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Abstract

Point clouds can be obtained by airborne or terrestrial Light Detection and Ranging (LiDAR)
scanning or directly from street-view panoramic imagery. Point clouds obtained from airborne
scanners cover most roof information but lack facade information. Similar but orthogonal to
airborne scanning, street-view point clouds cover well of the facade information but lack
roof points. Therefore, it is necessary to combine those point clouds in order to construct
a complete building model. For this combination, simplification is needed in which edge
preservation, outlier removal, noise smoothing and uniform density have to be considered as
these properties are desired in many post-processing applications.

In this thesis, an algorithm pipeline is proposed that is able to take in an outlier-ridden, noisy
and non-uniform roof and facade point clouds and generate an outlier-removed, edge-aware
and uniform point cloud. The algorithm pipeline can be divided into two independent phases:
outlier removal and simplification. The outlier removal algorithm can remove singly scattered
and small cluster of outliers, whereas the simplification algorithm pipeline is able to generate
a noise-reduced, uniform and edge-aware point cloud. The pipeline is validated to be able to
achieve the objectives. Proof of efficiency in running-time is given, so that it can be used for
processing large-size real-scene point clouds.
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Chapter 1

Introduction

Point clouds are an effective and popular representation of real world geographical informa-
tion. Highly dense point clouds have been widely used in applications such as making digital
elevation models of the terrain [1], reverse engineering of industrial sites [2], tree reconstruc-
tion [3] and creating 3D models of urban environment [4].

Point clouds are usually created from 3D optical scanners. LiDAR, an acronym for Light
Detection and Ranging, has been popularly used to make high-resolution maps in a wide range
of research fields [5]. When the laser scanners are deployed on an aircraft such as helicopter
or UAV (Unmanned Aerial Vehicle), it is called airborne LiDAR. When the laser scanners are
mounted on a moving car, van or boat the setup is usually referred to as terrestrial Mobile
Mapping System. Traditionally, both airborne and terrestrial Mobile Mapping Systems are
equipped with GNSS receiver, Inertial Measurement Unit and laser scanners [6]. Cameras
may also be mounted in the systems but mainly only provide extra color information for
LiDAR points.

Recently, due to the improved accuracy of the image capturing and matching techniques, new
methods have emerged to retrieve point clouds directly by using only panoramic photographs.
Compared to mobile LiDAR mapping systems, point clouds derived directly from images
add extra color information and the scanning process is much faster and cheaper. Airborne
scanning covers well the roof seen from above while street-view scanning covers the facade
seen from ground. This research proposes a method for combining roof and facade point
clouds.

This chapter starts by giving an introduction and research motivation in Section 1-1. Section
1-2 gives the research question, main objective and scope. Finally the overview of algorithms
and the thesis structure follows in Section 1-3. Concluding, a summary of this thesis’ contri-
butions is provided in Section 1-4.
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2 Introduction

1-1 Motivation

In the current research, we consider the source of facade point cloud coming from either
terrestrial LiDAR or panoramic images. Terrestrial LiDAR can produce a relatively uniform
and accurate point cloud which can be very dense. As for point clouds generated from
panoramic images, many approaches already exist for creating street level 360 degree spherical
panoramic imagery with accurate positioning by using algorithms such as Structure from
Motion (SfM) [7], Bundle Adjustment (BA) [8] and Iterative Closest Point (ICP) [9]. Based
on the consolidated images, current researches are focusing on manufacturing a pipeline that is
able to derive color point clouds directly from those street-view panoramic images, where both
geometry and color information can be obtained. Point clouds obtained from photographs
are less precise than terrestrial LiDAR point cloud. Raw point clouds without any processing
are usually not clean contaminated with a lot of outliers, noise, redundancy and holes, which
create problems for storage, surface reconstruction, visualization and analysis. A common
problem for street-view point clouds is missing information from above, such as the roofs,
which is necessary for a complete 3D building model.

The same type of problem but orthogonal to street-view point clouds is the fact that roof point
clouds obtained by airborne laser scanning lack information of building facades. One famous
airborne point cloud in Netherlands is the AHN2, which means “National Height model of
the Netherlands version 2” in Dutch. It provides relatively uniform dense airborne LiDAR
point clouds covering most areas of the country. Except for the common problem of lacking
facade information, another limitation is that it does not contain color which is necessary for
visualization and useful for other related analysis such as color-based segmentation.

A complete building model should be the combination of roof and facade point clouds. For
both point clouds, outliers need to be removed respectively before merging since outliers are
produced in the generation phase. Singly scattered points and points in small clusters are
considered as outliers.

In point cloud simplification, edges indicate the geometry skeleton of the point cloud which
is useful for applications such as point cloud surface reconstruction [10] and segmentation
[2]. A uniform sampling distribution is desired in applications such as pyramid algorithms
for multilevel smoothing [11] and texture synthesis [12]. Therefore the combined point cloud
should be outlier removed, noise reduced, uniformly dense and edge-aware.

However, the integration of these data is not just as simple as transforming and registering
them in the same coordinate system. Different point clouds derived from different methods
expose the problems of large density variance, noise distribution difference and data overlap-
ping. How to keep the edge features while at the same time remove outliers, smooth noise
and reduce redundancy have been popular research topics recently. In outlier removal, none
of the algorithms is able to remove both singly scattered outliers and small cluster of out-
liers without over-removing. In simplification, methods proposed by other researches focus
on different properties separately. Some of them focus more on generating a uniform result
and some focus on smoothing the noise and keeping edge points. Many of the algorithms
are designed for processing small-size point clouds, but are slow and memory-inefficient to
process large-size point cloud. None of the existing methods considers the point cloud spatial
distribution from the data source perspective.
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1-2 Research question, objective and scope 3

1-2 Research question, objective and scope

Based on the motivation mentioned above, the main research question of this thesis is as
below:

• Which algorithms are most appropriate to fuse roof and facade point clouds into an
edge-aware and uniformly dense color point cloud?

In order to answer the research question, the main objective of this thesis is:

• Design and implement an algorithm that is able to efficiently integrate roof point clouds
derived from airborne LiDAR with facade point clouds derived from street-view terres-
trial LiDAR or panoramic images to create an edge-aware and uniformly dense color
point cloud.

The scope of this research includes designing two subsequent and independent algorithms,
i.e. outlier removal and simplification, and how to integrate them into one unified algorithm
pipeline. Our researched point clouds are derived from LiDAR scanning or panoramic imagery.

1-3 Overview

Our algorithm pipeline can take in outlier-ridden, noisy and non-uniform roof and facade
point clouds and combine into an outlier-removed, noise-reduced, uniform and edge-aware
point cloud. In general, the overview of our algorithm pipeline is mainly separated into
two phases as shown in Figure 1-1. The first phase removes outliers in the input point
clouds. The second phase simplifies the point cloud. The advantages of this approach is
that uniform density, edge-preservation and noise-smoothing are considered at the same time
with consideration of point cloud collection methods. What is more, this algorithm pipeline
can be applied in large-scale processing. The detailed expansion of this pipeline is shown in
Figure 5-1 and discussed in Chapter 3, Chapter 4 and Chapter 5.

The structure of this thesis is organized as follows: Chapter 2 first discusses the point clouds we
use in this thesis and proposes our precision estimation models. Then, several popular outlier
removal algorithms are discussed and analyzed. At the end of this chapter, we list several
popular simplification algorithms and compare and discuss the efficiency and suitability for
our use. Chapter 3 introduces our proposed outlier removal algorithm based on two existing
ones. Our method can be applied to remove outliers in any point cloud. Chapter 4 is the
key research of this thesis. We propose several subsequent algorithms that is able to take
in several outlier-cleaned point clouds and simplify into an edge-aware, noise smoothed and
uniformly-dense point cloud. Chapter 5 discusses the integration of outlier removal and
simplification algorithms and gives our final complete and detailed algorithm pipeline. Later
in this chapter we give our implementation details about different point clouds preparation,
software prototypes and parameter tweaking strategies. Chapter 6 gives the simplified results
prepared in Chapter 5 and validates them by checking with our objective list qualitatively or
quantitatively. The limitations of our proposed method are discussed afterwards. Chapter 7
concludes this thesis and gives recommendations for future improvement.
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4 Introduction

Figure 1-1: Overview of our algorithm pipeline.

1-4 Contributions

In this thesis, We propose a new outlier removal algorithm by integrating and improving two
existing ones. Similar to other methods, our outlier removal algorithm removes outliers in a
separate pre-processing step. But different from others, as far as we know, that none of which
can remove both singly scattered outliers and small cluster of outliers without over-removing
artifacts.

In simplification, our algorithm can be applied to process large-size point cloud in a short
running time. Compared to other algorithms focusing on one or two objectives of noise-
smoothing, edge preservation or uniform density, our proposed algorithm can achieve these
properties at the same time. What is more, none of other simplification algorithms consid-
ers the point cloud precision distribution from a data collection perspective. Our method
estimates precision according to scanning methods and attaches an importance value to each
point so that a point with a low importance value has a higher probability to be smoothed
out in simplification.

We finally integrate the proposed outlier removal and simplification algorithms into one unified
algorithm pipeline that is able to take in several outlier-ridden, noisy, non-uniform point clouds
and generate an outlier-cleaned, noise reduced, uniform and edge-aware point cloud.
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Chapter 2

Background

According to the research objectives, this chapter first compares and discusses the spatial
properties of different point clouds we use in this research. Then we give an overview about
the current point cloud algorithm researches in outlier removal and simplification. For both
outlier removal and simplification, listed methods are discussed with respect to efficiency and
suitability for our use.

2-1 Point clouds spatial property and precision estimation

The spatial property of point cloud is determined by different acquisition methods. In this
section we first give an overview about acquisition methods for airborne LiDAR, terrestrial
LiDAR and street-view panoramic imagery point cloud. Then a rough and easy-to-implement
precision estimation model has been put forward to compute the importance value used
in simplification. Next we explore the possibility to get a mathematical rigorous precision
estimation model based on error-source analysis. Lastly we make a short conclusion of our
proposed precision estimation model.

2-1-1 Overview of point clouds acquisition methods

In this subsection different point cloud acquisition methods are briefly summarized.

Airborne LiDAR point clouds

The airborne LiDAR systems use laser scanners fixed on the bottom of the aircraft by rotating
the beam mirror to scan the target objects. There are two types of beam mirrors available
to choose in production, i.e. oscillating mirror or rotating mirror. Both scanners reflect laser
beam emitted from the sensor. With fast rotating speed of the mirror, laser rays can hit a
wide angle range of object surface. The position of the scanner is from a combination of GPS
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6 Background

position parameters (i.e. x, y and z) and INS rotation parameters (i.e. ω, κ and φ). The
final object position is derived by combining scanner position, scan distance and attitude of
each laser ray. An overview of LiDAR point collection process is shown in Figure 2-1.

Figure 2-1: Airborne LiDAR scanning procedure. The position of each point is decided by two
factors: (a).GPS and INS on the plane; (b).distance and attitude from scanner to the point.

Terrestrial LiDAR point clouds

Similar to airborne LiDAR systems, terrestrial LiDAR systems also use line scanners but
scanned with both horizontal and vertical directions. According to the position of the scanners
terrestrial LiDAR systems can be further divided into mobile and statically deployed LiDAR,
in which statically deployed LiDAR has a higher precision. One example showing both laser
scanners is shown in Figure 2-2.

Panoramic image point clouds

The acquisition of street-view point clouds from panoramic imagery is more complicated
compared to LiDAR point cloud. General pipeline that is adopted by many vendors in
producing point clouds from imagery is shown in Figure 2-3.

The feature points matched from pairs of stereo images are extracted by algorithms such as
SIFT [40] and FAST [41]. Taking the matched feature points as control points, bundle adjust-
ment is performed to find point positions and camera correction parameters that minimize
the reprojection errors, i.e. the sum of least square distances from the projections of each

Jiale Chen Master of Science Thesis



2-1 Point clouds spatial property and precision estimation 7

Figure 2-2: Left: terrestrial mobile mapping system whose position accuracy is determined by
scanner position, distance and attitude from scanner to the point; Right: terrestrial static LiDAR
scanner whose position is only decided by distance and attitude. Figure from Haala et al. [38]
and Frohlich et al. [39].

Figure 2-3: Street-view point clouds generation pipeline.

track to its corresponding image feature points [8]. Therefore each pixel can be calibrated
and correlated to one point in the object coordinate system and thus point cloud from pixels
can be derived.

2-1-2 Rough precision estimation model for all point clouds

Given an input point cloud with only position and color information, we propose a rough and
easy-to-implement precision estimation model that is applicable for all point clouds discussed
in our research.

LiDAR point cloud

Considering scanner position unknown for every point, the point positions of both airborne
and terrestrial LiDAR point clouds are mainly determined by distance measurement. So
the precision of each point is mainly determined by distance to the scanner. The distance
accuracy mainly depends on the reflected laser intensity therefore directly determined by
surface reflectivity. One step further, the surface reflectivity depends on the incidence angle
and object material. To conclude the reliance propagation chain, the precision of each point

Master of Science Thesis Jiale Chen



8 Background

is determined by incidence angle. As shown in Figure 2-4, points with larger incidence angle
from the scanner have lower precision. Given a uniform scanning angle interval, points with
larger incidence angles are usually more dense than others. All in all, the density of point in
local neighborhood can be an indicator about the precision.

Figure 2-4: The precision of LiDAR points is mainly determined by incidence angle where a
larger angle receives less reflection.

Panoramic imagery point cloud

Panoramic camera can be regarded as a point scanner passively receiving rays from the
environment. We simulated the scanning by setting one airborne LiDAR scanner and one
street-view camera in the scene.

Figure 2-5: Scanning simulation. Airborne LiDAR point clouds are scanned by line scanner and
colored in red in the figure; street-view point clouds can be regarded taken from a point scanner
and colored in green in the figure.

As we can see from the scanning simulation in Figure 2-5. Similar to LiDAR point cloud,
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2-1 Point clouds spatial property and precision estimation 9

the density of each point in the imagery point cloud is able to indicate the precision of the
point. The points on sparse area have larger distortion and lower resolution compared to
other points.

Density estimation operator

To conclude for both LiDAR and panoramic imagery point clouds, the density of each point in
local area can roughly and qualitatively indicate the precision. For quantitative estimation,
we choose the local density of each point as the metric for the relative accuracy of each
point. Since in both LiDAR and panoramic imagery point clouds, all points are scanned from
manifold surface. In our research we apply the surface density formula below:

σi = N

πD2 (2-1)

where N is the number of neighbors and D is the search distance. In order to avoid estimation
error for points located in sparse area, we use KNN search instead of radius search. N is
replaced by neighbor search size K and D is the K − th nearest neighbor distance. In order
to scale the range of the importance value properly, we map the density value into [0, 1] which
is our final importance value by the formula below:

Ivi = e
− σ̄
σi (2-2)

Figure 2-6 is one example we get from one simulated scan by method in Figure 2-5. From
the result it can be seen that especially in overlapping area between two point clouds, the
importance value well distinguishes two point clouds.

