<]
TUDelft

Delft University of Technology

On the Analysis of Real-time Operating System Reliability in Embedded Systems

Mamone, Dario; Bosio, Alberto; Savino, Alessandro; Hamdioui, Said; Rebaudengo, Maurizio

DOI
10.1109/DFT50435.2020.9250861

Publication date
2020

Document Version
Accepted author manuscript

Published in
33rd IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems,
DFT 2020

Citation (APA)

Mamone, D., Bosio, A., Savino, A., Hamdioui, S., & Rebaudengo, M. (2020). On the Analysis of Real-time
Operating System Reliability in Embedded Systems. In L. Dilillo, M. Psarakis, & T. Siddiqua (Eds.), 33rd
IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems, DFT
2020: Proceedings (pp. 1-6). Article 9250861 (33rd IEEE International Symposium on Defect and Fault
Tolerance in VLS| and Nanotechnology Systems, DFT 2020). IEEE.
https://doi.org/10.1109/DFT50435.2020.9250861

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1109/DFT50435.2020.9250861
https://doi.org/10.1109/DFT50435.2020.9250861

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

On the Analysis of Real-time Operating System
Reliability in Embedded Systems

Dario Mamone', Alberto Bosio?, Alessandro Savino!, Said Hamdioui® and Maurizio Rebaudengo1
! Politecnico di Torino, Italy, *{maurizio.rebaudengo, alessandro.savino} @polito.it
2 Lyon Institute of Nanotechnology, Ecole Centrale de Lyon, France, *alberto.bosio@ec-lyon.fr
3 Computer Engineering Lab, Delft University of Technology, The Netherlands, *S.Hamdioui @tudelft.nl

Abstract—Nowadays, the reliability has become one of the
main issues for safety-critical embedded systems, like automotive,
aerospace and avionic. In an embedded system, the full system
stack usually includes, between the hardware layer and the
software/application layer, a middle layer composed by the
Operating System (OS) and the middleware. Most of the time, in
the literature only the application-layer is considered during the
reliability analysis. This is due to the fact that middle layer short
execution time makes the probability of a fault affecting it much
lower compared to the application-level. Nevertheless, middle
layer data structures lifespan is equivalent to the application
layer ones. Moreover, all the times a hardware fault propagates
to the middle-layer as an error, and especially to the OS, its
impact can be expected to be potentially catastrophic. The aim
of this work is to study the reliability of a Real-Time Operating
System (RTOS) affected by Single Event Upset (SEU) faults.
The methodology targets the most relevant variables and data
structures of FreeRTOS analyzed through a software-based fault
injection. Results show the ability to highlight the criticality in
the OS fault tolerance, in terms of system integrity, data integrity
and the overall inherent resiliency to faults, potentially leading
to selective hardening of the OS.

Index Terms—Embedded Systems, Real-Time Operating Sys-
tem, Fault Injection, Reliability

I. INTRODUCTION

Embedded systems are commonly employed in several
fields, spanning from consumer electronics, e.g., mobile de-
vices, 10T, to safety-critical applications, such as automotive,
aerospace and avionic. The computational power of embedded
systems increased over the years in order to meet the escalation
of application constraints, like object detection on autonomous
driving [1]. For these reasons, embedded systems are growing
in complexity, including multi-core systems, characterized by
the integration of more than one Central Processing Unit
(CPU) and Graphical Processing Unit (GPU) on the same chip.
As a direct consequence, parallel programming paradigms
are enabling a great increase in computational throughput.
Moreover, the full system stack usually requires, between the
hardware layer and the software/application layer, a middle
layer composed by the Operating System (OS) and the mid-
dleware (e.g., peripheral drivers) to properly deploy the final
application.

