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Introduction

The Internet of Things (IoT) is a contemporary paradigm concerning the inter-networking of all kind of things,
such as mobile phones, sensors, actuators and vehicles [2]. Smart Cities use IoT technologies to manage their
assets by connecting all kinds of devices, striving for safe, green, efficient and sustainable urban life [6].

Intelligent street lighting is a Smart City application aiming to reduce energy consumption. Passing traffic
is measured and used to control lighting intensity. Street lights can be made intelligent by adding sensors to
detect passing road users. From the perspective of the road user, a surrounding area of light is required for
a safe journey. This can be achieved by extending lampposts with smart devices, called nodes, that commu-
nicate with nearby lampposts, signalling road activity to each other. Numerous governments and companies
have been involved in the developments of such systems. The communication between nodes could be done
using existing power lines (PLC) [13], or wireless [5] [14].

FutUrlight is a Smart City initiative aiming to implement intelligent street lights, starting in Zoetermeer,
The Netherlands. Several parties are involved in the development, including the Zoetermeer administration,
TNO, DCD, Sense-0S and SOWNet Technologies. The system should be an autonomous, plug-and-play city
lighting system using wireless communication between lampposts [9].

When a car drives along a street lit by smart street lights, there should be an area of light around the car
to provide the driver with a comfortable range of sight. To achieve this, lampposts communicate information
about passing road users to each other.

A city with many lampposts will have a large network of nodes. To prevent problems that can occur in
populous wireless networks, such as congestion and long delays, they are often split up into smaller networks
with a mesh topology, called Personal Area Networks (PANSs) (see Figure 1.1). Nodes are able to communicate
within their PAN efficiently. However, communication with nodes from other PANs is sent over the Internet;
since it may take multiple hops to the Internet router (the edge router of the PAN) this typically causes delays.
The transmission over the Internet is usually performed over a fast medium, not adding considerable delay.
This is particularly inefficient when nodes in different PANs are only a few meters apart. Figure 1.2 illustrates
this problem, which we aim to solve as efficiently as possible.

Problem

Direct communication between nodes in different PANs is currently not possible, for reasons explained later
in this chapter. Figure 1.3a illustrates this problem and the desired solution: when a node (N1) in a subnet-
work produces a message for a node (N2) in another subnetwork, the following steps are taken:

1. N1 sends the packets to the edge router of network 1 (ER1) via nodes in PAN 1. This may include
hopping between several other nodes.

2. ER1 sends the packets to the edge router of the second network (ER2) via the Internet, usually using
faster communication technology (e.g. a 4G network).

3. ER2 sends the packets to N2 via nodes in PAN 2. Again, this may include hopping between several other
nodes.
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Figure 1.1: An example network configuration in a city. To alleviate network stress, multiple PANs can be utilised. In this example,
separate PANs are used for three residential areas, coloured blue, green and pink.
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Figure 1.2: Schematic diagram illustrating a problematic situation. A coloured circle denotes a street light, with an integrated sensor and
wireless communication node. Each PAN is indicated by a single colour, with one coordinating edge router depicted as a square. When
a car is detected by node 1, this node tries to signal node 2. However, because the nodes are in different PANs, direct communication
is currently not possible. The only alternative is to hop over multiple other nodes to the edge router that is connected to the Internet,
which can then relay the information to the edge router of the other PAN. The black curved arrows indicate hops over nodes using RE

while the grey arrow shows communication over the Internet.
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Figure 1.3: Schematic depiction of the two communication methods between nodes N1 and N2 of two distinct PANs. The full lines show
communication within a PAN. The dashed lines show cross-mesh communication, which is currently only possible via the edge routers
(a). The aim of this project is to enable direct cross-mesh communication between the neighbouring nodes (b).

The desired, direct cross-mesh communication is shown in Figure 1.3b.

This problem can be extended to nodes close enough to be interested in each other’s sensor data, but not
directly within RF range. If the route to the target node is efficient enough to be traversed by direct routing,
then this route is preferred to the standard route via the edge router.

Requirements
We now describe the functional and non-functional requirements that must be met before the problem can
be considered solved, and we explain why the problem exists.

The functional requirements are fairly straightforward:

1. Nodes should be able to send a message to a node in a neighbouring PAN, without using the Internet
connection of the edge routers;

2. The solution must not introduce considerable network traffic and delays;

3. Each sent message should arrive only once at the destination application; duplicate messages should
be filtered out.

The definition for an appropriate packet structure for such cross-mesh communication is part of the assign-
ment, as is the implementation of handling such incoming packets. However, outgoing packet creation —
including setting the values of parameters defined by our solution — is assumed to be done on the applica-
tion level, and is not part of our project.

The client company, SOWNet Technologies, an IoT company based in Pijnacker, The Netherlands, has
determined several non-functional requirements. Because the project is part of a larger system, there are
certain constraints regarding the technologies to be used. First of all, our solution must be integrated into
Contiki, an operating system for IoT devices. Next, our solution must work in a network stack consisting of
the IEEE 802.15.4, 6LoWPAN, and IPv6 protocols (see Chapter 2 for more information on Contiki and these
network protocols).

In the existing Contiki network stack, it is not possible to send a unicast message to another PAN, which
in general is not problematic. However, the use case of smart city lighting introduces PANs that can stretch
to distances of multiple kilometres, combined with a need for low-latency communication between PANs,
making it necessary to mitigate delays caused by relaying messages through edge routers.

Methodology

Scrum-based Development

The Bachelor Project took 10 weeks, which we spent full time in the SOWNet office in Pijnacker. During the
project, we have used parts of the Scrum methodology of software development to steer our process, because
we wanted to remain flexible and did not know what exactly the end product would include. Because our
team comprised just three members, there are parts of scrum that we have not used, such as the roles of
product owner and scrum master, and sprint review meetings. We have divided the ten weeks in which the
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project took place into sprints of one week each. At the start of every sprint, we decided on the tasks to be
completed in that sprint. Instead of scheduling daily “stand up” meetings, we deliberated on problems when
they came up, which was efficient because we were working in the same room. For a reflection on our Scrum
usage, see Chapter 7.

Tooling and Setup

While developing our implementation, we have used Contiki’s Cooja simulator to run and test our code. The
Cooja simulator is part of the Contiki operating system and makes it possible to simulate a network of Contiki
nodes. We have only started testing on real hardware from week 7 onward, because the hardware modules
were not ready before then. Our implementation and the used Cooja version is based on Contiki 3.1. Unit
tests are written with version 1.1.1 of the Cmocka unit testing framework, of which the code coverage was
calculated with Gcov. Git was used to keep track of code versions.

Contributions

We have extended Contiki 3.1 with cross-mesh communication functionality. When it is desirable to send
a message between nodes of neighbouring PANs without using the Internet connection of edge routers, we
offer four different ways to do so (outlined in Chapter 3). With all solutions, at least 98% of packets arrive at
the destination node in our simulations, in situations where the radio is always on. Furthermore, we have
tested our solution extensively with unit tests, attaining 98.85% line coverage, and on hardware, as a proof of
concept. These tests have demonstrated that cross-mesh communication is possible with the implemented
solutions.



Research

During the first two weeks of the project, we have researched the technologies involved in the project, and
identified work that has already been done to enable cross-mesh communication. We have mainly looked
at scientific papers and protocol specifications, but we have also obtained information from within SOWNet
and from various online resources. In this chapter we present our findings about the hardware used, the
Contiki operating system, its network stack, and related work.

Hardware

SOWNet uses smart devices that communicate with each other by relaying their sensor data to a custom-built
ARM-based device running a Linux operating system. This device has a ST-6LP01 radio module attached,
which is developed by SOWNet Technologies. Each module is connected over USB into the USB port, or over
UART onto the GPIO headers available on the ST-6LP01. The pin-out of the ST-6LP01 radio board can found
in Appendix A.

Network

The nodes run a 6LoWPAN network stack. In this network stack, the 6LoOWPAN protocol is in the top of
the Data Link Layer within the Open Systems Interconnection (OSI) model. It receives IEEE 802.15.4 frames
and assembles them into IPv6 packets. When sending messages, IPv6 packets are placed into IEEE 802.15.4
frames, with optional fragmentation and header compression. Figure 2.1 shows a possible full network stack
for a 6LoWPAN network. While there are other solutions available for low-power networks, 6LoOWPAN is the
only non-proprietary architecture that binds the standardised non-proprietary protocols IEEE 802.15.4 and
IPv6 together. We refer to Appendix B for more information on the 6LoWPAN protocol.

