = x2 = 1/4 +

√
2/2

and x1 = x2 = 1/4 −
√
2/2. However, even if in these two vL-

GNEs the agents are fairly penalized (i.e., same value for the
Lagrange multiplier), the corresponding characteristics are dif-
ferent. The vLGNE in quadrant I (+;+) is not stable with respect
to the coupling set, since the agents’ strategies can jump into
other quadrants improving the respective objectives. However,
this equilibrium is stable within its linearized feasible directions
set. Conversely, the vLGNE in quadrant III (−;−) is not only a
vLGNE but also a vGNE. The difference between these two
points can be seen also analyzing the respective multipliers.
Indeed, we have λ1 = λ2 =

√
2/4 + 1 in the first case (quadrant

I) while λ1 = λ2 = 1−
√
2/4 in the second one (quadrant III). �

IV. EXISTENCE AND UNIQUENESS

Since the projection onto a nonconvex set is not a nonexpan-
sive operator, classical existence and convergence proofs based
on projected gradient approaches do not directly apply to our
setting.
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Fig. 2. Example of (a) nonproximally smooth set and of (b) proximally
smooth set.

Let us thus focus on a particular class of nonconvex sets,
namely proximally smooth sets firstly proposed by Federer [35];
this concept is present in the literature with different but equiv-
alent definitions, such as O(2)-convexity [36], weak convex-
ity [37], and proximal regularity [38], [39], [40]

Definition 5: A set X ⊆ Rn is said to be proximally smooth
if there exists r > 0 such that the distance function dist(·,X )
is continuously differentiable on the r-enlargement U(X , r) :=
X + rB. �

Proximally smooth sets include several classes of nonconvex
sets and also convex sets as special case (for any r > 0) [38],
[40].

Let us recall the following properties of proximally smooth
sets.

Lemma 1 (Clarke et al. [40]): Let X ⊆ Rn be a nonempty
closed set. IfX in (1) is r-proximally smooth, then the following
properties hold for any r′ ∈ (0, r):

1) projX (x) �= ∅ for all x ∈ U(X , r′);
2) projX (x) is a singleton for all x ∈ U(X , r′);
3) projX (·) is p-Lipschitz continuous on U(X , r′), where

p = r/(r−r′);
4) the proximal normal cone Npx(X , ·) is closed as a set-

valued mapping;
5) the proximal normal cone and normal cone are equivalent

(see Appendix A). �
Informally speaking, a set is proximally smooth when the

local nonconvexities are smooth [41], [42]. For instance, the set
in Fig. 2(a) is nonproximally smooth since it is nonsmooth in its
nonconvex area. Conversely, in Fig. 2(b), despite the presence
of a “sharp point,” the set is proximally smooth since it is locally
convex around that point.

When a single constraint defines the feasible set, the only
requirement for the set to be proximally smooth is the continu-
ous differentiability of the constraint. This property is unfortu-
nately not preserved under intersection without additional condi-
tions [41], [43]. For sets defined by a finite number of inequality
and equality constraints, most of the required conditions are
fulfilled whenever the associated functions are differentiable and
Lipschitz continuous [41]. Proximally smooth sets encompass a
wide range of sets, including p-convex sets [44], submanifolds
(possibly with boundary), sets that are the images under a
diffeomorphism of convex sets, and various other nonconvex
sets [38], [45].

Let us ensure the existence of a vLGNE employing the weaker
properties of the projection operator recalled in Lemma 1 and

let us prove that a vLGNE is equivalent to a fixed point of the
forward–backward mapping.

Lemma 2: Let Assumptions 1 and 2 hold and let the set X
in (1) be r-proximally smooth. For any γ ∈ (0, r′

1+F̄U(X ,r)
) with

r′ ∈ (0, r), the following statements are equivalent:
1) x∗ ∈ X is a vLGNE;
2) x∗ = projX (x

∗−γF (x∗)), i.e., x∗ ∈ fix(projX (Id−
γF (·))). �

Thanks to Lemma 2, we show the existence of a vLGNE when
no assumptions are made on the pseudogradient mapping F in
(6).

Proposition 1 (Existence): Let Assumptions 1 and 2 hold
and let the set X in (1) be r-proximally smooth and sim-
ply connected. Then, the LGNEP in (2) has at least one
vLGNE. �

An alternative way to ensure the existence of the QVI in (7),
and thus, of a vLGNE, is presented in [34] by defining a convex
set T such that for every x ∈ T , X̃ (x) is a nonempty, closed,
convex subset of T . Note that in [34], the smoothness property
is refereed as continuity.

Regarding uniqueness, we cannot ensure that a vLGNE is
globally unique, nevertheless, with an additional assumption on
the mapping F in in (6), local uniqueness holds in the linearized
feasible directions set.

