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ABSTRACT

Optimizing supply chain management in hospitals can lead to a significant reduction in costs. One of the
supply chain processes that can be optimized is the sterilization of reusable instruments used during surgical
procedures. This process takes place at the Central Sterile Supply Department (CSSD) and consists of two
main steps, ‘washing and disinfection’ and ‘sterilization’. These steps are executed by batch processing ma-
chines, with a setup time prior to each step. The setup at each stage is executed manually. The machines of a
CSSD are renewed every 10 years, which provides a opportunity to assess all capacity planning decisions. In
this thesis, the aim is to determine the required resources of the CSSD, while minimizing the total costs and
guarantying the availability of instruments for scheduled surgeries. Costs include: acquiring machines, ma-
chine batch costs, machine maintenance costs, and staff costs depending on the number of opening hours.
This thesis contributes to current research by proposing a framework for the capacity planning decisions at a
CSSD, by extending existing models by taking specific characteristics of the CSSD into account, and consid-
ering a new objective function, namely minimizing the total costs.

Capacity planning decisions are considered on three hierarchical levels. First, the strategic level involves
long-term decisions, where the number and type of required machines have to be determined. Second, on
a tactical level, the amount of opening time has to be determined. Third, on an operational level, the in-
strument sets have to be scheduled within batches and machines. The sterilization process is formulated
as a mixed integer linear problem (MILP). The problem is described as a multi-stage hybrid flow shop with
additional constraints to represent the specific characteristics of the CSSD. This model takes into account
capacity planning decisions on all three levels. The MILP formulation is proven to be NP-hard. The demand
for sterilized instruments is determined from historical data from the Leiden University Medical Center. To
evaluate the model, three instances with a timespan of a week are created.

Preliminary results showed that the multi-stage flow shop is difficult to solve for real-life instances. Hence,
a decomposition, based on the three hierarchical levels, is proposed. The decomposition leads to three levels
of optimization models. The strategic model takes into account the scheduling of instruments per day, while
the tactical model schedules per day parts, and the operational models determine a specific point in time.

The proposed models are individually tested on their performance. The results from the strategic model
are used as input for the tactical model. Results show that the strategic model underestimated the required
amount of opening time, as it does not take into account the spread of release times. Furthermore, the com-
putational results show that the tactical and operational models are difficult to solve for real-life instances.
Hence, a heuristic approach is proposed by forming a chain of the models. The best results were obtained
by setting a minimum amount of opening time for the strategic model and using the resulting machines as
input for the tactical model. The results show that the instrument sets are equally spread over the week.

To conclude, the results of this thesis contribute to quantifying the required resources for a sterilization
process within a hospital. However, to obtain more practical results, future research is required. Suggestions
for future research include: taking uncertainties within the process into account, the application of meta-
heuristics, and the required number of employees.
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GLOSSARY

BPMN Business Process Model and Notation

CSSD Central Sterile Supply Department

ENT Ear-Nose-Throat

FS Flow shop

FSS Flexible/Hybrid flow shop

ILP Integer linear program

LUMC Leiden University Medical Center

MILP Mixed integer linear program

MIP Mixed integer program

OR Operation room

UMC University Medical Center

FIFO First In First Out

FFP First Fit Procedure
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NOMENCLATURE

Here, all notation used in the mathematical programming formulations is gathered. For each hierarchical
level, a list of all sets, parameters, and variables is presented.

STRATEGIC MODEL

Sets

D Set of days
H j Set of machines at stage j ∈ J
I Set of jobs
J Set of stages

Parameters

c j
1h Purchase cost of machine h ∈ H j at stage j ∈ J

c j
2h Batch cost of machine h ∈ H j at stage j ∈ J

c3 Cost for an employee during normal hours
li Lead time in days of job i ∈ I
e j Maximum duration in days before or at stage j ∈ J
γ Fraction of time in which machines can be used each day
M Large number

p j
h Processing time at machine h ∈ H j at stage j ∈ J

ri Release day of job i ∈ I

s j
i Processing time of job i ∈ I at stage j ∈ J

u j
h Machine capacity of machine h ∈ H j at stage j ∈ J

v j
d Number of operators at stage j ∈ J on day d ∈ D

z j
i Size of job i ∈ I at stage j ∈ J

Variables

P j
h

Binary variable which is one when machine h ∈ H j at stage j ∈ J
is purchased, and zero otherwise

K j
hd Integer variable to linearize ceiling

⌈∑
i∈I S

j
i h Y

j
i d z

j
i

u
j
h

⌉
L j

hd Integer variable to linearize floor

⌊
γOd

p
j
h

⌋
Od Amount of opening time on day d ∈ D
Qd Amount of irregular opening time on day d ∈ D

S j
i h

Binary variable which is one when job i ∈ I is assigned to machine
h ∈ H j at stage j ∈ J , and zero otherwise

X j
i hd Binary variable to linearize the term S j

i hY j
i d

Y j
i d

Binary variable which is one when job i ∈ I at stage j ∈ J is
processed on day d ∈ D , and zero otherwise
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TACTICAL MODEL

Sets

G Set of day parts
H j Set of machines at stage j ∈ J
I Set of jobs
J Set of stages

Parameters

c j
1h Purchase cost of machine h ∈ H j at stage j ∈ J

c j
2h Batch cost of machine h ∈ H j at stage j ∈ J

c3 Cost for an employee during normal hours
li Lead time in day parts of job i ∈ I
e j Maximum duration in day parts before or at stage j ∈ J
γ Fraction of time in which machines can be used each day
M Large number

p j
h Processing time at machine h ∈ H j at stage j ∈ J

ri Release day part of job i ∈ I

s j
i Processing time of job i ∈ I at stage j ∈ J

u j
h Machine capacity of machine h ∈ H j at stage j ∈ J

v j
g Number of operators at stage j ∈ J during day part g ∈G

z j
i Size of job i ∈ I at stage j ∈ J

Variables

P j
h

Binary variable which is one when machine h ∈ H j at stage j ∈ J
is purchased, and zero otherwise

K j
hg Integer variable to linearize ceiling

⌈∑
i∈I S

j
i h Y

j
i g z

j
i

u
j
h

⌉
L j

hg Integer variable to linearize floor

⌊
γOg

p
j
h

⌋
Og Amount of opening time during day part g ∈G
Qg Amount of irregular opening time during day part g ∈G

S j
i h

Binary variable which is one when job i ∈ I is assigned to machine
h ∈ H j at stage j ∈ J , and zero otherwise

X j
i hg Binary variable to linearize the term S j

i hY j
i g

Y j
i g

Binary variable which is one when job i ∈ I at stage j ∈ J is
processed during day part g ∈G , and zero otherwise
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OPERATIONAL MODELS
As the notation of the operational models changes between Chapter 4 and Chapter 5, a specific notation for
each chapter is added. The third and/or fourth column indicate for which elements of the set mentioned in
the second column, a set, parameter, or variable is introduced. Additionally, for the third and fourth column,
an ‘x’ indicates that the notation is used as already stated in the second column, and an ‘-’ indicates that the
symbol is not used in the corresponding chapter.

Sets

Chapter 4 Chapter 5
B j Set of batches at stage j ∈ J ∀ j ∈ J ∀ j ∈ {2,4} ⊂ J
D Set of days x x
F j Set of job families at stage j ∈ J ∀ j ∈ J ∀ j ∈ {2,4} ⊂ J
H j Set of machines at stage j ∈ J ∀ j ∈ J ∀ j ∈ {2,4} ⊂ J
I Set of jobs x x
J Set of stages x x

O j
d Set of operators at stage j ∈ J on day d ∈ D ∀ j ∈ {1,3} ⊂ J -

R Set of payment rates x x

Parameters

Chapter 4 Chapter 5

c j
1h Purchase cost of machine h ∈ H j at stage j ∈ J ∀ j ∈ J ∀ j ∈ {2,4} ⊂ J

c j
2h Batch cost of machine h ∈ H j at stage j ∈ J ∀ j ∈ J ∀ j ∈ {2,4} ⊂ J

c3r Cost for an employee during opening hours at rate r ∈ R x x
c4 Additional costs for an employee in overtime x x
li Lead time of job i ∈ I x x
e j Maximum duration before or at stage j ∈ J ∀ j ∈ J ∀ j ∈ {2,4} ⊂ J

f j
i k

Binary parameter equal to one if job i ∈ I and k ∈ I are part of
the same job family f ∈ F j at stage j ∈ J , and zero otherwise.

x -

M Large number x x

p j
h Processing time at machine h ∈ H j at stage j ∈ J ∀ j ∈ J ∀ j ∈ {2,4} ⊂ J

p1, p2,
p3, p4

Tipping point of different payment rates, 07:00, 08:00, 12:00,
and 20:00, respectively

x x

ri Release date of job i ∈ I x x

s j
i Processing time of job i ∈ I at stage j ∈ J ∀ j ∈ J ∀ j ∈ {1,3} ⊂ J

u j
h Machine capacity of machine h ∈ H j at stage j ∈ J ∀ j ∈ J ∀ j ∈ {2,4} ⊂ J

v j
d Number of operators at stage j ∈ J on day d ∈ D ∀ j ∈ J ∀ j ∈ {1,3} ⊂ J

z j
i Size of job i ∈ I at stage j ∈ J ∀ j ∈ J ∀ j ∈ {2,4} ⊂ J
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Variables

Chapter 4 Chapter 5

A j
i d

Binary variable which is one when Y j
i d = 1 and the setup

process of job i ∈ I at stage j ∈ J is executed the day before,
and zero otherwise

x -

A j
i k

Binary variable which is one when job k ∈ I is processed
after job i ∈ I at stage j ∈ J , and zero otherwise

- ∀ j ∈ {1,3} ⊂ J

P j
h

Binary variable which is one when machine h ∈ H j

at stage j ∈ J is purchased, and zero otherwise
∀ j ∈ J ∀ j ∈ {2,4} ⊂ J

Gd p1 Variable to linearize terms Nd p1 (nd +qd ) x x
Gd p2 Variable to linearize terms Nd p2 (nd +qd ) x x
Gd p3 Variable to linearize terms Md p3 md x x
Gd p4 Variable to linearize terms Md p4 md x x
md Opening time on day d ∈ D x x

Md p4

Binary variable which is one when the opening time
on day d ∈ D is after p4= 20:00 , and zero otherwise

x x

Md p3

Binary variable which is one when the opening time
on day d ∈ D is after p3= 12:00 , and zero otherwise

x x

nd Closing time on day d ∈ D x x

Nd p1

Binary variable which is one when the closing plus overtime
on day d ∈ D is before p1= 07:00 , and zero otherwise

x x

Nd p2

Binary variable which is one when the closing plus overtime
on day d ∈ D is before p1= 08:00 , and zero otherwise

x x

qd Overtime on day d ∈ D x x

S j
i bh

Binary variable which is one when job i ∈ I is assigned
to batch b ∈ B j at machine h ∈ H j at stage j ∈ J ,
and zero otherwise

∀ j ∈ J ∀ j ∈ {2,4} ⊂ J

S j
i od

Binary variable which is one when job i ∈ I is assigned
to operator o ∈O at stage j ∈ J on day d ∈ D ,
and zero otherwise

- ∀ j ∈ {1,3} ⊂ J

t j
i Completion time of job i ∈ I at stage j ∈ J x x

t j
bh Completion time batch b ∈ B j at stage j ∈ J ∀ j ∈ J ∀ j ∈ {2,4} ⊂ J

Vdr
Amount of opening time for which rate
r ∈ R applies on day d ∈ D

x x

Wd p1 Amount of opening time before p1 = 07:00 on day d ∈ D x x
Wd p2 Amount of opening time before p2 = 08:00 on day d ∈ D x x
Wd p3 Amount of opening time after p3 = 12:00 on day d ∈ D x x
Wd p4 Amount of opening time after p4 = 20:00 on day d ∈ D x x

X j
i d

Difference between batch setup time on day d ∈ D
and the process time of job i ∈ I at stage j ∈ J

x -

Y j
i d

Binary variable which is one when job i ∈ I at stage j ∈ J is
processed on day d ∈ D , and zero otherwise

x x

Z j
bh

Binary variable which is one when batch b ∈ B j is assigned
to machine h ∈ H j at stage j ∈ J , and zero otherwise

∀ j ∈ J ∀ j ∈ {2,4} ⊂ J
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1
INTRODUCTION

In the upcoming years, the operating room (OR) center at Leiden University Medical Center (LUMC) will be
renewed. The aim is to finish in 2024. This project offers opportunities to optimize the processes around
the OR from a strategical point of view. One important secondary process is the sterilization of the reusable
instruments used during a surgery. At LUMC, the instruments are sterilized by the Central Sterile Supply
Department (CSSD), which is part of the OR center. The CSSD will also be renewed. Currently, it is not clear
how many resources are required to sterilize all instruments and which characteristics influence the required
number of resources. As the entire department will be renewed, it is important to determine the required
resources in the future situation.

More generally, during the last decade an increasing amount of research concerning the CSSD has been
conducted, as it shows promising opportunities to reduce costs within healthcare. Based on a site visit to
the CSSD of the University Medical Center Utrecht (UMC Utrecht), expert judgement and a literature review,
it can be concluded that the sterilization process of reusable instruments consists of similar steps within
other organizations in the Netherlands. Although this research had been conducted at the LUMC, the process
regarding the sterilization consists of similar steps within other healthcare facilities or dedicated sterilization
companies. Hence, this research is not only useful regarding decision making within the LUMC, but also for
other organizations where the process of sterilization of instruments occurs.

In this chapter, the sterilization process is concisely described and a problem description is presented.
Next, the problem description is translated to a research goal and corresponding research questions. Again,
a distinction has been made between the specific goal for the LUMC, and the general contribution of this
thesis. Finally, a preliminary scope is discussed and a thesis outline is given.

1.1. PROCESS DESCRIPTION
In Figure 1.1, a simplified overview of the main process at the CSSD is shown using a Business Process Model
and Notation (BPMN) model. This notation will be further explained in Section 2.3. At the LUMC, besides
instruments from the OR, the CSSD also sterilizes instruments from the outpatient clinics. At the CSSD, the
instruments are manually cleaned and organized in different trays by the staff, after which the trays are put
in the washing disinfection (WD) machines. After the instruments are washed and disinfected by the WD
machines, they are checked and assembled as individual item or set. After wrapping the individual item or
set, the instruments are sterilized in autoclaves. Finally, the sterilized instruments are transported to the OR
storage and outpatient clinics. To conclude and define terms, there are four main steps within the process:

• Clean: Removal of visible and invisible dirt from the instruments. This is partly done manually in the
cleaning room and partly by the WD machines.

• Disinfect: Kill micro organisms, to an acceptable level, from the instruments. This is done within the
WD machines.

• Check and assemble: Check all instruments and assemble and wrap them in sets or individual items.

• Sterilize: Removing micro organisms from the instruments until the chance that such organisms are
still found alive is less than one in a million. This is done by the autoclaves.

1
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Figure 1.1: Simplified business process diagram.

1.2. PROBLEM DESCRIPTION
Currently, there are no guidelines regarding the number of resources which are required to sterilize all in-
struments. These resources include: WD machines, autoclaves, cleaning stations and staff hours. First of
all, the resources are dependent on the incoming flow of instruments from the OR and the outpatient clin-
ics. Secondly, different working methods can have impact on the number of resources required. Different
machine sizes could also influence the costs of sterilization. For example, smaller autoclaves could provide
extra flexibility in case of an emergency or a small demand. However, multiple smaller autoclaves could also
mean higher investments costs and additional space requirements. Furthermore, the number of staff and
the amount of opening time of the CSSD influence the required machine capacity. If the opening time is in-
creased, less machines and working stations are required. However, it is both more expensive and not desired
to let staff work through the night. Finally, the urgency in which instrument sets have to be sterilized has
an influence on the required capacity. If instrument sets have to be returned urgently, the resources are im-
pacted by peak and low demand. The purchase of additional instrument sets could solve the urgent requests,
although it also leads to additional costs. As the process occurs in the hospital, a high service level is required.
A tardy job means that a surgery is rescheduled or cancelled, which could have a significant impact on the
patient’s well being.

Related to determining the required resources, is the scheduling of different process steps. According
to the multi-year plan for the CSSD at the LUMC, written by Adank [1], the number of machines could be
limited by adjusting the daily schedule. The process should always satisfy the demand as there could be
severe consequences if a surgery has to be rescheduled or cancelled. Hence, to determine the number of
machines that are needed, an operational job scheduling problem has to be solved.

Currently, the CSSD at the LUMC works with a push approach. The instruments are replenished to the
storage at the OR and outpatient clinics as soon as possible, even though instruments might not be required
the next day. As earlier research suggests, a pull approach could reduce costs and unnecessary sterilization
of instruments (van de Klundert et al. [2]). In that case, the instruments are only sterilized and brought to the
storage when they are required for a surgery, appointment or emergency storage. This working method will
be explained in more detail in Chapter 2.

1.3. RESEARCH GOALS
The goal of this research is to analyze the required resources to sterilize a certain number of arriving instru-
ment sets. The aim is to minimize the costs of handling the sterilization of all reusable instruments. Potential
costs include: acquiring machines, machine batch costs, maintenance costs and staff costs. The CSSD at the
LUMC was used as a case study for this thesis. As mentioned before, to determine the required resources, a
scheduling problem has to be solved. All jobs, the instruments, should be assigned to a batch and a machine
in each step of the sterilization process. Implicitly, it can be said that the aim is to minimize the makespan
to process all instruments. However, the main objective is to minimize costs, which may not coincide with
minimizing the makespan. The right number of resources can only be determined if the makespan for that
number of resources and jobs is known.

1.3.1. RESEARCH QUESTION
The goal of this research can be captured in the next question:

“How can the number of required resources for a sterilization process within a hospital be quantified?”

In order to structure the research and answer the main question, several sub questions are formulated. The
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first three questions concern the general problem description, followed by questions that are more specific
to the input data obtained from the LUMC.

1. How can the sterilization process be described and what is the position of the CSSD within a hospi-
tal?
First, the process introduced in Section 1.1 has to be explained in more detail. Furthermore, the position of
this process within a hospital is further explained.

2. Which techniques are used in literature to solve such an optimization problem?
The last decade, an increasing amount of research has been conducted concerning the CSD (Saif and Elhedhli
[3]). In Rossi et al. [4], a sterilization plant is scheduled as a two stage hybrid flow shop problem with parallel
batching. Parallel batching, in this context, means that jobs in a batch are processed simultaneously. The
two stages represent the WD machines and the autoclaves, respectively. Furthermore, for other departments
with a similar process structure, a hybrid flow shop problem has been applied as well. In Leeftink et al. [5], a
histopathology laboratory is described as a three-stage flow shop problem.

3. Which techniques can be applied to the optimization problem at the CSSD?
This type of optimization problem could have been studied before. However, the model has to have distinc-
tive features dictated by the characteristics of the sterilization process.

4. What is the demand for the sterile instruments within the LUMC?
Earlier research already shows the number of arriving sets at the CSSD at the LUMC (Adank [1]). However,
this report only takes into account the number of products scanned and not their size. This could differ from
a single individual instrument to a larger surgery net. In addition, the schedule of the OR and outpatients
clinics has to be taken into account. Currently, a list is being developed at the LUMC which indicates all sets
and individual items required during an appointment or surgery. Hence, it will be possible to schedule the
sterilization of instrument sets over a timespan of a week. In that way, there is a clear overview in case there
are infeasibilities within the schedule. Historical data will be used to determine the demand of the OR and
the outpatient clinics.

5. What are the due dates for the different instrument sets?
Currently, the staff manually looks through the instruments that have arrived to determine which should be
processed first. By assigning due dates to the arriving instruments, the schedule can be optimized with the
due dates as constraints. These due dates depend on the available number of sets of a specific type, the
OR and outpatients clinic schedule, the current number of sets within storage and requests from the OR.
The assignment of due dates and priorities has already been done by Rossi et al. [4]. However, this is done
empirically.

6. What are the solutions from the optimization problem for different parameter settings?
There are various parameters within the models proposed in this thesis, for which the aim is to determine the
influence on the solution. A distinction can be made between the actual solutions and the possibility to solve
the model for large instances.

7. Which conclusions and recommendations can be drawn from this research?
Conclusions based on the results of the optimization problem are stated. From the results, recommendations
can be given for the LUMC and future research.

1.3.2. SCOPE
In Hulshof et al. [6], a framework is presented to subdivide capacity planning decisions within the health care
delivery process. The hierarchical levels are divided in strategic, tactical and operational planning. Strategic
planning involves long-term decisions such as: machine capacity, location and process design. Tactical and
operational planning involves more short-term decisions. The tactical level sets a blueprint in which the
operational decisions can be made. The operational level is subdivided in offline and online planning. Offline
planning schedules the jobs based on the given capacity and due dates in advance. Online planning also takes
into account emergency requests which cannot be scheduled in advance (Keseler [7]). Although Hulshof et al.
[6] only focuses on primary processes, which does not include instrument sterilization, the same hierarchical
decomposition can be used for the CSSD.
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As already mentioned, in order to answer the research question, decisions regarding all hierarchical levels
have to be taken into account. The research goal is to achieve a strategic and tactical planning. First, on a
strategic level, the capacity of the resources required to sterilize all instruments are determined. Second, the
amount of opening time of the CSSD and the number of employees each day are determined as a blueprint
for the operational planning. To accomplish this goal, the operational schedule has to be taken into account
to determine a makespan given a certain number of resources and jobs. Based on expert judgement, it is
decided that first the amount of opening time is taken into account as a tactical decision. The number of
employees will be an input parameter. A more elaborate overview of the hierarchical decomposition of the
decision is presented in Section 2.7.

1.4. THESIS OUTLINE
This thesis is structured around the sub questions. First, in Chapter 2, the process to sterilize instrument sets
is further explained. It also includes a more in depth overview of all logistic proceedings around the CSSD at
the LUMC, and finally, introduces a view on the future situation at the CSSD on which the rest of this thesis
is based. This chapter answers question 1. Next, Chapter 3 answers question 2 and partly question 3 by
presenting a small literature review. Within Chapter 4 and 5, question 3 is further answered by introducing
the optimization model and formulation, and subsequent solution approaches to solve this model. Then,
Chapter 6 is a data analysis of the data gained from the CSSD to answer question 4. In addition, a method
to answer question 5 is proposed. After the models are presented and the input data is described, the results
of various computational experiments are presented in Chapter 7. This chapter answers question 6. Finally,
Chapter 8 describes the conclusions of this research, the recommendations to the CSSD at the LUMC, and
the recommendations for future research. This chapter answers question 7.



2
SITUATIONAL ANALYSIS

This chapter gives a concise overview of the flow of reusable instruments within the LUMC and the position
of the CSSD within this process. Additionally, a detailed description of the processes that occur at the CSSD
is given. First, in Section 2.1, as an introduction, the term reusable instruments is further defined. In Section
2.2, an overview is given of the flow of reusable instruments and the position of the CSSD. This includes
an overview of the scheduling at the OR and the outpatient clinics, as they are the main customers of the
CSSD. Hereafter, the processes at the CSSD are described in more detail. The processes are described using
a Business Process Model and Notation (BPMN) model. In Section 2.3, a concise description of BPMN is
given. In Section 2.4, a BPMN model of the CSSD is developed to illustrate the processes at the CSSD. This
section is divided into four subsections for each of the four subprocesses. Moreover, the different areas where
the process takes place are described. In Section 2.5, the aspired future situation is described, on which the
models presented in this thesis are based. Finally, in Section 2.7, the scope of this thesis is further defined.
Although this chapter is mainly based on the processes and working methods at the LUMC, the description
of the future situation gives a more general overview of a CSSD within a hospital.

2.1. REUSABLE INSTRUMENTS
Within the LUMC, there is a wide range of instruments available. According to van Blijswijk [8], the estimated
number of available instruments equals roughly 40,000. These instruments are available as an individual
item or as part of a set. Individual instruments are individually wrapped and often used in addition to a set.
Sets consist of two or more instruments and are used for a specific surgery or requested by a specific surgeon.
A set can be used for several surgeries and multiple sets can be required for a surgery. Depending on the size, a
set is packed in double laminate or a basket which is packed in two layers of polypropylene, a combination of
paper and plastic. Sets of reusable instruments are mentioned under multiple names in literature, including,
basket, tray and net. Within this thesis a general term, ‘instrument set’, is used for both individual items as
well as for sets. If there is the need for a distinction between different types, the terms ‘individual item’ and
‘tray’ are used.

In Figure 2.1, three examples are presented that show the range of possible instruments. Figure 2.1a shows
a Metzenbaum scissors individually packed in double laminate. Figure 2.1b shows an acute surgery basket
consisting of 90 instruments according to van Blijswijk [8]. As the name suggests, this set is used for emer-
gency surgeries. However, it is also often used as an additional set for other surgeries. Figure 2.1c shows
an universal basic surgery set composed of 12 basic instruments according to van Blijswijk [8]. Each instru-
ment set has a specific cleaning instruction. There are specialized cleaning stations and different autoclave
and washing machines programs. These programs have a different washing duration, capacity and handling
costs. As a result, not all instrument sets can be batched together.

Note, the CSSD at the LUMC also handles the disinfection of scopes. This process is outside of the scope
of this thesis.

2.2. FLOW OF REUSABLE INSTRUMENTS
The flow of reusable instruments in a hospital can be described as a cycle. As mentioned before, the main
users of reusable instrument sets are the OR and the outpatient clinics. Hence, these are the main customers

5
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(a) Metzenbaum scissors (b) Acute surgery basket [8] (c) Universal basic surgery set [8]

Figure 2.1: Range of instruments

of the CSSD. The demand of the OR and the outpatient clinics is directly related to the number of resources
that are needed at the CSSD. The scheduling of the OR and the outpatient clinics are described in Subsection
2.2.1 and 2.2.2, respectively. From the OR and the outpatient clinics, a logistic team delivers the instrument
sets to the OR. After each surgery at the OR, the instrument sets are collected an transported to the CSSD.
At the outpatient clinics, the instrument sets used for a treatment are stored in mobile carts after use. These
carts are brought to the CSSD once a day and are to be returned as soon as all instruments are sterilized.
As visualized in Figure 2.2, after usage at the OR, the instruments go back to the CSSD to be sterilized, after
which they are transported to the storage until a next usage at the OR. Currently, the CSSD works with a push
approach. The instruments are replenished to the storage at the OR and outpatient clinics as soon as possible.

Figure 2.2: Reusable instrument flow

2.2.1. OR SCHEDULING

Each quarter of a year, the available capacity at the OR is determined based on staff hours. This available
OR capacity consists of the number of OR sessions, with each OR session represented as a time slot between
08:00-16:00. Based on historical data, waiting lists and preferred surgery types, these slots are distributed
over the specialties at the hospital. For certain specialties, it is not possible to finish a surgery within one
OR time slot. Hence, each day, there are extended hours possible within the schedule. Depending on the
week, at most two or three OR sessions can finish at 18:00 the latest and one OR at 21:00 the latest. Note that
several weeks a year (e.g. Christmas or summer), only half of the OR schedule is executed. These weeks are
determined before the start of the year and taken into account in the OR scheduling.

Considering the distribution of time slots and the extended hours over the specialties, a blueprint OR
schedule is created. Within the OR schedule, one OR session per day is scheduled for urgent surgeries. The
planning within an OR session is up to the speciality. It could be filled with one long surgery or multiple short
ones. Hence, the planning is decentralized, which makes it difficult to plan the required resources, such as
instrument sets. All surgeries in a week have to be scheduled on Wednesday a week in advance. On Thursday
morning, the OR schedule is reviewed on feasibility, order, staff availability, and resource availability. At the
end of Thursday, the whole schedule is known for the next week. However, there are still tens of OR schedule
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changes each week. For example, in 2018 there were up to 400 changes each month. During the day, a man-
agement team is in charge of the OR schedule. Deployment of the OR session scheduled for urgent surgeries
is decided by this management team.

Consequently, the schedule of sterilizing instrument sets can be based on the OR schedule, taking into
account the scheduled surgeries as due date. In addition, there has to be a basic safety stock available at the
OR for urgent surgeries. Urgent surgeries are categorized in:

• S1, now

• S2, within 8 hours

• S3, within 24 hours

As a sterilization cycle takes 5-6 hours, the instrument sets required for surgeries of type S3 can be sterilized
after deciding the surgery has to take place. Although this also holds for surgeries of type S2, it could induce
overtime and emergency jobs in the CSSD. Hence, for surgeries of type S2 and S3, a basic safety stock at the
OR has to be used.