Embedded systems must meet both required and desirable
features chosen at design time and/or imposed by standards,

*This work has been partially founded by CNRS PICS07968 project.

according to its mission. In any case, a desirable property
for every system still remains the dependability. Indeed, de-
pendability can be reduced in many ways: without taking into
consideration errors due to design, hardware or software bugs,
issues occurred during fabrication, intentional tampering, or
many other external events that can affect this property during
the lifetime of the application. Due to the interaction of the
circuit with the surrounding environment memory bit-flips,
signal degradation, data loss, and permanent damage to the
physical circuit may happen [2].

Usually, the system dependability can be achieved with a
deep analysis of the system weaknesses, and then with the
implementation of mitigation techniques that allow to reduce
or completely remove them. However, extensive testing phases
come at cost of money and time, delaying time-to-market and
increasing the final price per-unit. For those reasons an optimal
trade-off must be found during the design phase so that the
system can still work with the desired quality level without
impacting the production too much.

In the literature, when the full system is considered, the
application-layer is commonly the target of the reliability
analysis [3]. Excluding bare-metal system scenarios, the as-
sumption is the fact that the probability of a fault affecting the
middle layer is much lower compared to the application-level
due to its short execution time (i.e., system calls execution
time is generally shorter than the overall application). On the
other hand, middle layer data structures (e.g., process queues)
lifespan is equivalent to the application layer ones, if not even
bigger. Moreover, it is clear that, all the times a hardware
fault propagates to the middle-layer as an error, and especially
falling within the OS, its impact can be expected to be poten-
tially catastrophic, causing a various range of misbehavior,
such as system crash, missed deadlines, application freeze as
well as tasks synchronization errors.

The aim of this work is to study the reliability of a Real-
Time Operating System (RTOS) affected by Single Event
Upset (SEU) faults. The applied methodology targets the most
relevant variables and data structures of the FreeRTOS [4]
that will be analyzed through a software-based fault injection
campaign. The paper evaluates the impact on the application
in terms of system integrity, data integrity and the overall
resistance to faults.

The remaining of this paper is structured as follows. Section
IT presents the basics knowledge and the state of the art.



Section III details the proposed methodology, and Section IV
gives the experimental results. Finally, Section V draws the
conclusions.

II. BACKGROUND

This section presents the state of the art about Fault Injec-
tion techniques (including a discussion about related works)
and the basics knowledge regarding Real-Time Operating
System.

A. Fault Injection

Fault injection is the standard technique to evaluate the
reliability of systems under faults [5]. It is based on the real-
ization of controlled experiments, where a fault is introduced
in the target system, in order to observe the performance of the
system in the presence of faults. Fault injection techniques are
classified as (i) hardware-based, when injecting faults directly
in the target hardware, and (ii) software-based, when modeling
the hardware fault at an abstract level. Hardware-based tech-
niques [6] perform fault injection campaigns in more realistic
conditions and provide therefore more accurate results, while
software-based techniques [7] [8] provide cheaper solutions to
evaluate the reliability with sufficient accuracy levels.

In general, while both methodologies can work with most
applications, the operating system fault injection can be a less
trivial subject, because the injection of a fault can easily lead
to a non-responsive system, where only rebooting the system
allows interacting with the system again. Probably because
of that, not all the fault injectors in literature address the
operating system layer in the same way. In fact, some of them,
like [9], just mimic an error in the OS by wrapping around
the API level (e.g., a system call). The result leads to the
investigation of a small set of faults: the ones that affect only
the data provided by the OS to the application.

A fist attempt to analyze the effect of faults into the kernel
space have been proposed in [10], where a basic software-
implemented fault injection (SWIFI) was developed to address
a set of three data fault models not related to any physical error.
Authors claim to generally target the task image, probably
covering part of the user space, i.e., the program itself, as
well as part of the operating system.