Potential threat in density estimation

We illustrate the potential threat to users who might need to deal with large scale processing
using our importance operator. To guarantee a satisfactory coverage of point clouds, airborne
LiDAR scanning always adopts strategies similar to aerial images by a certain amount of
overlapping between neighboring scan strips. One such case can be seen from Figure 2-7
scanned in Zeeland province in Netherlands. It can seen that both strips have about 1/3
common area overlapped with each other.
If the processing is in city scale level, this artifact cannot be neglected in a rigorous model.
The result will contain some dense area which is cause by overlapping instead of scanning.
One such overlapping example is made by simply merging point clouds from different scan
lines shown in Figure 2-8. We can see that points in overlapping area can even be more dense
than those directly under one scanning line.
This artifact can be rectified by classifying points one scan id per scan line if it is known a
priori. For example, in one famous LiDAR document .LAS file, this information is recorded
in “Point Source ID” attribute documenting the source file of each point, i.e. which scan line
it is generated.[43]. When this information is not documented, this artifact can only be eased
in two cases: (a). when the simplification processing scale is smaller than per scan coverage
width; (b). when post-processing algorithms such as ICP remove overlapping points. In this
thesis all demos’ sizes are smaller than per-scan coverage width so the artifacts can be ignored.

Master of Science Thesis Jiale Chen



10 Background

Figure 2-6: Importance value of each point in the point clouds. From left to right: (a). Original
simulated point clouds with airborne point clouds colored in blue and street-view point clouds in
green; (b). Density weight of airborne LiDAR point clouds; (c). Density weight of street-view
point clouds; (d). Combined final importance value of the input point clouds.

2-1-3 Rigorous precision estimation model

The density of each point is a rough indicator about the precision. In the error propagation
theory, a mathematical rigorous precision estimation should take all error sources into con-
sideration. The result could be equations similar to the one below (suppose different error
factors σ1, σ2, ..., σn have no correlation and final error σsi is the linear combination of all
errors):

σ2
si = a1σ

2
1 + a2σ

2
2 + ...+ anσ

2
n (2-3)

We explore the possibility of getting a mathematical rigorous precision estimation model for
different point clouds we analyze. The noise can be well estimated if the precision of each point
is known a priori. The result will be a precise uncertainty map depicting noise distribution
of the point clouds.

Error sources of airborne and terrestrial LiDAR point clouds

From the LiDAR scanning procedures for both airborne and terrestrial point clouds, we list
a table of error sources influencing the precision of scanned LiDAR points. The errors are
divided into three main categories.

As can be seen from the analysis, it is difficult or even impossible to derive precision in
most items. As far as we know, in current methods accuracy estimation is usually performed
in post-processing without considering error sources from raw scan. Van der Sande et al.
estimate the accuracy AHN2 point clouds by fitting points to local planes [42]. We conclude
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Figure 2-7: Overlapping neighbor strips scanned in Zeeland in 2007. The overlapping area
between blue and red strips is colored in yellow. Figure from Van der Sande et al. [42]

that in current research it is not possible to estimate a rigorous uncertainty map from raw
scan for LiDAR point clouds.

Error sources of panoramic imagery point cloud

Similar to LiDAR point clouds, many complicate cases generate errors that are not easily
detected by normal geometry-based algorithms. Similar to Table 2-1 we list the main error
sources in the street-view point clouds in four categories with respect to the steps in production
pipeline.

As explained by Jalobeanu et.al. [44], both matching and modeling errors make it impossible
to derive reliable uncertainty map for stereo imagery point clouds. In the table it can be seen
that many error items exist and only bundle adjustment can be roughly estimated.

2-1-4 Conclusions for precision estimation

From the discussion in this section, we conclude that as lacking of thorough and rigorous
error metric in current research, it is not possible to consider all the errors generated from
source quantitatively. In our research, we put forward a rough and qualitative estimation
model that can be applied in all point clouds. And we made a non-exhaustive list of rigorous
error sources for both LiDAR and panoramic imagery point clouds. It is not implemented in
this thesis but left as an open research question. A rigorous precision metric for uncertainty
map need to be further refined in the future research.
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Figure 2-8: Simulated LiDAR scanning with merged points from different scan lines. Points are
derived from four individual scans colored differently. Notice that points in the yellow rectangular
region also can have falsely high importance value.

Category Error source Quantitative error estimation for each point

Scanner
position

GPS position parameters;
INS attitude parameters (not
for static terrestrial systems)

Difficult to obtain for each scan

Coordinate
difference
from
scanner to
point

Incidence angle of the laser
ray

Possible to get if recorded for each point
in scanning.

Other
factors

Laser reflection and
refraction errors

In current methods not possible to derive

Table 2-1: Error sources of airborne and terrestrial LiDAR point cloud

2-2 Outlier removal

In point cloud processing, outliers may be generated from scanning, object reflection, prepro-
cessing algorithms and so on. In this research, the purpose of outlier removal is to identify
and remove outliers efficiently in large scale point clouds. In order to explain the chosen
methods, the following two definitions are used throughout this section hence defined below:

Definition 1 (K-Nearest Neighbor (KNN) distance). Given a point cloud set P = {p1, p2, ..., pn}.
Let Np be the set of the k-nearest neighbors of point pi (excluding pi). The KNN distance of
a point pi and its k-nearest neighbors. More specifically, let the distance between point pi and
pj be defined as d(pi, pj) ≥ 0. The KNN distance of a point is:

dpi = 1
k

∑
pj∈Np

d(pi, pj) (2-4)
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Category Error source Quantitative error estimation for each point

Camera
position

GPS position parameters;
INS rotation parameters

Difficult to obtain for each scan position

Feature
points
extraction

Object radiometric changes;
non-uniform motion blur;
non Gaussian-distributed
camera structured noise etc.

Currently impossible to estimate
precision for all those aspects.

Bundle
adjustment

Difference between point
positions before and after
adjustment.

Possible to derive precision for each
point.

Other error
sources

Reflection and refraction of
material such as glass.

In current methods not possible to derive.

Table 2-2: Error sources of street-view point cloud

Definition 2 (KNN inner distance). The K-Nearest Neighbor inner distance of a point pi is
the average KNN distance among points in Np. Formally defined as:

Dpi = 1
k(k − 1)

∑
pi,pj∈Np,i 6=j

d(pi, pj) (2-5)

Three outlier removal methods are introduced in this section.

2-2-1 Local Distance-based Outlier Detection

Zhang et al [14] proposed the Local Distance-based Outlier Factor (LDOF) that is easy to
set parameters. It is formally defined as follows:

Definition 3 (LDOF). The LDOF of a point pi in point set P = {p1, p2, ..., pn} is the ratio
between its KNN inner distance:

LDOFpi = dpi
Dpi

(2-6)

LDOF indicates the relative deviation of a point to its neighbors. To detect the outliers,
the points are sorted in descending order according to their LDOF value and these with the
highest LDOF values are the outliers. The overall running time complexity as claimed in the
paper is O(n logn). An intuitive graphical explanation of LDOF is in Figure 2-9:

Master of Science Thesis Jiale Chen



14 Background

Figure 2-9: Local Distance-based Outlier Detection. c is the center of p ’s neighbors. The
dashed circle encloses k-nearest neighbors of p where each has distance di to p. The solid circle
is the KNN inner distance circle of the point set with radius D. The ratio between those two
values is the LDOF. In this case p is an outlier with LDOF� 1.

2-2-2 Outlier removal based on Distance-based Deviation Factor (DDF)

Based on the definitions of KNN distance and KNN inner distance, Wang et al. proposed a
method to remove both sparse and dense outliers [13]. For sparse outliers, DDF is defined as:

DDFpi = |Dpi − dpi
Dpi

| (2-7)

where dpi is the KNN distance and Dpi is the KNN inner distance of point pi. Assuming that
pairwise distances at a small enough scale follow a single distribution, an outlier is classified
based on the criterion below where θ is a threshold and σDDFpi is the normalized standard
deviation of DDF:

pi =


θpi = DDFpi

σDDFpi
> θ pi is an outlier

θpi = DDFpi
σDDFpi

≤ θ pi is an inlier
(2-8)

Sparse outliers are removed using the classifier above. Small clusters of outliers may still
survive after applying this algorithm. Thus a clustering-based method is proposed to remove
small cluster of outliers by creating k-nearest neighbor graph for the point clouds and clus-
tering points by region-growing. The clusters containing the lowest number of points are
detected as outliers (See Figure 2-10).

2-2-3 Outlier removal by Nearest Neighbor Reciprocity (NNR) criterion

Weyrich et al. have proposed three novel methods to detect outliers including the plane fitting
criterion, miniball criterion and nearest-neighbor reciprocity criterion [15]. The final outlier
classifier is the linear combination of the criterion with user-defined weights. As shown by
the experiment of the authors, the nearest-neighbor reciprocity criterion has the best result.
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Figure 2-10: 2D illustration of outlier detection. (a) Original points with outliers; (b) Outliers
associated with red circles whose radii represents each DDF value; (c) cleaned result. Figure from
Wang et al.[13]

Furthermore in our research the plane fitting criterion smooth the edges while the mini-
ball criterion is distance-based similar to the LDOF and DDF methods mentioned above.
Therefore we do not explain these two methods in detail.

The central idea of the NNR criterion is that an inlier q may be in the set of the nearest
neighbor set of an outlier p but p may not be in the nearest neighbor set of q. The uni-
directional neighbors is defined as Nuni(p) = {q|q ∈ Np, p /∈ Nq}. while the bi-directional
neighbors as Nbi(p) = {q|q ∈ Np, p ∈ Nq}.

Figure 2-11: K-nearest neighbor graph of p. Note that in 5-NN relationship p only has one
bi-directional neighbor q2. The others are all uni-directional neighbors of p. Figure from Weyrich
et al. [15]

The criterion considers the ratio between uni-directional and bi-directional neighbors of each
point. The outlier classifier is defined as follows:

χ(p) = |Nuni(p)|
|Nuni(p)|+ |Nbi(p)|

= |Nuni(p)|
k

(2-9)
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For small cluster of outliers, they proposed to discard first l neighbors in KNN search but use
(l+ 1)st to (l+ k)th neighbor instead. Similar to LDOF, outliers are points with the highest
classifier values.

2-2-4 Discussion of existing point cloud outlier removal algorithms

Figure 2-12: Poor performance of LDOF criterion on small cluster of outliers. Small cluster of
outliers are not able to be detected . Note that outliers inside the yellow rectangle in the figure
are labeled as inliers.

Figure 2-13: Poor performance of NNR criterion on points near manifold edges. Red points
are labeled as outliers in the figure. Note that inliers near the border of the bunny ears are
over-removed.

All methods mentioned above in Section 2-2 have the advantage of implementation friendly.
Distance-based outlier removal algorithms including LDOF and DDF need to search for a
large number of nearest neighbors to guarantee a satisfactory sparse outlier removal, which
will increase the computation time. While concerning clusters of outliers: LDOF fails to
remove those outliers because small clusters of outliers have relatively low LDOF values and
will be labeled as inliers as shown in Figure 2-12; the DDF method is based on region growing
that is computation inefficient to be applied in large scale processing. The NNR method is
more robust in sparse outlier detection and removing small clusters of outliers. But points
on the edges also have a high proportion of uni-directional neighbors and will be detected
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as outliers. Another problem is over-removing points near the area of manifold borders as
shown in Figure 2-13. A more robust outlier removal algorithm is needed in this research to
guarantee robust point cloud simplification.

2-3 Simplification

As mentioned before when dealing with large scale point clouds, noise and redundancy create
problems for point clouds storage, visualization, reconstruction, segmentation, analysis and so
on. Therefore, it is necessary to simplify the point clouds for further processing. A uniformly
dense point cloud is desired in some applications such as multilevel smoothing and texture
synthesis. Edge points give geometric skeleton information used for applications such as
surface reconstruction, object detection and segmentation that should be preserved.

A lot of researches have been done in feature preserving mesh simplification in the last decade.
Fleishman et al. used anisotropic bilateral filtering for mesh smoothing [21]; Jones et al.
derived a non-iterative feature-preserving filtering applicable for arbitrary mesh triangles [22];
Hildebrandt and Polthier presented mesh simplification using prescribed mean curvature flow
[23]; Digne et al. iteratively simplified 3D Delaunay triangulation of the points through
optimal transport[24]. However, mesh connectivity is obsolete in many cases such as point-
based visualization. Mesh reconstruction is computationally expensive. It is better to simplify
the point cloud first and then reconstruct the mesh than the other way around [25]. Therefore
we focus on the simplification of large scale point clouds by meshless point clouds simplification
methods, which will be discussed in the following sub-sections.

2-3-1 Clustering methods for point cloud simplification

Clustering methods split the point clouds into different subsets and pick one representative
from each subset to consist the simplified point cloud. The usual way of clustering is by
subdividing the bounding box into grid cells and replace all sample points by a common
representative, as implemented in Point Cloud Library [19]. A drawback of this method is
that it cannot adapt to the non-uniform distribution in the point clouds and sensitive to the
global grid size. Pauly et al. had concluded three novel point-sampled surfaces simplification
methods including two clustering methods [25]. They estimated point normals and surface
variation parameter by Principle Component Analysis (PCA). The point cloud is split into
different clusters either limited by maximum cluster size aimed for uniform point set or
by surface variation aimed for feature-sensitive result. Finally one representative is picked
from each cluster to consist the final simplified point cloud. They proposed two methods of
clustering: A bottom-up incremental approach creates clusters by region-growing and a top-
down hierarchical approach splits the point clouds into clusters using binary space partition
(See Figure 2-14).

However, the clustering is computationally expensive because the whole original point cloud
is needed for partitioning. Shi et al. proposed to first use k-means clustering to group initial
clusters and then apply maximum normal vector deviation as criteria to subdivide the initial
clusters [26]. This results in a uniform distribution of points in flat area and denser near
edges.
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Figure 2-14: Left column: uniform incremental clustering; Right column: curvature-adaptive
hierarchical clustering; Top column: clusters on original point clouds; Down column: simplified
point clouds where size corresponds to cluster size. Figure from Pauly et al. [25]

2-3-2 Intrinsic point cloud simplification by geodesic Voronoi diagram

The geodesic distance between two points is a curve whose tangent vectors remain parallel
if they are transported along it, which is the intrinsic shortest path between two points in
real world. The edges are defined as the bisectors of neighboring cells with equal geodesic
distance to their centers. Moening and Dodgson introduced a method for point cloud simpli-
fication in manifolds [27]. They suggested solving problems of simplification and re-sampling
intrinsically by geodesic Voronoi diagrams. The Voronoi centroids consist the final simplified
point cloud. It is constructed by embedding the point cloud in a Cartesian grid and propagat-
ing fronts simultaneously from an initial subset of input points outwards. The propagation
procedure is achieved by fast marching algorithm, in which method computationally difficult
intrinsic distance map has been transformed into easier-to-compute extrinsic distance map in
a Euclidean manifold. By setting the propagation speed of each point to be the same weight,
a uniform point cloud can be obtained. The propagation procedure and a simplification result
are shown in Figure 2-15 and Figure 2-16 respectively.

2-3-3 Moving Least Squares (MLS) fitting with sharp features

Least-squares surface fitting is usually considered to be robust to noise but usually only used
for reconstructing smooth surfaces. MLS was initially proposed by Lancaster and Salkauskas
[29]. The central idea is to start from a weighted least squares formulation from an arbitrary
point and move this point over the entire parameter domain to compute and evaluate the
weighted least square for each point individually. Fleishman et al. proposed to resample point
sets with feature preservation from noisy point cloud by MLS fitting [30]. They applied the
forward-search paradigm: start from a robustly chosen subset of the original dataset without
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Figure 2-15: Wave propagation procedure from left to right for computing geodesic Voronoi
diagrams. Red points indicate the progressive intrinsic points. Right: Figure from Moenning and
Dodgson [27].