Remark 2 (Local Uniqueness): Under Assumptions 1 and 2,
if the mapping F in (6) is strictly monotone, then the strict
inequality holds in (7), and thus, any vLGNE x∗ ∈ X is unique
in the set X̃ (x∗). This statement can be derived from [46,
Proposition 12.11] as X̃ (x∗) is a convex set. �

V. EQUILIBRIUM COMPUTATION

Differently from convex sets, that are necessarily connected,
requiring a nonconvex set to be simply connected is a rather
strong assumption. To relax it, we strengthen assumptions on
the pseudogradient mapping. In this section, we propose two
alternative algorithms for seeking a vLGNE when the pseudo-
gradient mapping is strongly monotone and merely monotone,
respectively.

A. Existence and Convergence to a vLGNE Under
Strongly Monotone Pseudogradient Mappings

A popular algorithm for solving VIs with strongly monotone
mappings is the projected pseudogradient method that can be
formally redefined as a discrete-time system

xk+1 = projX (x
k − γF (xk)). (14)

This algorithm generates, given a starting point x0 ∈ X and
a step size γ > 0, a sequence that approaches the solution set.
In particular, at each iteration k, a gradient step of length γ is
projected onto the feasible set X .

By recalling the definition of quasi-asymptotically stable
(QAS) equilibrium point, we can prove the following result.

Definition 6 (QAS equilibrium point): A point x∗ ∈ X is
a QAS equilibrium point if and only if there exists a basin
of attraction B(x∗) such that for all x0 ∈ B(x∗), it holds
limk→∞ ‖xk−x∗‖ = 0. �
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Lemma 3: Let Assumptions 1 and 2 hold and let γ∈
(0, r′

1+F̄U(X ,r)
) with r′ ∈(0, r). If x∗ is a QAS equilibrium point

for (14), then x∗ is a fixed point and it is a vLGNE. �
Therefore, to prove the convergence to a vLGNE, we can

analyze the autonomous evolution of the discrete-time system
in (14) and search for possible QAS equilibrium points. By
introducing a technical assumption, let us show the following
convergence result.

Assumption 3: The set X in (1) is r-proximally smooth. The
mapping F in (6) is strongly monotone with constant μ > 0 and
Lipschitz continuous with constant � > 0. �

Theorem 3: Let Assumptions 1–3 hold and let γ ∈
(0,min{

√
�2+p2(μ2−�2)+μp

�2p , r′

1+F̄U(X ,r)
}), such that μ ≥ �, r′ ∈

(0, r) and p = r/(r−r′). Then
1) the LGNEP in (2) has at least one vLGNE;
2) the sequence generated by (14), given a starting point

x0 ∈ X , converges to a vLGNE. �

B. Existence and Convergence to a vLGNE Under
Monotone Pseudogradient Mappings

Let us now consider a weaker requirement for the pseu-
dogradient mapping. Inspired by the classical Korpelevich’s
method [47], let us propose a novel algorithm for computing
a vLGNE, defined as follows:{

yk = projX (x
k − γF (xk))

xk+1 = projX̃ (yk)(x
k − γF (yk).

(15)

Our method generates from a starting point x0 ∈ X a se-
quence approaching the solution set. In particular, at each it-
eration k, the algorithm requires two consecutive steps. Start-
ing from xk ∈ X , a temporary point yk is computed by a
gradient step of length γ projected onto the feasible set X .
Next, the point for the subsequent iteration xk+1 is com-
puted by taking a gradient step of length γ, with the gradi-
ent of the mapping calculated in yk, and projecting it onto
the linearized feasible direction set computed at the same
point X̃ (yk).

Introducing a technical assumption, we demonstrate the con-
vergence to a vLGNE.

Assumption 4: The set X in (1) is r-proximally smooth. The
mapping F in (6) is monotone and Lipschitz continuous with
constant � > 0. �

Lemma 4: Let Assumptions 1, 2, and 4 hold and let γ ∈
(0, r

1+F̄U(X ,r)
) with r′ ∈ (0, r). If the sequence generated by

(15) reaches yk = xk, then xk is a QAS equilibrium point
for (15). �

Lemma 5: Let Assumptions 1, 2, and 4 hold and let γ ∈
(0, r

1+F̄U(X ,r)
) with r′ ∈ (0, r). If x∗ is a QAS equilibrium point

for (15), then x∗ is a fixed point and it is a vLGNE. �
Theorem 4: Let Assumptions 1, 2, and 4 hold and let γ ∈

(0,min{1
� ,

r
4(1+F̄U(X ,r))

}) with r′ ∈ (0, r). Then

1) the LGNEP in (2) has at least one vLGNE;
2) the sequence generated by (15), given a starting point

x0 ∈ X , converges to a vLGNE. �

Fig. 3. Pseudophase plane plots for (a) Example 1 and (b) Example 2,
where we indicate the vLGNE in blue.