The IEEE 802.15.4 protocol is designed for low-power and constrained devices; it also stands out for sup-
porting a mesh network topology, and has been revised multiple times to increase robustness. IPv6 is par-
ticularly useful because of its gigantic address space (2'?8) and it allows easy integration with the Internet.
To be able to utilise this large address space in low-power communication with relatively small frames, IEEE
802.15.4 defines 16-bit PAN IDs, 16-bit short identifiers and EUI-64 identifiers that can be used for addressing
nodes. On the MAC layer, IEEE 802.15.4 headers contain a sequence number and the optional fields of desti-
nation PAN ID and address, and source PAN ID and address, where the address fields can be short identifiers
or EUI-64 identifiers. The protocol also permits broadcasting by using the broadcast address OxFFFF for both
the short address and the PAN ID. Broadcast address can also refer to the 64-bit broadcast MAC address which
is defined in IEEE Std 802-2014 (OxFFFF FFFF FFFF FFFF). For more information about IEEE 802.15.4, see
Appendix C.
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OSI model Example stack

7. Application Layer HTTP, FTP, DHCP, COAP etc.

6. Presentation Layer

5. Session Layer :
4. Transport Layer UDP, TCP (SecurityTLS/DTLS)

3. Network Layer IPv6, RPL
. 6LoWPAN
2. Data Link Layer IEEE 802.15.4 MAC
1. Physical Layer IEEE 802.15.4 PHY

Figure 2.1: The Open Systems Interconnection (OSI) model layers, and an example stack of protocols in a network using 6LoWPAN.

IPv6

Compared to its predecessor IPv4, Internet Protocol version 6 (IPv6) increases the available address space
from 232 to 2128 addresses, by changing the addressing format from 4 x 8 bits to 8 x 16 bits. The protocol
also has a larger header type field, allowing for more applications, while there is no strong limit on lengths of
headers. This provides greater flexibility for introducing new options later on.

The IPv6 Header Format

An IPv6 packet starts with an IPv6 header, containing the following fields: version, traffic class, flow label,
payload length, next header type, hop limit and source and destination addresses (see Figure 2.2). The version
field is always set to 6, and traffic class and flow label are normally all zeroes. The payload length indicates
the length of the data in bytes. The next header type is an 8-bit selector that describes the type of the header
that starts directly after the address fields. This can be an IPv6 extension header, or the header of a datagram
— for example, UDP or TCP. Multiple headers can be chained in this format before the payload is reached.
The hop-limit field is decremented at each intermediate router, and the packet is dropped when it reaches 0.
(4]

bits 0,1,2,3,4,5,6,7,8,9,1011,121314/15/16,17,1819,20212223,24,252627,28,29,30 31
0-31| Version | Traffic class | Flow label
32-63 Payload length I Next header I Hop limit
64-191 Source address
192-287 Destination address

Figure 2.2: The IPv6 header format

Extension Headers

Extension headers help IPv6 provide flexibility and extensibility. Extension headers are placed after the stan-
dard IPv6 header, and the next header field in the standard header should be set depending on the first ex-
tension header.

The following extension headers are specified: hop-by-hop options header, destination options header,
routing header, fragment header, authentication header, and encapsulating security header. As the hop-by-
hop extension header is defined for setting routing behaviour, which is related to the problem of this project,
this extension header will be described in detail.

The hop-by-hop options extension header is processed by all nodes through which an IPv6 packet passes.
To use this header, the next header field in the normal IPv6 header needs to be set to 0x00. This extension
header, when present, is always placed directly after the IPv6 header, and starts with an 8-bit field to indicate
the header after the extension header. Next is an 8-bit field that contains the length of the hop-by-hop options
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header in 8-octet units, excluding the first 8 octets. Next, any number of type-length-value (TLV) encoded
options may follow, but the total length of the extension header in octets must be a multiple of eight. See
Figure 2.3.

S 32 bits ~
%‘3}‘ Next Header Hdr Ext Len
(0]
—_
= | Options
< |
g
Sy
Figure 2.3: The hop-by-hop extension header format
8 bits 8 bits variable length
- > DU S >
Option Type Opt Data Len ‘ Option Data

Figure 2.4: The Type-Length-Value encoding format

TLV encoding uses one octet to carry the option type and one octet to carry the option data length (see
Figure 2.4). If the total length of the extension header in octets is not a multiple of eight, padding options are
used to align the header.

The IPv6 standard further defines the format of the type field by using the 3 highest-order bits for several
options. When a packet is received with a hop-by-hop option that is unknown by the system, the following
steps should be taken depending on the the first 2 bits of the type field:

¢ 00 - Skip over the option and continue processing the header.
* 01 - Discard the packet.

¢ 10 - Discard the packet and send an ICMP Parameter Problem message to the packet’s Source Address,
pointing to the unrecognised Option Type.

* 11 - Discard the packet and, only if the packet’s Destination Address was not a multicast address, send
an ICMP Parameter Problem message to the packet’s Source Address, pointing to the unrecognised
Option Type.

The third bit specifies whether or not the values inside the option can change en-route to its destination:

¢ 0 - Option values do not change en-route.

¢ 1 -Option values can change en-route.

Contiki

The nodes run Contiki OS, an open-source operating system designed for IoT!. Contiki implements the com-
plete 6LOWPAN network stack utilizing the NETSTACK drivers. Figure 2.5 gives an overview of NETSTACK, in
which we worked most of the time during our project. For more information on the inner workings of Contiki,
see Appendix D.

Ihttp://www.contiki-os.org/
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OSI Model Contiki NETSTACK drivers
3. Network Layer uip6
sicslowpan
LLSEC
2. Link Layer MAC Access packet buffer
RDC
Framer
1. Physical Layer Radio

Figure 2.5: Overview of the Contiki network stack (NETSTACK)

Cooja

Contiki OS provides a simulation environment, called Cooja, in which networks of Contiki nodes can be cre-
ated. The simulation can be done on an abstract level or with hardware emulation. This allows developers to
test the code in simulation before running on hardware.

Related Work

As the usage of large-scale sensor networks in urban projects is newly emerging, research on our specific
problem is scarce. Many sensor network projects either use a single PAN for the entire system, choose pro-
prietary solutions such as ZigBee, or use more capable and more expensive technologies. The IEEE 802.15.4
and 6LoWPAN specifications do not offer any solutions other than providing support for broadcasting within
the protocols.

In ZigBee, PAN Merge and PAN Bridge [8] attempt to solve the issue of cross-mesh communication. How-
ever, both methods inflict performance penalties in the form of higher latencies, packet loss and memory
utilisation. The merging approach combines multiple PANs and creates a routing tree for the newly created
combined PAN. This can be resource intensive and can take a long time to complete for larger networks,
which makes it less efficient than communication via the edge router. Also, this reintroduces the problem of
large unwieldy networks, which was the initial reason to split the network into multiple PANs. With bridging,
only a single node per PAN needs to switch between networks. While this approach reduces the reconfigu-
ration time, it does not provide the same functionalities as PAN Merge. During the time that the bridge is
connected to one PAN, it cannot receive any packets from the other and essentially creates a one-way com-
munication path [10].

Another solution is to make the PAN bridge take part in multiple networks by providing it with multiple
transceivers, but this increases production costs, requires additional logistics and raises the network setup
complexity. Neighbour discovery is initialised by the bridge nodes and the network is subdivided by optimiz-
ing the bridge, node and edge router ratios. To also limit the bottleneck effects of singular bridges between
PANSs, the system needs to be subdivided into smaller segments with alternative paths to other nodes over
multiple bridges [3].

Conclusion

Based on our research of the related work, we conclude that there is currently no solution to the problem of
direct communication between two PANs in Contiki. Furthermore, the solutions used in other protocols have
too many disadvantages to apply them analogously to our situation. This means that we have to create a new
mechanism to enable cross-mesh communication in Contiki.
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Assumptions

We have devised several approaches that enable cross-mesh communication between nodes, each approach
tailored to specific use cases (see Section 3.3) and requirements. Because PAN management and coordination
is a complex issue, we have made some simplifying assumptions to create a more manageable scenario.

1. For certain parts of our solution, the sending node requires additional information such as PAN IDs, or
short IDs of nodes. We assume that all relevant information is known by the sending node. This could,
for example, have been provided by the network coordinator or a cloud service.

2. Link layer encryption is turned off, or done using the same AES-128 key for the concerning PANs. Encryp-
tion at the link layer complicates packet inspection, so turning it off simplifies development.

3. The nodes all communicate over the same IEEE 802.15.4 channel, i.e. use the same radio frequency.
Within one PAN, a single radio channel is used, as defined in the IEEE 802.15.4 standard. As some
channels may turn out unsuitable for communication due to noise or interference of other networks
(such as Wi-Fi), it is preferable to pick a fitting channel. When two PANs use different channels, this
complicates direct cross-mesh communication.