Figure 2-16: Simplification result with user-controlled density. Figure from Moenning and Dodg-
son [28].

outliers and move forward with certain statistical estimates. Sharp features are well preserved
by regarding points across the features as outliers. Instead of fitting surfaces locally they used
iterative forward-search based refitting methods to classify a neighborhood to multiple local
surfaces. Points close to more than one surfaces are projected on one of the smooth regions.
Finally points are re-sampled on the piecewise local surfaces by MLS projection. An example
of the procedure is shown in Figure 2-17 and a result in Figure 2-18.

2-3-4 Robust Implicit Moving Least Squares (RIMLS)

The Implicit Moving Least Squares (IMLS) method has been put forward by Shen et al. to
reconstruct tangential implicit planes by standard MLS [31]. Using constant polynomials as
the MLS basis in IMLS will generate a simple weighted average [32]. However this method has
problems of expanding and shrinking effects. To solve this problem, Öztireli et al. suggested a
Robust Implicit Moving Least Square method for effective meshless surface representation by
combining IMLS with the robust LKR [33]. Spatial, residual and normal kernels are combined
in one operator. The central function of their iterative minimization is below:
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Figure 2-17: MLS simplification procedure. The noisy input point cloud can be regarded as
two connected smooth surfaces (a) or one contact smooth surface (b). First, a surface is fit to
a small reliable subset (c). Then incrementally add points with smallest residual and iteratively
refit the surface (d). The final fitting result of one surface is shown in (e). Points across the
edges are regarded as outliers to current surface but used for fitting another (f). Final result is
in (g) with two surfaces. Uniform distance resampling is performed on the surfaces (h). Figure
from Fleishman et al. [30].

fk(x) =
∑

nT
i (x− xi)φi(x)ω(rk−1

i )ωn(∆nk−1
i )∑

φi(x)ω(rk−1
i )ωn(∆nk−1

i )
(2-10)

where n is the normal and x is the point. φi(x) is the spatial kernel. The kernel ω(r) handles
the residual and ωn(∆n) kernel for normals. This allows local control of sharpness around
the edges. A result of RIMLS compared with IMLS is shown in Figure 2-19.

2-3-5 Edge-Aware point set Resampling (EAR)

Huang et al proposed a novel re-sampling approach to process a point cloud containing noise
and even outliers to generate a noise-free and sharp edges preserving point cloud [16]. Their
main idea is to start with a randomly sub-sampled point cloud and compute their normals
by traditional PCA. Those initial points are consolidated using improved version of their
Weighted Locally Optimal Projector (WLOP) [34] called anisotropic WLOP. The positions
of points in each next iteration Xk+1 is to minimize the formula below:

G(C) = argminX={xi}i∈I{E1(X,P,C) + E2(X,C)} (2-11)

where E1 term is the average term projecting points onto the original point cloud to approx-
imate the geometry of points and smoothing out noise. It is further defined as:

[H]E1(X,P,C) =
∑
i∈I

∑
j∈J
||xi − pj ||θ(||ci − pj ||) (2-12)

And E2 term in Equation 2-11 is the repulsion term punishing sample points getting too close
to each other.
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Figure 2-18: An example of the MLS fitting method. Left: noisy input cloud. Middle: re-
sampling model; Right: middle model colored using normal direction. Figure from Fleishman et
al. [30].

Figure 2-19: Left: RIMLS reconstruction result with 3% noise. Right: close views of sampling of
the model (top), reconstruction with IMLS (middle) and RIMLS (bottom). Figure from Öztireli
et al.[33]

[H]E2(X,C) =
∑
i′∈I

λi′
∑

i∈I\{i′}
η(||xi′ − ci||)θ(||ci′ − ci||) (2-13)

In both terms: I is the neighboring projected points; J is the neighboring original point cloud;
θ(r) assigns decreasing smooth spatial weight; Φ re-samples away edges; η pushes projected
points against each other; balancing term λ controls the repulsion force.

Regardless of iteration times, the initially sub-sampled point cloud distribution only deter-
mines number of points in the result and produces similar result compared with a same size
but differently distributed starting sub-sample. The points are able to project uniformly onto
the surface. To reduce the number of iterations and achieve a satisfactory result, a relatively
uniform input sub-sample is preferred in practice. One example shows the projection from a
crude initial non-uniform sub-sample to uniformly distributed result. (Figure 2-20).

WLOP does not need to know any extra information about the point cloud. Based on
WLOP, the EAR needs to compute normals for both original and sampled point cloud and
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Figure 2-20: Starting from a crude initial sub-sampled point cloud in (a) where red points are
projected onto green points. The WLOP operator iteratively from (b) to (d) distributes points
uniformly onto the original point cloud. Figure from Lipman et al. [35]

adapt spatial operator θ(r) to a normal-spatial bilateral filter. Final sharp edges are created
by up-sampling back to the edges. The whole pipeline is shown in Figure 2-21 and a result
from real scanning data in Figure 2-22.

2-3-6 Discussion of existing point cloud simplification algorithms

Among the meshless point cloud simplification methods mentioned in Section 2-3, every
method has its own advantages and disadvantages suitable in different applications. Pauly et
al.’s clustering methods could produce uniform or feature-sensitive simplified point clouds ef-
ficiently. A drawback is that they estimated point normals by traditional PCA. PCA normal
is unreliable especially near sharp edges which makes the method not suitable for satisfying
uniform and feature-sensitive point cloud simplification at the same time. And this method
does not take noise into consideration and not suitable to use in noisy point cloud.

Clustering methods are designed for sub-sampling the original point cloud. However their
sub-sampling strategy considers every point with the same importance that is not able to
keep the feature points. What is more, this strategy cannot smooth the noise.

Moening et al.’s intrinsic point cloud simplification is able to produce geodesically uniform
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Figure 2-21: Overview of EAR pipeline. Input a noisy point cloud (a), points are first re-sampled
away from edges creating gaps (b). Reliable normals can be obtained by the anisotropic WLOP
operator for further up-sampling back near edges and filling the gaps (c). Point density is further
increased by upsampling in dense area for point-based rendering (d). Figure from Huang et al.
[16]

Figure 2-22: Laser scan of object (a) is contaminated with noise without normal information in
(b). Traditional re-sampling without considering sharp edges (c). EAR result with edge preserva-
tion. Figure from Huang et al. [16].

point clouds by creating geodesic Voronoi diagrams on manifolds and they are re-sampled by
the centroid of each Voronoi cell. But this method cannot distinguish between noise, outliers
and feature points. Furthermore, this method is much harder to implement compared to
the other methods and expensive in computation complexity due to the construction of the
geodesic Voronoi diagram, which is obsolete in the final representation.

Fleishman et al.’s MLS method is able to refit surface iteratively that locally classify the
samples across discontinuities. But their method requires a highly dense point cloud as
input where regions near sharp features are always under-sampled in practice [36]. Local
combination of different patches makes the approach slow. The global inconsistency of the
classification will generate C−1 discontinuity and jagged edges [33]. Similar to Fleishman’s
MLS method, Öztireli et al.’s RIMLS method is more robust in classification and has control-
lable sharpness both locally and globally. But one shortage exists as indicated in Figure 2-23,
a high noise-to-signal ratio will generate redundant features or over-smooth the result.
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Figure 2-23: Problems in RIMLS. Top row: noisy input; middle row: fitting result after bilateral
filtering in RIMLS where redundancy exists and the V-shaped edge cannot be correctly detected
as an increase of angle across edges; bottom row: ideal result. Figure from [37].

Huang et al.’s EAR method produces quite satisfactory normal estimation and edge-aware re-
sampling compared with the MLS and RIMLS methods. However the up-sampling generates
too many points on the edges. The uniform property is achieved by up-sampling the flat
area to be as dense as the edge area. This will generate more points than the original point
cloud. Adaptation is needed to achieve the uniform density objective by reducing points in
our research.

The methods listed in this section are popular in point cloud simplification. Different ex-
isting simplification algorithms have different focuses of processing. Some of them focus on
generating a uniform result and some focus on reducing noise. Many of the simplification
algorithms are designed to process small-size point cloud simplification that are slow and
memory inefficient for large-size production. Of all the listed methods, none of them is able
to consider keeping edge points, smoothing noise and generating uniform simplified result at
the same time aiming at large-scale production. Inspired from these methods, our research
focuses on how to adapt these existing general methods or create our own algorithm to deal
with point cloud simplification in the specific scenario of fusing roof and facade point clouds
in large scale.
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Chapter 3

Outlier removal

This chapter gives our proposed algorithms in outlier removal based on the related research
discussed in Section 2-2. A clean point cloud gives guarantee for later simplification. Outliers
may exist singly without spatial connection with other points or in small clusters. In this
chapter we derive our outlier removal algorithm by combining and improving the methods
we discussed in Section 2-2. Our outlier removal algorithm can be applied in processing any
point cloud.

3-1 Outlier removal by improved LDOF

Two proposed distance-based outlier removal algorithms LDOF and DDF factors have similar
outlier detection strategy. LDOF requires less computation and easier to implement compared
with DDF. So in our research we choose the LDOF algorithm to improve and adapt in our
outlier removal algorithm,. As discussed in Section 2-2 and one example shown in 2-12, small
cluster of outliers are unable to be detected in LDOF method. So we apply the technique
proposed in NNR method by abandoning the first certain number of points in KNN search
as outliers and then calculate for the KNN distance and inner KNN distance. This results in
a new definition of cluster-adapted KNN distance and inner KNN distance with respect to
Definition 1 and 2.

Definition 4 (Cluster-adapted K-Nearest Neighbor distance). Given a point cloud set P =
{p1, p2, ..., pn}. Let N l+k

p be the set of the (l + k) nearest neighbors of point pi (excluding pi)
and Nk

p be the set abandoning the nearest l neighbors in N l+k
p ; the distance between point pi

and pj be defined as d(pi, pj). The cluster-adapted KNN distance of a point is:

d′pi = 1
k

∑
pj∈Nk

p

d(pi, pj) (3-1)

Definition 5 (Cluster-adapted K-Nearest Neighbor inner distance). The cluster-adapted K-
Nearest Neighbor inner distance of a point pi is the average KNN distance among points in
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Nk
p . Formally defined as:

D′pi = 1
k(k − 1)

∑
pi,pj∈Np,i 6=j

d(pi, pj) (3-2)

The cluster-adapted Local Distance-based Outlier Factor is defined as:

Definition 6. The cluster-adapted LDOF of a point pi in point set P = {p1, p2, ..., pn} is the
ratio between its cluster-adapted KNN distance and cluster-adapted KNN inner distance:

LDOFpi =
d′pi
D′pi

(3-3)

The adapted LDOF is one of the factor considered in our final outlier removal algorithm. As
a general problem in distance-based outlier removal algorithms, the outlier detection decides
on the distance from the outlier to the group of inlier points. In Figure 3-1, the outlier is so
close to the inlier points that its KNN distance and KNN inner distance are similar resulting
a low LDOF value and will be labeled as inlier.

Figure 3-1: Problem of adapted LDOF algorithm. Notice that outlier p is unable to be detected
because it is close to a group of inlier points.

NNR algorithm can avoid this problem because it does not need to consider how far the
outlier deviates from the inliers. Next section we integrate LDOF into NNR algorithm and
generate our final outlier removal algorithm.

3-2 Border-aware Nearest Neighbor Reciprocity outlier removal

As show in Figure 2-13, the NNR algorithm has the problem of over removing points on
manifold borders which should be identified as inliers. Points on manifold border are close to
the other points and have relatively low LDOF value. So we avoid this problem by integrating
with our improved cluster-based LDOF algorithm. The final outliers are the set intersection
of detected LDOF outlier point set and NNR outlier point set. The pseudo code of our final
outlier removal algorithm is defined in Algorithm 1.
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Algorithm 1 Outlier reduction algorithm
1: procedure Outlier reduction(op, c) . outlier percent op; max cluster size c
2: calculate cluster-adapted LDOF value for each point
3: sort points using LDOF value in descending order
4: outliersize← inputsize ∗ op
5: LDOFoutliers← the first outliersize items in sorted result
6: for pi ∈ P do
7: percent← NNR unidirectional neighbor ratio of each point
8: if percent ≤ op then
9: if pi /∈ LDOFoutliers then

10: pi is inlier
11: else
12: pi is outlier

A comparison summary between results from different algorithms is shown in the example in
Figure 3-2.

Figure 3-2: Comparison between different outlier removal algorithms where red points are labeled
as outliers. From left to right: original point cloud, LDOF algorithm where cluster of outliers
fails to be detected, NNR algorithm where inliers on manifold border are labeled as outliers, our
cluster-adapted algorithm which solves both problems.

Starting from simplified single point clouds, we can further integrate and simplify point clouds.
Simplification and integration will be discussed in next chapters.
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Chapter 4

Simplification

Simplification is the key research in this thesis. In this chapter we start from an overview of
the basic structure and sub-steps needed for simplification and then explain each step in the
following sections.

4-1 Simplification overview

As already mentioned in section 1-3, in the simplification we aim at achieving the objectives
of reducing noise, preserving edge points and controlling the uniform density at the same
time. So in the design of the algorithm pipeline, different properties need to be considered.
Besides, algorithm efficiency especially the running time is also a main issue for dealing with
large-sized point cloud simplification. In order to adapt current general algorithms to our
scenario, our strategy is mainly to search and optimize current general efficient simplification
algorithms according to our case. Our final design of algorithm pipeline for the sub-steps in
simplification is in Figure 4-1.

We start with outlier-cleaned roof and facade point cloud by algorithms proposed in Chapter
3. Point clouds need to be matched and merged for simplification. The standard merging
procedure is using algorithms such as ICP by finding correspondences between neighboring
point clouds and aligning by minimum least square distance fitting. Matching is closely
related with the topic of gap filling between neighboring point clouds. This topic is beyond
the research scope in this thesis and will only be mentioned in Chapter 7 as an open question
for future research. In current proposed algorithm pipeline and implementation, point clouds
are simply combined in the same coordinate system without other processing.

Based on different point cloud acquisition methods, we put forward a theory calculating
importance value of each point in the point cloud as a metric used in later simplification.
By merging point clouds from different scans, the feature points are extracted and preserved
against later removal. After sub-sampling and smoothing the feature points, we keep them
in the final simplified point cloud and apply the same sub-sampling strategy for other non-
feature points. In order to smooth out the noise, we use WLOP operator and combine with
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Figure 4-1: Algorithm pipeline of point cloud simplification.

our proposed importance value from different point clouds. Last colors are extracted from
the original input point cloud to the simplified point cloud.

In the following sections each sub-step of simplification will be explained in the order of
algorithm pipeline into detail.