Fig. 4. Distance to a vLGNE with respect to the iteration (line corre-
sponds to the mean, while the shaded area represents the boundaries):
(a) Algorithm (14) with Example 1, (b) Algorithm (15) with Example 1,
(c) Algorithm (14) with Example 2, and (d) Algorithm (15) with
Example 2.

C. Discussion on the Convergence Properties

Algorithms (14) and (15) may yield different local solutions,
i.e., vLGNEs, depending on the initial condition. Let us illustrate
this fact by analyzing the convergence of the proposed algo-
rithms for Examples 1 and 2. We first note that these two sets are
r-proximally smooth with r < 1/2, and thus, both algorithms
can be employed, for instance, with a step size γ = 0.1.

In Fig. 3, we show two phase plane plots for Examples 1 and
2. In particular, Fig. 3(a) refers to Example 1, while Fig. 3(b)
refers to Example 2. These plots are constructed by exploring
the trajectories of the agents’ dynamics from different initial
conditions. In the first example [see Fig. 3(a)], as all the points of
the circumference are vLGNE, the two algorithms converge to a
different point based on the initial values. Conversely, the second
example has only two vLGNE. Nevertheless, both algorithms
converge to the lower vLGNE with almost all initial conditions
[see Fig. 3(b)].

Moreover, in Fig. 4, we show the difference between the
two algorithms in terms of iterations required to converge to
a vLGNE. In order to perform this analysis, we select 105 initial
conditions equally outdistanced and we analyze the agents’
dynamics by showing the distance between xk and the set X∗
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that collects all the vLGNEs of the games. In particular, we
show the mean value of dist(xk,X∗) in blue together with the
upper and lower boundaries in light blue. As expected, the
distance with respect to a vLGNE decreases to zero; in some
circumstances Algorithm (14) may require several iterations to
converge.

Remark 3: Algorithm (14) has a simple update rule, making
it easier to implement, but it requires stricter conditions on the
pseudogradient mapping. On the other hand, Algorithm (15)
is suitable for a broader range of problems. Nevertheless, it
involves a projection onto the linearized feasible directions set
at each update, which has a higher computational cost. �

VI. APPLICATION: NONCOOPERATIVE OPF IN DC
MICROGRIDS

DC microgrids have gained influence in modern electrical
systems due to their high efficiency and natural interface to many
types of renewable energy resources (RESs) and energy storage
systems (ESSs).

One of the critical issues in DC microgrids—inherited from
the operation of power systems—is the well-known OPF prob-
lem. The standard method to solve the OPF problem involves
formulating an optimization problem to determine an optimal
operating point regarding power losses or energy production
costs while satisfying system constraints, considering variables
such as power generation, voltage levels, and maximum line
flows. The OPF relies on the power flow model, which in DC
microgrids corresponds to a set of nonlinear nonconvex alge-
braic equations that cannot be solved analytically [48]. Various
approaches exist to solve this problem, including mathematical
programming techniques [49] and heuristic algorithms [50],
possibly considering the nonconvexity of power flow con-
straints [51], [52].

When the OPF is addressed by a centralized approach, a
central unit must have access to all system parameters in order
to reach the optimal working condition for the entire grid. How-
ever, several independent parties are progressively involved in
controlling and optimizing power grids, strongly affecting their
dynamics. The cooperation of such independent entities, which
is necessary for a centralized approach, is clearly challenging:
on the one hand, they act selfishly; on the other hand, since
they are physically interconnected through power lines, they
must cooperate to ensure safe and secure grid operations. In this
context, several game-theoretic methods have been proposed for
distributed generation and storage control in power grids. Nev-
ertheless, most of these works focus on the economic dispatch
only [12], [53], [54], [55], yet disregard physical constraints also
due to their nonconvexity.

Therefore, here we apply the proposed novel noncooperative
approach for managing DC microgrids, including the full power
flow equations leading to a noncooperative game with shared
nonconvex constraints.

A. OPF as a Noncooperative Game

Let us consider a DC microgrid model composed of several
interconnected buses and connected to the ac distribution grid

through the so-called slack bus. We suppose that the grid is con-
trolled over a control horizon denoted as H := {1, ..., h, ...,H},
with H discrete time slots with equal length Δh, where h is a
generic time slot.

The microgrid is described by a graph G = (N , E), where
N is the set of nodes with cardinality N , while E ∈ N ×N is
the set of pairs of distinct nodes called edges with cardinality
E. The nodes i ∈ N of the graph represent the buses and the
edges (i, r) ∈ E represent the lines between these buses. Each
bus i ∈ N is connected with several noncontrollable loads and
RESs whose aggregated per-slot power profile over the control
horizon H is Pi := (Pi(1), ..., Pi(h), ..., Pi(H))� ∈ RH .

