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—xecutive summary

Background

The construction industry is known as one of the largest industries in the world. It is also
forecasted to grow due to the increasing demand for housing and infrastructure. Earthworks
will also increase because they are involved at the beginning of most construction projects. The
largest activity in earthworks is truck movement or hauling to transport material. Thus, the
planning process of earthworks involves time estimation of truck movement in transporting the
material in one cycle, which is defined as truck cycle time (see figure 1).
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Figure 1. Truck cycle in earthworks

Experts currently calculate truck cycle time (TCT) by analyzing machinery specification, using
a mathematical equation, or conducting a trial of a truck cycle on site before the project starts.
However, the prediction is inaccurate because of subjectivity and human error, which easily
affects the prediction. Inaccurate truck cycle time (TCT) prediction causes queuing of trucks
for loading and unloading material. It causes a delay in completing the project on time and
within budget due to a change in planning by adding additional equipment, machinery and
human resources. It also negatively impacts the environment by increased fuel consumption,
resulting in higher emissions. Hence, improving the accuracy of TCT is considered a critical
element in increasing the construction industry’s performance.

The machine learning (ML) approach is an approach to predict or make decisions. It uses
historical data to build a model without being explicitly programmed. However, not much
research has been conducted to develop a predictive model for TCT in earthworks using the
ML approach. Thus, this research aims to utilize the historical data for improving the accuracy
of TCT prediction in earthworks.

Research Scope

This research explores historical data gathered from projects of Royal BAM Group in the UK.
The historical data were collected manually (manual data) and automatically collected using a
machine (automated data). Both the data was explored and developed using regression
techniques: Multi Linear Regression (MLR), Support Vector Regression (SVR), and Artificial
Neural Network (ANN). However, this research did not explore the difference between
historical data from BAM and other companies. Furthermore, this research did not consider the
dependency between trucks in accurately predicting truck cycle time. It also did not include
the government regulations on earthworks, such as operation time or the number of workers.



Research Methodology

The research results are obtained by answering the main research question: “How can the
historical data be utilized to improve the prediction accuracy of truck cycle time in
earthworks?”. Three sub-questions are formulated to answer the main research question, as
follows.

1. Which variables in the historical data should be included in the predictive model of truck
cycle time in earthworks?

2. How to develop an accurate predictive model of truck cycle time using the machine learning
approach?

3. What is the practical implication of using the predictive model of truck cycle time?

Each question was answered by following the scheme of research methodology, which is
illustrated in Figure 2.

| START | —>| Enter to Algorithm ‘ 4‘ Result Interpretation |

| Data Collection | | Model Training ‘ | Stakeholder Interview |

| Initial Data Analysis | | Model Validation ‘ ‘ END |
| Exploratory Data Analysis | | Obtain Model ‘
| Final Dataset | | Test Model ‘

| Model Evaluation ‘

Figure 2. Research methodology
Findings
1. Data Exploration Result
Based on the literature review, factors of TCT are analyzed and used as the starting point to
collect other data. This research also used weather data and combined it with the historical
data. Each data is explored and analyzed through initial data analysis (IDA) and exploratory
data analysis (EDA).

Data exploration shows that manual data has five variables and 430 data points, and automated
data has seven variables and 589 data points. The availability of individual activity duration in
automated data can predict TCT with three different scenarios.
- The first scenario is the accumulation of the load time model, haul time model, unload
time model, return time model.
- The second scenario is the accumulation of the truck travel time, load, and unload time
models.
- The third scenario is the truck cycle time model.
Hence, the variables are distinguished between input and output, shown in the following figure
and used as TCT model input.
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Figure 3. Input and Output

2. Modelling Result and Evaluation

The data was developed into predictive models, which has a low value of Mean Absolute Error
(MAE) and Root Mean Squared Error (RMSE), and a high value of the coefficient of
determination (R?). Based on modelling outcome, the predictive models from manual data
cannot be used, and automated data can be used. It was concluded that manual data quality and
variance are insufficient to develop a robust predictive model. Hence, manual data was not
used in predicting truck cycle time.