4-2 Edge points extraction

The curvature gives the geometric importance of each point in its neighbors. Edge and
salient points have a high curvature value given a proper curvature estimation operator.
In our research we apply two curvature calculation methods from Pauly et al. [25] and
Gumhold et al. [45]. Both methods calculate the curvature by eigen analysis. Assuming
0 ≤ λ0 ≤ λ1 ≤ λ2 are all the eigen values of the local neighborhood of a point and v0, v1, v2
are their corresponding eigen vectors, the plane defined by T (x) = (x − p̄)v0 = 0 through
point p̄ minimizes the sum of squared distances to the neighbors of p̄ (see Figure 4-2).
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Figure 4-2: Curvature estimation from minimum eigen value λ0. T (x) represents the fitted plane
of all the points by eigen analysis.

In Pauly’s method, the curvature of each point is represented as one simple operator called
surface variation:

σsv = λ0
λ0 + λ1 + λ2

(4-1)

While in Gumhold et al.’s method, the curvature estimation is more rigorous and accurate
but more complicated. They deduct in KNN search to calculate the density of each point
by using the K-th nearest neighbor distance D and point to plane distance λ0 as shown in
Figure 4-3.

Figure 4-3: Curvature estimation from minimum eigen value λ0 and K-th nearest neighbor
distance D. Green line represents the fitted plane of all the points by eigen analysis.

The point-to-plane distance λ0 is the same as the absolute of smallest eigen value λ0 in
equation 4-1. Thus the curvature is calculated by κ = 1

R . With the other two constraint
equations s2 = D2 − λ2

0 and s2 = R2 − (R− λ0)2, the final curvature κ is deducted as below:

κ = 2λ0
D2 (4-2)

In our test we found that both methods produce similar results. In case of simplicity and
efficiency we use first method in our pipeline. One example colored by curvature is shown in
Figure 4-4.

Master of Science Thesis Jiale Chen



32 Simplification

Figure 4-4: From left to right: original mesh; point cloud colored by curvature; feature points
extraction with large curvature value; sub-sampled and smoothed feature points.

The extracted feature points are not uniform and may contain a lot of noise. So our solution
is to sub-sample and smooth these points by adapting WLOP operator introduced in Huang
et al. [34]. The sub-sampling and smoothing steps will be introduced in the next sections.

4-3 Sub-sampling

After extraction of the feature points, the original point cloud has been split into feature and
non-feature points. For both types of points, sub-sampling is necessary to generate a simplified
and uniform subset of the original point cloud. In our research we apply the same sub-sampling
algorithm for extracted feature points and the non-features sub-sequentially. Those sub-
sampled points will be combined in the step of Weighted Locally Optimal Projector (WLOP)
in Section 4-4.

The strategy of simplification is by removing points falling inside the search radius. One
example of sub-sampling process is shown in Figure 4-5.

Figure 4-5: Sub-sampling algorithm. (a). original points; (b). for each point we remove the
neighboring points inside the search radius with result in (c); (d). final result of sub-sampling.
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A uniform subset of point cloud can be obtained in this step. Throughout this paper we use
the standard deviation of density as the quantitative metric of the uniform property. One
example of sub-sampling is shown in Figure 4-6.

Figure 4-6: An example before (left) and after (right) sub-sampling.

4-4 Smoothing by adapted Weighted Locally Optimal Projector

Starting from a sub-sampled point cloud, we further smooth the point cloud to reduce the
noise. In order not to destroy the uniform property already achieved in the sub-sampling step,
we apply the operator Weighted Locally Optimal Projector to smooth the point cloud while
still keep the uniform property. Here we explain deeper about the WLOP operator discussed
in Equation 2-11 and adapt to our case.
As discussed in Section 2-3-5. The WLOP operator consists of two terms including the average
term E1 aiming at projection of points towards local distribution center and repulsion term
E2 aiming at punishing points getting too close to each other. In our adaptation, we combine
into our weight value Ivi derived from Equation 2-2. Because the weight value is calculated
per original point. Term E1 is the relation between points in the original point cloud and
sample point cloud while term E2 is between points inside sample point cloud. So we try to
merge the density weight term Ivi only in E1 resulting the following our new E1 term in the
WLOP.

E1(X,P,C) =
∑
i∈I

∑
j∈J
||xi − pj ||θ(||ci − pj ||)Ivpj (4-3)

while E2 stays the same as in Equation 2-11. As a future improvement when the precision of
each point is able to be derived, a noise weight WNpj can be appended after Ivpj resulting a
weight map with consideration in both region and noise domains. Expanding the equation into
details we derive our final weight adapted WLOP equation array with fixed point iterations
as below:

xk+1
i =

∑
j∈J

pj
αkij/vj∑

j∈J
(αkij/vj)

+ µ
∑

i′∈I\{i}
δkii′

wki′β
k
ii′∑

i′∈I\{i}
(wki′βkii′)

(4-4)
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θ = e−
d2
R2 (4-5)

δkii′ = xki − xki′ (4-6)

αkij = θ(||xki − pj ||)Ivj
||xi − pj ||

(4-7)

βkii′ = θ(||xki − xki′ ||)
||xki − xki′ ||

(4-8)

vj = 1 +
∑

j′∈J\{j}
θ(||pj − pj′ ||)Ivj′ (4-9)

wki = 1 +
∑

i′∈I\{i}
θ(||xki − xki′ ||) (4-10)

One example showing the effect of WLOP operator is in Figure 4-7

Figure 4-7: An example showing the effect of noise smoothing while keeping uniform property.
The points are on four connected manifold surfaces and visualized in orthogonal view from side.
(a)original point cloud with density standard deviation 0.0092; (b)initial sub-sampled point cloud
with density standard deviation 0.0006; (c) WLOP smoothing result (3 iterations) with standard
deviation 0.0006

The simplified point cloud is assigned color back by finding and averaging colors from the
neighbors in the original point cloud in order to avoid aliasing artifacts. More examples and
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applications of the algorithm pipeline in real-scene will be explained in Chapter 5 and Chapter
6.
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Chapter 5

Integration and implementation

First in this chapter, the outlier removal and simplification algorithms are integrated into a
unified algorithm pipeline. Then, virtual point clouds are simulated according to the scanner
deployment for analysis and test purposes. Real-scene point clouds are pre-processed and
prepared and finally algorithm prototypes are implemented for the entire algorithm pipeline.
The result and analysis of the processing is discussed in Chapter 6.

5-1 Integration of outlier removal and simplification algorithms

With the independent algorithm components of outlier removal and simplification, we need
to combine them into our final unified algorithm pipeline. There are two ways to order
the sequence in the pipeline: first combine roof and facade point clouds and then perform
outlier removal and simplification; or first remove outliers and then combine and do the
simplification. We choose the second option because of two reasons: (a) The outliers are
generated from scanning and should be excluded from the source not after merging; (b) The
outliers have the lowest density value and will distort the importance value of other normal
points. That is because the importance value of each point is calculated based on ratio with
average density value as shown in Equation 2-2. Therefore we first apply our outlier removal
algorithms for both roof and facade point clouds respectively then merge them to do the
simplification. We extend Figure 1-1 and combine with Figure 4-1 into Figure 5-1 which is
our final complete algorithm processing pipeline.

5-2 Implementation

In this implementation section, first our point clouds preparation procedure is introduced
including generation of simulated point clouds in virtual scene and pre-processing of real-
scene point clouds. Then, our software prototypes are discussed in a nutshell. Lastly the
parameter tweaking strategies are given in the whole algorithm pipeline that require user
interactions.
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Figure 5-1: Complete algorithm pipeline.

5-2-1 Point clouds preparation

In this thesis, virtual scene point clouds are simulated for testing and analyzing algorithms.
Later, the application on real-scene point clouds is presented.

Virtual point clouds simulation

Two virtual point clouds are simulated by intersecting laser rays with the virtual building mesh
and assigning a color to each point from mesh texture images if available. The simulation is
done in either Rhino software with Grasshopper plug-in for its easy-to-implement property
or Blender software for its superiority in handling large-sized point clouds. The scanning
simulation strategy is stated in Figure 2-5.

Figure 5-2 shows the scanner deployment and the original mesh of one demo that is created in
Rhino/Grasshopper. For convenience, we call this demo “House”. The “House” demo contains
252915 points.

Similar to the “House” demo another demo called “Villa” is generated in Blender. The “Villa”
demo contains 1632047 points that are scanned by one airborne scanner and one street-view
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Figure 5-2: Simulated scan of demo “House”. We put street-view cameras at four sides of the
building and one airborne LiDAR scanner on top of the building. The scanner deployment strategy
is the same as Figure 2-5.

scanner. Figure 5-3 gives the comparison of original mesh and our simulated point clouds
seen from different views.

Real-scene point clouds preparation

For the real-scene point clouds, our roof point clouds are uniquely obtained from AHN2
which is an open-source dataset collected by airborne LiDAR scanners. Color is not encoded
in the point cloud, thus aerial images are needed to add color information to the point
clouds. We obtained the aerial images from PDOK service (Publieke Dienstverlening op de
Kaart) in Netherlands. Facade point clouds come either from terrestrial LiDAR or panoramic
imagery. Street-view terrestrial point clouds are provided by Fugro DRIVE-MAP system.
Street-view panoramic imagery point clouds are provided by the company Cyclomedia. Using
algorithms (i.e. SfM, BA, ICP) mentioned above, the street-view panoramic images are
obtained and positioning consolidated. Based on the accurate panoramic images, sky pixels
are removed using grab-cut algorithm [17] and final street-view point clouds are obtained by
dense matching algorithm [18]. Figure 5-4 and Figure 5-5 are two demos with the same source
of airborne point cloud but different source of street-view point clouds.

5-2-2 Software prototypes structure

The algorithm prototypes are implemented in C++ and algorithm library from Point Cloud
Library (PCL) is mainly used [19]. For convenience of user interaction with parameters tuning
and point cloud visualization, a graphical interface is created using library Qt (see Figure 5-6).
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In prototype implementation interface, algorithm and parameters are separated in three dif-
ferent classes (see Figure 5-7). The main data objects and algorithm functions are all stored
in the PointCleaner class.

5-2-3 Parameters tweaking

We list all the parameters we use that require user input :

• Outlier removal
K: neighbor search size (10 by default);
L: denotes the minimum allowed cluster size in outlier removal (30 by default);
P : percent of points in original point cloud regarded as outliers (0.01 by default);

• Simplification
R: sampling radius (Adjust according to input)
T : curvature threshold (Adjust according to input)

In outlier removal, users can input the parameters before processing and no interaction is
needed in the processing. However in simplification, the parameters tweaking procedure needs
user interactions in several sub-steps. The procedure is listed in Figure 5-8. Firstly, different
outlier-cleaned point clouds are put into the pipeline and the average distance between points
is calculated for each point cloud. Based on the average distance, the user can input sampling
radius that has to be reasonably larger than the largest average distance of all the input point
clouds. Next, the curvature of each point is estimated and visualized by color in the software.
The user can compare the color from point cloud with the color legend in the software to give
a proper curvature threshold. Finally, the automatic processing by the software is performed
so that it generates the final simplified result.
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Figure 5-3: Simulated point cloud demo “Villa” (1668625 points). Blue points are from one
airborne scanner and green points from one street-view scanner. (a) original mesh; (b) simulated
point cloud seen from street-view ; (c) seen from airborne-view.

Master of Science Thesis Jiale Chen



42 Integration and implementation

Figure 5-4: Demo “OTB building”. Left: colored roof LiDAR point cloud; Right: facade terres-
trial LiDAR point cloud.

Figure 5-5: Demo “Amsterdam building”. Left: colored roof LiDAR point cloud; Right: facade
panoramic imagery point cloud.

Figure 5-6: Software interface of our point cloud software.
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Figure 5-7: UML diagram of software prototype.

Figure 5-8: User-involved parameter tweaking procedure in point cloud simplification.
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Chapter 6

Results, validation and discussion

This chapter presents the results of four demos pre-processed using the strategies and steps
introduced in Chapter 5. The running time analysis of the algorithm is also listed. Then, the
results are validated statistically by checking with our objective list. Finally, the results and
limitation are discussed.

6-1 Results

6-1-1 Simplified point cloud demos

Demo 1: House

The result of each step in the simplification of “House” demo is shown in Figure 6-1.

Demo 2: Villa

The simplified result of demo “Villa” can be seen in Figure 6-2.

Demo 3: OTB building - Fusion of airborne LiDAR and terrestrial LiDAR point clouds

Figure 6-3 shows the effect of outlier removal for both point clouds.
A comparison between the outlier-cleaned point cloud and the final simplified point cloud is
shown in Figure 6-4.

Demo 4: Amsterdam building - Fusion of airborne LiDAR and terrestrial panoramic im-
agery point clouds

Using the same processing pipeline as the methods mentioned above, we remove the outliers
of Amsterdam building point cloud shown in Figure 6-5. And Figure 6-6 shows the simplified
result with zoomed-out view.
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6-1-2 Running time profiling

A summary of the running time for each demo is given in Table 6-1.

House(252915) Villa(1668625) OTB(4204626) Amst(833584)
Outlier removal N/A 24.19 57.91 14.09
Weight calculation 0.61 4.11 12.24 2.15
curvature estimation 0.17 0.91 2.44 0.47
Subsample 5.02 6.82 1.01 0.30
WLOP initialization 12.25 155.71 525.57 27.81
WLOP iteration x 3 0.60 11.94 28.19 4.95
Color 0.01 0.08 0.19 0.06
Total 18.66 203.76 627.55 35.74

Table 6-1: CPU runtime of different point clouds processing (in seconds). Note that the house
demo is clean no outlier removal is needed.

As we can see from the time statistics, the most time consuming sub-step in the processing is
the WLOP initialization. This is because the radius search is necessary and unavoidable in
order to compute the weight value v in the WLOP term for each point in the original point
cloud. Radius search is running-time expensive in a dense point cloud.

6-2 Validation

Results are validated qualitatively or quantitatively with respect to our proposed three ob-
jectives: edge points preservation, uniform density and noise smoothing.

6-2-1 Edge points preservation

The decision about whether a point is an edge point depends on user input sampling radius and
curvature threshold. The effect can only be verified qualitatively by checking the visualized
result. As we can see from Figure 6-1 and Figure 6-2, the edge points are well preserved and
sub-sampled given a set of proper parameters.

6-2-2 Uniform density

Uniform density can not only be directly verified qualitatively by visualization, but it is also
possible to be estimated quantitatively by calculating the standard deviation of density. For
the demos used in this chapter, we list in Table 6-2 of standard deviation changes between
original point cloud, intermediate sub-sampled point cloud and result simplified point cloud.
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House Villa OTB Amst
Original point cloud 0.0506 7.4009 2.7294 0.6384
After Sub-sampling 0.0016 0.0217 0.0044 0.0053
After WLOP smoothing 0.0016 0.0212 0.0047 0.0052

Table 6-2: Density standard deviation changes for different phases.

It can be seen from the result that the sub-sampling phase can greatly reduce the standard
deviation of density value and the subsequent WLOP smoothing factor can well preserve or
even improve the uniformity.

6-2-3 Noise smoothing

Noise smoothing effect can be verified visually and rigorously by estimating deviation from
intrinsic manifold surface. One visual verification is already done in a simple demo in Figure 4-
7. A rigorous validation is only possible to perform on the given virtual point cloud since the
intrinsic manifold surface is unable to be derived from real-world scans. A noisy point cloud
for the House demo is generated in Figure 6-1. We use the distance from the point cloud to
the nearest point on the original mesh surface as a metric. Statistics for this distance value
are listed in Table 6-3.