The OR schedule can be taken into account on two different levels:

• Tactical: each speciality has its own specific instrument sets. Using the blue print of the OR schedule,
it can be determined how fast the instrument sets of a specific specialty has to be sterilized. This is
mainly interesting for smaller specialties which do not have OR slots on every day. Note, this blueprint
changes every quarter.

• Operational: the planned surgeries are known one week in advance, hence, the required instrument
sets can be determined. A schedule for processing these instrument sets can be made based on these
specific surgeries, the required basic safety stock and the current stock level at the OR.

In this thesis, a method considering the executed surgeries during a year is proposed. This method is
described in Chapter 6.

2.2.2. OUTPATIENT SCHEDULING
After each appointment at an outpatient clinic, used instrument sets are collected into bins in mobile carts. At
fixed times, the logistic team swaps these carts for empty ones. The filled carts are transported to the CSSD, at
which instrument sets from the outpatient clinic arrive between 17:00 and 18:00. The CSSD has arrangements
with each department about the time frame in which the instrument sets of the collected carts have to be
returned. The general agreement is that instrument sets are returned to the outpatient clinics within 24 hours.
There two exceptions to this rule, namely for the ‘Ear-Nose-Throat (ENT)’ and ‘Mouth care’ outpatient clinics
the instruments have to be returned before 13:00 the next day. The scheduling of the outpatient clinics is
decentralized and there is not much information available about the used instruments. In this thesis, the
total number of instrument sets originating from the outpatient clinics is estimated from expert judgement.
These numbers can be found in Chapter 6.

2.3. BPMN 2.0
As the CSSD processes are described using a BPMN model, a concise summary of the notation is given. Nowa-
days, BPMN is one of the most used languages to model business processes [9]. As said in [10], BPMN models
describe the execution ordering of activities, and the human, physical and informational resources involved
in the process. The model consists of different blocks and lines which have different meanings. Below, a list
of the used elements:

• Activities: These are the main blocks of the model and represent units of work. The blocks are rep-
resented as rectangles with rounded edges. In addition, a little square with a ‘+’ can be added when
the block contains a subprocess. By making different hierarchical levels, a model is more readable and
understandable.

• Gateways: These blocks control the divergence and convergence of the process flow. The blocks are
represented as diamonds with an ‘x’, ‘+’ or an ‘o’. The ‘x’ represents an exclusive gateway, a deci-
sion point in the process where a certain stated condition is evaluated. Hence, only one of the given
branches is executed. The ‘+’ represents a parallel gateway where work is done parallel and both
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branches are executed. The ‘o’ represents an inclusive gateway, also a decision point in the process,
where multiple branches can be executed.

• Events: These blocks represent an event which is not a work unit. The two main events are start and
end event. Events are represented as circles with a normal line for a start event and a bold line for an
end event. Additionally, in the model, catching error and message events are used. The error events are
used to indicate that a check is not passed and the process is quit for that instrument set. An example is
the pressure test for scopes. The message events indicate an information message from the database,
for example the type of washing program that is required for a specific net.

• Continuous line: These lines indicate the order in which the activities are performed.

• Dashed line and database: A dashed line represents communication between the two blocks. In this
case, it represents data that is stored or retrieved in the database T-DOC. A database is presented by a
cylinder and a name.

For this model, BPMN 2.0 in Signavio Process Manager [11] is used. The model has two different hierar-
chical levels, the main process, and for each step in the main process, a more detailed sub process.

2.4. CSSD PROCESSES
The main process consists of four subprocesses: ‘Manually clean instrument set’, ‘Disinfect instrument set
using WD machines’, ‘Check and assemble instrument set’ and ‘Sterilize instrument set using autoclaves’.
This main process is shown in Figure 2.3. Each subprocess will be further explained in a subsection. The
corresponding and more elaborate BPMN models can be found in Appendix A.

Figure 2.3: Core processes CSSD

The CSSD is divided into two main areas, a decontamination zone and an assembly zone. Additionally,
there are some grey areas, including the transporting area and the offices of the staff. All instruments ar-
rive in the decontamination zone, where they are manually cleaned. Instruments that have to be manually
disinfected will also be disinfected here. The manually cleaned instruments go into the WD machines to be
cleaned and disinfected. The washing machines are used as a gateway from the contaminated room to the
clean room. Hence, if the wash program is done, the instruments arrive in the clean room. The instruments
that are disinfected manually are transported through a serving hatch to the clean room. In the clean room,
the instruments are checked, assembled, and packed as individual items or into trays. After this, they go into
the autoclaves to be sterilized. These autoclaves are also used as a gateway from the clean room to a sterile
area.

The CSSD can be characterized by highly specialized manual labor and two stages of batching machines.
Each instrument set has specific cleaning and assembly instructions, and there is a wide variety of instrument
sets. Employees require specific knowledge and have to work accurately as careless handling can lead to
severe complications for patients. Figure 2.4 gives an impression of the processes at the CSSD.

2.4.1. MANUALLY CLEAN
The instruments arrive from two different sources: the OR and the outpatient clinics. The logistic employees
of the OR bring the used instruments within an open cart to the cleaning room after each surgery. Generally,
the first surgeries start at 08:00, so the first sets of that day arrive around 12:00. Beforehand, the instrument
sets used during the night arrive at 07:00. The used instruments from the outpatient clinic arrive at the end
of the day between 17:00 and 18:00. They are stored in closed carts, which are switched for empty carts when
they are picked up. The instrument sets are scanned as soon as they arrive in the decontamination zone.
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(a) Manually clean
instrument set

(b) Disinfect instrument set
using WD machines

(c) Check and assemble
instrument set

(d) Sterilize instrument set
using autoclaves

Figure 2.4: CSSD processes

Upon arrival of instrument sets at the CSSD, the CSSD employees look into the different carts to see which
instrument sets have the highest priority. This priority can be based on: requests from the OR, the number of
sets of a specific instrument set and the number of sets of a specific instrument set already at the CSSD. The
first step is manually cleaning the instruments at a washing station. The employee scans the instrument set
to see the information, guidelines and possible remarks on cleaning the specific set. After being washed, the
instruments are laid open in multiple baskets to ensure they are cleaned properly in the washing machines.
These extra baskets are called DIN baskets and have four main sizes, 1, 1/2 and 1/4 DIN. Additionally, the
instruments are sorted for different washing programs. Hence, an instrument set can be divided over multi-
ple washing machines according to the different washing programs. After manually cleaning, an ultrasonic
machine is used to remove caked contamination. The guideline is to include this step for each instrument set
with exceptions for sensitive sets such as instrument sets from the ‘eye’ outpatient clinic.

2.4.2. DISINFECT USING WD MACHINES

After the cleaning step, the DIN trays are put on a cart. Each cart corresponds to a batch in the WD machines.
When there is no rush, the cart will be filled, after which it is ready to be disinfected. The first step is a pre-
rinse process. As soon as a cart is put in front of a washing machine, the corresponding washing program
is automatically selected based on the cart type. For the majority of the instruments, the disinfecting step is
performed by the washing machines. There are different programs for different types of materials: enzymatic,
alkaline and a washing program specific for eye instruments and implants. A few instruments have to be
disinfected manually, for example cables and filters. These are handed through a serving hatch to the clean
room. As a result, not all instruments from a set are in the same washing machine. After the different disinfect
wash programs, an employee checks the batch and machine and releases the instruments for the next step.

2.4.3. CHECK AND ASSEMBLE

When the instruments are disinfected, several manual steps have to be taken depending on the type of instru-
ment. This includes: oiling instruments, blow through lumen and putting instruments in a drying cabinet.
After these steps, the instruments are divided over multiple working stations. The aim is to collect the in-
strument sets for each working station from the different disinfecting processes. At a working station, the
employee scans the instrument set to see all the specific information. All individual instruments are checked
and assembled. At the same time, the completeness of an instrument set is checked. If the instrument set
is complete and checked, it has to be wrapped. This packaging ensures that instruments remain sterile after
the process. As mentioned before, there are two main types; individual items and trays. Individual items
are wrapped in laminate. Trays are wrapped in a double layer of polypropylene, a combination of paper and
plastic. After wrapping, a bar code is printed and the step is indicated as finished in the database.

2.4.4. STERILIZE INSTRUMENT SET USING AUTOCLAVES

After the assembling step, the wrapped instrument sets are put on a cart. Again, each cart corresponds to a
batch in the autoclaves. There are two different autoclaves, a heat autoclave and a plasma autoclave. The
heat autoclave has two different programs, 123 degrees Celsius and 141 degrees Celsius. According to the
instrument sets on a cart, the autoclave program is selected. In addition, a flash autoclave can be used in
case there is an urgent request. After sterilization, an employee checks the batch and machine and releases
the instruments for transport to the OR or the outpatient clinics.
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2.5. FUTURE SITUATION
Together with the renewal of the CSSD and OR, the aim is to change the working methods from a push to a
pull approach. As this thesis is used to support decisions concerning the new situation, the preferred future
process is described in this section. This situation sketch is based on a site visit to the University Medical
Center (UMC) Utrecht, the new system of Boikon B.V. Medische Automatisering - Boikon B.V. [12], and expert
judgement. As there is less information about the decentralized planning of the outpatient clinics and the
required instrument sets, this pull approach method is mainly focused on the demand from the OR. In the
future situation, the agreements of the outpatient clinics can be reviewed to ensure that instrument sets arrive
more evenly over the day. Currently, all instrument sets from the outpatient clinics arrive between 17:00 and
18:00. However, these changes are not taken into account in this thesis.

For each type of surgery at the OR, there is a list of the required instrument sets. Hence, it is known
which instrument sets are required for each planned surgery. As the planned surgeries are reviewed a week
in advance, a weekly schedule for the CSSD can be made. Within this schedule, it is known when a set has
to be returned to the OR for a surgery. For emergency surgeries, there has to be a predetermined safety
stock level present at the OR storage. This safety stock level is determined in consultation with operating
assistants and surgeons. The safety stock level is based on the frequency of usage of an instrument set during
emergency surgeries and the number of available sets. The weekly schedule of the CSSD can be adjusted
if there is a change within the OR schedule and the required instruments sets, or if there is an emergency
surgery and the safety stock level has to be replenished. With this system, employees of the CSSD have a
better overview of which instruments sets have to sterilized that day and which can be stored to be sterilized
later. In this way, there is no peak in workload when instrument sets from the surgeries and the outpatient
clinics arrive at the end of the afternoon. Even though the arrival of instrument sets is not evenly distributed
over the days, the work for the employees at the CSSD can be evenly distributed over the week by having the
additional information. In addition, there should be less urgent requests from the OR. Both the OR and the
CSSD know better which instrument sets should be in storage and which are being processed for planned
surgeries. As a result, the workload is less for the CSSD employees and the department can work with a more
evenly distributed capacity. Thus, reducing the required peak capacity.

On an operational level, instrument sets are processed based on their due date and their priority. The
due date is based on a planned surgery. The priority is based on the required safety stock level, the current
stock level at the OR, and the scheduled surgeries. Based on the method used in the UMC Utrecht, 6 priority
classifications are indicated as follows:

• 1: Tardily

• 2: Scheduled today

• 3: Scheduled tomorrow

• 4: Low stock level

• 5: No stock

• 6: No priority which requires the instrument set.

In reality, there will always be urgent requests, hence a ‘priority 1’ has to be included. Priorities 2 and 3 are
in place to know which sets have to be sterilized for upcoming planned surgeries. Lastly, priority 4 indicates
that the safety stock level of an instrument set is beneath the specified level. Note, this is only for instrument
sets which are used for emergency surgeries. For instruments that are not used for emergency surgeries,
there is no stock required. At the CSSD, the instrument sets are sterilized in order of these priorities. First,
the instrument sets which are already late, then the sets which are due for surgeries the same day. Lastly, sets
which have no priority are sterilized as soon as all other jobs are completed. Note that these priorities change
for each instrument set as soon as new surgeries are scheduled or as there are emergency surgeries etc.

For employees of the CSSD, the primary processes are manually clean and organize instruments sets
within the decontamination zone and assemble and check instruments sets within the assembly zone. Cur-
rently, employees spend time on secondary processes such as: loading instrument sets on carts, loading WD
machines or autoclaves and assigning instrument sets to working stations. As employee hours are very costly,
a future situation in which these processes are automated is desired. In this way, employees can focus only
on the primary processes.



2.6. HIERARCHICAL DECOMPOSITION 11

2.6. HIERARCHICAL DECOMPOSITION
As already introduced in Subsection 1.3.2, in Hulshof et al. [6], planning and control decisions are divided into
four hierarchical levels and four managerial areas. The four hierarchical levels are strategic, tactical, and op-
erational, which can be divided in an offline and online operational planning. The four managerial areas are
medical planning, financial planning, materials planning, and resource capacity planning. The planning de-
cisions which are considered in this thesis are part of the resource capacity management. As stated by Hulshof
et al. [6], this managerial area addresses the dimensioning, planning, scheduling, monitoring, and control of
renewable resources. In the paper of Hulshof et al. [6], only primary processes are taken into account. Hence,
instrument sterilization, a supporting activity, is not considered. In this section, the decomposition of the
planning decisions regarding the CSSD are described.

In Figure 2.5, this decomposition is graphically illustrated. As described by Schneider [13], capacity plan-
ning decisions have to be integrated ‘top-down’ and ‘bottom-up’. ‘Top-down’ integration translates strategy
into operations and ‘bottom-up’ provides feedback to improve decision making on a higher level. The aim of
this thesis is to determine the acquisition of machines, the determination of the amount of opening time and
the scheduling of instrument sets. Employee numbers and assignment to working stations are used as input
parameters. Note, as the instrument sets are purchased by the OR specialties and the CSSD is supportive to
the OR, decisions regarding the number of items of each instrument set and the tray composition are not
taken into account. However, the capacity planning decisions of the CSSD have to take these restrictions into
account, which can be described as external alignment.

Figure 2.5: Framework planning decisions CSSD, based on Figure 2.1 of Schneider [13].

External alignments which have to be taken into account include:

• The number of instrument sets of each type. The scheduled surgeries and the stock level at the OR
indicate the time at which an instrument set has to be returned to the OR storage. When there are not
enough items of a specific instrument set, it can lead to regular urgent requests from the OR. This can
lead to a required peak capacity to handle these urgent requests.

• The scheduling of the OR, the arrival time and due date of instrument sets is directly dependent on the
scheduling of surgeries. In case additional extended hours are scheduled, more instrument sets arrive
late at the CSSD. In addition, the scheduling of the CSSD is dependent on the blueprint of the OR.

• The scheduling and agreements with the outpatient clinics, including when the instrument sets are
collected from the outpatient clinics and when they have to be returned to the outpatient clinics.

• The usage of disposable instruments. According to Adank [1], the number of processed instrument sets
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has decreased since 2009. This could be due to an increasing usage of disposables instead of reusable
instrument sets.

On a strategic level, the number and type of WD machines and autoclaves have to be determined. This
decision has a planning horizon of 10 years and is part of the dimensioning of the process. These numbers are
input for the tactical capacity decisions. At this level, the number of employees and the amount of opening
time is determined. The amount of hours has to be determined for weekdays and weekend days, and for
weeks with a half OR schedule. A blueprint of the required staff hours on each day and for each step within
the process can be determined. This blueprint serves as input for the operational level. On an operational
level, employees are assigned to the working stations and instrument sets are assigned to a machine and a
batch. At the online level, employee changes and changes in the OR schedule are taken into account to adjust
the schedule.

2.7. SCOPE
In this section, the scope of this thesis is further defined. Given the large number of decisions which have
to be taken into account, the number of employees is used as an input parameter. As described in Section
2.6, the number of employees and the amount of opening time are capacity planning decisions on a tactical
level. Based on expert judgement, it has been chosen to explore the required amount of opening time and use
the number of employees as parameter setting. In future research, the required number of employees can be
explored with the opening time as input, or even both as variables.

As the OR schedule is known a week in advance, the considered planning horizon is one week. Even
though the OR blueprint is a bi-weekly schedule, after studying these blueprints from the past year, there
are no significant changes between the two weeks. Considering all jobs arriving during a week, the aim is to
sterilize all sets before Monday morning or earlier according to their due dates.

The process at the CSSD is defined as a linear process consisting of the four main steps. Exceptions, such
as instruments which have to be disinfected manually, are not taken into account. There are no rejected
machine batches, so no returning instrument sets. For the manually cleaning and the assemble step, for each
instrument set a standard time is used. This time has to be an average based on the measurements at the
CSSD. The process time of an autoclave depends on the outside pressure condition, which changes based on
the weather. In this thesis, a fixed process time is assumed.

There are no strict rules concerning the amount of time between steps within the CSSD. However, within
guidelines [14], it is noted that the time between disinfection and packaging should be minimized to prevent
sedimentation of airborne particles. In practise, it is preferable to wash the instruments as soon as possible
after arriving at the CSSD. In this way, the filth is not yet caked to the instruments and can be removed easily.
Based on these remarks and expert judgement, it is assumed that the maximum time until disinfection is 24
hours, and the maximum time between disinfection and sterilization is 48 hours.
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BACKGROUND

This chapter presents a concise literature study and background information about the CPLEX solver. With
this chapter, the research questions: ‘Which techniques are used in literature to solve such an optimization
problem?’ and ‘Which techniques can be applied to the optimization problem at the CSSD?’ are answered.

3.1. LITERATURE REVIEW
The last decade an increased amount of research about the CSSD has been conducted. Previously, the focus
was on optimizing the OR, as this is a primary process within healthcare. The CSSD has a supportive role to
the OR and outpatient clinics, and is involved in the logistics of reusable instruments. However, as indicated
in van de Klundert et al. [2], optimizing the logistics of goods and pharmaceuticals can lead to significant
reduction in costs. The financial savings can be used to improve primary processes.

In Subsection 3.1.1, an overview of previous work that was conducted on healthcare, more specifically,
the CSSD, is given. The scheduling problem, as described in Chapter 1, can be described as a multi-stage
Hybrid Flow Shop. Hence, in Subsection 3.1.2, an overview of recent research on Hybrid Flow Shops is given.
Processes in healthcare face specific challenges regarding high service levels and no margin for errors or tardy
jobs. Additionally, the processes have a non-deterministic nature. There are last minute changes and urgent
requests, since not everything can be planned in advance. A model should have distinctive features that are
matched to healthcare processes. As one of the main challenges of processes within healthcare is the non-
deterministic behaviour, Subsection 3.1.3 discusses solution approaches that take these uncertainties into
account. Finally, in Subsection 3.1.4, a concise summary of the findings and the contribution of this thesis to
research is given.

3.1.1. LITERATURE APPLIED ON THE CSSD
Previous work regarding the CSSD varies in subject. There are literature reviews (Moons et al. [15], Ahmadi
et al. [16]), research on the optimization of surgical trays (Dollevoet et al. [17]), process evaluation (Huynh
et al. [18]), van Blijswijk [8]), Brooks et al. [19], Al Hasan et al. [20]), resource pooling (Saif and Elhedhli [3]),
design decisions (Keseler [7]) and machine scheduling (Ozturk [21], Rossi et al. [4], Rossi et al. [22], Di Mascolo
and Gouin [23]). The wide range of subjects enables the development of a broader view on the processes at
the CSSD and place the case study at the LUMC in perspective. First, relevant findings from the literature
studies and the process evaluations are stated. These findings include methods which can be used to solve the
the optimization problem as stated in Chapter 1. Second, the research on machine scheduling is discussed
These findings can be applied to the problem on an operational level.

Moons et al. [15] presents existing literature on the performance of the internal hospital supply chain in
the OR environment. It emphasizes the importance of logistics-related activities to make sure the right sup-
plies are delivered in the right condition to the right patients at the right time. The costs of logistic processes
has increased and the supply chain has to be integrated with the patient care system to guarantee high qual-
ity patient care. In Ahmadi et al. [16], the main focus is on inventory management as well. This review paper
is divided into two parts: papers that propose optimization methods and papers that contain practitioners

13
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reports. They concluded that, for practical use, stochastic models have to be developed that take into ac-
count a service level. However, they also noticed that availability of data plays a key role in the development
of analytical methods.

In van Blijswijk [8], a demand driven supply method in combination with Unique Device Identification
(UDI) is proposed for the CSSD at LUMC. Van Blijswijk concludes that the production of the CSSD is not
based on a planning. The main focus is to sterilize all arrived instruments as soon as possible. This is in line
with the observations used to set up the research question of this thesis. The conclusion is supported by data
regarding the distribution of the storage time of an instrument set and the demand from the OR. There is a
significant variation in storage time, since a small part of the instrument sets uses most of the storage time.
In addition, the volatility for each instrument set is calculated, based on usage of an instrument set in a year
and the OR planning. A low volatility indicates that an instrument set is used frequently and the demand is
predictable, a high volatility indicates an instrument set is used irregular and the demand is unpredictable.
These numbers are calculated using a Fuzzy Logic Controller. Furthermore, Van Blijswijk studied the number
of urgent surgeries and planning mutations at the OR. In 2014, on an average day, 10.9% of the surgeries are
urgent, however, 80% is processed as planned. These numbers further strengthen the statement that a pull
approach can be beneficial even though changes in the schedule were made.

In Keseler [7], all strategic and operational design decisions to construct a CSSD are enumerated. On a
strategic level these include: location within the hospital, the required capacity, the lay out, and environ-
mental requirements. For this thesis, the required capacity is of most interest. The capacity is divided into
capacity of the department itself and storage at the CSSD. Regarding the capacity of the department, it is
stated that the capacity of the machines is of great importance as this is the rigid capacity which influences
the operational performance. Although there are many manual processes at a CSSD, it is more likely that
problems that occur there can be addressed on the operational level later on. For machine capacity, a de-
gree of flexibility has to be incorporated in order to handle demand uncertainty. On an operational level, the
design decisions include: service definition, technology, and human resources. The service definition also
covers the lead time of instrument sets. It is argued that this can be described as both an operational and a
strategic design decision as the lead time is a prerequisite to determine the design of the CSSD. The strategic
and operational decisions are highly correlated, which causes the requirement of specific process knowledge.

Finally, Brooks et al. [19] indicate the importance of a good communication between the OR and the
CSSD. Huynh et al. [18] presents a method in which the CSSD and the OR communicate each time a possible
instrument shortage could occur. In case of a shortage, changes regarding the surgery schedule or desired
instruments for a surgery can be made.

In Rossi et al. [4], a sterilization plant is represented as a two stage Hybrid Flow Shop with parallel batch-
ing. The two stages represent the washing machines and the autoclaves. Pre-cleaning, checking and assem-
bling are included as setup times for those machines. Minimizing the number of tardy jobs and the makespan
are considered as performance indicators. To solve this problem, two heuristic approaches are proposed
which make use of fragmenting batches. In other words, closing batches early instead of waiting until they
are completely filled. The heuristic approaches are tested on a selected peak day. In addition, several scenar-
ios are tested with a varying number of resources. In Rossi et al. [22], the mathematical model is extended to
an S-stage Flow Shop problem. Job priority is dynamically determined by a critical ratio between the available
time to due date and the remaining process time. An heuristic is proposed in which batches are closed after
a certain time window, similar to the batch fragmentation. They suggest that decreasing machine capacity,
while increasing the number of machines, could be a good recommendation. Future research recommenda-
tions are to use metaheuristics and optimizing batch sizing and machine resources. Later, in Lanzetta et al.
[24], the model is further developed by taking into account uncertainty within manual process times.

In Ozturk [21], a scheduling strategy is proposed for the disinfecting step, often indicated as bottleneck
at the CSSD. It is a multi-criteria scheduling problem in which the makespan and the flow time, i.e., sum
of processing times, are minimized. A lower bound is given by solving a special case allowing job splitting,
(Ozturk et al. [25]). In addition, in Ozturk et al. [26], the scheduling problem is solved with a semi-online
heuristic based on a ‘First Fit Procedure’ (FFP), where partial information is available about the job type and
arrival time.

In Di Mascolo and Gouin [23], a generic discrete event simulation is used to improve the processes of the
CSSD. The model can be used to acquire knowledge about the process behaviour, compare different CSSD
departments and working methods. For batch creation, different rules such as ‘First In First Out’ (FIFO) and
FFP are used. The number and capacity of washing machines, autoclaves, and working stations are used as
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input data. The model is made with ARENA, a simulation software.
Leeftink et al. [5] represent a histopathology laboratory as a three phase hybrid flow shop with parallel

batching machines in one stage. The goal is to reduce the physical workload in between the phases. In other
words, minimize the intermediate storage room. A new 2-phased decomposition approach is developed to
solve this problem. First, a daily cyclic batching schedule is created while minimizing the batch completion
intervals per batch type. Second, jobs are scheduled within these batches, to minimize the tardiness of the
jobs.

To conclude, the discussed studies form a good basis to formulate a mathematical model and an initial
solution direction. The research indicates that quantitative studies at a CSSD can be beneficial and the hier-
archical level of capacity planning decisions has to be taken into account. Furthermore, the relation to the
OR is of great importance.

3.1.2. HYBRID FLOW SHOP
The process at the CSSD can be described as a multi-stage Hybrid/Flexible Flow Shop (FFS) with parallel
batching. In previous research, the terms hybrid and flexible are used alternately. More specifically, the pro-
cess can be described as a two-stage FFS with parallel batching and setup times. In addition, the process
can also be modelled as a four-stage FFS in case the setup processes are modelled as a stage. As described
in González-Neira et al. [27], a standard flow shop (FS) problem consists of m machines in series. There are
n jobs that have to be processed on each machine. The jobs have to processed in sequence, starting on the
first machine, then on the second machine, and so on. A FFS problem is a combination of two fundamen-
tal scheduling problems, FS scheduling and parallel machines scheduling problems. At least one stage has
multiple parallel machines and a job has to be processed at one of the machines at each stage. In Figure
3.1, a diagram of a FFS problem is presented. A generalization of the FFS is an environment where machines
can process multiple jobs simultaneously, which is called parallel batching. This is the case in the problem
regarding the CSSD.

Figure 3.1: Hybrid Flow Shop environment based on Morais et al. [28].

In previous research, FFS problems are extensively studied. Three recent literature reviews are given by
González-Neira et al. [27], Lee and Loong [29] and Morais et al. [28]. However, less research is available on
environments including parallel batching. Within the literature studies, FFS with parallel batching is men-
tioned, however, the focus is on the classical FFS. Hence, a set of recent literature published in 2018, 2019
and 2020 is presented, covering FFS with parallel batching. Each research covers additional environment
characteristics, namely, the process can have incompatible job families (Li and Dai [30]), unequal job release
dates (Abedi et al. [31], Tan et al. [32]), maintenance activities (Lu et al. [33]), limited waiting time (Li and
Dai [30], Wang et al. [34]), non-identical machines (Liu et al. [35]), or take into account non-deterministic
behaviour. In Shahidi-Zadeh et al. [36], a process with one stage of parallel batching machines is optimized
using a bi-objective mathematical model. The aim is to minimize the makespan, and determine the opti-
mal set of machines to acquire. The paper presents a multi-objective mixed integer non-linear programming
model. This model takes into account capacity constraints, due dates, release dates, and different processing
times per machine. Combined, these papers represent all relevant characteristics of the process described in
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Chapter 2. Hence, the formulation as stated in Chapter 4 can be build up from the formulations as presented
in the stated research.

In Lee and Loong [29], a comprehensive review on FFS problems is given. In addition, González-Neira
et al. [27] focuse on FFS problems under uncertainties, and Morais et al. [28] focuse on FFS problems with
multi-criteria objective functions. In these papers, three different machine environments are considered,
namely, ‘identical parallel machines’, ‘uniform parallel machines’, and ‘unrelated parallel machines’. ‘Identi-
cal parallel machines’ indicates that the process time of a job is not dependent on the specific machine on
which it is processed. This machine environment is most studied in literature. According to Lee and Loong
[29], 78% of the studied literature is associated with this type of machine environment. ‘Uniform parallel
machines’ indicates that the job process time depends on a general job process time and a machine speed.
8% of the literature studies this type of machine environment. Finally, ‘unrelated parallel machines’ indicates
different machine efficiencies, which is the case in the scheduling problem related to the CSSD. There are low
and high end machines from different manufactures available for purchase. 14% of the literature analyzed
contributes to this type of machines

The reviews also classify the problems encountered in literature based on additional job constraints. In
Lee and Loong [29], additional buffer and setup sequence constraints are mentioned. In this thesis, unlimited
buffer capacity is assumed in terms of space. However, there are constraints regarding the maximum dura-
tion before and in between stages. For the setup sequence constraints, there is a division between sequence
independent and sequence dependent setup times for machines. For sequence dependent setup times, the
job variety and the sequence determines the setup time of a machine. On the other hand, with sequence
independent setup times, the setup time is not affected by the order in which jobs are processed. For the
problem regarding the CSSD, sequence independent setup times are applicable, which is less complex than
sequence dependent setup times. In Morais et al. [28], a table of all the additional constraints is presented.
Relevant additional constraints regarding the CSSD problem are: different release dates, different due dates,
maintenance, uncertain due dates, and setup times.