We assume that the variables related to each bus are controlled
by an active user i ∈ N that can modify the energy scheduling
profile of the bus aiming at decreasing its total cost, while pro-
viding flexibility to the overall microgrid. In particular, each user
schedules over the control horizon both the voltage magnitude
of the bus Vi := (Vi(1), ..., Vi(h), ..., Vi(H))� ∈ RH

≥0 and the
power injected in the bus ei := (ei(1), ..., ei(h), ..., ei(H))� ∈
RH

≥0. Hence, let us define for each active agent i ∈ N its strategy
by xi = col(Vi, ei) ∈ R2H

≥0 .
We further assume that user i = 1, i.e., the slack bus, can

only buy energy from the main grid with a linear function
W1(e1) = Δh η11

�
He1, where η1 is the energy price coefficient.

Conversely, we assume that users i ∈ N \ {1} are equipped
with dispatchable energy generation devices and are subject
to variable production costs in accordance with a linear cost
function Wi(ei) = Δh ηi1

�
Hei, where ηi is the generation cost

of the user i. As commonly done in power distribution grids, we
include a constraint for the slack bus whose voltage magnitude
must be fixed

V1 = Vref1H (16)

where Vref is the reference voltage magnitude. Moreover, we
impose a minimum and a maximum voltage magnitude for the
remaining buses

V min
i 1H ≤ Vi ≤ V max

i 1H ∀i ∈ N \ {1} . (17)

Due to technological limitations, the generation profile is
bounded by a minimum and a maximum per-slot energy gener-
ation capacity

emin
i 1H ≤ ei ≤ emax

i 1H ∀i ∈ N \ {1} . (18)

In addition, the power flow equations must be satisfied; dis-
regarding the power losses, these equations can be formulated
for DC grids as

∑
r∈N

Vi(h)(Vi(h)− Vr(h))Yi,r

=Pi(h) + ei(h) ∀i ∈ N , ∀h ∈ H (19)

where Yi,r is the element (i, r) of the conductance matrix,
defined as

Yi,r =

{∑
h �=r Yn,h if i = r

−Yi,r if i �= r
∀(i, r) ∈ E (20)
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and Yi,r = Yr,i is the line conductance between buses i and r.
Summing up, all users are subject to a global nonconvex feasible
set defined as

X =
{
x∈R2HN | (16) − (19) hold

}
. (21)

As regards cost functions, we assume that the control objective
of the noncooperative game is to increase the microgrid pre-
dictability through a liberalized market where the cost of energy
is proportional to the microgrid’s energy mismatch. Hence, the
cost function of each independent active user comprehends the
cost of energy, which is proportional to the microgrid’s power
mismatch, and generation costs as follows:

fi (xi,x−i)=
∑

h∈HΔh

⎛
⎝κi

∑
j∈N\{1}

(ej(h)−Pj(h)) ei(h)

+ ηiei(h)

)
∀i ∈ N (22)

where κi > 0 are the pricing coefficients. Note that for the slack
bus we have κ1 = 0, since we assumed that in the slack bus, we
can only inject power from the main grid.

The proposed microgrid model comprehends physical con-
straints, and thus, can be seen as a noncooperative version of
the OPF problem to determine the best operating point with
respect to power losses and energy production costs. The afore-
mentioned game, defined by the cost functions fi in (22) and
by the shared feasible set X in (21), straightforwardly verifies
Assumptions 1 and 2, falling exactly in our proposed game-
theoretic framework. Hence, if we can prove that the set (21) is
proximally smooth we can compute a vLGNE employing (14)
or (15).

Proposition 2: The (nonconvex) set defined in (21) is proxi-
mally smooth. �

We emphasize that our goal is the noncooperative control of
multiple agents in DC microgrid, striving to reach a local equi-
librium within a game. This involves solving N interdependent
optimization problems with different cost functions, as denoted
by (22). Notably, this approach differs from the classical OPF
problem, which typically considers a single cost function for the
overall system.

B. Numerical Experiments

In this section, we show the performance of (14) and (15)
on the noncooperative power flow. Note that in this section all
the quantities are expressed in the per-unit system p.u. For the
case study, we employ a test microgrid depicted in Fig. 5. The
microgrid comprises ten buses, which are connected through
nine branches in a radial topological distribution, as commonly
occurs in low-voltage distribution networks.

We consider a control horizon including H = 24 time slots
of Δh = 1 h and we assume for all buses, except the slack bus
i = 1, a net power profile randomly generated. The slack bus
can buy energy from the main grid and inject it in the microgrid
with a price coefficient η1 = 1 financial units. In the remaining
nine buses, the distribution grid has diesel generators whose

Fig. 5. Scheme of the simulated DC microgrid.