Solving the Problem

Our solution to allow cross-mesh communication consists of four mechanisms. These are, in order of in-
creasing sophistication: Flooding, 2-PAN Flooding, Hybrid and Routing-Twice. None of these mechanisms,
including Flooding, were previously implemented in Contiki. As situations may arise with multiple hops be-
tween the source and destination nodes, a method is required to inform the nodes on the communication
path about the message type, in order to relay the packets according to the corresponding mechanism. For
this, we employ the hop-by-hop extension header defined in the IPv6 standard, and define our own hop-by-
hop extension header option with a fixed format. This format can be found in Figure 3.1, with per-solution
specifics in Table 3.1. The values used for the Option Type field are not from standards; we have chosen these
values ourselves and in accordance with the IPv6 standard for hop-by-hop option types (see Section 2.3.2).
We compare the four approaches and their network impact in Chapter 5. The next sections describe the
mechanisms mentioned earlier.



10 3. Solutions

8 bits 8 bits ) 8 bits U 8 bits R 16 bits

Option Type Opt Data Len Hop info Sequence number Destination ID

Figure 3.1: Cross-Mesh IPv6 Hop-by-Hop Extension Header Options.

Sequence
Type Length Hop Info Number Destination ID
Algorithm 8 bits 8 bits 8 bits 8 bits 16 bits
Flooding 0x21 0x00 0x0000
2-PAN Flooding 0x22 variable' . variable®
Hybrid 0x23 0x04 variable | Veriable' 0x0000
Routing-Twice 0x24 variable’® variable®

! Time-to-live in the PAN of the destination node.

2 Time-to-live when flooding. Ignored in the PAN of the destination node, in which is routed normally.

3 0x00 initially, changed to 0x01 by the bridge node, and changed to 0x02 when PAN of destination node is reached.

4 Sequence number set by the sending node, in the range 0x00-0xFE After a cross-mesh packet is sent, the next cross-mesh packet
from the same node should have the subsequent number (modulo 255).

5 The PAN ID of the destination node’s PAN.

6 Short ID of node on the border. Because SOWNet’s current implementation does not use short ID’s, for now this field contains the
last 16 bits of the bridge node’s IPv6 address.

Table 3.1: Cross-Mesh IPv6 Hop-by-Hop Options Extension Header.

Explanation of symbols used in diagrams

Flooding

Sending broadcast messages that are received by every

node is the most straightforward cross-mesh commu- ° °
nication technique, and flooding is the simplest way

of implementing this. With flooding, every node re- a b

transmits a packet after the first time it has received
it. A packet’s source address and sequence number are
stored to keep track of previous messages. To propagate
over any node in range, the broadcast PAN ID OxFFFF
is used on the link layer. This approach makes no dis-
tinction between PANSs, as a packet is solely directed at
the broadcasting address. This makes for a simple way
of crossing mesh boundaries. However, the echoing of
broadcast packets may lead to network congestion. To

Nodes in the same PAN have the same
colour. Node a sends a unicast message
to node b, which is in its own PAN. Other
nodes do not process this message.

avoid unnecessary spreading throughout the network, . o ¢
the IPv6 hop-limit field is used. Figure 3.2 shows an ex- _ _
e : : hi=1 -.
ample transmission with flooding. : ® e o
3 a ;

2-PAN Flooding

Alternatively, a distinction can be made between two
neighbouring PANs. By using fwo hop limits—one for
the sender’s PAN, and one for the receiver's—the num-
ber of unnecessary transmissions can be reduced. It is
important to note, however, that this implementation
goes against the IPv6 standard in regard to the usage of
the hop limit field, as it is not decremented at every node, but only at nodes in the source PAN. Figure 3.3
shows an example transmission with 2-PAN Flooding.

Node a sends a broadcast message with a
hop limit of 1. All nodes within the circle
receive the broadcast.

. J
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11

hi=2 - hl=4
e o e

®
dast :

Figure 3.2: Flooding: the source node communicates to the destination node by simply using broadcast messages throughout both PANs.

dast :

. hl=(0,0)
hl=(0,1) ®
P - til _(0’ 2)
hl=(0,3) hl=(2,3) Yo
e hl=(1,3) hl=(0,1)
. sre @ - ® - hl=(0,0)
Y - : : o
hi=(1,3).

Figure 3.3: 2-PAN Flooding: the source node communicates to the destination nodes by using a broadcast with a separate hop limit for

both PANs.

Hybrid

A more sophisticated approach is a hybrid between broadcasting and regular routing within a PAN. This
solution uses broadcasting messages in the sending node’s PAN to cross the mesh boundary, after which the
message is routed directly to the destination using the standard 6LoWPAN routing mechanism. Figure 3.4
shows an example transmission with the Hybrid solution.

dst

Figure 3.4: Hybrid: the source node communicates with the destination node by sending a broadcast throughout its own PAN, which is

routed normally when received by a node in the destination PAN.
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Routing-Twice

Finally, to produce even less network traffic, we have designed a fourth solution, which requires only one
broadcast message to be sent. In this mechanism, it is necessary to know which node in the sender’s PAN
is appropriately situated to act as a “bridge”, and deliver a message to the receiver’s PAN. If this is known, a
message can be sent that will be routed directly to the bridge node, which will then broadcast the message.
This broadcast is heard by nodes in the destination’s PAN, which can again directly route the message to the
destination address. Figure 3.5 shows an example transmission with Routing-Twice.

src dst

Figure 3.5: Routing-Twice: the source node communicates with the destination node by sending a directed message to a node bordering
the other PAN. To bridge the gap to the other PAN, this node then sends a broadcast, which is once again routed normally when received
by a node in the destination PAN.

Deduplication

When multiple nodes receive a message that they can route further, all of them will send. This means that
nodes may receive multiple copies of the same message. To prevent this from congesting the network and
delivering the message to the receiving application multiple times, duplicate messages are filtered out. In the
hop-by-hop extension header option, the Sequence Number field is set by the initial sender. Nodes remem-
ber the source address and sequence numbers of the 20 most recent packets, although this setting may be
overwritten (see Section 4.1). If a message is received with a source address—sequence number matching one
of these, the packet is not processed further. This is done in all mechanisms; Figure 3.6 shows this behaviour
for Routing-Twice.

Src

Figure 3.6: Deduplication in cross-mesh communication using Routing-Twice. The src node sends a message with the Hop Info field
set to a sequence number, which stays the same as the packet is retransmitted. When the message has crossed the PAN border, node a
receives two messages with the same sequence number, so it only forwards one message to the destination node.
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Use Cases

All of the solutions mentioned above allow a node to send a message to a node in another PAN, but they
differ in sophistication. The reader may wonder why we bother with Flooding when Hybrid is less network
intensive and does not require any extra information. Node-to-node communication may indeed be the main
type of cross-mesh communication. However, certain situations like an ambulance driving through a street,
may require the sending of low-latency messages that arrive at every node a certain number of hops away
(Flooding), or messages that arrive at every node within one or two PANs (2-PAN Flooding).






Implementation

The Cross-Mesh Engine

We have extended Contiki with cross-mesh functionality. Cross-mesh engines are used when packets with
known hop-by-hop header options are received, as defined in Chapter 3. Contiki’s uip6é module, which pro-
cesses IPv6 packets, checks incoming packets for hop-by-hop header options. If a known cross-mesh option
is found, it calls the cross-mesh engine to process the packet. The cross-mesh engine then decides if the
packet should be sent to the upper layers, and retransmits it when this is desirable. We have implemented
our solution in the LAD engine (after the initials of the authors’ first names). The LAD engine is the default
(and currently only) cross-mesh engine. New engines can be created to change or extend functionality, as
will be explained later in this chapter. The LAD engine defines four input functions, one for every defined
hop-by-hop option type. Upon receiving a packet from uip6, the LAD engine calls the appropriate function
to process the packet. A diagram describing this process can be found in Figure 4.1.

During retransmission, the packets are processed in Contiki’s tcpip module, which calls the standard
output stack. Special care is taken for the transmission of Routing-Twice packets. If the tcpip module notices
that the packet to be sent has the Routing-Twice option, a check is performed to see whether the packet can
be directly routed to the destination node. If not, the packet must be for a node in another PAN, so it is sent
to the node in its own PAN with the short ID specified by the option.

The implementation of cross-mesh engines is similar to that of the multicast engines already existing
in Contiki. Similar to uip-mcast6-engines.h for the multicast engines, uip-cross-mesh-engines.h con-
tains the engine definitions for cross-mesh. To enable cross-mesh functionality, this file needs to be included,
and the following macros should be defined in the project-conf . h configuration file of the Contiki node:

e UIP_IPV6_CROSS_MESH
Should be defined as 1

e UIP_CROSS_MESH_CONF_ENGINE
Should be defined as one of the macros listed in uip-cross-mesh-engines.h

e LAD_CONF_STORAGE_SIZE (optional)
When using LAD, this sets the number of source address—sequence number combinations that are
stored to remove duplicates. If it is undefined, the storage size is 20.