Besides classifying problems based on constraints and machine environment, different objective func-
tions are considered. In Lee and Loong [29], previous literature is divided into three categories, time-related
objectives, job-related objectives and multi-objectives, which are studied in 67%, 14% and 19% of the cases,
respectively. The most used objective function is the makespan, however, in recent years, objectives func-
tions have shifted towards tardiness minimization. The costs are only taken into account in multi-objectives.
In fact, in González-Neira et al. [27], only 2% of previous literature focuse on minimizing the costs of the
resources.

Looking at the solution methods, Lee and Loong [29] states that heuristics are most used, before meta-
heuristics and hybrid methods. For literature which takes into account uncertainties, more than half of the
papers use metaheuristics, among which 42% used a genetic algorithm. The use of genetic algorithms is also
endorsed by Morais et al. [28] for multi-objective studies. All three literature reviews recommend to look into
the use of hybrid algorithms, which are studied by an increasing number of studies. As stated in Lee and
Loong [29], ‘hybrid approaches can be defined as the combination of two or more approaches’. As every ap-
proach has its benefits and disadvantages, it can be useful to combine approaches in order to enhance the
performance.

To summarize, there is many previous research studying FFS problems, however, each study has specific
additional constraints based on the practical situation it is applied on. In comparison to the studies that
have been conducted specifically on the CSSD, multiple additional constraints and other objective functions,
such as the acquiring costs of machines, are considered. The recommended solution approaches are hybrid
algorithms and metaheuristics.

3.1.3. UNCERTAINTY MEASURES
Processes within hospitals are affected by uncertainties, which for the CSSD include: emergency surgeries or
surgeries which require additional instrument sets, the failure of machines, and the uncertain time require-
ments of the manual setup processes. As stated in Hall [37], the greater the variability in a system, the greater
the capacity required to meet a given service standard on availability or timely access to the service. This
section suggests several methods to include these uncertainties in an optimization model.

In González-Neira et al. [27], a review of FS and FFS problems under uncertainty is given. FFS under
uncertainty is studied less in comparison to the deterministic variant. However, the last four years of the lit-
erature study (2001-2016), there has been an increase in papers published on this subject. There are many
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approaches available to take uncertainty into account, including: sensitivity analysis, fuzzy logic, robust op-
timization, and stochastic programming. Sensitivity analysis focuses on the model results and the extent in
which they are influenced by changing the input parameters. However, this method is not often used for
scheduling problems due to their complexity. Fuzzy logic can be used if the value of parameters are not cer-
tain and can be described better in natural language, such as: Quite true, more or less true, and almost true
(Tamir et al. [38]). For example, in Sadati et al. [39], fuzzy parameters are use in a bi-objective model rep-
resenting parallel batching machines. The objective function minimizes makespan and maximum tardiness
simultaneously. The paper states that uncertainty is inherent in scheduling environments and that data qual-
ity and quantity can be questionable. Hence, fuzzy processing times, fuzzy ready times and fuzzy due dates
are considered. To solve this model, two metaheuristics are proposed. Robust optimization is a risk averse
method which ensures that the solution of any possible scenario, is close to the optimal solution of the model.
Finally, stochastic programming takes into account the known probability distribution of a variable. In cor-
respondence with the strategic, tactical and operational level, the problem can be described as a two-stage
stochastic process. Capacity planning decisions should be based on the information available at that point
in time, so before the realization of the second stage uncertain parameters. In other words, the number of
machines has to be determined, before the exact demand of instrument sets is known. At the first stage, the
objective function consists of a deterministic part considering the purchase of machines and the expectation
of the uncertain parameters (Shapiro et al. [40]).

To summarize, there are several methods to take into account uncertainties. Two-stage stochastic pro-
gramming appears the most promising as it consider the capacity planning decisions on different hierarchi-
cal levels. The addition of uncertainties adds to the computational complexity of a model. Hence, before
uncertainties can be taken into account, the model performance of the deterministic variant has to be eval-
uated. Furthermore, properties that influence the model complexity should be known. Given that a model
considering the specific characteristics of the CSSD is not found in literature, combined with findings of Sub-
section 3.1.2, in this thesis, the focus is on exploring the model properties and the decisions on the different
hierarchical levels. Future research is required to explore the possibilities to incorporate uncertainty mea-
sures.

3.1.4. CONCLUSION
In this section, literature covering varying subjects regarding the CSSD is discussed. It can be concluded
that the logistic flow of reusable instruments within a hospital is an upcoming and promising research field
with the aim to reduce costs and improve efficiency. Furthermore, the importance of the alignment with the
demand of the OR is emphasized. This thesis contributes to research with the following aspects:

• A framework is proposed to indicate the capacity planning decisions on a strategic, tactical and op-
erational level for a CSSD. This includes a selection from the capacity planning decisions as stated by
Keseler [7], with the addition of a tactical hierarchical level.

• A new objective function is taken into account; the costs related to sterilization. Multiple articles state
that significant cost reductions are possible, however, most scheduling problems minimize makespan
or the number of tardy jobs. By minimizing the costs, the makespan will implicitly be minimized as
well. However, this also depends on the acquired machines. Instead of minimizing the makespan given
a set of resource constraints, the resource constraints are yet to determined.

• An extension of the model as proposed by Rossi et al. [4]. The formulation is linearized and extended
to a time horizon of a week, taking into account daily opening hours and the purchase of different
machine types.

3.2. CPLEX SOLVER
As the problems in this thesis are solved using the commercial CPLEX solver, this section shortly describes its
algorithm. In addition, it is noted which parameters can be adjusted to improve the performance to solve a
Mixed Integer Problem (MIP). CPLEX solves a MIP using a dynamic search algorithm. This algorithm is based
on a Branch-and-Cut algorithm and includes the following basic steps:

• Preproccessing: The aim of this step is to reduce the size of the problem and improve the formulation.
A tighter formulation is obtained by improving bounds and probing. Probing is defined as fixing a
binary variable to zero or one and check the logical implications.
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• Branch and cut: An algorithm which finds feasible solutions and valid lower bounds by solving a series
of relaxed subproblems. These subproblems form a tree where each subproblem is a node. The root
of this tree is the relaxation of the preproccesed MIP. If this solution has one or more fractional vari-
ables, CPLEX branches on a fractional variable and creates two new subproblems with additional cuts
to avoid the fractional value. The result of subproblems can be integer solutions, infeasibilities or again
a fractional solution. The branch is pruned or the subproblem is again branched on a fractional vari-
able. Within this each step of this process, a node has to be selected, where after a variable to branch
on has to be selected.

• Heuristics: CPLEX automatically invokes heuristics in the branch-and-cut algorithm if it appears to be
beneficial. These heuristics are used to quickly find integer solutions at fractional nodes, to improve
the current integer solution at a node or provide a better lower bound.

To obtain better solutions, after initial experiments, the node logs of CPLEX are studied. Table 3.1 shows
a small example of the main part of the node log. The first four columns show the current node number, the
number of nodes left, the objective function value of the current node, and the number of integer-infeasible
variables. Next, the column ‘Best Integer’ presents the best found integer solution and the column ‘Cuts/Best
Node’ shows the best found upper bound in case of a maximization, and lower bound in case of minimization.
If the word ‘Cuts’ appears, it indicates that various cuts were generated. The last column presents the relative
gap between the best integer and best node. The column ‘ItCnt’ records the cumulative iteration count.

Node Nodes Left Objective IInf Best Integer Cuts/Best Node ItCnt Gap
* 0+ 0 0.0000 3261.8212 8 —
* 0+ 0 3148.000 3261.8212 8 3.62%

0 0 3254.5370 7 3148.0000 Cuts: 5 14 3.38%
0 0 3246.0185 7 3148.0000 Cuts: 3 24 3.11%

* 0+ 0 3158.0000 3246.0185 24 2.79%
0 0 3245.3465 9 3158.0000 Cuts: 5 27 2.77%
0 0 3243.4477 9 3158.0000 Cuts: 5 32 2.71%
0 0 3242.9809 10 3158.0000 Covers: 3 36 2.69%
0 0 3242.8397 11 3158.0000 Covers: 1 37 2.69%
0 0 3242.7428 11 3158.0000 Cuts: 3 39 2.68%
0 2 3242.7428 11 3158.0000 3242.7428 39 2.68%
10 11 3199.1875 2 3158.0000 3215.1261 73 1.81%

* 20+ 11 3168.00000 3215.1261 89 1.49%
20 13 3179.0028 5 3168.0000 3215.1261 89 1.49%
30 15 3179.9091 3 3168.0000 3197.5227 113 0.93%

* 39 3 integral 0 3186.0000 3197.3990 126 0.36%
40 3 3193.7500 1 3186.0000 3197.3990 128 0.36%

Table 3.1: Example CPLEX node log (IBM [41])

The information from the node logs can be used to get a better understanding of the difficulty to solve an
instance and adjust parameters to improve the performance of the optimizer (IBM [41]). In this thesis, the
following parameter settings are used:

• Variable selection strategy: After a node is selected for branching, this parameter sets a rule to deter-
mine the variable which is chosen for branching.

– Pseudo reduced costs, a computational less expensive strategy that is based on pseudo-shadow
prices.

– Strong branching, a strategy that first partially solves a number of subproblems, after which it
selects the most promising branch.

• Probing: This parameter sets the amount of probing before branching. Probing can dramatically in-
crease the performance, however can be computational expensive. In this thesis the parameter is set to
‘Very aggresive probing level’.
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• Emphasis switch: The default setting aims to balance the trade-off between finding good feasible so-
lutions and a lower bound to prove optimality. However, this emphasis can be switched to focus on
finding more feasible solutions or moving the lower bound and prove optimality. In this thesis the
emphasis is set to ‘Optimality’, which causes the solver to put less effort into finding feasible solution.

• Turning off heuristic for node 0: To decrease the computation time spent on the calculation of node 0,
the heuristic can be turned off for the root node.

• Aggresive cut generation: During the optimization, CPLEX generates cuts to restrict the solution space.
Several parameters can be used to decide how often these cuts are generated. In this thesis, the param-
eters for cut types ‘Cover’, ‘Clique’, ‘Disjunctive’, ‘Locally Valid Implied Bound’, and ‘Lift and Project’ are
set to a ‘very aggresively’.





4
PROBLEM DESCRIPTION

In this chapter, the problem statement is formally introduced. The problem can be described as a two stage
hybrid flow shop with parallel batching and setup time at each stage. Stage one is the disinfection step, exe-
cuted by the WD machines, and stage two is the sterilization, executed by the autoclaves. The steps ‘manually
clean’ and ‘check and assemble’ are setup processes before disinfection and sterilization, respectively. In Sec-
tion 4.1, the constraints and objective function is proposed, and in Section 4.2, the problem characteristics
are stated.

4.1. PROBLEM FORMULATION
This section will formally introduce the optimization problem regarding the CSSD. Hereafter, this problem
is called ‘CSSD Planning Problem’. In Subsection 4.1.1, the constraints of the CSSD Planning Problem are
described, and in Subsection 4.1.2, the objective function is defined. All relevant sets, variables, and parame-
ters are introduced in the text and listed in the front matter of this thesis. The model is written based on the
situation analysis in Chapter 2, more specifically, the future situation as described in Section 2.5.

4.1.1. CONSTRAINTS
While sterilizing all instrument sets, there are multiple constraints that have to be taken into account. For
readability, this subsection is divided into multiple subsubsections based on the type of constraints.

BATCH AND MACHINE ASSIGNMENT

Formally, there is a set I of instrument sets, also called jobs, which have to be sterilized by a two-stage flow
shop. These stages are denoted by set J , and each stage consists of a set of parallel batching machines H j by
which a set of batches B j has to be processed. Each job has to be processed in one batch and at one machine

at each stage. Binary decision variables Z j
bh and S j

i bh are introduced to indicate in which batch and at which

machine a job is processed. Z j
bh is equal to one if batch b ∈ B j is processed at machine h ∈ H j at stage j ∈ J ,

and zero otherwise. S j
i bh is equal to one if job i ∈ I is processed in batch b ∈ B j at machine h ∈ H j at stage

j ∈ J , and zero otherwise. Constraints (4.1) ensure that each job is assigned to one batch and one machine at
each stage. ∑

b∈B j

∑
h∈H j

S j
i bh = 1 ∀i ∈ I , ∀ j ∈ J (4.1)

Beforehand, it is not known how many batches are needed. Hence, the initial set B j consist of a predeter-
mined number, which is higher than the required number of batches. If a batch is used, it should be assigned
to a machine. Constraints (4.2) guarantee that each batch is assigned to at most one machine at each stage.
Constraints (4.3) and (4.4) ensure that if a batch is assigned to a machine, at least one job is assigned to the
batch. Reversely, if a batch is not assigned to a machine, no jobs are assigned to the batch.∑

h∈H j

Z j
bh ≤ 1 ∀b ∈ B j , ∀ j ∈ J (4.2)

21
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∑
i∈I

S j
i bh ≥ Z j

bh ∀b ∈ B j , ∀h ∈ H j , ∀ j ∈ J (4.3)

∑
i∈I

S j
i bh ≤ M Z j

bh ∀b ∈ B j , ∀h ∈ H j , ∀ j ∈ J (4.4)

Similar to the number of batches, the number of machines that are required is not known in advance. In

addition, the set of machines consists of machines with different processing times, p j
h , and capacities, u j

h .

These different machine types are represented in sufficiently large numbers in the set H j . Binary decision

variables P j
h are introduced to indicate if machine h ∈ H j at stage j ∈ J is purchased. Formally, P j

h is equal to

one if machine h ∈ H j is purchased at stage j ∈ J , and zero otherwise. The costs to purchase machine h ∈ H j

at stage j ∈ J is given by c j
1h . Constraints (4.5) ensure that if a batch is processed at a machine h ∈ H j at stage

j ∈ J , this machine is purchased. ∑
b∈B j

Z j
bh ≤ MP j

h ∀h ∈ H j , ∀ j ∈ J (4.5)

In addition, there is a set F j of job families at each stage j ∈ J . These job families correspond to the
different programs of the WD machines and autoclaves. Each job i ∈ I is part of one of these job families.
Jobs can only be processed in the same batch if they are from the same job family f ∈ F j . Binary parameters

f j
i k are introduced for each job pair i ∈ I and k ∈ I to indicate if they are from the same job family and can be

processed together. Parameter f j
i k is equal to one if job i ∈ I and k ∈ I are part of the same job family f ∈ F j

at stage j ∈ J , and zero otherwise. Constraints (4.6) ensure that jobs can only be processed in the same batch
if they are from the same job family. These constraints are added for completeness only, since due to the
complexity of the mathematical program, job families are not taken into account in this thesis. Furthermore,
most instrument sets are processed on one particular program on both stages.∑

h∈H j

(
S j

i bh +S j
kbh

)
≤ 1+ f j

i k ∀(i < k) ∈ I , ∀b ∈ B j , ∀ j ∈ J (4.6)

MACHINE CAPACITY

Instrument sets are packed differently at each stage j ∈ J . Hence, the job size z j
i of job i ∈ I differs for each

stage j ∈ J . Constraints (4.7) ensure that the sum of the job sizes of each batch does not exceed the capacity
of the assigned machine at the corresponding stage.∑

i∈I
z j

i S j
i bh ≤ u j

h ∀b ∈ B j , ∀h ∈ H j , ∀ j ∈ J (4.7)

Note that Constraints (4.4) and (4.7) can be merged as shown in Constraints (4.8).∑
i∈I

z j
i S j

i bh ≤ u j
h Z j

bh ∀b ∈ B j , ∀h ∈ H j , ∀ j ∈ J (4.8)

RELEASE TIME AND LEAD TIME

The planning time horizon of the CSSD Planning Problem is a week. Jobs can be processed at any day and
the timescale is in minutes. Considering all jobs arriving during a week, the aim is to sterilize all sets before
Monday morning. Hence, at Monday morning there are no jobs left at the CSSD and a new cycle starts.

Before each stage j ∈ J , a setup process of duration s j
i for job i ∈ I has to be executed. Several variables are

used to indicate when the setup process and job are scheduled. First, integer decision variables t j
i are used

to indicate the completion time of a job i ∈ I at stage j ∈ J . Constraints (4.9) ensure that a job i ∈ I cannot be
processed before its release time ri . The order in which the jobs are handled is partly determined by the due
date. The due date is a strict deadline, based on the OR schedule, urgent requests, a predefined basic stock
level in case of an emergency, and agreements with the OR. Constraints (4.10) ensure that a job is finished at
stage two before the due date. The due date is defined as release time ri plus lead time li . The lead time is
determined for each type of instrument set, using the method described in Chapter 6. Note that the 2 within
Constraints (4.10) indicates the stage and not the square of ti .



4.1. PROBLEM FORMULATION 23

t 1
i ≥ ri + s1

i +
∑

h∈H 1

∑
b∈B 1

p1
hS1

i bh ∀i ∈ I (4.9)

t 2
i ≤ ri + li ∀i ∈ I (4.10)

In addition, assumptions are made on the maximum amount of time an instrument set is kept before or in
between stages. Before the disinfect step, the maximum duration is 24 hours, and between disinfection and
sterilization the maximum duration is 48 hours. The maximum duration before a stage j ∈ J is denoted by e j .
Constraints (4.11) and (4.12) ensure that the maximum time between the release time and the start of stage
one is e1, and the maximum duration between completion times of the stages one and two is e2 minutes for
each job i ∈ I .

t 1
i −

∑
h∈H 1

∑
b∈B 1

p1
hS1

i bh − ri ≤ e1 ∀i ∈ I (4.11)

t 2
i −

∑
h∈H 2

∑
b∈B 2

p2
hS2

i bh − t 1
i ≤ e2 ∀i ∈ I (4.12)

As jobs are processed in batches, decision variables t j
bh are used to indicate the completion time of batch

b ∈ B j at machine h ∈ H j at stage j ∈ J . Constraints (4.13) and (4.14) are used to define the batch completion

time t j
bh of batch b ∈ B j at machine h ∈ H j at stage j ∈ J . A machine can only process one batch at a time.

Constraints (4.15) ensure that a batch cannot be scheduled earlier than the completion time of the previous
batch at the same machine.

t j
bh ≥ t j

i −M
(
1−S j

i bh

)
∀i ∈ I , ∀b ∈ B j , ∀h ∈ H j , ∀ j ∈ J (4.13)

t j
i ≥ t j

bh −M
(
1−S j

i bh

)
∀i ∈ I , ∀b ∈ B j , ∀h ∈ H j , ∀ j ∈ J (4.14)

t j
bh +M

(
1−Z j

bh

)
≥ t j

b′h −M
(
1−Z j

b′h

)
+p j

h ∀b,b′ < b ∈ B j , ∀h ∈ H j , ∀ j ∈ J (4.15)

As the CSSD Planning Problem is a flow shop, the jobs have to be processed at the stages in sequential
order. Additionally, a setup process has to be finished before each stage. Constraints (4.16) assure that for
each job, the previous stage and the preceding set-up process have to be finished before a new stage can
start. Note that since there is no transportation time in between stages, a job can be scheduled at a next stage
at the same time as the previous stage has ended. Furthermore, it is assumed that there is unlimited storage
between stages.

t j
i ≥ t j−1

i + s j
i +

∑
h∈H j

∑
b∈B j

p j
hS j

i bh ∀i ∈ I , ∀ j ∈ J (4.16)

OPENING TIME

The set of days on which a job can be processed is given by set D . To keep track of the day at which a job is

processed, binary decision variables Y j
i d are introduced. Y j

i d is equal to one if job i ∈ I at stage j ∈ J is pro-
cessed on day d ∈ D , and zero otherwise. In Figure 4.1, the timescale is graphically displayed. The scale starts
at t = 0 and finishes at t = 10080, the end of day 7. For each day d ∈ D , decision variables md represent the
opening times and decision variables nd represent the closing times of the CSSD. A job can only be processed
during opening hours. The days in the model are denoted as the interval between the opening time of a day
and the opening time of the next day. The days are shown in the colored blocks beneath the timeline. Note
that as the closing time can be after 00:00, the actual end of the time horizon has to be larger than t = 10080.

Constraints (4.17) and (4.18) assign a value to Y j
i d given the completion time of a job at a certain stage.

Constraints (4.19) ensure that a job is scheduled on exactly one day.

t j
i +M

(
1−Y j

i d

)
≥ md ∀i ∈ I , ∀ j ∈ J , ∀d ∈ D (4.17)

t j
i −M

(
1−Y j

i d

)
≤ md+1 ∀i ∈ I , ∀ j ∈ J , ∀d ∈ D (4.18)
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Figure 4.1: Timescale used in the formulation.

∑
d∈D

Y j
i d = 1 ∀i ∈ I , ∀ j ∈ J (4.19)

The CSSD operates with fixed opening hours during week and weekend days. Constraints (4.20) and (4.21)
ensure that each weekday has the same opening and closing times, given that each day has 1440 minutes.
Constraints (4.22) and (4.23) ensure that the opening and closing times each weekend day are equal as well.

md = md−1 +1440 ∀d ∈ {2,3,4,5} ⊂ D (4.20)

nd = nd−1 +1440 ∀d ∈ {2,3,4,5} ⊂ D (4.21)

m7 = m6 +1440 (4.22)

n7 = n6 +1440 (4.23)

SETUP PROCESS

The setup process of a job can be executed the same day or the day before the job is processed at the succes-
sive stage. As it is not allowed to have the WD machines and autoclaves still running after employees leave,
each day there is time left after the start of the last batch. During this time, the setup processes of the jobs
scheduled for the next day can already be executed in order to save time the next morning. Binary decision

variables A j
i d are introduced, for which A j

i d is equal to one if job i ∈ I is processed on day d ∈ D and the setup
process is executed the day before, and zero otherwise. Constraints (4.24), (4.25), (4.26) and (4.27) assign a

value to A j
i d . Constraints (4.24) ensure that the setup process of job i ∈ I can only be executed on day d−1 ∈ D

when the job is scheduled on day d ∈ D . Constraints (4.25) set the variable A j
i d to zero on day 1 as there is no

previous day on which a setup process can be executed. Constraints (4.26) ensure that if the two stages are
scheduled on the same day, the setup for stage 2 cannot be executed the day before. Constraints (4.27) ensure
that the setup process before stage one can only be executed on day d ∈ D if the release time of job i ∈ I is
before the closing time on that day.

A j
i d ≤ Y j

i d ∀i ∈ I , ∀ j ∈ J , ∀d ∈ D (4.24)

A j
i 1 = 0 ∀i ∈ I , ∀ j ∈ J , ∀d ∈ D (4.25)

A2
i d ≤ 2−Y 1

i d −Y 2
i d ∀i ∈ I , ∀d ∈ D (4.26)

ri −M
(
1− A1

i d

)≤ nd−1 − s1
i ∀i ∈ I , ∀∈ D (4.27)

BATCH SETUP TIME

Besides the individual setup time for each job, also the total setup time for a batch at the second and suc-
cessive stage has to be taken into account. The batch setup time depends on the number of employees, the

operators, that are working on a day. The number of operators at stage j ∈ J on day d ∈ D is denoted by v j
d .

Then, the batch setup time is defined by∑
i∈I

∑
h∈H j s j

i S j
i bh

v j
d

∀b ∈ B j , ∀ j ∈ J , ∀d ∈ D. (4.28)
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Constraints (4.29) assure that for each job the previous stage and the preceding setup process for the
corresponding batch have to be finished. While calculating the batch setup time, only the setup processes

of jobs not yet executed the day before are taken into account. This is done by using the term (1− A j
kd ).

The big-M term are added to ensure the relation between t j
i and t j−1

i only has to be satisfied if the jobs are
processed on the day by the same machine. Note that Constraints (4.29) overestimate the setup duration of
a batch. According to the model, the batch setup process starts when all jobs are completed at the previous
stage. However, in reality, as soon as the first job is completed at the previous stage, the setup process of this
job can be executed. Consequently, the setup process for the corresponding batch partly starts earlier than
the completion time of the last job. Note that Constraints (4.29) have a quadratic term.

t j
i ≥ t j−1

i +
∑

k∈I
∑

h∈H j s j
k S j

kbh

(
1− A j

kd

)
v j

d

+ ∑
h∈H j

∑
b∈B j

p j
hS j

i bh −M

(
1− ∑

h∈H j

S j
i bh

)
−M

(
1−Y j

i d

)
∀i ∈ I , ∀b ∈ B j , ∀ j ∈ J , ∀d ∈ D

(4.29)

Similar to the constraints for the setup time in between stages, there are two constraints to ensure a job
or setup process cannot start before the opening time. Constraints (4.30) ensure a job cannot be processed
before the opening time, taking into account the individual setup process time. Constraints (4.31) ensure a
job cannot be processed before the opening time, taking into account the batch setup process time. Note that
Constraints (4.31) have a quadratic term.

t j
i − ∑

h∈H j

∑
b∈B j

p j
hS j

i bh − s j
i

(
1− A j

i d

)
+M

(
1−Y j

i d

)
≥ md ∀i ∈ I , ∀ j ∈ J , ∀d ∈ D (4.30)

t j
i − ∑

h∈H j

∑
b∈B j

p j
hS j

i bh −
∑

k∈I
∑

h∈H j s j
k S j

kbh

(
1− A j

kd

)
v j

d

+M
(
1−Y j

i d

)
+M

(
1− ∑

h∈H j

S j
i bh

)
≥ md

∀i ∈ I , ∀b ∈ B j , ∀ j ∈ J , ∀d ∈ D

(4.31)

In addition to Constraints (4.9) which ensure a job cannot be processed before the release time, Con-
straints (4.32) take into account the batch setup process time after the release time.

t 1
i ≥ ri +

∑
h∈H 1

∑
b∈B 1

p1
hS1

i bh +
∑

k∈I
∑

h∈H 1 s1
k S1

kbh

(
1− A1

kd

)
v1

d

−M
(
1−Y 1

i d

)−M

(
1− ∑

h∈H 1

S1
i bh

)
∀i ∈ I , ∀b ∈ B 1, ∀d ∈ D

(4.32)

OVERTIME

If there are urgent requests, employees can work in overtime. To keep track of the amount of overtime, a day
runs from the opening time, until the opening time of the next day. The amount of overtime is denoted by
nonnegative decision variables qd for each day d ∈ D . The amount of overtime is dependent on the latest
completion time of a job on that day and the setup processes that are executed after the process of the last

jobs is started. Nonnegative decision variables X j
i d are introduced to keep track of the amount of overtime

if the time setup process exceeds the process time of the last batch. These variables are introduced for each
i ∈ I , j ∈ J , and d ∈ D , as its value depends on which machine and stage a job is processed, and the overtime
has to be determined for each day. In that case the completion of the setup is normative and executed in

overtime. Constraints (4.33) assign a value to X j
i d . Note that Constraints (4.33) have a quadratic term.

X j
i d ≥

∑
k∈I

∑
h∈H j s j

k A j
k(d+1)

v j
d

− ∑
h∈H j

∑
b∈B j

p j
hS j

i bh −M
(
1−Y j

i d

)
∀i ∈ I , ∀ j ∈ J , ∀d ∈ D (4.33)

Constraints (4.34) and (4.35) determine the overtime each day at each stage. The overtime depends on
the completion time of the last batch, the closing time and the difference between the process time of the
last batch and the duration of the setup processes executed for the next day. There are two cases, the job

completion time, t j
i , is normative, or the executed setup processes are normative. In the first case, the process
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time of any job i ∈ I is longer than the time required for the execution of the setup processes, in that case, X j
i d

is zero. In the second case, the execution of the setup processes takes longer than the processing time of any

job i ∈ I at stage j ∈ J , X j
i d is bigger than zero and denotes the difference between the processing time and

the execution of setup processes that day. Constraints (4.35) ensure that a setup process for the second stage
cannot be executed before all jobs at the first stage are finished. This formulation is an overestimation as the
setup can only start after the last batches at both stages have started. In reality, it could be that the second
stage actually starts earlier.

qd ≥ t 1
i +X 1

i d −nd −M
(
1−Y 1

i d

) ∀i ∈ I , ∀d ∈ D (4.34)

qd ≥ t j
i +X 2

i d −nd −M
(
1−Y 2

i d

) ∀i ∈ , ∀ j ∈ J , ∀d ∈ D (4.35)

SURCHARGES

In addition to standard employee costs, there are surcharges for working irregular hours. According to the
collective labor agreement (LOAZ [42]) for university medical centers, the following surcharges apply for the
CSSD of LUMC:

• 47% for hours on weekdays between 00:00 and 07:00, and after 20:00, as well as for hours on Saturday
between 00:00 and 08:00 and after 12:00

• 72% for hours on Sundays or holidays.