Max Avg Std
Noisy input 0.478 0.077 0.059
Noisy input simplified result 0.434 0.055 0.054

Table 6-3: Noise smoothing effect analysis for House demo added with Gaussian noise.

6-3 Discussion and limitations

6-3-1 Results discussion

What can be derived from the results and validation of four demos is that the algorithm
pipeline generates outlier-removed, noise-reduced and uniform results that can well preserve
the edge points.
The CPU running time is satisfactory in a non-optimized implementation that can be applied
in large-scale production. As we can see in Table 6-1, the step that takes most running time is
the WLOP initialization which can be further traced to the reason of radius neighbor search
for each point. As the neighbor search for each point has no conflict with each other, this
problem can be solved either in CPU by multi-threading technology or adapting to GPU that
has greater power in processing large-size data in parallel.

6-3-2 Limitations

In principle our method can be applied to fuse any point clouds that are registered properly
in the same coordinate system. In general, our method only reduces points in dense area and

Master of Science Thesis Jiale Chen



48 Results, validation and discussion

cannot up-sample points in sparse area, especially where large gaps or holes exist. This has
limited that the user input sample radius has to be reasonably larger than the average distance
in the sparsest input point cloud to achieve a satisfactory result. In other dense point clouds,
abundant texture information may be excluded during simplification, which makes it difficult
for point-based visualization. Due to this deficiency, too many existing holes in the input
point cloud severely degrade the visualization result as can be seen from the church demo in
Figure 6-7. All in all, adding points can be helpful in simplification but not considered in our
research.

Another limitation lies in the fact that the edge points extraction is sensitive to severely-
existing noise in the input point cloud. Our curvature estimation is performed locally. If the
input point cloud contains severe noise, points in a local region will all either be marked as
feature points or non-features. That will make the parameter of curvature threshold hard to
choose and edge points difficult to be selected.
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Figure 6-1: The result of each sub-step in our simplification algorithm pipeline. (a) original
simulated point cloud; (b) weight value assigned to each point; (c) points with high curvature
are extracted, smoothed, sub-sampled and preserved against later removal; (d) final simplified
result; (e) front-face culling of the result; (f) back-face culling of the result. Parameter used
R = 2, T = 0.001.
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Figure 6-2: Simplification result of point clouds in Figure 5-3 (Sample radius = 0.1, curvature
threshold = 0.04). (a) preserved edge points in the final simplified point cloud; (b) simplified point
cloud seen from street-view level; (c) simplified point cloud seen from airborne level. Parameter
used R = 0.2, T = 0.04
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Figure 6-3: Outlier removal for OTB airborne (aboveK = 10, L = 30, P = 0.005) and terrestrial
(below K = 10, L = 30, P = 0.01) point clouds with red points detected as outliers.
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Figure 6-4: Simplification result for “OTB building” (With parameters R = 0.5, T = 0.001).
Outlier-cleaned and merged point clouds as input in (a). Final simplified point cloud is shown in
(b) and (c) in different view positions.
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Figure 6-5: Outlier removal for Amsterdam building airborne (above. K = 10, L = 30, P =
0.01) and terrestrial (below. K = 10, L = 50, P = 0.01) point clouds with red color detected as
outliers.
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Figure 6-6: Panoramic imagery point cloud and LiDAR point cloud fusion and simplification.
(With parameters R = 0.5, T = 0.01) Outlier-cleaned and merged point clouds as input in (a).
Final simplified point cloud is shown in (b) with zoomed-out view in the left-bottom corner.
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Figure 6-7: Simplification of a church point cloud. There are too many holes existing in both roof
and facade point clouds. Our simplification only reduces points and thus rich texture information
is lost in the result for point-based visualization.
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Chapter 7

Conclusions and future work

In this chapter we conclude the thesis and provide recommendations for future improvement.

7-1 Conclusions

To fuse large-size roof and facade point clouds into a unified point cloud, aspects including
algorithm correctness, algorithm efficiency and adaptability to different datasets need all be
taken into consideration. In this thesis several algorithms are proposed and organized into
a sequential pipeline for point cloud ourlier removal and simplification. The conclusions are
made with respect to answer the research question:

• Which algorithms are most appropriate to fuse roof and facade point clouds into an
edge-aware and uniformly dense color point cloud?

We answered as follows: we designed the most appropriate algorithms for fusing roof and
facade point clouds either by developing algorithms ourselves or using and adapting existing
algorithms and integrated into a unified algorithm pipeline, where outlier removal and sim-
plification are performed and integrated that can produce an outlier-cleaned, noise-reduced,
edge-aware and uniform point cloud. In outlier removal, different from other existing algo-
rithms, our method can remove both singly scattered and small cluster of outliers without
over-removing artifacts. Furthermore, in principle our outlier removal algorithm can be ap-
plied in any point cloud. In simplification, compared to other algorithms which focus on one
or two objectives of uniform density, reducing noise and edge-awareness separately and having
no consideration of data source, the presented approach can achieve all the mentioned ob-
jectives in one unified pipeline with consideration of precision distribution according to data
source. The algorithm pipeline is efficient in running time that can be applied in large-scale
production.
All proposed methods are implemented and tested first on virtually simulated environment
and then on real-scene point clouds. For validation we made a checklist with respect to the
objectives.
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7-2 Recommendations for future work

According to the conclusions above and limitations in 6-3-2, we propose our recommendations
for future work.

In precision estimation, a mathematical rigorous error estimation model is preferred for both
LiDAR and panoramic imagery point clouds to construct a precision map used in simplifica-
tion. In point cloud simplification, running time efficiency can be improved by implementing
radius search in parallel using multi-threads in CPU or even adapt to run in GPU. Gaps
and holes, either existing in original scanned point cloud or detected in the merging between
point clouds, have to be filled. The gap between roof and facade point clouds can be filled
in the process of registering point clouds in the same coordinate system using algorithms
such as ICP. The holes need to be detected and distinguished between occlusion and real
existing holes. The edge points extraction in simplification has to be more robust to existing
severe-noise. This could be solved by adapting local curvature estimation to global.
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Appendix A

Source code (part)

The central algorithms are all designed and implemented in the class PointCloudCleaner using
C++ and Point Cloud Library (PCL). We select the most important function code in the
class to be put in this appendix.

A-1 Header file of class PointCloudCleaner

1 #ifndef POINTCLOUDCLEANER_H
2 #define POINTCLOUDCLEANER_H
3
4 // basic for timer
5 #include <s t d l i b . h>
6 #include <time . h>
7 #include <sys / time . h>
8
9 // boost libraries for Gaussian random numbers

10 #include <boost /random . hpp>
11 #include <boost /random/ normal_di s t r ibut ion . hpp>
12
13 // point cloud library
14 #include <pc l /common/common . h>
15 #include <pc l / point_cloud . h>
16 #include <pc l / point_types . h>
17 #include <pc l / f e a t u r e s /normal_3d . h>
18 #include <pc l / o c t r e e / o c t r e e . h>
19 //#include <pcl/octree/octree_search.h>
20 #include <pc l / search / kdtree . h>
21 #include <pc l / f i l t e r s / f i l t e r . h>
22
23 //#include <pcl/console/print.h>
24 //#include <pcl/gpu/containers/initialization.h>
25 //#include <pcl/gpu/octree/octree.hpp>
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26 // project files
27 //#include "octree.h"
28 //#include "octree.cpp"
29
30 typedef pcl : : PointXYZRGB Point ;
31 typedef pcl : : Normal Normal ;
32 typedef pcl : : PointCloud<Point> Cloud ;
33 typedef pcl : : PointCloud<Normal> CloudNormals ;
34 //typedef pcl::gpu::Octree OctreeGPU;
35 typedef pcl : : octree : : OctreePointCloudSearch<Point> Octree ;
36 typedef pcl : : search : : KdTree<Point >:: Ptr KdtreePtr ;
37
38 const float _ZERO = 1e−20f ;
39 const float _BIG_FLOAT = 9999999.999f ;
40 const float _PI = 3.14159265359f ;
41
42 class PointCloudCleaner
43 {
44 public :
45 PointCloudCleaner ( ) : _octree_resolution ( 0 . 5 f ) ,
46 _octree ( _octree_resolution ) ,
47 _kdtreePtr ( new pcl : : search : : KdTree<Point>() ) ,
48 _sample_kdtree ( new pcl : : search : : KdTree<Point>() ) ,
49 _num_aerial (0 ) ,
50 _num_street (0 )
51 {
52 _cloud . clear ( ) ;
53 _normals . clear ( ) ;
54 /* Run octree radius search on GPU */
55 // pcl::gpu::setDevice(0);
56 // pcl::gpu::printShortCudaDeviceInfo(0);
57 }
58
59 /* Basic functions */
60 void add_cloud ( const Cloud &cloud , bool is_aerial , int K = 5) ;
61 Cloud& get_cloud ( ) { return _cloud ; }
62 float get_avg_distance ( ) { return _original_radius ; }
63 CloudNormals& get_normals ( ) { return _normals ; }
64 void set_octree_resolution ( const float resolution ) {

_octree_resolution = resolution ; }
65 Octree& get_octree ( ) { return _octree ; }
66
67 /* colors */
68 /* --- original */
69 void color_entire_original ( int r , int g , int b ) ;
70 void color_by_normal ( Cloud &coloredCloud ) ;
71 void color_by_type ( Cloud &coloredCloud ) ;
72 void color_by_curvature ( Cloud &coloredCloud ) ;
73 /* --- sample */
74 void color_edge_points ( Cloud &coloredCloud ) ;
75 void color_by_relative_density ( Cloud &coloredCloud ) ;
76
77 /* noise and outliers */
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78 void add_noise ( float noise_std ) ; //add noise to the original point
cloud based on normal (Gaussian) distribution

79 void add_outliers ( int num ) ;
80 void reset ( ) ;
81 void remove_outliers_LDOF ( int K = 10 , int szSmallClusterOutliers =

10 , float outlier_percent = 0.07f , bool just_color = false ) ;
82 void remove_outliers_DDF ( int K = 10 , int szSmallClusterOutliers = 10 ,

float omega = 1.25f , bool just_color = false ) ;
83 void remove_outliers_NNR ( int K = 10 , int szSmallClusterOutliers = 10 ,

float outlier_percent = 0.07f , bool just_color = false ) ;
84 void remove_outliers_combined ( int K = 10 , int szSmallClusterOutliers

= 10 , float outlier_percent = 0.07f , bool just_color = false ) ;
85 void remove_outliers_voxel ( ) ;
86
87 void build_octree ( float resolution ) ; //build octree

for _cloud
88 void octree_neighbors ( ) ;
89
90 /* point cloud simplification and resampling */
91 Cloud& get_sample ( ) { return _sample ; }
92 CloudNormals& get_sample_normals ( ) { return _sample_normals ; }
93
94 /* curvature calculated by k = 1 / r = 2 * lambda_0 / (miu ^ 2)
95 where lambda_0 is the eigen value pointing at normal direction
96 and miu is the search radius OR by k = lambda_0 / (lambda_0 +

lambda_1 + lambda_2) */
97 void curvature_estimation ( float search_radius ) ;
98
99 void curvature_estimation_octree ( float search_radius ) ;

100
101 /* subsample while keep feature points */
102 void subsample ( float sample_radius , float curvature_threshold , int

num_iter , float miu ) ;
103
104 /* With the same preprocessing as subsample() but give an extreme non

-uniform initial subset for testing the WLOP effect */
105 void paranoid_subsample ( float sample_radius , float

curvature_threshold , float smooth_sigma_n ) ;
106
107 void WLOP_non_features ( float sample_radius , int num_iter , float miu ) ;
108 void color_sample_from_original ( ) ;
109
110 private :
111 /* basic */
112 void change_cloud ( const Cloud &cloud , const std : : vector<bool> &

vec_is_aerial ) ;
113 Cloud _cloud ;
114 std : : vector<bool> _vec_isaerial ;
115 CloudNormals _normals ;
116 KdtreePtr _kdtreePtr ;
117 int _K_search ;
118 float _original_radius ;
119 Cloud _sample ;
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120 float _sample_radius ;
121 int _num_edge_points_in_sample ; /* put the subsampled edge points

at the beginning of the _sample vector
122 just keep record of the number of edge points */
123 std : : vector<bool> _vec_sample_isaerial ;
124 KdtreePtr _sample_kdtree ;
125 CloudNormals _sample_normals ;
126
127 Octree _octree ; //maybe original point cloud doesn’t need octree

structure -> only sample need for hole filling
128 float _octree_resolution ;
129 // OctreeGPU _octree_gpu;
130
131 /* resampling */
132 float calc_theta ( float dist , float radius_search ) ;
133 float calc_normal_weight ( float dot_product_n1_n2 , float

dot_product_n1_p12 , float sigma_n ) ;
134 float calc_phi ( Normal ni , Point pi , Point pj , float original_radius ,

float sigma_n ) ;
135 void calc_statistics ( const Cloud &cloud , const KdtreePtr &tree , int

K_search ,
136 std : : vector<float> &vec_density , float &

std_density , float &avg_density , float &
min_density , float &max_density ) ;

137 void WLOP_features ( const Cloud &orig , const KdtreePtr &tree_orig ,
Cloud &sample , KdtreePtr &tree_sample ,

138 float sample_radius , int num_iter , float miu ) ;
139
140 /* density members */
141 float _avg_density ;
142 float _min_density ;
143 float _max_density ;
144 float _std_density ;
145 float _avg_density_aerial ;
146 float _avg_density_street ;
147 int _num_aerial ;
148 int _num_street ;
149 std : : vector<float> _vec_relative_density ;
150
151
152 /* assistant functions */
153 inline float dot_product ( Normal vec1 , Normal vec2 )
154 {
155 return ( vec1 . normal_x ∗ vec2 . normal_x + vec1 . normal_y ∗ vec2 .

normal_y + vec1 . normal_z ∗ vec2 . normal_z ) ;
156 }
157
158 inline float dot_product ( Normal n , Point dp )
159 {
160 float scalar_dp = std : : sqrt (dp . x ∗ dp . x + dp . y ∗ dp . y + dp . z ∗ dp

. z ) ;
161 return (n . normal_x ∗ dp . x + n . normal_y ∗ dp . y + n . normal_z ∗ dp . z

) / scalar_dp ;
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162 }
163 } ;
164
165 #endif // POINTCLOUDCLEANER_H

A-2 Source file of class PointCloudCleaner (part)

1 #include "pointcloudcleaner.h"
2
3 /* Add new point cloud if no point cloud existing yet
4 compute the density weight for each point */
5 void PointCloudCleaner : : add_cloud ( const Cloud &cloud , bool is_aerial , int

K )
6 {
7 _K_search = K ;
8 std : : vector<float> vec_density ;
9 KdtreePtr tempTree ( new pcl : : search : : KdTree<Point>() ) ;