Our implementation assumes that, according to the IPv6 standard, the hop-by-hop extension header is
always the first extension header after the IPv6 header, if it is present.

15
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Accept, deliver to
[yes]

yes [yes]
[no]
Known hop-by-hop Sequence number - | Packet addressed Check hop-by-hop
option? Source address to me? option type
combination known?
[yes]
Ox21, in_flooding() '7 [no]
0x22 )
X . .
in_2pan_flooding( )J_ Multicast packet Processing continues
— %23 for me? as normal
in_hybrid () ' .
Drop, do not deliver .
N uip6.c
0x24 to upper layers
> in_routing_twice()
. J

Figure 4.1: Diagram showing what happens when a message with a known hop-by-hop header option is received. When control reaches
uip6.c, the incoming packet is checked for a known hop-by-hop extension header option. If this is found, control is passed to lad.c,
otherwise processing continues as normal. 1ad. c then checks if the sequence number is known and if the packet is addressed to its own
IPv6 address. If the sequence number is known, the packet is simply dropped. If the processing node is the packet’s destination, it accepts
without forwarding. If both conditions are false, the hop-by-hop option type is checked and the matching in_ function is executed, in
which the message is retransmitted. Messages to multicast addresses can be sent using a flooding mechanism, so the _flooding()
functions do an extra check for multicast packets.

Bridging the Gap

To cross a PAN boundary, link-layer messages need to be sent with a destination PAN ID corresponding to
the receiving PAN, or the global broadcast PAN ID OxFFFF. As it is not known when the second PAN will be
reached in situations with multiple hops, OxFFFF must be used. To let the NETSTACK framer know whether
to use its own PAN ID or the global PAN ID, we have created the PACKETBUF_ATTR_GLOBAL_BROADCAST flag
in the packet buffer, from which the framer builds the packets.

When a cross-mesh packet needs to be transmitted, the relevant functions in the lad engine set the
value of cross-mesh-flag, a variable defined in uip, to 1. Sicslowpan then uses this value to check if the
PACKETBUF_ATTR_GLOBAL_BROADCAST flag should be set to PACKETBUF_ATTR_GLOBAL_BROADCAST_TRUE or
PACKETBUF _ATTR_GLOBAL_BROADCAST_FALSE. When the framer sees that the flag is set to
PACKETBUF _ATTR_GLOBAL_BROADCAST_TRUE, the global broadcast PAN ID is placed into the packet.

Radio Delay

When two nodes start sending at the same time, this may cause a collision: the receiving node is not able
to distinguish the correct message. To decrease the probability of collisions, we have added a random delay
before sending to our implementation. This delay is implemented in the LAD engine and works with the non-
blocking ctimer delay function in Contiki. The engine will randomly allocate a transmission slot between 1
and 8 of its upcoming slots in which a transmission is allowed.

IPv6 Multicast Messages
With our implementation, IPv6 multicast messages can only be sent with the Flooding and 2-PAN Flooding
mechanisms. Hybrid and Routing-Twice are not designed for sending multicast messages, since they can
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only route a packet to a specific destination. For this reason, attempting to send a multicast message using
one of the latter two mechanisms will trigger a warning message in the LAD engine.

Linux Socket

As the FutUrLight project describes a use case where Contiki is run from within Linux, the implementation
is designed with interfacing with Linux in mind. For this reason, the standard packet output functions in
Contiki are not implemented in the cross-mesh engine. This means that it is not possible to generate cross-
mesh packets from within Contiki applications. A packet can be created by utilising the Linux socket API, and
can be sent to the network over a tunnel interface. This enables the usage of standard networking applications
on Linux, that can interface with the mesh network created by Contiki.

For testing purposes, we have created multiple example socket applications. These applications utilise the
Linux socket API to create and send ipv6 packets with dummy data into the desired tunnel interface. All hop-
by-hop option values relevant to our solution can be passed on as parameters during execution. In addition
to UDP and TCP sockets, to be able to fully control the packet contents, a socket with the RAW_SOCKET option
is created, in which the whole packet is crafted from scratch. However, it is only possible to send UDP packets
with this raw socket.

Extending Current Functionality
Developers using our implementation may want to extend it with additional functions.

One possible extension is the option to route TCP traffic cross-mesh, using the Routing-Twice option. To
facilitate this extension, our implementation remembers which node in the second PAN is the first to receive
the message in the Destination ID field of the hop-by-hop option. The TCP module can then send its response
back through this node to the sending PAN, where, again, the first node across the PAN border is saved.

A similar extension could be to send ICMP messages across PAN boundaries. To do this, the currently
existing module responsible for sending ICMP messages, uip-icmp6. c, would have to be adapted to include
a hop-by-hop extension header with our options. The cross-mesh engine will then forward the packet using
the chosen option.

By defining an abstract cross-mesh engine, we give developers the opportunity to create additional cross-
mesh engines with their own behaviour. To create a cross-mesh engine, it must first be defined and included
by adding macros to uip-cross-mesh-engines.h. Next, the new cross-mesh engine must implement the
init (), out () and in() functions, which will be called upon for initialisation, sending, and receiving pack-
ets, respectively. (N.B. The in() function also handles packet retransmissions.) In the current implementa-
tion, a packet will only be processed by the cross-mesh engine if it contains a hop-by-hop extension header
with a type field set to 0100xxxx and a length field set to 4. If another condition for forwarding to the cross-
mesh engine is desired, this needs to be changed in uip6. c.

Increase in Memory Footprint

Although there is no requirement to keep the compiled code as small as possible, we have looked at the
increase in size caused by adding our implementation, because Contiki is designed for limited devices. To do
this, we have compiled the usb-border-router program created by SOWNet, both with, and without cross-
mesh functionality enabled. Afterwards, we have used the size program to determine the ROM and RAM
used by the compiled program. The results are given in Table 4.1.

Required ROM | Required RAM
Cross-mesh disabled 230889 bytes 41968 bytes
Cross-mesh enabled 235844 bytes 43832 bytes
Difference 4955 bytes 1864 bytes

Table 4.1: Comparison of the ROM and RAM usage of Contiki with cross-mesh functions enabled and with cross-mesh functions dis-
abled.

Testing

To show the correctness and robustness of the code, the implementation has repeatedly been tested by func-
tional testing and by running existing Contiki regression tests. Additionally, unit tests have been written for
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the LAD engine with the use of the Cmocka unit testing framework, with which a line coverage of 98.85% has
been achieved. To be able to carefully control the function calls and parameters in the LAD engine, mock files
have been created for all files included by LAD. The unit tests can be found in /contiki/tests/. Version
1.1.1 of the Cmocka framework is included in the test folder, from where it can be installed before executing
the tests. Coverage is calculated with Gcov and the -fprofile-arcs and -ftest-coverage compilation
flags of Gece. We have also tested our code on hardware, running Contiki on two desktops with the ST-6LP01
module attached for radio communication. We provide more information on hardware testing in Appendix E.

SIG Feedback

On June 1, 2017, after two and a half weeks of programming, we uploaded our code to the Software Im-
provement Group (SIG) for static analysis. Because much of the code we uploaded was not written by us, we
included a list specifying which files should be analysed. After two weeks we received their feedback, which
indicated that we had a module with a long function that could be split up into smaller ones. Based on this
feedback, we have improved our code by moving code that addresses a subproblem into a separate function.
The full SIG feedback is listed in Appendix F.



Performance

The four mechanisms (Flooding, 2-PAN Flooding, Hybrid and Routing-Twice) each have their own way of
transporting a packet from A to B. Because their routing behaviour is so diverse, their impact on the network
is very different. To inspect the behaviour and performance of the described approaches, we ran simulations.

Proof of Concept

As a proof of concept, we verify that cross-mesh communication can in-  °
deed provide the desired functionality. Figure 5.1 shows the simulation .
overview, which is based on Figure 1.2 from Chapter 1. As the source and
destination nodes are in each other’s radio range, the four cross-mesh al- ¢
gorithms all deliver the message with equal speed and effectiveness. Us- .
ing those direct cross-mesh communication methods, the average deliv-
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ery time is 25.4 milliseconds. When using default BLOWPAN routing, two Figure 5.1: Simulation of the street map

hops in the blue PAN and three hops in the red PAN are required between

presented in Chapter 1. The cyan and
orange nodes are border routers, the cir-

the nodes and their corresponding edge routers. This results in an aver- cled blue node is the sender and the cir-
age delivery time of 63.2 milliseconds, without taking the Internet transfer ~cled red node is the receiver.

into account — we assume that the Internet connection adds no considerable delay to the transmission time
(see Chapter 1). This experiment demonstrates that direct cross-mesh communication works and can be
faster than normal routing. However, this example is unsuitable to compare the four different mechanisms,
because the sending and receiving nodes are in each others radio range. Therefore, we create another simu-

lation to stress the differences between them.