Outside opening hours, there is a on-call service. In case an instrument set has to be sterilized urgently,
employees have to go to the CSSD to handle the request. Employees get a on-call service compensation of
6% of the salary during weekdays and 12% of the salary on weekend days. If an employee actually has to work
during on-call time, the compensation consists of leave equal to the number of hours worked or a salary
based on the number of hours worked.

For this model, for simplification purposes, only the salary and surcharges during opening hours and
overtime are taken into account. There will always be on-call services, however, these hours cannot be re-
duced by a more efficient schedule or other resources. In addition, for overtime it is assumed that this can
only take place directly after opening hours. On an operational level, taking into account the assumption
that opening hours have to be equal during weekdays, this ensures that the opening hours are not based on
one peak day. For example, if each day the closing time is 18:00, when on Tuesday there are more arriving
instrument sets, the work has to be continued until 19:00. Without overtime the closing time would be 19:00
for each weekday, but now the closing time can still be 18:00 and on Tuesday there is 1 hour overtime. In the
model, the number of employees stays constant during overtime.

The set R is introduced to indicate the three different payment rates, 1.0, 1.42, and 1.72, respectively.
Parameters p1, p2, p3, and p4 are used to indicate the tipping points between the different rates. In this case,
these are defined as: p1 = 07:00, p2 = 08:00, p3 = 12:00, and p4 = 20:00. Continuous decision variables Vdr

are introduced to indicate the total opening time on day d ∈ D at which the rate r ∈ R is applicable. Trivially,
the equation Vd1 +Vd2 +Vd3 = nd −md , for each day d ∈ D , holds. Figure 4.2 illustrates the time spans with
the corresponding rates for a weekday, Saturday and Sunday.

Figure 4.2: Time spans with the corresponding rate for a weekday, Saturday and Sunday.
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For weekdays, the binary decision variables Md p4 and Nd p1 are introduced. Md p4 is equal to one if the
opening time md , on day d ∈ {1,2,3,4,5} ⊂ D , is after p4 = 20 : 00, and zero otherwise. Nd p1 is equal to one if
the closing time nd plus overtime qd , on day d ∈ {1,2,3,4,5} ⊂ D , is before p1 = 07 : 00 and zero otherwise. In
the same sense, the binary decision variables Md p3 and Nd p2 are introduced for Saturday (d = 6). Constraints
(4.36), (4.37), (4.38), and (4.39) set the value Md p4 , Nd p1 , Md p3 , and Nd p2 to zero in case the opening or closing
time is not before or after the considered point in time.

md +M
(
1−Md p4

)≥ p4 ∀d ∈ {1,2,3,4,5} ⊂ D (4.36)

(
nd +qd

)−M
(
1−Nd p1

)≤ p1 ∀d ∈ {1,2,3,4,5} ⊂ D (4.37)

m6 +M
(
1−M6p3

)≥ p3 (4.38)

(
n6 +q6

)+M
(
1−N6p2

)≤ p2 (4.39)

Nonnegative decision variables Wd p1 , Wd p2 , Wd p3 , and Wd p4 are introduced to keep track of the used time
span within in each interval. For weekdays, Wd p1 represents the used time span before p1 = 07:00, and Wd p4

represents the used time span after p4 = 20:00, both at rate 2. Constraints (4.40) and (4.41) assign values to
Wd p1 and Wd p4 . Note, both constraints contain a quadratic term, Nd p1 (nd +qd ) and Md p4 md , respectively.

Wd p1 ≥ p1 −md −Nd p1

(
p1 −

(
nd +qd

)) ∀d ∈ {1,2,3,4,5} ⊂ D (4.40)

Wd p4 ≥
(
nd +qd

)−p4 −Md p4

(
md −p4

) ∀d ∈ {1,2,3,4,5} ⊂ D (4.41)

Constraints (4.42) define the total time span at rate 2 for all weekdays. Using the assumption that every
weekday has the same opening times, it is sufficient to define the time span for one day only.

Vd2 =Wd p1 +Wd p4 ∀d ∈ {1,2,3,4,5} ⊂ D (4.42)

Constraints (4.43) and (4.44) assign values to Wd p2 and Wd p3 . W3d represents the used time span before
p2 = 08 : 00 and W4d represents the time after p3 = 12 : 00 on Saturday. Note, again, both constraints contain
a quadratic term, Nd p2 (nd +qd ) and Md p3 md , respectively.

W6p2 ≥ p2 −m6 −N6p2

(
p2 −

(
n6 +q6

))
(4.43)

W6p3 ≥
(
n6 +q6

)−p3 −M6p3

(
m6 −p3

)
(4.44)

Constraint (4.45) define the total time span at rate 2 for Saturday.

V6,2 =W6p2 +W6p3 (4.45)

Constraints (4.46) define the time span at rate 3 on Sunday.

V7,3 =
(
n7 +q7

)−m7 ⊂ D (4.46)

Finally, Constraints (4.47) and (4.48) complete the definition of Ddr on day d ∈ D and rate r ∈ R. Con-
straints (4.47) ensure that Vdr cannot become a negative value. Constraints (4.48) define the time span at rate
1 based on the total opening time and the time span in rate 2 for both weekdays as well as Saturday.

Vdr ≥ 0 ∀d ∈ D , ∀r ∈ R (4.47)

Vd1 = md − (
nd +qd

)−Vd2 ∀d ∈ {1,2,3,4,5,6} ∈ D (4.48)

To clarify the used formulation, two examples which are indicated in orange in Figure 4.2, are explained.
First, given opening time m1, closing time n2 and no overtime qd , Constraints (4.36) and (4.37) set decision
variables Nd p1 and Md p4 to zero. Next, Constraints (4.40) and (4.41) become Wd p1 ≥ p1 −m1 and Wd p4 ≥
n2 − p4, in combination with Constraints (4.47), Wd p4 ≥ 0 as n2 − p4 is smaller than zero. Second, given
opening time m1, closing time n1 and no overtime qd , Constraints (4.36) and (4.37) set decision variables
Nd p1 to one and Md p4 to zero. Next, Constraints (4.40) and (4.41) become Wd p1 ≥ n1−M1 and Wd p4 ≥ n2−p4,
in combination with Constraints (4.47), Wd p4 ≥ 0 as n2 −p4 is smaller than zero.
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4.1.2. OBJECTIVE FUNCTION
The aim, as indicated by the research question, is to determine the number of resources required to sterilize
all instrument sets. While satisfying all constraints, the objective of the CSSD Planning Problem is to minimize
the total costs to obtain the required resources. The total costs is the sum of the machine purchase costs,

machine batch costs and employee costs. Parameters c j
1h and c j

2h indicate the purchase price and the batch
price of machine h ∈ h at stage j ∈ J , respectively. Parameter c3r indicates the cost of an operator during
regular opening hours at rate r ∈ R, and an additional cost can be added for hours in overtime, denoted by

c4. Hence, the first term, P j
hc j

1h , denotes the machine purchase costs. The second term, Z j
bhc j

2h , denotes the

machine batch costs. The third term, Vdr v j
d c3r , denotes the employee costs during regular opening hours.

The last term, qd c4, denotes the employee costs related to overtime. The costs c4 indicate an additional cost
to ensure that overtime is more expensive than normal hours as these are less desirable.

min
∑

b∈B j

∑
h∈H j

∑
j∈J

P j
hc j

1h + ∑
b∈B j

∑
h∈H j

∑
j∈J

Z j
bhc j

2h + ∑
j∈J

∑
d∈D

∑
r∈R

Vdr v j
d c3r +

∑
d∈D

qd c4 (4.49)

4.2. PROBLEM CHARACTERISTICS
In this section, the problem characteristics are discussed. First, in Subsection 4.2.1, the problem is classified
using the classification of scheduling problems introduced by Graham et al. [43]. Second, in Subsection 4.2.2,
a concise summary about complexity theory is given, and a proof that the CSSD Planning Problem is NP-hard,
is formulated.

4.2.1. TRIPLET NOTATION
According to Graham et al. [43], scheduling problems can be described by a triplet α|β|γ. Field α denotes the
system layout and production flow type, field β defines the job characteristics and field γ denotes the perfor-
mance indices. In other words, field α represents the machine environment, field β defines the scheduling
constraints and fieldγdenotes the objective function. The problem described in this thesis can be formulated
as:

FQ (m1,m2)
∣∣∣p −batch,r j , w i

j ,d j ,B ,STsi ,b ,md ,nd

∣∣∣∑C (4.50)

The notation is chosen similar as, in several other papers regarding flow shop problems (Ozturk et al. [26],
Rossi et al. [4], Leeftink et al. [5]), and thus different from the notation in the remainder of this thesis. Here,
within fieldα, F indicates a two stage flow shop, with m1 and m2 resources at the first stage and second stage,
respectively. Q indicates that the machines are not identical and have different processing times. In field β,
p −batch indicates parallel batching at each stage. Each job j has a release time r j , a due date d j and a size
w i

j , which is different for each stage i . B stands for the machine capacity and STsi ,b stands for setup time,

which is sequence-independent (si ), for each batch b. md and nd indicate opening and closing times, which
also form scheduling constraints. There is no previous literature that takes into account these parameters,
hence the notation from this thesis is used. Field γ indicates that the objective is to minimize the sum of all
costs. There is no commonly used notation to specify this objective as this is not often the chosen objective
in scheduling literature. Using the same notation as in this thesis, the triplet becomes:

FQ
(
H 1, H 2)∣∣∣p −batch,ri , z j

i ,ri + li ,u j
h , s j

i ,STsi ,b ,md ,nd

∣∣∣∑C (4.51)

Here, within field α, FQ(H 1, H 2) indicates a two stage flow shop with not identical resources H 1 and H 2

at the first and second stage, respectively. In, field β, again, p − batch indicates parallel batching at each

stage j ∈ J . Each job i ∈ I has a release time, ri , and a due date, ri + li . s j
i indicates the setup time, and z j

i
indicates the size of job i ∈ I at stage j ∈ J . Again the setup time is sequence independent (si ). Furthermore,

u j
h indicates the capacity of machine h ∈ H j at stage j ∈ J . Field γ indicates that the objective is to minimize

the sum of all costs C .

4.2.2. COMPLEXITY
In this section, the complexity of the CSSD Planning Problem is discussed. First, a concise introduction on
complexity theory is given, including a structure to proof NP-hardness. Second, it is proven that the CSSD
Planning Problem is NP-hard. Theory and definitions are based on Papadimitriou and Steiglitz [44] and van
Iersel [45].



4.2. PROBLEM CHARACTERISTICS 29

According to Papadimitriou and Steiglitz [44], given an optimization problem, a closely related ‘recog-
nition’ problem can be formulated. As the bin packing problem is used in the proof, this problem is used
to illustrate the optimization and recognition representations. As in Korte and Vygen [46], the bin packing
problem can be described as follows: ‘Suppose we have n objects, each of a given size, and some bins of equal
capacity. We want to assign the objects to the bins, using as few bins as possible. Of course the total size of the
objects assigned to one bin should not exceed its capacity’. Without loss of generality, the capacity of a bin is 1.

First, there is the ‘optimization version’, given a representation of an instance, find the optimal feasible
solution.

Definition 4.2.1. Bin packing optimization problem
Instance: A list of non-negative numbers a1, ..., an ≤ 1
Task: Find a k ∈ N and an assignment f : 1, ...n → 1, ...,k with

∑
i : f (i )= j ai ≤ 1 for all j ∈ 1, ...,k such that k is

minimum.

Second, there is the ‘recognition version’, also called the decision problem. This is in fact a question,
which can be answered by ’yes’ or ‘no’.

Definition 4.2.2. Bin packing decision problem
Instance: A list of non-negative numbers a1, ..., an ≤ 1 and a non-negative integer K .
Task: Is there an assignment f : 1, ...n → 1, ...,K with

∑
i : f (i )= j ai ≤ 1 for all j ∈ 1, ...,K ?

Given both representations, Papadimitriou and Steiglitz [44] point out that the recognition version or
decision problem is not harder than the original ‘optimization version’. Hence, a proven complexity of the
‘recognition version’, also holds for the ‘optimization version’. The aim is to classify the decision problem as
NP-complete. First, the classes P and N P are introduced by the following definitions (van Iersel [45]).

Definition 4.2.3. P is the class of decision problems that can be solved in polynomial time.

Definition 4.2.4. N P is the class of decision problems for which there exists a certificate for each yes-instance
such that it can be verified in polynomial time whether a given certificate proves that a given instance is a
yes-instance.

To prove that a decision problem belongs to a certain class, reductions are used (van Iersel [45]).

Definition 4.2.5. A reduction from a decision problem u1 to a decision problem u2 is a function that assigns
to each instance I of u1 an instance f (I ) of u2, such that:
1. there exists a polynomial-time algorithm computing f
2. for each instance I of u1:

I is a yes-instance of u1 ⇔ f (I ) is a yes-instance of u2

In addition, there is another subclass of problems, N PC , such problems are called NP-complete. Intu-
itively, NP-complete problems are the most difficult problems (van Iersel [45]).

Definition 4.2.6. A decision problem is NP-complete if it is in N P and is NP-hard.

Definition 4.2.7. A decision problem u is NP-hard if u′ ∝u for each u′ ∈ NP

Hence, to prove that the CSSD Planning Problem is an NP-hard problem, a reduction of any NP-complete
problem has to be found. Similar as in Ozturk et al. [47], a reduction from the bin packing problem is used.
The bin packing problem is NP-complete, as proven in Korte and Vygen [46]. To complete the definition of
the bin packing problem, an Integer Linear Programming (ILP) model is given. In this problem, n is a known
upper bound on the number of bins needed, equal to the number of jobs. (Korte and Vygen [46]).

Definition 4.2.8. Bin packing ILP formulation

x j =
{

1, if bin j ∈ 1, ....,n is used

0, otherwise
yi j =

{
1, if item i ∈ 1, ....,n is put in bin j ∈ 1, ....,n

0, otherwise
(4.52)
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min
n∑

j=1
x j (4.53)

s.t .
n∑

i=1
ai yi j ≤ 1 ∀ j ∈ 1, ...,n (4.54)

n∑
j=1

yi j = 1 ∀i ∈ 1, ....,n (4.55)

n∑
i=1

yi j ≤ M x j ∀ j ∈ 1, ...,n (4.56)

x j ∈ {0,1} ∀ j ∈ 1, ...,n (4.57)

yi j ∈ {0,1} ∀ j ∈ 1, ...,n ∀i ∈ 1, ....,n (4.58)

(4.59)

The CSSD Planning Problem can be reduced to a bin packing problem as follows. Let I1 be an instance
of the bin packing problem with item sizes a1, ..., an and non-negative integer K . The capacity of each bin
is 1. Binary variable x j is 1 if bin j is used and binary variable yi j is one if item i is placed in bin j . This is
a ‘yes’-instance if the objective value is at most K . Now, an instance I2 of the CSSD Planning Problem can
be constructed. In the case with one stage, one machine with capacity u1

1 and processing time p1
1, all jobs

arriving at the same point in time, a planning horizon of one day with unlimited opening time, no lead times
li , no set-up times si , no machine purchase costs c1, batch costs c2 which are equal to 1, no employee costs
c3 and c4, and no surcharges r . Then, the capacity and job sizes can be rewritten as

u1
1 := u1

1

u1
1

, (4.60)

and
zi := zi

u1
1

. (4.61)

In this way, the capacity becomes equal to one, and the job sizes are scaled accordingly. The job sizes are
given by zi = ai ∀i = 1, . . . ,n. The objective function is the sum of the batch cost and should be at most
C = K .

Theorem 4.2.1. The recognition version of the CSSD Planning Problem is NP-complete.

Proof. 1. Given which batches are assigned to the machine, it is possible to check in polynomial time if the
sum is below C . Hence, the recognition version of CSSD Planning Problem is in N P .

2. ⇒ Assume I1 is a ‘yes’-instance for the bin packing problem. Let zi = ai f or i = 1, . . . ,n. Let binary
variable x j be one if bin j is used and binary variable yi j be 1 if job i is assigned to bin j . Then,

∑n
j=1 x j ≤ K ,∑n

i=1 ai yi j ≤ 1 and
∑n

j=1 yi j = 1 hold. Now, S1
i b1 = yi j , where S1

i b1 is a binary variable that is equal to 1 if job i
is assigned to batch b at machine 1 at stage 1. Then,

n∑
b=1

S1
i b1 =

n∑
j=1

yi j = 1 ∀i = 1, . . . ,n, (4.62)

and

n∑
i=1

zi S1
i b1 =

n∑
i=1

ai yi j ≤ 1 = u ∀ j = b = 1, . . . ,n, (4.63)

Additionally, Z 1
b1 = x j , where Z 1

b1 is a binary variable that is equal to 1 if batch b is assigned to machine 1
at stage 1. Then,

n∑
i=1

S1
i b1 =

n∑
i=1

yi j ≤ M x j = M Z 1
b1 ∀b = j = 1, . . . ,n. (4.64)

The objective function is,

n∑
b=1

c2Z 1
b1 =

n∑
j=1

x j ≤ K =C . (4.65)
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Hence, the ‘yes’-instance I1 for the bin packing problem is reduced to a ‘yes’-instance I2 of the CSSD
Planning Problem.

⇐ Assume I2 is a yes-instance for the CSSD Planning Problem. Let ai = zi f or i = 1, . . . ,n.Let binary
variable S1

i b1 be 1 if job i is assigned to batch b at machine 1 at stage 1, and binary variable Z 1
b1 be 1 if batch

b is assigned to machine 1 at stage 1. Then,
∑n

b=1 S1
i b1 = 1,

∑n
i=1 zi S1

i b1 ≤ u, and
∑n

i=1 S1
i b1 ≤ M Z 1

b1 hold. Now
yi j = S1

i b1, where yi j is a binary variable that is equal to 1 if item i is put in bin j . Then,

n∑
j=1

yi j =
n∑

b=1
S1

i b1 = 1 ∀i = 1, . . . ,n, (4.66)

and

n∑
i=1

ai yi j =
∑
i=1

zi S1
i b1 ≤ u = 1 ∀ j = b = 1, . . . ,n. (4.67)

Additionally, x j = Z 1
b1, where x j is a binary variable that is equal to 1 if bin j is used. Then,

n∑
i=1

yi j =
n∑

i=1
S1

i b1 ≤ M Z 1
b1 = M x j ∀ j = b = 1, . . . ,n. (4.68)

The objective function is,

n∑
j=1

x j =
∑

c2Z 1
b1 ≤C = K . (4.69)

Hence, the ‘yes’-instance I2 of the CSSD Planning Problem is reduced to a ‘yes’-instance I 1 for the bin
packing problem.

To conclude, the recognition version of the CSSD Planning Problem is NP-complete. Since the CSSD
Planning Problem is an optimization problem which is not in NP, the CSSD Planning Problem is NP-hard.
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SOLUTION APPROACHES

Preliminary results show that the CSSD Planning Problem as described in Chapter 4 is difficult to solve. Al-
though the model reflects the specific characteristics of the process at the CSSD, no good solution can be
found for real-life size instances. Hence, in this chapter the problem is reformulated. The base of this re-
formulation is a decomposition based on the hierarchical levels in which capacity planning decisions can
be divided. The framework as described in Section 2.6 is used to identify which capacity planning decisions
have to be made on which level. First, in Section 5.1, the problem is simplified with the aim to determine
the required number and type of machines. Second, in Section 5.2, the strategic model is extended to deter-
mine the amount of opening time. Lastly, in Section 5.3, the two-stage flow shop which considers capacity
planning decisions on all hierarchical levels is reformulated as a four-stage flow shop.

5.1. STRATEGIC MODEL
In this section, a mixed integer linear program (MILP) is proposed which only considers capacity planning
decisions at a strategic level. The required number and type of machines has to be determined, while taking
into account the amount of opening time. Only the amount of opening time, and no specific opening and
closing time, is taken into account. The solution of this problem can serve as a baseline or input to solve the
CSSD Planning Problem. In Subsection 5.1.1, the model is formally introduced, and in Subsection 5.1.2, a
linearization of the model is proposed. All relevant sets, variables, and parameters are introduced in the text
and listed in the front matter of this thesis.

5.1.1. FORMULATION
In this subsection, first, the constraints are described, and second, the objective function is stated.

CONSTRAINTS

Formally, there is a set I of instrument sets, also called jobs, that have to be sterilized by the CSSD. The process
at the CSSD can be described as a set of stages, denoted by J , which each consist of a set of machines, denoted

by H j . Binary decision variables S j
i h are introduced, which are equal to one if job i ∈ I is processed at machine

h ∈ H j at stage j ∈ J . Constraints (5.1) ensure that each job is assigned to exactly one machine at each stage.∑
h∈H j

S j
i h = 1 ∀i ∈ I , ∀ j ∈ J (5.1)

The type and number of required machines is not known in advance, consequently, H j represents a set of

possible machines that can be purchased at stage j ∈ J . Each machine has a process time p j
h and a capacity

u j
h . Binary decision variables P j

h indicate if machine h ∈ H j at stage j ∈ J is purchased. P j
h is equal to one if

machine h ∈ H j is purchased at stage j ∈ J , and zero otherwise. Constraints (5.2) ensure that if a job i ∈ I is
processed at machine h ∈ H j at stage j ∈ J , machine h ∈ H j is purchased.∑

i∈I
S j

i h ≤ MP j
h ∀h ∈ H j , ∀ j ∈ J (5.2)

33
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The model has a planning horizon of one week. This time horizon is divided into 7 days, denoted by set
D . A job i ∈ I can be processed from the release day, denoted by ri , onwards. Constraints (5.3) ensure that
each stage of processing a job is assigned to one day. Constraints (5.4) ensure that a job can only be processed
after arriving at the CSSD. ∑

d∈D
Y j

i d = 1 ∀i ∈ I , ∀ j ∈ J (5.3)

ri ≤
∑

d∈D
Y 1

i d d ∀i ∈ I (5.4)

As the CSSD is a flow shop environment, a job i ∈ I first has to be processed at stage one, where after it can
be processed at stage two. In addition, there are guidelines for the amount of time an instrument set can be
kept before or in between stages. The maximum duration before disinfection is 24 hours, and the maximum
duration in between disinfection and sterilization is 48 hours. For this formulation, this implies that a job
i ∈ I has to be processed at the first stage on the release day or the day after. Hereafter, the job has to be
processed at the second stage within two days. Constraints (5.5) and (5.6) ensure that a job i ∈ I can only be
assigned to day d ∈ D when both restrictions are fulfilled. Note that in term Y 2

i d , the 2 stands for stage two
and not the square of the term. ∑

d∈D
Y 1

i d d ≤ ri +1 ∀i ∈ I (5.5)

Y 2
i d ≤

d∑
d1≥d−2

Y 1
i d1

∀i ∈ I , ∀d ∈ D (5.6)

Depending on the type of instrument set, each job i ∈ I has a limited number of days in which the set has
to be sterilized and transported back to the OR or outpatient clinic. The due date is defined as the release
day plus lead time, which is denoted by li . For example, li = 0 indicates that a job has to be processed on the
day of arrival, and li = 3 indicates that a job has be processed three days after arrival at the latest. Constraints
(5.7) assure that a job is finished at the determined due date, which is the arrival day plus the number of days
within it has to be sterilized. ∑

d∈D
Y 2

i d d ≤ ri + li ∀i ∈ I (5.7)

For each day d ∈ D , the decision variables Od represent the amount of opening time. As a job is only
assigned to a specific day, it is not relevant to determine specific opening times md and nd . In relation to the
formulation in Chapter 4, the equation Od = nd −md holds for each day d ∈ D . Apart from this relation, md

and nd could take any value during the day. Constraints (5.8) ensure that each weekday has the same amount
of opening time. Since this relation does not hold for weekend days, Constraint (5.9) ensures that the amount
of opening time each weekend day is also equal.

Od =Od−1 ∀d ∈ {2,3,4,5} ⊂ D (5.8)

O7 =O6 (5.9)

Each day d ∈ D , a machine h ∈ H j has a certain capacity depending on the process time, p j
h , and the

capacity, u j
h , of the machine. Intuitively, it can be seen as the number of batches which are possible to process.

The capacity of machine h ∈ H j at stage j ∈ J on day d ∈ D is defined as⌊
γOd

p j
h

⌋
u j

h . (5.10)

Each job i ∈ I has a size z j
i at each stage j ∈ J . Constraints (5.11) ensure that the capacity of machine

h ∈ H j at stage j ∈ J is not exceeded on a day d ∈ D . A parameter γ is introduced to take into account the fact
that the machines cannot be used continuously, as time is needed to execute setup processes and to form the
batches before each stage. Furthermore, there could be machine failures or test batches which decrease the
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available time. A value for γ can be determined using the models in Chapter 4, or based on expert judgement.

Note that Constraints (5.11) have two non-linear terms, S j
i hY j

i d and

⌊
γOd

p
j
h

⌋
.

∑
i∈I

S j
i hY j

i d z j
i ≤

⌊
γOd

p j
h

⌋
u j

h ∀h ∈ H j , ∀ j ∈ J , ∀d ∈ D (5.11)

To take into account surcharges for working irregular hours, a different rate is used for opening hours that
go over the regular hours. In case of a weekday, regular hours are from 07:00 until 20:00. Hence, the amount of
opening time above 13 hours (780 minutes) is charged with a surcharge of 47%. In similar sense, this holds for
opening time above 4 hours (240 minutes) on Saturday. For Sunday, for all opening hours a surcharge of 72%
is paid. For each day d ∈ {1,2,3,4,5,6} ⊂ D , nonnegative variables Qd represent the irregular hours as defined
above. Constraints (5.12) ensure that for weekdays, if the amount of opening time is over 780 minutes, all time
over 780 minutes is indicated as irregular opening time. Constraint (5.13) indicates the amount of irregular
opening time on Saturday. Constraint (5.14) indicates the amount of irregular opening time on Sunday.

Qd ≥Od −780 ∀d ∈ {1,2,3,4,5} ⊂ D (5.12)

Q6 ≥O6 −240 (5.13)

Q7 =O7 (5.14)

To take into account the amount of work employees can do at a day, the setup times of each job are used.

Parameter v j
d denotes the number employees at stage j ∈ J on day d ∈ D . Constraints (5.15) ensure that the

maximum time spend on the setup processes of instrument sets is smaller than the capacity of the employees
at each stage j ∈ J on each day d ∈ D .∑

i∈I
Y j

i d s j
i ≤ v j

d Od ∀ j ∈ J , ∀d ∈ D (5.15)

OBJECTIVE

While satisfying all constraints, the objective is to minimize the total costs to obtain the required resources.
The first term, denotes the machine purchase costs. The second term, denotes the employee costs during
opening hours. The third an fourth term, indicate the employee costs during the irregular opening hours.
r2 and r3 are defined as 47% and 72%, respectively. To be able to compare the results of this model with
the models in Chapter 4, the fifth term gives an estimate of the batch costs. This is defined as the ceiling of
the sum of all jobs assigned to a machine h ∈ H j at stage j ∈ J on day d ∈ D , divided by the capacity of the
machine. Note that the ceiling function is non-linear.

min
∑

h∈H j

∑
j∈J

P j
hc j

2h + ∑
j∈J

∑
d∈D

v j
d c3Od + ∑

d 6=7∈D
r2v j

d c3Qd + r3v j
7 c3Q7 +

∑
j∈J

∑
d∈D

∑
h∈H j

⌈∑
i∈I S j

i hY j
i d z j

i

u j
h

⌉
c j

1h (5.16)

5.1.2. LINEARIZATION
As already noted in the previous section, there are three non-linear terms within the formulation. First, Con-

straints (5.11) contain the terms S j
i hY j

i d and

⌊
γOd

p
j
h

⌋
. These terms can be linearized by adding binary variables

X j
i hd and integer variables L j

hd , respectively. Furthermore, Constraints (5.17), (5.18), and (5.19) are added
to resemble the behaviour of the first quadratic term, and Constraints (5.20) are added to resemble the be-
haviour of the floor function.