10 //temp tree for calculating relative density
11 tempTree−>setInputCloud ( cloud . makeShared ( ) ) ;
12 int starttime , endtime ;
13 starttime = std : : clock ( ) ;
14 float std_density , avg_density , min_density , max_density ;
15 calc_statistics ( cloud , tempTree , K , vec_density , std_density ,

avg_density , min_density , max_density ) ;
16 if ( is_aerial )
17 {
18 _num_aerial += cloud . size ( ) ;
19 _avg_density_aerial = avg_density ;
20 }
21 else
22 {
23 _num_street += cloud . size ( ) ;
24 _avg_density_street = avg_density ;
25 }
26
27 //density ratio
28 for ( int i = 0 ; i != cloud . size ( ) ; i++)
29 {
30 float ratio = avg_density / vec_density [ i ] ;
31 // float ratio = vec_density[i] / avg_density;
32 ratio = std : : exp(− ratio ) ; // scale to (0, 1] for WLOP
33 _vec_relative_density . push_back ( ratio ) ;
34 }
35 endtime = std : : clock ( ) ;
36 std : : cout << "\n-------- Calculate weight value --------\n"
37 << "Time used: " << ( endtime − starttime ) / float (

CLOCKS_PER_SEC )
38 << " seconds\n"
39 << "Std density\t" << std_density << "\n"
40 << "Average density\t" << avg_density << "\n"
41 << "Minimum density\t" << min_density << "\n"
42 << "Maximum density\t" << max_density << "\n" ;
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43
44 if ( _cloud . size ( ) > 0)
45 {
46 std : : cout << "\n-------- Merge point clouds --------\n" ;
47 starttime = std : : clock ( ) ;
48 _vec_isaerial . resize ( _cloud . size ( ) + cloud . size ( ) , is_aerial ) ;
49
50 // merge two point clouds
51 _cloud += cloud ;
52 _kdtreePtr−>setInputCloud ( _cloud . makeShared ( ) ) ;
53 calc_statistics ( _cloud , _kdtreePtr , K , vec_density , std_density ,

avg_density , min_density , max_density ) ;
54 endtime = std : : clock ( ) ;
55 std : : cout << "Time used: " << ( endtime − starttime ) / float (

CLOCKS_PER_SEC )
56 << " seconds\n" ;
57 }
58 else
59 {
60 _cloud = cloud ;
61 _kdtreePtr = tempTree ;
62 // build_original_kdtree(K);
63 _vec_isaerial . resize ( cloud . size ( ) , is_aerial ) ;
64 }
65 // build_octree();
66 this−>_original_radius = std : : sqrt (K / ( _PI ∗ avg_density ) ) ;
67 this−>_avg_density = avg_density ;
68 this−>_min_density = min_density ;
69 this−>_max_density = max_density ;
70 this−>_std_density = std_density ;
71 }
72
73 /* Combined LDOF and NNR method
74 for details please refer to the paper */
75 void PointCloudCleaner : : remove_outliers_combined ( int K , int

szSmallClusterOutliers , float outlier_percent , bool just_color )
76 {
77 std : : cout << "\n-------- NNR + LDOF outlier reduction --------\n" ;
78 int startTime , endTime ;
79 startTime = std : : clock ( ) ;
80
81 std : : vector<std : : vector<int> > neighborVec ;
82 std : : vector<std : : pair<int , float> > vec_pair_LDOF ;
83 std : : vector<int> tempNeighbors ;
84 std : : vector<float> tempDistances ;
85
86 int szAll = K + szSmallClusterOutliers ;
87 // KNN search
88 for ( int i = 0 ; i != _cloud . size ( ) ; i++)
89 {
90 tempNeighbors . clear ( ) ;
91 tempDistances . clear ( ) ;
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92 _kdtreePtr−>nearestKSearch ( _cloud . points [ i ] , szAll , tempNeighbors
, tempDistances ) ;

93 std : : vector<int> kNeighbors ;
94 std : : vector<float> kDistances ;
95 float d , LDOF , D ;
96 d = LDOF = D = 0.0 f ;
97 kNeighbors . clear ( ) ;
98 kDistances . clear ( ) ;
99 for ( int j = szSmallClusterOutliers ; j != szAll ; j++)

100 {
101 kNeighbors . push_back ( tempNeighbors [ j ] ) ;
102 kDistances . push_back ( tempDistances [ j ] ) ;
103 }
104
105 for ( int j = 0 ; j != kNeighbors . size ( ) ; j++)
106 {
107 d += kDistances [ j ] ;
108 int j_index = kNeighbors [ j ] ;
109 for ( int m = j + 1 ; m != kNeighbors . size ( ) ; m++)
110 {
111 int m_index = kNeighbors [ m ] ;
112 float dx = _cloud . points [ j_index ] . x − _cloud . points [

m_index ] . x ;
113 float dy = _cloud . points [ j_index ] . y − _cloud . points [

m_index ] . y ;
114 float dz = _cloud . points [ j_index ] . z − _cloud . points [

m_index ] . z ;
115 D += 2.0 ∗ std : : sqrt (dx ∗ dx + dy ∗ dy + dz ∗ dz ) ;
116 }
117 }
118 d /= K ;
119 D /= K ∗ (K − 1) ;
120 LDOF = d / D ;
121
122 std : : pair<int , float> pair_LDOF (i , LDOF ) ;
123 vec_pair_LDOF . push_back ( pair_LDOF ) ;
124 neighborVec . push_back ( kNeighbors ) ;
125 }
126
127 //LDOF constraint
128 std : : sort ( vec_pair_LDOF . begin ( ) , vec_pair_LDOF . end ( ) ,
129 boost : : bind(&std : : pair<int , float >:: second , _1 ) >
130 boost : : bind(&std : : pair<int , float >:: second , _2 ) ) ;
131 int outlier_size = ( int ) ( outlier_percent ∗ _cloud . size ( ) ) ;
132 std : : set<int> LDOF_outlier_indices ;
133 for ( int i = 0 ; i != outlier_size ; i++)
134 {
135 LDOF_outlier_indices . insert ( vec_pair_LDOF [ i ] . first ) ;
136 }
137
138 pcl : : PointCloud<pcl : : PointXYZRGB >:: Ptr resultCloud ( new pcl : :

PointCloud<pcl : : PointXYZRGB>) ;
139 std : : vector<bool> is_aerial ;
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140 std : : vector<float> vec_density ;
141 uint32_t rgb = ( static_cast<uint32_t >(255) << 16 |
142 static_cast<uint32_t>(0) << 8 | static_cast<uint32_t

>(0) ) ;
143 // unidirectional neighbors search
144 for ( int i = 0 ; i != _cloud . size ( ) ; i++)
145 {
146 int unidirectional_neighbors = 0 ;
147 for ( int j = 0 ; j != K ; j++)
148 {
149 int nb = neighborVec [ i ] [ j ] ;
150 bool p_in_Nq = ( std : : find ( neighborVec [ nb ] . begin ( ) , neighborVec

[ nb ] . end ( ) ,i ) != neighborVec [ nb ] . end ( ) ) ;
151 if ( ! p_in_Nq )
152 unidirectional_neighbors += 1 ;
153 }
154 float percent = 1.0 f − unidirectional_neighbors / K ;
155 if ( just_color )
156 {
157 //1. for changing color only
158 if ( percent <= outlier_percent )
159 {
160 bool is_in_LDOF_outliers = ( LDOF_outlier_indices . find (i )

!= LDOF_outlier_indices . end ( ) ) ;
161 if ( is_in_LDOF_outliers )
162 {
163 _cloud . points [ i ] . rgb = ∗reinterpret_cast<float∗>(&rgb

) ;
164 }
165 }
166 }
167 else
168 {
169 //2. change the cloud
170 if ( percent > outlier_percent )
171 {
172 bool is_in_LDOF_outliers = ( LDOF_outlier_indices . find (i )

!= LDOF_outlier_indices . end ( ) ) ;
173 if ( ! is_in_LDOF_outliers )
174 {
175 resultCloud−>push_back ( _cloud [ i ] ) ;
176 is_aerial . push_back ( _vec_isaerial [ i ] ) ;
177 vec_density . push_back ( _vec_relative_density [ i ] ) ;
178 }
179 }
180 }
181 }
182 endTime = std : : clock ( ) ;
183 std : : cout << "Time used: "
184 << ( endTime − startTime ) / float ( CLOCKS_PER_SEC )
185 << " seconds" << std : : endl ;
186 if ( false == just_color )
187 {
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188 change_cloud (∗ resultCloud , is_aerial ) ;
189 _kdtreePtr−>setInputCloud ( _cloud . makeShared ( ) ) ;
190 // build_original_kdtree(_K_search);
191 _vec_relative_density = vec_density ;
192 }
193 }
194
195 /* spatial kernel */
196 float PointCloudCleaner : : calc_theta ( float dist , float radius_search )
197 {
198 float result = std : : exp(− dist ∗ dist / ( radius_search ∗

radius_search ) ) ;
199 return result ;
200 }
201
202 /* curvature calculated by k = 1 / r = 2 * lambda_0 / (miu ^ 2)
203 where lambda_0 is the eigen value pointing at normal direction
204 and miu is the search radius OR by k = lambda_0 / (lambda_0 + lambda_1 +

lambda_2) */
205 void PointCloudCleaner : : curvature_estimation ( float search_radius )
206 {
207 std : : cout << "\n-------- Estimation curvature of the original point

cloud --------\n" ;
208 int starttime , endtime ;
209 starttime = std : : clock ( ) ;
210 _kdtreePtr−>setSortedResults ( false ) ; // to speed up radius search
211 float factor = 2.0 f / ( search_radius ∗ search_radius ) ;
212 for ( int i = 0 ; i != _cloud . size ( ) ; i++)
213 {
214 std : : vector<int> indices ;
215 std : : vector<float> sqr_distances ;
216 _kdtreePtr−>radiusSearch ( _cloud [ i ] , search_radius , indices ,

sqr_distances ) ;
217 // _kdtreePtr ->nearestKSearch(_cloud[i], _K_search , indices ,

sqr_distances);
218
219 Eigen : : Matrix3f covariance_matrix ;
220 Eigen : : Vector4f xyz_centroid ;
221
222 Normal n ;
223 if ( indices . size ( ) < 3 | | pcl : : computeMeanAndCovarianceMatrix (

_cloud , indices , covariance_matrix , xyz_centroid ) == 0)
224 {
225 /* invalid neighbor size */
226 n . normal_x = n . normal_y = n . normal_z = n . curvature = std : :

numeric_limits<float >:: quiet_NaN ( ) ;
227 continue ;
228 }
229
230 // Eigen::Vector3f eigen_values;
231 // Eigen::Matrix3f eigen_vectors;
232 // pcl::eigen33(covariance_matrix , eigen_vectors , eigen_values);
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233 // float curvature_i = 2.0f * std::fabs(eigen_values[0]) /
sqr_distances[_K_search - 1];

234 Eigen : : Matrix3f : : Scalar eigen_value ;
235 Eigen : : Vector3f eigen_vector ;
236 pcl : : eigen33 ( covariance_matrix , eigen_value , eigen_vector ) ;
237
238 n . normal_x = eigen_vector [ 0 ] ;
239 n . normal_y = eigen_vector [ 1 ] ;
240 n . normal_z = eigen_vector [ 2 ] ;
241
242 /* method 1: Surface Variation from Pauly 2002 */
243 // float eig_sum = covariance_matrix.coeff(0) + covariance_matrix.

coeff(4) + covariance_matrix.coeff(8);
244 // if (eig_sum != 0)
245 // n.curvature = std::fabs(eigen_value / eig_sum);
246 // else
247 // n.curvature = 0.0;
248
249 /* method 2: curvature from Gumhold 2001 */
250 // n.curvature = 2.0f * std::fabs(eigen_value) / sqr_distances[

_K_search - 1];
251 n . curvature = factor ∗ std : : fabs ( eigen_value ) ;
252 _normals . push_back (n ) ;
253 }
254
255 _kdtreePtr−>setSortedResults ( true ) ; //turn on again
256 endtime = std : : clock ( ) ;
257 std : : cout << "Time used: " << ( endtime − starttime ) / float (

CLOCKS_PER_SEC )
258 << " seconds\n" ;
259 }
260
261 void PointCloudCleaner : : curvature_estimation_octree ( float search_radius )
262 {
263 std : : cout << "\n-------- Estimation curvature of the original point

cloud --------\n" ;
264 int starttime , endtime ;
265 starttime = std : : clock ( ) ;
266
267 float factor = 2.0 f / ( search_radius ∗ search_radius ) ;
268 /* flag curvature estimation state */
269 std : : vector<bool> flag ;
270 flag . resize ( _cloud . size ( ) , false ) ;
271 std : : vector<int> indices ;
272
273 /* store curvature in _normals. Normal is one by-product */
274 _normals . clear ( ) ;
275 Normal n ;
276 n . normal_x = n . normal_y = n . normal_z = n . curvature = std : :

numeric_limits<float >:: quiet_NaN ( ) ;
277 for ( int i = 0 ; i != _cloud . size ( ) ; i++)
278 {
279 _normals . push_back (n ) ;
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280 }
281
282 for ( int i = 0 ; i != _cloud . size ( ) ; i++)
283 {
284 indices . clear ( ) ;
285 if ( ! flag [ i ] )
286 {
287 _octree . voxelSearch (i , indices ) ;
288
289 /* covariance matrix */
290 Eigen : : Matrix3f covariance_matrix ;
291 Eigen : : Vector4f xyz_centroid ;
292 if ( indices . size ( ) < 3 | | pcl : : computeMeanAndCovarianceMatrix

( _cloud , indices , covariance_matrix , xyz_centroid ) == 0)
293 {
294 /* invalid neighbor size */
295 for ( int j = 0 ; j != indices . size ( ) ; j++)
296 {
297 flag [ indices [ j ] ] = true ;
298 }
299 continue ;
300 }
301
302 /* eigen values and eigen vectors */
303 Eigen : : Matrix3f : : Scalar eigen_value ;
304 Eigen : : Vector3f eigen_vector ;
305 pcl : : eigen33 ( covariance_matrix , eigen_value , eigen_vector ) ;
306
307 n . normal_x = eigen_vector [ 0 ] ;
308 n . normal_y = eigen_vector [ 1 ] ;
309 n . normal_z = eigen_vector [ 2 ] ;
310
311 /* method 1: Surface Variation from Pauly 2002 */
312 // float eig_sum = covariance_matrix.coeff(0) +

covariance_matrix.coeff(4) + covariance_matrix.coeff(8);
313 // if (eig_sum != 0)
314 // n.curvature = std::fabs(eigen_value / eig_sum);
315 // else
316 // n.curvature = 0.0;
317
318 /* method 2: curvature from Gumhold 2001 */
319 // n.curvature = 2.0f * std::fabs(eigen_value) / sqr_distances

[_K_search - 1];
320 n . curvature = factor ∗ std : : fabs ( eigen_value ) ;
321 for ( int j = 0 ; j != indices . size ( ) ; j++)
322 {
323 int idx = indices [ j ] ;
324 flag [ idx ] = true ;
325 _normals [ idx ] = n ;
326 }
327 }
328 }
329
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330 endtime = std : : clock ( ) ;
331 std : : cout << "Time used: " << ( endtime − starttime ) / float (

CLOCKS_PER_SEC )
332 << " seconds\n" ;
333 }
334
335 //#include <pcl/io/pcd_io.h>
336 /* subsample the points starting from feature points and smoothed by WLOP

