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1
TOWARDS BIAS-FREE MECHANISTIC

MODELS

Emerging Tools for Automated Reaction Path Analysis and Predictions

C ATALYTIC systems are commonly represented by complex mixtures of reactants,
catalyst precursors, ligands, additives, and solvent that may give rise to the

formation of a wide variety of species that may show varied catalytic activity and
behavior towards other components of the reaction mixture. The primary tasks of
computational catalysis are to identify among these pre-reaction complexes those
that contribute most to the catalytic reaction and identify mechanisms of the main
catalytic cycle and competing reaction channels giving rise to unselective conversion
routes or catalyst deactivation. As we will demonstrated throughout this chapter,
the development of a comprehensive molecular-level picture of a catalytic system is
a very challenging task due to the enormous complexity of the associated chemical
reaction. However, I firmly believe that if all these tasks are accomplished, the
resulting reactivity model could be used to guide the development of more active and
efficient catalysts, which is the core idea of the rational catalyst design strategy.

This chapter is partially based on: K. D. Vogiatzis, M. V. Polynski, J. K. Kirkland, J. Townsend, A.
Hashemi, C. Liu, E. A. Pidko Computational Approach to Molecular Catalysis by 3d Transition Metals:
Challenges and Opportunities. Chemical Reviews 2019, 119 (4), 2453.1 (A. Hashemi’s contribution:
literature analysis, draft preparation, revisions with the major contribution to the section on the
automated approaches for reactivity analysis in homogeneous catalysis)
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1.1. INTRODUCTION

M Odern density functional theory (DFT)[1] and wave-function theory (WFT)
methods[2] provide the necessary computational toolbox for sufficiently and

accurately evaluating the structures and energetics of sequences of intermediates
and transition states within an envisioned catalytic reaction mechanism[3,
4]. Conventionally, the research strategies commonly employed in computational
catalysis imply that the quantum chemical methods are used to analyze pre-defined
mechanistic proposals formulated based either on previous suggestions for (often
vaguely) related systems, expert opinion or chemical intuition. The importance of
expert input in mechanistic analysis of catalytic paths is one of the focal points of
this chapter. Classical computational chemistry methods do not provide means to
enable discovery of new catalytic paths, but their role is often limited to evaluating
reactions within the scope of the existing chemical knowledge. Such a situation
is common for many fields of sciences and is often referred to as the “streetlight
effect”[5–7]. Dewyer and Zimmerman in their excellent recent perspective state that
“for reaction mechanisms, where no hypotheses are available —and the researchers
“just don’t know”—computation has not offered practical solutions to discover these
unknown mechanisms”[8].

Recent developments in the field are transforming the ability of computational
chemistry to minimize the expert bias in mechanistic analysis and even to discover
reaction paths that could not be deduced based on prior knowledge or “chemical
intuition”[8–10]. The basic idea behind these emerging methodologies is that with
specified reactant molecules and catalyst, programs automatically determine feasible
sequences of elementary reaction steps. Such approaches may give rise to practical
tools for identifying unexpected reaction mechanisms at reasonable computational
cost, enabling a new paradigm of research in quantum chemistry.

From the computational perspective, the construction of a reaction path even
for a single elementary step is a quite demanding and non-trivial multistep
procedure. Most contemporary approaches to locating reaction paths start from the
approximation of a transition state (TS) followed by optimization of the stationary
point and intrinsic reaction coordinate (IRC) computations to elucidate the adjacent
minima states. Because many of the steps involved in this procedure are highly
demanding and can easily fail, substantial efforts of the research community are
currently put into the development of alternative streamlined approaches for finding
reaction paths directly from mechanistic hypotheses[9]. Automated methods capable
of formulating mechanistic hypotheses for elementary steps in combination with
efficient approaches for reaction path and transition state optimization would
drastically lower the amount of chemical intuition and expert bias involved in
mechanistic research and may become the basis for the true predictive computational
catalysis methodologies.
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1.2. STATE-OF-THE-ART IN THE REACTION PATH-FINDING

STRATEGIES
Catalytic reactivity in a general sense is determined by the complex network
of chemical reactions taking place simultaneously or consequently between the
different (transient) components of the catalytic mixture. Each of the stages of the
catalytic process – that is the catalyst activation, catalytic cycle propagation, catalyst
deactivation, non-selective conversion paths – may involve multiple elementary
steps that proceed via mechanism and involve reaction intermediates that are not
known a priori. Even the most advanced experimental operando techniques are
not able to unravel such a high molecular-level complexity, and its computational
analysis requires a much broader exploration of the chemical and configuration
space to identify the minima on the potential energy surface (PES) and the pathways
connecting them. Such a computational reaction discovery may be facilitated by
narrowing down the reaction space by either applying pre-defined heuristic rules
(e.g., bond breaking) to generate intermediates or by artificially pushing the reactants
together in a simulation to induce chemical transformations.

In principle, ab initio molecular dynamics (AIMD) provide the direct means to
probe reaction events at the molecular level; however, the major challenge here is that
even the fastest chemical reactions are considered rare events making the adequate
scanning of the reaction space by the direct atomistic AIMD simulations based on
sufficiently accurate electronic structure methods challenging. The frequency of the
reaction events can be greatly accelerated by applying bias potentials that push the
system away from the free energy minima along a collective variable, which assumes
some knowledge of the reaction coordinate or collective variable along which to
apply the biasing potential[11–13]. A similar reactivity enhancement can be achieved
by simulating reactions at extremely high-temperature or high-pressure regimes,
which effectively shift the equilibrium to products with higher entropy or lower
volume, respectively[14]. The determination of the reaction paths and, particularly,
the transition state search with quantum chemical methods is a non-trivial task and
it is commonly associated with high computational demands. The tutorial review by
Schlegel[15] presents a comprehensive overview of the methodological aspects and
capabilities of modern approaches for geometry optimization and transition state
search. The state-of-the-art in reaction pathway finding strategies is summarized in
a comprehensive review by the Zimmerman group[9]. We refer the interested reader
to these works for the details on the methodologies and strategies. In this chapter,
we will limit ourselves to a brief description of the main concepts underlying these
strategies and highlighting the most relevant examples of their applications to the
topics relevant to the field of molecular catalysis.

The reaction path exploration strategies can be categorized in four main groups
summarized in Figure 1.1. All these methods require explicit definition of a
designated set of reactants and catalysts, but all subsequent steps are supposed
to operate without external bias or with minimal possible interference from a
researcher. The first class of methods, designated in Figure 1.1 as Concept 1, largely
follow the way chemist researchers develop mechanistic proposals. The basis for
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Figure 1.1.: Classification of automated reaction path exploration methods. Reprinted
with permission from WIREs Comput. Mol. Sci. 2018, 8, e1354. Copyright
2017, John Wiley and Sons.

this approach is a set of chemistry rules formalized by encoded elementary step
types from databases or rules of chemical heuristics. These are used to describe
reaction pathways between the reacting molecules defined at the start. Methods
in this category commonly use activation barriers and reaction rates estimated
using approximate methods and only seldom involve the explicit TS search. In the
second category (Concept 2) approximate TSs are first generated from the reactants,
followed by local TS optimization and IRC calculations. One of the most common
methods for generation of the initial TS approximation in such methods involves
exposing two molecules to artificial forces that would push them together to induce
a reaction. The methods within Concept 3 start with the generation of a collection
of putative elementary steps with the corresponding intermediates formed, followed
by the application of double-ended methods to refine reaction paths and locate
TSs. The methods within Concept 4 involve the generation of hypothetical reaction
coordinates that are generated, followed by applying single-ended methods to carry
out the reaction path searches along these coordinates.

All these four methodological concepts share a common spirit but differ in the
conceptual implementation and details that may be paramount to their degree of
success. They are all designed to generate approximate reaction paths, estimate
reaction barriers and then integrate these paths into reaction networks of elementary
steps. The current practical realization and implementations of these methods are
still far from perfection. They all can fail at one point or another during the
reaction search and none of them can deliver an ideal balance of high accuracy
and comprehensive PES analysis at a reasonable computational cost. Despite the
ultimate goal to establish a bias-free reaction prediction and the promise of the
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non-user interaction reaction exploration, chemical intuition in one form or another
still needs to be introduced to some extent for the successful utilization of these
methods. In the next sections, we will briefly discuss the available methods for
automated reaction path analysis.

1.3. COMPUTATIONAL TOOLS TO EXPLORE CATALYTIC

REACTION MECHANISMS
The strategies for automated reaction mechanism exploration tools discussed above
are quite general and are designed to analyze general (most often organic chemistry)
reactions occurring over a barrier[16]. The extension of such methods to transition
metal catalysis requires several auxiliary algorithms designed to deal with the specific
features of transition metal catalytic reactions, mainly the particular sensitivity
to the 3D geometric structure of transition metal complexes and the need for
comprehensive sampling of reactions within and outside the catalytic cycles.

ZStruct2[17, 18] is a reaction exploration tool introduced by the Zimmerman
group. The method combinatorically samples driving coordinates (DC), which
are bond-addition or bond-breaking vectors describing elementary reactions[8, 19].
These reactive coordinates are designed for use with the single-ended growing
string method[20, 21] (GSM) that generates reaction paths, TSs, and intermediate
structures for single elementary steps consistent with the DC. ZStruct2 handles
intramolecular and bimolecular reactions by aligning reactants in a way consistent
with the DC. The incorporation of knowledge of the transition metal center geometry
and the alignment of the reactants enabled the application of ZStruct2 to perform
studies on transition metal-catalyzed reactions. ZStruct2 has been successfully
used to explore mechanisms of such processes as Pd-catalyzed C-H arylation
of piperidine[19], FeCl3-catalyzed carbonyl-olefin metathesis[22, 23], Ni-catalyzed
thiazole polymerization[24] and others[25, 26]. For example, in the case of piperidine
arylation, ZStruct2 was able to identify all major steps of the catalytic cycles
including the roles that the multiple supporting reagents play in driving forward the
reaction. In the study of thiazole polymerization, ZStruct identified an unexpected
route for chain termination that prevents the controlled polymer growth[24].

The Artificial Force Induced Reaction (AFIR) Method[27] provides a more
comprehensive and systematic approach to finding reaction paths to analyze
mechanisms and predict selectivity of catalytic reactions. Starting from a given set
of reactants and catalyst, AFIR searches all of the important (known, unknown, or
unexpected) reaction pathways.

The concept of AFIR is straightforward: simply push or pull fragments A and B in
the catalytic mixture together. When both A and B are atoms, they can be pushed
together by adding a linear function of their distance rAB to their potential energy
E(rAB ). Figure 1.2 depicts a diatomic potential curve E(rAB ). A barrier separates the
reactant pair A + B and the product X in this curve. This barrier can be removed
by adding the term αr AB to E(rAB), where α is a constant parameter. The resulting
function, depicted in blue in Figure 1.2, contains no barrier. On this function,
the product region, αr AB +E(rAB), can be efficiently reached from the reactant pair
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simply by minimizing the function. In polyatomic systems, the same procedure can
be carried out by minimizing the following AFIR function.

F (Q) = E (Q)+ρα
∑

iϵA
∑

jϵB ωi j ri j∑
iϵA

∑
jϵB ωi j

(1.1)

This function consists of two terms, i.e., the Born-Oppenheimer potential energy
surface (PES) E(Q) of geometrical parameters Q and the artificial force term. The
parameter α in the artificial force term determines the force’s strength. The
coefficient ρ is either 1 to push fragments together or -1 to separate them. The force
term is given as a weighted sum of the distances ri j between atoms i in fragment A
and j in fragment B, and the weight function ωi j is as follows:

ωi j =
[(

Ri +R j
)

ri j

]p

(1.2)

This weight function assigns a stronger force to the closer atom pairs and a weaker
force to the more distant pairs. In Eq. 1.2, the inverse distance 1/r i j is scaled
by Ri + R j , the sum of covalent radii of atoms i and j, to treat all elements
equivalently. It was confirmed that results did not strongly depend on the choice
of p, and p is usually set to 6.0[28].

Figure 1.2.: A diatomic potential curve E(rAB ) between atoms A and B (black curve)
and the corresponding AFIR function E(rAB) + αrAB (blue curve). rAB is
the distance between A and B, and α is a constant parameter.(
Reprinted with permission from Chem. Rec.2016,16, 2232–2248VC2016
The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA,
Weinheim).

The AFIR method not only predicts reaction mechanisms for the desired product,
but also explores the side paths resulting in the formation of byproducts. The AFIR
methods can be successfully employed to explore reaction paths for relatively simple
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catalytic systems (small models, limited number of participating species, etc.), but
when applied to realistic molecular systems the full AFIR becomes prohibitively
demanding and a restricted AFIR search is more appropriate. In this case, an
artificial force should be added between selected fragments. The basic principles
and application of AFIR in computational catalysis studies using the AFIR method
has been explained in a comprehensive article by Morokuma and co-workers[27].

The AFIR method combined with DFT calculations was used to explore the
mechanism and the selectivity of the aqueous Mukaiyama aldol reaction catalyzed
by an Fe-based chiral complex[27]. More than 40 approximate TSs were located
by AFIR and classified into 12 groups. It is worth mentioning that the AFIR
method located 10 TSs relevant for the selectivity of the reaction, some of which
may have been missed when following the traditional chemical intuition-guided
approaches. This systematic study provides important mechanistic insights relevant
for the development of Fe-based catalysts for carbon−carbon bond formation
reactions. Besides, the AFIR method has also been successfully employed to analyze
the reaction mechanism and identify factors controlling the stereoselectivity of the
Kobayashi modification of the Mukaiyama aldol reaction, catalyzed by water-tolerant
lanthanide-based Ln(OTf)3 Lewis acid catalysts in aqueous media[29–31].

For relatively large molecular systems, the computational cost of AFIR searches
can be reduced by using the hybrid model definitions within the NIOM(QM:QM)
or ONIOM(QM:MM) methods. Conventionally, the AFIR analysis is carried out with
the higher-level model described at the DFT level with a relatively small basis set,
while the lower-level part of the system is treated using semiempirical or force field
methods. After approximate local minima (LM) and TSs are identified, standard
more accurate computational methods (e.g., DFT with a large basis set) are used for
the full molecular system to determine the true LMs and TSs and to rationalize the
reaction mechanism and selectivity of the catalytic reaction.

Transition State Search using Chemical Dynamics Simulations (TSSCDS) is
an automated strategy to predict the reaction mechanisms and kinetics of
organometallic-catalyzed reactions[32]. This method starts with the division of the
catalytic system into smaller subsystems, which are sorted by order of increasing
complexity. The TSSCDS method is then applied within each of the subsystems
to locate the TSs and intermediates, which are subsequently merged into a single
reaction network. Finally, this reaction network is used to calculate overall
kinetics. The TSSCDS method is based on a procedure that combines accelerated
direct dynamics with an efficient geometry-based post-processing algorithm to
find transition states. The method operates with the starting geometries and
concentrations of the catalyst and reagents as well as the viscosity of the solvent.
The geometries provide the starting configurations for locating intermediates and
transition states, while concentrations and the parameters of the solvent are used as
the input for the kinetic simulations[33].

TSSCDS has been successfully tested on the cobalt-catalyzed hydroformylation
of ethylene and provided a mechanistic outcome that verified the main pathway
proposed by Heck and Breslow[34]. The predicted rate law reproduced the one
obtained experimentally. Importantly, the TSSCDS is claimed to be able to reveal
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Figure 1.3.: DFT-calculated free energy profile for the Co-catalyzed hydroformylation
of ethylene up to the reductive elimination affording the species IX. The
blue lines are used for the less competitive pathways observed in the
kinetics simulations. The relative free energy values ∆G are calculated by
subtracting the sum of the free energies of the catalyst and the starting
materials.

wasteful side reactions and predict their yields – a unique feature that can be used
to optimize the reaction conditions and tune selectivity of the catalytic process.
For the test hydroformylation process, alkene hydrogenation was identified as the
undesirable side-path and it was found to dominate the catalytic process at very low
CO pressures[33].(Figure 1.3)

TSSCDS uses dynamics simulations, which can be efficiently parallelized. The
dynamics module contains algorithms allowing non-uniform sampling of the phase
space[35] which can accelerate the TS search or guide the dynamics to mechanisms
of greater interest. Finally, the method allows using specific reaction parameters
in the semiempirical Hamiltonian for systems where standard parameterization is
not efficient or where the procedure needs to be speed up by skipping high-energy
paths.

Reiher and coworkers[36] have put forward an original algorithm for finding
vertices in the reaction network that makes use of conceptual electronic-structure
theory to apply heuristic rules for the search of potential chemical transformations
within complex reaction mechanisms. The heuristic rules guide the construction of
high-energy guess-structures of supermolecules composed of the components of the
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reactive systems, from which the products of transformations (intermediates in the
reaction networks) are derived upon structure optimization. The structures of these
intermediates enter an emerging reaction network, in which elementary reactions
can be identified in an automated way. In a standard procedure, a species of interest
(e.g., a catalyst complex) reacts with a reactive species (e.g., a radical or a charged
particle) to produce an intermediate. A collection of all intermediates is arranged
in a reaction network. This chemical reaction network can be pruned by defining
a certain energy cutoff that excludes consideration of high-energy intermediates
that are inaccessible under a range of reasonable physical reaction conditions and
within a characteristic time scale. The heuristics-guided exploration protocol by
Reiher and coworkers has been applied to the Chatt−Schrock nitrogen-fixation cycle
(Figure 1.4)[36]. Its competing reaction paths were not studied in sufficient detail
before. A vast number of possible elementary reactions were explored that describe
protonation, proton-rearrangement, and reduction steps. The resulting network
turned out to be highly complex and alternative routes that still sustain the catalytic
cycle emerge.

1.4. COMPARISON OF REACTION MECHANISM EXPLORATION

TOOLS
Table 1.1 lists the available strategies for reaction mechanism exploration. These
can vary significantly in both computational demand and comprehensiveness of the
description of the reaction networks that they produce. The Anharmonic downward
distortion following (ADDF)[37] method appears to provide the most comprehensive
analysis of the chemical space, but its use is also fundamentally limited by rapid
increases in cost with growing system size. On the other side of (in)completeness
is the heuristics-based approach by the group of Reiher[38] that is largely based on
chemical intuition that potentially greatly limits the number of reaction pathways
to be explored. Nevertheless, this method still allows identification of a great
number of pathways that could not be directly envisaged with the expert knowledge
only. Similar to other aspects of computational chemistry and catalysis, automated
reaction path analysis faces the same problem needed for establishing a balance
between accuracy and quality of the model for the investigated problem, and the
associated computational burden[8].

The different approaches for automated reaction path analysis can be classified
by the degree and type of human guidance required for their optimal functioning.
The knowledge-based approaches such as Reaction Mechanism Generator (RMG)[39]
that involve decision making based on the similarities found with the reactions from
pre-defined libraries, the performance and depth of analysis is ultimately limited by
the quality of the available reaction data.

The reaction exploration by Artificial force-induced reaction (AFIR)[28] and
ZStruct[17, 18] strategies could also be limited by the need to impose configurational
preferences on the reacting configurations. The initial implementation of ZStruct
worked best for intramolecular reactions due to the requirement that reactants
need to be pre-aligned. This requirement limited the applicability of the method
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Figure 1.4.: Chatt–Schrock network of catalytic nitrogen fixation. lowest-energy
intermediates of a subnetwork(Dark-blue vertices), and corresponding
highest-energy intermediates(dark-red vertices). Schrock intermediates
(enlarged vertices). Low-energy transition barriers between intermediates
of the same subnetwork are indicated by dark-gray edges, high-energy
transition barriers by light-gray edges. Internetwork connections are
indicated by dashed lines. In a)–g) a selection of intermediates is shown.
Element color code: gray, C; blue, N; turquoise, Mo; white, H; orange, H
added to reactive sites. Reprinted with permission from J. Chem. Theory
Comput. 2015, 11, 5712-5722. Copyright 2015 American Chemical Society
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for systematic reaction exploration. Furthermore, the ZStruct approach did not
guarantee that pairs of intermediates were connected by a single elementary step,
causing double-ended GSM to struggle in obtaining a single representative TS for a
multistep pathway.

Enhanced collision and reaction acceleration strategies within TSSCDS could also
be considered as a limiting factor for large systems as vibrational mode selection
for reactivity analysis will inevitably be incomplete and require manual guidance
due to the large number of mode combinations that may be populated. Human
input is also required in AFIR strategy in the form of selecting which pairs of
molecules/catalyst react as well as intramolecular fragment selection (i.e., active
atom selection). Generally speaking, all available strategies, with the exception of
the Nanoreactor implementation[40, 41], have deficiencies when multiple reactants
are involved, or solvent participates in the reaction. Such methods still lack capacity
for the truly bias-free mechanism exploration desired for a comprehensive analysis
of multistep, multicomponent reaction paths.

For all the available methods, the efficient TS search and optimization is
paramount for the overall success in the mechanism discovery. The availability of
robust and efficient tools that would consistently converge reaction pathways and
TSs is critical for the overall convergence of the above strategies. While methods
such as the single-ended GSM[21] and West’s[42] TS estimator have provided some
advances in this regard, there is so far no method available that would provide a
failsafe TS search algorithm. A failed reaction path optimization may mean the path
does not exist, it is highly unfavorable, or simply that the optimizer could not reach
convergence. This uncertainty is particularly troubling, as the automated approaches
would disregard any failed path, even if it were the actual major reaction pathway.

As could be seen from the overview in Table 1.1, the development of automated
methods in reaction mechanism exploration is a very active field in contemporary
computational chemistry. With the steady progress in the field, we will move closer
to uncovering the full details of chemical reactions with less and less guidance
needed from the user or user’s chemical intuition. Realistic catalytic systems are
multicomponent complex systems, in which myriads of potential reaction channels
can in principle be found. Therefore, the practical application of the automated
and comprehensive reaction network analysis tools requires establishing a balance
of exploration-exploitation approaches. Currently, this is achieved either in the
framework of the graph-representation of molecular systems or by pre-defining
the reactive centers within the molecular ensembles[9]. The former approach is
particularly attractive in terms of computational efficiency but has specific limitations
when applied to systems with complex electronic structures such as transition metal
complexes and clusters, where the application of the concept of valence is not
straightforward.
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Table 1.1.: Comparison of recent methods for reaction path discovery and TS optimization

Method* Input Required Exploration Strategy TS Finding Strategy Intermediate

ADDF[30] Reactant(s) Anharmonic Down-
ward Distortion(ADD)

Anharmonic mode fol-
lowing then TS optimiza-
tion

IRC

AFIR[28, 43] Reactant(s) Artificial External
Force

TS optimization along bi-
ased pathway

IRC

TSSCDS[32, 33, 44,
45]

Reactant(s) High Energy Dynam-
ics

Optimize TS from where
bond change occurs

Dynamics and
IRC

West[42] Reactants, library
of TS geometries

Interatomic Distances Reactive atom constraints
followed by TS optimiza-
tion

IRC

ZStruct[46] Reactant, reactive
atoms

Graph Rules Double-ended reaction
path optimization

Graph Rules

Green[47, 48] Reactant, Reactive
atoms

Graph Rules Freezing String then local
TS optimization

Graph Rules

Habershon[49] Initial reactants
and intermediates

Reaction/Graphical
Hamiltonian

Double-ended reaction
path optimization

Graph Rules

Reiher[36, 38, 50–
52]

Reactants, Reac-
tive sites

Reactive Sites (Heuris-
tics)

Interpolation then local
TS optimization

Heuristic rules
and IRC

Nanoreactor[41] Reactants High p, T dynamics Double-ended reaction
path optimization

MD Trajectories

Zstruct2[9] Reactants, Reac-
tive atoms

Graph Rules Single-ended growing
string

Single-ended
growing string

MD/CD[53] Reactant(s) Distance between re-
active atoms

Interpolation then local
TS optimization

Trajectories, in-
teratomic dis-
tances

ReNeGate[54] Reactants RMSD biased metady-
namics

- Trajectories,
Graph theory



1.5. SCOPE OF THE THESIS AND OUTLOOK:

1

13

The available methodologies require trimming the explored reaction networks
to keep them computationally tractable at the expense of potential loss of some of
the relevant pathways[9, 36]. Furthermore, to ensure an exhaustive exploration of
the chemical space the completeness of the set of transformation rules is required.
However, for an arbitrary, unknown chemical system this cannot be guaranteed. One
will then be restricted to known or anticipated chemical transformations, which may
hamper the discovery of new chemical processes.

Besides these general problems that need to be solved to progress further in
this direction such as the inclusion of multicomponent reaction paths, efficient
conformational screening and identification of reaction paths, there are more specific
challenges related to the field of catalysis by earth-abundant 3d transition metals.
This is mainly related to the failure of most of the approximate fast electronic
representation methods suitable for exhaustive mechanistic analysis[55]; they may
produce qualitatively incorrect results particularly when dealing with multimetallic
and/or paramagnetic systems. Similarly, the less common paths involving such
effects as single-electron transfer or excitation-induced reactivity may represent a
particular challenge for the approximate methods used in such exploration schemes.
Thus, an additional major and crucial limitation of all the current approaches for
the automated reaction network analysis originates from the method accuracy of
the underlying quantum chemical approaches. Because it is not known which
reaction paths will emerge from the automated analysis, one cannot apply the
expert knowledge to the selection of the most appropriate quantum chemical
method for each specific transformation and reaction channel. The reliance on
the expert bias and intuition at least at the stage of the initial selection of the
computational methodology for a given system appears to be a persistent issue in
modern computational chemistry and catalysis.

1.5. SCOPE OF THE THESIS AND OUTLOOK:
Electronic structure calculations have become an indispensable tool in catalysis
research. They are currently routinely employed to rationalize experimental
observations, support mechanistic proposals and even to guide the design of new
catalytic systems. Nevertheless, the vast majority of computational studies in catalysis
by transition metals still has an explanatory character and focus on describing
only a small part of the actual catalyst system. The transition to truly predictive
computational modeling requires the development of more complex chemical
models that would allow an adequate description of the full reaction networks
underlying the catalytic processes. Those approaches can be combined with the
topics discussed in this thesis (novel electronic structure theory methods, complex
modeling, computation of multiple reaction pathways, reaction network analysis)
for building a comprehensive theoretical framework for predictive computational
catalysis.