Simulation Settings
Simulations are done in Cooja, Contiki’s built-in simulator. The values used in
the IPv6 header and the hop-by-hop extension header are listed in Table 5.1.

The simulations provide insight in network behaviour. However, Cooja em-
ulates different hardware (including the radio module) compared to the street
light nodes. Especially the measured radio activity could differ between Cooja
simulations and a network running on real hardware.

The nodes are separated by 25 metres to follow the Dutch convention for
urban areas, have a transmission range of 50 metres, and an interference range
of 100 metres. Figure 5.2 shows a visualisation of the transmission (green) and
interference (grey) range of the node with label 10. The radio transmission is
simulated using Unit Disk Graph Medium (UDGM) with distance loss. UDGM
utilises a probabilistic transmission failure and interference model where a
transmit success ratio and a receive success ratio can be set. In our simulation,
both ratios are set to 100%.

The full test bed is shown in Figure 5.3. Blue nodes form the first PAN with
the green border router; the red nodes form the second PAN with the orange
border router. Messages are sent from node 1 to 31.
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Figure 5.2: The nodes have a trans-
mission range (green) of 50 me-
ters and and an interference range
(grey) of 100 metres.
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Flooding | 2-PAN Flooding | Hybrid | Routing-Twice
IPv6 header: Hop Limit 8 5 255 255
HBHO: Hop Info - 4 5 -
HBHO: Destination ID - O0xbbbb - 0x000c

Table 5.1: Parameters used in IPv6 packets during the simulations.

Flooding | 2-PAN Flooding | Hybrid | Routing-Twice
ContikiMAC without delay 46% 46% 48% 72%
ContikiMAC with delay 47% 50% 52% 78%
nullrdc without delay 14% 10% 25% 82%
nullrdc with delay 100% 98% 99% 98%

Table 5.2: Packet success rate (percentage of packet received by the destination node) when using different RDC drivers, with or without
LAD’s random delay.

When comparing different routing algorithms, a dummy packet must be included. As a quick delivery is
needed — which is one of the key reasons for direct cross-mesh communication — UDP datagrams are the
logical choice, which uses neither acknowledgements nor handshakes.

We have chosen to send 100 packets with an interval of 1500 milliseconds between transmissions. This
should approximate a realistic setting where multiple packets are sent consecutively.

Radio Settings

Contiki offers multiple drivers to handle radio duty cycling (RDC). As we started experimenting with Cooja’s
example simulations and default settings, we used the ContikiMAC RDC driver, which implements radio duty
cycles: the antenna is switched off and periodically switched on to see if there is radio activity. To maximize
packet delivery, frames are sent multiple times after each other (so nodes waking up can receive them). For
many IoT applications, RDC is useful to save energy, however, in the street light application described in
Chapter 1, the radio antenna is assumed to play no significant role in the total energy consumption. Also, the
nodes must be able to communicate with minimal delay. Therefore, we set the RDC driver to nullrdc, which
is a simple pass-through layer: RDC is switched off. This means the radio antenna is kept on all the time.

To illustrate the effect on packet delivery, Table 5.2 shows the ContikiMAC and nullrdc drivers when
sending cross-mesh packets, with and without the radio delay described in Chapter 4. ContikiMAC and its
radio duty cycling has a dramatic negative effect on the packet success rate. We decided to run all further
simulations with nullrdc, as this driver is used in the application that initiated this project.

Measurement Criteria
The following key performance indicators (KPIs) are used to assess the implemented approaches:

* Success rate: indicates if the message has arrived at the destination node at all;

¢ Delivery time: the number of milliseconds between the first packet transmission and the first packet
arrival at its destination;

¢ Transmissions: the number of packet (re)transmission by all nodes;

¢ Receiving nodes: the number of nodes handling (i.e. receiving) the message;

Sending nodes: the number of nodes (re)transmitting the message;

Packet duplication: the number of times that nodes receives a message that they have handled before;

Packet duplication at destination: the number of times the destination node receives a message that
it has handled before.
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Figure 5.3: Testing scenario resembling a couple of streets. PAN A consists of the green (1, edge router and transmitting to 31) and blue
nodes. PAN B consists of the orange (34, edge router), red, and dark red (31, receiving from 1) nodes.

Expected Results

It should take about 5 hops to get a message to the destination node (31), including the original sender (1) (see
Figure 5.3). Therefore, in all packets that are received by the destination node, one would expect a sending
nodes count of at least 5.

Because Flooding is tested using a maximum of 8 hops (IPv6 TTL = 8), this would mean that potentially
all nodes within 8 hops of the sending node, except the destination node, will retransmit a packet. These are
practically all nodes in the scenario. RF collisions may result in packet loss, leading to less retransmitting
nodes. However, as the reception of packets within the interference range (but not the transmission range)
have a probability of successful delivery, this may implicate more retransmitting nodes.

Compared to Flooding, the 2-PAN Flooding should reduce the transmission counts, as the spread in both
PANs is limited. Hybrid should lower the transmission count even further, as there will be no flooding in PAN
B. Because PAN B is the smaller one of the two, this impact may be limited.

Routing-Twice is the most sophisticated of the mechanisms. It should follow the logical path from node
1 to node 31. This includes 6 (re)transmissions on its way. However, as the broadcast send out by the bridge
maybe received by more than one node in PAN B, this number may be higher than 6.

Results

Table 5.3 shows the results of the Cooja simulations. All mechanisms perform nicely in this scenario, with all
success rates above 98%. From the goal of preventing network congestion, Routing-Twice clearly outperforms
the alternatives. As Routing-Twice relies on the default routing strategy in Contiki’s RPL implementation,
broadcasting only once per message (at the bridge node), the packet retransmission count is lower than the
multi-broadcasting alternatives.

Compared to the other mechanisms, Flooding provides the quickest packet delivery. This is a logical
consequence of its nature: all nodes, regardless of their PAN and their distance to the destination node, simply
retransmit the packet (as long as the IPv6 Hop Limit exceeds one). However, almost all nodes in this scenario
retransmit the packets, which could lead to serious network congestion.

The results match the expectations, although the difference between 2-PAN Flooding and Hybrid could
be inflated in other scenarios where the destination PAN consists of more nodes.
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Flooding 2-PAN Flooding Hybrid Routing-Twice

Success rate 98.33% 99.33% 98.33% 99.33%
Average no. of transmissions 24.12 18.43 18.44 6.89
Arrived packets

Delivery time 196.74 ms 219.25 ms 217.81 ms 238.89 ms

No. of receiving nodes 25.19 22.50 22.48 8.90

No. of transmitting nodes 24.17 18.44 18.47 6.90

Packet duplication 69.79 39.62 39.93 2.67

Packet duplication at destination node 2.76 0.87 0.90 0.88
Lost packets

No. of receiving nodes 21.00 20.00 19.22 4.50

No. of transmitting nodes 20.83 16.50 15.89 4.00

Packet duplication 49.50 34.00 38.67 1.00

Table 5.3: The results of the simulations. All four mechanisms have been run three times, with 100 cross-mesh messages sent in each

iteration.




Considerations

Technological Considerations

We consider here the main technological implications of our implementation: the consequences of enabling
flooding, the use of the value range 0x21-0x24 for the hop-by-hop option types, packet space reduction
caused by our implementation, and the remaining obstacles for its use in practice.

Firstly, flooding can be a dangerous broadcasting technique if it is not used carefully. Flooding messages
with a relatively high hop limit can cause serious network congestion, hampering other traffic. This is why
developers using our implementation need to take particular care to set the hop limit field to a reasonable
value. Also, if malicious hackers gain access to a node, they can use flooding to shut the network down. In
our implementation, there is no sanity check for the hop limits. In practice, this means that a cross-mesh
flooding packet with a hop limit set to its maximum value (255) could spread through an entire city.

Next, we consider the consequences of using the values 0x21-0x24 for the hop-by-hop option types. A
disadvantage here is the possibility that one or more of these values are used by a conflicting standard in the
future. In this case, in order for our code to be compatible with the new standard, these values will have to be
changed. Also, as mentioned in Chapter 3, the 2-PAN Flooding solution violates the IPv6 standard because
the hop limit header field is not always decremented.

Another consideration is the reduction in remaining packet space. A hop-by-hop header adds 8 bytes to
the IEEE 802.15.4 frame(s). This decreases the worst-case maximum UDP payload size to 62 bytes in one IEEE
802.15.4 frame. If fragmentation of packets is to be avoided, this reduced payload size should be taken into
account.