Table 1. Modelling Result

Output Method Input Important Feature Accuracy
LT ANN Distance, Volume, Relative Humidity, Temperature, Start Time Hour, Model Distance 33%
HT ANN Distance, Volume, Relative Humidity, Temperature, Start Time Hour, Model Distance 31%
uT ANN Volume, Distance, Model Model 5.8%
RT ANN Volume, Distance, Model Distance 78%

TIT MLR Distance, Volume, Relative Humidity, Temperature, Start Time Hour, Model Distance 79%
TCT ANN Distance, Volume, Relative Humidity, Temperature, Start Time Hour, Model Distance 56%

Table 1 shows the modelling result where ANN develops the most predictive models with
feature combination one or two. It concluded that distance is an important feature for most
predictive models. The comparison in predicting TCT from the test dataset concluded that the
third scenario is the most accurate.

3. Practical Implication

The practical implication of the models was analyzed by interviewing two stakeholders - a
project manager, and a logistics and operations analyst. The result from the interview gave
insights into the current practices and the predic

tive models. The benefits of predictive models are calculated and analyzed by comparing the
prediction result with the result from the traditional method. The test dataset represented two
trucks in two days. Based on the calculation, scenarios are approximately 20% more accurate
in predicting truck productivity. Scenarios can also decrease inefficient truck cycle time
approximately five to six times from the traditional method. The reduction of inefficient truck
cycle time has impacted the environment by reducing the fuel emissions and the number of
human resources needed to complete the job. Based on the calculations and analysis, benefits
for each stakeholder are concluded in Table 2.



Table 2. Benefits for stakeholders

Tangible Benefit Intangible Benefit

Sub-Contractor

e Reduce machinery emissions. e Gain general contractor trust
¢ Reduce inefficient fuel and human resources | e Improved employee work satisfaction
cost
General Contractor
¢ Reduce machinery emissions. o Better strategic plan to complete the project
e Increase the accuracy of machinery | e A Dbetter decision in selecting sub-
productivity contractor/projects
e Avoid contract penalty e Gain client trust
o Safety
e Improved employee work satisfaction
Supplier
o Reduce the expense of overtime worker ¢ Increase employee wellbeing

Conclusion and Limitation

The historical data can be used for developing a predictive model using a machine learning
approach. It can improve the prediction accuracy of TCT and offer benefits to the stakeholders.
However, the predictive models have limitation for the input, which is shown in table 3. The
input of the type of trucks for the predictive models is also limited: Caterpillar 745 and Volvo
A45G. Also, the input of variable material for the predictive models is only Overburdened.

Table 3. Model limitation

Range Distance  Temperature Relative Humidity  Start Time Volume
(km) (°C) (%)
Min 0.6 8.9 49.3 7 1.14
Max 3.9 18.2 95.4 17 27.7

Recommendation

Recommendations were given to improve the predictive model. For instance, experts in the
construction industry are suggested to raise awareness about the importance of data, improve
earthmoving documentation, and improve the predictive models with better data collection
methods using a machine learning approach.
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1. Introduction

This chapter aims to introduce the base of this research. The general introduction will present
a brief explanation of the importance of truck movement in the construction industry. Then,
the problem from a practical and scientific perspective will be explained. The research
objective, research questions, and the research methodology will also be presented.

1.1. Background

Truck movement or hauling is an important activity in the construction industry because it has
a significant role in earthworks to carry the material from one location to another [1]. Figure 1
shows that hauling the material is the largest activity in earthworks with 45%. Moreover,
earthworks is a major activity in large construction in terms of cost or time. It is needed to
prepare the land for the upcoming construction activity, such as infrastructure or structure
projects. Therefore, many stakeholders aim to improve truck movement in earthworks, for
instance, by minimizing fuel consumption or increasing truck productivity. One of the essential
parts of the truck movement is time prediction because it relates to trucks' productivity, the
number of trucks and human resources, the type of machinery, and the maintenance treatment
in the earthworks.
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Figure 1. Activity in earthwork [1]