TABLE I
PARAMETERS OF THE DIFFERENT GENERATORS

parameters are indicated in Table I. As for the voltage magnitude,
we set Vref = 1 p.u., V min

i = 0 p.u., and V max
i = 2 p.u..

The step coefficient for (14) and (15) is γ = 0.01. All software
simulations are conducted in the MATLAB 2020a environment
on a laptop with a 1.3-GHz Intel Corei7 CPU with 8-GB RAM
memory. Specifically, we have employed a standard interior-
point algorithm, which is suitable for our problem, thanks to
Assumptions 1 and 2.

In the rest of this section, we first evaluate the algorithms’
performance by analyzing the impact of the initial state variation
on the output of the algorithms. Consequently, the results of the
noncooperative approach are compared with those obtained by
a standard version of the OPF.

1) Impact of the Initial State: The solution of the resulting
problem depends on the agents’ initial state; hence, we can
compute, as for the standard OPF, the regions of convergence
for the proposed algorithms, that in our case correspond to
the basin of attraction of the different vLGNEs. To this aim,
we perform a set of simulations changing the initial voltage
magnitude V 0

i each time and the power injection in each bus
e0i , sampling them over the interval [0, 2]. However, to show
the convergence results in a 2-D plot, we set an equal voltage
magnitude and power injection for all buses in each simulation.
Note that setting different initial conditions for players may
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Fig. 6. Convergence regions with respect to the initial voltage magni-
tude and power injection (both equal for all buses): (a) Algorithm (14)
and (b) Algorithm (15). The white and the orange regions correspond to
the two equilibria of the noncooperative game.

Fig. 7. Results of (14) and (15) achieved by different initial conditions:
(a) voltage magnitudes and (b) power injections. The blue and the
orange stems represent the two equilibria of the noncooperative game,
corresponding to the white and orange area of Fig. 6, respectively.

lead to additional equilibria. The results of these simulations are
presented in Fig. 6, where we plot the region of convergence with
different initial states. As it can be seen, there are two different
regions of convergence corresponding to the same number of
different vLGNEs, i.e., the white and orange areas. We point out
that, interestingly, the equilibria reached with both algorithms
are identical.

Let us now analyze in detail these two equilibria reported in
Fig. 7(a) and (b), where we plot for each bus i ∈ N the voltage
magnitude and the power injection, respectively.

Note that the white region of convergence corresponds to
the solution with high voltage magnitudes in all buses and
balanced power injections for all generators, while the orange
region converges to the low voltage solution. The latter solution
corresponds to the case where there is a high power injection
from the slack bus, and consequently, in order to make feasible
this power transfer, a low-voltage magnitude in the remote buses
of the microgrid. As for the standard OPF, this low-voltage
solution should be avoided, since it is less interesting in terms
of power quality requirements. Nevertheless, as for the classical
OPF, we can employ the so-called flat start approach, setting
all voltage magnitudes equal to 1 p.u. and all power injections
equal to zero [56]. In Fig. 8(a) and (b), we show, respectively,
the convergence of Algorithm (14) with respect to the voltage
magnitudes and the power injections of each bus when this
standard approach is used. Furthermore, in Fig. 8(a) and (b), we
show the same results when Algorithm (15) is used. From the

Fig. 8. Convergence of Algorithms (14) and (15) with the flat-start ap-
proach: (a) voltage magnitudes with Algorithm (14), (b) power injections
with Algorithm (14), (c) voltage magnitudes with Algorithm (15), and
(d) power injections with Algorithm (15).

Fig. 9. Power mismatch ΔE(h) of the microgrid over the control hori-
zon achieved by the standard OPF (orange bars) and the noncoopera-
tive approach (blue bars).

figure, it is clear that this latter approach requires less iteration
to converge.

2) Comparison With the Standard OPF: Having com-
puted the region of convergence for the proposed test microgrid,
let us now compare the proposed approach with the standard
OPF with the same control goal, i.e., reducing the power gap at
the slack bus, and thus, increasing predictability. The standard
OPF presents several disadvantages inherited by the centralized
architecture that leads to the minimization of the overall micro-
grid cost, possibly penalizing some users. In fact, to overcome
these drawbacks, in our noncooperative framework, several
coupled optimization problems are simultaneously solved by
all users.