X j
i hd ≤ S j

i h ∀i ∈ I , ∀h ∈ H j , ∀ j ∈ J , ∀d ∈ D (5.17)

X j
i hd ≤ Y j

i d ∀i ∈ I , ∀h ∈ H j , ∀ j ∈ J , ∀d ∈ D (5.18)

X j
i hd ≥ S j

i h +Y j
i d −1 ∀i ∈ I , ∀h ∈ H j , ∀ j ∈ J , ∀d ∈ D (5.19)
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L j
hd ≤ γOd

p j
h

∀h ∈ H j , ∀ j ∈ J , ∀d ∈ D (5.20)

Hereafter, Constraints (5.11) are transformed to Constraints (5.21).∑
i∈I

X j
i hd z j

i ≤ L j
hd u j

h ∀h ∈ H j , ∀ j ∈ J , ∀d ∈ D (5.21)

Second, the last term of the objective function is non-linear. Integer variables K j
hd and Constraints (5.22)

are added to linearize the objective function, which is shown in Equation (5.23).

K j
hd ≥

∑
i∈I X j

i hd z j
i

u j
h

∀h ∈ H j , ∀ j ∈ J , ∀d ∈ D (5.22)

min
∑

h j ∈H j

∑
j∈J

P j
hc j

2h + ∑
j∈J

∑
d∈D

v j
d c3Od + ∑

d 6=7∈D

∑
j∈J

r2v j
d c3Qd + ∑

j∈J
r3v j

7 c3Q7 +
∑
j∈J

∑
d∈D

∑
h∈H j

K j
hd c j

1h (5.23)

5.2. TACTICAL MODEL
In this section, a MILP is proposed which considers capacity planning decisions at a strategic and tactical
level. On a tactical level, the aim is to determine the specific opening and closing time of the CSSD. To deter-
mine these values, days are divided into multiple day parts. The specific opening hours can be determined
by combining the opening hours of each day part. In Subsection 5.2.1, the model is formally introduced, and
in Subsection 5.2.2, a linearization of the model is proposed. All relevant sets, variables, and parameters are
introduced in the text and listed in the front matter of this thesis.

5.2.1. FORMULATION
The tactical formulation is an extension of the strategic model as presented in Subsection 5.1.1. Hereafter,
this subsection first describes the constraints, and second, states the objective function. All constraints are
presented, however, only differences in comparison to the notation in Subsection 5.1.1 are discussed.

CONSTRAINTS

Formally, the set G denotes the day parts, and parameter w the number of parts a day is divided in. For
instance, given w = 2, the set G consists of 7w = 14 elements. Note, with a higher value of w , in other words,
more day parts, the problem tends to be more accurate to reality, partly taking into account release times.
Table 5.1 indicates the time intervals for each considered number of day parts.

Day parts Part 1 Part 2 Part 3 Part 4
1 00:00-00:00
2 00:00-12:00 12:00-00:00
3 00:00-08:00 08:00-16:00 16:00-00:00
4 00:00-06:00 06:00-12:00 12:00-18:00 18:00-00:00

Table 5.1: Overview time intervals for each number of day parts.

Constraints (5.24) ensure that each job i ∈ I is assigned to exactly one machine h ∈ H j at each stage j ∈ J .
Constraints (5.25) ensure that if a job i ∈ I is processed at machine h ∈ H j at stage j ∈ J , machine h ∈ H j is
purchased. ∑

h∈H j

S j
i h = 1 ∀i ∈ I , ∀ j ∈ J (5.24)

∑
i∈I

S j
i h ≤ MP j

h ∀h ∈ H j , ∀ j ∈ J (5.25)

The considered planning horizon is a week, which consists of 7w day parts. A job i ∈ I can be processed
from the day part it arrives, denoted by ri ∈ G . Constraints (5.26) ensure that each job i ∈ I at each stage
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j ∈ J is assigned to one day part. Constraints (5.27) ensure that a job can only be processed after arrival at the
CSSD. ∑

g∈G
Y j

i g = 1 ∀i ∈ I , ∀ j ∈ J (5.26)

ri ≤
∑

g∈G
Y 1

i g g ∀i ∈ I (5.27)

As the CSSD is a flow shop environment, a job i ∈ I first has to be processed at stage one, where after it
can be processed at stage two. In addition, a job i ∈ I has to be processed at the first stage within w day parts
after arriving at the CSSD, and has to be finished at the second stage within 2w day parts after the end of the
first stage. Constraints (5.28) and (5.29) ensure that a job i ∈ I can only be assigned to day part g ∈ G if both
restrictions are fulfilled. Note that in term Y 2

i g , the 2 stands for stage two and not the square of the term.∑
g∈G

Y 1
i g g ≤ ri +w ∀i ∈ I (5.28)

Y 2
i g ≤

g∑
g1≥g−2w

Y 1
i g1

∀i ∈ I , ∀g ∈G (5.29)

Constraints (5.30) ensure that each job i ∈ I is finished before the determined due date, which is the arrival
day part plus the number of day parts within which the job has to be sterilized, the lead time, denoted by li .∑

g∈G
Y 2

i g g ≤ ri + li ∀i ∈ I (5.30)

For each day part g ∈ G , the decision variables Og represent the amount of opening time. Constraints
(5.31) ensure that the day parts have the same opening hours each weekday. Consequently, the total opening
time is the same on each weekday. Constraints (5.32) ensure that the amount of opening time on weekend
days is equal as well.

Og =Og−w ∀g ∈ {w +1, ...,5w} ⊂G (5.31)

Og =Og−w ∀g ∈ {6w +1, ...,7w} ⊂G (5.32)

In case w > 2, additional constraints are needed to define the opening hours. As the CSSD has contin-
uous opening hours during the day, the considered day part has to have full opening hours if both adjacent
day parts have hours in which the CSSD is open. Binary variables Dg are introduced to indicate if there are
opening hours within day part g ∈G . Dg is equal to one if Og is larger than zero for day part g ∈G , and zero
otherwise. Constraints (5.33) assign a value to Dg .

Dg ≥ Og

1440
∀g ∈G (5.33)

Constraints (5.34) ensure that if both adjacent day parts have hours in which the CSSD is open, the day
part in between has full opening hours. These constraints are only introduced for day parts in the middle of
a day, as there can be a break in opening hours between days.

Og ≥ (
Dg−1 +Dg+1 −1

) 1440

w
∀g ∈ {0w +2, . . . , w −1, w +2, . . . ,2w −1, . . . . . . ,6w +2, . . . ,7w −1} ⊂G (5.34)

Constraints (5.35) ensure that the capacity of machine h ∈ H j at stage j ∈ J is not exceeded on interval
g ∈G . Note that these constraints contain two non-linear terms.

∑
i∈I

S j
i hY j

i g z j
i ≤

⌊
γOg

p j
h

⌋
u j

h ∀h ∈ H j , ∀ j ∈ J , ∀g ∈G (5.35)

To take into account surcharges for working irregular hours, a different rate is used for opening hours that
go over the regular hours. The number of regular hours depends on the chosen number of day parts and the
corresponding time intervals as indicated in Table 5.1. In case w = 2, Constraints (5.36) and (5.37) are added
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to determine the amount of irregular opening time on weekdays, and Constraints (5.38) and (5.39) are added
to determine the amount of irregular opening time on Saturdays.

Qg ≥Og −300 ∀g ∈ {1,3, . . . ,9} ⊂G (5.36)

Qg ≥Og −480 ∀g {2,4, . . . ,10} ⊂G (5.37)

Q11 ≥O11 −240 (5.38)

Q12 =O12 (5.39)

In case w = 3 and w = 4, similar constraints are added. In that case there are 3 and 4 constraints for each
day, respectively. These constraints can be found in Appendix B.1.

To take into account the amount of work employees can do during a day part, the setup times of each job
are used. Constraints (5.40) ensure that the time spend on the setup of an instrument set i ∈ I is smaller than
the capacity of the employees during the opening hours of the day part.∑

i∈I
Y j

i g s j
i ≤ v j

g Og ∀ j ∈ J , ∀g ∈G (5.40)

OBJECTIVE

While satisfying all constraints, the objective is to minimize the total costs to obtain the required resources.
The objective function is very similar to the objective function of the strategic model, only considering day
parts instead of days.

min
∑

h∈H j

∑
j∈J

P j
hc j

2h + ∑
j∈J

∑
g∈G

v j
g c3Og +

∑
0≤g≤6w

∑
j∈J

r2v j
g c3Qg +

∑
6w+1≤g≤7w

∑
j∈J

r3v j
g c3O7

+∑
j∈J

∑
g∈G

∑
h∈H j

ÈÌÌÌ
∑

i∈I S j
i hY j

i g z j
i

u j
h

ÉÍÍÍc j
1h

(5.41)

5.2.2. LINEARIZATION
Similar to the strategic model, there are three non-linear terms within the tactical model, two within the con-

straints, and one in the objective function. Binary variables X j
i hg , integer variables L j

hg , and integer variables

K j
hg are added in combination with Constraints (5.42), (5.43), (5.44), (5.45), and (5.46), which results in Con-

straints (5.47) and objective function (5.48).

X j
i hg ≤ S j

i h ∀i ∈ I , ∀h ∈ H j , ∀ j ∈ J , ∀g ∈G (5.42)

X j
i hg ≤ Y j

i g ∀i ∈ I , ∀h ∈ H j , ∀ j ∈ J , ∀g ∈G (5.43)

X j
i hg ≥ S j

i h +Y j
i g −1 ∀i ∈ I , ∀h ∈ H j , ∀ j ∈ J , ∀g ∈G (5.44)

L j
hg ≤ γOg

p j
h

∀h ∈ H j , ∀ j ∈ J , ∀g ∈G (5.45)

K j
hg ≥

ÈÌÌÌ
∑

i∈I X j
i hg z j

i

u j
h

ÉÍÍÍ ∀h ∈ H j , ∀ j ∈ J , ∀g ∈G (5.46)

∑
i∈I

X j
i hg z j

i ≤ L j
hg u j

h ∀h ∈ H j , ∀ j ∈ J , ∀g ∈G (5.47)
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min
∑

h∈H j

∑
j∈J

P j
hc j

2h + ∑
j∈J

∑
g∈G

v j
g c j

3Og +
∑

0≤g≤6w
r2v j

g c3Og +
∑

6w+1≤g≤7w
r3v j

g c3O7

+∑
j∈J

∑
g∈G

∑
h∈H j

K j
hg c j

1h

(5.48)

5.3. OPERATIONAL MODEL
The model as described in Chapter 4, can be defined as an operational model considering capacity planning
decisions at all hierarchical levels. On an operational level, the aim is to determine the assignment of an
instrument set to a batch and an employee. In Subsection 5.3.1, a reformulation to a four-stage flow shop
is described, and in Subsection 5.3.2, both the two-stage and the four-stage formulation are linearized. All
relevant sets, variables, and parameters are introduced in the text and listed in the front matter of this thesis.

5.3.1. REFORMULATION
In the mathematical programming formulation in Section 4.1, multiple decision variables are introduced to
keep track of the setup time for batches. In this subsection, a reformulation is proposed to avoid these vari-
ables and make the model better readable. Here, the problem is presented as a four stage hybrid flow shop.
The four stages are: ‘manually clean’, ‘disinfect’ by the WD machines, ‘check and assemble’, and ‘sterilize’
by the autoclaves. As the formulation is similar to the model proposed in Chapter 4, only constraints, sets,
parameters and decision variables which are changed are explained.

CONSTRAINTS

The notation of the reformulation is very similar to the model proposed in Chapter 4. Although all sets,
parameters, and variables are stated, only significant differences are further elaborated. Similar as in Chapter
4, the sets I , J and D are introduced. The set of machines, H j , and the set of batches, B j , are now only
introduced for stages two and four, the WD machines and autoclaves, respectively. All parameters related to

machines, among which job size, z j
i , machine capacity, u j

h , processing time, p j
h , machine purchasing costs,

c j
1h , and machine batch cost,c j

2h , are introduced for only stages two and four as well. The set O j
d is introduced,

which represents the CSSD employees, the operators, at stage j ∈ {1,3} ∈ J , on day d ∈ D . The number of

operators at stage j ∈ J on day d ∈ D is a fixed parameter v j
d . Additionally, processing time s j

i for job i ∈ I ,
equal to the setup time in Chapter 4, is added for stages one and three.

The decision variables t j
i , md , nd , qd , and Y j

i d remain the same as in Chapter 4. The decision variables

related to the machines, batches and setup times, t j
bh , S j

i bh , Z j
bh , and P j

h , are again only introduced for stages

two and four. Binary decision variables A j
i k and S j

i od are added for stages one and three. S j
i od is equal to one

when job i ∈ I is assigned to operator o ∈ O j
i d at stage j ∈ {1,3} ∈ J on day d ∈ D , and zero otherwise. A j

i k is
equal to one when job k ∈ I is processed after job i ∈ I at stage j ∈ J , and zero otherwise. All decision variables

related to setup times, A j
i d and X j

i d , are not used in this formulation.

Constraints (5.49) ensure that each job is assigned to one batch and one machine at stages j ∈ {2,4} ⊂ J .
Constraints (5.50) ensure that each job is assigned to one operator on one day at stages j ∈ {1,3} ⊂ J .∑

b∈B j

∑
h∈H j

S j
i bh = 1 ∀i ∈ I , ∀ j ∈ {2,4} ⊂ J (5.49)

∑
o∈O

j
d

∑
d∈D

S j
i od = 1 ∀i ∈ I , ∀ j ∈ {1,3} ⊂ J (5.50)

Constraints (5.51) guarantee that each batch is assigned to at most one machine at stages j ∈ {2,4} ⊂ J .
Constraints (5.52) and (5.53) ensure that if a batch is assigned to a machine, at least one job is assigned to
the batch. Reversely, if a batch is not assigned to a machine, no jobs are assigned to the batch. Constraints
(5.54) ensure that if a batch is processed at a machine h ∈ H J at stage j ∈ {2,4} ⊂ J , this machine is purchased.
Constraints (5.55) ensure that the sum of the job sizes of each batch does not exceed the capacity of the
assigned machine at the corresponding stage. Note that Constraints (5.53) and (5.55) can be merged as shown
in (5.56). These constraints remain similar, only applied to stages two and four.
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∑
h∈H j

Z j
bh ≤ 1 ∀b j ∈ B j , ∀ j ∈ {2,4} ⊂ J (5.51)

∑
i∈I

S j
i bh ≥ Z j

bh ∀b j ∈ B j , ∀h ∈ H j , ∀ j ∈ {2,4} ⊂ J (5.52)

∑
i∈I

S j
i bh ≤ M Z j

bh ∀b j ∈ B j , ∀h ∈ H j , ∀ j ∈ {2,4} ⊂ J (5.53)

∑
b∈B j

Z j
bh ≤ MP j

h ∀h ∈ H j , ∀ j ∈ {2,4} ⊂ J (5.54)

∑
i∈I

z j
i S j

i bh ≤ u j
h ∀b j ∈ B j , ∀h ∈ H j , ∀ j ∈ {2,4} ⊂ J (5.55)

∑
i∈I

z j
i S j

i bh ≤ u j
h Z j

bh ∀b j ∈ B j , ∀h ∈ H j , ∀ j ∈ {2,4} ⊂ J (5.56)

Constraints (5.57) ensure that a job cannot be processed before the release date. This is dependent on the
process time of job i ∈ I at stage one. Constraints (5.58) ensure that a job is finished at stage four before the
due date. Note that in the term t 4

i , the 4 stands for stage four and not to the power of 4.

t 1
i ≥ ri + s1

i ∀i ∈ I (5.57)

t 4
i ≤ ri + li ∀i ∈ I (5.58)

In addition, there are guidelines for the amount of time an instrument set can be kept at a stage. Parameter
e j indicates the maximum time before or in between stage j ∈ J . Constraints (5.59) and (5.60) ensure that the
maximum time between the release date and the start of stage two is e1 minutes, and the maximum duration
between completion time of the stages two and the start of stage four is e2 minutes for each job i ∈ I . In
other words, before disinfecting, the maximum elapsed time is e1 minutes, and between disinfecting and

sterilizing, the maximum elapsed time is e2 minutes. The term
∑

h∈H j
∑

b∈B j p j
hS j

i bh is used to indicate that
the maximum amount of time is measured until the start of a machine at the next stage.

t 2
i − ri −

∑
h∈H j

∑
b∈B j

p2
hS2

i bh ≤ e1 ∀i ∈ I (5.59)

t 4
i − t 2

i −
∑

h∈H j

∑
b∈B j

p4
hS4

i bh ≤ e2 ∀i ∈ I (5.60)

Constraints (5.61) and (5.62) define the batch completion time t j
bh of batch b ∈ B J at machine h ∈ H j at

stage j = 2,4 ∈ J . A machine can only process one batch at a time. Constraints (5.63) ensure that a batch
cannot be scheduled earlier than the completion time of the previous batch at the same machine. These
constraints remain similar, but only applied to stages two and four.

t j
bh ≥ t j

i −M
(
1−S j

i bh

)
∀i ∈ I , ∀b ∈ B j , ∀h ∈ H j , ∀ j ∈ {2,4} ⊂ J (5.61)

t j
i ≥ t j

bh −M
(
1−S j

i bh

)
∀i ∈ I , ∀b ∈ B j , ∀h ∈ H j , ∀ j ∈ {2,4} ⊂ J (5.62)

t j
bh +M

(
1−Z j

bh

)
≥ t j

b′h −M
(
1−Z j

b′h

)
+p j

h ∀h ∈ H j , ∀b,b′ < b ∈ B j , ∀ j ∈ {2,4} ⊂ J (5.63)

Constraints (5.64) and (5.65) assign a value to Y j
i d given the completion time of a job. Constraints (5.66)

ensure that a job is scheduled on exactly one day.

t j
i +M

(
1−Y j

i d

)
≥ md ∀i ∈ I , j ∈ J , d ∈ D (5.64)

t j
i −M

(
1−Y j

i d

)
≤ md+1 ∀i ∈ I , j ∈ J , d ∈ D (5.65)
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∑
d∈D

Y j
i d = 1 ∀i ∈ I , j ∈ J (5.66)

In addition, for this formulation, constraints regarding the sequence of jobs processed by an operator

have to be introduced for stages j ∈ {1,3} ⊂ J . Binary variables A j
i k are introduced, which are equal to one if

job k ∈ I is processed after job i ∈ I at stage j ∈ {1,3} ⊂ J , and zero otherwise. Constraints (5.67), (5.68), and
(5.69) provide the order in which jobs are scheduled and ensure that a job cannot be scheduled earlier than
the completion time of the previous job processed by the same operator at stages j ∈ {1,3} ⊂ J .

t j
k +M

(
1− A j

i k

)
≥ t j

i + s j
i

∀i ,k 6= i ∈ I , ∀ j ∈ {1,3} ⊂ J
(5.67)

A j
i k + A j

ki +M
(
1−S j

i od

)
+M

(
1−S j

kod

)
≥ 1

∀i ,k > i ∈ I , ∀d ∈ D , ∀ j ∈ {1,3} ⊂ J , ∀o ∈O j
d

(5.68)

A j
i k + A j

ki −M
(
1−S j

i od

)
−M

(
1−S j

kod

)
≤ 1

∀i ,k > i ∈ I , ∀d ∈ D , ∀ j ∈ {1,3} ⊂ J , ∀o ∈O j
d

(5.69)

As the CSSD Planning Problem is a flow shop, the jobs have to be processed at the stages in a fixed se-
quence. In other words, first the job has to processed at stage one, then stage two, stage three, and finally
stage four. Two separate constraints are required to model the relation between the two different type of
stages. Constraints (5.70) and (5.71) assure that for each job, the previous stage has to be finished before a
new stage can start. Note that Constraints (5.71) are only introduced for the step between stages two and
three, as Constraints (5.57) already ensure that a job cannot be processed at stage one before the release time.

t j
i ≥ t j−1

i + ∑
h∈H j

∑
b∈B j

p j
hS j

i bh ∀i ∈ I , ∀ j ∈ {2,4} ⊂ J (5.70)

t 3
i ≥ t 2

i + s3
i ∀i ∈ I (5.71)

Constraints (5.72) and (5.73) ensure a job cannot be started before the opening time. Again, there are two
constraints for the two types of stages.

t j
i − ∑

h∈H j

∑
b∈B j

p j
hS j

i bh +M
(
1−Y j

i d

)
≥ md ∀i ∈ I , ∀ j ∈ {2,4} ⊂ J , d ∈ D (5.72)

t j
i − s j

i +M
(
1−Y j

i d

)
≥ md ∀i ∈ I , ∀ j ∈ {1,3} ⊂ J , d ∈ D (5.73)

Constraints (5.74) determine the overtime each day. The overtime depends on the completion time of the
last job in a batch at the machines or the last job processed by an operator.

qd ≥ t j
i −nd −M

(
1−Y j

i d

)
∀i ∈ I , ∀ j ∈ J , ∀d ∈ D (5.74)

In addition, the surcharges for working irregular hours have to be taken into account. The formulation is
exactly the same as for the two-stage flow shop formulation as described in Chapter 4. More specifically, the
formulation can be found in Section 4.1 from Equation (4.36) onwards.

OBJECTIVE

While satisfying all constraints, the objective of the CSSD Planning Problem is to minimize the total costs to
obtain the required resources. The total costs is the sum of the machine purchase costs, machine batch costs
and employee costs. The first term denotes the machine purchase costs and the second term denotes the
machine batch costs. The first two terms are only summed over stages two and four. The third term denotes
the employee costs, only summed over stages one and three. The last term denotes the employee costs related
to overtime.

min
∑

h j ∈H j

∑
j∈{2,4}⊂J

P j
hc j

2h + ∑
b j ∈B j

∑
h j ∈H j

∑
j∈{2,4}⊂J

Z j
bhc j

1h + ∑
j∈{1,3}⊂J

∑
d∈D

∑
r∈R

Vdr v j
d c3r +

∑
d∈D

qd c4 (5.75)
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5.3.2. LINEARIZATION
In this subsection, the linearization for the two-stage flow shop operational model is proposed. For the four-
stage flow shop operational model, the same linearization applies for the constraints regarding the irregular
hours from Constraints (5.82) onwards.

There are five non-linear terms in the two-stage model, namely S j
i bh

(
1− A j

i d

)
, Nd p1

(
nd +qd

)
, Md p4 md ,

Nd p2

(
nd +qd

)
, and Md p3 md . In this subsection, a linearization, based on Hammer and Rudeanu [48], is

proposed. First, binary decision variables F j
i bhd are introduced, which are equal to one if job i ∈ I in batch

b ∈ B at machine h ∈ H j at stage j ∈ J is processed on day d ∈ D and the setup is executed at the same day.
Then, the Constraints (5.76), (5.77) and (5.78) are introduced.

F j
i bhd ≤ S j

i bh ∀i ∈ I , ∀b ∈ B j , ∀h ∈ H j , ∀ j ∈ J , ∀d ∈ D (5.76)

F j
i bhd ≤

(
1− A j

i d

)
∀i ∈ I , ∀b ∈ B j , ∀h ∈ H j , ∀ j ∈ J , ∀d ∈ D (5.77)

F j
i bhd ≥ S j

i bh − A j
i d ∀i ∈ I , ∀b ∈ B j , ∀h ∈ H j , ∀ j ∈ J , ∀d ∈ D (5.78)

Hence, Constraints (4.29) are transformed to Constraints (5.79), Constraints (4.31) are transformed to
Constraints (5.80), and Constraints (4.32) are transformed to Constraints (5.81).

t j
i ≥ t j−1

i +
∑

k∈I
∑

h∈H j s j
k F j

kbhd

v j
d

+ ∑
h∈H j

∑
b∈B j

p j
hS j

i bh −M

(
1− ∑

h∈H j

S j
i bh

)
−M

(
1−Y j

i d

)
∀i ∈ I , ∀b ∈ B j , ∀ j > 1 ∈ J , ∀d ∈ D

(5.79)

t j
i −

∑
k∈I

∑
h∈H j s j

k F j
kbhd

v j
d

− ∑
h∈H j

∑
b∈B j

p j
hS j

i bh +M

(
1− ∑

h∈H j

S j
i bh

)
+M

(
1−Y j

i d

)
≥ md

∀i ∈ I , ∀b ∈ B j , ∀ j ∈ J , ∀d ∈ D

(5.80)

t 1
i ≥ ri +

∑
h∈H 1

∑
b∈B 1

p1
hS1

i bh +
∑

k∈I
∑

h∈H 1 s1
k F 1

kbhd

v1
d

−M

(
1− ∑

h∈H 1

S1
i bh

)
−M

(
1−Y 1

i d

)
∀i ∈ I , ∀b ∈ B 1, ∀d ∈ D

(5.81)

Next, to linearize Constraints (4.40), (4.41),(4.43), and (4.44), nonnegative decision variables Gd p1 and
Gd p4 for d ∈ {1,2,3,4,5} ⊂ D , and Gd p2 and Gd p3 for d = 6 are introduced. Considering the bounds 0 ≤ nd +
qd ≤ 1440(d +1), Constraints (5.82), (5.83), and (5.84) are added, and Constraints (4.40) can be transformed
to Constraints (5.85).

Gd p1 ≤ nd +qd ∀d ∈ {1,2,3,4,5} ⊂ D (5.82)

Gd p1 ≤ 1440(d +1)Nd p1 ∀d ∈ {1,2,3,4,5} ⊂ D (5.83)

Gd p1 ≥
(
nd +qd

)−1440(d +1)
(
1−Nd p1

) ∀d ∈ {1,2,3,4,5} ⊂ D (5.84)

Wd p1 ≥ p1 −md +Gd p1 −p1Nd p1 ∀d ∈ {1,2,3,4,5} ⊂ D (5.85)

Considering the bounds 0 ≤ md ≤ 1440d , Constraints (5.86), (5.87), and (5.88) are added, and Constraints
(4.41) can be transformed to Constraints (5.89). In the same sense, the quadratic terms in Constraints (4.43)
and (4.44) are linearized. All necessary constraints to linearize the model can be found in Appendix B.2.

Gd p4 ≤ md ∀d ∈ {1,2,3,4,5} ⊂ D (5.86)
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Gd p4 ≤ 1440d Md p4 ∀d ∈ {1,2,3,4,5} ⊂ D (5.87)

Gd p4 ≥ md −1440d
(
1−Md p4

) ∀d ∈ {1,2,3,4,5} ⊂ D (5.88)

Wd p4 ≥ (nd +qd )−p4 −Gd p4 +p4Md p4 ∀d ∈ {1,2,3,4,5} ⊂ D (5.89)

5.4. OVERVIEW MODELS
In this section, an overview of the proposed models in this thesis is given, including the model proposed in
Chapter 4. In addition, it is indicated which variables can be fixed to focus on capacity planning decisions
on one specific hierarchical level. Figure 5.1 presents all models and capacity planning decisions which are
included in the model. The three vertical boxes indicate the capacity planning decisions on a strategic, tac-
tical and operational level. The three horizontal boxes indicate the strategic model as described in Section
5.1, the tactical model as described in Section 5.2, and the operational models, which contains both the two-
stage as the four-stage flow shop formulation, described in Section 4.1 and Subsection 5.3.1, respectively. As
depicted, the strategic model only takes capacity planning decisions on a strategic level into account. The
tactical model takes capacity planning decisions on both a strategic and a tactical level into account. The
operational models take capacity planning decisions on all levels into accounts. However, for the tactical and
operational models, variables can be fixed to only take into account decisions on a tactical or operational
level. For both the tactical and the operational models, the number of machines can be fixed. In addition,
for the operational models, the acquired machines and the amount of opening time can be fixed. Further-
more, the assignment of jobs to machines can be fixed as well. Note that the results from a model on a higher
hierarchical level can be used as input to fix these variables.

Figure 5.1: Overview of the proposed models.

Corresponding to the hierarchical level of a model, a time unit is used to schedule the jobs. For the strate-
gic model, the considered time unit is days, for the tactical model day parts, and for the operation models
minutes.

Given all model information, the following remarks are important to keep in mind:

• Only for the operational model, overtime is taken into account. This overtime is caused by emergency
jobs and considerations such as release times on an operational level. Hence on a strategic and tactical
level, the amount of opening time should be sufficient, as the aim is to avoid overtime.

• Overtime can only occur at the end of the day. If a job arrives during the night, there are two options: 1)
the calculated overtime is very long, 2) the opening time of the CSSD is set very early. During overtime
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the number of employees stays the same as during that day, even though, in reality, only two people
stay to work in overtime.