However, there is no sufficient method to accurately predict truck movement time due to the
many variables that affect the calculation, such as the weather condition. It causes poor time
prediction of truck movement and affects logistics management, which aims to manage the
deliverance of the right material in the right quantity to the right place at the right time [2].
Poor logistics management might cause an inefficient strategy of managing machinery and
human resources. Inaccurate time prediction may cause a delay in completing the project and
require additional time to finish the project [3]. Additional time impacts project cost for adding
more equipment and human resources. It also impacts the increase in fuel consumption and
emissions from the machinery. According to many studies, the construction industry is
responsible for up to 50% of climate change and severe negative impacts. It also caused 20%
of worker fatalities, where logistics is one source of more than half of the fatalities [4].
Therefore, obtaining an accurate time prediction of truck movement is desirable in the



earthworks because it can positively impact the strategy-making process, increase work
efficiency, prevent workplace incidents and decrease environmental impacts [5].

Responding to the mentioned issue, this research aims to propose a method for improving the
accuracy of time prediction of truck movement by considering several variables and assessing
the practical implication of the proposed method in the stakeholders perspective in earthworks.
This research was conducted as an internship at Royal BAM Nv.

1.2. Uncertainty in Estimating Truck Cycle Time

The construction industry is known as one of the largest industries in the world. It is also
forecasted to grow at a compound annual growth rate (CAGR) of 4.8 from 2018 to 2023 due
to the increasing demand for housing and infrastructure [6]. Earthworks are involved in most
construction projects to prepare the area before constructing a new structure or infrastructure,
such as roads and railways [7]. The earthworks activities can be considered a major part of a
project because it costs high expense and duration. Hence, earthworks are considered a critical
element of the overall project performance and affect the construction industry.

One of the vital parts in improving the earthworks is the planning process which ensures
smooth and efficient project execution. The planning process of earthworks involves managing
earthmoving machinery to transport the excavated material and construction material. The
management of earthmoving machinery impacts the overall result and project cost due to the
number of machinery, operators, and maintenance schedule. It is determined by calculating the
earthmoving machinery productivity. One of the main earthmoving machinery is trucks
because they have a relatively high speed and high flexibility in transporting materials [8].

The accuracy in calculating truck productivity is affected by time estimation. Time estimation
of truck movement in transporting the material in one cycle is defined as truck cycle time
(TCT). Inaccurate estimation of TCT may affect the project cost and project result whether the
time is overestimated or underestimated. Overestimation may cause ineffective expense
because the project pays for unnecessary machinery and resources [9]. Underestimation of TCT
may cause poor project results due to machinery's low productivity and the number of
resources. It may lead to the unavailability of the project on the stated completion date in the
contract. The contractors have to pay the penalty and hire more human resources and
equipment for completing the project. Therefore, an accurate time estimation of TCT is
important for managing the resources in earthworks.

1.3. Method to Estimate Truck Cycle Time

The problem of estimating TCT relates to the effective prediction tool or method before the
project is started. Currently, experts calculate TCT using the vehicle's specification from the
machinery specification. Similar projects are often selected, analyzed, and adapted based on
expert's experiences to predict the TCT. In addition, some contractors conduct a trial of a truck
cycle on site before the project start. However, time prediction accuracy may be easily affected
by subjectivity and human error [10]. As a result, more than half of the construction projects'
deliveries are delivered in the wrong location and time [11].



Experts from research and practice backgrounds are trying to cope with human error in
delivering the projects by utilizing information technology. Information technology is rapidly
developed and used in recent years and becomes an essential aspect of the construction
industry. Many data from previous construction projects have been documented and stored
digitally. Sensors are also used for obtaining more detailed and accurate information. The
development of the computer science field in terms of methods and hardware open many
possibilities to develop new approaches to enhance industry performance.