An important work has been proposed under the name of
MAFALDA in [11]. The tool targets micro-kernels as injected
systems. Micro-kernels are operating systems provided as a
library to be integrated with the actual set of applications
to run on small systems, and their peculiarity is that their
functionalities are invoked using trap calls instead of com-
mon API functions. The actual fault injection is limited to
the corruption of pseudo-random bytes of (i) the parameters
passed to the micro-kernel primitives and (ii) of the address
space of the micro-kernel functional components. Again, this
approach limits the capability of the tool to provide insight on
the behavior of operating system components under faults.

Authors in [12], [13] target a more complex Operating
System such as Linux similarly: they resort to the debug
interface to stop the execution and inject the fault into an

operating system instruction. While the appealing of the work
is the usage of performance counters to measure the latency
of the error, the fault model is just a bit flip in the assembly
instruction belonging to the kernel execution (either opcode
or data), which makes the approach not totally refined to be
useful in operating system reliability analysis and hardening.

A very interesting approach is presented in [14]. Authors
aim at building a fault injector that lays between the firmware
level and the operating system. While the idea does not
represent an OS-specific fault injector, the basic concepts
could represent an interesting approach. Unfortunately, authors
did not provide any results.

More recent works, like [15]-[18] target specific OS data
structure to evaluate the impact of a fault to the full system.
Authors in [15] and [18] seem to cover most of OS data
structure but both papers do not provide any experimental
results. In [16] the synchronization capabilities via mutex OS
structures are addressed, while in [17] a completely different
scenario is presented: in order to evaluate the capability of
tampering the OS, using a Differential Fault Attack (DFA),
a specific fault injector is proposed. Due to the scope of the
work, only user data memory is targeted by the fault injector,
missing all system data.

On the side of reliability analysis of OS, to the best of
our knowledge only one paper addressed the matter. In [19],
authors resort to a Bayesian network model of the internal
states of a real-time operating system (CRTOS II) to predict
its reliability. In order to support their claim, they describe
an experimental setup where several failures are applied.
Unfortunately, the paper does not contain any explanation
about the fault model behind the investigation and how authors
produce the failures.

B. RTOS

A Real-Time Operating System (RTOS) is an operating
system designed to perform operations in a precise amount
of time, respecting well-defined deadlines. An RTOS is then
used all the times the system reactivity and computation times
are very crucial for the whole application. Moreover, in safety-
critical applications, it is very common to being able to avoid
such deadlines to be violated: if this happens, the system could
injure more or less severely other systems, people and objects.

RTOSs are able to schedule concurrent operations belonging
to different contexts in the form of fasks (or processes) and to
switch among them in such a way that desired timing is still
respected. Each task can be in a defined state in every moment
of its lifetime and the programmer can partially choose how
and when a task must change it; usually all operating systems
(not only RTOSs) recognize three states for each task: the
ready state, when the task is ready to be scheduled; the running
state when the task has been switched in and it holds the core
of the processor; the waiting state when the task is waiting
for an event to happen. Sometimes two additional states are
added, and they are the new state, used to identify tasks that
have been just created and never scheduled, and the deleted
state, when a task must be removed from the system and it



is waiting for the kernel to clear its stack and to free all the
memory associated to it.

In this work, we used the FreeRTOS [4] as case study.
Among the class of RTOS, it targets embedded systems
where other OSs are not able to fit the memory due to its
small footprint. It is a good choice also for its completeness.
Moreover, FreeRTOS does not include any additional safety-
oriented features. This lack makes FreeRTOS a right choice
in order to investigate the impact of faults on the OS.

III. FAULT INJECTION ENVIRONMENT

The aim of this work is to develop a Fault Injection
Environment (FIE) able to reproduce the effects of SEU, and in
particular Single Bit Upset(SBU), in the memory of the Device
Under Test (DUT), focusing only on main data structures and
variables of FreeRTOS and to trace the events so that they
can be saved on a host computer and successively analyzed.
The DUT must be chosen in order to be representative of
a common platform used in embedded systems, thus with
limited resources.