Furthermore, we have not created a solution to solve the problems posed by the assumptions made in
Chapter 3. This means that cross-mesh functionality in its current state is unlikely to work in situations where
different PANs communicate over different radio channels and/or use different encryption keys.

Finally, when our solution is used in practice, a problem can occur when the IPv6 addresses of two nodes
in a PAN end in the same 16 bits. Routing-Twice uses short IDs to address the bridge node, however, SOWNet
does not use short IDs. We worked around this by treating the last 16 bits of a node’s IPv6 address as a short
ID. Assuming the last 16 bits are random, the probability of two addresses ending in the same 16 bits is not
insignificant (50% in a network of 300 nodes). To use short IDs, the function is_my_short_id () in lad.c
needs to be changed.

Ethical Considerations

Any new technology that impacts society on the scale at which the Internet of Things does needs to be treated
cautiously. Taking the IoT to the streets will be able to save a lot of energy, but also creates safety vulnerabil-
ities. In light of the smart city’s potential for both beneficial and harmful societal effects, this section sheds
light on the ethical side of the story.

On the bright side, turning city lights off when there is no traffic nearby can lead to considerable energy
savings. Although traditional, power-consuming street lights are being replaced with more efficient LEDs,
there may still be opportunity for gains here.

On the other hand, security vulnerabilities are among the main challenges for IoT devices, and may have
far-reaching consequences if they do not come to light. A security breach could leave an entire city in the
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dark. Therefore, it is vital that any public service IoT system is thoroughly tested before critical infrastructure
comes to rely on it.



Conclusion

Results

We have implemented a solution for the problem of cross-mesh communication in Contiki, without affecting
any existing functionality. Our solution makes it possible to choose between four types of routing, depending
on the situation at hand. We have not solved the problems that occur when the PANs involved use different
channels and/or encryption keys, but our implementation is extensible with additional features. Developers
can create their own cross-mesh engines with different behaviour by implementing our cross-mesh driver
interface.

We have used Cooja simulations and real hardware to test our solution, and it has been found to meet the
requirements in both cases: duplicates are filtered and no considerable extra traffic or delays are introduced.
Furthermore, we have written unit tests to test our code, attaining 98.85% line coverage, and used feedback
from SIG to improve the quality of our code.

The simulations we have done in Cooja show that all routing mechanism achieve a success rate of at
least 98% in our setup, in situations where the radio is always on. The average number of transmissions is
considerably lower in the Routing-Twice solution, resulting in lower packet duplication, network congestion
and processing overhead. Routing-Twice takes a little more time to reach the destination node, because, in
contrast to the flooding-based solutions, it does not always find the most efficient route to the destination
and depends on the application’s choice of bridge node.

Looking at the simulation results, Routing-Twice is the solution with the least network overhead, but it
does require that a suitable bridge node is known. Flooding achieves the lowest latency, but will result in
considerable network traffic. For general unicast messaging, we advise using the routing twice mechanism, if
enough information is known about the network. However, in critical situations, a flooding-based approach
might be more suitable.

Learning Experience
Over the course of the project, we have acquired many new skills and experiences.

Primarily, we have greatly increased our knowledge and understanding of standardised network protocols
for low-power networks and of IPv6. The second year bachelor course Computer Networks had given us a
basic idea of the different standards in existence, but only during this project have we truly driven deep into
some them and so gained a solid grasp of their practical aspects.

Additionally, doing the project in a company has allowed us the opportunity to experience what it is like to
work full-time in a business, rather than an academic setting. Because we worked at the company’s office, we
also got to look at the development process from behind the scenes. Within SOWNet, supervision consisted of
weekly meetings with our supervisor, during which we reported our progress and considered how to proceed.

Furthermore, reflecting on our Scrum-based process, we find that the model of weekly sprints has been
a useful way to organise our work. Discussing what had to be done and dividing tasks once a week made it
clear to everyone who was doing what.
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Recommendations

As mentioned in Chapter 1, we have made simplifying assumptions while designing and implementing our
solution(s) for enabling cross-mesh communication in Contiki:

1. The sending node has all the relevant information it needs to send a message.
2. All PANs communicate using the same link layer encryption key or encryption is turned off.
3. All PANs communicate over the same IEEE 802.15.4 channel.

Anyone building on our solution in practice must keep these assumptions in mind and decide how to solve
the problems we have left unsolved.

Firstly, developers using our solution need to ensure that nodes sending messages have all the required
information to do so. This means that nodes need to know not only such information as destination ad-
dresses, short IDs, and PAN IDs, but also need to be able to make a choice between the four available types of
cross-mesh communication.

Additionally, if our solution is going to be run on a Linux system with the ability to send TCP responses
with our cross-mesh routing-twice option, the Linux socket on the receiving end needs to be enabled to
receive hop-by-hop extension headers. In this socket, the hop-by-hop option can then be used to create
the response packet. It is, however, important to note that packets containing unknown hop-by-hop options
are currently (v4.12-rc6 at the time of this writing) always dropped by the Linux kernel. This means that a
custom kernel is required in which the implementation of /net/ipv6/exthdrs. c is slightly modified to do
one of the following:

* Abide by the IPv6 standard by looking at the first 2 bits of the unknown option type to decide what to
do with the packet.

¢ Recognise the hop-by-hop options defined in this report.

* Never drop any packets with unknown hop-by-hop options.

Next, although using a single 128 bit key for all networks is likely safe from brute force attacks, we recom-
mend implementing a stronger cryptographic scheme. If the key is compromised, all networks using this key
become vulnerable. This problem can be solved by using nodes that have multiple encryption keys. In this
case, a default key can be used for the initialisation phase, after which different PANs use different keys. In
this situation, nodes send broadcast messages with the default key, and messages within their PAN with the
PAN-specific key. Other solutions need to be devised in case only one key is available in each node.

Furthermore, in practice not all PANs may use the same channel, or may change channels frequently.
To overcome this difficulty, we propose two strategies. A straightforward way to send a message to another
PAN that is on a different channel, is to simply send the message on all channels, and hope that potential
receivers listen to the right channel at the right time. If the broadcast is successful, and the node receives
an acknowledgement, the channel on which it was received can be tried first the next time a broadcast must
be sent. A more complex solution would be to distribute channel schedule information via the cloud to
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nodes that need to send to other PANs, and coordinate channel switching in this way. Both strategies have
the drawback of generating (possibly too much) extra overhead, so more effective solutions may need to be
devised.



ST-6L.PO1

The ST-6LP01 radio module has 10 pins with which it can be connected to other devices, and has two com-
munication methods; USB and UART. While communicating over USB creates more code overhead, it is con-
siderably faster - Up to 12Mb over USB vs 1Mb available through UART. The board pin-out can be found in
Figure A.1 and their description in Table A.1.

Data- -1 10 p— GND
Data+ =2 9 — BootLoader
SOWNet
GND  —3 RF module 8 Rx
VBUS e 7 p— Tx
EN -_15 6 p— 5V

Figure A.1: Pin-out of the SOWNet radio module.

Ef;;lénal No. /0 Description

5V 6 PWR 5Vdc power supply

GND 3,10 PWR 0V Ground input

VBUS 5 PWR USB VBUS power supply (only for monitoring purposes)

D+ 2 I/0  USB Data signal plus

D- 1 170 USB Data signal minus

EN 4 I Enable Pin. Used to reset the module (active high)

Tx 7 0] Transmit asynchronous data output

Rx 8 I Receive asynchronous data output

BootLoader 9 I Bootloader pin. This pin must be held high during reset for
entering programming modus

Table A.1: Terminal functions of the ST-6LP01 radio module
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6LoWPAN

The 6LoWPAN (IPv6 over Low-power Wireless Personal Area Networks) protocol connects the IPv6 and IEEE
802.15.4 standards [12]. Concerning the network layer, every device supporting IPv6 should have a Maximum
Transmission Unit (MTU) of at least 1280 bytes. In contrast, the 802.15.4 frames have a length of 127 bytes.
As the 802.15.4 header takes up to 25 bytes, and the strongest provided encryption at the data link layer adds
an overhead of 21 bytes, only 81 bytes are left for higher layers. 6LoOWPAN provides a bridge between those
layers: outgoing IPv6 packets are split up into 802.15.4 frames, and incoming frames are assembled back to
IPv6 packets. To make optimal use of the frames, 6LoOWPAN compresses packets from higher layers by eliding
information, which is later reinserted on the receiving end.

6LoWPAN adapts the IPv6 standard in a low-power wireless paradigm: unnecessary packet transmission,
and therefore power consumption, is avoided as much as possible. The IPv6 Neighbor Discovery Protocol
(NDP) is adapted in this mindset: the 6LoWPAN NDP avoids multicast-based address resolution and is based
on host-initiated interaction to allow sleeping nodes.