• The setup time of a batch in the two-stage model is an approximation of the time that is needed. In-
strument sets are not specifically assigned to an employee and the model implies that the process time
for one job can be divided over multiple employees. The four-stage model states a better approximated
time, as each job is assigned to a operator. Furthermore, the four-stage does not overestimate the batch
setup time after opening hours, in between stages, and after the release times as is the case in the two-
stage model.



6
DATA ANALYSIS

In this chapter, a data analysis regarding the CSSD is presented. The aim is to give an impression of the com-
plexity of the CSSD and to enumerate the required input data for the models presented in Chapter 4 and 5.
Furthermore, all assumptions made while collecting the data are stated. As input for the models, data re-
garding the available machines, arriving instrument sets, and employee numbers is required. First, in Section
6.1, the instrument sets that arrive at the CSSD from the OR and the outpatient clinics are quantified. Sec-
ond, in Section 6.2, the resources that are required to sterilize these instrument sets are enumerated. Lastly,
as the operational models are difficult to solve, smaller artificial data sets are required in order to test their
performance. Section 6.3 describes the method used to obtain these data sets. This data analysis is based
on information from the IT system of the CSSD, T-DOC, the IT system of the OR, HIX, and expert judgement.
The considered data from the IT systems is from March 2019 up to and including February 2020.

6.1. INSTRUMENT SETS
As previously described in Chapter 2, the instrument sets that arrive at the CSSD originate from the OR and
the outpatient clinics. Within this thesis, the focus is on scheduling the instrument sets from the OR, as there
is more data available and more complex instrument sets have to be sterilized. On the other hand, outpatient
clinics are decentralized and fewer and more basic instrument sets are used. Each outpatient clinic has fixed
arrangements with the CSSD, which can be reviewed, however, a pull approach is not yet feasible. This section
is divided into two subsections. First, in Subsection 6.1.1, the input data from the OR is described, and second,
in Subsection 6.1.2, the data of the outpatient clinics is presented.

6.1.1. OPERATING ROOM
In the considered time period, 965 different instrument sets are used at the OR. From these sets, 469 are used
during emergency surgeries, and 496 are only used during scheduled surgeries and never for an emergency
surgery. Figure 6.1 presents three histograms of the number of instrument sets which are used a certain
number of times, divided into three sub figures to improve the readability. The histograms are divided into
occasionally, regularly, and frequently used instrument sets, which corresponds to intervals of 0-250, 250-500,
and 500-3000 number of times the instrument set is used. It shows that most instrument sets are used only a
few times a year. For example, 318 instrument sets are used a maximum of 5 times during the year. The ‘Acute
tray’ is the most used tray, with a total usage of 1719 times, and the ‘Mat Bad’ is the most used individual item,
with a total usage of 2945 times.

The arrival of instrument sets is partly a stochastic process. It depends on the scheduled surgeries for each
week and the occurrence of emergency surgeries. To evaluate the performance of the models for different
scenarios, three different instances based on specific weeks in the considered time horizon are created as
follows:

• Week 15, 2019, is the peak week of the considered time horizon, where 855 instrument sets arrived
from the OR.

• Week 22, 2019, is a week with a holiday, Ascension Day, on which there are no scheduled surgeries,
where 656 instrument sets arrived from the OR.
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(a) Occasionally used sets (b) Regularly used sets (c) Frequently used sets

Figure 6.1: Histograms showing the number of instrument sets per number of times an instrument set is
used, for occasionally, regularly, and frequently used sets.

• Week 43, 2019, is a public school holiday week and the OR schedules only half of the OR blueprint that
week, where 547 instrument sets arrived from the OR.

Figure 6.2 shows the number of arriving instrument sets each two hours for the three considered weeks.
It clearly shows that week 22 contains a holiday and that the number of arriving sets is significantly lower in
week 43 than in week 15. Furthermore, the surgeries during the weekend are mostly emergency surgeries.
As the models in this thesis start on Monday morning 00:00 and finish on Sunday night at 00:00, it is crucial
to check the beginning and end of each scenario. If an instrument set arrives 5 minutes before midnight
on Sunday, this set will be processed on Monday morning. Hence, the instrument set is removed from the
scenario as it would immediately lead to an infeasibility as it is not possible to finish the process before the
model ends. On the other hand, instrument sets arriving late on the Sunday before the considered week
should be added to the scenario on Monday morning.

Figure 6.2: Number of arriving sets per interval of two hours, clearly showing the difference in arriving sets
per scenario.

Table 6.1 gives an example of the information which is needed as input. For this subsection, the first three
rows are of interest in Subsection 6.1.2, the data of the fourth row, regarding the outpatient clinics, is further
explained. The data set is built upon the data set of the OR containing which instrument sets are used during
a surgery. This data is relevant for the hospital as instrument sets can be backtracked to a specific patient
if a contamination is found on a set. The end of a surgery is set as the release time of a job at the CSSD,
which is given as the number of minutes passed after Monday morning 00:00. It is assumed that there is no
transportation time between the OR and the CSSD.
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From the release and lead times stated in Table 6.1, the subsequent times for the strategic and tactical
model are derived using a ceiling function. For example, a release time of 956 translates to release day

⌈ 956
1440

⌉=
1 in the strategic model and release day part

⌈
956
1440

2

⌉
= 2 within the tactical model. In a similar sense, all release

times and lead times can be calculated from the basic data.

Job
Release
time
[min]

Lead
time
[min]

Size WD
machine
[DIN]

Size
autoclave
[DIN]

Time to
clean
[min]

Time to
assemble
[min]

BASIS NET I 956 1056 2 1 3 5
BASIS NET II 956 1200 2 1 3 5
ORTHO-ONCO SET 783 1200 0.25 1 3 5
Outpatient batch 1 2010 700 4 4 7 10

Table 6.1: Overview input data instrument sets from the OR.

An instrument has a size within the WD machines and a size within the autoclaves. The size of an instru-
ment set is measured in DIN trays. A DIN tray is a basket with a surface size of 480×250 mm and a height
of 100 or 60 mm. As described in Chapter 2, instruments from an instrument set are laid open in multiple
baskets within the WD machines. Consequently, the size of an instrument set is larger in the WD machines
than in the autoclaves. As there is no data available regarding the size of an instrument set within the WD
machines, employees of the CSSD indicated the size of the, approximately, 500 most used instrument sets.
For instrument sets for which no indication was given, a size of 1 DIN is assumed. Within the autoclaves, the
instrument sets from the OR are already assembled and wrapped. After sterilization, they are ready for trans-
port to the OR. Therefore, the sizes vary less and a size of 1 DIN is assumed for each instrument set originating
from the OR. Note, as can be seen in the third row in Table 6.1, it can occur that the size of an instrument set
is larger within the autoclaves than within the WD machines.

Before an instrument set is processed by a WD machine or autoclave, a setup process has to be executed,
‘manual cleaning’ and ‘checking and assembling’, respectively. The required time depends on the level of
complexity of an instrument set. A set containing up to 100 instruments or a complex instrument set, such
as the arms of the Da Vinci surgery robot, requires more time than an often used universal basic set con-
sisting of 10 instruments. Moreover, the time to clean an instrument set depends on the extent to which the
instrument set is used during a surgery, more specifically, the amount of contamination on the instruments.
Finally, the time required varies per employee, depending on their skill and experience. Due to the current
working routines, there is limited data available regarding the required time for the setup processes for each
instrument set. After monitoring the process, a rough estimate has been made. For each instrument set, the
duration of the cleaning setup process is set to 3 minutes and the duration of the assembling setup process
is set to 5 minutes. Despite this rough estimate, it is important to take these setup times into account, as the
workflow of instrument sets should be manageable for employees as well.

Lastly, for each instrument set, a lead time has to be determined. The release time plus the lead time
indicates the time at which an instrument set has to be back in the OR storage. On an operational level, these
lead times are based on the current stock level at the OR, the number of sets of a specific type, the sched-
uled surgeries and the preferred safety stock level at the OR based on the usage of the set during emergency
surgeries. Consequently, the lead time can change over time in case an emergency surgery takes place, an ad-
ditional instrument set is required for a surgery, or if there is more time required for a scheduled surgery due
to unforeseen complications. These lead times form the basis for a pull approach workflow, which has not yet
been implemented at the LUMC. As the research question of this thesis is a tactical and strategic question,
the models only take into account a fixed lead time. Hence, based on the usage over the year and the number
of sets, a lead time for each individual instrument set has to be determined. As basis for determining a lead
time for each set, the decision tree in Figure 6.3 is used.

Commencing at the start of the tree, it has to be checked whether the available information on the used
instrument sets within the CSSD IT tracking system T-DOC is correct. An example of incorrect information
is when the name of an instrument set has been changed during the year. To avoid handling all exceptions,
a general rule applies if the data from T-DOC is not complete or incorrect. If the instrument set is used
more than 20 times during the considered time horizon, the deadline is 1440 minutes, which is the current
agreement with the OR. If the instrument set is used less or equal to 20 times, the lead time is 4320 minutes,
which is the maximum time allowed when taking into account the restriction that an instrument set has be
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Figure 6.3: Decision tree to determine lead time per instrument set.

disinfected within 24 hours and has to be sterilized 48 hours after disinfection. Regularly, a special instrument
set has to be borrowed from another hospital or supplier. Within T-DOC, these instrument sets are stored
containing the string ‘LEEN’ within their name. As these instrument sets are brought to hospitals for specific
scheduled surgeries, it is likely that they arrive one day ahead. After surgery, these instrument sets have to be
returned to the supplier. Hence, the lead time is 1440 minutes. Sets for which information is available within
T-DOC are divided into trays and individual items. There is less information available on the individual items
as there is often no bar code on the instrument itself and it is often put into a tray after a surgery. Hence,
for these instruments, the general rule of 1440 minutes applies. One exception has been made, namely a
‘Mat Bad’ is handled as a tray, since T-DOC contains correct information, each instrument has a unique serial
number, and it is the most used instrument.

Lastly, for instrument sets packed in a tray, it is first checked if they are used for an emergency surgery.
If the instrument sets are used for emergency surgeries, there has to be a safety stock level at the OR, which
could lead to a shorter maximum process time at the CSSD. This specifically holds for instrument sets of
which there is only one item available. If the instrument set is used during an emergency surgery and there is
only one item, it has to be returned to the OR relatively fast and the lead time is set to 300 minutes (5 hours).
The two remaining boxes are ‘Cycle time with storage’ and ‘Cycle time without storage’, which are explained
in more detail below.

For instrument sets which are never used for an emergency surgery or which have more than one set
available, a cycle time is calculated. The cycle time is a number that is calculated based on the interval times
between surgeries and the number of available sets. There are two parts to the calculation. First, the so
called number of rotating sets has to be determined. This number is defined as the number of sets which are
available to cycle within the surgery schedule.

1. If an instrument set is not used during an emergency surgery, the number of rotating sets is equal to
the number of available sets.

2. If the instrument set is used during an emergency surgery, the number of rotating sets is equal to the
number of available sets minus the average daily usage of that instrument set. Intuitively, there will be
a day of safety stock of the considered instrument set.

The second part consists of calculating the time interval between surgeries which use the same instru-
ment sets. The number of rotating sets calculated above is used in this part.

1. For each instrument set, the start time of each surgery in which the set is used is selected. This results
in a list of start times.
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2. From the start time list, all time intervals between the number of rotating sets are calculated. An exam-
ple, in case of 2 rotating sets, is shown in Figure 6.4. As these intervals are taken as lead times, for all
executed surgeries there was an instrument set available.

3. As there are different surgery schedules, there is a range of intervals. The most safe option is to take
the minimum of these intervals. To avoid taking very small cycle times due to extreme cases, the 5
percentile is taken from the list of intervals.

The calculated cycle time does not take into account practical limits. If the cycle time is smaller than 300
minutes, the lead time is set to 300 minutes. Whenever the cycle time is bigger than 4320 minutes, the lead
time is set to 4320 minutes, as this is the maximum process considering the restriction of the sterilization
process.

Figure 6.4: Example calculating intervals per instrument set.

As an example, for an ‘Acute tray’ the following calculation applies. There were 1719 surgeries for which
an ‘Acute tray’ was required, while a total of 27 sets is available, and the set has an average daily usage of 2.3
trays. In addition, as the name already implies, an ‘Acute tray’ has been used for emergency surgeries. Hence,
the time interval between each b27−2.3c = 24 surgeries for which an acute basket was required is calculated.
From this list, the 5 percentile is taken, which results in a lead time of 4320 minutes.

6.1.2. OUTPATIENT CLINICS
Instrument sets from the outpatient clinics are not individually scanned on arrival at the CSSD and it is diffi-
cult to estimate the space required within the WD machines and autoclaves. The last entry in Table 6.1 shows
an example of an instrument set batch from the outpatient clinics. There are fixed agreements with each
outpatient clinic concerning the lead times. Instrument sets from the outpatient clinics arrive between 17:00
and 18:00 at the CSSD.

The lead time for instrument sets from the ‘Ear-Nose-Throat (ENT) and ‘Mouth care’ outpatient clinics
is 13:00 the next day, and for instrument sets arriving from other outpatient clinics, the lead time is 1440
minutes (24 hours). From expert judgement, the number of full WD machines arriving each day is estimated
at 12-15 for all outpatient clinics combined. Considering the practical limit of 12 DIN of each WD machine,
it is assumed that 150 DIN of instrument sets arrive each day from the outpatient clinics. This number is the
same for both the WD machines and the autoclaves. The 150 DIN is split into smaller batches as can be seen
in Table 6.1. Again, a rough estimation is made for the setup time, which is consistent for each outpatient
clinic batch. The setup time of each batch is set to 7 minutes and 10 minutes for the WD machines and
autoclaves, respectively.

6.2. RESOURCES
The required resources to sterilize instrument sets are WD machines, autoclaves, and staff hours. The number
of employees available each day is an input parameter and will be discussed in Subsection 6.2.1. The different
types of WD machines and autoclaves are described in Subsection 6.2.2.

6.2.1. EMPLOYEES
The total employee costs are based on the salaries, the openings hours of the CSSD, and the amount of over-
time within the operational model. The gross salary per month of a CSSD employee at LUMC ranges between
e2700- e2900 based on a 36 hours work week. As there are additional costs related to employees, a rough
estimate of the salary ise27 per hour.

In addition to normal employee costs, there are allowances for working irregular hours. According to the
collective labor agreement (LOAZ [42]) for university medical centers, the following allowances apply for the
CSSD of LUMC:
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• 47% for hours on weekdays between 00 : 00 and 07 : 00, and after 20 : 00, as well as for hours on Saturday
between 00 : 00 and 08 : 00 and after 12 : 00.

• 72% for hours on Sundays or holidays.

The models presented in Chapters 4.1 and 5 only take into account the time in which an employee per-
forms the primary processes, which are ‘manually clean’ and ‘assemble and check’ instrument sets. As part
of the process will probably be automated in the future, time which is required for additional processes, such
as loading the machines and arranging carts, is not taken into account. Within all models, it is assumed that
during weekdays, 2 employees work on cleaning instrument sets and 4 employees work on assembling and
checking them. During the weekend, 1 employee works on cleaning the instrument sets and 1 employee
works on assembling them.

6.2.2. MACHINES

This section is based on the information retrieved from several suppliers, the report of Adank [1], and expert
judgement. The purchase costs regarding machines include the actual machine, pumping system, housing of
the machine and corresponding racks costs. Currently, the LUMC has only requested information on the pos-
sibilities from different suppliers, however, it is not yet decided which supplier and which specific machines.
Hence, it is difficult to compare the exact prices. Consequently, only the general ratio between the different
machines and employee costs is taken into account. The main focus is on the differences between machines
of different sizes. Table 6.2 shows an overview of the considered types of WD machines and autoclaves.

The current WD machines at the CSSD have a theoretical capacity of 15 DIN and, as stated in Adank
[1], cost e98.959 each. Hence, an amount of e106.667 is estimated for a WD machine with a capacity of
16 DIN. The considered machine sizes are all a multiplication of 4, so the increments in size between the
machine types is even. Multiple characteristics play a role when estimating prices of smaller machines. The
actual price of machines is in proportion with the number of DIN nets that can be processed. However, more
smaller machines could take up more space than fewer larger machines and require more maintenance and
complementary systems such as pumps. Thus, the price per DIN capacity increases as the machine gets
smaller. A factor of 1.1 is used, in other words, for each DIN of capacity within the largest machine, e6.666
is payed, and for each DIN within a size smaller, e6.666 · 1.1 =e7.2600 is payed. On top of the purchase
costs, maintenance costs of 15 % of the purchase costs per year are taken into account. For the maintenance
costs, there are preventive and corrective maintenance costs. The first is given as a maintenance contract
by the supplier and is known in advance. The second applies in case of a malfunction and is unknown in
advance. The amounts which are stated in the table are the total sums for a period of 10 years. Considering
a depreciation period of 10 years, the weekly depreciation rate is determined. Batch costs are taken into
account to ensure no unlimited batches while scheduling the jobs. However, this is subordinate to the choice
of machines and amount of opening time, hence a symbolic price is used. This price is scaled to the capacity
of the different machines. The current autoclaves at the CSSD have a theoretical capacity of 21 DIN (Adank
[1]), and coste204.411 each. The prices for the different types of autoclaves are calculated in a similar way as
for the WD machines.

The prices in both tables are presented as if they are accurate, however, this is purely based on estimates
and does not fully match real-life.

Set
Machine
type

Capacity
[DIN]

Process
time [min]

Price Maintenance
Depreciation
amount

Batch
cost

1 8 60 e64.533 e96.800 e307 e5
WD machines 2 12 60 e88.000 e132.000 e419 e7.5

3 16 60 e106.667 e160.000 e507 e10
1 12 90 e138.286 e207.428 e680 e6

Autoclaves 2 16 90 e167.619 e251.428 e824 e8
3 20 90 e190.476 e285.714 e936 e10

Table 6.2: Overview machine types
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6.3. SMALL INSTANCES
As the operational models are difficult to solve, artificial small data sets are used to test the behaviour of these
models. Even though instances based on data of the LUMC are created, the main purpose is to evaluate the
performance of the models. These data sets are created using all data of weekdays within the considered
time horizon. As the main focus is on scheduling the instrument sets from the OR, instrument sets arriving
from the outpatient clinics are not taken into account. Within the models, it does not matter which exact
instrument set is processed, as only three characteristics vary: the arrival time, the lead time, and the size
within the WD machines. Figure 6.5 shows the distribution for all three characteristics.

(a) Histogram lead times (b) Histogram release times (c) Bar chart sizes within WD machines

Figure 6.5: Graphs showing the distribution of the three main characteristics of instrument sets.

Given the three considered characteristics and their distribution, two methods to create data sets are
considered:

• Randomly select values for each of the three characteristics and combine these values to create an
arriving instrument set. For this approach, it has to be assumed that the characteristics are independent
from each other.

• Considering the release time as the most important characteristic, select arriving instrument sets from
the data such that the distribution for the release times is correct. With this method, the combination
of release time, lead time and size within the WD machines is preserved.

To check if the three characteristics are depended, three relations have to be checked: ‘release time -
size’, ‘lead time - size’, and ‘release time - lead time’. Figure 6.6 presents a stacked histogram of the arrival
times, with each different size indicated by a different color. In Appendix C, Figures C.1 and C.2 present the
histogram for each size separately. From the figures, it can be concluded that there are only minor differences
between different sizes. For example, for instrument sets of size 0.5 and 1.5 DIN, two peaks during the day
instead of one can be seen, and instrument sets of size 1.5 and 3.0 DIN are less likely to arrive during the night.
However, there are no significant differences, especially considering that sizes that show the most significant
differences are the least common sizes.

Figure 6.6: Stacked histogram of arrival times and the instrument set sizes in DIN.
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Next, Figure 6.7 presents a scatter plot showing the size of an instrument set plotted against the lead
time. Here, it is visible that there is a relation between the size of an instrument and the lead time, as only
certain combinations occur. For instrument sets with a size of 1.0 DIN, the lead times appears evenly spread,
however, for instrument sets of size 0.25, 0.5, 1.5 and 3.0 DIN, only certain lead times occur.

Figure 6.7: Scatter plot of size vs lead time.

Lastly, Figure 6.8 presents the relation between the arrival time and the lead time. Again there are some
minor differences, for example, instrument sets with a shorter lead time arrive more in the middle of the day.
Additional figures can be found in Appendix C.

Figure 6.8: Stacked histogram of arrival times and lead time intervals.

From the presented figures, the three characteristics are not independent. Consequently, to create small
data sets, arriving instrument sets have to be selected from the data set. The instrument sets which can be
selected are those arriving at weekdays between 07:00 and 21:00. First, the percentage of jobs within each
hourly time interval is determined. Next, considering the desired number of instrument sets for an instance,
the number of instrument sets arriving within each interval is determined using these percentages. Note that
in this way the distribution over the day remains the same for all instances of the same size. Next, for each
interval, the number of instrument sets is randomly drawn from all arrived instrument sets during that hour
on weekdays. After creating the instance, the distribution of the other two characteristics can be checked by
creating the histograms as shown in Figure 6.5. It turns out that the instances have similar characteristics
compared to the original data. In Appendix C, some additional figures of created instances are presented.
There is some variation between the instances based on the sizes and the lead times, however, the main
characteristics are preserved.



7
RESULTS

In this chapter, the computational results are presented. The results can be divided into three parts. First, in
Section 7.1, the performance of each model is discussed individually. After evaluating the performance of the
different models, in Section 7.2, the models are combined in a chain to explore the possibilities to construct
an heuristic to obtain practical solutions. In Section 7.3, the solutions are evaluated based on their practical
implications. Lastly, in Section 7.4, a concise summary of the findings of this chapter is stated.

All of the following results are obtained from models and algorithms coded in Python 3.6.11 and imple-
mented using PuLP 1.6.8, an open source LP modeller which can call several solvers, including CPLEX and
GUROBI, to solve integer linear problems. For this thesis, all problem instances are solved using the com-
mercial CPLEX 12.8 solver. The experiments are run on ‘The Distributed ASCI Supercomputer 5’ (DAS-5), a
six-cluster wide-area distributed system designed by the Advanced School for Computing and Imaging ([49],
[50]).

7.1. MODEL PERFORMANCE

The performance of the models is compared considering computation time, solution values, objective func-
tion value, and optimality gap. The computation time is measured in ticks, a unit to measure work done in a
deterministic way, as stated by IBM [41]. This time scale is chosen in order to compare experiments run on
different nodes of DAS-5. Even though instances based on data of the LUMC are used, the main focus of this
section is the performance of the models, instead of the practical solutions obtained for the LUMC.

First, the three models, strategic, tactical, and operational, are compared separately, in corresponding
order. Each subsection describes the parameters which can be changed in the corresponding model. First,
the results of the strategic model are stated. As already described in Chapter 6, both the strategic and tacti-
cal model are tested on three scenarios. The aim is to draw conclusions concerning the model performance
based on the results of these scenarios. However, they remain unique instances and it can occur that a con-
clusion based on these results does not hold in general.

To obtain better solutions, after initial experiments, the node logs of CPLEX were studied. A concise
overview of CPLEX and its parameter settings can be found in Section 3.2. In addition, for some models
and instances, it appeared that memory saving strategies were required to avoid memory errors. While solv-
ing a MILP, it often occurs that the node logs and memory tree become very large, as was the case for the
experiments run for this thesis. Taking into account that each node on the DAS-5 cluster has a limited de-
fault memory, the solution pool parameter and the maximum tree size have been used to limit the memory
requirements. The solution pool has been set to zero and the maximum tree size is set to 60.000 MB. As these
parameter settings could slightly alter the performance of the solver, it is explicitly stated when these settings
are used. Despite these parameter settings, a small number of experiments still resulted in memory errors.
For these experiments, the node log is used to evaluate the performance until the error occurred. In case the
actual solution is required, after an initial run, the experiment is run again with a higher tolerated relative
optimality gap.
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7.1.1. STRATEGIC MODEL
Within the strategic model, the parameter γ can influence the performance of the model. This parameter in-
dicates the fraction of time in which the machines can be used. In Table 7.1, the results are shown for different
values of γ. Figure 7.1 shows these results graphically. The results are depicted as a line graph to indicate a
trend, but can give a fall sense of linearity. This is due to the fact that the experiments are only done for
γ= 0.5, γ= 0.75, and γ= 1.0. The deterministic time limit is set to 3×107 ticks, which roughly corresponds
to a wall-clock time between 12 and 60 hours. Given the resulting optimality gap for all scenarios, it can be
concluded that, even though all tactical and operational decisions are eliminated from the model, the prob-
lem instances are still difficult to solve. In addition, the model becomes more difficult to solve as γ becomes
smaller. A higher value for γ can also be described as a higher price for opening time. Looking at the obtained
solutions, it can be seen that for smaller values for γ, more machines are purchased and the opening time
decreases. More machines mean there are more scheduling options which can explain the extra difficulty
for a smaller γ value. In addition, it appears that especially the lower bound is worse in case of a smaller γ.
Assuming that the objective function value becomes larger for a smaller γ, the lower bound only slightly or
does not increases for a smaller γ. It can be said that the optimal solution for the instances with a higher
value of γ represent a lower bound for the instances with a lower value of γ. Furthermore, from the results, it
appears that for higher values of γ, 0.75 and 1.0, the optimality gap is similar for all scenarios. In other words,
the number of arriving instrument sets and the distribution over the week does not significantly influence the
difficulty of solving the instance. In contrast, for γ= 0.5, the optimality gap for scenario ‘Week 15’ is slightly
larger than for scenario ‘Week 43’, and more clearly, the optimality gap for scenario ‘Week 22’ is much larger.
This can be caused by the particular instance or can be connected to the inconsistent distribution of arriving
instrument sets during that week.

Instance γ
Objective function
value [e]

Lower bound [e][%] Optimality gap [%]

0.5 20199 8910 55.9
Week 15 0.75 16681 8665 48.1

1.0 14942 9011 39.7
0.5 28199 7374 73.8

Week 22 0.75 14887 7805 47.6
1.0 12593 7497 40.5
0.5 17473 8129 53.5

Week 43 0.75 13809 7258 47.4
1.0 12175 7312 39.9

Table 7.1: Results strategic model for different values of γ, with a deterministic time limit of 3×107 ticks.

Figure 7.1: Results strategic model for different values of γ, with a deterministic time limit of 3×107 ticks.

After the first experiments, the aim is to improve the obtained solution and decrease the optimality gap
by parameter tuning. After studying the node logs, the following findings can be listed:
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• The best node improves slowly, which might indicate that the best integer solution is a relatively good
solution, but that the algorithm has difficulties proving this. Parameters that could influence this be-
haviour are strong branching, probing and the emphasis of the algorithm.

• The algorithm spends a lot of time on the calculation of the root node. The algorithm quickly calculates
the root relaxation, however, spends a lot of time at node 0. This behaviour is worse as the instance is
larger or γ is smaller. Although, as stated by IBM [41], the computation at node 0 normally saves time in
the overall branch & cut, two parameters can be tuned to decrease the time spent on the computation
of node 0. First, the heuristic can be turned off for node 0, and, secondly, a less expensive variable
selection strategy can be chosen, for example pseudo reduced costs.

• For some instances, the average node LP iteration count is more than 30%–50% of the root node it-
eration count. This is known as lack of node throughput (Klotz and Newman [51]) for which there are
opportunities to improve solving a node by changing parameter settings. An example is a less expensive
variable selection strategy, for example pseudo reduced costs.

The findings stated above sometimes require opposite solution approaches. The parameter settings which
are considered are ‘Strong branching’, ‘Probing’, ‘Aggressive cuts generation’, ‘Emphasis’, ‘Heuristic node 0’,
and ‘Pseudo reduced costs’. These parameters are shortly described in Section 3.2. To start, a parameter set-
ting was only implemented for one value of γ. These decisions were based on which instance showed the
behaviour, as listed above, the most. The most promising parameters were tested for each value of γ, which
are ‘Strong branching’, ‘Probing’ and ‘Pseudo reduced costs’. In Table D.1, all results for each parameter set-
ting, γ, and scenario are stated. The performance is compared to the default parameter setting of CPLEX. In
Figure 7.2, the results are shown graphically. Note, again, the lines represent a trend and there is no proven
linearity between the points in the graph. It can be seen that the parameter setting ‘Pseudo reduced costs’
decreases the optimality gap for almost all of the instances. On the other hand, the performance of the pa-
rameter settings ‘Strong branching’ and ‘Probing’ differs for the scenarios and values of γ. A parameter setting
can be useful for a certain instance, but no general conclusions can be drawn.