When designing a FIE, several characteristics have to be
included: (i) the FIE must be able to perform automatically
long fault injection campaigns after an initial configuration, (ii)
it must be able to inject in given memory location, at given
times and in the desired bit of the datum, (iii) experiments
must be repeatable in order to be relevant and (iv) the FIE
must be as less invasive as possible not to alter the system
performances.

Our FIE system is composed by a board that acts as DUT,
and by a Host machine working as platform, controlling the
injection campaigns and evaluating the results. It is able to
inject in different injection targets, i.e., the OS locations (e.g.,
variables or data structures), and to analyze the data collected
in order to classify the observed OS behavior into four classes,
as described later.

From the flow point of view, the host-side program sends
to the DUT a sequence of injection parameters when the
application starts. Then, the DUT is left free to run for a
defined amount of time and, finally, the injection is performed
on the desired target. A resume routine is used by the DUT to
send back to the host results of the injection. Figure 1 shows
a scheme of the whole system.

It can be noticed that the FIE is composed by three parts:
the first one (FIEbrd in Fig. 1) is written for the DUT, it
is architecture-dependent, and it manages the communication
with the host machine, and controls the injection in the desired
location; it was developed entirely in C. The second one is a
Python script called FIEmon.py that operates on the host-side,
it manages the injection campaign and saves results of the
various experiments in a file. For each injection campaign, it
pilots the execution of two runs of the same algorithm: the
first one is a golden execution to be used as reference of
the fault free run, without injection, and the other one to get
the outcomes of the real injection. Finally, a second Python
script, called FlEparser.py, extracts data from the injection
campaign: it takes as input the data from the two runs and

( HOST COMPUTER / DUT BOARD \

FIEmon.py
( o D Task_Id1 | | Task_Id2 | Task_bm1
Injection
management J T T T
— FreeRTOS

Send inj params

Serial

Log inj results

7

Log file
management

J

r Injector

Recv params.

+
Send restits €———— | (oo
FIEbrd
FIEparser.py \ /

Fig. 1: Fault Injection Environment Model

Golden file ey

performs the output comparisons to detect the effect of the
injected fault; this operation can be done at any time after the
injection campaign.

Figure 2 depicts the communication protocol to initiate the
fault injection process and to retrieve all data. The first step
requires to upload the executable file into the board. After that,
the DUT setups the clock of the board’s micro-controller, the
USART peripheral and the GPIO port on the board because
they will be used for messages and data passing purposes. For
these reasons, no benchmark using those two hardware com-
ponents can be implemented. After the setup of all involved
peripherals, the DUT sends a synchronization message back
to the Host (the STARTITCHAR byte in Figure 2) to inform
it that the initialization is completed. This message is part of
a hand-shake protocol that ends with the host sending back a
further initialization message (the INIT command sent back to
the DUT in Figure 2). Until this message is received, the DUT
hangs in an endless loop, waiting for the USART interrupt
to be raised. Once the handshake completes successfully, the
DUT is ready to receive the fault injection parameters. When
the DUT acquires all parameters, they are sent back just for
channel debugging. This duplication is also used to signal
the host to start the event logging. While the host starts
the logging, the benchmark on the DUT initiates its run,
without any knowledge about the injection. In fact, the actual
injection event resorts to the timer interrupt implemented on
the board, and, it is totally asynchronous with respect to
the benchmark execution. To properly support this approach,
before running the benchmark, the prescaler and the timer
registers are set accordingly to the injection parameters to
raise a timer interrupt at the chosen injection instant. Indeed,
the Interrupt Service Routing (ISR) for the timer interrupt
handler has then been modified to call an injection function
that, given the selected location, performs the injection by bit-
wise operations.

In order to ensure each run to reach an end, a resume timer
is used to control the execution timing of the benchmark.
Whenever it reaches its timeout or if a crash occurs, a function
is called to send to the Host the results of the injection and,
after that, a new message (the STOPITCHAR in Figure 2) to



inform the Host about the end of the injection experiment.