Abbreviations: ADDF: Anharmonic downward distortion following, AFIR: Artificial force-induced
reaction, CD: Coordinate Driving, MD: Molecular dynamics, IRC: Intrinsic reaction coordinate, TS:
Transition State, TSSCDS: Transition state search using chemical dynamics simulation
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An extensive overview of state of the art in automated mechanistic studies and
their application to catalysis by transition metals has been presented Chapter 1.
We then identified methodological requirements for the development of robust
methods suitable for our goals of understanding the complex deactivation chemistry
of transition metal catalysts and exploring how those paths could be suppressed
through catalyst design. In the next Chapter 2, we directly compare the ability
of our developed ReNeGate methodology and TSSCDS as the method identified as
the most efficient in the application to transition metal catalysis for our goals of
the exploration of deactivation channels in Mn(I) carbonyl hydrogenation catalysis.
Reaction networks were built starting from similar starting points and results were
compared both in comprehensiveness of the results as well as efficiency and
scalability of the methodologies. In the next Chapter 3 we describe the details
and underlying theory of the ReNeGate methodology and validate it by considering
3 representative examples relevant for the carbonyl reduction catalysis by Mn(I)
homogeneous complexes. Special focus of these case studies was on exploring the
rare conversion events accompanying the common catalyst activation procedures.
In Chapter 4, we extend the application of the ReNeGate automated reactivity
discovery approach to studies on large databases of catalytic structures. We combine
automated procedures for generating in silico catalyst libraries with the ReNeGate
automated reactivity exploration procedures and complement this workflow with the
new automated reactivity analysis tool. The new reactivity patterns and insights into
the catalytic chemistry are identified from these studies and are discussed in this
chapter. The thesis is concluded with a summary and outlook, presenting the key
challenges in the modern computational catalysis and outlining the main findings
and developments described in this thesis.
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The exploration of secondary reaction paths in homogeneous Mn(I) reduction catalysis
using the TS Search via Chemical Dynamic Simulations (TSSCDS) method and

comparison with the ReNeGate approach

S ECONDARY reaction paths in homogeneous Mn(I) reduction catalysis are explored
using the TS Search via Chemical Dynamic Simulations (TSSCDS) method. The

reaction networks as well as the efficiency and scalability of the TSSCDS method
are evaluated and compared with our perspective ReNeGate methodology. TSSCDS
has been chosen as the method identified as the most efficient in the application to
transition metal catalysis for our goals of the exploration of deactivation channels
in Mn(I) carbonyl hydrogenation catalysis. Reaction networks for TSSCDS and
ReNeGate were built starting from similar starting points and results were compared
both in comprehensiveness of the results as well as efficiency and scalability of the
methodologies. TSSCDS procedure identifies many TS structures, that are merely
isomerization of rotamers. Further studies with an auxiliary static exploration
strategy have proven the sensitivity of the TSSCDS outcome on to the initial starting
configuration. Results from the static exploration were, however, shown to lead to
unphysical structures where multiple bonds were broken and formed simultaneously.
Stepwise following of the reaction steps is also not possible for structures observed
from static explorations. When focused on finding minima corresponding to potential
deactivated state, TSSCDS is found to be excessively expensive. A comparative study
with the alternative ReNeGate workflow described in detail in the following chapter
showed that similar number of unique structures can be identified and reaction
network can be constructed using an order of magnitude less time. Furthermore,
this study revealed inefficiency of the vibrational-excitation guided MD for chemistry
exploration. The development of our ReNeGate workflow therefore was done using
RMSD-biased metadynamics simulations. With the scalable ReNeGate reaction
network discovery tools, extension to more realistic representation of chemical reactions
is envisaged through considering multiple competitive/cooperative interactions among
multiple catalyst- substrate-solvent combinations. Such improvements in the scalability
of the exploration algorithms has also paved the way for exploration efficiency for
studies on databases of catalyst structures.
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2.1. INTRODUCTION

T He common practice of homogeneous catalysis is the use of relatively stable
pre-catalyst species in the form of either the molecularly-defined transition metal

(TM) complexes or a combination of a TM precursor and a ligand, which upon the
exposure to the reactants or specific activating additives under the conditions of the
catalytic process would undergo a chemical transformations to form the reactive
species capable of engaging in and propagating the catalytic cycle. The successful
catalyst would establish a smooth energy profile for the conversion of the substrates
to the products with all intermediates showing moderate stability and low barriers
for their interconversions. The formation of too stable intermediates during the
activation step or in the course of the catalytic reaction would naturally mean the
need for overcoming a higher energy barrier to propagate the catalytic cycle, whereas
the formation of unstable intermediates would also inherently be associated with
the need to add energy to the system to reach that state. Besides the catalytic cycle,
the precatalyst as well as the activated species may engage in other (less likely, for a
highly performing catalyst) transformations that would lead to catalyst deactivation,
which could be attributed to the transition to a molecular state, from which it
would be prohibitively expensive from the energy viewpoint to return to the catalytic
cycle. If such a state has an intermediate stability, it can be considered a resting
or inhibited state. Very high stability of the species would indicate a long-term
deactivation of the catalytic species.

For a successful catalyst, all these side-reactions should proceed with the barriers
higher than those of the elementary steps in the catalytic cycle to ensure the
kinetic stabilization of the catalytic species and successful catalytic turnover[1, 2].
Rare events of side-reactions would eliminate catalytic species from the reaction
mixture by forming the stable deactivated intermediates and decreasing the overall
efficiency[3, 4]. We propose that the identification of such stable states can be used
to optimize the deactivation behavior of the catalyst system and use it as a tool for
the design and optimization of the catalyst system. The assumption that the catalyst
deactivation is dictated by the formation of thermodynamically highly stable species
connected to some catalytically relevant state redefines the inherently complex and
difficult to solve kinetic problem into a thermodynamic one that is much more
tractable from the computational chemistry standpoint.

The secondary nature, high variety and complexity of such side-reaction channels
makes it particularly challenging to study them using conventional expert-guided
mechanistic analysis strategies. Chapter 1 presented a concise overview of the
automated reaction network analysis approaches that could potentially be used to
unravel the potential secondary conversion paths that could be associated with such
deactivation and non-selective catalyst conversion channels. Among the different
strategies available, the dynamic screening approaches such as that implemented in
TSSCDS5 provide the necessary expert-bias free framework for the exploration of the
unknown conversion paths of the catalytic species under the reaction conditions.

The power and capabilities of TSSCDS methodology for mechanistic studies in
homogeneous catalysis by transition metal complexes has been demonstrated with a
relevant example of the cobalt-catalyzed ethylene hydroformylation[5]. The method
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has revealed the main pathway proposed by Heck and Breslow[6, 7] and also
identified alternative paths involving the Co-catalyzed conversion of ethylene, CO
and H2 substrates. A total of 230 chemical species and 448 elementary reactions
were discovered. Among the 448 reactions, 57 were barrierless and the remaining 391
contained defined transition states. The reaction network produced besides the main
hydroformylation product propanal also the hydrogenation side-products (ethane
and propene) as well as the species resulting from decarbonylation (formaldehyde)
and dehydration (water) reaction paths. This study illustrates the power and
capabilities of the automated TSSCDS method for successful DFT-based exploration
of reaction mechanisms in homogeneous catalysis by organometallic complexes.
Importantly, the TSSCDS could predict wasteful side reactions and their relative
rates, which could be used to optimize the reaction conditions.

In this chapter, TSSCDS method has been employed to explore the reaction
networks underlying the transformations of a representative Mn-based non-pincer
catalyst for selective carbonyl reduction previously studied computationally and
experimentally in the ISE group[8, 9]. The main focus was on analyzing the
potential of this method for the discovery of secondary reaction channels for 3d
transition metal catalysts and evaluating the compatibility of this approach with
the perspective high-throughput reactivity exploration workflows. To accelerate the
TSSCDS procedure, the auxiliary “static exploration” method provided with TSSCDS
has been explored to improve on the iterative approach used by TSSCSDS for
finding new minima structures as starting points for TSSCDS calculations. The
results obtained from the static exploration have been analyzed and the efficiency
of this auxiliary tool has been evaluated. When applying TSSCDS method to
our Mn-based catalyst system and having in mind the extension of this approach
to high-throughput computational analysis, some methodological drawbacks were
identified that were circumvented in our own ReNeGate[10] automated graph
theory-based reaction network analysis pipeline, which will be presented and
discussed in detail in the next Chapter 3. This chapter will primarily focus on the
analysis of the results obtained with the TSSCDS platform and briefly compare them
with the outcome of the ReNeGate method.

It should be noted that while TSSCDS methodology is focused on searching for
TS guesses, ReNeGate pipeline emphasizes the search for minima and deactivated
species. While ReNeGate has been developed with a focus on finding deactivated
species and is designed to be scalable for high throughput computations, TSSCDS is
clearly advantageous when a complete and comprehensive reaction network needs
to be constructed.

The chapter is organized as follows: Section 2.2 presents a brief overview of
the TSSCDS methodology followed by Section 2.3 that compares the results of the
reaction network analysis carried out with TSSCDS and ReNeGate workflows on the
same molecular system. Our analysis highlights the potentially higher efficiency of
ReNeGate in identifying low energy intermediates due to differences in structure
identification algorithms between the two workflows. The chapter is completed with
the conclusion section that summarizes the key findings and provides suggestions
on further improvements to ReNeGate methodology.
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2.2. TSSCDS METHOD FOR ACCELERATED REACTION

NETWORK ANALYSIS
TSSCDS methodology is based on following high-temperature molecular dynamics
(MD) trajectories on the defined molecular ensemble representing the reactive
system of interest, during which reactive events take place involving breaking and
making new bonds.5 The geometries formed along the trajectories are analysed
using a post-processing algorithm to find reactive pathways. Geometries with
partially formed/broken bonds are gathered and investigated as guess structures for
the subsequent transition state (TS) optimizations. The MD simulations produce
a collection of guess TS structures, located based on changes in the connectivity
matrix for multiple parallel trajectories. The geometries of these guess TS structures
are optimized, and intrinsic reaction coordinate (IRC) calculations are performed to
connect the TSs and reaction intermediates and thus build the reaction network.

The method can theoretically be used in an iterative fashion, in which the
energetically favourable minima found in the first iteration of the MD exploration
and IRC calculations, can serve as the starting geometries for the next iteration.
Such an iterative strategy comes with the exponential growth in the number of
species explored in the chemical space. By default the TSSCDS employs two levels
of electronic structure theory for the reaction space exploration and the refinement
of the nodes (minima and TSs) within the reaction networks. The Lower Level (LL)
calculations are carried out using a semi-empirical method PM6,[11] whereas the
Higher Level (HL) calculations are carried out at the DFT B3LYP/6-31g(d,p)[12, 13]
level of theory. MOPAC2016[14] package is used in the TSSCDS workflow for the
production of guess TS structures via semi-empirical reactive MD simulations as well
as for the subsequent IRC calculations. The LL data is refined through the coarse
graining strategy followed by energy and structure refinement at the HL (DFT) level
with Gaussian 16 rev. C0.1 program[15].

The reaction network exploration with TSSCDS starts with the definition of
the initial state that, in the context of this work, is a molecular mixture model
representing the relevant pre-catalyst and the key reaction components. The steps
of TSSCDS strategy employed for the reaction network construction are summarized
in Figure 2.1. In brief, the input coordinates are optimized, and the frequencies
of the initial structure are first calculated at LL for further use in normal mode
sampling and is followed by accelerated MD simulations, which explore the reaction
space. A microcanonical or canonical ensemble of vibrationally excited molecules
is constructed using the 3N-6 (or 3N-5 if the molecular system (MS) is linear)
vibrational normal modes computed in the previous step. Because the molecular
system is highly vibrationally excited, the dynamics are accelerated and allow a more
comprehensive exploration of the potential energy surface (PES). The trajectories
produced by the dynamic simulations are then analysed automatically to identify
guess transition states.

An algorithm within TSSCDS is specifically designed to find guess TS structures
that involve bond breakage/formation search (BBFS). BBFS provides the initial list of
TSs (first iteration), which are used for the subsequent IRC calculations to connect
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Figure 2.1.: Flowchart of the TSSCDS methodology for automated reaction network
analysis.

the TSs with the adjacent intermediates. Primary “All states” Reaction networks
(RXNet) are then constructed including all the identified guess TS structures and the
associated IRC calculations. The intermediates identified from the IRC calculations
are labelled as minima(MINs) or products (PRODs) based on the relative number of
fragments compared to the starting input structure. These extended networks are
next refined into Coarse Grained networks (RXNetCG). The refinement is made based
on grouping of isomers with similar structures in single nodes. The intermediates
found from the reactive trajectories are also refined at HL energy and coarse
grained networks are formed for results obtained from similar optimization and IRC
calculations performed at LL. For further details on the identification of MINs and
PRODs as well as coarse graining for networks, we refer the interested reader to the
TSSCDS publication[5].



2

26 2. COMPARATIVE BENCHMARK STUDY

2.3. AUTOMATED REACTION EXPLORATIONS FOR ACETONE

CONVERSION

2.3.1. HOMOGENEOUS CATALYSIS FOR SELECTIVE CARBONYL REDUCTION

Catalytic selective reduction of carbonyl derivatives such as aldehydes, ketones
and carboxylic acid derivatives with molecular hydrogen has evolved as a solution
towards the synthesis of bulk and fine chemicals[16–19]. While pharmaceutical
industry primarily uses sodium borohydride and lithium aluminium hydride for
stoichiometric reduction processes, use of molecular hydrogen as reducing agent has
proven to be more efficient and environmentally friendly[20]. The focus in recent
years has shifted from application of noble metal-based catalysts[17] (Ru, Os, Ir) to
early transition-metal-based catalysts (Fe[21], Co[22–24], and Mn[16, 25–27]).

In recent years, manganese has become a desirable metal for pharmaceutical
applications due to its wide availability and good biocompatibility[16, 28].
Manganese’s use as a catalyst has expanded quickly because of how well it
reduces challenging carbonyl substrates like carboxylic acid esters and nitriles[9].
This development can partially be attributed to the use of proven pincer ligand
platforms[29, 30] rather than specifically designed ligands. Manganese and noble
metals have different chemical reactivity, although the causes of these differences
are still not entirely understood. Manganese’s role in hydrogenation catalysis was
poorly understood prior to 2016[16, 27, 31], however it has since been demonstrated
to be useful in the hydrogenation of nitriles, ketones, and aldehydes[32]. Numerous
mechanistic investigations proposed Mn-hydride as the active species in the
hydrogenation catalysis[33–36].

It has been found that during the catalytic process, such species can convert to
more stable off-cycle intermediates and hinder the reactivity or undergo secondary
conversion resulting in elimination of the reactive species from the catalytic
reaction[8]. Understanding the diverse reaction paths constituting the catalytic
mechanism as well as various potential side-reactions in transition metal catalysis
is very challenging both experimentally and computationally. To investigate the
ability of advanced automated procedures to reveal the known mechanistic details
of representative catalyst systems as well as to suggest alternative reaction paths,
we employed the TSSCDS method to explore the chemical conversion paths
of the molecularly defined Noyori-type Mn hydrido tricarbonyl diamine catalyst
(H(CO)3Mn-NN). For the reactivity analysis, a highly reductionist model was used
consisting of the Mn-hydrido active species and acetone reagent molecule. The
metal bound hydrides are commonly proposed as the active sites for the transfer
hydrogenation of ketones[9]. Here we specifically aimed at testing if the automated
reaction network procedures will be able to identify favorable conversion routes
and predict its higher stability compared to the reactive Mn-hydrido catalyst, as
established by previous experimental and computational studies.
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2.3.2. TSSCDS AND RENEGATE REACTION NETWORK COMPARISON

RESULTS

Figure 2.2 presents the comparison of the original and processed reaction networks
explored by TSSCDS and ReNeGate. For the purpose of comparing the fingerprinting
and reaction network exploration efficiencies, we have provided the 3D structure of
the catalytic system as xyz input to TSSCDS workflow (Figure 2.2a). The reactive
trajectories produced based on the TSSCDS sampling scheme has been provided to
both TSSCDS and ReNeGate workflows for further analysis. The reaction networks
constructed using the TSSCDS are summarized in Figure 2.2b. The pipeline
generates two types of the networks, namely, the RXNet (All states) (Figure 2.2.b.1)
and RXNetCG “Coarse grained Network” (Figure 2.2.b.2) produced from RXNet and
RXNetCG output files of the TSSCDS calculations. For comparison purposes, we
reformulated the connections given in these files to prepare the reaction network
representations. The TSSCDS pipeline[37] identifies species in the reactive MD
trajectories and labels them as MIN (minima) or PROD (product) based on the
number of fragments present in comparison with the reference state. In other words,
PRODs are species with more fragments compared to the reference state. Each MIN
and PROD state present in RXNet and RXNetCG files has been considered as node
in the network with edges representing pairs connected by IRC calculations. Labels
on the edges for RXNetCG network are based on TS energies connecting the two
MIN-MIN or MIN-PROD pairs of structures. Edges are colored according to the
mentioned relative TS energies in kcal.mol−1. The “All states” RXNet reaction network
formed from TSSCDS explorations includes 270 (redundant) species connected with
single edges between pairs of nodes. Similar to RXNet, in RXNetCG network,
nodes represent structural isomers of the same MIN or PROD species identified in
the RXNet network. Edges also represent summation of all connections previously
identified through IRC calculations between different representative species present
in the RXNet network. Similar to RXNet, RXNetCG edges are colored according to
the mentioned lowest relative TS energies in kcal.mol−1.

Same reactive MD trajectory has been provided as input to the ReNeGate
fingerprinting algorithm. Figure 2.2c shows the reference (Figure 2.2c.1) and trimmed
(Figure 2.2c.2) ReNeGate reaction networks. Briefly, trimming is the process of
removing physically impossible nodes and edges from the reference network based
on (pre-defined) threshold values for species and transformations. Nodes represent
unique species found and are labeled based on the given ID and frequency of
appearance of the specific node in the trajectory. IDs for nodes are based on
the order of the first appearance of unique conformer in the reactive trajectory.
Directed edges connecting nodes are labeled with the frequency of the specific
(directed) transformation. Further details on the definitions of reference reaction
network, trimmed network and trimming process can be found in Chapter 3. As an
improvement to the initial TSSCDS network, TSSCDS coarse graining algorithm has
been applied to the nodes present in the initial network and has led to a grouped
network of 32 structures. Trimming on the initial ReNeGate network has also led
to a network of 6 unique structures. Further details on the trimming process are
discussed in the next chapter where the ReNeGate workflow will be presented in
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detail but are used here for the purposes of comparison of efficiency.
Unique structures observed in TSSCDS and ReNeGate networks were manually

inspected and the comparison results are summarized in Figure 2.3. Figure 2.3
proves that both algorithms have found the same number of unique species in the
50 kcal.mol−1 energy window from the starting structure. It is worth mentioning,
however, that while the TSSCDS RXNet network includes 270 nodes, the initial
ReNeGate network directly identifies the unique 13 species verified by manual
inspection. Such non-redundant enumeration of transformations is of critical
importance to scalability of higher level (DFT) calculations required when applied
to more complex model systems. Further proof for such scalability are provided
in Chapters 3 and 4 with the application to more complex model systems and
databases of catalyst structures.

Figure 2.3 summarizes all unique structures identified with TSSCDS and ReNeGate
algorithms based on the given input structure. Boxplots of Figure 2.3, represent the
differences in energy for isomers of the same structure type. In order to differentiate
between the two methods, unique labels for TSSCDS structures are shown in red.
New structures within 50 kcal.mol−1 range from the starting input structure have
been found with both workflows. ReNeGate has categorized 24 TS structures from
TSSCDS into 6 unique structures. High energy structures TS28, TS29 and TS30 have
been found only with TSSCDS methodology. For all conformers identified with
ReNeGate, structures for isomers of the same structure have been overlapped and
are shown on top of the column.
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Figure 2.3.: Comparison of the stability of the unique structures found from TSSCDS and ReNeGate explorations: ReNeGate
and TSSCDS labels for structures with similar bonding patterns are shown in black and red respectively. Boxplots
represents energy ranges for isomers. Structures for isomers of the same structure have been overlapped and are
shown on top of the column
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In brief, the automated reaction network exploration identified the following new
intermediates. Conf1(Configuration1) represent the manganese hydride as starting
structure and the configurational isomers of the same structure. The hydride
abstraction from the alkoxide led to the formation of 5-coordinated Mn-amido
complex as well as non-coordinated H2 and enolate species in Conf2. Similar
transformations as in Conf2 but without H2 release led to the formation of a σ-H2

complexation with an octahedrally-coordinated Mn in species Conf3. As observed
for Conf6 in Figure 2.3, direct insertion of the Mn-hydride into the carbonyl moiety
is also observed and results in high energy (45-55 kcal.mol−1) products. For the
formation of Conf 4&5, the proton for the respective formation of H2 or insertion into
the carbonyl moiety could also come from the NH moiety bound to the Mn center.
Comparison between configurations 2 and 4 shows that abstraction of the proton
from the NH moiety is energetically more favorable by ca. 25 kcal.mol−1. Double
migration of protons, from Mn hydride and NH moiety to carbonyls is observed for
TS28. TS29 includes simultaneous hydride migration from Mn center and enolate
insertion into two different carbonyls, while H2 is released. Decoordination of the N
donor is observed to be accompanied by agostic Mn-H interaction with the methyl
group on the nitrogen donor for TS30.

2.3.3. CHALLENGES OBSERVED WITH TSSCDS AS A SCALABLE TOOL FOR

REACTION NETWORK ANALYSIS

TSSCDS strategies for selection of a set of guess structures along each RP is designed
to improve the chances of finding TS structures. However, inspection of the proposed
TS structures has shown that vast majority of TSs are not actual chemical reactions
but merely isomerizations of the organic parts and do not reveal any real chemical
transformation. Comparison of the MINs and PRODs with ReNeGate results have
shown challenges in scalability of TSSCDS algorithms in their application to more
complex systems.

Further investigations on the cost and efficiency of the calculations required to
converge the studies for the same input structure are summarized in Table 2.1. For
the purposes of the current investigation, TSSCDS and ReNeGate have identified
similar structures in the 50 kcal.mol−1 window from the input structure. However,
ReNeGate calculations required an order of magnitude less computational hours than
TSSCDS calculations. Considering an average 12 hour time for the convergence of
TS and IRC calculations, ReNeGate has proven to be ca. 13 times more efficient for
calculations on a simple system. In other words, while convergence to similar results
within 50 kcal.mol−1 for TSSCDS requires ca. 2000 cpu hours, ReNeGate calculations
will converge in 150 CPU hours. It should be noted, however, that such extensive
calculations are completely justified for the purposes of exhaustive TS search and
comprehensive mechanistic explorations on instances of catalytic mixtures. While
such differences are acceptable for single studies on simple systems, it renders the
application of methodologies like TSSCDS either to more complex systems or high
throughput calculations on large databases of catalytic structures very challenging.



2

32 2. COMPARATIVE BENCHMARK STUDY

Table 2.1.: Comparison of calculations required to converge the studies for the same
input structure

LL Jobs DFT Jobs Identified Species
TS IRC TS IRC Total

Species
Unique
Species

Unique
within 50
kcal.mol−1

TSSCDS 54 108 54 108 162 9 6
ReNeGate Trimming based on

trajectory energies
(0)

13(OPT) 13 6 6

2.3.4. EXHAUSTIVE “STATIC” CONFORMATIONAL SEARCH FOR FAVORABLE

ASSOCIATION COMPLEXES: A PRE-PROCESSING STEP TO IMPROVE

THE EFFICIENCY OF THE ORIGINAL STRATEGY

Despite the power of the TSSCDS methodology in dynamically exploring relative
possible interactions between catalytic mixture components in transition metal
catalyzed systems under study, it was shown that vast majority of TSs are not actual
chemical reactions but merely isomerizations of the organic parts and do not reveal
any real chemical transformation. Furthermore, calculations with catalyst-substrate
pairs showed an unexpected sensitivity to the initial relative orientations of structures
provided to the workflow. In line with the iterative nature of TSSCDS in growing
networks from minima found at each iteration, there is need to reduce the
computational cost to find the multiple minima by running a complete dynamic
network cycle at both levels of theory. In order to remove the sensitivity to the initial
structures as well as to reduce the computational cost to find the multiple minima,
we have conducted “static explorations” using the “association” function of TSSCDS.
Exhaustive “static” conformational search for transition states between catalyst and
substrate species was explored as a pre-processing step for the TSSCDS methodology.
Through such a static search, different relative orientations of substrate (being
acetophenone in the following section)-catalyst are tested for low-energy association
complexes at lower cost compared to the dynamic explorations and sensitivity to
the initial orientation is thought to be removed. Such energetically favored pairs
can in principle replace the “single” heuristically chosen input in the dynamic
batches. Implementation of such association complexes as the starting minima in
the iterative reaction network exploration could enhance the extent of exploration
while increasing the efficiency.

As to do so, the TSSCDS association module was used with a sample catalyst-
substrate pair (Figure 2.4.a). Input data needed for this sampling study include the
coordinates of catalyst and fragment (ligand/solvent) structures (respectively A &
B), details of rotations (rotate) and number of different association positions to be
explored (NAssoc). This information is shown under chemical dynamics simulation
(CDS) section in Figure 2.4.a. In addition, four different parameters should be
sequentially provided to the static rotations module. The first two values are the
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Figure 2.4.: Exhaustive “static” explorations of the MnNN catalyst with acetophenone:
a) static exploration strategy b) Static exploration results for 100
configurations for sample substrate-catalyst pair c) Selected energetically
low lying MnNN-acetophenone association complexes among the
sequence of 100 association species are illustrated.

pivot positions of the rotations (the atomic positions to be fixed while rotations are
being made): the center of mass (com) of fragment “CAT” and the center of mass of
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fragment ”P” in our example (these pivots could be labels of atoms and therefore
integers). The last two values are the distance (in Å) between both pivots and
the minimum intermolecular distance between any two atoms of both fragments,
respectively. NAssoc defines the number of association complexes or relative positions
to be explored according to the rotation values. The association complexes produced
based on the given input parameters are optimized at DFT level for further analysis.
In this case study, static explorations were done for catalyst-acetophenone pair and
energetics of the explored structures for NAssoc =100 configurations are summarized
in Figure 2.4.b. Energies calculated for the 100 association complexes vary in relative
values in [-200 kcal.mol−1, 50 kcal.mol−1] range. Representative structures for the 10
low-lying structures are illustrated in Figure 2.4.c.

Static explorations have resulted in identification of structures with relative energies
of ∼ 150 kcal.mol−1 compared to the reference Catalyst/Substrate combination
(Figure 2.4.b) as shown in radar plots of Figure 2.4.c. However, few of the explored
structures are anticipated or observed with TSSCDS and ReNeGate explorations
on similar system. This incentivized our closer look on the origin of chemical
transformations leading to such structures. Since the static rotations are not done
based on prior dynamic forces from physical trajectories and rely simply on the
pure mathematical distribution of the Cartesian space around the pivot fragment,
multiple bonds have been observed to be broken at the same time for multiple
instances of the identified structures (S53, S55, S62, S78, S84, S88). This could be
attributed to transformations that are not physically allowed and are purely artifacts
of close contacts due to the orientations in which molecules are fixed relevant to
each other. Although one can choose to focus on optimizing the rotation module
parameters to avoid such close contacts while simultaneously not being limited to
observing only van der Waals isomers of the same structure, we have chosen to avoid
using static methods further in our studies. This choice was made due to conflicts
with automated analysis of results: such complexities (and/or artifacts) strictly limit
the (automated) stepwise mechanistic explanations and will introduce mechanistic
complexities that cannot be explained through chemical reaction networks. This
has motivated the implementation of more complex RMSD biased metadynamics
simulations discussed in chapter 3 as an alternative to the normal mode sampling
and static exploration results provided by TSSCDS methodology.