*/
337 void PointCloudCleaner : : subsample ( float sample_radius , float

curvature_threshold , int num_iter , float miu )
338 {
339 if ( _normals . size ( ) == 0)
340 {
341 std : : cout << "Error: curvature not estimated yet!\n" ;
342 return ;
343 }
344
345 std : : cout << "\n-------- Subsample point cloud while keeping feature

points --------\n" ;
346 int starttime = std : : clock ( ) ;
347
348 /* flag each original point about the state of whether finishing

subsampling */
349 std : : vector<bool> sample_flag ;
350 sample_flag . resize ( _cloud . size ( ) , false ) ;
351 Cloud extracted_feature_points ;
352 CloudNormals extracted_feature_normals ;
353 std : : vector<int> extracted_indices ;
354
355 for ( int i = 0 ; i != _normals . size ( ) ; i++)
356 {
357 if ( std : : isnan ( _normals [ i ] . curvature ) )
358 continue ;
359 if ( curvature_threshold < _normals [ i ] . curvature )
360 {
361 extracted_indices . push_back (i ) ;
362 extracted_feature_points . push_back ( _cloud [ i ] ) ;
363 extracted_feature_normals . push_back ( _normals [ i ] ) ;
364 }
365 }
366 // /* tmp write the extracted_feature_points into a pcd file in /tmp

*/
367 // if (extracted_feature_points.size() > 0)
368 // pcl::io::savePCDFileBinaryCompressed("/tmp/features.pcd",

extracted_feature_points);
369
370 int endtime1 = std : : clock ( ) ;
371 std : : cout << "\tFeature extraction\tTime used: "
372 << ( endtime1 − starttime ) / float ( CLOCKS_PER_SEC )
373 << " seconds\n" ;
374
375 /* simple subsample the feature points */

Jiale Chen Master of Science Thesis



A-2 Source file of class PointCloudCleaner (part) 71

376 KdtreePtr curvature_orig_tree ( new pcl : : search : : KdTree<Point>() ) ;
377 curvature_orig_tree−>setSortedResults ( false ) ;
378 curvature_orig_tree−>setInputCloud ( extracted_feature_points .

makeShared ( ) ) ;
379
380 Cloud subsampled_feature_points ;
381 std : : vector<bool> subsample_flag ;
382 std : : vector<int> indices ;
383 std : : vector<float> sqr_distances ;
384 subsample_flag . resize ( extracted_feature_points . size ( ) , false ) ;
385 for ( int i = 0 ; i != extracted_feature_points . size ( ) ; i++)
386 {
387 if ( ! subsample_flag [ i ] )
388 {
389 subsample_flag [ i ] = true ;
390
391 indices . clear ( ) ;
392 sqr_distances . clear ( ) ;
393 curvature_orig_tree−>radiusSearch ( extracted_feature_points [ i

] , sample_radius , indices , sqr_distances ) ;
394 if ( indices . size ( ) > 1) // at least 1 neighbor otherwise

consider as outlier in features
395 {
396 for ( int j = 0 ; j != indices . size ( ) ; j++)
397 {
398 subsample_flag [ indices [ j ] ] = true ;
399 }
400 subsampled_feature_points . push_back (

extracted_feature_points [ i ] ) ;
401
402 /* flag in the original point cloud this point has been

sampled */
403 int index_in_orig = extracted_indices [ i ] ;
404 sample_flag [ index_in_orig ] = true ;
405 }
406 }
407 }
408
409 KdtreePtr subsample_tree ( new pcl : : search : : KdTree<Point>() ) ;
410 subsample_tree−>setSortedResults ( false ) ;
411 subsample_tree−>setInputCloud ( subsampled_feature_points . makeShared ( ) )

;
412
413 /* Remove salient points in the subsample */
414 Cloud changed_subsample ;
415 float search_radius = 1.5 f ∗ sample_radius ;
416 for ( int i = 0 ; i != subsampled_feature_points . size ( ) ; i++)
417 {
418 indices . clear ( ) ;
419 sqr_distances . clear ( ) ;
420 subsample_tree−>radiusSearch ( subsampled_feature_points [ i ] ,

search_radius , indices , sqr_distances ) ;
421 if ( indices . size ( ) > 1) // at least one neighbor needed
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422 changed_subsample . push_back ( subsampled_feature_points [ i ] ) ;
423 }
424
425 subsampled_feature_points = changed_subsample ;
426 subsample_tree−>setInputCloud ( subsampled_feature_points . makeShared ( ) )

;
427 // /* tmp write the subsampled feature points into a pcd file in /tmp

*/
428 // if (subsampled_feature_points.size() > 0)
429 // pcl::io::savePCDFileBinaryCompressed("/tmp/subsample.pcd",

subsampled_feature_points);
430
431 int endtime2 = std : : clock ( ) ;
432 std : : cout << "\tSubsample feature points\tTime used: "
433 << ( endtime2 − endtime1 ) / float ( CLOCKS_PER_SEC )
434 << " seconds\n" ;
435
436 /* WLOP smooth the subsampled feature points */
437 WLOP_features ( extracted_feature_points , curvature_orig_tree ,

subsampled_feature_points , subsample_tree ,
438 sample_radius , num_iter , miu ) ;
439
440 int endtime3 = std : : clock ( ) ;
441 std : : cout << "\tFeature smoothing\tTime used: "
442 << ( endtime3 − endtime2 ) / float ( CLOCKS_PER_SEC )
443 << " seconds\n" ;
444 // /* tmp write the extracted_feature_points into a pcd file in /tmp

*/
445 // if (subsampled_feature_points.size() > 0)
446 // pcl::io::savePCDFileBinaryCompressed("/tmp/smoothed.pcd",

subsampled_feature_points);
447
448 extracted_feature_points . clear ( ) ;
449 extracted_feature_normals . clear ( ) ;
450
451 /* flag points < sample_radius in the original point cloud as sampled

*/
452 for ( int i = 0 ; i != subsampled_feature_points . size ( ) ; i++)
453 {
454 indices . clear ( ) ;
455 sqr_distances . clear ( ) ;
456 _kdtreePtr−>radiusSearch ( subsampled_feature_points [ i ] ,

sample_radius , indices , sqr_distances ) ;
457 for ( int j = 0 ; j != indices . size ( ) ; j++)
458 {
459 sample_flag [ indices [ j ] ] = true ;
460 }
461 }
462 _sample = subsampled_feature_points ;
463 _num_edge_points_in_sample = subsampled_feature_points . size ( ) ;
464
465 /* do simple subsampling for the other points in original point cloud

*/
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466 _kdtreePtr−>setSortedResults ( false ) ;
467 for ( int i = 0 ; i != _cloud . size ( ) ; i++)
468 {
469 if ( ! sample_flag [ i ] )
470 {
471 sample_flag [ i ] = true ;
472 indices . clear ( ) ;
473 sqr_distances . clear ( ) ;
474 _kdtreePtr−>radiusSearch ( _cloud [ i ] , sample_radius , indices ,

sqr_distances ) ;
475 if ( indices . size ( ) > 1)
476 {
477 for ( int j = 0 ; j != indices . size ( ) ; j++)
478 {
479 sample_flag [ indices [ j ] ] = true ;
480 }
481 _sample . push_back ( _cloud [ i ] ) ;
482 }
483 }
484 }
485 sample_flag . clear ( ) ;
486 int endtime4 = std : : clock ( ) ;
487 std : : cout << "\tSubsampling other points\tTime used: "
488 << ( endtime4 − endtime3 ) / float ( CLOCKS_PER_SEC )
489 << " seconds\n" ;
490
491 std : : cout << "Total time used: "
492 << ( endtime4 − starttime ) / float ( CLOCKS_PER_SEC )
493 << " seconds\n" ;
494
495 std : : cout << "\n-------- Build sample tree and output subsampling

statistics --------\n" ;
496 starttime = std : : clock ( ) ;
497 _sample_kdtree−>setInputCloud ( _sample . makeShared ( ) ) ;
498
499 /* output statistics */
500 float std_density , avg_density , min_density , max_density ;
501 std : : vector<float> vec_density ;
502 calc_statistics ( _sample , _sample_kdtree , _K_search , vec_density ,

std_density , avg_density , min_density , max_density ) ;
503 int endtime = std : : clock ( ) ;
504 std : : cout << "Time used: "
505 << ( endtime − starttime ) / float ( CLOCKS_PER_SEC )
506 << " seconds\n"
507 << "\nStatistics after subsampling: \n"
508 << "Std density\t" << std_density << "\n"
509 << "Average density\t" << avg_density << "\n"
510 << "Minimum density\t" << min_density << "\n"
511 << "Maximum density\t" << max_density << "\n" ;
512 }
513
514 void PointCloudCleaner : : WLOP_features ( const Cloud &orig , const KdtreePtr

&tree_orig , Cloud &sample , KdtreePtr &tree_sample ,
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515 float sample_radius , int num_iter , float miu )
516 {
517 /* calculate original and sample point cloud WLOP weight value */
518 // std::cout << "\n-------- WLOP weight calculation -------- \n";
519 std : : vector<int> indices ;
520 std : : vector<float> sqr_distances ;
521 std : : vector<float> vec_original_v ;
522
523 tree_orig−>setSortedResults ( false ) ;
524 tree_sample−>setSortedResults ( false ) ;
525
526 /* weight value v in original point cloud */
527 float v = 1.0 f ;
528 for ( int i = 0 ; i != orig . size ( ) ; i++)
529 {
530 v = 1.0 f ;
531 //use theta kernel (no sharp edge consideration)
532 indices . clear ( ) ;
533 sqr_distances . clear ( ) ;
534 tree_orig−>radiusSearch ( orig [ i ] , sample_radius , indices ,

sqr_distances ) ;
535
536 for ( int j = 0 ; j != indices . size ( ) ; j++)
537 {
538 if ( sqr_distances [ j ] < 1e−6) continue ; // ignore points too

close
539 float theta = calc_theta ( std : : sqrt ( sqr_distances [ j ] ) ,

sample_radius ) ;
540 v += theta ; //
541 }
542 vec_original_v . push_back (v ) ;
543 }
544
545 // starttime = std::clock();
546 float sample_search_radius = 3.0 f ∗ sample_radius ;
547 for ( int i = 0 ; i != num_iter ; i++)
548 {
549 /* The original_radius is limited only to neighbors for fast

computation.
550 Theoretically the whole point cloud should be included in

calculation*/
551 Cloud changed_sample_cloud ;
552 Point average_term , repulsion_term ;
553 float sum_alfa_v = 0.0 f ;
554
555 /* weight value of each sample point in repulsion term */
556 /* it is changed in each iteration */
557 std : : vector<float> vec_sample_w ;
558
559 for ( int i = 0 ; i != sample . size ( ) ; i++)
560 {
561 float w = 1.0 f ;
562 indices . clear ( ) ;
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563 sqr_distances . clear ( ) ;
564 tree_sample−>radiusSearch ( sample [ i ] , sample_search_radius ,

indices , sqr_distances ) ;
565 for ( int j = 0 ; j != indices . size ( ) ; j++)
566 {
567 if ( sqr_distances [ j ] < 1e−6)
568 continue ;
569 w += calc_theta ( std : : sqrt ( sqr_distances [ j ] ) ,

sample_search_radius ) ;
570 }
571 vec_sample_w . push_back (w ) ;
572 }
573
574 /* WLOP smooth feature points */
575 for ( int i = 0 ; i != sample . size ( ) ; i++)
576 {
577 average_term . x = average_term . y = average_term . z = 0.0 f ;
578 repulsion_term . x = repulsion_term . y = repulsion_term . z = 0.0 f

;
579 average_term . rgb = repulsion_term . rgb = sample [ i ] . rgb ;
580 /// ----------------------
581 /// calculate average term
582 /// ----------------------
583 sum_alfa_v = 0.0 f ;
584 std : : vector<float> vec_alfa_v ;
585 std : : vector<int> neighbors ;
586 std : : vector<float> sqr_distances ;
587 tree_orig−>radiusSearch ( sample [ i ] , sample_radius , neighbors ,

sqr_distances ) ;
588 /* term: alfa / v and SIGMA(alfa / v) */
589 for ( int j = 0 ; j != neighbors . size ( ) ; j++)
590 {
591 if ( sqr_distances [ j ] < 1e−6)
592 {
593 //BUG HERE!!! VECTOR ITEM NOT MATCH
594 //NEED TO PUSH A NAN VALUE TO VECTOR
595 vec_alfa_v . push_back ( std : : numeric_limits<float >::

quiet_NaN ( ) ) ;
596 continue ;
597 }
598 int idx = neighbors [ j ] ;
599 float dist = std : : sqrt ( sqr_distances [ j ] ) ;
600 float theta = calc_theta (dist , sample_radius ) ;
601 float alfa_v = theta / ( dist ∗ vec_original_v [ idx ] ) ;
602 vec_alfa_v . push_back ( alfa_v ) ;
603 sum_alfa_v += alfa_v ;
604 }
605
606 if ( sum_alfa_v < _ZERO )
607 {
608 /* no neighbor in the original point cloud -> outlier */
609 // average_term = sample[i];
610 continue ;
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611 }
612 else
613 {
614 /* term: p_ij * (alfa_ij / v) / SIGMA(alfa / v) */
615 for ( int j = 0 ; j != neighbors . size ( ) ; j++)
616 {
617 if ( sqr_distances [ j ] < 1e−6) continue ;
618 int idx = neighbors [ j ] ;
619 float weight = vec_alfa_v [ j ] / sum_alfa_v ;
620 average_term . getVector3fMap ( ) += orig [ idx ] .

getVector3fMap ( ) ∗ weight ;
621 }
622 }
623
624 vec_alfa_v . clear ( ) ;
625 /// ------------------------
626 /// calculate repulsion term
627 /// ------------------------
628 std : : vector<Point> vec_dp ;
629 neighbors . clear ( ) ;
630 sqr_distances . clear ( ) ;
631 tree_sample−>radiusSearch ( sample [ i ] , sample_search_radius ,

neighbors , sqr_distances ) ;
632
633 /* no neighbor in given sample radius search. No need to push

away other points */
634 if ( neighbors . size ( ) == 0)
635 {
636 changed_sample_cloud . push_back ( average_term ) ;
637 continue ;
638 }
639 //calculate beta
640 float sum_w_beita = 0.0 f ;
641 std : : vector<float> vec_w_beita ;
642
643 for ( int j = 0 ; j != neighbors . size ( ) ; j++)
644 {
645 if ( sqr_distances [ j ] < 1e−6)
646 {
647 //BUG HERE!!! VECTOR ITEM NOT MATCH
648 //NEED TO PUSH A NAN VALUE TO VECTOR
649 vec_w_beita . push_back ( std : : numeric_limits<float >::

quiet_NaN ( ) ) ;
650 vec_dp . push_back ( std : : numeric_limits<Point >::

quiet_NaN ( ) ) ;
651 continue ;
652 }
653 int index = neighbors [ j ] ;
654 Point dp ;
655 dp . getVector3fMap ( ) = sample [ i ] . getVector3fMap ( ) − sample

[ index ] . getVector3fMap ( ) ;
656 vec_dp . push_back (dp ) ;
657 float dist = std : : sqrt ( sqr_distances [ j ] ) ;
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658 float theta = calc_theta (dist , sample_search_radius ) ;
659 float w_beita = theta / dist ∗ vec_sample_w [ index ] ; //;
660 vec_w_beita . push_back ( w_beita ) ;
661 sum_w_beita += w_beita ;
662 }
663
664 for ( int j = 0 ; j != neighbors . size ( ) ; j++)
665 {
666 if ( sqr_distances [ j ] < 1e−6) continue ;
667 float weight = miu ∗ vec_w_beita [ j ] / sum_w_beita ;
668 repulsion_term . getVector3fMap ( ) += vec_dp [ j ] .