Using Table D.1, more precisely, the objective function values and lower bounds, it can be seen that a
combination of multiple runs can be useful. For example, scenario ‘Week 15’ and ‘Week 43’, with γ = 1.0,
the highest lower bound is obtained using the ‘Pseudo reduced costs’ parameter, while the lowest objective
function value is obtained using the ‘Probing’ parameter. For scenario ‘Week 43’, the optimality gap then
becomes 11607−9658

11607 = 16.8%.
Apart from attempting to improve the solution quality by parameter tuning, several experiments are con-

ducted to explore which properties of the instances influence the solution quality. These experiments are
only conducted for γ= 1.0 to show a proof of concept. The following experiments are conducted:

• Adding constraints to restrict the maximum number of jobs at one stage during a day. Although these
constraints could eliminate integer feasible solutions from the solution space, it is highly unlikely that
more than 300 instrument sets are processed at any of the two stages during one day in an optimal
solution. Hence, Constraints (7.1) are added to restrict the maximum number of jobs processed at a
stage on one day. ∑

i∈I
Y j

i d ≤ 300 ∀ j ∈ J , ∀d ∈ D (7.1)

• Decreasing the size of the input machine set, by considering a set of 16 machines instead of a set of 25
machines.

• Shorter or longer lead times, by, for example, setting all lead times above 1440 to 1440 minutes. For
the strategic model, this means that all instruments sets have to be processed on the day of arrival or
the day after. On the contrary, all lead times can be set to 4320 minutes, the maximum duration at the
CSSD for each instrument set.

• Adding symmetry breaking constraints, since the model formulation in combination with the set of
multiple machines of the same type, leads to a large number of symmetric solutions, which could cause
a large computation time (van Essen [52]). For any solution in which two machines of the same type
are purchased, an equivalent solution can be constructed by switching jobs processed on the same
day between machines. To overcome this, the set T is introduced, which contains all the machine
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(a) Week 15 (b) Week 22

(c) Week 43

Figure 7.2: Results strategic model for different CPLEX parameter settings and different values of γ, with a
deterministic time limit of 3×107 ticks.

types. A subset H j
t ⊂ H j is introduced, which indicates the set of machines at stage j ∈ J of type t ∈ T .

Constraints (7.2) ensure that for each machine type t ∈ T , the number of assigned jobs to a machines

h ∈ H j
t decreases as the index of the machine increases.∑

i∈I
S j

i (h−1) ≥
∑
i∈I

S j
i h ∀h ∈ H j

t , ∀t ∈ T , ∀ j ∈ J (7.2)

Table 7.2 shows the results for each adjustment stated in the column ‘Indicator’. It can be concluded that
each adjustment decreases the difficulty of the problem as the optimality gap becomes smaller. Hence, a
larger input set of machines and long lead times increase the difficulty to solve an instance. The addition
of constraints that restrict the number of jobs is a promising option, as this does not change the practical
solution and both the optimality gap and the objective function value decrease. Adding symmetry break-
ing constraints only leads to better results for scenario ‘Week 43’, however, the effect could increase if more
machines of the same type are purchased. This could occur for lower values of γ.

Lastly, fixed opening hours or machines are considered to examine which decisions cause the difficulty
in the model. Two fixed settings are chosen, opening time and machine purchases. The fixed variables are
based on preliminary results that showed promising behaviour. The opening time is fixed to 360 minutes
during week days and 240 minutes during weekend days. The purchased machines are 4 WD machines of 16
DIN capacity, and 4 autoclaves of 20 DIN capacity.

The results of the experiments with fixed variables are shown in Table 7.3. It can be seen that the problem
can be solved up to relatively small optimality gaps. Note that the experiment with scenario ‘Week 15’ was
infeasible with the considered fixed opening time. This is probably due to the total time required for the setup
processes. It appears that finding the balance between the amount of opening time and the number and
type of machines causes the difficulty to solve the model. The purchase of machines appears to be the most
difficult choice, based on the slightly larger optimality gaps. Furthermore, it appears that the fixed number of
machines is too many as the experiments with a fixed amount of opening time show lower objective function
values.
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Instance Indicator
Objective function
value [e]

Optimality gap [%] Lower bound [e]

Default 14942 39.7 9011
Symmetry 14490 38.2 8962

Week 15 Restrict jobs 13635 36.6 8650
Short lead times 14450 39.2 8779
Long lead times 95864 91.3 8373
Less machines 13088 28.6 9341
Default 12593 40.5 7497
Symmetry 12836 41.1 7567

Week 22 Restrict jobs 12029 39.0 7334
Short lead times 12073 34.0 7964
Long lead times 13439 46.3 7223
Less machines 12094 31.8 8251
Default 12175 40.0 7312
Symmetry 11788 31.3 8089

Week 43 Restrict jobs 12293 41.1 7239
Short lead times 11876 32.5 8013
Long lead times 12494 47.4 6569
Less machines 12319 34.6 8056

Table 7.2: Results strategic model for different adjustments as noted in the column ‘Indicator’, with γ = 1.0,
and a deterministic time limit of 3×107 ticks.

Fixed variables instance
Objective function
value [e]

Optimality gap [%] Lower bound [e]

Week 15 15255 2.7 14851
Machines Week 22 13903 0.2 13880

Week 43 13506 0.1 13495
Week 15 * * *

Opening time Week 22 13829 2.2 13518
Week 43 12998 1.2 12848

Table 7.3: Result strategic model with fixed variables determining the purchase of machines and the amount
of opening time, with γ= 0.75, and a deterministic time limit of 3×107 ticks.

7.1.2. TACTICAL MODEL

The tactical model is an extension of the strategic model which takes into account day parts instead of full
days. Besides γ, the number of day parts can influence the performance of the model. The main difference
with the strategic model is the addition of extra constraints regarding opening hours in case the number
of day parts is greater than or equal to 3. These constraints ensure that there are continuous opening hours
during the day. To evaluate the model performance, each scenario is run with varying values forγ and number
of day parts. In Table 7.4, the results for all scenarios are given for a varying values of γ, and in Table 7.5, the
results are given for a varying number of day parts. The number of day parts ranges between 2 and 4. In
addition, the results for different values of γ are graphically shown in Figure 7.3. Note that the tactical model
with only one day part is exactly the same as the strategic model.

As can be seen in Table 7.4, the optimality gaps are large. Again, it appears that an instance is easier to
solve as γ increases. However, scenario ‘Week 15’ shows a small increase in the optimality gap for γ = 1.0,
which makes this statement less conclusive. Furthermore, the objective function values are much higher in
comparison to the strategic model. Looking at the obtained solutions, it turns out that the model chooses
to purchase all available machines, which leads to a high objective function value. It can be concluded that
both the lower bound and the objective function value are not near the optimal solution. Looking at the node
logs, the algorithm stays a long time on node 0, and does not iterate over many other nodes. The parameter
setting ‘Pseudo reduced costs’ did not significantly change this behaviour.
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Instance Gamma Day parts
Objective function
value [e]

Lower bound [e] Optimality gap [%]

0.5 2 25710 7984 68.9
Week 15 0.75 2 22861 8079 64.7

1.0 2 23299 8035 65.5
0.5 2 23789 7003 70.6

Week 22 0.75 2 20447 7018 65.7
1.0 2 18679 7015 62.4
0.5 2 19558 6604 66.2

Week 43 0.75 2 17210 6524 62.1
1.0 2 14127 6756 52.2

Table 7.4: Results tactical model for different values of γ, with 2 day parts, and a deterministic time limit of
3×107 ticks.

Instance Gamma Day parts
Objective function
value [e]

Lower bound [e] Optimality gap [%]

0.75 2 22861 8079 64.7
Week 15 0.75 3 26857 12060 55.1

0.75 4 25422 13830 45.6
0.75 2 20447 7018 65.7

Week 22 0.75 3 28956 10866 62.5
0.75 4 28387 15606 45.0
0.75 2 17210 6524 62.1

Week 43 0.75 3 19558 11732 40.0
0.75 4 28697 15967 44.4

Table 7.5: Results tactical model for different number of day parts, with γ = 0.75, and a deterministic time
limit of 3×107 ticks.

Figure 7.3: Results tactical model for different values for γ, with 2 day parts, and a deterministic time limit of
3×107 ticks.

Looking at Table 7.5, surprisingly, the optimality gap become smaller as the number of day parts increases.
It was assumed that the problem would become more difficult as more day parts are taken into account. On
the other hand, the problem is more restrained in case of more day parts. As can be seen from the results of the
strategic model, when the opening hours are fixed, the problem is easier to solve. The additional constraints
to ensure continuous opening hours could have similar effects. Taking into account the resemblance to the
strategic model and due to time limitations, no further parameter settings or adjustments were tested for the
tactical model.
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7.1.3. OPERATIONAL MODELS
As already noted in Section 5.3, the operational model is difficult to solve for large instances. In this section,
the computational results are shown to support this statement. As the instances of these models are difficult
to solve, smaller instances, as described in Section 6.3, are used. The parameters that can influence the
difficulty of the model are: model type, number of employees at each stage, the size of the machine set and the
number of arriving jobs. The model type corresponds to the two-stage and four-stage flow shop formulation
in Section 4.1 and Subsection 5.3.1, respectively. To enhance the readability of the tables, two-stage and
four-stage are indicated by ‘2-stage’ and ‘4-stage’. For the experiments, the size of the machine set is chosen
based on the number of arriving sets. An instance with 15 arriving sets will obviously not use more than one
machine at each stage. Hence, the machine set is kept very small. The different machines sets are called,
‘Small’, ‘Medium’, and ‘Big’, with 1, 2, and 3 machines of each type, respectively.

Preliminary results showed significant differences between instances with the same number of arriving
instrument sets. Consequently, for each number of arriving instrument sets, five different instances were cre-
ated. Table 7.6 shows a first overview of the results of experiments in which the model type and the number of
employees is varied for instances with 15 arriving instrument sets. The column employees states the number
of employees at stage 1 and stage 2, respectively.

Model type Instance # Employees
Objective function
value [e]

Optimality gap [%]
Deterministic time
[ticks]

2-stage 1 1,1 702 0 26807
2-stage 1 2,2 1198 0 5288
4-stage 1 1,1 685 0 14539
4-stage 1 2,2 1192 0 23127
2-stage 2 1,1 501 6.6 30063133
2-stage 2 2,2 733 3.6 30149279
4-stage 2 1,1 459 8.4 30155511
4-stage 2 2,2 721 9.0 30006198
2-stage 3 1,1 551 0 4098623
2-stage 3 2,2 871 0 5135913
4-stage 3 1,1 525 1.8 30079568
4-stage 3 2,2 852 1.3 30022109
2-stage 4 1,1 661 0 667232
2-stage 4 2,2 1089 0 553228
4-stage 4 1,1 636 0 482315
4-stage 4 2,2 1074 0.5 30006252
2-stage 5 1,1 647 0 1505111
2-stage 5 2,2 1065 0 53306
4-stage 5 1,1 629 0 54109
4-stage 5 2,2 1060 0 5045918

Table 7.6: Results operational model for different model types and number of employees, with 15 arriving
instrument sets, and a deterministic time limit of 3×107 ticks.

Based on the results and looking more closely to the instances, the following preliminary conclusions can
be drawn:

• There are significant differences between the different instances. For example, instance 1 is quickly
solved, while on the contrary, even after running up to 15 hours, instance 2 cannot be solved to opti-
mality. After evaluating the instances, it appears that the occurrence of instrument sets at the start of
the day with a short lead time reduces the difficulty of the model. On the other hand, when the arriving
instrument sets at the start of the day have a long lead time, the model is difficult to solve, which is
the case for instance 2. This makes sense as the possible opening times are more restricted in case of
instrument sets with short lead times at the start of the day. Note, the hypothesis is that differences
between instances will decrease as the number of arriving sets is higher. In that case, the distribution
of the different lead times is more evenly spread.

• In general, the two-stage model appears to perform better than the four-stage model. Looking at the
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optimality gaps, the results of the two-stage model are better or equal compared to the four-stage
model. The number of ticks needed to obtain an optimal solution gives a more nuanced picture. Look-
ing at the instances solved to optimality, in the case of 1 employee at each stage, the four-stage model
requires less ticks than the two-stage model. In case of 2 employees at each stage, the opposite is valid.
Surprisingly, with the two-stage model, the instances with 2 employees at each stage appear easier to
solve than the instances with 1 employee at each stage.

• The differences in objective function values for the model types are relatively small. Consequently, the
four-stage model gives a lower objective function value, which makes sense taking into consideration
the overestimation of the batch setup time by the two-stage model. It appears that the best integer
solution is relatively good for both models, even though there is an optimality gap.

Table D.2 shows the results for larger instances of 15, 25 and 50 arriving instrument sets. The column
‘Instance’ states the instance, which is written as ‘number of arriving instrument sets - instance number’.
The column ‘Input resources’ states the set of machines which is used. As can be seen in the table, for small
instances, a set of only 6 machines is used, and for larger instances, a set of 12 machines is used. As most of
the larger instances are not solved to optimality, the number of ticks is not shown. Note, all instances with
size 25 and up are run with the memory saving parameter setting.

In Figures 7.4 and 7.5, the results are depicted using a scatter plot with a thin line to show the trend. Note
that this line has no meaning and is added solely for readability of the graph. The numbers on the x-axis
indicate the number of arriving instrument sets and the instance number, 1 to 5. Looking at the results, it can
be seen that the earlier statements about the instances of size 15 do not all hold for larger instances.

Figure 7.4: Results operational model for different model types and a varying number of arriving instrument
sets, with 2 employees at each stage, a deterministic time limit of 3×107 ticks, and memory save parameter

setting for instances equal or larger than 25.

As can be seen in the figures, the difficulty of the instances increases with the number of arriving instru-
ment sets. The objective function value for both model types remain similar up to instance ‘50-1’, after which
the differences get more significant. Considering the optimality gaps, the two-stage model outperforms the
four-stage model. However, up to instance ‘50-1’, the four-stage reports a lower objective function value. This
is due to the model formulation, but also shows that the quality of the solutions from the four-stage model
are quite good despite the often higher optimality gap than the two-stage model. Given the differences in
objective function value, there is less certainty about the quality of the best found integer solution for the
instances with 50 arriving instrument sets. In general, the two-stage model reports a lower objective function
value and optimality gap.

Next, the performance of the models is tested for a period of 3 days to show the assignment of instrument
sets to days. In Table D.3, the results are listed for instances with different number of arriving instrument sets.
In Figure 7.6, these results are shown graphically. It can be seen that, for the smallest instances, the two-stage
model outperforms the four-stage model. However, for instances with a total of 25 arriving instrument sets,
the four-stage model consistently outperforms the two-stage model.
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Figure 7.5: Results operational model for different model types and a varying number of arriving instrument
sets, with 2 employees at each stage, a deterministic time limit of 3×107 ticks, and memory save parameter

setting for instances equal or larger than 25.

Figure 7.6: Results operational model for different model types and different numbers of arriving instrument
sets during three days, with 2 employees at each stage, a deterministic time limit of 3×107 ticks, and

memory save parameter setting.

Apart from exploring the performance of the models using different instances, some additional options to
enhance the performance were tested for several instances. The number of instances for which these options
are tested are limited due to time constraints.

• Restrict choice of batch completion time, in the models, the batch completion time can take any value
when the batch is not assigned to a machine. Hence, there is a large number of similar solutions. Addi-
tional constraints can be added to set batch completion times to zero when they are not assigned to a
machine. In this way, these similar solutions are eliminated from the solution space. Constraints (7.3)
are added to set the batch completion time to zero in case the batch is not assigned to a machine. The
addition of these constraints is tested for instances ‘50-1’ and ‘50-2’.

t j
bh ≤ M Z j

bh ∀b ∈ B , ∀h ∈ H j , ∀ j ∈ J (7.3)

• After studying the node logs, and based on earlier results, parameter settings ‘Pseudo reduced costs’
and ‘Probing’ are used. It appears that the found solutions are quite good, hence, using the param-
eter setting ‘Probing’ could provide a better lower bound. On the other hand, the parameter setting
‘Pseudo reduced costs’ could increase the number of explored nodes in the branch-and-cut algorithm
and improve the found solution. The addition of these constraints was tested for instance ‘50-1’.
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In Table 7.7, the results are shown for both instances and the batch time constraints. These results have
to be compared with the results in Table D.2. For both instances, the two-stage model performs worse with
addition of the batch completion constraints. Both the optimality gap and the objective function value is
worse in comparison to the experiments as denoted in Table D.2. For the four-stage model the addition of the
constraints appears beneficial. The optimality gap and the objective function value become smaller.

Model type Instance
Objective function
value [e]

Optimality gap [%] Lower Bound [e]

2-stage 50-1 1523 10.4 1364
4-stage 50-1 1408 5.2 1335
2-stage 50-2 1293 9.3 1172
4-stage 50-2 1279 10.5 1145
2-stage 50-2 1341 12.3 1180

Table 7.7: Results operational model for different model types and instances ‘50-1’ and ‘50-2’, with Con-
straints (7.3), with 2 employees at each stage, a deterministic time limit of 3×107 ticks, and memory save
parameter setting.

Model type Instance Indicator
Objective function
value [e]

Optimality gap [%] Lower Bound [e]

2-stage 50-1 Probing 1528 17.0 1268
4-stage 50-1 Probing 1536 13.3 1331
2-stage 50-1 Pseudo costs 1478 12.1 1300
4-stage 50-1 Pseudo costs 1444 7.7 1333

Table 7.8: Results operational model for different model types and instance ‘50-1’, with 2 employees at each
stage, a deterministic time limit of 3×107 ticks, and memory save parameter setting.

In Table 7.8, the results for instance ‘50-1’ with parameter settings ‘Pseudo reduced costs’ and ‘Probing’ is
shown. These results have to be compared with the results in Table D.2. The parameter setting do not appear
to be beneficial. Only the four-stage model with the parameter setting ‘Probing’ shows a lower objective func-
tion value and optimality gap in comparison to the default settings. Further research is required to investigate
the influence of these parameter settings.

7.2. HEURISTIC APPROACHES
To improve the solution quality, the possibilities to form a chain of the models are explored. Solutions from
one model can be used as input for a model on another hierarchical level. In Section 7.1, the focus was on
evaluating the performance of the model, while in this section the actual solutions are discussed. It intro-
duces the possibilities to use a chain of the models with the aim of finding practical solutions. By using a
chain and decomposing the problem, the solution will differ from the theoretical optimal value. However,
it could save computation time and yield practical solutions. In this section, all experiments are conducted
using γ = 0.75 and 3 day parts for the strategic and tactical model. These parameters are chosen as they re-
semble real-life and are sufficient to prove the concept of a chain. In future research, additional parameter
settings can be tested.

First, the solutions of the strategic model are evaluated as they can act as a starting solution for a chain.
Table 7.9 presents a set of three solutions obtained from the experiments conducted in Subsection 7.1.1 with
the lowest objective function values. Solution 4 is a manually devised solution, in addition to the solutions
obtained from the strategic model. Multiple solutions are considered as the optimality gaps were large and
no guarantees about the solution quality can be given. These solutions are from scenario ‘Week 15’. The
solutions of scenario ‘Week 15’ are chosen as it is certain that these are feasible for all other scenarios. More-
over, if the solutions of scenario ‘Week 22’ and ‘Week 43’ would be used, it is almost certain it would lead to
infeasibilities for scenario ‘Week 15’.

As can be seen in Table 7.9, the number and type of machines that are purchased fluctuate per solution.
It appears that the decision which type of machine has to be purchased is not optimized yet. This can be
explained by the large optimality gaps as presented in Section 7.1. By calculating the total capacity [DIN]
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Resources Part Solution 1 Solution 2 Solution 3 Solution 4
Opening time Week 400 400 480 -

Weekend 345 240 480 -
Machines WD machine (8 DIN) 2 1 1 0

WD machine (12 DIN) 5 0 0 0
WD machine (16 DIN) 0 4 4 4
Autoclave (12 DIN) 0 4 4 0
Autoclave (16 DIN) 1 1 0 0
Autoclave (20 DIN) 4 2 2 4

Total capacity [DIN] WD machines 76 72 72 64
Autoclaves 96 104 88 80

Table 7.9: Set of best solutions retrieved from the strategic model, scenario ‘Week 15’ and γ= 0.75.

of the machines at each stage, the solutions appear more consistent. It can be seen that the second stage
requires more capacity, probably due to the longer process time.

Given the results from the strategic problem, the number and type of required machines can be used as
input for the tactical model. Table 7.10 shows the results of the tactical model where the number and type
of machines is fixed according to the solutions presented in Table 7.9. In Table 7.10, the column ‘Indicator’
shows which solution is used. In comparison to earlier results, the quality of the solution is significantly bet-
ter, as the optimality gaps are relatively small. For the larger scenarios; ‘Week 15’ and ‘Week 22’, the objective
function value decreases and the lower bound increases significantly in comparison to the values stated in
Table 7.5. For the smaller scenario, ‘Week 43’, the decrease in objective function value is less obvious and
mostly the lower bound is improved. Furthermore, it can be noted that the amount of opening time only
slightly changes given the fixed number and type of machines. It appears that this amount are mainly deter-
mined by the spread of release times in combination with short lead times.

Instance Indicator
Objective function
value [e]

Optimality
gap [%]

Lower
bound [e]

Opening time
week [min]

Opening time
weekend [min]

fixed1 * 21366 1.3 21088 720 720
Week 15 fixed2 21825 2.6 21253 720 720

fixed3 21006 2.5 20477 720 720
fixed4 19848 0.1 19827 720 720
fixed1 19838 0.3 19777 720 260

Week 22 fixed2 20345 0.4 20271 720 280
fixed3 19479 0.1 19451 720 270
fixed4 18388 0.2 18343 720 290
fixed1 19574 0.2 19533 720 250

Week 43 fixed2 20058 4.7 19120 720 260
fixed3 19258 3.3 18627 720 265
fixed4 18145 0.2 18110 720 280

* Out of memory error, results obtained by setting a higher relative optimality gap

Table 7.10: Solutions tactical model where the number and type of machines is fixed according to the solu-
tions as presented in Table 7.9, for different scenarios, with γ= 0.75, a deterministic time limit of 3×107 ticks,
and memory save parameter setting. *Set optimality gap.

After evaluating the first results, the question arises if the solutions can be improved further. Considering
the increase in amount of opening time in comparison to the strategic model, the number of fixed machines
is likely too high. Hence, it appears that the solutions which are obtained from the experiments with fixed
machines can be improved. The solutions of the experiments with indicator ‘fixed1’ and ‘fixed4’ have the
lowest objective function values, these are selected for further experiments. These solutions are used as a
start solution for each scenario. In this case, the number and type of machines are not fixed, but only given as
a start solution. By giving a relatively good start solution, the solution search space is decreased. It turns out
the objective function value only slightly improves or remains the same and also no better lower bound was
found. Even considering parameter settings ‘Pseudo reduced costs’ and ‘Probing’ did not help. The results
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can be found in Table D.4 in the appendix. The column ‘Indicator’ states which solutions are used as start
solution, indicated as ‘read1’ for ‘fixed1’, and the parameter setting if applicable.

The main difference between the tactical and strategic model is the resulting amount of opening time.
In comparison to reality, the amount of opening time from the strategic problem is very short. Currently,
the CSSD is open for 16 hours during week days and 4 hours during weekend days. The amount of opening
time which is shown in Table 7.9 are in that sense unrealistic. The opening time is more expensive than
the purchase of machines, and thus the strategic model chooses to purchase more machines and limit the
amount of opening time. In reality this amount is not feasible due to the inconsistent arrival of instrument
sets in combination with short lead times. A higher value for γ can be considered, however, this actually
results in a further increase in costs for the amount opening time and thus in a higher number of machines.
This hypothesis is confirmed looking at the solutions for lower values of γ. To strengthen this statement, the
addition of extra constraints to ensure a minimum amount of opening time is considered. Constraints (7.4)
and (7.5) ensure a minimum of 12 opening hours during weekdays, and 6 opening hours during weekend
days.

od ≥ 720 ∀d ∈ {1,2,3,4,5} ⊂ D (7.4)

od ≥ 360 ∀d ∈ {6,7} ⊂ D (7.5)

The results for each scenario with these additional constraints can be found in Table 7.11. First, the small
optimality gaps have to be denoted. By adding a restriction for the opening time, the instances become easier
to solve. These results match with the earlier findings with fixed opening times. To compare the results to the
solutions stated in Table 7.9, the sum of the capacity of the WD machines and autoclaves is calculated. The
required capacity is almost half of the capacity as stated in Table 7.9, which makes sense, as the amount of
opening time is almost doubled. It can be concluded that the addition of the constraints to ensure a minimum
amount of opening time are beneficial to obtain a practical solution.

Instance
Objective function
value [e]

Optimality
gap [%]

Lower
bound [e]

Total capacity
WD machines [DIN]

Total capacity
autoclaves [DIN]

Week 15 16515 5.2 15649 44 48
Week 22 16523 8.6 15097 40 52
Week 43 15088 0.8 14967 32 40

Table 7.11: Result strategic model with a minimum amount of opening time, γ = 0.75, a deterministic time
limit of 3×107 ticks, and memory save parameter setting.

To evaluate the results of the strategic model with a minimum amount of opening time, the number and
type of machines are used as input for tactical model. Within these experiments, the number and type of
machines is, again, determined from scenario ‘Week 15’. Hence, the other scenarios are evaluated using this
solution. Table 7.12 shows the results for all scenarios with fixed machines based on the results of the strategic
problem with a minimum amount of opening time. The small optimality gaps indicate a good solution and
objective function value is the smallest of all experiments of the tactical model until now. It appears that the
addition of the minimum amount of opening time and the chain structure yields practical solutions.

Instance
Objective function
value [e]

Optimality
gap [%]

Lower
bound [e]

Opening time
week [min]

Opening time
weekend [min]

Week 15 17928 0.04 17925 720 720
Week 22 16626 0.02 16622 720 360
Week 43 16456 0.0 16456 720 360

Table 7.12: Result tactical model with fixed machines based on the results of ‘Week 15’ in Table 7.11, for all
scenarios, with γ= 0.75, a deterministic time limit of 3×107 ticks, and memory save parameter setting.

To strengthen the conclusions above, figure 7.7 shows a stacked bar chart of the resulting costs for several
experiments. In this figure, the results of the strategic model, the strategic model with a minimum amount
of opening time, and the tactical model with fixed machines. The first three bars represent the results of
the strategic model with pseudo reduced costs. The next three bars represent the results of the strategic
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model with a minimum amount of opening time. The last three bars represent the results from the tactical
model witch fixed machines based on the results from the strategic model, scenario ‘Week 15’ and a mini-
mum amount of opening time. The figure shows that for the strategic model without a minimum amount of
opening time, the total costs of machines and the total costs of employee hours are about the same amount.
As expected, the model tries to balance these costs. In case of a minimum amount of opening time, the ratio
changes and the total costs for employee hours are normative. A similar ratio can be seen for the tactical prob-
lem in which the machines are fixed based on the strategic model with a minimum amount of opening time.
It can also be seen that the total costs of machines decreases as the amount of opening time increases. The
total batch costs remain similar for all experiments. Lastly, the total costs for irregular hours are very small as
no irregular hours during week days were required, and only two employees work during the weekend.

Figure 7.7: Resulting costs from instances as indicated on the x-axis.

Finally, the last step of the chain is the operational models. There are multiple variables within the op-
erational models which can be fixed based on the results of the strategic and tactical model. First, instances
with fixed machines and a fixed opening time are tried separately for instances ‘50-1’ and ‘50-2’. Table 7.13
shows the results of these experiments. The column ‘Indicator’ states which set of variables is fixed from the
list below. The fixed machines are one WD machine with a capacity of 8 DIN, one autoclave of capacity 12
DIN, and the fixed opening time and closing time is 750 minutes and 1350 minutes for instance ‘50-1’, and
700 minutes and 1350 minutes for instance‘50-2’. These numbers are determined from earlier experiments
These times indicate the time after midnight.

• Fixed 1: fixed machines and fixed opening and closing time

• Fixed 2: fixed machines

• Fixed 3: fixed opening and closing time

The results show that for the operational models, the case in which the the opening and closing time have
to be determined is the most difficult. In all cases the instances with the indicator ‘fixed2’, the optimality
gaps are large. Furthermore, the case in which the opening and closing time are fixed, the model provides a
good solution and the lowest optimality gaps. These results show that the operational model can be used in a
chain with a fixed opening and closing time, and fixed machines according to the results of the strategic and
tactical model. The operational models can serve as verification of the scheduling of the instrument sets by
the strategic and tactical model.