Eventually, the DUT performs a software reset to go back
on waiting for a new injection, and the host logs the results
and updates the injection parameters.

Compile code

Upload e!eculable Setup DUT peripherals and FIE

— Wait for STARTITCHAR ¢——|
Send INIT !ommand

Send STARTITCHAR

Synchronization succeeded

SYNC PHASE

Send injection parameters Read parameters and find CRC

Begin event logging Send back injection parameters to

check correctness

Benchmark free to run

INJECTION CYCLE

Injection done at required time

Log injection outcome Resume operation: send back data
about execution and injection

outcome

INJECTION PHASE

End of injectioncycle 1 Send STOPITCHAR

— Update injection parameters Software reset

\/

Time

Fig. 2: Fault Injector Environment Communication Protocol

1) Injection Targets: The selection of the injection targets
is a challenging job when dealing with an OS. For this reason,
we provide the analysis of the impact of faults into the main
components of the FreeRTOS by grouping structures and
variables according to their usage. For each target, we also
specify the number of fault locations.

« FreeRTOS global kernel variables (GKVARS): Global
variables are used by the kernel to share data among
the various kernel functions and to save the state of the
system. They comprise 10 fault locations.

o Task control block (TCB) structure: TCB is a structure
instantiated for each task, which contains all important
data to guarantee the proper execution of the task within
the OS, like the context switching. Experiments have been
performed in the TCB of running tasks (CURTCB) and
in the TCB of ready tasks (RDYTCB). They represent the
same data structure allocated in two different memory
address, including 19 fault locations.

o Tasks list: The state of a task is determined on the basis
of the state list the task belongs to. Injections have been
made in the ready task list (RDYLST) and in the delayed
task list (DLDLST). Both lists are generated using the
same data structure, defining 5 fault locations each.

« Mutex and Queue structure (MTXQVARS): The queue
is a structure that can be used as semaphore or mutex by
the kernel. It is composed of 22 fault locations.

Once the fault location has been selected, the injection time
is randomly generated. The bit in the location to be affected
by the fault is randomly generated too.

2) Classes of misbehavior: Every injection could lead to
different types of misbehavior of the system; nevertheless, only
some of them can be actually identified and classified because
of some limitations in the tracing capabilities of the injection

environment. All times the system continues working in the
expected way, without showing any appreciable difference
with respect to the golden run after the injection, the effect
is classified as OK. It usually means that the error has been
masked during the execution [20]. Instead, misbehavior are
classified according to the following classes:

e Crash: When a critical error occurs on the DUT, the
internal reset handler is called in order to avoid further
problems. In this case, the misbehavior is classified as
crash.

o Freeze: A misbehavior is classified as freeze when the
whole system stops working and it does not respond to
any regular input or event. In this event, only interrupts
are executed, then, when the ISR returns, the system goes
back to the frozen state.

o Silent Data Corruption (SDC): A misbehavior is clas-
sified as SDC when only a part of the system shows
a behavior that is substantially different from the ex-
pected one: this means that only a part of the system
is blocked or acts incorrectly during the execution while
the rest is still able to run properly. In order to check
if the computation is correct, each different benchmark
is provided by a CRC based on the output values of a
golden execution. The CRC is evaluated against the one
calculated on the output values when the main algorithm
ends and a difference allows to detect an SDC.