From the results illustrated in Fig. 9, we see that the non-
cooperative approach is able to reduce the power mismatch
ΔE(h) =

∑
j∈N\{1}(−Pj(h) + ej(h)) of the microgrid under

1 p.u. However, as regards the total energy costs of the mi-
crogrid, the standard OPF has a total cost of 2872 financial
units, while the noncooperative approach requires 3 342 fi-
nancial units. Therefore, the total cost of the noncooperative
approach is 15% higher than the centralized one. In the cen-
tralized scheme, the goal is to minimize the overall gap by
ignoring any possible inequalities between different users; on
the other hand, in the noncooperative case, each user aims at
optimizing its objective thus leading to a more fair yet higher cost
summation.
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VII. CONCLUSION

In this work, we have addressed the problem of solving a
class of games with nonconvex coupling constraints. We have
defined a novel local equilibrium concept presenting conditions
for optimality, existence and local uniqueness. Our technical
contributions allow us, under certain hypotheses, to define two
iterative schemes with global convergence guarantee toward this
novel equilibrium concept.

This work can be extended in several directions, namely, de-
signing fully distributed algorithms for local equilibrium seeking
and exploring the Lyapunov theory and potential functions to
enhance the characterization of quasi-asymptotic stability in
large-scale networks. An additional interesting research line
is the alignment of the agents’ objective functions toward a
social optimum to reconcile their selfish behavior with social
optimality.

APPENDIX A
BASIC CONCEPTS ON CONES

In the related literature, several different definitions of cones
have been proposed, hence, for the sake of clarity, let us here
recall some concepts following the convention used in [29]
and [57].

First, for a given feasible set composed of a set of equality
and inequality constraints:

X =

{
x ∈ Rn

∣∣∣∣ gm(x) = 0, m ∈ E
gm(x) ≤ 0, m ∈ I (23)

we define the active setA(x) as the set comprehending all indices
m ∈ E ∪ I with gm(x) = 0.

Definition 7 (Linearized feasible directions set (linearized
cone)): We define the set of linearized feasible directions set
F(X ,x) as the set comprehending all vectors y ∈ Rn such that

∇gm(x)�y = 0 ∀m ∈ E
∇gm(x)�y ≤ 0 ∀m ∈ I ∩A(x).

(24)

�
It is easy to see that this is a closed convex nonempty cone

and a linear approximation of the feasible set at a generic point
x. Moreover, it can be shown that the tangent cone is a subset
of the linearized feasible directions set T (X ,x) ⊂ F(X ,x),
however, when a quasiregularity constraint qualification holds
(e.g., Mangasarian–Fromovitz) these two cones are equal, i.e.,
T (X ,x) = F(X ,x) [58].

Finally, let us define normal cone and the proximal normal
cone as follows.

Definition 8 (Normal cone): Let us consider a nonempty
subset X ⊆ Rn. The normal cone of X in a generic point
x ∈ cl(X ) is defined as the polar cone of tangent cone to X
in x, that is,

N(X ,x) := T (X ,x)◦ =

= {y ∈ Rn | y�d ≤ 0 ∀d ∈ T (X ,x)}. (25)

�

Definition 9 (Proximal normal cone): Let us consider a
nonempty subset X ⊆ Rn. The proximal normal cone of X in
a generic point x ∈ cl(X ) is given by

Npx(X ,x) := {y ∈ Rn | x ∈ projX (x+ αy)} (26)

where α > 0 is a constant. �
Note that N(X ,x) is always a closed and convex cone

while Npx(X ,x) is convex but may not be closed. In general
Npx(X ,x) ⊂ N(X ,x), however for proximally smooth sets
Npx(X ,x) is closed and Npx(X ,x) = N(X ,x) [45].

APPENDIX B
PROOFS

Proof of Theorem 1: To prove 1) ⇔ 2), we recall that the
linearized feasible direction set comprehends only a subset of
the original set; thus, we can write the following condition on
the cost function of each agent:

fi(y,x
∗
−i) ≥ fi(x

∗
i ,x

∗
−i)+

∇fi(x
∗
i ,x

∗
−i)

�(y − x∗
i ) ∀y ∈ X̃i(x

∗
−i). (27)

Moreover, since −∇fi(x
∗
i ,x

∗
−i) ∈ N(Xi(x

∗
−i),x

∗
i ) and due to

the definition of normal cone, we have

inf
y∈X̃i(x∗

−i)
∇fi(x

∗
i ,x

∗
−i)

�(y − x∗
i ) ≥ 0. (28)

Then, it follows that fi(y,x∗
−i) ≥ fi(x

∗
i ,x

∗
−i), ∀y ∈ X̃i(x

∗
−i).

Hence, if this holds for all agents i ∈ N , then x∗ is an LGNE.
To prove 1) ⇔ 3), we recall that or each active constraint

∇xi
g(x∗

i ,x
∗
−i)

�y ≤ 0 ∀y ∈ T (Xi(x
∗
−i),x

∗
i ). Furthermore, for

a generic vector v, under Assumptions 1 and 2, we have that
v ∈ N(Xi(x

∗
−i),x

∗
i ), if and only if there exists a vector λi =

col(λ1
i , . . ., λ

m
i , . . ., λM

i ) ∈ RM such that

v ∈ ∇xi
g(x∗

i ,x
∗
−i)λi

0M ≤ λi ⊥ g(x∗
i ,x

∗
−i) ≤ 0M .