2.4. CONCLUSION
The applicability of the TS Search via Chemical Dynamic Simulations (TSSCDS)
method for the exploration of secondary reaction paths in homogeneous Mn(I)
reduction catalysis was carried out and the results obtained were used to define
and justify the development of our own ReNeGate workflow presented in detail in
chapter 3. A brief benchmarking of the TSSCDS and ReNeGate automated reaction
analysis tools is presented to highlight the potential of our new methodology
as the basis for new approaches for high-throughput reactivity exploration in
organometallic chemistry and homogeneous catalysis. TSSCDS procedure identifies
many TS structures, that are merely isomerization of rotamers. Further studies with
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an auxiliary static exploration strategy have proven the sensitivity of the TSSCDS
outcome on to the initial starting configuration. Results from the static exploration
where, however, shown to lead to unphysical structures where multiple bonds were
broken and formed simultaneously. Stepwise following of the reaction steps is also
not possible for structures observed from static explorations.

When focused on finding minima, this approach is excessively expensive. The
comparative study with the alternative ReNeGate workflow described in detail in
this chapter showed that similar number of unique structures can be identified
and reaction network can be constructed using an order of magnitude less time.
Furthermore, this study revealed inefficiency of the vibrational-excitation guided
MD for chemistry exploration. The development of our ReNeGate workflow
therefore was done using RMSD-biased metadynamics simulations. With the
scalable ReNeGate reaction network discovery tools, extension to more realistic
representation of chemical reactions is envisaged through considering multiple
competitive/cooperative interactions among multiple catalyst- substrate-solvent
combinations. Such improvements in the scalability of the exploration algorithms
has also paved the way for exploration efficiency for studies on databases of catalyst
structures further discussed in Chapter 4.

Once equipped with adequate model and method accuracies, it is desired to
verify (question) the validity of the classically simplified views on the role of
ligand modifications on catalyst efficiencies. Deeper insights from a series of such
investigations will ultimately provide the researcher in the field with guidelines for
“design” of better catalysts. An inversion in the trend of collaborations between
experimentalists and theoreticians would be the optimal outcome of this step, that
is, material discovery based on systematic comparisons of reaction networks will be
tested in the lab. These proposed research questions are further discussed in the
following chapters of this thesis.
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3
RENEGATE

Reaction Network Graph Theoretical tool for automated mechanistic studies in
computational homogeneous catalysis

E XPLORATION of the chemical reaction space of chemical transformations in
multicomponent mixtures is one of the main challenges in contemporary

computational chemistry. In order to remove expert bias from mechanistic studies and
to discover new chemistries an automated graph-theoretical methodology is proposed,
which puts forward a network formalism of homogeneous catalysis reactions and
utilizes a network analysis tool for mechanistic studies. The method can be used
for analyzing trajectories with single and multiple catalytic species and can provide
unique conformers of catalysts including multinuclear catalyst clusters along with
other catalytic mixture components. The presented three-step approach has the
integrated ability to handle multicomponent catalytic systems of arbitrary complexity
(mixtures of reactants, catalyst precursors, ligands, additives, and solvent). It is not

This chapter is based on Hashemi, A.; Bougueroua, S.; Gaigeot, M.-P.; Pidko, E. A. ReNeGate:
A Reaction Network Graph-Theoretical Tool for Automated Mechanistic Studies in Computational
Homogeneous Catalysis. Journal of Chemical Theory and Computation 2022, 18, 7470–7482.
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limited to pre-defined chemical rules, does not require pre-alignment of reaction
mixture components consistent with a reaction coordinate and is not agnostic to
the chemical nature of transformations. Conformer exploration, Reactive event
identification and Reaction network analysis are the main steps taken for identifying
the pathways in catalytic systems given the starting pre-catalytic reaction mixture
as the input. Such a methodology allows to efficiently explore catalytic systems in
realistic conditions for either previously observed or completely unknown reactive
events in the context of a network representing different intermediates. Our workflow
for the catalytic reaction space exploration exclusively focuses on the identification of
the thermodynamically feasible conversion channels, representative of the (secondary)
catalyst deactivation or inhibition paths, which are usually most difficult to anticipate
based solely on the expert chemical knowledge. Thus, the expert bias is sought
to be removed at all steps and the chemical intuition is limited to the choice of
the thermodynamic constraint imposed by the applicable experimental conditions in
terms of threshold energy values for allowed transformations. The capabilities of
the proposed methodology have been tested by exploring reactivity of Mn complexes
relevant for catalytic hydrogenation chemistry to verify previously postulated activation
mechanisms and unravel unexpected reaction channels relevant to rare deactivation
events.
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3.1. INTRODUCTION

C Ontemporary computational chemistry has reached a stage at which massive
exploration into chemical reaction space with unprecedented resolution with

respect to the number of potentially relevant molecular structures is becoming a
realistic task. Various algorithmic advances have shown that extensive structural
screenings can nowadays be automated and carried out using modern computational
chemistry protocols[1–5]. Automated computational strategies for predicting
multi-step reaction mechanisms for complex chemical processes such as pyrolysis,
combustion or catalytic transformations offer substantial advantages over the
conventional strategy largely based on the expert-guided exploration of selected and
restricted number of mechanistic alternatives.

Practical catalytic systems are represented by complex mixtures usually containing
the catalyst precursor, ligands, solvents and various additives and promotors next
to the substrates and the conversion products. The interactions between these
components and their interconversions form large and highly interconnected reaction
networks that determine the overall behaviour and the performance of the catalytic
system. The experimental and computational mechanistic studies aim at identifying
the state of the catalytic species and key reaction intermediates, their role in the
main catalytic mechanism and the competing reaction channels towards unselective
conversion routes or catalyst deactivation[6–13]. Such mechanistic insights are
critically important for guiding the design and optimization of new and improved
catalytic systems in a rational manner[14–18].

Catalytic reactivity is determined by complex networks of chemical transformations
that take place simultaneously or consequently between the different (transient)
components of the catalytic mixture. Different stages in a catalytic process, namely
catalyst activation, catalytic cycle propagation, catalyst deactivation and different
non-selective conversion paths may involve reaction intermediates that are not
known a priori and will proceed through multiple elementary steps. Even most
advanced experimental operando techniques are not able to capture such a high
molecular-level complexity. To establish a comprehensive picture of the catalytic
process, computational analysis on such systems requires a thorough exploration of
the chemical and configuration space to identify the minima on the potential energy
surface (PES) and the pathways connecting them.

The characterization and exploration of PES is a tedious and challenging task. A
conventional workflow in applied computational catalysis studies approaches this
task via manual structural explorations, which rely largely on the expert knowledge
and a substantial amount of chemical intuition, limiting thus the study to the
expected reactivity domains. The last decade has seen a rapid development of
various computational approaches to automate the exploration and discovery of
complex chemical reaction networks targeting the reconstruction of a complete
atomistic representation of the mechanism of a chemical conversion process[1–5].
Strategies for the accelerated exploration of reaction networks can vary substantially
in the computational costs as well as the comprehensiveness and accuracy of the
chemical reaction network that they produce[19, 20].

For example, the Global Reaction Route Mapping (GRRM) approach introduced by
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Maeda et al,[21] in which starting from a given “reactant” configuration, the PES is
explored to discover new transition states and intermediates forming the reaction
network. Multimolecular reaction paths can be successfully followed using the
artificial force-induced reaction (AFIR) method,[21–23] which directs the transitions
from one equilibrium structure to another by applying splitting or merging force
to two interacting fragments. This approach was used to automatically construct
the catalytic paths for various homogeneous catalytic reactions with transition metal
complexes[24–26].

Despite being highly systematic, such curvature-based exploration strategies
may be impractical to studying very large and complex catalytic systems. By
introducing principles of algorithmic search, the efficiency of the path-finding
for the conversion of a given substrate state to a defined product state can
be substantially improved[27]. A complementary approach to streamline the
exploration of the reaction mechanism is to employ the conceptual knowledge of
chemistry. Chemical reactivity can often be well captured by a set of heuristic
rules for the transformations that can be applied to graph representations of the
molecular system, as successfully demonstrated by Zimmerman and co-workers in
their mechanistic studies on organometallic systems[28–31]. Reiher and co-workers
introduced a method based on system-independent heuristic rules,[32] which was
successfully employed to exploit alternative mechanisms of ammonia production
with the Schrock dinitrogen-fixation catalyst. Further developments of the method
enabled exploration of transformations involving multiple reactive centers on the
molecular fragments and/or interactions between different components of the
reactive system[33].

The configuration and reaction space of a molecular system can be directly sampled
by solving the nuclear equations of motion in ab initio molecular dynamics (AIMD)
simulations[34]. However, considering that even the fastest chemical reactions are
rare events, adequate scanning of the reaction space of realistic catalyst systems
by the direct atomistic AIMD simulations becomes prohibitively expensive when
executed using sufficiently accurate electronic structure methods. The frequency of
the reaction events can be greatly accelerated by applying bias potentials that push
the system away from the free energy minima along a collective variable (CV), which
requires the knowledge of the reaction coordinate and therefore limits the application
of this method in the exploratory studies[35–37]. Martínez-Núñez and co-workers
introduced an automated procedure called TS Search using Chemical Dynamic
Simulations (TSSCDS) for the global search of transition states on intermolecular
potential energy surfaces based on the PES exploration via the high-energy
molecular dynamic simulations[38–41]. To increase the chances for the chemical
transformations to occur, the method populates vibrational modes in the system.
Similar strategy has been also used to guide the exploration of the configurational
space for multinuclear transition metal species in zeolite-based heterogeneous
catalysts[42]. Shannon et al combined molecular dynamics and statistical rate theory
within a ChemDyMe automated mechanism generation method,[43] in which the
search for new reactions is constrained to only the kinetically relevant ones under
the specified conditions. The various algorithmic developments in the field have
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recently been integrated by the group of Reiher in a Chemoton 2.0 software that
will hopefully make the autonomous mechanistic explorations of complex chemical
systems accessible to the wide chemistry community[44].

The various automated reaction network analysis tools described above enable
the automated transition state search and the construction of detailed mechanistic
pictures for practical chemical systems. However, the computational demand for
such a detailed PES analysis increase exponentially with model system complexity,
which reduces the utility of these methods to exploratory search of secondary
transformations (such as non-selective conversion paths, catalyst deactivation, etc)
in extended realistic catalytic systems and/or their integration in high-throughput
computational catalyst screening workflows. In this work, we propose a graph-based
3-step methodology for exhaustive conformer ensemble exploration and reaction
event finding enabling a comprehensive analysis of complex reaction networks in
large molecular ensembles at a reduced computational cost. Here we employ
the CREST[45, 46] method with the systematic RMSD biases in terms of pulling
factors, which drive the system away from the conformers that have already been
explored. The conformer ensembles populated through such parallel metadynamics
simulations are then interpreted as molecular graphs and analyzed by the proposed
graph theoretical tools to find unique chemical structures in terms of bonding
patterns. The graph theory and computer-based approaches for the analysis of
molecular trajectories have proved its value over the last decade in computational
chemistry[47–51]. The main concepts of the molecular graph theory, on which the
current work is based are summarized in section A.1 with the common terminology
explained in detail in section A.2 of the appendix. A reaction network of such
unique chemical species is formed and the network is further analyzed through
inspection of nodes and edges present in the network. The power of the introduced
strategy is demonstrated through the analysis of the reaction networks generated
for representative model Mn-based homogeneous ketone transfer hydrogenation
systems.

The chapter is structured as follows. In the next section 3.2, we present the
description of the new 3-step reaction exploration methodology. We present the
detailed rationale for the conformer exploration approach introduced to simulate
extended molecular systems and a new graph-based tool allowing to follow
the changes in bonding patterns within reactive trajectories to identify reaction
events. Section 3 illustrates the capabilities of the developed methodology on
three representative case studies of the catalytic and coordination chemistry of
Mn(I) compounds. A conclusion section summarizes the presented methodology
and obtained results at the end of the manuscript. The additional details of the
methodology and the computational results obtained in the validation studies and
the full datasets are provided as the Appendix A. The ReNeGate code is publicly
available at: https://github.com/ahashemiche/ReNeGate

https://github.com/ahashemiche/ReNeGate
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Figure 3.1.: Schematic representation of the ReNeGate workflow involving the
sequential reactive space exploration, structure analysis, reaction network
generation and refinement steps.

3.2. AUTOMATED REACTION EXPLORATION METHOD
A three step methodology denoted as ReNeGate is proposed, which is able to
automatically handle catalytic systems of arbitrary complexity (multicomponent
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catalytic mixtures of reactants, catalyst precursors, ligands, additives, and solvent)
and is not limited to either pre-defined chemical rules or pre-defined reaction
coordinates. Reactive space exploration, Reactive event identification and Reaction
network generation are the main steps taken for understanding the underlying
mechanistic pathways in catalytic mixtures. Such a methodology will then be able to
comprehensively explore catalytic systems in realistic conditions for either previously
observed or completely unknown reactive events. Human bias is sought to be
removed in either of the 3 steps and chemical intuition is limited to the choice of
thermodynamic constraints imposed by applicable experimental conditions in terms
of threshold values for allowed transformations.

3.2.1. REACTIVE SPACE EXPLORATION

Figure 3.1 schematically presents the ReNeGate reaction exploration methodology.
The starting point is the exhaustive reaction exploration carried out on a given starting
set of reaction components. The identification of unique reactive configurations and
reaction states is carried out by analysing the simulated reactive trajectories in the
framework of the graph theory. The thus identified reactive states are then refined by
geometry optimization at the DFT level appropriate for the specific chemical system
explored and final accuracy targeted in the simulations[10]. Initial reaction space
exploration are done using the CREST functionality[46] in the GFN-xTB[52] code
where semiempirical xTB-MD calculations with root-mean-square-deviation (RMSD)
based meta-dynamics simulations (MTD) to ensure that the initial reaction space
exploration is exhaustive and thorough[45]. Recent investigations have demonstrated
a sufficient accuracy of the xTB for high-throughput screening of transition metal
complexes[53] including Mn(I)-based systems discussed herein as the representative
model catalysts[54]. Imposing RMSD-based metadynamics allows for a thorough
exploration of the compound space. The choice of the collective variables (CVs) in
MTD is critical and distinct approaches to this challenging problem in the chemical
and biomolecular simulations have been proposed including Diffusion map MD[55],
Targeted MD[56], Tabu Search[57, 58] methods. Here we employ the standard
root-mean-square deviation (RMSD) in Cartesian space as an unbiased metric as
implemented in the CREST functionality in xTB.

Reactive trajectories populated with configurations from the collective MTDs from
CREST calculations are then analyzed with our dedicated graph-based tool described
below for finding unique chemical structures based on bonding patterns. The
implementation of such an automated conformer exploration scheme is sought to
automate mechanistic studies on catalytic system of interest and help to reveal
unconventional mechanisms and deactivation pathways, which are usually hard to
find using conventional expert knowledge-based strategies to mechanistic studies.

3.2.2. REACTION EVENT IDENTIFICATION AND NETWORK

CONSTRUCTION

Next, we employed graph theory-based algorithms to analyze the ensembles of
structures produced in the configuration exploration step and to categorize them
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Figure 3.2.: Reaction Event Exploration scheme following the sequence of (a) the
graph representation of the reaction ensemble, (b) fingerprinting of
the discovered states, (c) generation and (d) trimming of the complete
reaction network.

into “experimentally relevant” ensembles[59]. The procedure is schematically
depicted in Figure 3.2. The procedure starts with the generation of molecular
graph representations for the chemical structures of each given conformer in the
graph representation module (Figure 3.2a)[59]. Next, the conformer ensembles
populated in the exploration step are analysed for fingerprinting and isomorphism
check. Further details on the definition of our molecular graphs representation
and the isomorphism check are given in Section A.1 of Appendix A. A set of
unique conformers is identified within the ensemble based on the molecular graphs
formed for each conformer (Figure 3.2b). The combined results of the reaction
event exploration and the fingerprinting analysis are then assembled together into
the reaction network, in which the specific fingerprints represent non-redundant
conformers and the edges represent connections between the conformers in the
trajectory (Figure 3.2c).

Color coding and edge thickness are utilized to visualize energy descriptors for



3.2. AUTOMATED REACTION EXPLORATION METHOD

3

49

nodes and edges present in the reaction network. The node colors are introduced
by the color map (Figure 3.2.c.II) defined based on the lowest (MIN) and highest
(MAX) node energies present in the reaction network. The colors for the species are
then automatically chosen based on the mapping of the respective node energies.
In cases where different isomers are found for a unique conformer, energy for the
most stable conformer is used for color coding in the reference graph and variations
in energies are visualized as boxplots next to the relevant nodes in energy diagrams.
Thickness of the edges present in the reaction network are similarly adjusted by
a separate inverse mapping based on highest and lowest transformation energies,
where the transformation energy is defined as the energy difference between the
nodes connected with the directed edge. The lowest (most probable) transformation
is visualized with the thickest line while the highest energy transformation has
the thinnest edge (Figure 3.2.c.I). Such an analysis allows to assess the structural
flexibility of the specific reactive configurations and its relative stability within the
reaction network. The final step of the reaction network assembly is the trimming
of the network, in which nodes or edge connections with the energies exceeding
a pre-defined energy threshold are removed from the network as schematically
shown in Figure 3.2d. The specific threshold energy value is pre-defined under the
assumption that the states above it have only a minor (if any contribution) to the
overall reactivity.

3.2.3. FINGERPRINTING AND REACTION NETWORK CONSTRUCTION

The graph isomorphism tools allow representing each conformer from the screening
with a fingerprint molecular graph and compare it with other species along the
simulation trajectory. The fingerprinting of the species within a reactive simulation
trajectory proceeds through a sequence of initialization and conformation dynamic
analysis steps. During the initialization step the first snapshot I1 of the MD
trajectory is read and the first graph G1 is defined by identification of the different
bonds. Next, the configurational dynamics analysis steps are carried out as follows:

1. Read a new snapshot Ii and define the associated graph Gi

2. Test if Gi is isomorphic to Gi−1

3. Else, assign to configurations already identified (update database)

4. Return to step (a) in order to read the subsequent snapshot.

3.2.4. REACTION NETWORK TRIMMING

Once a complete reaction network has been formed through the exploration and
reactive event identification steps, nodes and edges present in the acquired network
(respectively representing chemical species and dynamic connections) are inspected
for being accessible within the energy thresholds defined for the system by the
user based on the thermodynamic considerations for a given experiment and its
representative condition. For all nodes in the graph, the species (nodes) with
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Figure 3.3.: A schematic illustration of an arbitrary reaction network trimming
procedure: the original network (a) and the resulting trimmed network
(b). Nodes are colored based on the mapping of energies as discussed
in section 3.2 Edge widths are also adjusted based on edge mapping
function based on energy differences between the nodes. Arbitrary nodes
with energies in both extremes are chosen for clarity. The energies of
nodes 1 and 4 (dashed circles) exceed the energy threshold defined for
species in this network and are removed by the trimming procedure. The
edge connecting nodes 2 and 5 (dashed red line) also exceeds the edge
threshold value and is hence removed.

energies higher than a predefined “node threshold value” together with all respective
edges going to and from these nodes are therefore discarded. For all the edges still
present in the network, if the edge weight (representing the relative energy difference
between the connected species) is higher than the predefined “edge threshold value”,
then edges will be removed in the network. In short, trimming of the obtained
reaction networks for the energetically possible pathways is done based on energies
of different species and differences in energies for reactive events.

Figure 3.3. schematically illustrates the trimming of an arbitrary chemical reaction
network. To facilitate analysis, the size of the nodes in the reaction networks
is inversely adjusted by a mapping based on the lowest and highest energies for
structures present in the networks. Similarly, thickness of the edges connecting
nodes is adjusted by a separate mapping based on the highest and lowest value for
energy differences between the connected nodes. Based on the energies calculated
for the nodes present in the arbitrary network, nodes 1 and 4 (shown in dashed
circles) have exceeded the predefined node threshold value and the edge connecting
nodes 5 and 2 (shown in dashed arrow) has exceeded the edge threshold value.
Therefore these nodes and edges are removed from the original network.

3.2.5. FRAGMENT ANALYSIS

Based on the developments in the reaction network exploration and trimming
sections, chemical reaction networks can be built and analysed for detecting the
stable (deactivated) species present on the PES. While such analysis on trajectories
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including single instances of the catalyst molecule will result in non-redundant
unique catalyst fragments, analysis of reaction networks with multinuclear catalytic
ensembles is not as trivial. As an extension to the functions described earlier to be
able to handle catalytic systems with more than one catalyst molecule, the fragment
analysis tool has been developed to be able to provide a list of unique fragments in
the cases (1) when changes in the bonding patterns happen in the non-catalyst part
of the snapshot or (2) similar catalyst fragments are observed in different unique
configurations. In order to be able to identify unique catalytic events in trajectories
populated for systems of arbitrary complexity and to remove expert bias in setting
the simulation scenario, the model composition should be considered as close as
possible to the experimental conditions. Consideration of catalytic systems with
more than one metal center introduces new levels of complexity since the algorithms
explained in the previous sections should be modified to distinguish different metal
centers and enable further comparisons inside a given snapshot (in addition to
comparisons within different snapshots).

From a technical point of view, we use Breadth-First Search (BFS) algorithm to
identify the fragments[60]. The BFS aims to travers trees in the graph. It starts at the
tree root (on arbitrary vertex in the graph) and explores all the neighbour vertices at
the present depth prior to moving on to the vertices at the next depth level. Each
tree will represent one connected component and each connected component will
represent one fragment. Figure 3.4.a,b shows examples of two graphs containing a
single and two fragments, respectively. Once a given trajectory of reactive events is

Figure 3.4.: Arbitrary molecular graphs with one (a) and two (b) connected
components based on BFS algorithm.

analysed to identify unique catalyst fragments, a list of connected components is
given, which represents the unique set of fragments including the transition metal
(pivot) atom in the analysed trajectories. Further discussions on the application
of fragment analysis tool is given based on a case study presented in Section 3.3
analysing the possibility of the formation of multinuclear Mn ensembles upon the
transformation of two Mn(CO)5Br precursors in the presence of an alkoxide base.
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3.3. VALIDATION
To assess the performance of the proposed methodology in validating previously
observed and identifying unobserved chemical transformations, we applied it to
selected representative multicomponent Mn(I)-based (de)hydrogenation catalytic
systems. Catalytic (de)hydrogenation reactions promoted by non-precious 3d
transition metal complexes represent more sustainable and environmentally
benign alternatives to the established stoichiometric and noble metal-catalyzed
processes[61–66]. Such reactions are of critical importance since they enable
efficient transformations of amines, alcohols and their oxidized counterparts bearing
imine, carbonyl or carboxylate functionalities. Commonly, the successful catalytic
reactions require the in situ activation of the transition metal complex precatalyst
by the reaction with a promotor. Common procedures of catalyst activation in the
Mn(I)-based carbonyl reduction systems involve the reaction with an alkoxide base
promotor or a hydride donor in the presence of a hydrogen-donating solvent or
gaseous H2[66–71]. The selective transformation of the pre-catalyst complex at this
stage is critical for the stability and the overall behaviour of the catalytic system[68].
The formation of undesirable intermediates during the catalyst pre-activation may
initiate reaction channels giving rise to non-selective conversions and catalyst
deactivation. The identification of such minor reaction paths represents a particular
challenge both for experimental and computational catalysis studies.

Herein, we specifically aim at utilizing the ReNeGate methodology to get an
insight into such unexpected reaction paths for representative Mn(I) pre-catalysts.
Two primary case studies are selected, namely, the alkoxide-base activation of
(I) manganese pentacarbonyl bromide (Mn(CO)5Br) catalyst precursor, simulating
a widely used protocol for homogeneous catalyst screening with in situ catalyst
generation[62, 72, 73] and (II) cis-Mn(N,N’-dimethyl-1,2-cyclohexanediamine)(CO)3Br
(Mn-N,N) molecularly-defined pre-catalyst[67, 74]. In addition, to demonstrate
the potential of the automated fragment analysis, a more complex model capable
of capturing interactions between multiple pre-catalyst species Mn(CO)5Br in the
presence of the alkoxide activator and BEt3 stabilizer towards the formation of
multinuclear ensembles is considered with the case study III. For these systems,
the reaction networks were generated through the conformer exploration, reactive
event identification and trimming steps as implemented in ReNeGate. The
optimized structures and the energetics of the intermediates within the produced
reaction networks were obtained at the B3LYP-D3/6-31g(d,p) level of theory with
empirical GD3BJ-dispersion correction and implicit SMD model[75] with the standard
parameters for THF as solvent using Gaussian 16.C01 program[76].

3.3.1. CASE STUDY I: MN(CO)5BR PRE-CATALYST ACTIVATION

For the first case study, we considered the transformations of Mn(CO)5Br complex
in an alkoxide base solutions simulating a common catalyst activation procedure
(Figure 3.5a). A minimal model containing Mn(CO)5Br and KOiPr species was
considered here. Parallel metadynamics simulations were carried out using the
CREST functionality in the GFN2-xTB method[77] where the pushing and pulling
strengths (k and α) were systematically varied over the parallel simulations. The
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RMSD difference between structures observed in every trajectory were used to drive
simulation away from observing similar structures during the trajectory. Further
analysis was done on the basis of ensembles (∼350 structures) populated based
on the metadynamics simulations. Our procedure based on the fingerprinting

Figure 3.5.: The reaction of (a) Mn(CO)5Br and KOiPr resulting in a network of
chemical transformations revealed by the ReNeGate method prior (b) and
after (c) the trimming procedure. Panel (d) presents a reaction energy
diagram summarizing the distinct product state configurations identified
in the network.

algorithm yielded a reaction network of unique chemical structures presented in
Figure 3.5b. For the trimming procedure the edges exceeding the threshold value
of +25 kcal.mol−1 (marked with red in Figure 3.5b) were removed to produce the
trimmed reaction network shown in Figure 3.5c. The procedure also eliminated from
the final network the inaccessible nodes after edge trimming (nodes 4 and 12 in
Figure3.5b) as well as respective connections to prohibited nodes (edges going out
from nodes 4 and 12, Figure 3.5b). Subsequent fingerprinting of the reaction network
identified 9 distinct species. The structures fingerprinted with similar covalent bonds
have been grouped into ensembles of structures and further analyzed for differences
in energies and non-covalent interactions. Energy values for the species found for
the Mn(CO)5Br transformations network are summarized in Table A.1 of Appendix A.