In recent years, the machine learning (ML) approach has been used in many industries,
including the construction industry, to predict or make decisions [12]. It uses historical data to
build a model without being explicitly programmed [13]. However, not much research has been
conducted to create a predictive model for TCT in earthworks using the ML approach. ML can
be a good method for predicting TCT accurately in earthworks because of its capability to learn
from historical data.

1.4. Research Objective

The research aims to improve the accuracy of TCT prediction by utilizing the historical data in
earthworks. The output of this research will be a predictive model developed using a machine
learning approach. The predictive model will be evaluated based on its accuracy and the
practical implementation from the stakeholders perspective. The evaluation result of the model
will be a valuable insight for potential opportunities and threats in using the predictive model
in the future. In addition, it also may lead to a new perspective about the importance of
historical data in improving the construction company performance.

1.5. Research Scope

The research has limitation due to the resources limitation and time constraint. The main
limitation is related to the source of historical data and the research process. This research will
only explore the historical data from projects of Royal BAM Group in the UK. The historical
data were collected manually (manual data) and automatically collected using a machine
(automated data). Also, this research will not explore the difference between historical data
from BAM and other companies. Furthermore, this research will not consider the dependency
between trucks in accurately predicting truck cycle time. It also will not include the government
regulations on earthworks, such as operation time or the number of workers.

1.6. Research Questions

In responding to the mentioned problems and objective, the main research question is
formulated, which is as follows.

How can the historical data be utilized to improve the prediction accuracy of the truck cycle
time in earthworks?

The following sub-questions are formulated to answer the main research question in a
structured manner.



1. Which variables in the historical data should be included in the predictive model of truck
cycle time in earthworks?

The first sub-question objective is to identify variables that might affect TCT in earthworks.
The process will require analyzing the main factors in TCT, which is investigated from
previous literature. The result will lead to which data need to be collected, utilized and
explored. Then, each variable in historical data will be explored and cleaned. Finally, the
cleaned data will be used as the input for developing a predictive model.

2. How to develop an accurate predictive model of truck cycle time using the machine learning
approach?

The second sub-question aims to develop an accurate predictive model of TCT by applying the
ML approach. ML utilizes the cleaned data as the input and processes it for creating the
prediction model. Different methods will be used to develop a predictive model of TCT. Each
predictive model will be evaluated and analyzed.

3.What is the practical implication of using the predictive model of truck cycle time?

The third sub-question focused on investigating the practical implication of the predictive
model. The selected stakeholders will be interviewed about the current practice and the
predictive model. The implication of the predictive model in terms of cost and benefit will be
evaluated. Moreover, the strategy to achieve an accurate predictive model of TCT will be
presented to cope with the future challenge of practical implementation.

1.7. Research Methodology

The research methodology is formulated as the steps to answer research questions and achieve
the research objective. Figure 2 shows the scheme of research methodology, which consists of
three main steps, as indicates in each sub-questions. The following is a brief explanation of
each step.

| START | —>| Enter to Algorithm | —>| Result Interpretation |
' v

| Data Collection | | Model Training | | Stakeholder Interview |
! . !

| Initial Data Analysis | | Model Validation | | END |
} !

‘ Exploratory Data Analysis ‘ ‘ Obtain Model ‘
! !

‘ Final Dataset ‘ . ‘ Test Model ‘

!

‘ Model Evaluation ‘ y

Figure 2. Research methodology

1. Investigating Related Variables

For answering the first sub-question, data will be collected based on the literature finding of
the factors in TCT. This research uses a literature review to understand the problem gap and
the solution space. The factors in TCT are used as the starting point to collect historical data
effectively. Then, data preparation will be conducted where the historical data will be analyzed
with initial data analysis (IDA) and exploratory data analysis (EDA). IDA is the process of
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data inspection to ensure data quality and minimize the risk of misleading results [14]. EDA is
the later statistical analysis using data visualization methods, such as a scatter plot, Principal
Component Analysis (PCA), and correlation matrix. Data preparation is the backbone of this
research because the quality of a predictive model is dependent on the quality of data. Hence,
it is important to understand the data by exploring and analyzing the data.