(29)

Thus, for each agent i ∈ N , we can write the KKT con-
ditions in (5) by setting v = −∇xi

fi(x
∗
i ,x

∗
−i). Finally, since

∇xi
fi(x

∗
i ,x

∗
−i)

�y ≥ 0, ∀y ∈ T (Xi(x
∗
−i),x

∗
i ), we ensure the

existence of a nonnegative vector of Lagrange multipliers λi =
col(λ1

i , . . ., λ
m
i , . . ., λM

i ) ∈ RM
≥0 satisfying the KKT optimality

conditions for each individual optimization problem in (2) if x∗

is an LGNE. �
Proof of Theorem 2: Under Assumptions 1 and 2, we note

that the set X̃ (x∗) where we compute the KKT conditions in (5)
for the LGNEP is convex. Thus, we can employ [14, Th. 3.1] to
conclude the proof. �

Proof of Lemma 2: Since Assumption 2 holds, U(X , r) is
compact, and thus, F̄U(X ,r) is limited. If x∗ ∈ X , then we have
that

dist(x∗−γF (x∗),X ) = min
y∈X

‖x∗−γF (x∗)− y‖

≤ ‖x∗−γF (x∗)− x∗‖ = γ ‖F (x∗)‖

≤ γF̄U(X ,r) <
r′

1 + F̄U(X ,r)

F̄U(X ,r) < r′ (30)
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hence, x∗−γF (x∗) ∈ U(X , r′). Due to Lemma 1, projX (x) is a
singleton and Npx(X ,x∗) = N(X ,x∗), therefore, we can recall
Corollary 1 to conclude the proof. �

Proof of Proposition 1: From Lemma 2, we have that any fixed
point of the forward–backward mapping withγ ∈ (0, r′

1+F̄U(X ,r)
)

is a vLGNE. Since Assumptions 1 and 2 hold and since the set
is simply connected, we can employ the Lefschetz fixed-point
theorem to prove that there exists at least one fixed point [59],
[60]. �

Proof of Lemma 3: By definition, a QAS equilibrium is a fixed
point of the dynamical system’s evolution of (14) [61], while by
Lemma 2, any fixed point of (14) is a vLGNE. �

Proof of Theorem 3: In order to preserve the properties of
Lemma 1, let us assume that x0 ∈ X . Consequently, since at
each iteration xk ∈ X and due to Lemma 2, we have that xk−
γF (xk) ∈ U(X , r′), and thus, Lemma 1 holds. Therefore, we
have that∥∥xk+1−x∗∥∥2=

=‖projX (x−γF (x))−projX (x
∗−γF (x∗))‖2

≤p2
∥∥(xk−γF (xk))−(x∗−γF (x∗))

∥∥2
=p2

∥∥(xk−x∗)−γ(F (xk)−F (x∗))
∥∥2

=p2(
∥∥xk−x∗∥∥2+γ2

∥∥F (xk)−F (x∗)
∥∥2

−2γ(F (xk)−F (x∗))�(xk−x∗))

≤p2(1−2γμ+γ2�2)
∥∥xk−x∗∥∥2

(31)

where the first inequality holds since for a generic (possibly
nonconvex) proximally smooth set the projection is Lipschitz
continuous with constant p = r/r−r′, while for the last one, we
use the strong monotonicity and the Lipschitz continuity of

the mapping F . Next we note that, if γ<

√
�2+p2(μ2−�2)+μp

�2p

with μ ≥ �, we have that p2(1−2γμ+γ2�2) < 1. Conse-
quently, limk→∞ ‖xk+1−x∗‖2 = 0, and thus, the evolution of
the discrete-time autonomous system (14) converges to a QAS
equilibrium point that exists [61]. To conclude the proof we
recall Lemma 3. �

Proof of Lemma 4: The proof follows directly from
Lemma 3. �

Proof of Lemma 5: The proof follows directly from
Lemma 3. �

Proof of Theorem 4: In order to preserve the smoothness
properties of Lemma 1, we need to ensure that each iteration
is contained in U(X , r′). First, by setting γ ∈ (0, r′

4(1+F̄U(X ,r))
),

we note that

dist(yk,xk+1) ≤
∥∥xk−γF (xk)− xk+γF (yk)

∥∥
≤ γ

∥∥F (xk)
∥∥+ γ

∥∥F (yk)
∥∥ ≤ 2γF̄U(X ,r)

<
2r′

4(1 + F̄U(X ,r))
F̄U(X ,r) <

r′

2
(32)

where the first inequality holds since the linearized feasible
direction set is convex. Hence, assuming that x0 ∈ X and

since yk ∈ X , we ensure that each point xk is contained in
U(X , r′/2). Similarly, we have that dist(xk,xk−γF (xk)) ≤
γF̄U(X ,r) ≤ r′/2, and thus, by induction, xk−γF (xk) is con-
tained in U(X , r′). The same argument applies to xk−γF (yk).