Stoichiometric reaction with a strong alkoxide base is commonly employed for
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the activation of halogen-containing 3d transition metal pre-catalyst in combination
with an acid-base cooperative ligand to a reactive catalytic state accompanied by the
liberation of KBr and ligand deprotonation[62]. Our automated procedure identified
highly favorable alternative routes for the reaction of KOiPr base with the Mn(CO)5Br
precursor resulting in molecular species more stable by up to 15 kcal.mol−1 compared
to the non-activated state (I) representing separate non-interacting alkoxide base
and Mn(I) precursor. The main reaction products and their relative stabilities
are presented in Figure 3.5.d. Some unique configurations showed a substantial
structural flexibility resulting in a range of conformers assigned to a single species
and characterized by a range of relative stabilities (e.g. species IV). In all routes,
the alkoxide nucleophile reacts with the Mn(I)-bound carbonyl ligand. The direct
nucleophilic attack results in an Mn-acyl complex (II). This new reactivity insight
has been verified experimentally and inspired the development of new Mn-mediated
C-C coupling chemistry recently reported by our group[78].

In line with earlier experimental studies, the reaction event identification tool
has revealed from the reactive trajectories that further migratory insertion of the
CO ligand with the –C(O)OiPr α-ketoacyl species is thermodynamically strongly
unfavorable[79]. The resulting C-Mn α-ketoacyl conformers (III) and (IV) are ca.
5 kcal.mol−1 above the energy of the separate KOt Bu and Mn(CO)5Br. Due to the
minimal size of the model and the lack of the explicit solvation, favorable paths
towards the KBr liberation were not identified.

These calculations suggested that nucleophiles (e.g., hydrides and alkoxides) could
react with a Mn(I)-bound carbonyl ligand, thereby resulting in the formation of
Mn formyl or acyl complexes. These findings are in line with prior experimental
observations[79–86] and strongly imply that such reaction paths need to be
accounted for when constructing mechanistic hypotheses to rationalize catalytic
results based on the in situ catalyst generation protocol employing the activation of
Mn(I) carbonyl precursors in the presence of a strong nucleophile alkoxide base.

3.3.2. CASE STUDY II: BASE-ACTIVATION OF AN MN(BR)(CO)3-NN
TRANSFER HYDROGENATION PRE-CATALYST

To further evaluate the capabilities of the proposed methodology in exploring
the reaction energy landscape for known and unexplored chemistries without
additional input from experts, a more complex catalyst system bearing a bidentate
ligand has been considered. Specifically, here we considered the activation of
a N,N’-Dimethyl-1,2-cyclohexanediamino manganese tricarbonyl bromide (MnN,N)
molecularly defined Mn(I) catalyst precursor with potassium isopropoxide (KOi Pr)
two isopropanol and one acetophenone molecules (Figure 3.6a)[67]. Conformer
explorations followed by graph theoretical processing of the metadynamics based
trajectories trimmed down the ∼10,000 structures observed in the exploration step
at GFN2-xTB level of theory and further optimization at the DFT level reduced
the set of structures to 37 species. These species are the nodes in the reaction
network in Figure 3.6b. They are unique in terms of bonding patterns according to
the thresholds defined for covalent and organometallic interactions (see Section A.1
in Supporting Information). The structures were further grouped in terms of the
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similar covalent bonds and the results are summarized in Figure 3.6.d. The distinct
chemical states contain a range of isomeric structures with varied stabilities due to
the differences in the relative orientations of the components in the model, while
showing similar covalent bonding patterns and the nature of observed covalent and
organometallic chemical changes. The associated energy variations are illustrated as
boxplots. The energies of all DFT-optimized species are summarized in Table A.2 of
Appendix A.

The results reveal that the most favourable path for the activation of the Mn-NN
pre-catalyst with an alkoxide base is the ligand exchange reaction resulting in the
rapid elimination of KBr and the formation of an Mn-alkoxide complex (I) in
line with prior mechanistic proposals[67, 74, 87]. Such a transformation stabilizes
the system by up to 25 kcal.mol−1 compared to the non-interacting components
(I, Figure 3.6d). The stability of this state featuring weakly bound KBr and the
Mn-alkoxide complex depends on the relative orientation of the molecular fragment.
The range of relative energies populated by the different isomers of state I (see
blue inset in Figure 3.6d) are shown in Figure 3.6d with the box-plot. A similar
representation is employed for other molecular states discovered computationally.

ReNeGate also identifies a quite unexpected thermodynamically favorable path for
the KBr elimination, which is accompanied by a nucleophilic attack of the alkoxide
anion by the carbonyl ligand (II). Simultaneously, the resulting open coordination
site is taken up by an iPrOH solvent molecule explicitly included in the model. This
path is less thermodynamically favourable by 10 kcal.mol−1 than the direct ligand
exchange reaction. The formation of a 5-coordinated Mn-acyl intermediate (III)
is slightly less favourable. The reaction network analysis also identifies reaction
channels resulting in a (partial) decoordination of the NN ligand from the metal
center (IV-VIII, Figure 3.6). Whereas the ligand dissociation resulting in states
VI and V is accompanied by the nucleophilic attack of −OiPr by the Mn-CO
moiety, the alternative paths to states VI and VII result in more conventional
under-coordinated Mn-alkoxide and Mn-alcohol adducts. In VII, a complete ligand
dissociation is observed, whereas in the other three families of intermediates only
one metal-nitrogen coordination was broken. Importantly, only for the case of
the Mn-acyl family intermediates (IV, V) the energy with respect to the free base
and Mn pre-catalyst states is negative. This suggests that the nucleophilic attack
by the carbonyl ligand facilitates the ligand decoordination, which may initiate the
alkoxide-induced catalyst deactivation observed for Mn(I)-based systems[66, 68, 88].

3.3.3. CASE STUDY III: THE FORMATION OF MULTINUCLEAR

ENSEMBLES UPON THE BASE-ACTIVATION OF MN(CO)5BR

To additionally demonstrate the utility of the fragment analysis tool, we have
expanded the case study of the base-activation of Mn pentacarbonyl bromide
to a hypothetical situation including a more complex reaction mixture including
two Mn(CO)5Br precursor, KOi Pr base and BEt3 stabilizer molecules within the
conformer exploration step. The proposed model was built to study the effect of
catalyst-catalyst interactions in search for a comprehensive exploration of the PES in
realistic reaction conditions and their contribution to stabilization of the reaction
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Figure 3.6.: ReNeGate-computed reaction network and the overview of the main
potential products of the activation of a model MnBr(CO)3NN precatalyst
by KOiPr base in isopropanol solvent in the presence of acetophenone
substrate. Components of the model system not participating in the
reaction are removed for clarity. Panels (b) and (c) show the complete
and trimmed reaction networks, while the comparison of the relative
stabilities of the identified ensembles of intermediates is summarized in
panel (d).
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Figure 3.7.: The unique mono- and binuclear Mn complexes identified by the
fragment analysis tool in the ReNeGate workflow applied to a system
containing two Mn(CO)5Br and KOi Pr species.

intermediates. We have chosen to expand the model system discussed in case study
II by introducing an additional catalyst precursor molecule along with a potential
BEt3 stabilizer representing a complex experimental reaction environment.88 The
resulting reactive trajectory was analysed for finding unique catalytic fragments using
the fragment analysis tool within the ReNeGate workflow described herein, with the
results summarized in Figure 3.7. In addition to mononuclear intermediates similar
to those observed in case study I, we identified also multinuclear complexes, albeit
much less stable than the mononuclear Mn-acyl species.

As discussed in section 3.3, detection of the fragments and consideration
of connections between species is adjusted by the types of interactions
(covalent/organometallic/ionic/. . . ) considered for the graph analysis. This means
that atoms are considered to be connected if only they have the specified type
of interaction. Similar to the previous case studies, input structure was provided
to the ReNeGate workflow, reaction networks were obtained and trimmed. The
species present in the trimmed network were subject to the fragment analysis. Here,
covalent and organometallic interactions have been chosen to distinguish different
species when following the bonding patterns. Energy values for the species found
for fragment analysis are summarized in Table A.3 of the Appendix A. The most
stable configurations featured the mononuclear products of the alkoxide attack by
the Mn-CO to form an acyl complex (F1, lower structure), while further migratory
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insertion to form C-Mn α-ketoacyl (F1, upper structure and F2 in Figure 3.7) are
thermodynamically unfavorable in line with the chemistry revealed for the trivial
model in case study I. In addition, di-Mn binuclear fragments have been identified
representing the products of the dimerization of the very unstable α-ketoacyl
adducts. Such dimers were found to be much less stable than their mononuclear
counterparts suggesting that clustering and aggregation of Mn centers requires redox
processes not considered within the current models. The binuclear fragments F3 and
F4 featured the products of dimerization C-Mn α-ketoacyl adducts (F2). Although the
formation of bridging ligands with the various O-atoms of the acyl moiety allowed
substantially stabilizing the F2 adducts, the resulting binuclear species were still
much less stable than the monodentate Mn-acyl complex. Although in the current
case, the increased complexity of the model did not allow identifying new stable
configurations, it clearly demonstrates the power of the automated fragment analysis
tool. Such straightforward detection of all different catalytic species will become
critical when dealing with complex trajectories, where multiple catalytic centers
could interact to cooperatively stabilize substrates or such interactions will lead to
deactivation of the active center. Changing the type of interactions for analysis
(to dynamic hydrogen bonds or ionic interactions) in cases where identification of
clusters of hydrogen bonded structures is of importance will be challenging and can
be directly done with the help of the fragment analysis tool.

3.4. CONCLUSION AND OUTLOOK
We described a graph-based reaction network analysis tool for automation
of explorative mechanistic studies in homogeneous catalysis. The Conformer
exploration, Reactive event identification and Reaction network analysis are the main
steps taken here for understanding the underlying mechanistic pathways in catalytic
systems given the reaction mixture as the input. The configurational exploration of
the catalytic system is carried out using metadynamic simulations, which results are
interpreted and analysed in the framework of the graph theory to identify reactive
events and key intermediates that form a reaction network. Such an initial extensive
reaction network is trimmed down to reaction-aware networks through inspection
for consistency within energetic thresholds defined for species and transformations.
The resulting trimmed networks can be directly used to provide insights into
experimental observations or guide the design of further experiments or in-depth
computational analysis. Expert bias is sought to be removed in either of the
steps and chemical intuition is limited to the choice of thermodynamic constraints
imposed by the applicable experimental conditions.

The capabilities of the proposed methodology have been validated for the alkoxide
base activation of manganese pentacarbonyl bromide (Mn(CO)5Br) and N,N’-
Dimethyl-1,2-cyclohexanediamino manganese tricarbonyl bromide (MnBr(CO)3NN)
organometallic complexes commonly employed as pre-catalysts for (de)hydrogenation
conversions. The presented automated reaction network analysis successfully reveals
the experimentally observed major reaction channels and also helps identifying
the more challenging minor reaction paths, that can be initiated by the catalyst
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activation procedure and open paths to long-term catalyst deactivation. Specifically,
in the case of MnBr(CO)3NN catalyst precursor, the reaction with an alkoxide
base, in addition to the desirable ligand exchange producing the catalytic Mn-OR
intermediate, gives rise to a number of less favorable reaction channels that can
be regarded as the onset of the catalyst decomposition initiated by the nucleophilic
attack of the alkoxide anion by the Mn-carbonyl moiety.

There exist several open questions and challenges for further research and
expansion of the presented methodology. The entropic effects could be reconstructed
based on the conformation energies stored as node attribute for each node present
in the reaction network. Threshold values for trimming the reaction networks
are decided based on system specific “reasonable” values by the users. Although
this system specificity can be mediated by correlating the trimming values with
temperature at which the experiments are usually done for the catalyst not to
decompose, it stays as an open question to automatically determine the trimming
values based on the chemical nature of the catalytic system. Opportunities exist
for using network operations, based on the reaction network formalism discussed in
the manuscript to describe chemical reactions. This can include but is not limited
to: pathway finding operations (starting from/including/leading to specific species
present in the network), finding (weighted) shortest paths to identify mechanisms,
finding critical steps(important intermediates) in the network (nodes with large
degrees). Such operations and further analysis on networks using machine learning
algorithms on the attributes of nodes and edges is also possible for larger reaction
networks and is subject of our on-going studies on automated generation of extended
databases of catalytic ensembles.
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Supplementary Information

Supplementary theoretical details on molecular graph theory for reaction identifica-
tion; molecular graph theory terminology; supplementary DFT results are provided
in Appendix A at the end of the thesis.
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4
HIREX: HIGH-THROUGHPUT

REACTIVITY EXPLORATION

for Extended Databases of Transition Metal Catalysts

A METHOD is introduced for the automated reactivity exploration of extended in
silico databases of transition metal catalysts. The proposed workflow is designed

to tackle two key challenges for bias-free mechanistic explorations on large databases
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of catalysts: 1. automated exploration of the chemical space around each catalyst
with unique structural and chemical features and 2. automated analysis of the
resulting large chemical datasets. To address these challenges we have extended
the application of our previously developed ReNeGate method for bias-free reactivity
exploration and implemented an automated analysis procedure to identify the classes
of reactivity patterns within specific catalyst groups. Our procedure applied to an
extended series of representative Mn(I) pincer complexes revealed correlations between
structural and reactive features pointing to new channels for catalyst transformation
under the reaction conditions. Such an automated high-throughput virtual screening
of systematically generated hypothetical catalyst datasets opens new opportunities for
the design of high performance catalysts as well as an accelerated method for expert
bias-free high-throughput in silico reactivity exploration.
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4.1. INTRODUCTION

T HE ability and the need to create molecular structures with tailored (bio)chemical
functions has been driving chemical research. In order address this need,

traditional experimental chemistry, conventionally guided by intuition, chemical
knowledge, and serendipity has been successful in discovering functional molecular
frameworks and improving their characteristics towards desired properties. For
example, molecular catalysts are decorated with diverse functional groups to
explore their activity and stability and devise possible strategies for the activity
improvement[1–3]. However, such a design strategy is always limited by the synthetic
and physical availability of the particular chemicals to the experimentalists, which
substantially limits the scope of the exploration of the theoretically accessible
catalysis space. While in vitro functionalization can provide insights into the
chemical design principles behind high activity, selectivity, and stability, it can
also be demanding in terms of time and resources. As a result, computational
(in silico) molecular design is becoming a practical and promising alternative,
due to recent advancements in quantum chemical methods and high-performance
computing[1–10]. These high-throughput computational methods can help create
highly effective functionalization strategies by exploring geometries within the local
chemical space of a given molecular framework[5].

Organometallic chemistry space presented for development of new catalysts for
useful chemical transformations is very large: it can be viewed as a combinatorics of
the (i) transition metal (TM) centers with (ii) varied oxidation states in (iii) different
coordination environments established by the organic ligands. The common practice
is to assume that the variations in the chemistry of the ligand environment (ligand
functionalization) does not affect the main mechanistic and reactivity properties,
but only the energetics of the associated paths. Therefore, one can first investigate
in detail the mechanism and reactivity of a particular selected catalyst, followed by
high-throughput screening using the descriptors or targets identified for a specific
complex. However, one can expect that the chemical modification of a catalyst can
open new mechanistic possibilities. The catalytic properties of the organometallic
complexes are governed by a much wider reactivity space. Therefore, to enable
the high-throughput in silico catalyst screening, one ideally has to explore the
reactivity of each member of the catalyst library, with the associated problem of
the combinatorial explosion resulting in an extremely large and complex datasets
of results that need to be analyzed. Furthermore, the featurization and labeling
of homogeneous catalysts based on their structural features as well as distinct
reactivities remains a challenge when exploring unexpected chemistries. In the
context of expert-bias free reactivity exploration, methods for correlating structural
and reactive features and extraction of reaction classes would be required. The
collection of comprehensive results on the reactivities of structures with systematic
modifications to tune the properties in databases would then facilitate the design of
functional catalysts for specific targets. In this work, we introduce a workflow that
potentially addresses these challenges by combining automated functionalization
with automated reactivity screening towards catalyst deactivation and the subsequent
automated analysis of the resulting large dataset. The workflow is developed for
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the analysis of organometallic manganese pincer complexes as representative and
relevant catalyst family.

Organometallic pincer complexes are homogeneous catalysts used in various
reactions and have been successful in (de)hydrogenation of various substrates[11–
13].Pincer complexes have been successfully applied in energy, pharmaceutical, and
fine chemistry[14, 15]. Examples include Ru[16, 17], Ir[18], and earth-abundant 3d
transition metals like Fe and Mn[19, 20]. Manganese is especially appealing due to
its high biocompatibility in food and pharma applications.

Experimental investigations on finding catalysts with optimal properties for defined
functions are limited to a few accessible variants of the functionalized pincer
backbones. Theoretical investigations, on the other hand, can be much broader
by design and can navigate through arbitrary regions of the chemical space in
exploratory search for defined properties[21–24]. Such chemical space exploration
can be guided by systematic functionalization of the backbone to find highly stable
and active catalysts. Modern computational chemistry methods are instrumental for
such a task and have been used successfully in the past to screen through large
databases of functionalized TM complexes[25, 26], including pincer complexes, for
activity, regioselectivity, and ligand effects[27–29]. Recently, Krieger et al presented a
computational stability study on a virtual library of Mn pincer complexes within the
constraints of the pre-defined deactivation chemistry[30].

Here we aim at removing expert bias from the reactivity analysis by integrating
the automated procedures for organometallic complexes generation, reactivity
exploration and analysis into a unified workflow (Figure 4.1). The ChemSpaX[31]
fully automated procedure was used for ligand functionalization to generate 576 Mn
pincer complexes[31] that form the input for the dynamic reactivity explorations with
the ReNeGate[32] procedure. The reactivity exploration results are organized in a
database with structural and reactive properties observed for every record as features
in the database. The database is then analysed to find correlations between structural
and reactive features followed by the extraction of reaction classes identified for
each catalyst entry and family. Such systematic, automated and bias-free exploration
and analysis has provided insights in defining reaction classes and deactivated states
correlated with specific combinations of backbone and ligand modifications.

The chapter is organized as follows: first, we provide an extensive description of
the methodological aspects of the presented workflow. We start with the introduction
of the functionalization strategy ChemSpaX used to construct the extended synthetic
pincer catalyst set, followed by the description of the automated dynamic exploration
workflow ReNeGate applied to this dataset. The methodology section is concluded
by the presentation of the automated analysis method applied to multiple reactive
trajectories generated for the extended synthetic catalyst dataset. The results and
discussion section presents the application of this workflow on the selected families
of Mn pincer catalysts. The manuscript is completed with a conclusion section.
HiREX code is publicly available at: https://github.com/ahashemiche/HiREX

https://github.com/ahashemiche/HiREX
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Figure 4.1.: Computational workflow for (a) generation, (b) chemical space
exploration and (c) analysis of extended in silico catalyst datasets for (d)
the discovery of new reactivities and particularly those giving rise to the
thermodynamically driven catalyst degradation/deactivation.

4.2. METHODS

4.2.1. FUNCTIONALIZATION STRATEGY WITH CHEMSPAX
In silico catalyst screening aims at analyzing the effect of functionalization
type and site (backbone/donor) on the reactivity behavior. The ChemSpax
virtual Mn catalyst library used for this study contained complexes with four
representative pincer scaffolds, namely, PNP- (bis(3-phosphaneylpropyl)amine)-, SNS-
(azanediylbis(ethane-1-thiol))-, CNC- (bis(2-(1H-3λ 4-imidazol-3-yl)ethyl)amine)- and
PNN- (N1-(2-phosphaneylethyl)ethane-1,2-diamine)- backbones coordinated to a
Mn(I) center stabilized by CO ligands and an anionic (X) group (Figure 4.2).
The effects of first and second coordination spheres are respectively analysed
by varying R1 (directly coordinated to Mn center) and R2 (ligand backbone)
substituents. To simplify analysis, ChemSpaX virtual library has been limited to
symmetric functionalizations for each site group, although this does not represent
the fundamental limitation of the ChemSpaX procedure, which is described in detail
elsewhere[31].

For each pincer ligand, four different Mn-adducts were considered with Br-, OH-,
OMe-, and Ot Bu- anions as the anionic ligands representing the common pre-catalyst
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and/or resting state species (Figure 4.2). The different combinations of R1, R2

and X functionalization with the four pincer scaffolds gave rise to a virtual library
containing 576 complexes that were further used for the reactivity exploration and
analysis. Pincer complexes based on these ligands have been reported for various
transition metals, including manganese[19, 33, 34]. SNS-[35–39], CNC-[40–44], and
PCP-[45–49] ligands are primarily known for their use in 4d and 5d transition metal
catalysis. Very efficient catalyst systems for a wide range of catalytic transformations
have been established using 4d and 5d transition metal pincer complexes[36, 40,
48, 50].The literature on their 3d-transition metal counterparts often reports lower
catalytic efficiencies[33, 49], due to the tendency of such systems to deactivate and
form highly stable resting states under the reaction conditions, limiting their catalytic
performance[51, 52].

Figure 4.2.: Representative 3d transition metal (Mn) pincer scaffolds with the ligand
modification R1, R2 and TM adduct (X) within the scope of this work.
The functionalizations R1 and R2 include proton (H), trifluoromethyl
(CF3), cyclohexyl(cy), isopropyl(i Pr), phenyl(Ph), and tert-butyl(t Bu); and
adducts (X) can be represented by bromide (Br), hydroxyl(OH), methoxide
(OCH3), tert-butoxide (Ot Bu) anions.

The design of the virtual library is guided by our focus on the application of
Mn(I)-pincers as dehydrogenation catalysts[53–55]. A set of ligands are chosen for
functionalizations at R1 and R2 positions. The ligands are representative of the
choices made by experimentalists for screening purposes and cover a broad range
of steric and electron withdrawing properties. Among the set of X adducts, Br
is a common precursor to the active form of manganese pincer catalysts[56].Such
precursors often go through activation with a strong base to produce a highly active
5 coordinated complex. OR-adducts (OH, OCH3 and Ot Bu) are usually formed upon
addition of alcohol/water/base via metal ligand cooperative addition[57]. Formation
of such adducts might form slow down or even deactivated the catalyst depending
on their stability[52, 58–62].

4.2.2. REACTIVITY EXPLORATIONS - THE RENEGATE WORKFLOW

The virtual organometallic pre-catalyst library was fed as the input for the dynamic
mechanistic explorations. In order to remove expert bias from mechanistic studies
and to discover new chemistries, our automated graph-theoretical methodology
implemented in the ReNeGate[32] workflow is used to explore the potential energy
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surface around each starting structure. The individual entities in the database
are automatically provided in parallel as input to the exploration step, where
the chemical space around each structure is exhaustively explored for alternative
chemical structures and new reactions. The detailed description of the ReNeGate
workflow is provided eslwhere[32], while below we shortly summarize the key
elements of the procedure.

The procedure involves an exhaustive reaction space through root-mean-square-
deviation (RMSD) biased meta-dynamics at the semiempirical xTB level of theory
using the CREST functionality in the GFN-xTB code[63]. Recent studies demonstrate
the sufficient accuracy of the xTB for high-throughput screening of TM complexes
including Mn(I)-based systems discussed herein as the representative model
catalysts[64]. Implementation of the RMSD bias in the metadynamics simulations
helps with the exhaustiveness of the exploration. CREST workflow sets a penalty on
the configurations that have already been visited by calculating relative structural
RMSD values for new configurations. Reactive trajectories from all metadynamics
runs for all input structures from the ChemSpaX library are provided in parallel to the
ReNeGate graph-theoretical analysis tool to identify unique structures and compare
the observed configurations with the respective reference structures (Section 2.3).
Alternative explored structures for all starting geometries in the database are then
collected in a global database. Each element in the database is labelled based on
the known structural features of the reference structure (backbone scaffold, ligands
at R1 and R2 position, adduct) as well as the calculated features including relative
energies (∆E, kcal.mol−1) and specific reactivity observed for species compared to
the starting reference structure (broken or formed bonds). The database is initially
analyzed for correlations between structural features and observed reactivities.

4.2.3. COMPARISON WITH REFERENCE STRUCTURES

Exploration results for each starting structure are analyzed to provide insights into
possible reaction (or deactivation) channels for given catalyst structures. Herein we
used as starting structure a high-throughput computational database designed to
investigate the thermodynamic stability of different adducts in various functionalized
Mn(I) based pincer complexes[30]. While the database was originally designed
to investigate metal-ligand cooperative activation of HX (X=Br, OH, OMe, Ot Bu)
bonds, one can expect that the chemical modification of a catalyst can open new
mechanistic possibilities. Therefore, to enable the high-throughput in silico catalyst
screening, we have explored the reactivity of each member of the catalyst library.
Compared to the protocol used in the original ReNeGate[32] workflow, uniquely
identified structures are compared against the respective reference structure, which
allows the transfer of the extracted reaction labels between different backbone, R1,
R2 and adduct classes. This provides global insights into the role of individual
features on the energetics and reactivity patterns. Pipeline for populating databases
of reactivities for chemical structures is illustrated in Figure 4.3. Indexing trajectories,
identification of conformers with unique fingerprints, population of database and
featurization and analysis are the key steps for extracting insights from high
throughput virtual screenings of the current study. The algorithm proposed for
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Figure 4.3.: Pipeline for populating the reactivity databases of chemical structure
based on comparisons with reference structures involving a) indexing
trajectories, b) identification of conformers with unique fingerprints, c)
population of the database, and d) analysis trough categorization and
clustering.

making the comparison is discussed below.
Given a sequence of structures S1, S2, S3. . . , Sn where Si represents unique

configurations observed based on conformer exploration and S1 is the reference
structure, the algorithm, first analyzes the conformer changes based on the dynamics
of interactions and bonds by applying isomorphism tests. Once the conformers are
identified (noted C1, C2, . . . , Cm), we compare these conformers to the reference
structure represented by the first conformer C1.

The algorithm follows the following steps:

1. Read the xyz file, at each step:

a) Construct the mixed graph[32, 65]

b) Apply the isomorphism test

c) Identify conformers that are not isomorphic
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d) Compare bonding pattern between new conformer and reference structure

2. Read the xyz file, at each step:

a) Extract the energy values from the trajectory analyzed at the level of
theory (either DFTB or DFT) and assign it to the correspond conformer

b) Identify the minimum and maximum value of energy for each conformer

3. Construct the graph of evolution of structures

The bonding patterns of the identified conformer and the respective reference are
compared. For the bonds present in the new conformer, but not in the reference,
we consider that the bond is formed (marked with a ‘+’) and, respectively, for
the bonds present in the reference and not in the new conformer, the bond is
considered broken (and marked with a ‘-’ ). Based on the changes in the bonding
patterns, the differences between each conformer and the reference structure are
stored in the database. In addition, we extract the energy values from the input file
(the xyz file that contains the structures S1, S2, S3. . . , Sn), and calculate the relative
energy difference of the conformer through comparison with the reference. For the
purposes of the current study, we consider the minimum energy value from the
isomers’ list as the representative energy value assigned to the unique configuration
for further analysis on the database. We then construct the graph of evolution of the
reference structures. The vertices in the graph represent the identified conformers
and edges connect the conformers and the reference structure. The representation
includes the 2D image of the conformer, the list of structures that belong to this
conformer and the energy values extracted from the trajectory at the analysis level
of theory (either DFTB or DFT). Similar to the original ReNeGate implementation,
the reaction network calculations are carried out at two different levels of theory.
Initial dynamic explorations are done at the GFN2-xTB[63] level of theory and then
the identified unique conformer structures are refined at B3LYP-D3/6-31g(d,p) level
of theory with a GD3BJ dispersion correction[66] and an implicit SMD model[67]
with the standard parameters for THF solvent.