2. Developing Predictive Modelling

The machine learning approach is used for answering the second sub-question. This research
will use the final dataset as ground truth and process it with a supervised approach from ML,
where the machine learns to predict the outcome based on a training dataset. This process
involves preparing the training dataset and test dataset, normalization, and hyperparameter
tuning. Finally, methods for developing a predictive model will be selected based on the data
analysis.

Each method will utilize a training dataset to learn and develop a predictive model. The
predictive model is tested using a testing dataset for knowing its robustness. The test result will
be evaluated and analyzed using performance metrics and compared with a different predictive
model. The selected predictive model will be converted to the original unit and analyzed by
denormalizing the result. The contribution of variable and the deviation value between
prediction and actual value will be investigated using feature ablation.

3. Investigating Practical Implication

The practical implication of this research will be investigated from stakeholders perspectives
by interviewing them to answer the third sub-question. The interview will be conducted with
the selected stakeholders. The interview aims to gain stakeholders insight into the current
practice, the advantages and disadvantages of the predictive model of TCT, interesting findings
found in data preparation, and the future opportunities of ML in the construction industry. The
result will be formulated as the strategy in the predictive model to improve the accuracy of
TCT prediction.

1.8. Report Structure

This research methodology is structured to be the research report illustrated in the following
figure.

Chapter 6
Chapter 1 * Chapter 2 » Chapter 3 » Chapter 4 * Chapter 5 » ey * Chapter 7
Introduction Literature Review Data Preparation Prediction Model Result \mplication Conclusion

1+ Sub-Question 2™ Sub-Question 3" sub-Question

Figure 3. Report structure

According to Figure 3, this research is structured with seven chapters. The first chapter explains
how this research is formulated by introducing the problem, objective, and how to address the
problem by research questions and methodology. The second chapter aims to explain an
extensive analysis of the literature finding of the problem gap, the main factors and the ML
approach. The third chapter aims to answer the first sub-question through data preparation.
Chapter four and five are dedicated to answering the second sub-question. In the fourth chapter,
the final dataset is processed by algorithms to develop a predictive model. The predictive model
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will be evaluated and explained in the fifth chapter. Chapter six aims to answer the third sub-
question by explaining the practical implication of the predictive model. In the end, Chapter 7
concludes this research and recommend future research.



2. Literature Review

The previous chapter introduced the overview of this research. This chapter aims to examine
the relevant papers to investigate the previous research related to predicting TCT. Therefore,
this chapter will investigate the earthmoving machinery works and compare the relevant
papers. From these relevant papers, the main factors which affect the performance of
earthmoving machinery will be analyzed. Data analysis and the machine learning approach are
also explained in more detail.

2.1. Previous Research

Responding to the poor estimation of TCT, many experts tried to find the solution by proposing
a new method to predict TCT accurately. Table 1 shows previous research which worked on
improving the TCT prediction. Two main aspects are examined, such as the objective of the
research and the method used.

Table 1. Previous research

Authors ‘ Objective Method
Fllg]istowe, RHA, et al. Calculate truck cycle time Mathematic calculation
Peurifoy, R.L. et al. [8] Calculate truck cycle time Mathematic calculation
Curi et al. [17] Evaluate the average fuel consumption Effective flat haul (EFH)

and truck Cycle time

Cervantes, E.G., et al. Generating accurate and reliable estimates | Statistic simulation using data
[9] of loaded truck travel times tonnes per gross operating hour

Explore the result of TCT on the two

Sun, X. etal. [18] different types of roads.

KNN, SVM, and RF

Before entering the digital era, experts use the manual calculation method to predict truck cycle
time. Plastowe, R.H.A, et al. (1979) and Peurifoy, R.L., et al. (2018) proposed mathematic
calculation for calculating Truck Cycle Time that can be done through manual calculation or
without digital simulation.