As a proof of concept, three day parts of a solved tactical instance are considered. Based on each day part,
a new instance is created. The results of scenario ‘Week 22’ are used, as at the time, this instance yielded the
best results. To avoid the start of the model, day parts 4, 5, and 6 (Tuesday) are considered.

The selected instrument sets for each instance, are the instrument sets assigned to that day part by the
tactical model. As the two stages can be processed during different day parts, not all instrument sets have to
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Model type Instance Indicator
Objective function
value [e]

Optimality gap [ %] Lower bound [e]

2-stage 50-1 default 1478 7.5 1367
2-stage 50-1 fixed 1 1509 0.9 1496
2-stage 50-1 fixed 2 1464 6.6 1367
2-stage 50-1 fixed 3 1509 0.9 1496
4-stage 50-1 default 1474 9.3 1341
4-stage 50-1 fixed 1 1503 0.5 1495
4-stage 50-1 fixed 2 1435 4.7 1367
4-stage 50-1 fixed 3 1502 2.9 1460
2-stage 50-2 default 1296 8.6 1185
2-stage 50-2 fixed 1 1421 0.9 1408
2-stage 50-2 fixed 2 1414 16.3 1184
2-stage 50-2 fixed 3 1419 0.8 1408
4-stage 50-2 default 1384 17.3 1144
4-stage 50-2 fixed 1 1418 0.7 1408
4-stage 50-2 fixed 2 1376 14.0 1184
4-stage 50-2 fixed 3 1529 9.1 1390

Table 7.13: Results operational model for different model types, instances ‘50-1’ and ‘50-2’, with fixed vari-
ables, a deterministic time limit of 3×107 ticks, and memory save parameter setting.

be processed on both staged during the considered day part. As the model as proposed in Chapter 4.1 does
not take this possibility into account, the data is slightly altered. When an instrument set is only processed
at the first stage, the size at the second stage is set to zero. When an instrument set is only processed at the
second stage, the size at the first stage is set to zero. As the instrument sets for which these modifications
are required do not represent outliers in terms of release time, this choice appears to be reasonable. In Table
7.14, the results are shown. The first three columns indicate the day part, the times of that day part, and
the considered opening and closing time obtained from the tactical model. The third column indicates the
number of instrument sets that have to be processed at each stage. Instrument sets that have to be processed
on both stages are also summed individually to obtain these results. The results are the overtime and the
optimality gap. The optimality gap is small considering the number of instrument sets within each instance.
Note that the first day part is infeasible due to an instrument set arriving in the night, which has to be sterilized
within 6 hours. The second and third day part are feasible, however show the occurrence of overtime due to
instrument sets arriving just before the end of a day part.

Based on the small optimality gaps it can be concluded that the operational model can be used as a veri-
fication. However, the model should be altered to enable jobs which only have to be processed at one stage,
and a workaround for jobs arriving just before the end of a day part has to be found.

Day part Time
Opening -
closing time

# assigned
instrument sets
stage 1

# assigned
instrument sets
stage 2

Over time
[min]

Optimality
gap [%]

1 00:00 - 08:00 06:00 - 08:00 48 27 * *
2 08:00 - 16:00 08:00 - 16:00 115 73 149.25 3.5
3 16:00 - 00:00 16:00 - 18:00 36 47 166 2.6
* Infeasible

Table 7.14: Results operational model with fixed instrument assignment, and a deterministic time limit of
3×107ticks, and memory save parameter setting.
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7.3. SOLUTION CHARACTERISTICS

In addition to the analysis of the solutions based on the variables which directly impact the objective function
value, in this section, the actual scheduling of instrument sets is considered. The aim is to show the number
of instrument sets which are assigned to days or day parts. The results are shown for scenario ‘Week 15’. As
an instrument set has different sizes at stages one and two, the arrival data is plotted for both sizes. The
sizes are indicated in terms of DIN baskets. First, the results from the strategic model are presented. Figures
7.8a and 7.8b show the number of DIN baskets arriving each day, and the number of DIN baskets processed,
at stage one. Figures 7.8c and 7.8d show the number of DIN baskets arriving each day, and the number of
DIN baskets processed, at stage two. The figures show that the instrument sets are evenly processed over the
week. A significant number of the instrument sets are processed on Saturday. The number of instrument sets
originating from the outpatient clinics is especially noticeable. This can be explained by the fact that there
are only two employees present at the CSSD on Saturday, and the setup time for instrument sets from the
outpatient clinics is less than for instrument sets originating from the OR.

(a) DIN arrived at CSSD, sizes based on stage one (b) DIN processed at stage one

(c) DIN arrived at CSSD, size based on stage two (d) DIN processed at stage two

Figure 7.8: Results from the strategic model, scheduling of instrument sets over days, for stages one and two.

Second, to look more closely into the required amount of opening time, the solutions of the tactical model
are presented. Figures 7.9a and 7.9b show the number of DIN baskets arriving each day and the number of
DIN baskets processed, at stage one. Figures 7.9c and 7.9d show the same metrics at stage two. The figures
show that most of the instrument sets are processed during regular hours on week days. Note that the figures
show a low number of instrument sets processed on Monday. This can be explained by the fact that most of
the instrument sets arrive during the afternoon and evening. Hence, according to the tactical model, these
cannot be processed on Monday. Here the tactical model shows the added characteristic of release times in
comparison to the strategic model.
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(a) DIN arrived at CSSD, sizes based on stage one (b) DIN processed at stage one

(c) DIN arrived at CSSD, size based on stage two (d) DIN processed at stage two

Figure 7.9: Results from the tactical model, scheduling of instrument sets over days, for stages one and two.

7.4. SUMMARY
In this chapter, the results of all the conducted experiments are enumerated. It has been concluded that the
branch-and-cut algorithm of CPLEX is not efficient for the models without any restrictions or fixed variables.
However, if restrictions are added or a chain is formed, the branch-and-cut algorithm can be used. The main
findings for each model level are:

• For the strategic model, the parameter setting ‘Pseudo reduced costs’, restricting the number of pro-
cessed instrument sets each day at any stage, and decreasing the size of the machine set provide the
largest decrease in optimality gap. The model proves to more difficult to solve for a lower value of γ.

• The tactical model becomes more difficult to solve for lower values of γ and a lower number of day
parts.

• The operational model can only be solved for small instances. The performance varies for different
instances based on the combination of release times and lead times. The four-stage model provides a
more accurate and lower objective function value, however, it is, in comparison to the two-stage model,
more difficult to solve for instances of one day. On the other hand, the four-stage appears to be better
suited for instances of multiple days. By adding constraints to restrict the batch completion time, the
performance of the four-stage model improves.

The balance between the amount of opening time and the number of machines appears to cause the
computational complexity of the models. All models show significantly better results when the amount of
opening time or the number of machines are fixed. Furthermore, the number and type of machines appear
to be a more difficult to determine than the amount of opening time. The results of the models with fixed
variables and the construction of a chain of models show promising results. The best results for practical
application were obtained by setting a minimum amount of opening time in the strategic model, and using
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the resulting machines in the tactical model. The results show that the processing of instrument sets is spread
over the week. The operational models are not suitable yet to implement in a chain structure.

As there is a large amount of parameter settings, model configurations, and possibilities to create an
heuristic approach, only part of the options are explored. Based on the current conducted experiments, the
following remarks can be considered for future research:

• Test the models and the proposed chain of models for more scenarios. Currently, the conclusions are
based on the performance of three scenarios. These scenarios are chosen to represent a range of op-
tions. However, more experiments are required to evaluate whether these conclusions can be general-
ized.

• The numbers of machines is a rigid capacity, hence, it has to be the same for all scenarios. Currently,
only a fixed number of machines, based on the results of ‘Week 15’ is considered. In future research, the
required number of machines has to be evaluated for different scenarios, as it should be the optimal
number of machines for all scenarios, and not only for scenario ‘Week 15’.

• Combinations of parameter settings and restriction, or another structure to form a chain of models
might be efficient.

• The big-M term can lead to weak lower bounds. CPLEX recommends to implement indicator con-
straints obtain more numerically robust and accurate solutions. This option can be explored for the
operational models.





8
CONCLUSION

In this chapter, the conclusions from this thesis are discussed in Section 8.1. Furthermore, the main research
question: ‘How can the number of required resources for a sterilization process within a hospital be quantified?’,
is answered. In Section 8.2, the obtained results and the limitations of this thesis are discussed. Finally, in
Section 8.3, recommendations for the LUMC and suggestions for future research are stated.

8.1. CONCLUSIONS
The objective of this thesis is to quantify the required resources for the sterilization of instrument sets at a
CSSD within a hospital. The CSSD at the LUMC acts as a case study. To determine the required resources,
an optimization problem is defined and formally introduced. To solve real-life size instances, a decomposi-
tion of the model, based on the three hierarchical capacity planning decision levels, strategic, tactical, and
operational, is proposed.

In Chapter 2, the position of the CSSD within the hospital and the main steps of the process are described.
In addition, a framework is proposed to identify the capacity planning decisions on the three hierarchical lev-
els. The CSSD can be characterized by highly specialized manual labor and two stages of batching machines.
In Chapter 3, a concise literature study regarding the CSSD is presented. This thesis contributes to current re-
search by proposing a framework for the capacity planning decisions at a CSSD, by extending existing models
by taking specific characteristics of the CSSD into account, and considering a new objective function, namely
minimizing the total costs. In Chapter 4, the problem is formally introduced as a two-stage flow shop with
setup processes, which is proven to be NP-hard. In Chapter 5, a reformulation of this problem is proposed
by decomposing the capacity planning decisions on a strategic, tactical, and operational level. The demand
for sterile instrument sets by the outpatient clinics and the OR is determined using historical data from the
LUMC and expert judgement. In Chapter 6, all required data and assumptions made to obtain this data are
enumerated. The main focus is on scheduling the instrument sets arriving from the OR, for which a method
to calculate the lead time per instrument set is proposed. Finally, Chapter 7 presents the results of all con-
ducted experiments. First, the individual model performance is discussed, where after heuristic approaches
are explored by creating a chain of the models. It can be concluded that the difficulty of the strategic and
tactical model are mainly caused by the trade-off between the number of machines and amount of open-
ing time. When the number of machines or amount of opening time is restricted, practical solutions can be
obtained. Hence, the heuristic approach to create a chain of the models is a promising method which can
be further investigated in future research. The operational models can be used to verify the results from the
strategic and tactical model, and evaluate the feasibility of a daily schedule. Although the two-stage and four-
stage formulations show small differences in objective function value, both can be used for these purposes.
Currently, this application is not implemented yet, as some alterations in the models are required.

By combining the findings of these chapters, the main research question can be answered. The models
presented in this thesis are capable of providing insights into the required resources at the CSSD. These in-
sights concern the total required machine capacity at each stage and the amount of opening time during week
and weekend days. Based on the computational complexity of the individual models, on of the two important
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variables, the amount of opening time and the number of machines, have to be restricted to obtain practical
solutions. To determine these restrictions, a chain of models is required. The most promising method is a
chain of the strategic model with a minimum amount of opening time, where after the resulting number of
machines is used as input for the tactical model. The strategic model is required to determine the number
of machines and the tactical model ensures that the spread of release times of instrument sets is taken into
account. Together, a total required capacity of machines at each stage and the amount of opening time can
be determined. The type of machines is not yet determined, as characteristics on an operational level also
have to be taken into account. The operational models are capable of solving small instances. However, fur-
ther research is required to obtain practical solutions, and implement the operational models as part of a
chain. The results show that the costs to sterilize all instrument sets are mainly determined by the amount
of opening time, which is the most expensive resource. The amount of opening time is determined by the
spread of arrival times of instrument sets. Ensuring an evenly distributed workload and providing a lead time
per instrument set can reduce the amount of opening time. However, the arrival of instrument sets during
irregular hours with short lead times prevents a further decrease in the amount of opening time.

The results of this thesis contribute to quantifying the required resources for a sterilization process within
a hospital. However, to obtain more practical results, future research research is required. In the next sections,
a discussion about the limitations of this thesis and recommendations are presented.

8.2. DISCUSSION
While conducting this research, several assumptions, which could influence the performance of the models
and the obtained results, were made. Below, the assumptions that have, presumably, the most impact are
discussed.

The price of the machines is determined based on a combination of the price of the current machines,
information requested from suppliers, and maintenance costs. Based on the information of the suppliers,
there are machines of numerous different sizes. As the exact prices were not known, in this thesis, an assumed
ratio between the price per DIN of capacity for smaller machines in comparison to larger machines is used.
Even if the exact prices per machine were known, some additional remarks have to be made. Indeed, multiple
smaller machines could require more space than one larger machine. In addition, multiple smaller machines
can require more resources such as pumps or racks. Both characteristics result in an higher cost. However,
it is currently not possible to quantify the increase in cost per DIN of capacity. Before deciding upon the
purchase of new machines, this has to be further investigated.

The reduction of peak workloads is based on the calculated lead times per instrument set. It appears
that a significant amount of the instrument sets do not have to be returned to the OR the next day, which
is currentlyreflected in the lead times. Hence, the workload can be spread more evenly over the week. The
lead times are calculated using the number of items of each instrument set. However, the tray composition,
which includes the number of items, has not yet been optimized. It is possible that, currently, more items
are available than actually required to meet the demand of the OR. In that case, the lead time is equal to
the maximum duration at the CSSD. Whenever the tray composition is changed, the lead times should be
reconsidered.

Overtime is only taken into account within the operational models. The LUMC indicates it wants to min-
imize the overtime to improve employee satisfaction. However, solely based from cost perspective, overtime
is not made more expensive or restricted in number. From a practical point of view, it is clear that overtime is
not desired. Hence, it should be determined to what extent the overtime should be penalized.

The tactical and strategic model have a planning horizon of one week. Since the start of the models is
at the end of the weekend, the practical implication will be limited. However, it has to be noted that there
will be inconsistencies at the start and the end of the planning horizon of the model. On Monday, the CSSD
is empty, while in reality, instrument sets which still have to be processed from the previous day could be
present. Furthermore, within the models, all instrument sets arriving on Sunday are processed the same day.
In fact, these instrument sets could also be processed at the start of the following week. A rolling time horizon
could be considered to overcome these problems.

As already noted, the amount of opening time represents a large portion of the total costs. From the
solutions of the strategic problem, it can be concluded that opening the CSSD for 6 hours in combinations
with more machines, appears more cost-efficient than longer opening hours with fewer machine. However,
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this short opening time is in practice not feasible, and additional constraints regarding the opening time
have to be taken into account. The tactical model with 3 day parts results in more opening time, but no major
differences were noticed for different scenarios. Hence, there is little room to optimize the amount of opening
time due to these restrictions and the ratio of costs between machines and opening hours. This problem
can be partly solved by the addition of parameter γ. However, this parameter implicitly makes increasing
the opening time even more expensive in comparison to the machines. Furthermore, the cost of opening
time is determined by the number of employees during that day. Hence, the cost ratio between the machine
purchase and the amount of opening time can significantly change when less employees are scheduled.

8.3. RECOMMENDATIONS
The recommendations are divided into two parts. First, the recommendations for the LUMC are stated, and
second, suggestions for future research are discussed.

RECOMMENDATIONS LUMC
• The results show that instrument sets that arrive during weekdays are mainly processed on weekdays

and Saturday. To spread the workload, instrument sets that arrive on Friday afternoon and evening are
processed on Saturday. Looking at the results from the tactical model and the costs of opening hours
on Saturday, it is recommended to open the CSSD on Saturday morning between 08:00 and 12:00. The
results are not conclusive about the total amount of opening time on Saturday, hence, these opening
hours are a minimum and additional opening hours after 12:00 could be required. On the other hand,
employees can be reluctant to work on Saturday and it is important the the practical feasibility is prop-
erly evaluated.

• While optimizing the required resources, the tray composition should be reviewed. The lead time is
determined using the number of items of each instrument set. In case the lead time of instrument sets
decreases, the peak and low demand will increase and more resources are required to process these
fluctuations in demand.

• The willingness to avoid working during overtime needs to be quantified. Currently, solely based on
the cost perspective, overtime is not more expensive or restricted. However, in practice, the hospital
indicates it wants to minimize the overtime to improve employee satisfaction.

• Instrument sets from the outpatient clinics represent a large portion of the arriving instrument sets
expressed in DIN trays. Currently, the focus is on scheduling the instrument sets originating from the
OR. It can be beneficial to review the agreements concerning the lead times with the outpatient clinics
as well.

SUGGESTIONS FOR FUTURE RESEARCH

• The implementation of a metaheuristic or hybrid algorithm needs to be investigated. Based on Chapter
3, it can be concluded that the most promising solution methods to solve a multi-stage flow shop are
metaheuristics and hybrid algorithms. By improving the performance of the operational models, more
operational characteristics of the CSSD can be taken into account.

• Extent the operational models to take the current stock level at the OR into account. Currently, fixed
lead times per instrument set are used. By adding the stock level at the OR storage to the model, more
realistic lead times based on the stock level can be determined. Note that the lead times will vary over
time as the stock at the OR storage changes.

• As the amount of opening time is mainly defined by the arrival time of instrument sets in combination
with their lead time, there are limited opportunities to optimize or decrease the amount of opening
time and the corresponding costs. In case of a fixed amount of opening time, the number of employees
on different parts of a day can vary in order to decrease the costs. A future research topic could be to
determine working shifts at the CSSD, the number of shifts during a week, the start and finish time of
each shift, or the number of employees during a shift.

• Taking uncertainties of processes within a hospital into account. Processes within a hospital have a
non-deterministic behavior, for a CSSD, uncertain processes or events include: emergency surgeries
or surgeries which require additional instrument sets, the failure of machines, and the uncertain time
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requirements of the manual setup processes. Furthermore, the greater the variability in a system, the
greater the capacity required to meet a given service standard (Hall [37]). In this thesis, the model
properties and some initial solution approaches are explored, so the next step is to incorporate these
uncertainties.
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A
BMPN MODELS

This chapter provides all BPMN models as described in Chapter 2.3 and created with Signavio Process Man-
ager [11].
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B
ADDITIONAL CONSTRAINTS

B.1. TACTICAL MODEL
In case w = 3, Constraints (B.1), (B.2), and (B.3) are added to determine the amount of irregular hours on
weekdays, and Constraints (B.4), (B.5), and (B.6) are added to determine the amount of irregular hours on
Saturdays.

Qg ≥Og −60 ∀g ∈ {1,4, . . . ,13} ⊂G (B.1)

Qg = 0 ∀g {2,5, . . . ,14} ⊂G (B.2)

Qg ≥Og −240 ∀g {3,6, . . . ,15} ⊂G (B.3)

Q16 =O16 (B.4)

Q17 ≥O17 −240 (B.5)

Q18 =O18 (B.6)

In case w = 4, Constraints (B.7), (B.8), (B.9), and (B.10) are added to determine the amount of irregular
hours on weekdays, and Constraints (B.11), (B.12), (B.13), and (B.14) are added to determine the amount of
irregular hours on Saturdays.

Qg =Og ∀g ∈ {1,5, . . . ,17} ⊂G (B.7)

Qg ≥Og −300 ∀g {2,6, . . . ,18} ⊂G (B.8)

Qg = 0 ∀g {3,7, . . . ,19} ⊂G (B.9)

Qg ≥Og −120 ∀g {4,8, . . . ,20} ⊂G (B.10)

Q21 =O21 (B.11)

Q22 ≥O22 −240 (B.12)

Q23 =O23 (B.13)

Q24 =O24 (B.14)

85



86 B. ADDITIONAL CONSTRAINTS

B.2. LINEARIZATION OPERATIONAL MODEL
To linearize Constraints(B.15) and (B.16), nonnegative decision variables Gd p2 and Gd p3 are introduced for
d = 6.

Wd p2 ≥ p2 −md −Nd p2

(
p2 −

(
nd +qd

)) ∀d ∈ {6} ⊂ D (B.15)

Wd p3 ≥
(
nd +qd

)−p3 −Md p3

(
md −p3

) ∀d ∈ {6} ⊂ D (B.16)

Considering the bounds 0 ≤ (
nd +qd

)≤ 1440(d +1), Constraints (B.17), (B.18), and (B.19) are added, and
Constraints (B.15) can be transformed to Constraints (B.20).

Gd p2 ≤ nd +qd ∀d ∈ {6} ⊂ D (B.17)

Gd p2 ≤ 1440(d +1)Nd p2 ∀d ∈ {6} ⊂ D (B.18)

Gd p2 ≥
(
nd +qd

)−1440(d +1)
(
1−Nd p2

) ∀d ∈ {6} ⊂ D (B.19)

Wd p2 ≥ p1 −md +Gd p2 −p2Nd p2 ∀d ∈ {6} ⊂ D (B.20)

Considering the bounds 0 ≤ md ≤ 1440d , Constraints (B.21), (B.22), and (B.23) are added, and Constraints
(B.16) can be transformed to Constraints (B.24).

Gd p3 ≤ md ∀d ∈ {6} ⊂ D (B.21)

Gd p3 ≤ 1440d Md p3 ∀d ∈ {6} ⊂ D (B.22)

Gd p3 ≥ md −1440d
(
1−Md p3

) ∀d ∈ {6} ⊂ D (B.23)

Wd p3 ≥ (nd +qd )−p3 −Gd p3 +p3Md p3 ∀d ∈ {6} ⊂ D (B.24)



C
ADDITIONAL FIGURES

(a) 0.25 DIN (b) 0.5 DIN (c) 1.0 DIN

Figure C.1: Arrival pattern over a weekday for instrument sets of size 0.25, 0.5, and 1.0 DIN.

(a) 1.5 DIN (b) 2.0 DIN (c) 3.0 DIN

Figure C.2: Arrival pattern over a weekday for instrument sets of size 1.5, 2.0, and 3.0 DIN.
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88 C. ADDITIONAL FIGURES

(a) 0.25 DIN (b) 0.5 DIN (c) 1.0 DIN

Figure C.3: Arrival pattern over a weekday for instrument sets with lead time intervals ‘300’, ‘300-1440’, and
‘1440’ minutes.

(a) 0.25 DIN (b) 0.5 DIN

Figure C.4: Arrival pattern over a weekday for instrument sets with lead time intervals ‘1440-4320’ and ‘4320’
minutes.



D
ADDITIONAL RESULTS

This chapter provides additional tables with results of the experiments as conducted in Chapter 7.

Instance γ Parameter setting
Objective function
value [e]

Lower bound [e] Optimality gap [%]

0.5 Probing 24471 8635 64.7
0.5 Pseudo costs 20199 8910 55.9
0.5 Strong branching 25021 8568 65.8
0.75 Probing 18784 8718 53.6

Week 15 0.75 Pseudo costs 15753 9612 39.0
0.75 Strong branching 15935 9092 42.9
1.0 Probing 13442 8908 33.7
1.0 Pseudo costs 13903 9754 29.8
1.0 Strong branching 15411 8657 43.8
0.5 Probing 40806 8371 79.5
0.5 Pseudo costs 28199 7374 73.8
0.5 Strong branching 19198 7449 61.2
0.75 Probing 15128 7356 51.4

Week 22 0.75 Pseudo costs 14034 9035 35.6
0.75 Strong branching 14990 7522 49.8
1.0 Probing 12841 7704 40.0
1.0 Pseudo costs 12422 10732 13.6
1.0 Strong branching 12840 7516 41.5
0.5 Probing 16301 8267 49.3
0.5 Pseudo costs 17060 8294 51.4
0.5 Strong branching 19138 8146 57.4
0.75 Probing 14666 6807 53.6

Week 43 0.75 Pseudo costs 13474 9367 30.5
0.75 Strong branching 14330 6996 51.2
1.0 Probing 11607 8048 30.7
1.0 Pseudo costs 12088 9658 20.1
1.0 Strong branching 11905 6880 42.2

Table D.1: Results strategic model for different CPLEX parameter settings and different values of γ, with a
deterministic time limit of 3×107 ticks.
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90 D. ADDITIONAL RESULTS

Model type Instance
# instrument
sets

Input
resources

Objective function
value [e]

Optimality
gap [%]

Lower bound
[e]

2-stage 1 15 small 1198 0 1198
4-stage 1 15 small 1192 0 1192
2-stage 2 15 small 733 3.6 707
4-stage 2 15 small 721 9.0 656
2-stage 3 15 small 871 0 870
4-stage 3 15 small 852 1.3 841
2-stage 4 15 small 1089 0 1088
4-stage 4 15 small 1074 0.5 1069
2-stage 5 15 small 1065 0 1065
4-stage 5 15 small 1060 0 1060
2-stage 1 25 medium 971 7.7 897
4-stage 1 25 medium 928 3.2 898
2-stage 2 25 medium 1268 1.3 1251
4-stage 2 25 medium 1262 0.7 1253
2-stage 3 25 medium 913 22.2 710
4-stage 3 25 medium 875 19.2 707
2-stage 4 25 medium 1395 0.8 1384
4-stage 4 25 medium 1395 0.6 1387
2-stage 5 25 medium 1402 1.4 1382
4-stage 5 25 medium 1396 1.0 1383
2-stage 1 50 medium 1478 7.5 1367
4-stage 1 50 medium 1474 9.3 1336
2-stage 2 50 medium 1296 8.6 1184
4-stage 2 50 medium 1384 17.3 1145
2-stage 3 50 medium 1341 12.0 1180
4-stage 3 50 medium 1279 10.1 1150
2-stage 4 50 medium 1396 12.9 1215
4-stage 4 50 medium 1497 21.4 1176
2-stage 5 50 medium 1458 7.6 1348
4-stage 5 50 medium 1510 13.3 1310

Table D.2: Results operational model for different model types and a varying number of arriving instrument
sets, with 2 employees at each stage, a deterministic time limit of 3×107 ticks, and memory save parameter
setting for instances equal or larger than 25.
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Model type Instance
# instrument
sets

Objective function
value [e]

Optimality gap [%] Lower bound [e]

2-stage 1 15 1620 0.0 1620
4-stage 1 15 1596 9.6 1442
2-stage 2 15 1613 0.0 1613
4-stage* 2 15 1606 1.4 1584
2-stage 3 15 1344 0.0 1343
4-stage 3 15 1352 2.8 1314
2-stage 4 15 1404 0.0 1404
4-stage 4 15 1411 3.3 1365
2-stage 5 15 1522 0.0 1521
4-stage 5 15 1519 0.3 1514
2-stage 1 25 2691 1.1 2661
4-stage 1 25 2680 0.7 2660
2-stage 2 25 2167 2.1 2121
4-stage 2 25 2156 1.6 2120
2-stage 3 25 1799 2.0 1763
4-stage 3 25 1794 2.8 1744
2-stage 4 25 2453 1.4 2419
4-stage 4 25 2450 1.2 2421
2-stage 5 25 2645 1.1 2615
4-stage 5 25 2624 0.4 2614
2-stage 1 30 2213 3.6 2134
4-stage 1 30 2204 3.7 2123
2-stage 2 30 2129 3.7 2051
4-stage 2 30 2086 2.7 2030
2-stage 3 30 2339 4.3 2238
4-stage 3 30 2316 3.6 2234
2-stage 4 30 3289 0.7 3266
4-stage 4 30 3279 0.9 3250
2-stage 5 30 3083 1.1 3048
4-stage 5 30 3073 1.2 3036
* Out of memory error, results obtained from node log

Table D.3: Results operational model for different model types and different numbers of arriving instrument
sets during three days, with 2 employees at each stage, medium machine set, a deterministic time limit of
3×107 ticks, and memory save parameter setting.
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Instance Indicator
Objective function
value [e]

Optimality gap [%] Lowerbound [e]

fixed1* 21366 1.3 21082
read1 21356 41.7 12443

Week 15 read1 & pseudo costs 21356 41.7 12443
read1 & probing 21358 47.6 11182
fixed4 19848 0.1 19827
read4 19848 38.6 12183
fixed1 19838 0.3 19777
read1 19818 40.4 11804

Week 22 read1 & pseudo costs 19818 40.4 11804
fixed4 18388 0.2 18343
read4 18388 40.1 11014
fixed1 19574 0.2 19533
read1 19563 40.0 11735

Week 43 read1 & pseudo costs 19563 40.0 11735
read1 & probing 19559 37.3 12254
fixed4 18145 0.2 18110
read4 18145 37.1 11416

Table D.4: Results tactical model for different start solutions and CPLEX parameter settings, with γ = 0.75,
a deterministic time limit of 3×107 and the memory save parameter setting. *Results obtained by setting a
higher tolerated relative optimality gap.
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