getVector3fMap ( ) ∗ weight ;
669 }
670
671 vec_w_beita . clear ( ) ;
672 Point changed_pt ;
673 changed_pt . getVector3fMap ( ) = average_term . getVector3fMap ( ) +

repulsion_term . getVector3fMap ( ) ;
674
675 changed_pt . rgb = sample [ i ] . rgb ;
676 changed_sample_cloud . push_back ( changed_pt ) ;
677 }
678 /* After each iteration change the sample point cloud */
679 /* Could be problem here??? Better change the tree for each point

*/
680 sample = changed_sample_cloud ;
681 tree_sample−>setInputCloud ( sample . makeShared ( ) ) ;
682 }
683 }
684
685 /* WLOP for smoothing projected (subsampled) point cloud while keep

uniform */
686 void PointCloudCleaner : : WLOP_non_features ( float sample_radius , int

num_iter , float miu )
687 {
688 if ( _avg_density < _ZERO )
689 {
690 std : : cout << "ERROR: average density is 0.0 probably not computed

yet!" << std : : endl ;
691 return ;
692 }
693
694 /* calculate original and sample point cloud WLOP weight value */
695 // std::cout << "\n-------- WLOP weight calculation -------- \n";
696 std : : vector<int> indices ;
697 std : : vector<float> sqr_distances ;
698 int starttime = std : : clock ( ) ;
699 std : : cout << "\n-------- WLOP initialization -------- \n" ;
700 std : : vector<float> vec_original_v ;
701 _sample_kdtree−>setSortedResults ( false ) ;
702
703 /* weight value v in original point cloud */
704 float v = 1.0 f ;

Master of Science Thesis Jiale Chen



78 Source code (part)

705 for ( int i = 0 ; i != _cloud . size ( ) ; i++)
706 {
707 v = 1.0 f ;
708 //use theta kernel (no sharp edge consideration)
709 indices . clear ( ) ;
710 sqr_distances . clear ( ) ;
711 _octree . radiusSearch ( _cloud [ i ] , sample_radius , indices ,

sqr_distances ) ;
712
713 for ( int j = 0 ; j != indices . size ( ) ; j++)
714 {
715 if ( sqr_distances [ j ] < 1e−6) continue ; // ignore points too

close
716 float theta = calc_theta ( std : : sqrt ( sqr_distances [ j ] ) ,

sample_radius ) ;
717 v += _vec_relative_density [ indices [ j ] ] ∗ theta ; //
718 }
719 vec_original_v . push_back (v ) ;
720 }
721
722 int endtime1 = std : : clock ( ) ;
723 std : : cout << "Time used: " << ( endtime1 − starttime ) / float (

CLOCKS_PER_SEC )
724 << " seconds\n" ;
725
726 std : : cout << "\n-------- WLOP iterations -------- \n" ;
727 std : : cout << " Number of iterations\n " << num_iter << std : : endl ;
728 float sample_search_radius = 2.0 f ∗ sample_radius ;
729 for ( int i = 0 ; i != num_iter ; i++)
730 {
731 /* The original_radius is limited only to neighbors for fast

computation.
732 Theoretically the whole point cloud should be included in

calculation*/
733 Cloud changed_sample_cloud ;
734 Point average_term , repulsion_term ;
735 float sum_alfa_v = 0.0 f ;
736
737 /* Keep the first _num_edge_points_in_sample edge points from

WLOP */
738 changed_sample_cloud . points . assign ( _sample . begin ( ) , _sample . begin

( ) + _num_edge_points_in_sample ) ;
739
740 /* weight value of each sample point in repulsion term */
741 /* it is changed in each iteration */
742 std : : vector<float> vec_sample_w ;
743 for ( int i = 0 ; i != _sample . size ( ) ; i++)
744 {
745 float w = 1.0 f ;
746 indices . clear ( ) ;
747 sqr_distances . clear ( ) ;
748 _sample_kdtree−>radiusSearch ( _sample [ i ] , sample_search_radius

, indices , sqr_distances ) ;
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749 for ( int j = 0 ; j != indices . size ( ) ; j++)
750 {
751 if ( sqr_distances [ j ] < 1e−6) continue ;
752 w += calc_theta ( std : : sqrt ( sqr_distances [ j ] ) ,

sample_search_radius ) ;
753 }
754 vec_sample_w . push_back (w ) ;
755 }
756
757 /* WLOP smooth the other non-feature points */
758 for ( int i = _num_edge_points_in_sample ; i != _sample . size ( ) ; i

++)
759 {
760 average_term . x = average_term . y = average_term . z = 0.0 f ;
761 repulsion_term . x = repulsion_term . y = repulsion_term . z = 0.0 f

;
762 average_term . rgb = repulsion_term . rgb = _sample [ i ] . rgb ;
763 /// ----------------------
764 /// calculate average term
765 /// ----------------------
766 sum_alfa_v = 0.0 f ;
767 std : : vector<float> vec_alfa_v ;
768 std : : vector<int> neighbors ;
769 std : : vector<float> sqr_distances ;
770 _octree . radiusSearch ( _sample [ i ] , sample_radius , neighbors ,

sqr_distances ) ;
771
772 /* term: alfa / v and SIGMA(alfa / v) */
773 for ( int j = 0 ; j != neighbors . size ( ) ; j++)
774 {
775 if ( sqr_distances [ j ] < 1e−6)
776 {
777 //BUG HERE!!! VECTOR ITEM NOT MATCH
778 //NEED TO PUSH A NAN VALUE TO VECTOR
779 vec_alfa_v . push_back ( std : : numeric_limits<float >::

quiet_NaN ( ) ) ;
780 continue ;
781 }
782 int idx = neighbors [ j ] ;
783 float dist = std : : sqrt ( sqr_distances [ j ] ) ;
784 float theta = calc_theta (dist , sample_radius ) ;
785 /* v -> keep the same order */
786 float alfa_v = theta ∗ _vec_relative_density [ idx ] / ( dist

∗ vec_original_v [ idx ] ) ;
787 vec_alfa_v . push_back ( alfa_v ) ;
788 sum_alfa_v += alfa_v ;
789 }
790
791 if ( sum_alfa_v < _ZERO )
792 {
793 // average_term = _sample[i];
794 /* no neighbor in the original point cloud -> outlier */
795 continue ;
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796 }
797 else
798 {
799 /* term: p_ij * (alfa_ij / v) / SIGMA(alfa / v) */
800 for ( int j = 0 ; j != neighbors . size ( ) ; j++)
801 {
802 if ( sqr_distances [ j ] < 1e−6) continue ;
803 int idx = neighbors [ j ] ;
804 float weight = vec_alfa_v [ j ] / sum_alfa_v ;
805 average_term . getVector3fMap ( ) += _cloud [ idx ] .

getVector3fMap ( ) ∗ weight ;
806 }
807 }
808
809 vec_alfa_v . clear ( ) ;
810 /// ------------------------
811 /// calculate repulsion term
812 /// ------------------------
813 std : : vector<Point> vec_dp ;
814 neighbors . clear ( ) ;
815 sqr_distances . clear ( ) ;
816 _sample_kdtree−>radiusSearch ( _sample [ i ] , sample_search_radius

, neighbors , sqr_distances ) ;
817
818 /* no neighbor in given sample radius search. No need to push

away other points */
819 if ( neighbors . size ( ) == 0)
820 {
821 changed_sample_cloud . push_back ( average_term ) ;
822 continue ;
823 }
824 //calculate beta
825 float sum_w_beita = 0.0 f ;
826 std : : vector<float> vec_w_beita ;
827
828 for ( int j = 0 ; j != neighbors . size ( ) ; j++)
829 {
830 if ( sqr_distances [ j ] < 1e−6)
831 {
832 //BUG HERE!!! VECTOR ITEM NOT MATCH
833 //NEED TO PUSH A NAN VALUE TO VECTOR
834 vec_w_beita . push_back ( std : : numeric_limits<float >::

quiet_NaN ( ) ) ;
835 vec_dp . push_back ( std : : numeric_limits<Point >::

quiet_NaN ( ) ) ;
836 continue ;
837 }
838 int index = neighbors [ j ] ;
839 Point dp ;
840 dp . getVector3fMap ( ) = _sample [ i ] . getVector3fMap ( ) −

_sample [ index ] . getVector3fMap ( ) ;
841 vec_dp . push_back (dp ) ;
842 float dist = std : : sqrt ( sqr_distances [ j ] ) ;
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843 float theta = calc_theta (dist , sample_search_radius ) ;
844 float w_beita = theta / dist ∗ vec_sample_w [ index ] ; //;
845 vec_w_beita . push_back ( w_beita ) ;
846 sum_w_beita += w_beita ;
847 }
848 if ( sum_w_beita < _ZERO )
849 {
850 changed_sample_cloud . push_back ( average_term ) ;
851 continue ;
852 }
853 else
854 {
855 for ( int j = 0 ; j != neighbors . size ( ) ; j++)
856 {
857 if ( sqr_distances [ j ] < 1e−6) continue ;
858 float weight = miu ∗ vec_w_beita [ j ] / sum_w_beita ;
859 repulsion_term . getVector3fMap ( ) += vec_dp [ j ] .

getVector3fMap ( ) ∗ weight ;
860 }
861 }
862
863 vec_w_beita . clear ( ) ;
864 Point changed_pt , diff ;
865 changed_pt . getVector3fMap ( ) = average_term . getVector3fMap ( ) +

repulsion_term . getVector3fMap ( ) ;
866 changed_pt . rgb = _sample [ i ] . rgb ;
867 changed_sample_cloud . push_back ( changed_pt ) ;
868 }
869 /* After each iteration change the sample point cloud */
870 /* Could be problem here??? Better change the tree for each point

*/
871 _sample = changed_sample_cloud ;
872 _sample_kdtree−>setInputCloud ( _sample . makeShared ( ) ) ;
873 }
874 int endtime = std : : clock ( ) ;
875 std : : cout << "Time used: " << ( endtime − starttime ) / float (

CLOCKS_PER_SEC )
876 << " seconds\n" ;
877
878 /// ----------output statistics -------------
879 float std_dev , avg_density , min_density , max_density ;
880 std : : cout << "\n Original point cloud nearest neighbor distance

statistics\n std_dev\t avg_density\t min_density\t max_density\n "
881 << _std_density << "\t " << _avg_density << "\t " <<

_min_density << "\t" << max_density ;
882
883 std : : vector<float> vec_density ;
884 calc_statistics ( _sample , _sample_kdtree , _K_search , vec_density ,

std_dev , avg_density , min_density , max_density ) ;
885 std : : cout << "\n Sample point cloud nearest neighbor statistics\n

std_dev\t avg_density\t min_density\t max_density\n "
886 << std_dev << "\t " << avg_density << "\t " << min_density

<< "\t" << max_density << "\n" ;
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887 }
888
889 /* sample point cloud colored from input original point cloud */
890 void PointCloudCleaner : : color_sample_from_original ( )
891 {
892 int starttime , endtime ;
893 starttime = std : : clock ( ) ;
894 for ( int i = 0 ; i != _sample . size ( ) ; i++)
895 {
896 std : : vector<int> indices ;
897 std : : vector<float> sqr_distances ;
898 _kdtreePtr−>nearestKSearch ( _sample [ i ] , 10 , indices , sqr_distances

) ;
899 float sum_r , sum_g , sum_b ;
900 sum_r = sum_g = sum_b = 0.0 f ;
901 float sum_weight ;
902 sum_weight = 0.0 f ;
903 for ( int j = 0 ; j != indices . size ( ) ; j++)
904 {
905 int idx = indices [ j ] ;
906 sum_r += _cloud [ idx ] . r ∗ _vec_relative_density [ idx ] ;
907 sum_g += _cloud [ idx ] . g ∗ _vec_relative_density [ idx ] ;
908 sum_b += _cloud [ idx ] . b ∗ _vec_relative_density [ idx ] ;
909 sum_weight += _vec_relative_density [ idx ] ;
910 }
911 sum_r /= sum_weight ;
912 sum_g /= sum_weight ;
913 sum_b /= sum_weight ;
914 uint32_t rgb = ( static_cast<uint32_t>(sum_r ) << 16 |
915 static_cast<uint32_t>(sum_g ) << 8 | static_cast<

uint32_t>(sum_b ) ) ;
916 _sample [ i ] . rgb = ∗reinterpret_cast<float∗>(&rgb ) ;
917 }
918 endtime = std : : clock ( ) ;
919 std : : cout << "\n Color sample point cloud from KNN in original point

cloud: \n"
920 << ( endtime − starttime ) / float ( CLOCKS_PER_SEC )
921 << " seconds\n" ;
922 }
923
924 /* avg, min, max and stdDev of the input point cloud */
925 void PointCloudCleaner : : calc_statistics ( const Cloud &cloud , const

KdtreePtr &tree , int K_search ,
926 std : : vector<float> &vec_density ,

float &std_density , float &
avg_density , float &
min_density , float &
max_density )

927 {
928 vec_density . clear ( ) ;
929 min_density = _BIG_FLOAT ;
930 max_density = − _BIG_FLOAT ;
931 avg_density = 0.0 f ;
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932 std_density = 0.0 f ;
933 float factor = K_search / _PI ;
934 for ( int i = 0 ; i != cloud . size ( ) ; i++)
935 {
936 std : : vector<int> indices ;
937 std : : vector<float> sqr_distances ;
938 tree−>nearestKSearch ( cloud [ i ] , K_search + 1 , indices ,

sqr_distances ) ; // exclude itself
939 float sqr_dist = sqr_distances [ K_search ] ;
940 if ( sqr_dist < 1e−6)
941 {
942 sqr_dist = 1e−6;
943 }
944 float density_i = factor / sqr_dist ;
945 vec_density . push_back ( density_i ) ;
946 if ( density_i < min_density ) min_density = density_i ;
947 if ( density_i > max_density ) max_density = density_i ;
948 avg_density += density_i ;
949 }
950 avg_density = avg_density / cloud . size ( ) ;
951
952 for ( int i = 0 ; i != cloud . size ( ) ; i++)
953 {
954 std_density += std : : pow ( vec_density [ i ] − avg_density , 2) ;
955 }
956 std_density = std : : sqrt ( std_density ) / cloud . size ( ) ;
957 }
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List of Acronyms

AHN2 National Height model of the Netherlands version 2

BA Bundle Adjustment

DDF Distance-based Deviation Factor

EAR Edge-Aware point set Resampling

GPS Global Positioning System

ICP Iterative Closest Point

IMLS Implicit Moving Least Squares

INS Inertial Navigation System

KNN K-Nearest Neighbor

LDOF Local Distance-based Outlier Factor

LiDAR Light Detection and Ranging

LKR Local Kernel Regression

MLS Moving Least Squares

NNR Nearest Neighbor Reciprocity

PCA Principle Component Analysis

RIMLS Robust Implicit Moving Least Squares

SfM Structure from Motion

WLOP Weighted Locally Optimal Projector
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