4.3. RESULTS AND DISCUSSION

4.3.1. HIGH-THROUGHPUT REACTIVITY EXPLORATION

The primary results of the application of our automated reactivity analysis procedure
to the virtual library of Mn pincer complexes are summarized in Figure B.4 and
demonstrate that the explored structures vary in terms of relative energy in [-600,
+100] kcal.mol−1 range. Few species have been observed with the relative energies
as low as -600 kcal.mol−1, which can be attributed to the fact that the structures
systematically built by substitution of ligands could be unphysical and provides
clues to the real (un)synthesizability of the reference structure. Therefore, we have
limited further analysis in classification of reaction classes to species observed in
[-40, +25] kcal.mol−1 range. The refined results in terms of the relative stabilities
of the discovered species for each catalyst class/group are summarized in Figure
4.4. The introduced energy constraint is expected to improve the reliability of the
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defined reaction classes. This will also help make sure that low energies obtained
for some states are not artifacts coming from automated design of structures and
not synthesizable species. Exploration results on virtual library of Mn catalyst is

Figure 4.4.: Exploration results for the evolution of the Mn-CNC, PNN, PNP and SNS
pre-catalysts in [-40 , 25] kcal.mol−1 stability range. The configurations
are analyzed based on the backbone type and moieties at R1 and R2

positions. Data points are colored according to the adduct X at the Mn
center.
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summarized in Figure 4.4 Relative energies of the explored species are illustrated
as a function of backbones, modifications on R1 and R2 positions. Data points are
colored based on the adduct X at the Mn center. Our results highlight varied trends
in reactivity as a function of pincer scaffold and functionalization. For example,
the data in Figure 4.4 suggest that pincers featuring CNC backbone can isomerize
into more stable alternative species for all R1 and R2 functionalization and Mn-X
adduct types. On the other hand, for the PNP family, the favorable transformation
to stable alternative species is mainly limited to complexes with a CF3 substituent
at R1. Systems with the PNN backbone are the least likely to form alternative
configurations. These apparent trends can be readily deduced from the current
representations of stability diagrams. However, further and deeper correlation
analysis is necessary to gain more insight into the observed variations.

4.3.2. CORRELATION ANALYSIS OF THE STRUCTURAL FEATURES AND

REACTIVITY

Histogram plots in Figure 4.5 were made to illustrate how the combinations of
different structural features are associated with the possibility of the formation of
alternative stable configurations from a given pre-catalyst. These plots summarize
the frequency of appearance of species with relative stabilities in the [0, -40]
kcal.mol−1 with respect to the given structural/compositional features. Correlations
between (a) the R1 groups and other structural features including catalyst backbone,
(b) R2 groups, (c) coordination number (CN) of the metal (Mn) center, as well as
(d) the energetics of the alternative species (∆E) and (e) the adducts (X) type on
the Mn center are summarized in Figure 4.5. The number of explored species in
the database having specific features with different combinations of R1 with other
parameters (backbone, R2, CN, ∆E, X) are counted on the upper and right side of
each histogram. Specific combination cells are colored according to the frequency
of the observations with the color coding shown next to each plot. The frequency
of observations of identified structures with specific feature combinations has been
considered as a measure of correlation between structural and reactive features. A
similar correlation analysis for configurations with energies within +25 kcal.mol−1

from their respective reference state are collected in Figure B.1 of the supporting
information.

Figure 4.5.a reveals a correlation between the presence of t Bu and CF3 groups at
the R1 positions for CNC and PNP backbones. As opposed to catalysts with PNN,
PNP and SNS backbones, stable species with CNC backbones have been found with
all variations of ligands at R1 positions. Figure 4.5.a shows that explorations on
CNC catalysts have resulted in the formation of alternative stable species for all
ligand substituents at R1 positions. The CF3 group at R1 leads to the formation
of more stable structures for PNN, PNP and SNS backbones. Regarding the R1-R2

combinations (Figure 4.5.b), the presence of t Bu and CF3 at R1 always leads to the
formation of alternative structures, indicating the direct involvement of R1 ligands in
the formation of stable intermediates.

The formation of stable alternative species with 5- and 6-coordinated Mn centers
is respectively correlated with the presence of t Bu and CF3 moieties at R1 (Figure
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Figure 4.5.: Histogram plots for the frequency of appearance of alternative stable
species based on modified structures for CNC, PNP, PNN and SNS
catalysts (lower energies than the respective reference structure) as a
function of feature combination (a) R1-backbone, (b) R1-R2, (c) R1-CN
(coordination number of the metal center) and (d) R1-∆E (relative
energy), (e) R1-X.

4.5.c). 4-coordinated Mn complexes were observed only for the pincer complexes
with most bulky t Bu, Cy and i Pr substituents at the donor atoms. Interestingly,
the R1 substitutions with the bulky t Bu and Cy as well as the most reactive CF3

groups is found to be correlated with the more pronounced stabilization of the
alternative configurations (R1-∆E correlations in Figure 4.5.d). The analysis of the
R1-X correlations presented in Figure 4.5.e suggests that the OH adducts universally
tend to convert to other more stable configurations for all R1 functionalizations.
This emphasizes the role of OH- ligand in forming stable structures and this will be
discussed in detail below. The diversity of the species explored based on the type of
the adduct follows the order OH > Ot Bu > OCH3 > Br. Energetics of the observed
structures colored based on different adducts are further illustrated in Figures B.2,
B.3 and B.4 for [-40,0], [-40,25] and [-600,100] kcal.mol−1 ranges, respectively. These
insights from correlations observed between the structural and reactive features of
the catalysts provides clues for a more detailed analysis of the observed species and
new chemistries in Section 4. In the next section, we present clustering analysis for
finding better insights into the catalysts’ chemical reactivity features. The nature of
the observed chemistries are discussed in detail Section 4.
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4.3.3. FINDING THE MOST FREQUENT CLASSES OF INTERACTIONS:
K-MODE CLUSTERING

In the next step towards implementing data-driven analysis of large databases of
homogeneous catalyst structures, we have leveraged on labeled data organized based
on automated exploration on Mn-based virtual library described previously. We
have enumerated the global distinct types of interactions leading to alternative
stable species and subsequently done clustering to find the most frequent modes.
Clustering, in general, is an unsupervised learning method whose task is to divide
the population or data points into a certain number of groups, such that data points
belonging to the same group are similar to each other and dissimilar to the data
points in the other groups. It is basically a collection of objects based on similarity
and dissimilarity between them. K-mode clustering[68] is one of the unsupervised
machine learning algorithms that is used to cluster categorical variables. Here we
used the kmodes 0.12.2[68] library for categorical clustering based on the reactivities
of the observed species. The top 10 clusters shown in Figure 4.6 represent the
most frequent types of interactions observed for different R1, R2 ligand, adduct and
backbone combinations will be discussed.

The results of the clustering analysis is summarized in Figure 4.6 by presenting
the relative energy diagrams of the alternative configurations discovered for each
of the backbone type and classified according to the interaction type realized in
them. Analyzing the nature of interactions identified in Figure 4.6, we can draw
insights into the new reactivity of Mn(I) pincers and their correlations with the type
of backbone and modifications to the ligand backbones at R1 and R2 positions.
Filtering the new transformations in the database for events have led to three
different sets of reactions:

• Decoordination of the Mn-D (D = C, N, P) bonds

• Nucleophilic attack on the carbonyl ligands

• Migrations of the CF3 moieties

Decoordination of the Mn donor ligand bonds for catalysts with CNC, PNP, PNN
and SNS backbones has been observed to produce alternative stable structures and
can be followed to identify hemilabile donor ligands. Hemilability can occur with
polydentate ligands, which have at least two coordinating groups often with different
electronic properties. For complexes where hemilabile ligands are present, one
coordinating group is easily displaced from the metal center while the other group
remains firmly bound. In addition to the general observation on the cleavage of the
Mn donor bonds, we identify that the starting complex can undergo nucleophilic
attack by the CO ligand (NuA), persistent for all catalyst types. Migration of CF3

moieties to the Mn center has been observed for catalysts with PNP backbone.
Besides, we also find that coordinative unsaturation of the Mn center can be
stabilized by the formation of defined agostic interactions with C-H (Mn-H) or C-F
moieties (Mn-F) on the distant ligand substituents. Such additional interactions are
commonly observed as accompanying the former isomerization types that commonly
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Figure 4.6.: The top 10 clusters representing the most frequent types of interactions
observed for different R1, R2 ligand and backbone combinations. The
energies for species explored species in the [-40, +25 kcal.mol−1] energy
window are plotted as a function of ligand modification at R1 position.
Data points are colored by the type of interactions defined by the cluster
centers (10 centers).

give rise to the change of the coordination environment of the Mn center. Further
details on the specific cases were such interactions happen are discussed below.

The cluster centers identified and used to classify species in Figure 4.6 are
explained in terms of the chemistry they represent:

• +H-O, -N-H: for catalysts with CNC backbone and OH (or OCH3) adducts with
R2 = C F3, the hydrogen atom on the backbone nitrogen can migrate to the
adduct and further be followed by the detachment of the adduct from the Mn
center (Table B.2).

• +Mn-H, +P-O, -P-H: for catalyst with PNN and PNP backbones with R1 = H ,
manganese hydride species is formed via the transfer of H from R1 to Mn
(+Mn-H, -P-H) followed by bridging of the alkoxide species between Mn and
the phosphorus atom (+P-O).

• -side-arm, +Mn-C, +P-O, -P-C: For catalysts with PNP backbone (also a single
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case for PNN catalyst), the sidearm (-side-arm) P-donor decoordinates from
the Mn center, the CF3 moiety migrates from R1 to Mn (+Mn-C, +P-O, -P-C).

• -side-arm(-Mn-N, -Mn-C, -Mn-P, -Mn-S): decoordination of the sidearm
observed for catalyst with CNC, PNN, PNP and SNS backbones resulting in
new stable configurations.

• ‘+C-O’, ‘+C-O, +Mn-H, -O-H’, ‘-side-arm, +C-O, +Mn-H ’: For catalysts with
CNC backbone, nucleophilic attack from adducts (+C-O) into carbonyls is
observed for all different modifications to the moieties at R1 position. Such
interactions have been observed to be accompanied by agostic hydride
interactions (+Mn-H) or the dissociation of the side-arm.

• -side-arm(2): decoordination of two side-arms observed mostly for catalysts
with SNS backbone with all types of R1 substitution. Such reactivity is
also observed for catalysts with PNN backbone with R1 = C F3 and for PNP
backbones with R1 = H or t Bu.

• +P-O, +Mn-F: for PNP catalysts with R1 =C F3, the alkoxide adduct (X = OR) is
transferred into the bridging position between Mn and P (+P-O), the new state
is stabilized by an agostic Mn-F interactions.

• -side-arm, +C-H, -N-H: decoordination of the side-arm accompanied by the
insertion of the hydride from the backbone amine has been observed for
catalysts with CNC backbone when either bulky (i Pr or t Bu) or CF3 moieties
are present at R1 position.

Analysis based on the nature of the bond changes shows that the cleavage of
the Mn donor bonds is most frequently observed and is accompanied by other
reactive events. As shown in Figure 4.6, the de-coordination of the donor ligands
allows the formation of stable structures for catalysts with CNC, PNN, PNP and SNS
backbones. De-coordination for catalysts with CNC backbone is observed when
bulky substituents (t Bu and cy) are present at the R1 position of the N-heterocyclic
carbene donor groups. While the formation of stable structures for catalysts with
PNN and SNS backbones was always accompanied by dissociation of the donor
ligands, stable structures were observed with and without the dissociation of the
donor ligands for the CNC and PNP backbones. These results are discussed in detail
in the next Section.

4.4. NEW CHEMISTRY

4.4.1. DECOORDINATION OF THE MN-D (D = C, N, P) BONDS

In coordination chemistry and catalysis, the reactivity and stability of catalytic
species can be tuned through hemilability of the pre-catalytic species[69]. The
partial and reversible displacement of the ligand may provide an additional kinetic
stabilization of the reactive catalytic complexes and serve as the point of entry into
the catalytic cycle or facilitate the regeneration of the catalytically active species at
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the stage of the product release. The facile interconversion between the fully and
hemi-coordinated states may be critical for the fast catalytic turn-over rate[70]. On
the other hand, the increased reactivity of the complex due to the (partial) ligand
dissociation may give rise to further conversion resulting in the long-term catalyst
deactivation. We therefore first focused the more in-depth reactivity analysis on the
phenomenon of labile donor atoms of the pincer scaffold. The reactivity patterns
of structures were queried for the decoordination of either or a combination of
side arm donor ligands (-Mn-C, -Mn-N, -Mn-P or -Mn-S). Presence of one or more
of these interactions for a structure has then been marked as an indicator for the
probable presence of hemilabile Mn-donor bonds in the reference structures. Figure
4.8 summarizes the results of the automated hemilability detection by showing
the relative stabilities of the different structures in the database labeled as either
intact (not exhibiting decoordination of side arm donor ligands) or having the
-Mn-D(D =C , N ,P,S) feature indicating hemilability.

Our analysis reveals that the decoordination of Mn-N and Mn-S bonds are the
most frequent side-arm decoordination events (Figure 4.7). For clarity we have
clustered structures including Mn-N decoordination with a similar “-Mn-N Set” label.
Further discussions on different combinations of Mn-N decoordination behavior
has been discussed in Figure 4.8. Further analysis on the different R1-R2-adduct
combinations leading to specific reactivities including -Mn-N has been summarized
in Section B.3 of the Supporting Information. Figures B.5, B.6, B.7 and B.8 summarize
the detailed “-Mn-N set” interaction for CNC, PNN, PNP and SNS backbones,
respectively. Phosphine dissociation in PNN and PNP catalyst families is rare with
most cases found for the bulky R1 = Ph, cy and t Bu. The detailed plots including
expanded lability interactions are included in the supporting information and will be
discussed here.

For CNC catalysts, bulky t Bu and cy groups at the backbone R2 sites favor the
rather unexpected decoordination of the central amino donor(-Mn-N) of the pincer
ligand. A similar behavior (-Mn-N) is also observed when CF3 or no functional
groups are present at R2 position along with H or CF3 groups at R1 is observed.
Ligand dissociation was not observed for all configurations of the Br adduct of
Mn-CNC. (Figure B.9). For PNN complexes, the presence of electron withdrawing CF3

groups at either of R1 or R2 position generally promotes the N-donor hemilability
(-Mn-N) that results in a substantial stabilization (by -200 kcal.mol−1) of the Mn
complexes for all R1-R2-X Mn-PNN combinations. Decoordination of both Mn-N
bonds (“-Mn-N(2)”), “-Mn-N, -Mn-P” or complete decoordination of the ligands are
uniquely observed for the species with R1 =C F3 (Figure B.6).

The decoordination behavior of Mn-PNP catalysts includes the dissociation
of both the central amino (-Mn-N) and phosphine side-arm (-Mn-P) donors.
While decoordination of the Mn-N bond is observed for all R1-R2 combinations,
decoordination of one Mn-P is observed only for R1 = H or CF3. Furthermore, a
complete dissociation of all donor atoms of the backbone is observed for R1 =C F3

and R2 = H (Figure B.7).
For the catalysts with the SNS pincer scaffolds, the ligand lability was also detected

for all donor atoms of the pincer (-Mn-N, -Mn-S and -Mn-S(2), where the latter
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Figure 4.7.: De-coordination of the donor atoms in the Mn(I) complexes with CNC,
PNN, PNP and SNS backbones within [-200 kcal.mol−1, 25 kcal.mol−1]
∆E from reference structures. Structures are colored based on the type
of the donor atom dissociated as presented in the legend.
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Figure 4.8.: Decoordination behavior for catalysts with CNC, PNN, PNP and SNS
scaffolds stabilized in [-40 , 0] kcal.mol−1 range with respect to the
reference structures.
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indicates the decoordination of both S donor atoms). The presence of CF3 groups
at R1 again promotes strongly the dissociation of both the N and S donors. In
this catalyst family, the dissociation of the central Mn-N is less common than the
cleavage of the weaker Mn-S bonds and it was observed for the R1 =C F3 and R2=cy
combination (Figure B.8).

In order to identify possible hemilabile states and to distinguish between
the side-arm ligand decoordination and hemilability, we further classified the
decoordination reactivities to only events leading to more stable structures compared
to the reference structure (Figure 4.8). Limiting the analysis to species within
a narrow energy window provides a better understanding of the discrimination
between reversible and irreversible decoordination of sidearm donor ligands.

As shown in Figure 4.8 and also Figure B.9 in the supporting information, bulky
(t Bu and cy) groups at R1 position of CNC, induce decoordination of the central
N donor (-Mn-N) and may also promote the dissociation of the NHC side-arms
(-Mn-C). Decoordination of the NHC moieties of CNC (-Mn-C bond) is also observed
with t Bu-cy combination of the R1-R2 groups. Presence of CF3 on the phosphine
donors of the PNP backbone also promotes the cleavage of the side-arm (Mn-P or
Mn-N) ligands, whereas in the case of the SNS pincers, the H atoms at R1 sites
generally promote the cleavage of one or both of the Mn-S side-arm donor ligands.
(Figures B.7 and B.8) Most frequently, the energetically favorable dissociation of
the central nitrogen donor of the pincer scaffold (-Mn-N bond) has been observed
for CNC, PNN or PNP backbones. The dissociation of the Mn-C bond (either as
‘-Mn-C’ or ‘-Mn-N, -Mn-C’) is unique for the CNC backbone and will be discussed
in section 3.2 in detail. Other interactions leading to the complete dissociation of
the backbone ligands, including (‘(-Mn-N)2’ for PNN backbones, ‘(-Mn-N)2, -Mn-P’
for catalysts with PNP backbone, ‘-Mn-N, (-Mn-S)2’ for catalysts with SNS backbone)
have been also observed, but they led to structures with generally higher energies
than those where only a single side-arm has dissociated. Presence of t Bu groups at
R2 position of the backbone promotes the hemilability of the side arm donor atoms
for catalysts with all 4 backbones in this study. In the meantime, for PNN, PNP and
SNS catalysts, the favorable dissociation of the side-arm is not affected with the R2

functionalization of the backbone, but is solely controlled by the nature of the R1

group at the donor moiety. The different correlations between the nature of the
adduct and hemilability of side-arm donor ligands are summarized in Figures B.5-B.9
in the supplementary information. Based on the number of explored species for
which side-arm decoordination was observed, the diversity of the hemilabile species
explored based on the type of the adduct follows the order OH > Ot Bu > OCH3 > Br.

Nucleophilic attack and insertion into the carbonyls have been observed for all
of the basic adducts (OH, OCH3 and Ot Bu) in the database. This is in line with
our previous hypothesis on the potential relevance of such a reactivity for the
base-assisted deactivation paths of Mn catalysts stabilized by carbonyl CO ligands[32,
71, 72]. Let us consider in more details the revealed reactivity patterns by focusing
on the Mn-CNC complex family. Figure 4.9 summarizes the results of the automated
analysis and shows the optimized structures of the most stable species identified
for each class (denoted with the roman numbers in Figure 4.9). Energetic of the
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observed structures is plotted on the Y-axis against the set of reactivities observed
for catalyst structures with the CNC backbone shown on the X-axis. Symbols
representing modifications at R1 and R2 positions as well as color coding for adduct
present on the Mn center are shown in the legend.

Besides the migratory insertion of the basic hydroxide or alkoxide adduct, the NHC
moieties of the CNC pincer have also been observed to attack the carbonyl ligands
as illustrated with structures VII, IX and X (Figure 4.9). It should be noted that for
the very bulky substituents where t Bu and cy groups are respectively present at
R1 and R2 positions, the central nitrogen ligand can also decoordinate as observed
in structure VII. Such transformations are accompanied by the dissociation of the
amine donor of the pincer ligand and the associated energy losses are compensated
partially by either the conformational changes to the backbone (VIII and IX) or the
formation of an additional agostic interactions with Mn (X). Presence of the bulky
groups at R2 position causes decoordination of nitrogen and provides the NHC to
act as a base and leads to carbene-carbonyl coupling. Carbene-carbonyl coupling
was always precluded by decoordination of the nitrogen from the Mn center and
dissociation of the Mn-C bond before the coupling took place. Such (-Mn-N, +C-O)
series of events lead to stabilization by as much as -14 kcal.mol−1. The complete set
of CNC structures including -Mn-C reactivity are further analyzed in Section B.4 of
the Supporting Information. Figure B.9 and Table B.1 summarize all observed -Mn-C
interactions (with no trimming based on relative energies). The stabilization by
agostic interactions were detected with the H atoms from (one or two) t Bu groups at
R1 positions or even the C-H moieties from the pincer backbone (II, III and IV). For
the complexes bearing less bulky (OH and OCH3) adducts, their attack on the CO
ligands was not accompanied by the pincer decoordination (‘+C-O’, ‘+C-O, +Mn-H’)
(V and VI). The favorable NHC-carbonyl coupling has been observed for the most
bulky CNC complexes featuring the combination of R1 =t Bu and R2 = c y or t Bu
and X = Br or Ot Bu (VIII, IX and X, 9). Such chemistry has been reported earlier
in several experimental studies. For example, Ruiz et al. explored the production
of N-metalated NHC generated by the deprotonation of 1-phenylimidazole (L) in
a cationic fac-[Mn(L)(CO)3(bipy)]+ complex and described an similar reactivity for
the transient formation of carbene[73]. It was established that the deprotonated
imidazole and an auxiliary carbonyl ligand engaged in the mechanism converting
carbene into the more stable imidazolyl tautomer, which was responsible for the
production of the acyl intermediate. It has also been shown that lithiated azoles can
be added nucleophilically to [M(CO)6] (M =Cr, Mo,W ) to yield acyl intermediates
that can then be alkylated to generate azolyl alkoxycarbene complexes[74]. Huertos
et al. reported on the intramolecular nucleophilic attack of deprotonated imidazoles
to coordinated bipyridine and imidazole ligands[75]. The new pathways for
nucleophilic additions observed through high throughput screening are of interest
due to the high utility of catalytic transformations incorporating CO into organic
substrates to create higher value products. Exemplary cases of such interactions
include the hydroaminomethylation of simple vinylic arenes to produce a variety of
useful pharmaceuticals in a one-pot reaction and the phosgene-free carbonylation
of amino and phenolic compounds. The extent M-NHC catalysts will promote
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Figure 4.9.: The optimized structures of the most stable species explored for CNC
family with different R1-R2 combinations (hydrogen atoms are omitted
for clarity, only the H-atoms involved in agostic interactions with the Mn
center are shown with as light blue spheres).

reactions that use CO as a C1-carbon source has been extensively discussed in the
literature[76, 77].

4.4.2. MIGRATIONS OF THE CF3 MOIETIES

Another new reactivity has been identified for the complexes featuring CF3-
functionalized ligand scaffolds. The spontaneous migration of the originally P-bound
CF3 moiety to the Mn center with the concomitant exchange of the original alkoxide
species has been identified. The most stable respective structures are summarized in
Figure 4.10.

Figure 4.10 shows the new chemical interactions observed including the migration
of the CF3 groups. Energetic of the observed structures is plotted on the Y-axis
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against the set of reactivities observed for catalyst structures with the PNP backbone
shown on the X-axis. Symbols representing modifications at R1 and R2 positions as
well as color coding for adduct present on the Mn center are shown in the legend.
The set of reactivities summarized on the X-axis are briefly discussed below.

• * : summarizes a series of three events leading to the migratory insertion of
the CF3 group to the Mn center including: I) the cleavage of the P-CCF3 bond
(-P-C), II) formation of the new P-O bond between P and the alkoxide (OH or
Ot Bu) adduct on the Mn center (+P-O(OH or Ot Bu)) and III) formation of the
new Mn-CCF3 bond (+Mn-C).

Figure 4.10.: Formation of manganese carbonyl trifluoromethyl complexes for
catalysts with PNP backbone. The optimized structures of the most
stable species from each class of interactions are presented (hydrogen
atoms are omitted for clarity).
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Other reactivities described in Figure 4.10 along with the migratory insertion of
CF3 include:

• * , -Mn-N Structure I: For structures with OH and Ot Bu adducts, decoordination
of the nitrogen in the backbone has been observed along with the CF3

migration and leads to structures stabilized by ca.18 kcal.mol−1.

• +P-O: Structure II : Irrespective of the type of the adduct on the Mn center,
it has been observed that the oxygen atom on the adduct can form a bridge
with the adjacent phosphorus and can be an initial step for migration of CF3

groups.

• +P-O, +Mn-F: Structure III: Migration of the adduct to the phosphorus and the
undercoordination of the Mn center is compensated by coordination with the
F atom (Structure III)

• * , -Mn-P: (Structure VI) the migration of the CF3 moiety to the Mn center has
been observed to be accompanied by the dissociation of the Mn-P bond when
there are no ligands present at R2 position (Structure VI)

Figure 4.10. shows that structures formed via the migratory insertion are more
stable than their reference structures within the [-39.2, -23.1] kcal.mol−1 range of
energies when no substitutions are present at R2 and within [-17.1 kcal.mol−1,-0.8
kcal.mol−1] when ph, CF3, cy and t Bu groups are present. (Figure 4.10 and, Table
B.3). Migratory insertion of CF3 onto the Mn center can be accompanied by the
cleavage of the Mn-N bond for Ot Bu and OH adducts. The adduct can be bridged
between the Mn and P centers (initial step for migration of CF3 groups, Structure
II, Figure 4.10). Migration of the adduct to the phosphorus is additionally stabilized
by the formation of a short contact between the Mn and flouride ion (Structure III).
The migration of CF3 onto Mn center with concomitant exchange of the original
alkoxide species was observed for OH and OCH3 adducts.