IV. EXPERIMENTAL RESULTS

The actual version of the Fault Injection Environment has
been deployed on an STM32F3DISCOVERY (STMicroelec-
tronics®) board running FreeRTOS. The board features an
STM32F303VCT6 micro-controller based on the ARM® Cor-
tex® M4 Architecture, working at 72MHz, and an ST-LINKv2
debugger interface, while the Host machine is a Linux-based
operating system. In order to perform experiments using
standard programs, to ensure repeatability of the injections,
we resort to the EEMBC® Automotive suite [21]: a set of
benchmarks that reproduce some very common calculations
in the automotive field. They are developed to be used within
an enclosing environment written specifically for UNIX/Linux
systems called Multi-Instance Test Harness (MITH), that al-
lows to instantiate a chosen subset of benchmarks among the
given ones in the same run and to tune the parameters of
the execution. These benchmarks target multi-core processors
to test the scalability of the platform used, analyzing the
distribution of the workload among the different cores, and
eventually helping to find bottlenecks in the schedule and
in the execution. The full set of benchmarks comprises 16
applications and, among them, three benchmarks have been
extensively tested:

« a2time (Angle to time conversion): this benchmark sim-
ulates an engine with different cylinders (4, 6 or 8, to be
chosen before compilation) with a crankshaft, a toothed
reluctor wheel and a sensor able to generate a pulse
every time it detects the passage of a tooth: this type



of mechanism is used to control the fuel injection in the
cylinders and the subsequent spark.

« tblook (Table lookup and interpolation): a table lookup
algorithm to store a limited amount of data pairs, coming
from one or more resources (sensors, connections, cal-
culations) and interpolates missing pairs. It is commonly
used in embedded system when the memory resources
are limited and only portions of data can be stored.

e idctrn (Inverse Discrete Cosine Transform): the im-
plementation of the Inverse Discrete Cosine Transform
widely used in digital graphics; it is applied to an input
dataset representing a matrix of 64 bits values.

Since the performance analysis was not relevant for this

work, they have been used in a single core micro-controller.

All injections have been done at random times. Table I

reports the total number of injected faults per location list.
They are equally distributed among all the locations. All
reported numbers of injections have been computed by using
the approach presented in [22] to obtain statistically significant
results with an error margin of 1% and a confidence level
of 95%. In order to guarantee a fair analysis, all injections
have been made randomly within a window of execution,
different for each group of locations, also reported in Table I.
The difference in the window duration is related to the usage
of each location group: for GKVARS a longer period is
required in order to better catch the fallout of the fault (and its
propagation within the system), while for other groups, shorter
periods still ensure a good analysis capability, i.e., they are
used more often or their compromise is highly disruptive.

A. Results Analysis

In general, experimental results shown that FreeRTOS is
affected by some vulnerabilities. As it can be expected,
most critical vulnerabilities are pointers, as well as numerical
indexes stored in integer variables (both signed and unsigned)
used to address elements of lists or vectors.

Understanding the capabilities of the fault injector requires
to carefully analyze the results from different key aspects.
Figure 3 gives a first perspective of the overall response when
different benchmarks are executed. It is a very important first
step in understanding the value and the quality of the Fault
Injector because it shows how crashes and freezes do not
depend on the benchmark, while numerous faults (almost 70%)
leads to a fully responsive system, with errors surfacing as
SDC, depending on the benchmark. This is a significant result
since the operating system interacts with all threads in the
same way, while the specificity of the benchmark explains the
huge difference between tblook and the other two.

From a different perspective, Figure 4 reports the classifica-
tion of the fault injection over the six target location groups,
without distinction among benchmarks. A first interesting
outcome is that the disruption of the content of GKVAR group
does not generate any Crash, while most of the time the system
is degrading into a freeze state. Probably less surprising,
the most sensible group to faults is the ready list group
(RDYLST), which almost always leads to crashes, because it

100%
90%
80%
70%
60%
50%
40%
30%
20%
-

0%

a2time

idctrn

tblook

M Crashes Freezes mSDC OK

Fig. 3: Classification summary across the three benchmarks
including all target locations

includes all data required to properly schedule alive threads.
The other thread list (DLDLST) goes into an inoperative state,
i.e., crash or freeze, in less than 50% of the injected faults,
while most of the time an SDC is generated, making the OS
more resilient than expected. Another peculiarity is the effect
of a fault into a thread control block (either for the current
task or the ready ones) where no SDC ever produced and
around 40% of the time the OS never freezes or crashes,
with a slightly worse scenario when the fault appears in the
CURTCB. Eventually, MTXQVARS group shows a prevalence
of SDCs among other classes and, less than 30% of crashes
and freezes as expected since they include locations controlling
mutex and semaphores.