A 6LoWPAN packet header starts with a dispatch byte: an 8-bit sequence that describes the packet type.
The 2 most-significant bits are used as quick identifiers, as described in Table B.1a. Table B.1b lists the stan-
dardised dispatch bytes. Depending on the dispatch type, additional data is expected, such as fragment in-
formation or compression type. Further fields include the following: addressing, hop-by-hop processing,
destination processing, and payload.

Bits  Packet type Dispatch Header type

00 Not a LoWPAN packet 00 xxxxxx Nota LoWPAN packet

01 Normal dispatch 01 000001 Uncompressed IPv6 Addresses
10 Mesh header 01 000011 LOWPAN_DFF

11 Fragmentation header 01 010000 LOWPAN_BCO

01 1xxxxx LOWPAN_IPHC

10 xxxxxx Mesh header

10 Oxxxxx ... for Critical 6LOWPAN Routing Headers
10 1xxxxx ... for Elective 6LoOWPAN Routing Headers
11 000xxx First fragmentation header

01 100xxx Subsequent fragmentation headers

11 1i1xxxx Page switch

Table B.1: a: (left) The first 2 bits at the start of a dispatch, describing the general type. b: (right) List of dispatch type bytes currently in
use.

The 6LoWPAN header also contains source and destination addresses, and, depending on the compres-
sion type, additional IPv6 and UDP header fields. The 16-bit short or 64-bit EUI addresses used by IEEE
802.15.4 need to be converted to IPv6 compatible identifiers, which can be done efficiently in a stateless
manner with HC1 header compression[11] by setting requirements on the IPv6 addresses of the nodes. These
IPv6 addresses are formed by combining a known IPv6 prefix with the EUI-64 identifier of the device, mean-
ing that only EUI-64 identifiers are required to be able to communicate with other nodes. This is made even
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more efficient by introducing 16-bit short identifiers, unique for every node within a PAN. This way, only 32
bits are used to uniquely identify a node: 16 bits for the identifier of the PAN (PAN ID) and 16 bits for the node
identifier.

As shown in Table B.1, 6LoWPAN defines the broadcast dispatch type LOWPAN_BCO. The dispatch byte
is followed by a supporting byte for the multicast mechanism. The simplest mechanism is flooding, where
nodes simply echo the broadcast packet. With flooding, the supporting byte is used to indicate a packet’s
sequence number. In this way, a node does not need to store an entire broadcast packet, as the sequence
number is enough to prevent multiple retransmissions of the same packet.

This broadcasting definition in the standard is rather limited. This may be the result of the low-power phi-
losophy of 6LOWPAN: packet transmission is expensive in terms of power consumption, making broadcasting
an inconvenient approach. When a broadcasting technique requires more than one supporting byte, a dif-
ferent routing header can be defined with new dispatch type [12]. We have not used this broadcast dispatch
type in our implementation.

LA full list can be found at https: //www.iana. org/assignments/6lowpan-parameters/6lowpan-parameters.xhtml


https://www.iana.org/assignments/6lowpan-parameters/6lowpan-parameters.xhtml

IEEE 802.15.4

With the rise of the IoT, a protocol was needed to allow for robust communication over low-cost, low-power
and lossy wireless devices. For this, the IEEE 802.15.4 standard was proposed [1]. It defines a “protocol
and compatible interconnection for data communication devices using low-data-rate, low-power, and low-
complexity short-range radio frequency (RF) transmissions in a wireless personal area network (WPAN)”.
The standard includes frame structure models, network topologies, channel access mechanisms and security
measures to ensure robust communication.

Addressing within the protocol can be done in two ways. Every device has a 64-bit unique EUI identifier
with which a node can be directly addressed. In addition, 16-bit short addresses are assigned to every node
within a PAN by the PAN coordinator. These short identifiers are unique within a PAN, but an additional 16-
bit PAN ID is needed to distinguish nodes from those in other PANs. The protocol also permits broadcasting
by using the broadcast address OxFFFF for both the short address and the PAN ID. Broadcast address can also
refer to the 64-bit broadcast MAC address which is defined in IEEE Std 802-2014 (OxFFFF FFFF FFFF FFFF).

As the number of connected devices within a network increases, setting up the network becomes a dif-
ficult task. For this reason, a bootstrap process has been proposed to allow autonomous node and network
configuration. During this process, information such as network identifiers and encryption keys is shared
between devices according to the diagram in Figure C.1. After this information exchange, a PAN consisting of
6LoWPAN edge (border) routers (6LBRs), reduced-function devices (RFDs) and full-function devices (FFDs)
is created [7].

In specific, the bootstrapping protocol is initiated by 6LBRs. These send beaconing messages to the first-
hop FFDs in their RF range. The first-hop FFDs then associate with the 6LBR and authenticate to it. The
6LBR checks the authentication with an external trust center (TC) and upon successful validation receives
an IP address and a network key. Further bootstrapping of other FFDs and RFDs happens analogously with
configured FFDs relaying between the 6LBR and the unconfigured FFDs or RFDs [7].

On the side of security, the protocol enables usage of AES on the link layer for encryption and 32, 64,
or 128 bit message authentication codes (MACs) [1]. It provides options for data authenticity (AES-CBC),
data encryption (AES-CTR) or both (AES-CCM). The strongest setting, AES-CCM with a 128-bit key, poses an
overhead of 21 bytes per packet.

A problem with using RE especially on generally used frequencies such as 2.4 GHz, is that other wireless
networks can interfere with data transmission. To alleviate this problem, a range of frequencies is used in-
stead of a single frequency. This range is then divided into channels, where each channel is a subrange of the
full frequency spectrum. The IEEE 802.15.4 standard divides the 2.4 GHz - 2.4835 GHz range into 16 channels,
and offers mechanisms to utilize these efficiently, such as channel adaptation and channel hopping [1].
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C. IEEE 802.15.4

First-hop FFD

Beaconing

6LBR

IEEE 802.15.4
MAC unsecure association

Auth. material check

Authentication

TC

IP address

Further configuration

Figure C.1:
gously.

Network key and IP address

Schematic depiction of the first phase of the security bootstrapping mechanism. The second and third phase happen analo-



Contiki

Contiki (http://www.contiki-os.org/) is an operating system (OS) designed for 10T, aimed to be run on
low-power, low-memory devices. Created in 2002 and written in the C programming language, Contiki sup-
ports fully standard IPv4 and IPv6 and has implementations of standard low-power wireless standards such
as 6LoWPAN, RPL and CoAP.

In order to achieve low power consumption, Contiki makes use of so-called “sleepy routers”. Contiki
implements a radio duty cycling system, allowing routers to sleep between relayed messages, thus making it
possible to have battery powered routers.

Network Call Stack

NETSTACK is Contiki’s network stack, splitting the network responsibilities into five driver modules: NET-
STACK_NETWORK, NETSTACK_LLSEC, NETSTACK_MAC, NETSTACK_RDC and NETWORK_RADIO. Each driver points
to a C program (its implementation) and covers a part of the OSI model. Additionally, the NETSTACK_FRAMER
is not a driver, but consists of auxiliary functions concerning the frame creation (when transmitting) and
parsing (when receiving). Figure D.1 provides an overview of the network stack, of which all drivers use the
packet buffer. This section describes the driver responsibilities and connections in Contiki’s NETSTACK setting
for IPv6-oriented communication. !

Packet Buffer and Queue

The NETSTACK drivers communicate with each other using the packet buffer and packet queue. To minimise
the memory footprint, the buffer is singular, therefore simultaneous packet handling is not possible.

OSI Model Contiki NETSTACK drivers
3. Network Layer uip6
sicslowpan
LLSEC
2. Link Layer MAC *Access packet buffer
RDC
Framer
1. Physical Layer Radio

Figure D.1: Overview of the Contiki network stack (NETSTACK)

IFurther reading on NETSTACK and its MAC subdrivers: http://anrg.usc.edu/contiki/index.php/MAC_protocols_in_
ContikiOS
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Network Driver

The network driver is used as an interface by other applications. When using 6LoWPAN communication, the
sicslowpan driver usesits input function pointer as a callback for incoming messages.

LLSEC Driver

The Link Layer Security (LLSEC) driver implements encryption following the IEEE 802.15.4 specification. Cur-
rently, Contiki only offers the noncoresec driver, which uses a network-wide encryption key. > When en-
cryption on the link layer is not required, the nullsec driver simply passes through packets.

MAC Driver

The nullmac driver simply passes through packets; the csma driver implements addressing, sequence
numbers and retransmissions.

Radio Duty Cycling Driver

The Radio Duty Cycling (RDC) layer is responsible for the sleeping time of the node, possibly switching off the
RF antenna periodically. Contiki offers several RDC drivers, of which some do not use energy savings, such
as the default for 6LOWPAN communication (sicslowmac driver). Other implementations do switch the
antenna on/off for energy saving, such as the (C)X-MAC driver, its descendant (ContikiMAC driver), and
the LPP driver. Animportant setting for these drivers is the channel check rate which specifies the number
of channel checks per second.