Next, by defining zk=xk−γF (yk) and x∗k =
projX̃ (yk)(x

∗), we have that

∥∥xk+1−x∗k∥∥2=(xk+1−zk+zk−x∗k)�(xk+1−zk+zk−x∗k)

=
∥∥zk−x∗k∥∥2+∥∥zk−xk+1

∥∥2+2(xk+1−zk)�(zk−x∗k).
(33)

Moreover, since X̃ (yk) is convex and xk+1 = projX̃ (yk)(z
k),

we have that 2||zk−xk+1||2+2(xk+1−zk)�(zk−x∗k)=2(zk−
xk+1)�(x∗k−xk+1)≤0. Hence, we rewrite (33) as

∥∥xk+1−x∗k∥∥2≤∥∥zk−x∗k∥∥2−∥∥zk−xk+1
∥∥2

≤
∥∥xk−x∗k∥∥2−∥∥xk−xk+1

∥∥2+2γ(yk−xk+1)�F (yk) (34)

where for the last inequality we employ the monotonicity
of F . Since X̃ (yk) is convex and xk+1 ∈ X̃ (yk), we have
that (xk+1−yk)�((xk−γF (xk))−yk)≤0, and therefore,
(xk+1−yk)�(xk−γF (yk)−yk)=(xk+1−yk)�(xk−γF (xk)
−yk)+γ(xk+1−yk)�(F (xk)− F (yk)) ≤ γ(xk+1 − yk)�

(F (xk)−F (yk)). Thus, we can rewrite (34) as

∥∥xk+1−x∗k∥∥2≤∥∥xk−x∗k∥∥2−∥∥xk−yk
∥∥2

−
∥∥yk−xk+1

∥∥2+2γ(xk+1−yk)�(F (xk)−F (yk)). (35)

Furthermore, by employing the Cauchy–Schwarz inequal-
ity and the Lipschitz property of F , we have that 2γ(xk+1−
yk)�(F (xk)−F (yk))≤2γ�‖xk+1−yk‖‖xk−yk‖, and thus,

∥∥xk+1−x∗k∥∥2≤∥∥xk−x∗k∥∥2−∥∥xk−yk
∥∥2−∥∥yk−xk+1

∥∥2
+2γ�

∥∥xk+1−yk
∥∥ ∥∥xk−yk

∥∥≤∥∥xk−x∗k∥∥2−∥∥xk−yk
∥∥2

−
∥∥yk−xk+1

∥∥2+γ2�2
∥∥xk−yk

∥∥2+∥∥yk−xk+1
∥∥2 (36)

where in the last inequality, we use that (γ�‖xk−yk‖ − ‖yk−
xk+1‖)2 ≥ 0. Therefore, we have that

(1−γ2�2)
∥∥xk−yk

∥∥2≤∥∥xk−x∗k∥∥2 − ∥∥xk+1−x∗k∥∥2
≤
∥∥xk

∥∥2 + ∥∥x∗k∥∥2 − ∥∥xk+1
∥∥2 − ∥∥x∗k∥∥2 . (37)

Since the sequence (xk)∞k=0 is bounded, by summing up for
all integers K ≥ 0, we get

(1−γ2�2)
K∑

k=0

∥∥xk−yk
∥∥2≤∥∥x0

∥∥2 (38)

where the sequence (
∑K

k=0 ‖xk−yk‖2)K∈N is monotonically
increasing and bounded. Therefore, if γ < 1/�, we have that
limk→∞ ‖xk−yk‖2 = 0, and by Lemma 4, we have that the evo-
lution of the discrete-time autonomous system (15) converges
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to a QAS equilibrium (existence follows by [61]). To conclude
the proof, we invoke Lemma 5. �

Proof of Proposition 2: The set in (21) is defined by a set of
finitely many equalities and inequalitiesm ∈ M that are contin-
uously differentiable. Hence, when considered individually, they
are proximally smooth with constant rm [41]. It is easy to verify
that the intersection of these different constraints is metrically
calm with constant ζ > 1 as in [43]. Therefore, by defining
r̄m = minm∈M rm, we can verify the proximal smoothness of
(21) with constant r = r̄m/ζM (see [43, Proposition 7.4]). �
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