All those considerations already suggest that FreeRTOS
may be hardened in different ways. For example by simply
duplicating or triplicating the most sensitive data, we will
certainly improve the reliability but results show that a full
duplication or triplication would be excessive. Moreover, the
voting systems is going to add some computational overhead
to all kernel procedures, which might contrast the real-time
requirements of the OS. This is why the proposed fault
injection framework can help in carefully selecting sensitive
data, reducing the impact on the OS size and performances.

100%
90%
80%
70%
60%
50%
40%
30%
20%

10% .
0%

GKVAR CURTCB RDYTCB DLDLST

M Crashes M Freezes WMSDC m OK

RDYLST MTXQVARS

Fig. 4: Classification summary across the different target
location groups



List # Locations  # Injections Injection Window Locations
(seconds)
uxCurrentNumberOfTasks, xTickCount, uxTopReadyPriority, xSchedulerRunning,
GKVARS 10 4000 [0-5] uxPendedTicks, xYieldPending, xNumOfOverflows, uxTaskNumber,
xNextTaskUnblockTime, uxSchedulerSuspended
pxTopOfStack, uxPriority, pxStack, uxTCBNumber, uxTaskNumber, uxBasePriority,
uxMutexesHeld, ulNotifiedValue, ucNotifyState, xStateListItem, xItemValue,
CURTCB 19 7600 (0-3] xStateListItem.{pxNext, pxPrevious, pvOwner, pvContainer, xItemValue }
xEventListItem.{pxNext, pxPrevious, pvOwner, pvContainer }
RDYTCB 19 7600 [0-2] [same as previous one]
uxNumberOfltems, pxIndex
DLDLST 5 2000 (0-3] xListEnd.{xItemValue, pxNext, pxPrevious}
RDYLST 5 2000 [0-3] [same as previous one]
pcHeadpcTail, pcWriteTo, u.pcReadFrom, u.uxRecursiveCallCount
xTasksWaitingToSend.{uxNumberOfltems, pxIndex,
xListEnd.xItemValue, xListEnd.pxNext, xListEnd.pxPrevious}
MTXQVARS 22 8800 [0-2] xTasksWaitingToReceive.{uxNumberOfItems, pxIndex,

xListEnd.xItemValue, xListEnd.pxNext, xListEnd.pxPrevious}

uxMessagesWaiting, uxLength, uxItemSize, cRxLock, cTxLock,
uxQueueNumber, ucQueueType

TABLE I: Injection lists summary, including the total number of fault locations (variable and structure fields), the total number
of injection for each list, the window of injection and the full set of locations name as in the RTOS

V. CONCLUSIONS

This paper reports the study on the dependability of a Real-
Time operating system by building a Fault Injection Environ-
ment able to target data belonging to the operating system
and to trace the effects on the full system. The injections are
done in a real environment using a host machine to prepare
each injection and post-processing the results and a hardware
board infrastructure to run the system under investigation and
to make the injection. The results of several fault injection
campaigns allowed, to the best of our knowledge, to investigate
which data structure are more sensitive to SEUs, proving that
the OS has some inherent resiliency, and thus supporting future
developments such as a selective OS hardening based on FI
data.

REFERENCES

[1] C. Chen et al., “Deepdriving: Learning affordance for direct perception
in autonomous driving,” in 2015 IEEE International Conference on
Computer Vision (ICCV), Dec 2015, pp. 2722-2730.

[2] A. Vallero et al., “Syra: Early system reliability analysis for cross-layer
soft errors resilience in memory arrays of microprocessor systems,”
IEEE Transactions on Computers, vol. 68, no. 5, pp. 765-783, May
2019.