This chemistry that we have identified purely from the expert-bias-free high-
throughput computational reactivity analysis is in line with the previous studies
chemical systems with metal perfluoroalkyl bonds (M-RF) and the respective
catalytic applications. Indeed, the more conventional organometallic compounds
and especially metal alkyls (M-R) are immensely important players in catalysis[78].
Catalysis utilizing metal fluoroalkyl complexes, however, is less common due to
the inherent stability of M-RF[79]. Such compounds, on the other hand, receive
increasing attention for their utility for the field of fluoro-organic synthesis[80,
81]. For example, [Cu]-RF compounds are utilized as the stoichiometric reagents
for perfluoroalkyl transfer to organic substrates[82–85]. Recently, there is much
attention to transition-metal-catalyzed (with such metals as Cu, Ni, Pd) C-RF (where
RF is usually CF3) bond-forming reactions[86, 87] providing a route to various
valuable fluorinated pharmaceuticals and agrochemicals[80, 81, 88]. Daniels et al.
discussed the synthesis, characterization and reactivity of several bi- and tridentate,
N-ligated manganese carbonyl trifluoromethyl complexes[79]. All these complexes
feature elongated Mn-CCF3 bonds suggesting the lability of the moiety, which could



4

94 4. HIREX: HIGH-THROUGHPUT REACTIVITY EXPLORATION

potentially be exploited for the transfer or insertion of the CF3 group into organic
substrates. Poli and co-workers investigated in detail the thermal decarbonylation of
the acyl compounds [Mn(CO)5(CORF)] (RF =C F3, C HF2, C H2C F3, C F2C H3) and the
formation of [Mn(CO)5(RF)] species containing M-alkyl motieties[89]. The Mn-RF
moiety is highly labile and can undergo homolytic dissociation upon moderate
heating or when subject to photochemical (UV or visible light). For example,
such activation procedures allow [Mn(CO)5(CF3)] compound with the strongest
Mn-RF bond initiate the radical polymerization of vinylidene fluoride (C H2 =C F2)
to produce poly(vinylidene fluoride)[89]. The migration of the CF3 moiety to the
Mn center identified by the current automated algorithm is thus in line with the
previous experimental investigations on the related chemistries and suggests new
avenues to expand this field by utilizing CF3-modified ligand scaffolds and secondary
transformations of the respective Mn catalysts.

4.5. CONCLUSIONS
A method is introduced for the automated exploration of reactivities of extended
databases of transition metal catalysts. The proposed workflow is designed to
tackle the key challenges for bias-free mechanistic explorations on large databases
of catalysts, namely: I) the automated exploration of the chemical space around
each catalyst given specific structural features and (II) the automated analysis of
results from such chemical datasets and provision of design rules for catalyst with
improved performances or new reactivity. To address these challenges, we have
extended the application of our previously developed ReNeGate method for bias-free
chemical space exploration to databases of synthetic organometallic catalysts. We
implemented an analysis procedure to identify the classes of reactivity patterns
within specific catalyst groups in the large organometallic datasets. Our procedure
applied to an extended series of representative Mn(I) pincer complexes revealed new
correlations between the structural and reactive features pointing to new channels
for catalyst transformation under the reaction conditions. Specifically, we have
identified different hemilability behavior for catalyst with CNC, PNN, PNP and SNS
backbones with a data-driven approach. Understanding hemilability is important
because it affects the energy changes associated with pre-activation and regeneration
steps in the catalytic process, and in turn, influences the coordination sphere and
geometry of the complex. In addition, two new classes of reactivities, namely,
nucleophilic attack on carbonyls ligands and migration of CF3 moieties have been
identified through high-throughput virtual screening on the databases. Such a
bias-free high-throughput virtual screening on the systematically designed structures
opens new opportunities for the design of high-performance catalysts as well as an
accelerated method for exploring new reactivity patterns.
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5
SUMMARY AND OUTLOOK

C ATALYTIC systems are commonly represented by complex mixtures of reactants, cat-
alyst precursors, ligands, additives, and solvent that may give rise to the formation

of a wide variety of species that may show varied catalytic activity and behavior towards
other components of the reaction mixture. The primary tasks of computational catalysis
are to identify among these pre-reaction complexes those that contribute most to the
catalytic reaction and identify mechanisms of the main catalytic cycle and competing
reaction channels giving rise to unselective conversion routes or catalyst deactivation.
As we will demonstrated throughout this thesis, the development of a comprehensive
molecular-level picture of a catalytic system is a very challenging task due to the enor-
mous complexity of the associated chemical reaction. However, I firmly believe that if all
these tasks are accomplished, the resulting reactivity model could be used to guide the
development of more active and efficient catalysts, which is the core idea of the rational
catalyst design strategy.

Electronic structure calculations have become an indispensable tool in catalysis re-
search. They are currently routinely employed to rationalize experimental observations,
support mechanistic proposals and even to guide the design of new catalytic systems.
Nevertheless, the vast majority of computational studies in catalysis by transition met-
als still has an explanatory character and focus on describing only a small part of the
actual catalyst system. The transition to truly predictive computational modeling re-
quires the development of more complex chemical models that would allow an ade-
quate description of the full reaction networks underlying the catalytic processes. Those
approaches can be combined with the topics discussed in this thesis (novel electronic
structure theory methods, complex modeling, computation of multiple reaction path-
ways, reaction network analysis) for building a comprehensive theoretical framework
for computational catalysis. The elimination of expert bias in mechanistic studies is one
of the important targets and here the emergence of automated methods for reaction net-
work analysis is particularly exciting and holds a great promise of delivering a paradigm
shift in catalysis research. Particularly important is the extension of mechanistic studies
from the descriptions of catalytic cycles to other reaction paths resulting in selectivity
losses and catalyst deactivation as these processes actually determine the efficiency of
the catalysts and their durability.

Similarly, the adequate description of the complex chemistry of 3d transition metals
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necessitates the introduction of newer, more accurate, fast and expert-bias free method-
ologies suitable for dealing with the multiconfigurational effects in such catalytic sys-
tems. The development of methods to understand reactivity as defined by complicated
reaction mechanisms in practical 3d metal-based catalysts would provide one more gear
to optimize activity and selectivity. Additionally, there is a need for accurate automated
reaction discovery tools; however, this necessitates fast and reasonably accurate elec-
tronic structure calculations to make them applicable to realistic catalytic systems. The
development of increasingly accurate and efficient reaction discovery tools and elec-
tronic structure methods with broader applicability will aid in the development of prac-
tical, earth abundant metal catalysts for many vital reactions.

An alternative promising approach is the application of machine learning for the fast
exploration of the chemical space. Data-driven methodologies are expected to acceler-
ate the identification of key properties that can be used as descriptors of the catalytic and
contribute to computational catalyst design.[1–3] Application of such bias-free mecha-
nistic studies to high throughput virtual screening of comprehensive libraries of catalysts
will provide data-driven approaches for the rational design of catalysts with improved
functions.

This thesis deals with the development of automated catalyst screening methodolo-
gies based on a combination of accelerated semiempirical methods to explore the chem-
ical space and ab initio quantum chemical approaches to refine the mechanistic and
reactivity insights obtained at the exploration stage. Special focus is laid on identifying
reactivity channels resulting in the long-term catalyst deactivation. The key hypothe-
sis here is that the deactivation is a thermodynamically favorable phenomenon allow-
ing thus to reduce the problem of the automated mechanistic analysis to exploring the
thermodynamically favorable conversion channels only. An important goal of this work
was to arrive at the reactivity exploration methodology that could be combined with a
high-throughput screening of extended 3d transition metal catalyst spaces. In Chap-
ter 1, I present an overview of the state of the art in the automated mechanistic studies
with an emphasis on their application to catalysis by transition metals. These studies
have guided us in identifying methodological requirements for the development of the
more robust methods suitable. Following up in Chapter 2, we have done a compara-
tive study between our developed ReNeGate methodology and a representative method
we identified as the most efficient in the application to transition metal catalysis. Re-
action networks were built starting from similar starting points and results were com-
pared both in comprehensiveness of the results as well as efficiency and scalability of
the methodologies with respect to our specific goals of discovering new paths relevant
for the catalyst deactivation chemistry. Chapter 3 summarizes the detailed explanations
of our ReNeGate methodology its implementation and capabilities. The development
of the method is accompanied by illustrative case studies relevant to catalytic reduction
by homogeneous Mn(I) catalysts. Specifically, 3 case studies are discussed, starting with
the analysis of the conversion paths of the common Mn(CO)5Br precursor in the pres-
ence of an alkoxide base activator, followed by a more detailed analysis of the possible
reaction paths between the activator and a more relevant Mn(I)-based catalyst bearing a
representative diamine (NN) ligand. We next extended our analysis to the investigation
of multinuclear catalytic species by considering the transformations of a model system
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containing multiple Mn(I) complexes. The last case study was used to introduce a specif-
ically designed fragment analysis tool capable of extracting structural information and
identifying unique catalyst fragments upon analysis of complex catalytic systems. Our
analysis revealed new chemical conversion paths and inspired the experimental studies
that validated our experimental predictions. In the next Chapter 4, we have extended the
application of ReNeGate methodology to studies on large datasets of catalytic structures.
We combined an automated workflow for catalyst modification ChemSpaX to generate
an in silico database of hypothetical Mn(I) pincer catalysts with the ReNeGate reactiv-
ity exploration workflow. We introduced a workflow for the automated analysis of the
very large reactivity datasets to identify new reactivity patterns and correlate the struc-
tural features with the new reactivity predictions. This chapter is finalized by a detailed
discussion of new catalytic insights resulting from this high throughput study. The work-
flows presented in this thesis can be utilized for exploring various catalytic systems well
beyond the limited set of Mn(I) catalysts discussed herein. On the other hand, the in-
sights into the deactivation channels and catalytic chemistry obtained by using the de-
veloped workflow could not be obtained by using the conventional expert-driven explo-
ration approaches.
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5.1. SAMENVATTING

K ATALYTISCHE systemen worden gewoonlijk voorgesteld door complexe mengsels
van reactanten, katalysatorprecursors, liganden, additieven en oplosmiddelen die

aanleiding kunnen geven tot de vorming van een grote verscheidenheid aan soorten die
een gevarieerde katalytische activiteit en gedrag ten opzichte van andere componenten
van het reactiemengsel kunnen vertonen. De primaire taken van computationele kata-
lyse zijn het identificeren van deze pre-reactiecomplexen die het meest bijdragen aan de
katalytische reactie en het identificeren van mechanismen van de belangrijkste kataly-
tische cyclus en concurrerende reactiekanalen die aanleiding geven tot niet-selectieve
conversieroutes of katalysatordeactivering. Zoals we in dit proefschrift zullen aantonen,
is de ontwikkeling van een alomvattend beeld op moleculair niveau van een katalytisch
systeem een zeer uitdagende taak vanwege de enorme complexiteit van de bijbehorende
chemische reactie. Ik ben er echter vast van overtuigd dat als al deze taken zijn volbracht,
het resulterende reactiviteitsmodel kan worden gebruikt om de ontwikkeling van actie-
vere en efficiëntere katalysatoren te begeleiden, wat het kernidee is van de strategie voor
rationeel katalysatorontwerp.

Elektronische structuurberekeningen zijn een onmisbaar hulpmiddel geworden in het
katalyseonderzoek. Ze worden momenteel routinematig gebruikt om experimentele waar-
nemingen te rationaliseren, mechanistische voorstellen te ondersteunen en zelfs om het
ontwerp van nieuwe katalytische systemen te begeleiden. Desalniettemin heeft de over-
grote meerderheid van computationele studies naar katalyse door overgangsmetalen
nog steeds een verklarend karakter en richten ze zich op het beschrijven van slechts een
klein deel van het eigenlijke katalysatorsysteem. De overgang naar echt voorspellende
computationele modellering vereist de ontwikkeling van complexere chemische model-
len die een adequate beschrijving mogelijk maken van de volledige reactienetwerken die
ten grondslag liggen aan de katalytische processen. Deze benaderingen kunnen worden
gecombineerd met de onderwerpen die in dit proefschrift worden besproken (nieuwe
methoden voor de theorie van elektronische structuren, complexe modellering, bereke-
ning van meerdere reactiepaden, analyse van reactienetwerken) voor het bouwen van
een alomvattend theoretisch raamwerk voor computationele katalyse.

De eliminatie van expertbias in mechanistische studies is een van de belangrijke doe-
len en hier is de opkomst van geautomatiseerde methoden voor reactienetwerkanalyse
bijzonder opwindend en houdt een grote belofte in voor een paradigmaverschuiving in
katalyseonderzoek. Bijzonder belangrijk is de uitbreiding van mechanistische studies
van de beschrijvingen van katalytische cycli naar andere reactiepaden die resulteren in
selectiviteitsverliezen en deactivering van de katalysator, aangezien deze processen fei-
telijk de efficiëntie van de katalysatoren en hun duurzaamheid bepalen.

Evenzo vereist de adequate beschrijving van de complexe chemie van 3d overgangs-
metalen de introductie van nieuwere, nauwkeurigere, snellere en expert-bias-vrije me-
thodologieën die geschikt zijn voor het omgaan met de multiconfiguratie-effecten in
dergelijke katalytische systemen. De ontwikkeling van methoden om reactiviteit te be-
grijpen, zoals gedefinieerd door gecompliceerde reactiemechanismen in praktische 3d
metaalgebaseerde katalysatoren, zou een extra versnelling bieden om activiteit en selec-
tiviteit te optimaliseren. Bovendien is er behoefte aan nauwkeurige geautomatiseerde
hulpmiddelen voor het ontdekken van reacties; dit vereist echter snelle en redelijk nauw-
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keurige berekeningen van de elektronische structuur om ze toepasbaar te maken voor
realistische katalytische systemen. De ontwikkeling van steeds nauwkeurigere en effici-
ëntere hulpmiddelen voor het ontdekken van reacties en methoden voor elektronische
structuur met een bredere toepasbaarheid zal helpen bij de ontwikkeling van praktische,
in de aarde overvloedige metaalkatalysatoren voor veel vitale reacties.

Een alternatieve, veelbelovende benadering is de toepassing van machine learning
voor het snel verkennen van de chemische ruimte. Van gegevensgestuurde methodo-
logieën wordt verwacht dat ze de identificatie versnellen van sleuteleigenschappen die
kunnen worden gebruikt als descriptoren van de katalysator en bijdragen aan het ont-
werpen van computationele katalysatoren. [1–3] Toepassing van dergelijke bias-vrije
mechanistische studies op virtuele screening met hoge doorvoer van uitgebreide biblio-
theken van katalysatoren zal gegevensgestuurde benaderingen opleveren voor het rati-
onele ontwerp van katalysatoren met verbeterde functies.

Dit proefschrift behandelt de ontwikkeling van geautomatiseerde methodologieën voor
het screenen van katalysatoren, gebaseerd op een combinatie van versnelde semi empi-
rische methoden om de chemische ruimte te verkennen en ab initio kwantumchemische
benaderingen om de mechanistische en reactiviteitsinzichten verkregen in de verken-
ningsfase te verfijnen. Speciale aandacht wordt besteed aan het identificeren van reac-
tiviteitskanalen die resulteren in de deactivering van de katalysator op lange termijn. De
sleutelhypothese hier is dat de deactivering een thermodynamisch gunstig fenomeen is,
waardoor het probleem van de geautomatiseerde mechanistische analyse dus kan wor-
den teruggebracht tot het verkennen van alleen de thermodynamisch gunstige conver-
siekanalen. Een belangrijk doel van dit werk was om te komen tot de reactiviteitsverken-
ningsmethodiek die gecombineerd zou kunnen worden met een high-throughput scree-
ning van uitgebreide 3d overgangsmetaalkatalysatorruimten. In Hoofdstuk 1 presenteer
ik een overzicht van de stand van zaken in de geautomatiseerde mechanistische studies
met de nadruk op hun toepassing op katalyse door overgangsmetalen. Deze studies heb-
ben ons geleid bij het identificeren van methodologische vereisten voor de ontwikkeling
van de meer robuuste methoden die geschikt zijn. Als vervolg op hoofdstuk 2 hebben we
een vergelijkende studie gedaan tussen onze ontwikkelde ReNeGate-methodiek en een
representatieve methode die we hebben geïdentificeerd als de meest efficiënte in de toe-
passing op overgangsmetaalkatalyse. Er werden reactienetwerken gebouwd uitgaande
van vergelijkbare uitgangspunten en de resultaten werden vergeleken, zowel wat betreft
volledigheid van de resultaten als efficiëntie en schaalbaarheid van de methodologieën
met betrekking tot onze specifieke doelen om nieuwe paden te ontdekken die relevant
zijn voor de katalysatordeactiveringschemie. Hoofdstuk 3 geeft een samenvatting van
de gedetailleerde uitleg van onze ReNeGate-methodologie, de implementatie en moge-
lijkheden ervan. De ontwikkeling van de methode gaat gepaard met illustratieve case-
study’s die relevant zijn voor katalytische reductie door homogene Mn(I)-katalysatoren.
Specifiek worden 3 casestudies besproken, beginnend met de analyse van de conver-
siepaden van de gemeenschappelijke Mn(CO)5Br precursor in aanwezigheid van een
alkoxidebase-activator, gevolgd door een meer gedetailleerde analyse van de mogelijke
reactiepaden tussen de activator en een relevantere op Mn(I) gebaseerde katalysator met
een representatieve diamine (NN)-ligand. Vervolgens hebben we onze analyse uitge-
breid naar het onderzoek van meerkernige katalytische soorten door de transformaties
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van een modelsysteem met meerdere Mn (I) -complexen te beschouwen. De laatste
case study werd gebruikt om een specifiek ontworpen tool voor fragmentanalyse te in-
troduceren die structurele informatie kan extraheren en unieke katalysatorfragmenten
kan identificeren bij analyse van complexe katalytische systemen. Onze analyse ont-
hulde nieuwe chemische conversiepaden en inspireerde de experimentele studies die
onze experimentele voorspellingen valideerden. In het volgende hoofdstuk 4 hebben
we de toepassing van de ReNeGate-methodiek uitgebreid naar studies over grote data-
sets van katalytische structuren. We combineerden een geautomatiseerde workflow voor
katalysatormodificatie ChemSpaX om een in silico-database van hypothetische Mn(I)-
tangkatalysatoren te genereren met de ReNeGate-workflow voor reactiviteitsonderzoek.
We hebben een workflow geïntroduceerd voor de geautomatiseerde analyse van de zeer
grote reactiviteitsdatasets om nieuwe reactiviteitspatronen te identificeren en de struc-
turele kenmerken te correleren met de nieuwe reactiviteitsvoorspellingen. Dit hoofdstuk
wordt afgesloten met een gedetailleerde bespreking van nieuwe katalytische inzichten
die voortkomen uit deze high throughput studie. De workflows die in dit proefschrift
worden gepresenteerd, kunnen worden gebruikt voor het verkennen van verschillende
katalytische systemen die veel verder gaan dan de beperkte set Mn(I)-katalysatoren die
hierin worden besproken. Aan de andere kant konden de inzichten in de deactiverings-
kanalen en katalytische chemie verkregen door gebruik te maken van de ontwikkelde
workflow niet worden verkregen door gebruik te maken van de conventionele door ex-
perts aangestuurde exploratiebenaderingen.



6
CONCLUSION

I N this thesis, I highlighted a number of projects aimed at developing and testing new
simulation methods for studying complex reactive systems, with a particular empha-

sis on simulation strategies based on the concept of bonding graphs. These mathemati-
cal structures provide useful tools for a variety of algorithms developed over the last few
decades. Through automated analysis of exhaustive exploration trajectories, I have been
able to capture serendipities that could escape the expert heuristics or otherwise needed
expertise in different disciplines to be interpreted correctly. Such discoveries could range
from very obvious one-step reactions that were just not “normally” considered to multi-
step complex reactions that were not imaginable to the expert. With automated reactiv-
ity screenings on in silico catalyst libraries, we have taken a big step towards “rational”
catalyst design.

Increasingly affordable high-performance computing hardware to enable ab initio elec-
tronic structure calculations as well as the advancement of AI/ML methods, have re-
sulted in new opportunities for automatic reaction discovery methods in the last decade.
Such automatic reaction discovery schemes are becoming more widely available for study-
ing complex chemical reactions. It should, however, be considered that machine learn-
ing approaches towards is silico catalyst research and development carry the inaccu-
racies of the ab initio methods used during the training. With the new understand-
ings from this thesis, we now know that we might have only touched the tip of the ice-
berg for in depth understanding of the catalytic conversions and there is room for ap-
plying the automated explorations to this classic fields. While the routine catalysis re-
search efforts are implicitly dedicated to optimizing the “known” or “assumed” condi-
tions/mechanisms, exploring and understanding the “unknown” (deactivation) mecha-
nisms should be regarded as one of the primary challenge for the future.

From the development point of view, the pipelines introduced in this thesis can foster
for more reliable and fast methods for unbiased exploration of the chemical space in the
future. In the application of chemical reaction networks for understanding catalytic be-
haviour, there should be measures to distinguish when our autogenerated chemical re-
action networks are satisfactorily complete and accurate to answer the specific physical
or chemical questions. In other words, we should know "when to stop" the exploration
of the vast catalytic space. With the advent of efficient and reliable methods for exhaus-
tively exploring different options, we are able to produce big data and should be ready to

111



6

112 6. CONCLUSION

address challenges in providing guidance or even replacing the expert via the automate
analysis of big data from (virtual) high throughput screening.
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CHAPTER3

A.1. RELEVANT MOLECULAR GRAPH THEORY TERMINOLOGY
• Graphs: A graph G is defined as G = (V, E), where V represents the set of

vertices (also called nodes or points) and E represents the set of all edges (also
called links) in the graph. We distinguish many types of graphs:

1. Directed graph: a graph G = (V, A), where all the edges are directed from
one vertex to another. The edges are in general called arcs.

2. Undirected graph: a graph G = (V, E), where all the edges are
bidirectional.

3. Mixed graph: a graph G = (V, E, A) consisting of a set of undirected
edges E, and a set of directed edges (arcs) A.

Figure A.1.: Graph Types based on directionality of edges

• Subgraph: a subgraph G′ = (V′, E′) of a graph G = (V, E), is a subset of vertices
of V and a subset of edges E. An induced subgraph, is subgraph where the
subset of edges contains only the vertices

• coloured graph: it is a graph in which each vertex is assigned a colour. In our
case, colours on the vertices represents the chemical types of the atoms.

113
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• Adjacency Matrices

The adjacency matrix is a mathematical way to represent graph. It is an n×n
matrix where n represents the number of vertices of the graph and the values
in the matrix represents the edges between these vertices. It is important to
note that the matrix representation of an undirected graph is symmetric which
is not always the case for a directed or mixed graph.

• Connected component

In graph theory, a connected component of an undirected graph is an induced
subgraph in which each pair of vertices is connected to each other via a path.

Figure A.2.: Connected components in graphs

A.2. MOLECULAR CONFORMATION AND RELATIONSHIP TO

GRAPH THEORY
• Molecular Graph : One crucial step of the algorithm is to set up a model that

defines a molecular conformation with the right level of granularity. In our
case, we have chosen to define the Configuration in terms of covalent bonds
and organometallic and ionic interactions formed between the atoms. The
definitions are based on Euclidian distances as described below:

• A bond is formed between a pair of atoms [a, b] with respective Cartesian
coordinates (xa , ya , za) and (xb , yb , zb), if the Euclidean distance√

(xa − xb)2 + (ya − yb)2 + (za − zb)2 (A.1)

is less than a cut-off distance Dr . For covalent bonds, the algorithm defines the
Dr distance by the sum of covalent radii of atoms a and b with an additional
margin of 2% of this sum. For the organometallic and ionic interactions,
expert user is given the freedom to set case specific Dr distances, for example,
the distance between manganese and oxygen atoms (2.44 Angstrom), etc.

By defining the different bonds, graphs corresponding to different conformations are
constructed. By definition, a conformation is translated into a mixed graph [1]

G = (V, EC , AH , EI , EO) (A.2)
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where:

• V: is the set of all atoms present in the conformation. Each atom represents
one vertex in the graph G.

• EC : the set of covalent bonds. Each covalent bond represents undirected edge
in the graph G.

• AH : the set of hydrogen bonds. Each hydrogen bond represents directed edge
in the graph G.

• EI : the set of intermolecular/ionic interactions. Each intermolecular/ionic
interaction represents undirected edge in the graph G.

• EO : the set of organometallic interactions. Each organometallic interaction
represents undirected edge in the graph G.

The Cartesian atomic positions taken from the trajectory are used only for forming
the mixed graphs. Once the graphs are obtained, the changes in the conformations
are analysed through the comparison of these graphs using isomorphism check.