Plastowe, R.H.A, et al. (1979) proposed the calculation of truck cycle time based on three
major components, such as running, waiting, and loading. The research defined a constant in
the TCT, which is from the calculation result of truck efficiency. The method proposed to sum
up the running constant, accepted waiting constant, and loading time depending on the truck
type. The result is proved to be reasonably simple and easy to be implemented in estimating
TCT. However, the method requires the estimation of value for each component, and it does
not eliminate the accuracy of TCT.

Peurifoy, R.L. et al. (2018) stated the method of predicting the truck cycle time using the
mathematical calculation in his book. TCT is predicted by summing up four components: load



time, haul time, dump time, and return time. Each component is calculated through a
mathematical formula which is shown below, except the dump time. Dump time calculation
depends on the type of truck and the condition of the dumping area. The average dump time
on the favourable condition is 30 seconds and on the unfavourable condition is 90 seconds [8].

Equation 1. Load Time

Load Time = Number of bucket loads x Bucket cycle time

Equation 2. Haul Time
Haul Distance (ft)

Haul time (min) =

fpm
88 mph x Haul Speed (mph)

Equation 3. Return Time
Return Distance (ft)

frm
88 mph x Haul Speed (mph)

Return time (min) =

This method provides a more detailed calculation for each component and less human
assumption for predicting TCT. However, the variables required for calculating each
component are hard to know in the planning phase. For instance, obtaining haul speed is
difficult because it relates to other variables, such as the type of trucks, the amount of material,
and the road condition. Hence, the method's accuracy is unknown because it relies on the
experience of the expertise to predict the value for the variables.

Some experts propose a new method to estimate TCT accurately using record data with
different approaches. For example, Curi et al. (2014) proposed a method to predict HT using
the effective flat haul (EFH) parameter. EFH is defined as a calculated parameter that
normalizes the elevation change of the route and the distance. This research applied the method
toward two different trucks and two types of elevation change of haul routes to calculate the
equipment's average cycle time. The research concludes several influence factors that can
predict truck cycle time, such as material and site conditions. However, the accuracy of the
prediction is unknown.

Cervantes, E.G. et al. (2018) used the record data of haul time, haul distance variability, and
productivity performance indicator in tonnes per gross operating hour (TPGOH) and processed
them using MATLAB to make a prediction model of haul time. This method's outcome is a
curve that shows the relationship between the hauling time and the loaded haul distance. The
result also shows an improvement in the accuracy, which compares with the EFH method.
However, the method is only applied to predict the hauling time. Hence, the research suggests
future research to develop a predictive model for RT.

Sun, X. et al. (2018) used ML with a classification method to predict TCT using the k-nearest
neighbours (KNN), support vector machine (SVM), and random forest (RF) algorithms. The
research develops a predictive model of TCT from two different routes: fixed-route and
temporary. The research also includes the weather as the feature for the ML input. The research
result shows that SVM and RF result is more accurate than the KNN. However, the research



uses the classification algorithm for continuous value, which is not an effective way. And, the
final accuracy is unknown because the error is not be normalized.

Previous research tried to use different methods and variables to obtain accurate prediction
TCT. MATLAB and ML shows a significant improvement in accuracy and computational time
by simulating the record data. The research which uses the ML approach gives a significant
finding because of the variety of included variables and the complexity of the research.

2.2. Truck Cycle Time

This section aims to understand truck cycle time (TCT) before starting to develop a predictive
model. TCT can be defined as the time estimation of truck movement in earthworks from a
loading material location to an unloading material location. Figure 4 shows the illustration of
a cycle of a truck transporting the material in earthworks. TCT consists of different activities
in transporting the material, such as load time (LT), haul time (HT), queue time to unload
material (QTU), unload time (UT), return time (RT), and queue time to load material (QTL).
The following is a brief explanation for each activity.