Framer

The appropriate network framer is the framer-802154 and offers two auxiliary functions: create to make a
802.15.4-frame with the provided data, and parse to process an incoming frame. 3

2Further reading on noncoresec: https://github.com/contiki-os/contiki/tree/master/core/net/1lsec/noncoresec
3The 802.15.4 framer is implemented in core/net/mac/framer-802154.c . Notice that the parse function is used to filter out mes-
sages for other PANs on line 222.


https://github.com/contiki-os/contiki/tree/master/core/net/llsec/noncoresec

Hardware setup

For the testing of the code on hardware, a ST-6LP01 radio module (see Appendix A) is connected to a Linux
computer over USB. On the side of the radio module, a USB cable is connected to pins 1 through 4 and pin 4
(VBUS) is bridged with the pin 6 (5V) to be able to power the module from the computer’s USB port.

On the computer, Contiki is built natively with the use ofausb border router mote provided by SOWNet,
based on the already existing native border router example in Contiki. This mote enables interconnec-
tion between Contiki and an external radio module through SLIP, the Serial Line Internet Protocol. A tunnel
interface is opened and SLIP-encapsulated IPv6 packets are sent to Contiki through the Linux sockets API.

Finally, client and server application are created in Linux with the Linux sockets API with options to send
standard TCP and UDP packets, and TCP and UDP packets with hop-by-hop extension headers.
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SIG Feedback

First Feedback

De code van het systeem scoort 3 sterren op ons onderhoudbaarheidsmodel, wat betekent dat de code gemid-
deld onderhoudbaar is. De hoogste score is niet behaald door lagere scores voor Duplication en Unit Com-
plexity.

Zoals besproken werken jullie aan een uitbreiding van een bestaand systeem. Dat heeft als gevolg dat
jullie voor een deel worden beoordeeld op basis van code die in eerste instantie door iemand anders is
geschreven, maar vervolgens later door jullie is aangepast. Jullie zijn in dat opzicht dus in het nadeel ten
opzichte van andere groepen die al hun code voor 100 procent zelf geschreven. Dat gezegd hebbend is jullie
situatie natuurlijk wel realistischer, in het algemeen zal het vaak voorkomen dat je vanuit al bestaande code
moet werken.

Voor Duplication wordt er gekeken naar het percentage van de code welke redundant is, oftewel de code
die meerdere keren in het systeem voorkomt en in principe verwijderd zou kunnen worden. Vanuit het oog-
punt van onderhoudbaarheid is het wenselijk om een laag percentage redundantie te hebben omdat aan-
passingen aan deze stukken code doorgaans op meerdere plaatsen moet gebeuren.

In dit systeem is er bijvoorbeeld duplicatie te vinden in uip.h (waar de IP6 header steeds weer opnieuw
voorkomt), en uip6.c (waar de switch op basis van ext_hdr_options_process() meerdere keren voorkomt). Het
is aan te raden om dit soort duplicaten op te sporen en te verwijderen.

Voor Unit Complexity wordt er gekeken naar het percentage code dat bovengemiddeld complex is. Het
opsplitsen van dit soort methodes in kleinere stukken zorgt ervoor dat elk onderdeel makkelijker te begrijpen,
makkelijker te testen is en daardoor eenvoudiger te onderhouden wordt. Binnen de extreem lange methodes
in dit systeem, zoals bijvoorbeeld de 'uip_process’-methode in uip6.c, zijn aparte stukken functionaliteit te
vinden welke ge-refactored kunnen worden naar aparte methodes. Commentaarregels zoals bijvoorbeeld
'This is where the input processing starts’ zijn een goede indicatie dat er een autonoom stuk functionaliteit
te ontdekken is. Door elk van deze functionaliteiten onder te brengen in een aparte methode met een de-
scriptieve naam kan elk van de onderdelen apart getest worden en wordt de overall flow van de methode
makkelijker te begrijpen.

Bij al deze voorbeelden is het aannemelijk dat deze onderhoudbaarheidsproblemen er al inzaten voordat
jullie uberhaupt aan het project begonnen. Het is hier dus de zaak om te kijken of het lukt om de oorspronke-
lijke code enigszins te refactoren, zodat jullie niet alleen nieuwe functionaliteit hebben toegevoegd, maar ook
de technische kwaliteit van de code beter hebben achtergelaten. Hopelijk lukt dit nog tijdens de rest van de
ontwikkelfase.

Als we alleen naar de bestanden kijken die jullie zelf hebben geschreven wordt het verhaal inderdaad iets
anders. We zien echter nog steeds een aantal voorbeelden waarbij de Unit Complexity nog verbeterd kan
worden.

Een van die voorbeelden is in_routing_twice in lad.c. Het commentaar boven de for-loop, "check if one
of our ip addresses is the bridge node address”, geeft aan dat de inhoud van deze for-loop eigenlijk een apart
deelprobleem oplost. Als je dit uitsplitst wordt je code makkelijker te begrijpen, wat met name van belang
is als de hoeveelheid functionaliteit in dit bestand op een later moment gaat groeien. Daarnaast wordt het
zo makkelijker om onderdelen in de toekomst te hergebruiken, en tot slot kun je de code zo ook makkelijker
testbaar maken.
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Original Project Description

Project description

SOWNet heeft een eigen hardware module ontwikkeld voor een Contiki implementatie van het 6LoOWPAN
protocol. Ondanks het feit dat er een werkende versie van deze implementatie beschikbaar is, werkt het
geheel nog niet naar tevredenheid. Zo zijn er een paar modules en functionaliteiten van het protocol die niet
goed werken en/of niet geimplementeerd zijn. Het doel van deze opdracht is het onderzoeken en verbeteren

van huidige Contiki implementatie. Hierbij kan gedacht worden aan "multi homing", "Multi edge routers"
en/of communicatie tussen nodes in verschillende 6LoOWPAN cellen.

Company description

SOWNet is een innovatief en dynamisch bedrijf gespecialiseerd in de ontwikkeling van hard- en software op
het gebied van Mesh Netwerken. SOWNet is 10 jaar geleden ontstaan als een Spin-Off van het onderzoeksin-
stituut TNO en telt op dit moment 5 engineers in electronica en informatica.

Auxiliary information

SOWNet is op zoek naar studenten die over een bepaalde mate van zelfstandigheid beschikken en bereid zijn
zich in te zetten voor het oplossen van actuele problemen vanuit de markt. Daar tegenover biedt SOWNet
ondersteuning en begeleiding van professionals op dit gebied alsook een vergoeding van 250,00 per maand.
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Infosheet

Cross-mesh Communication in Contiki OS

Client: The project was carried out at SOWNet Technologies, an Internet of Things company situated in Pij-
nacker, The Netherlands.

Final Presentation: July 3, 2017 16:00.

Assignment: The problem we solved was to implement direct communication between devices in two differ-
ent Personal Area Networks (PANs) in Contiki OS. The problematic and the desired behaviour can be seen in
Figure H.1.

Process: We used weekly sprints to steer our development process, as our solution kept evolving throughout
the project.

Research: During the research phase we have looked at the standards of the protocols used and at the internal
code of Contiki. This gave us a good idea of how communication in Contiki is currently done and how it could
be extended.

Product: We have delivered a product that solves the problem, allowing developers to choose between four
different types of cross-mesh communication.

Verification: The solution has been tested with unit tests, with Contiki’s built-in simulator, Cooja, and it has
been tested on hardware. We have documented the still unsolved problems outside of the scope of our project
that need to be resolved before our solution can effectively be used in practice.

Team members

Leendert van Doorn
Interests: Cyber Security, Natural Language Processing
Major contributions: LAD Engine development, Report

Ahmet Giidek ERT>. . ER2
Interests: Embedded Software, Networking, Cyber Security o
Major contributions: Socket development, Hardware and unit testing
Daan van der Valk (a) Communication via
Interests: Algorithm Design, Networking, Cyber Security edge routers

Major contributions: LAD Engine development, Simulation design and

scripting / JAN
The final report for this project can be found at: - ’
http://repository.tudelft.nl A N ‘\ A
Client Supervisor: Winelis Kavelaars SOWNet Technologies. [ \ ]

TU Delft Supervisor: ~ Koen Langendoen  Embedded Software group. Rl Rz
Contacts &

Leendert van Doorn leendertvdoorn@gmail.com

Ahmet Giidek agudek95@gmail.com (b) Our solution: direct
Daan van der Valk daanvdvalk@gmail.com communication

Figure H.1: The current (a) and desired
43 behaviour (b) of cross-mesh communi-
cation in Contiki.)
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