• Molecular Graph isomorphism

Molecular configurations are translated into unique graphs based on threshold values
(Equation A1). Once conceived as graphs, isomorphism check is done to track
possible changes along the trajectory. To reduce the cost of the isomorphism tests,
optimisations were used as defining orbits around the atoms [2]. For the present
work, the algorithm is developed for analysing molecular dynamics trajectories in
terms of arbitrary bonding types which represent the conformational change.
Two conformations are different if and only if they are not isomorphic. The
isomorphism between two graphs is defined by a bijection between them: Two
graphs Ga and Gb are isomorphic if and only if there exists a bijection θa,b :Va Vb

such that :

• ∀ v ∈Va , ; (v) = ;(θa,b (v)), θa,b (v) ∈Vb

• [v,u] ∈ Eca ⇔ [
θa,b (v) , θa,b (u)

] ∈ Eb

• (v,u) ∈ AHa ⇔ (θa,b (v) , θa,b (u)) ∈ AHb

• [v,u] ∈ E Ia ⇔ [
θa,b (v) , θa,b (u)

] ∈ E I b

• [v,u] ∈ EOa ⇔ [
θa,b (v) , θa,b (u)

] ∈ EO b

In our case, we apply an isomorphism test considering the atom chemical type as an
attribute for different nodes. Consequently, each atom will be given a colour. Two
atoms can be exchanged if and only if have the same colour. Using this partitioning
will not only allow a coherent comparison between graphs but also reduce the
number of possible permutations to decide if the graphs are identical or not and
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Figure A.3.: using the isomorphism conditions, graphs a and b are considered
isomorphic while graph c is not isomorphic to them

thus the algorithm can perform faster. Figure A3.1. illustrates three example graphs
where graphs (a) and (b) are isomorphic, while graph (c) is not isomorphic to a and
b.
A molecular system is defined as a graph such that vertices represent atoms
of the molecular system and edges represent the bonds formed between these
atoms (covalent bond, hydrogen bonds, intermolecular electrostatic interactions,
etc., depending on the system). Conformational dynamics of molecular system do
occur (evidently depending on internal energies and energy barriers on the potential
energy surface), with "fastest motions" being hydrogen/ionic bond dynamics
(forming/breaking) along time while larger amplitude motions can induce large
structural modifications such as torsional movements. Chemical reactions are defined
as the occurrences of formation/breakage (covalent) bonds, leading to numerous
changes in the chemical entities over time. Bond dynamics (forming/breaking)
represent, in the graph terminology, a change in the edge sets. The exploration of
different configurations can be seen as an exploration of different graph topologies,
tracked using graph theory methods via checking for isomorphic graphs in the
configuration ensemble [1]. An isomorphism between two graphs is a bijection
between their vertex sets that preserves adjacency3, in other words, it is a function
between the elements of two sets, where each element of one set is paired with
exactly one element of the other set, and each element of the other set is paired
with exactly one element of the first set.
Isomorphism checks are the key components of the reaction event exploration
step and is used to identify unique conformations from the reactive trajectory.
Based on the time evolution of the unique conformers in the reactive trajectory,
a graph of transition (showing how the conformations are related one to another
and the time sequence) for species present in the reference network is formed.
The changes in conformations are followed over time evolution of trajectories for
changes in bonding patterns of choice (among hydrogen bond(s), proton transfer(s),
coordination number(s), covalent bond(s) and organometallic interaction(s)).
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A.3. DFT ENERGIES OF STRUCTURES IDENTIFIED BY

RENEGATE

Table A.1.: DFT optimised structures for species present in the ReNeGate -computed
reaction network of a model Mn(CO)5Br pre-catalyst by KOiPr base
(Figure.3.5)

Configuration ID Energy Interaction ∆E(kcal.mol−1)
Configuration2 II -5083.214368 Nucleophilic attack -15.2
Configuration3 II -5083.214189 Nucleophilic attack -15.2
Configuration4 III -5083.180776 C(O)Oipr,α-

ketoacyl+KBr
5.9

Configuration6 II -5083.214183 Nucleophilic attack -15.1
Configuration7 II -5083.213168 Nucleophilic attack -14.5
Configuration8 IV -5083.197949 C(O)Oipr,α-ketoacyl -4.9
Configuration9 III -5083.19795 C(O)Oipr,α-

ketoacyl+KBr
-4.9

Configuration10 II -5083.218841 Nucleophilic attack -18
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Table A.2.: DFT optimised structures for species present in the ReNeGate-computed
reaction network of a model MnBr(CO)3NN pre-catalyst by KOiPr base in
isopropanol solvent (Figure 3.6)

Configuration Energy(Hartrees) Interaction ∆E(kcal.mol−1)
Configuration43 -6055.632111 Mn-OiPr_KBr 0
Configuration4 -6055.630418 Mn-OiPr_KBr 1.1
Configuration31 -6055.624409 Mn-OiPr_KBr 4.8
Configuration39 -6055.620297 Mn-OiPr_KBr 7.4
Configuration32 -6055.618161 Mn-OiPr_KBr 8.8
Configuration40 -6055.617387 Mn-OiPr_KBr 9.2
Configuration62 -6055.61718 Mn-OiPr_KBr 9.4
Configuration33 -6055.617092 Mn-OiPr_KBr 9.4
Configuration48 -6055.606542 PrOH-Mn-OCOR_KBr 16.1
Configuration50 -6055.601041 PrOH-Mn-OCOR_KBr 19.5
Configuration44 -6055.594436 Mn-OPr_N-diss_KBr 23.7
Configuration83 -6055.602944 Mn-OCOR_KBr 18.3
Configuration77 -6055.60094 Mn-OCOR_KBr 19.6
Configuration11 -6055.594466 Mn-OCOR_KBr 23.6
Configuration81 -6055.590699 Mn-OCOR_KBr 26
Configuration85 -6055.584681 Mn-OCOR_KBr 29.8
Configuration49 -6055.583848 Mn-OCOR_KBr 30.3
Configuration6 -6055.580477 Mn-OCOR_KBr 32.4
Configuration28 -6055.5978 Mn-Br_N-diss_ROCO 21.5
Configuration88 -6055.596875 Mn-Br_N-diss_ROCO 22.1
Configuration18 -6055.583781 Mn-Br_N-diss_ROCO 30.3
Configuration26 -6055.580434 Mn-Br_N-diss_ROCO 32.4
Configuration87 -6055.57916 Mn-Br_N-diss_ROCO 33.3
Configuration27 -6055.574144 Mn-Br_N-diss_ROCO 36.4
Configuration19 -6055.573722 Mn-Br_N-diss_ROCO 36.7
Configuration23 -6055.571235 Mn-Br_N-diss_ROCO 38.2
Configuration30 -6055.566041 Mn-Br_N-diss_ROCO 41.5
Configuration70 -6055.555067 Mn-Br_N-diss_ROCO 48.4
Configuration17 -6055.548645 Mn-Br_N-diss_ROCO 52.4
Configuration75 -6055.608089 Mn-Br_OCOR_NN-coord 15.1
Configuration54 -6055.602775 Mn-Br_OCOR_NN-coord 18.4
Configuration52 -6055.602211 Mn-Br_OCOR_NN-coord 18.8
Configuration74 -6055.590595 K-Br-Mn-OR_NN-diss 26.1
Configuration45 -6055.571787 K-Br-Mn-OR_NN-diss 37.9
Configuration37 -6055.560253 NN-diss_Mn-Opr_KBr 45.1
Configuration36 -6055.5754 NN-diss_Br-Mn-OiPr 35.6
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Table A.3.: DFT optimised structures for fragments in the ReNeGate -computed
reaction network for cluster formation upon base-activation of Mn(CO)5Br
pre-catalyst by KOiPr base (Figure 3.7)

Fragment Energy(Hartree) Fragment ID ∆E(kcal.mol−1)
Fragment1 -1911.439826 F1(Lower) -61.5
Fragment7 -1911.394654 F1(Upper) -4.6
Fragment6 -1911.394306 F1(Upper) -4.1
Fragment5 -1911.394306 F1(Upper) -4.1
Fragment42 -3822.782028 F4 0
Fragment15 -3822.773267 F3 5.5
Fragment34 -3822.771475 F4 6.6
Fragment35 -3822.771475 F4 6.6
Fragment43 -3822.764056 F4 11.3
Fragment24 -3822.761704 F3 12.8
Fragment29 -3822.76073 F3 13.4
Fragment25 -3822.759259 F3 14.3
Fragment27 -3822.758379 F3 14.9
Fragment17 -1911.345496 F2 57.3
Fragment18 -1911.345226 F2 57.7
Fragment16 -1911.34329 F2 60.1
Fragment20 -1911.343249 F2 60.2
Fragment8 -1911.339866 F2 64.4
Fragment9 -1911.328319 F2 80
Fragment40 -1911.324295 F2 84
Fragment21 -1911.324019 F2 84.4
Fragment39 -1911.324019 F2 84.4
Fragment38 -1911.324019 F2 84.4
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B.1. CORRELATION ANALYSIS OF THE STRUCTURAL FEATURES

AND REACTIVITY FOR STRUCTURES IN [-40,25]
KCAL.MOL−1 RANGE

Figure B.1.: Histogram plots for the frequency of appearance of alternative stable
species in the [-40,25] kcal.mol−1 range based on modified structures for
CNC, PNP, PNN and SNS catalysts as a function of feature combination
(a) R1 - backbone, (b) R1 - R2, (c) R1 - CN (coordination number of the
metal center) (d) R1 - ∆E (relative energy) and (e) R1-X.
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The trends observed for R1- (backbone, R2, CN, ∆E, X) combinations in the
[-40, 0] kcal.mol−1 range are also generally observed in the [-40,25] kcal.mol−1

range. Additional observations limited to only [0,25] kcal.mol−1 for R1-backbone
combinations include (H, Ph)-PNN , (H,cy,Ph)-PNP, (t Bu,cy,Ph,i Pr)-SNS. Presence
of bulky (Ph,cy,t Bu and i Pr) moieties at R1 can give rise to unstable alternative
structures. R1-R2: (ph,i Pr)(H,ph), cy-ph, H-(i Pr,t Bu) combinations are also limited to
structures within [0,25] kcal.mol−1. 7 coordinated Mn is observed also only in [0,25]
kcal.mol−1 when cy is present at R1. For different R1-X combinations Br-(ph,i Pr),
Ot Bu-(H,i Pr), OCH3-ph combinations only lead to structures with higher energies
than the respective reference.

B.2. ROLE OF ADDUCTS IN OBSERVED REACTIVITIES:

B.3. EXPLORATION RESULTS LEADING TO DECOORDINATION

OF MN-N LIGANDS FOR CATALYSTS WITH DIFFERENT

BACKBONES:

B.4. EXPLORATION RESULTS FOR ATTACK BY NHC MOIETIES

OF THE CNC PINCER ON THE CARBONYL LIGANDS

(MN-C INTERACTIONS):
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Figure B.2.: Exploration results for deactivated species. species with lower energies
compared to respective reference structures are categorized based on the
ligand substituent on the R1 position on the backbone of the catalyst for
different backbones and adducts on the Mn center, nodes are colored
based on the ligand present at R2 position on the catalyst backbone.



B

124 B. SUPPLEMENTARY INFORMATION CHAPTER4

Figure B.3.: Explored results for species less than 25 kcal.mol−1 different in energy
from the respective reference structures. Species are categorized based
on the ligand substituent on the R1 position on the backbone of the
catalyst for different backbones and adducts on the Mn center.
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Figure B.4.: Exploration results for all explored species. species are categorized based
on the ligand substituent on the R1 position on the backbone of the
catalyst for different backbones and adducts on the Mn center, nodes
are colored based on the adduct present on the Mn.
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Figure B.5.: Mn-N decoordination CNC presence of bulky t Bu and cy functional
groups at R2 position leads in the decoordination of the Mn-N bond.
When CF3 or no functional groups are present at R2 position along with
H or CF3 groups at R1 position -Mn-N is observed. Mn decoordination
is not observed when Br is coordinated to the Mn center.
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Figure B.6.: Mn-N decoordination for catalysts with PNN backbone: presence of
CF3 groups at either of R1 or R2 position has a direct impact on the
decoordination of the Mn-N bond. Mn-N bond very easily decoordinates
with all R1-R2-Adduct combinations. Decoordination of both Mn-N
bonds, -Mn-N, -Mn-P or complete decoordination of the ligands are
specific to the presence of CF3 groups at R1 position.
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Figure B.7.: Mn-N decoordination for catalysts with PNP backbone: decoordination
bahaviors observed include decoordination of the -Mn-N bond along
with either or both of Mn-P ligands donors. While decoordination of the
Mn-N bond is observed for all R1 -R2 combinations, decoordination of
one Mn-P is observed when H or CF3 groups are present at R1 position.
Complete dissociation of all backbone ligands is observed when CF3

groups are present at R1 and no R2 (-) modifications are made.
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Figure B.8.: Mn-N decoordination for catalyst with SNS backbone: For catalysts with
SNS scaffolds, decoordination bahaviors observed include decoordination
of the -Mn-N bond along with either or both of Mn-S ligands donors.
Presence of CF3 groups at R1 position has a clear impact on the
decoordination of both Mn-N and Mn-S donor ligands. Decoordination
of the central Mn-N with R1: CF3 and R2:cy.
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Figure B.9.: Mn-C decoordination for catalyst with CNC backbone: Presence of bulky
t Bu groups at R1 positions leads to the decoordination of the Mn-C
along with decoordination of the MnN bond. Presence of electron
withdrawing CF3 groups at R2 position also causes the decoordination of
the Mn-C bond.
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Table B.1.: Exploration data for structures where decoordination of the central Mn-C bond has been observed: Structural (R1,
R2, adduct, backbone) and reactive (∆E(kcal.mol−1), ‘-Mn-C’ side-arm lability, coordination number of Mn (CN))
features are listed for explored structures.

ID CN ∆E(kcal.mol−1) Adduct R1 R2 backbone side-arm lability
1 Br-CNC-CF3-cy-2 6 94.16 Br CF3 cy CNC -Mn-C(2)
2 Br-CNC-CF3-cy-3 5 89.96 Br CF3 cy CNC -Mn-N, -Mn-C(2)
3 Br-CNC-cy-t Bu-2 5 39.12 Br cy t Bu CNC -Mn-N, -Mn-C
4 Br-CNC-i Pr-CF3-2 5 16.89 Br i Pr CF3 CNC -Mn-C
5 Br-CNC-i Pr-CF3-3 6 18.04 Br i Pr CF3 CNC -Mn-C
6 Br-CNC-ph-ph-2 5 41.79 Br ph ph CNC -Mn-N, -Mn-C(2)
7 Br-CNC-ph-ph-3 5 68.8 Br ph ph CNC -Mn-N, -Mn-C(2)
8 Br-CNC-ph-ph-4 4 67.38 Br ph ph CNC -Mn-N, -Mn-C(2)
9 Br-CNC-ph-ph-5 5 99.08 Br ph ph CNC -Mn-N, -Mn-C(2)
10 Br-CNC-t Bu-CF3-3 6 6.11 Br t Bu CF3 CNC -Mn-C
11 Br-CNC-t Bu-CF3-4 5 7.44 Br t Bu CF3 CNC -Mn-C
12 Br-CNC-t Bu-CF3-5 5 41.77 Br t Bu CF3 CNC -Mn-N, -Mn-C
13 Br-CNC-t Bu-CF3-6 4 42.5 Br t Bu CF3 CNC -Mn-N, -Mn-C
14 Br-CNC-t Bu-CF3-7 5 31.35 Br t Bu CF3 CNC -Mn-N, -Mn-C
15 Br-CNC-t Bu-CF3-8 6 27.43 Br t Bu CF3 CNC -Mn-N, -Mn-C
16 Br-CNC-t Bu-cy-3 4 -2.93 Br t Bu cy CNC -Mn-N, -Mn-C
17 Br-CNC-t Bu-i Pr-3 5 20.53 Br t Bu i Pr CNC -Mn-C
18 Br-CNC-t Bu-t Bu-3 5 -26.92 Br t Bu t Bu CNC -Mn-N, -Mn-C
19 Br-CNC-t Bu-2 5 27.43 Br t Bu H CNC -Mn-C
20 Br-CNC-t Bu-3 5 43.31 Br t Bu H CNC -Mn-N, -Mn-C
21 Br-CNC-t Bu-4 5 36.82 Br t Bu H CNC -Mn-N, -Mn-C
22 Ot Bu-CNC-CF3-CF3-5 5 16.33 Ot Bu CF3 CF3 CNC -Mn-C
23 Ot Bu-CNC-CF3-CF3-6 4 44.73 Ot Bu CF3 CF3 CNC -Mn-N, -Mn-C
24 Ot Bu-CNC-CF3-cy-5 4 42.97 Ot Bu CF3 cy CNC -Mn-N, -Mn-C
25 Ot Bu-CNC-CF3-cy-6 4 71.86 Ot Bu CF3 cy CNC -Mn-N, -Mn-C(2)



B

1
3

2
B

.
S

U
P

P
L

E
M

E
N

T
A

R
Y

IN
F

O
R

M
A

T
IO

N
C

H
A

P
T

E
R4

26 Ot Bu-CNC-CF3-ph-5 5 65.67 Ot Bu CF3 ph CNC -Mn-N, -Mn-C
27 Ot Bu-CNC-CF3-ph-6 6 70.68 Ot Bu CF3 ph CNC -Mn-N, -Mn-C
28 Ot Bu-CNC-CF3-ph-10 6 64.03 Ot Bu CF3 ph CNC -Mn-N, -Mn-C
29 Ot Bu-CNC-CF3-ph-11 5 71.77 Ot Bu CF3 ph CNC -Mn-N, -Mn-C
30 Ot Bu-CNC-CF3-ph-12 5 59.34 Ot Bu CF3 ph CNC -Mn-N, -Mn-C(2)
31 Ot Bu-CNC-CF3-ph-13 5 54.52 Ot Bu CF3 ph CNC -Mn-N, -Mn-C
32 Ot Bu-CNC-CF3-ph-14 5 14.3 Ot Bu CF3 ph CNC -Mn-N, -Mn-C
33 Ot Bu-CNC-CF3-ph-15 4 29.41 Ot Bu CF3 ph CNC -Mn-N, -Mn-C
34 Ot Bu-CNC-CF3-ph-16 5 29.48 Ot Bu CF3 ph CNC -Mn-N, -Mn-C
35 Ot Bu-CNC-CF3-ph-17 5 18.32 Ot Bu CF3 ph CNC -Mn-N, -Mn-C
36 Ot Bu-CNC-CF3-ph-18 4 33.52 Ot Bu CF3 ph CNC -Mn-N, -Mn-C(2)
37 Ot Bu-CNC-CF3-ph-19 6 54.55 Ot Bu CF3 ph CNC -Mn-C
38 Ot Bu-CNC-CF3-t Bu-6 4 38.07 Ot Bu CF3

t Bu CNC -Mn-N, -Mn-C
39 Ot Bu-CNC-CF3-t Bu-7 5 49.16 Ot Bu CF3

t Bu CNC -Mn-N, -Mn-C
40 Ot Bu-CNC-CF3-t Bu-8 4 43.77 Ot Bu CF3

t Bu CNC -Mn-N, -Mn-C(2)
41 Ot Bu-CNC-CF3-3 4 27.08 Ot Bu CF3 H CNC -Mn-N, -Mn-C
42 Ot Bu-CNC-CF3-9 6 82.83 Ot Bu CF3 H CNC -Mn-N, -Mn-C
43 Ot Bu-CNC-CF3-10 5 66.98 Ot Bu CF3 H CNC -Mn-N, -Mn-C
44 Ot Bu-CNC-cy-CF3-8 5 14.78 Ot Bu Cy CF3 CNC -Mn-C
45 Ot Bu-CNC-cy-5 5 78.44 Ot Bu Cy H CNC -Mn-N, -Mn-C(2)
46 Ot Bu-CNC-H-CF3-5 5 50.35 Ot Bu H CF3 CNC -Mn-C
47 Ot Bu-CNC-H-CF3-6 4 36.77 Ot Bu H CF3 CNC -Mn-N, -Mn-C
48 Ot Bu-CNC-H-cy-3 4 55.07 Ot Bu H Cy CNC -Mn-N, -Mn-C
49 Ot Bu-CNC-H-i Pr-5 4 49.11 Ot Bu H i Pr CNC -Mn-N, -Mn-C
50 Ot Bu-CNC-H-t Bu-2 4 26.18 Ot Bu H t Bu CNC -Mn-N, -Mn-C
51 Ot Bu-CNC-H-2 5 36.18 Ot Bu H H CNC -Mn-C
52 Ot Bu-CNC-i Pr-CF3-5 4 36.12 Ot Bu i Pr CF3 CNC -Mn-N, -Mn-C
53 Ot Bu-CNC-i Pr-t Bu-2 4 11.57 Ot Bu i Pr t Bu CNC -Mn-N, -Mn-C
54 Ot Bu-CNC-i Pr-t Bu-5 4 23.63 Ot Bu i Pr t Bu CNC -Mn-N, -Mn-C
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55 Ot Bu-CNC-i Pr-t Bu-8 5 27.07 Ot Bu i Pr t Bu CNC -Mn-N, -Mn-C
56 Ot Bu-CNC-i Pr-4 5 44.79 Ot Bu i Pr H CNC -Mn-N, -Mn-C
57 Ot Bu-CNC-i Pr-5 4 39.94 Ot Bu i Pr H CNC -Mn-N, -Mn-C
58 Ot Bu-CNC-ph-CF3-4 4 29.98 Ot Bu Ph CF3 CNC -Mn-N, -Mn-C
59 Ot Bu-CNC-ph-CF3-5 4 32.19 Ot Bu Ph CF3 CNC -Mn-N, -Mn-C
60 Ot Bu-CNC-ph-CF3-6 4 44.46 Ot Bu Ph CF3 CNC -Mn-N, -Mn-C
61 Ot Bu-CNC-ph-t Bu-4 4 40.41 Ot Bu Ph t Bu CNC -Mn-N, -Mn-C
62 Ot Bu-CNC-t Bu-CF3-2 4 5.81 Ot Bu t Bu CF3 CNC -Mn-N, -Mn-C
63 Ot Bu-CNC-t Bu-CF3-3 5 -0.28 Ot Bu t Bu CF3 CNC -Mn-C
64 Ot Bu-CNC-t Bu-ph-2 5 -18.05 Ot Bu t Bu Ph CNC -Mn-C
65 Ot Bu-CNC-t Bu-t Bu-3 4 -18.33 Ot Bu t Bu t Bu CNC -Mn-N, -Mn-C
66 Ot Bu-CNC-t Bu-t Bu-4 4 -4.24 Ot Bu t Bu t Bu CNC -Mn-N, -Mn-C
67 Ot Bu-CNC-t Bu-5 5 39.06 Ot Bu t Bu H CNC -Mn-C
68 OCH3-CNC-CF3-CF3-11 5 18.71 OCH3 CF3 CF3 CNC -Mn-C
69 OCH3-CNC-CF3-i Pr-3 4 31.61 OCH3 CF3

i Pr CNC -Mn-N, -Mn-C
70 OCH3-CNC-CF3-i Pr-9 4 47.4 OCH3 CF3

i Pr CNC -Mn-N, -Mn-C
71 OCH3-CNC-CF3-ph-8 6 68.73 OCH3 CF3 ph CNC -Mn-N, -Mn-C
72 OCH3-CNC-CF3-ph-9 5 74.91 OCH3 CF3 ph CNC -Mn-N, -Mn-C
73 OCH3-CNC-CF3-ph-10 5 55.84 OCH3 CF3 ph CNC -Mn-C
74 OCH3-CNC-CF3-6 6 58.67 OCH3 CF3 H CNC -Mn-N, -Mn-C
75 OCH3-CNC-CF3-7 5 61.59 OCH3 CF3 H CNC -Mn-N, -Mn-C
76 OCH3-CNC-CF3-8 4 67.13 OCH3 CF3 H CNC -Mn-N, -Mn-C
77 OCH3-CNC-CF3-9 6 40.72 OCH3 CF3 H CNC -Mn-N, -Mn-C
78 OCH3-CNC-CF3-10 6 47.97 OCH3 CF3 H CNC -Mn-N, -Mn-C
79 OCH3-CNC-CF3-11 5 40.32 OCH3 CF3 H CNC -Mn-N, -Mn-C(2)
80 OCH3-CNC-CF3-12 6 44.51 OCH3 CF3 H CNC -Mn-N, -Mn-C
81 OCH3-CNC-H-ph-5 5 51.96 OCH3 H ph CNC -Mn-N, -Mn-C
82 OCH3-CNC-H-5 4 56.13 OCH3 H H CNC -Mn-N, -Mn-C
83 OCH3-CNC-ph-ph-6 6 65.67 OCH3 Ph ph CNC -Mn-N, -Mn-C
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84 OCH3-CNC-ph-ph-7 6 68.51 OCH3 ph ph CNC -Mn-N, -Mn-C
85 OCH3-CNC-t Bu-CF3-4 5 9.15 OCH3

t Bu CF3 CNC -Mn-C
86 OCH3-CNC-t Bu-CF3-5 5 3.69 OCH3

t Bu CF3 CNC -Mn-C
87 OCH3-CNC-t Bu-CF3-6 4 11.77 OCH3

t Bu CF3 CNC -Mn-N, -Mn-C
88 OCH3-CNC-t Bu-ph-2 5 7.27 OCH3

t Bu ph CNC -Mn-C
89 OH-CNC-CF3-cy-5 5 63.25 OH CF3 cy CNC -Mn-N, -Mn-C
90 OH-CNC-CF3-ph-3 5 19.31 OH CF3 ph CNC -Mn-N, -Mn-C
91 OH-CNC-CF3-ph-4 5 32.51 OH CF3 ph CNC -Mn-N, -Mn-C
92 OH-CNC-CF3-ph-11 5 70.2 OH CF3 ph CNC -Mn-N, -Mn-C
93 OH-CNC-CF3-ph-12 6 82.39 OH CF3 ph CNC -Mn-N, -Mn-C
94 OH-CNC-CF3-5 6 68.73 OH CF3 H CNC -Mn-C
95 OH-CNC-H-i Pr-6 6 87.29 OH H i Pr CNC -Mn-N, -Mn-C
96 OH-CNC-H-i Pr-7 5 111.13 OH H i Pr CNC -Mn-N, -Mn-C(2)
97 OH-CNC-H-i Pr-8 7 85.81 OH H i Pr CNC -Mn-N, -Mn-C
98 OH-CNC-H-i Pr-9 6 105.24 OH H i Pr CNC -Mn-N, -Mn-C
99 OH-CNC-H-6 5 80.06 OH H H CNC -Mn-C
100 OH-CNC-ph-ph-9 5 66.12 OH ph ph CNC -Mn-C
101 OH-CNC-ph-ph-10 5 67.68 OH ph ph CNC -Mn-N, -Mn-C
102 OH-CNC-ph-ph-11 4 67.99 OH ph ph CNC -Mn-N, -Mn-C
103 OH-CNC-t Bu-i Pr-5 6 39.97 OH t Bu i Pr CNC -Mn-C
104 OH-CNC-t Bu-i Pr-6 4 39.58 OH t Bu i Pr CNC -Mn-N, -Mn-C
105 OH-CNC-t Bu-i Pr-7 5 37.25 OH t Bu i Pr CNC -Mn-N, -Mn-C
106 OH-CNC-t Bu-ph-5 5 44.95 OH t Bu ph CNC -Mn-C
107 OH-CNC-t Bu-ph-6 5 -6.63 OH t Bu ph CNC -Mn-C
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Table B.2.: Exploration results for structures with “-N-H, +H-O interaction”
ID CN ∆E(kcal.mol−1) Adduct R1 R2 backbone Interaction

1 OCH3-CNC-H-CF3-3 5 -0.36 OCH3 H CF3 CNC -N-H, +H-O
2 OH-CNC-CF3-CF3-2 6 -12.93 OH CF3 CF3 CNC -N-H, +H-O
3 OH-CNC-CF3-CF3-3 6 -17.89 OH CF3 CF3 CNC -N-H, +H-O, +Mn-F
4 OH-CNC-cy-CF3-2 5 -25.09 OH cy CF3 CNC -N-H, +H-O
5 OH-CNC-cy-CF3-3 6 -25.89 OH cy CF3 CNC -N-H, +H-O, +Mn-F
6 OH-CNC-H-CF3-2 6 -13.07 OH H CF3 CNC -N-H, +H-O
7 OH-CNC-H-CF3-3 5 -10.72 OH H CF3 CNC -N-H, +H-O
8 OH-CNC-H-10 6 -3.46 OH H H CNC -N-H, +H-O
9 OH-CNC-i Pr-CF3-2 6 -14.08 OH i Pr CF3 CNC -N-H, +H-O
10 OH-CNC-i Pr-CF3-3 6 -12.42 OH i Pr CF3 CNC -N-H, +H-O, +Mn-F
11 OH-CNC-i Pr-CF3-5 5 -6.79 OH i Pr CF3 CNC -N-H, +H-O
12 OH-CNC-ph-CF3-2 6 -18.51 OH ph CF3 CNC -N-H, +H-O
13 OH-CNC-ph-CF3-3 5 -19.82 OH ph CF3 CNC -N-H, +H-O
14 OH-CNC-t Bu-CF3-2 6 -17.88 OH t Bu CF3 CNC -N-H, +H-O

Table B.3.: Nucleophilic (+C-O) interactions observed for CNC structures with different R1-R2-Adduct combinations
ID CN ∆E(kcal.mol−1) Adduct R1 R2 backbone Interaction