[3]1 N. J. Wang et al., “Examining ace analysis reliability estimates
using fault-injection,” in Proceedings of the 34th Annual International
Symposium on Computer Architecture, ser. ISCA ’07. New York,
NY, USA: ACM, 2007, pp. 460-469. [Online]. Available: http:
//doi.acm.org/10.1145/1250662.1250719

[4] Freertos. [Online]. Available: https://www.freertos.org/index.html

[5] M. Kooli et al., “A survey on simulation-based fault injection tools for
complex systems,” in 2014 9th IEEE International Conference on Design
Technology of Integrated Systems in Nanoscale Era (DTIS), May 2014,
pp. 1-6.

[6] M. Ebrahimi et al., “A fast, flexible, and easy-to-develop fpga-based
fault injection technique,” Microelectronics Reliability, vol. 54, no. 5,
pp. 1000-1008, 2014.

[7] J. Carreira et al., “Xception: A technique for the experimental evaluation
of dependability in modern computers,” IEEE Transactions on Software
Engineering, vol. 24, no. 2, pp. 125-136, February 1998.

[8] G. A. Kanawati et al., “Ferrari: A flexible software-based fault and error
injection system,” IEEE Trans. Comput., vol. 44, no. 2, pp. 248-260,
Feb. 1995.

[9]

[10]
(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

F. Jianyong, “Research on the nonintrusive resource level fault injec-
tion technology for windows system,” in 2016 IEEE Trustcom/Big-
DataSE/ISPA, Aug 2016, pp. 1856-1860.

J. H. Barton et al., “Fault injection experiments using fiat,” [EEE
Transactions on Computers, vol. 39, no. 4, pp. 575-582, April 1990.
J. Arlat et al., “Dependability of cots microkernel-based systems,” IEEE
Transactions on Computers, vol. 51, no. 2, pp. 138-163, Feb 2002.
Weining Gu et al., “Characterization of linux kernel behavior under
errors,” in 2003 International Conference on Dependable Systems and
Networks, 2003. Proceedings., June 2003, pp. 459-468.

E. Jeong et al., “Fifa: A kernel-level fault injection framework for arm-
based embedded linux system,” /0th IEEE International Conference on
Software Testing, Verification and Validation, pp. 23-34, 2017.

P. Troger et al., “Software-implemented fault injection at firmware
level,” in 2010 Third International Conference on Dependability, July
2010, pp. 13-16.

D. Silva et al., “A hardware-based approach for fault detection in
rtos-based embedded systems,” in 2011 Sixteenth IEEE European Test
Symposium, May 2011, pp. 209-2009.

B. Montrucchio et al., “Software-implemented fault injection in op-
erating system kernel mutex data structure,” in 2014 IEEE 5th Latin
American Symposium on Circuits and Systems, Feb 2014, pp. 1-6.

N. Alimi et al., “An rtos-based fault injection simulator for embedded
processors,” International Journal of Advanced Computer Science and
Applications, vol. 8, no. 5, pp. 300-306, 2017.

S. C. Lee et al., “rostest: Universal test framework for real-time
operating system,” in 2016 IEEE 25th Asian Test Symposium (ATS),
Nov 2016, pp. 129-129.

H. Chen et al., “Reliability demonstration testing method for embedded
operating systems,” in The 2nd International Conference on Software
Engineering and Data Mining, June 2010, pp. 272-275.

A. Savino et al., “Statistical reliability estimation of microprocessor-
based systems,” IEEE Transactions on Computers, vol. 61, no. 11, pp.
1521-1534, 2012.

EEMBC, Autobench - Software benchmark data book. www.eembc.org:
EEMBC, 2015.

R. Leveugle et al., “Statistical fault injection: Quantified error and
confidence,” in 2009 Design, Automation Test in Europe Conference
Exhibition, April 2009, pp. 502-506.