1 OCH3-CNC-CF3-t Bu-2 5 -4.4 OCH3 CNC CF3
t Bu +C-O

2 OCH3-CNC-cy-i Pr-2 5 -0.96 OCH3 CNC cy i Pr +C-O
3 OCH3-CNC-i Pr-cy-2 5 -13.84 OCH3 CNC i Pr Cy +C-O
4 OCH3-CNC-t Bu-i Pr-2 5 -16.76 OCH3 CNC t Bu i Pr +C-O
5 OH-CNC-CF3-t Bu-6 5 -5.9 OH CNC CF3

t Bu +C-O
6 OH-CNC-i Pr-i Pr-2 5 -11.37 OH CNC i Pr i Pr +C-O
7 OH-CNC-ph-i Pr-2 5 -3.9 OH CNC Ph i Pr +C-O
8 OH-CNC-ph-i Pr-3 6 -4.96 OH CNC Ph i Pr +C-O
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9 OH-CNC-t Bu-cy-2 6 -9.63 OH CNC t Bu Cy +C-O
10 OH-CNC-t Bu-t Bu-3 5 -10.75 OH CNC t Bu t Bu +C-O
11 OH-CNC-t Bu-2 6 -3.19 OH CNC t Bu H +C-O
12 Ot Bu-PNP-CF3-t Bu-3 5 -6.6 Ot Bu PNP CF3

t Bu +C-O
13 OCH3-CNC-t Bu-t Bu-2 6 -11.2 OCH3 CNC t Bu t Bu +C-O, +Mn-H
14 OH-CNC-CF3-t Bu-2 6 -9.19 OH CNC CF3

t Bu +C-O, +Mn-H
15 OH-CNC-cy-t Bu-3 6 -3.14 OH CNC cy t Bu +C-O, +Mn-H
16 OH-CNC-i Pr-t Bu-2 6 -12.06 OH CNC i Pr t Bu +C-O, +Mn-H
17 OH-CNC-ph-t Bu-2 6 -7.18 OH CNC ph t Bu +C-O, +Mn-H
18 OH-CNC-t Bu-t Bu-2 6 -5.38 OH CNC t Bu t Bu +C-O, +Mn-H
19 Ot Bu-PNP-CF3-t Bu-4 6 -11.54 Ot Bu PNP CF3

t Bu +C-O, +Mn-H
20 OH-CNC-t Bu-ph-6 5 -6.63 OH CNC t Bu Ph -Mn-C, +C-O, +C-H, -O-H
21 Ot Bu-CNC-cy-t Bu-3 5 -2.23 Ot Bu CNC Cy t Bu -Mn-N, +C-O
22 Ot Bu-CNC-cy-t Bu-5 4 -7.64 Ot Bu CNC Cy t Bu -Mn-N, +C-O
23 OCH3-CNC-t Bu-t Bu-5 4 -3.94 OCH3 CNC t Bu t Bu -Mn-N, +C-O
24 OH-CNC-i Pr-t Bu-6 4 -0.43 OH CNC i Pr t Bu -Mn-N, +C-O
25 Ot Bu-CNC-cy-t Bu-4 6 -5.15 Ot Bu CNC Cy t Bu -Mn-N, +C-O, +Mn-H
26 Ot Bu-CNC-t Bu-t Bu-5 5 -5.83 Ot Bu CNC t Bu t Bu -Mn-N, +C-O, +Mn-H
27 OCH3-CNC-t Bu-t Bu-3 5 -9.18 OCH3 CNC t Bu t Bu -Mn-N, +C-O, +Mn-H
28 OCH3-CNC-t Bu-t Bu-4 5 -3.28 OCH3 CNC t Bu t Bu -Mn-N, +C-O, +Mn-H
29 OCH3-CNC-t Bu-t Bu-7 6 -5.06 OCH3 CNC t Bu t Bu -Mn-N, +C-O, +Mn-H
30 OH-CNC-t Bu-t Bu-4 5 -3.9 OH CNC t Bu t Bu -Mn-N, +C-O, +Mn-H
31 OH-CNC-t Bu-t Bu-5 5 -11.72 OH CNC t Bu t Bu -Mn-N, +C-O, +Mn-H
32 Ot Bu-CNC-t Bu-t Bu-6 6 -7.83 Ot Bu CNC t Bu t Bu -Mn-N, +C-O, +Mn-H, +Mn-H
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Table B.4.: Nucleophilic (+C-C) interactions observed for CNC structures with different R1-R2-Adduct combinations”
ID CN ∆E(kcal.mol−1) Adduct R1 R2 backbone Interaction

1 Br-CNC-t Bu-cy-3 4 -2.93 Br CNC t Bu cy -Mn-N, -Mn-C, +C-C
2 Br-CNC-t Bu-t Bu-3 5 -26.92 Br CNC t Bu t Bu -Mn-N, -Mn-C, +C-C, +Mn-H
3 Ot Bu-CNC-t Bu-t Bu-4 4 -4.24 Ot Bu CNC t Bu t Bu -Mn-N, -Mn-C, +C-C

Table B.5.: Formation of Manganese carbonyl trifluoromethyl complexes with PNP
ID CN ∆E(kcal.mol−1) Adduct R1 R2 backbone Interaction

1 Ot Bu-PNP-CF3-4 6 -39.2 Ot Bu PNP CF3 H +Mn-C, -P-C, +P-O
2 OCH3-PNP-CF3-i Pr-4 6 -9.56 OCH3 PNP CF3

i Pr +Mn-C, -P-C, +P-O
3 OCH3-PNP-CF3-t Bu-3 6 -0.83 OCH3 PNP CF3

t Bu +Mn-C, -P-C, +P-O
4 OCH3-PNP-CF3-4 6 -23.05 OCH3 PNP CF3 H +Mn-C, -P-C, +P-O
5 OH-PNP-CF3-CF3-7 6 -9.43 OH PNP CF3 CF3 +Mn-C, -P-C, +P-O
6 OH-PNP-CF3-cy-5 6 -8.18 OH PNP CF3 Cy +Mn-C, -P-C, +P-O
7 OH-PNP-CF3-ph-7 6 -17.16 OH PNP CF3 ph +Mn-C, -P-C, +P-O
8 Ot Bu-PNP-CF3-2 6 -26.52 Ot Bu PNP CF3 H +P-O
9 OCH3-PNP-CF3-2 6 -11.81 OCH3 PNP CF3 H +P-O
10 OH-PNP-CF3-ph-3 6 -3.32 OH PNP CF3 ph +P-O
11 OH-PNP-CF3-2 6 -10.84 OH PNP CF3 H +P-O
12 Ot Bu-PNP-CF3-3 6 -6.72 Ot Bu PNP CF3 H +P-O, +Mn-F
13 OH-PNP-CF3-15 5 -3.58 OH PNP CF3 H -Mn-N, +Mn-C, +N-H, -P-C,

+P-O, -O-H
14 Ot Bu-PNP-CF3-5 5 -13.03 Ot Bu PNP CF3 H -Mn-N, +Mn-C, +N-P, -P-C, +P-O
15 OH-PNP-CF3-i Pr-9 6 -4.46 OH PNP CF3

i Pr -Mn-N, +Mn-C, +N-P, -P-C, +P-O
16 Ot Bu-PNP-CF3-CF3-3 5 -4.63 Ot Bu PNP CF3 CF3 -Mn-N, +Mn-C, -P-C, +P-O
17 Ot Bu-PNP-CF3-8 5 -17.65 Ot Bu PNP CF3 H -Mn-N, +Mn-C, -P-C, +P-O
18 OH-PNP-CF3-t Bu-13 5 -0.6 OH PNP CF3

t Bu -Mn-N, +Mn-C, -P-C, +P-O
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19 OH-PNP-CF3-21 5 -1.55 OH PNP CF3 H -Mn-N, -Mn-P, +Mn-C,
+N-H, -P-C, +P-O, -O-H

20 OH-PNP-CF3-cy-2 6 -0.19 OH PNP CF3 cy -Mn-N, -Mn-P, +Mn-C, +N-H,
-P-C, +P-O, -O-H, +Mn-F

21 Ot Bu-PNP-CF3-6 5 -10.97 Ot Bu PNP CF3 H -Mn-P, +Mn-C, -P-C, +P-O

Table B.6.: Summary of data on reactivity exploration for species lower energies than their respective reference structures
ID CN ∆E(kcal.mol−1) Adduct R1 R2 backbone Interaction

1 Br-CNC-t Bu-cy-2 5 -43.77 Br t Bu cy CNC -Mn-N
2 Br-CNC-t Bu-cy-3 4 -2.93 Br t Bu cy CNC -Mn-N, -Mn-C, +C-C
3 Br-CNC-t Bu-t Bu-2 5 -68.79 Br t Bu t Bu CNC -Mn-N
4 Br-CNC-t Bu-t Bu-3 5 -26.92 Br t Bu t Bu CNC -Mn-N, -Mn-C, +C-C, +Mn-H
5 Ot Bu-CNC-cy-cy-2 5 -32.46 Ot Bu cy cy CNC -Mn-N
6 Ot Bu-CNC-cy-t Bu-2 5 -31.68 Ot Bu cy t Bu CNC -Mn-N
7 Ot Bu-CNC-cy-t Bu-3 5 -2.23 Ot Bu cy t Bu CNC -Mn-N, +C-O, +Mn-O, +Mn-O
8 Ot Bu-CNC-cy-t Bu-4 6 -5.15 Ot Bu cy t Bu CNC -Mn-N, +C-O, +Mn-H
9 Ot Bu-CNC-cy-t Bu-5 4 -7.64 Ot Bu cy t Bu CNC -Mn-N, +C-O, +Mn-O
10 Ot Bu-CNC-ph-cy-2 5 -6.4 Ot Bu ph cy CNC -Mn-N
11 Ot Bu-CNC-t Bu-CF3-3 5 -0.28 Ot Bu t Bu CF3 CNC -Mn-C, -N-H, +C-H
12 Ot Bu-CNC-t Bu-ph-2 5 -18.05 Ot Bu t Bu ph CNC -Mn-C
13 Ot Bu-CNC-t Bu-t Bu-2 5 -29.85 Ot Bu t Bu t Bu CNC -Mn-N
14 Ot Bu-CNC-t Bu-t Bu-3 4 -18.33 Ot Bu t Bu t Bu CNC -Mn-N, -Mn-C
15 Ot Bu-CNC-t Bu-t Bu-4 4 -4.24 Ot Bu t Bu t Bu CNC -Mn-N, -Mn-C, +C-C
16 Ot Bu-CNC-t Bu-t Bu-5 5 -5.83 Ot Bu t Bu t Bu CNC -Mn-N, +C-O, +Mn-H, +Mn-O
17 Ot Bu-CNC-t Bu-t Bu-6 6 -7.83 Ot Bu t Bu t Bu CNC -Mn-N, +C-O, +Mn-H,

+Mn-H, +Mn-O
18 OCH3-CNC-CF3-t Bu-2 5 -4.4 OCH3 CF3

t Bu CNC +C-O, +Mn-O
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19 OCH3-CNC-cy-i Pr-2 5 -0.96 OCH3 cy i Pr CNC +C-O, +Mn-O
20 OCH3-CNC-cy-ph-2 5 -53.74 OCH3 cy ph CNC +C-O, +Mn-O
21 OCH3-CNC-H-CF3-3 5 -0.36 OCH3 H CF3 CNC -N-H, +H-O, +Mn-O
22 OCH3-CNC-H-t Bu-2 5 -91.33 OCH3 H t Bu CNC -Mn-N
23 OCH3-CNC-H-t Bu-3 5 -65.19 OCH3 H t Bu CNC -Mn-N, +C-O, +Mn-O, +Mn-O
24 OCH3-CNC-i Pr-cy-2 5 -13.84 OCH3

i Pr cy CNC +C-O, +Mn-O
25 OCH3-CNC-ph-t Bu-2 6 -82.1 OCH3 ph t Bu CNC +C-O, +Mn-H, +Mn-O
26 OCH3-CNC-ph-t Bu-3 5 -51.97 OCH3 ph t Bu CNC -Mn-N, +Mn-C, +C-O, +Mn-O
27 OCH3-CNC-ph-t Bu-4 6 -65.3 OCH3 ph t Bu CNC -Mn-N, +C-O, +Mn-O,

+Mn-H, +Mn-O
28 OCH3-CNC-t Bu-i Pr-2 5 -16.76 OCH3

t Bu i Pr CNC +C-O, +Mn-O
29 OCH3-CNC-t Bu-t Bu-2 6 -11.2 OCH3

t Bu t Bu CNC +C-O, +Mn-H, +Mn-O
30 OCH3-CNC-t Bu-t Bu-3 5 -9.18 OCH3

t Bu t Bu CNC -Mn-N, +C-O, +Mn-H, +Mn-O
31 OCH3-CNC-t Bu-t Bu-4 5 -3.28 OCH3

t Bu t Bu CNC -Mn-N, +C-O, +Mn-H, +Mn-O
32 OCH3-CNC-t Bu-t Bu-5 4 -3.94 OCH3

t Bu t Bu CNC -Mn-N, +C-O, +Mn-O
33 OCH3-CNC-t Bu-t Bu-6 5 -28.57 OCH3

t Bu t Bu CNC -Mn-N
34 OCH3-CNC-t Bu-t Bu-7 6 -5.06 OCH3

t Bu t Bu CNC -Mn-N, +C-O, +Mn-O,
+Mn-H, +Mn-O

35 OH-CNC-CF3-CF3-2 6 -12.93 OH CF3 CF3 CNC -N-H, +H-O
36 OH-CNC-CF3-CF3-3 6 -17.89 OH CF3 CF3 CNC -N-H, +H-O, +Mn-F, +Mn-O
37 OH-CNC-CF3-t Bu-2 6 -9.19 OH CF3

t Bu CNC +C-O, +Mn-H, +Mn-O
38 OH-CNC-CF3-t Bu-3 5 -15.35 OH CF3

t Bu CNC -Mn-N
39 OH-CNC-CF3-t Bu-6 5 -5.9 OH CF3

t Bu CNC +C-O, +Mn-O
40 OH-CNC-cy-CF3-2 5 -25.09 OH cy CF3 CNC -N-H, +H-O, +Mn-O
41 OH-CNC-cy-CF3-3 6 -25.89 OH cy CF3 CNC -N-H, +H-O, +Mn-F, +Mn-O
42 OH-CNC-cy-t Bu-3 6 -3.14 OH cy t Bu CNC +C-O, +Mn-H, +Mn-O
43 OH-CNC-H-CF3-2 6 -13.07 OH H CF3 CNC -N-H, +H-O
44 OH-CNC-H-CF3-3 5 -10.72 OH H CF3 CNC -N-H, +H-O, +Mn-O
45 OH-CNC-H-10 6 -3.46 OH H H CNC -N-H, +H-O
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46 OH-CNC-i Pr-CF3-2 6 -14.08 OH i Pr CF3 CNC -N-H, +H-O
47 OH-CNC-i Pr-CF3-3 6 -12.42 OH i Pr CF3 CNC -N-H, +H-O, +Mn-F, +Mn-O
48 OH-CNC-i Pr-CF3-5 5 -6.79 OH i Pr CF3 CNC -N-H, +H-O, +Mn-O
49 OH-CNC-i Pr-i Pr-2 5 -11.37 OH i Pr i Pr CNC +C-O, +Mn-O
50 OH-CNC-i Pr-t Bu-2 6 -12.06 OH i Pr t Bu CNC +C-O, +Mn-H, +Mn-O
51 OH-CNC-i Pr-t Bu-6 4 -0.43 OH i Pr t Bu CNC -Mn-N, +C-O, +Mn-O
52 OH-CNC-ph-CF3-2 6 -18.51 OH ph CF3 CNC -N-H, +H-O
53 OH-CNC-ph-CF3-3 5 -19.82 OH ph CF3 CNC -N-H, +H-O, +Mn-O
54 OH-CNC-ph-i Pr-2 5 -3.9 OH ph i Pr CNC +C-O, +Mn-O
55 OH-CNC-ph-i Pr-3 6 -4.96 OH ph i Pr CNC +C-O, +Mn-O, +Mn-O
56 OH-CNC-ph-t Bu-2 6 -7.18 OH ph t Bu CNC +C-O, +Mn-H, +Mn-O
57 OH-CNC-t Bu-CF3-2 6 -17.88 OH t Bu CF3 CNC -N-H, +H-O
58 OH-CNC-t Bu-cy-2 6 -9.63 OH t Bu cy CNC +C-O, +Mn-O, +Mn-O
59 OH-CNC-t Bu-ph-6 5 -6.63 OH t Bu ph CNC -Mn-C, +C-O, +C-H, -O-H
60 OH-CNC-t Bu-t Bu-2 6 -5.38 OH t Bu t Bu CNC +C-O, +Mn-H, +Mn-O
61 OH-CNC-t Bu-t Bu-3 5 -10.75 OH t Bu t Bu CNC +C-O, +Mn-O
62 OH-CNC-t Bu-t Bu-4 5 -3.9 OH t Bu t Bu CNC -Mn-N, +C-O, +Mn-H, +Mn-O
63 OH-CNC-t Bu-t Bu-5 5 -11.72 OH t Bu t Bu CNC -Mn-N, +C-O, +Mn-H, +Mn-O
64 OH-CNC-t Bu-2 6 -3.19 OH t Bu H CNC +C-O, +Mn-O, +Mn-O
65 Br-PNN-CF3-CF3-2 6 -3.7 Br CF3 CF3 PNN -Mn-N, +Mn-F
66 Br-PNN-CF3-i Pr-2 5 -15.95 Br CF3

i Pr PNN -Mn-N
67 Br-PNN-CF3-ph-2 6 -12.85 Br CF3 ph PNN -Mn-N, +Mn-C
68 Br-PNN-CF3-ph-8 5 -5.84 Br CF3 ph PNN -Mn-N
69 Br-PNN-cy-CF3-2 4 -3.04 Br cy CF3 PNN -Mn-N, -Mn-N
70 Br-PNN-cy-cy-2 5 -77.33 Br cy cy PNN -Mn-N
71 Br-PNN-cy-2 5 -67.76 Br cy H PNN -Mn-N
72 Br-PNN-i Pr-cy-2 5 -77.21 Br i Pr cy PNN -Mn-N
73 Br-PNN-i Pr-2 5 -64.71 Br i Pr H PNN -Mn-N
74 Ot Bu-PNN-cy-3 4 -39.97 Ot Bu cy H PNN -Mn-N, -Mn-P, +Mn-H,
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-Mn-N, -N-H, +H-P, -C-H
75 Ot Bu-PNN-i Pr-3 4 -55.1 Ot Bu i Pr H PNN -Mn-N, -Mn-P, +Mn-H,

-Mn-N, +C-P, -C-H
76 OCH3-PNN-cy-i Pr-2 5 -95.61 OCH3 cy i Pr PNN -Mn-N
77 OCH3-PNN-cy-i Pr-3 4 -28.36 OCH3 cy i Pr PNN -Mn-N, -Mn-P, +Mn-H,

-Mn-N, -C-H
78 OCH3-PNN-cy-t Bu-2 5 -93.18 OCH3 cy t Bu PNN -Mn-N
79 OCH3-PNN-cy-2 5 -96.9 OCH3 cy H PNN -Mn-N
80 OCH3-PNN-i Pr-cy-2 5 -80.04 OCH3

i Pr cy PNN -Mn-N
81 OCH3-PNN-i Pr-i Pr-2 5 -84.9 OCH3

i Pr i Pr PNN -Mn-N
82 OCH3-PNN-i Pr-ph-2 5 -86.96 OCH3

i Pr ph PNN -Mn-N
83 OCH3-PNN-i Pr-2 5 -92.45 OCH3

i Pr H PNN -Mn-N
84 OCH3-PNN-t Bu-3 4 -70.24 OCH3

t Bu H PNN -Mn-N, -Mn-P, +Mn-H,
-Mn-N, +C-P, -C-H

85 OH-PNN-cy-ph-2 5 -98.58 OH cy ph PNN -Mn-N
86 OH-PNN-cy-t Bu-2 5 -87.09 OH cy t Bu PNN -Mn-N
87 OH-PNN-cy-2 5 -77.36 OH cy H PNN -Mn-N
88 OH-PNN-i Pr-cy-2 5 -77.57 OH i Pr cy PNN -Mn-N
89 OH-PNN-i Pr-i Pr-2 5 -78.23 OH i Pr i Pr PNN -Mn-N
90 OH-PNN-i Pr-t Bu-2 5 -91.97 OH i Pr t Bu PNN -Mn-N
91 OH-PNN-i Pr-2 5 -84.61 OH i Pr H PNN -Mn-N
92 OH-PNN-ph-2 5 -97.91 OH ph H PNN -Mn-N
93 OH-PNN-t Bu-CF3-16 6 -97.18 OH t Bu CF3 PNN -Mn-N, -Mn-C, +Mn-C, +Mn-H,

-Mn-N, +C-C,+C-O,
-C-H, +Mn-O, +Mn-F, +Mn-O

94 Br-PNP-t Bu-ph-2 5 -1.09 Br t Bu ph PNP -Mn-P
95 Br-PNP-t Bu-t Bu-2 5 -77.09 Br t Bu t Bu PNP -Mn-N
96 Ot Bu-PNP-CF3-CF3-3 5 -4.63 Ot Bu CF3 CF3 PNP -Mn-N, +Mn-C, -P-C, +P-O, +Mn-O
97 Ot Bu-PNP-CF3-ph-8 5 -0.96 Ot Bu CF3 ph PNP -Mn-P
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98 Ot Bu-PNP-CF3-t Bu-2 5 -21.25 Ot Bu CF3
t Bu PNP -Mn-N

99 Ot Bu-PNP-CF3-t Bu-3 5 -6.6 Ot Bu CF3
t Bu PNP +C-O, +Mn-O

100 Ot Bu-PNP-CF3-t Bu-4 6 -11.54 Ot Bu CF3
t Bu PNP +C-O, +Mn-H, +Mn-O

101 Ot Bu-PNP-CF3-2 6 -26.52 Ot Bu CF3 H PNP +P-O
102 Ot Bu-PNP-CF3-3 6 -6.72 Ot Bu CF3 H PNP +P-O, +Mn-F, +Mn-O
103 Ot Bu-PNP-CF3-4 6 -39.2 Ot Bu CF3 H PNP +Mn-C, -P-C, +P-O, +Mn-O
104 Ot Bu-PNP-CF3-5 5 -13.03 Ot Bu CF3 H PNP -Mn-N, +Mn-C, +N-P, -P-C,

+P-O, +Mn-O
105 Ot Bu-PNP-CF3-6 5 -10.97 Ot Bu CF3 H PNP -Mn-P, +Mn-C, -P-C, +P-O, +Mn-O
106 Ot Bu-PNP-CF3-8 5 -17.65 Ot Bu CF3 H PNP -Mn-N, +Mn-C, -P-C, +P-O, +Mn-O
107 Ot Bu-PNP-cy-t Bu-2 5 -76.6 Ot Bu cy t Bu PNP -Mn-N
108 Ot Bu-PNP-i Pr-i Pr-2 5 -84.38 Ot Bu i Pr i Pr PNP -Mn-N
109 Ot Bu-PNP-i Pr-t Bu-2 5 -76.39 Ot Bu i Pr t Bu PNP -Mn-N
110 OCH3-PNP-CF3-i Pr-4 6 -9.56 OCH3 CF3

i Pr PNP +Mn-C, -P-C, +P-O, +Mn-O
111 OCH3-PNP-CF3-t Bu-3 6 -0.83 OCH3 CF3

t Bu PNP +Mn-C, -P-C, +P-O, +Mn-O
112 OCH3-PNP-CF3-2 6 -11.81 OCH3 CF3 H PNP +P-O
113 OCH3-PNP-CF3-4 6 -23.05 OCH3 CF3 H PNP +Mn-C, -P-C, +P-O, +Mn-O
114 OCH3-PNP-cy-t Bu-2 5 -65.1 OCH3 cy t Bu PNP -Mn-N
115 OH-PNP-CF3-CF3-7 6 -9.43 OH CF3 CF3 PNP +Mn-C, -P-C, +P-O, +Mn-O
116 OH-PNP-CF3-cy-2 6 -0.19 OH CF3 cy PNP -Mn-N, -Mn-P, +Mn-C, +N-H, -P-C,

+P-O, -O-H, +Mn-F
117 OH-PNP-CF3-cy-5 6 -8.18 OH CF3 cy PNP +Mn-C, -P-C, +P-O, +Mn-O
118 OH-PNP-CF3-i Pr-9 6 -4.46 OH CF3

i Pr PNP -Mn-N, +Mn-C, +N-P, -P-C, +P-O
119 OH-PNP-CF3-ph-3 6 -3.32 OH CF3 ph PNP +P-O
120 OH-PNP-CF3-ph-7 6 -17.16 OH CF3 ph PNP +Mn-C, -P-C, +P-O, +Mn-O
121 OH-PNP-CF3-t Bu-13 5 -0.6 OH CF3

t Bu PNP -Mn-N, +Mn-C, -P-C, +P-O, +Mn-O
122 OH-PNP-CF3-2 6 -10.84 OH CF3 H PNP +P-O
123 OH-PNP-CF3-15 5 -3.58 OH CF3 H PNP -Mn-N, +Mn-C, +N-H,

-P-C, +P-O, -O-H, +Mn-O
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124 OH-PNP-CF3-21 5 -1.55 OH CF3 H PNP -Mn-N, -Mn-P, +Mn-C,
+N-H, -P-C, +P-O, -O-H

125 OH-PNP-cy-t Bu-2 5 -71.34 OH cy t Bu PNP -Mn-N
126 OH-PNP-i Pr-t Bu-2 5 -70.23 OH i Pr t Bu PNP -Mn-N
127 Br-SNS-H-cy-2 6 -3.41 Br H cy SNS -Mn-S, +Mn-H
128 Br-SNS-H-cy-3 6 -2.68 Br H cy SNS -Mn-S, +Mn-H
129 Br-SNS-H-cy-5 6 -10.68 Br H cy SNS -Mn-S, +Mn-H
130 OH-SNS-CF3-cy-5 5 -8.59 OH CF3 cy SNS -Mn-S, -Mn-S, -Mn-N,

+Mn-F, +Mn-F, +H-O, +N-C,
-C-F, -C-F

131 OH-SNS-H-ph-3 5 -9.48 OH H ph SNS -Mn-S, -H-S, +H-O
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In this thesis, a number of projects aimed at developing new simulation methods for 
studying complex reactive systems were highlighted, with a particular emphasis on 
simulation strategies based on the concept of bonding graphs. These mathematical 
structures provide useful tools for a variety of algorithms developed over the last 
few decades. Through automated analysis of exhaustive exploration trajectories, 
serendipities were captured that could escape the expert heuristics or otherwise needed 

the methodologies introduced in this thesis could range from very obvious one-step 
reactions that were just not “normally” considered to multi-step complex reactions 
that were not imaginable to the expert. With high-throughput reactivity screenings 
on in silico catalyst libraries, a big step was taken towards “rational” catalyst design.
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