Equation 4. Truck Cycle Time

TCT = LT+ HT + QTU + UT + RT + QTL

HAULING

oM =,
RETURNING

QUEUING FOR LOADING UNLOADING

Figure 4. Truck cycle in earthworks

2.2.1. Load Time

Load time (LT) indicates the duration of an excavator to full in the truck bucket with the
material. LT depends on the machinery combination between truck and excavator because the
capacity of the excavator bucket affects the time needed to fill the truck bucket. An excavator
with a large bucket capacity is often more expensive and consumes more fuel than an excavator
with a smaller bucket capacity. Hence, the combination between excavator and trucks is
important to load material quickly but at a low cost.

2.2.2. Haul Time

Haul time (HT) is the duration for a truck to transport the material to the dump location. The
time needed depends on the speed of the vehicle to arrive at the unloading location. Hauling
should concern the safe speed and road condition. Therefore, effective speed should be applied
by the drivers.

2.2.3. Queue Time to Unload material



Queue time to unload material (QTU) is the duration for a truck to wait before its turn to unload
the material. This activity is undesirable because it wastes fuel and human resources. The
number of trucks and the size of the dump area impact QTU because the bigger size of the
dump area will let trucks unload the material [18].

2.2.4. Unload Time

Unload time (UT) indicates the duration time for a truck to unload the material. This activity
depends on the unloading area, which is usually crowded with support equipment, for instance,
dozers [8]. Trucks will be more difficult to unload the material if the location is crowded
because of limited space for a truck to manoeuvre and dump the material.

2.2.5. Return time

Return time (RT) is the time needed for a truck to arrive at the loading area from the unloading
area. The main difference between RT and HT is the amount of material loaded in the truck
bucket, where RT does not carry any material. In addition, maintenance of roads and equipment
and operator behaviour also affect RT and HT [9].

2.2.6. Queue Time to Load Material

Queue time to load material (QTL) is the duration for a truck to wait before its turn is filled
with material. QTL is different from QTU in the amount of material carried by the truck while
waiting its turn.

QTU and QTL are affected by estimating the time needed for HT, RT, LT, and UT [19]. A
truck that arrives later than the estimation time will cause the idle time of the excavator to fill
the bucket or dozers to process the material. A truck that arrives earlier than the estimation
time will cause the queuing for loading or unloading material. Therefore, the estimation of HT,
RT, LT, and UT impacts machinery and human resources management.

2.3. Factors of TCT

The factor of TCT is examined to know which data should be collected and used for the ML
process. TCT factors can be analyzed based on the element affected in the material movement
activity and the literature about work efficiency in the material movement. Some prior research
identified the significant factor in the productivity of machinery in earthworks. The factors are
operation Practice, operating condition, and equipment [20]. Operation practice consists of the
experience and habits of the driver when operating the machinery. The operating condition
relates to the site condition and interaction between machines. Equipment defines as the
technology in the used machinery.

Other research mentioned that two main factors affect TCT: relevant controllable and external
factors [9]. The controllable factor is defined as road construction, safety guidelines, operator
behaviour. And the external factors include weather condition and machinery repairment.
Moreover, the report from Caterpillar mentioned that the production factors are machinery
condition, operator skill, geological condition, and machine matching. Therefore, based on the
previous research, it can be concluded that there are three main factors represented by operation
practice, operating condition, and machinery condition.
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Operation Practice, Operating Condition, and Machinery Condition

The factors of TCT is used as the guideline to collect and examine the data. The operation
practice factor relates to the operator involvement in operating the machinery, including the
training of the driver, driver behaviour, and experience. The operating condition factor relates
to the site condition, including weather, road condition, type of soil, and material. And, the
machinery condition factor relates to the machinery condition, which includes the machinery
combination, number of the truck, type of truck. These factors contribute to the activity in
earthworks which is illustrated in Figure 5.

Weather = — = = = Operation Practice

Material, Weight = Operating Condition
e Number &
1 type of trucks
i
i i

oM =)
QUELNNG FOR LOADING RETURNING UNLOADING

|
Road Condition Qpen-pit size

Figure 5. Factors of TCT

2.4. Machine Learning

Acrtificial Intelligence or Al has become more popular in recent years and has been applied in
many industries, such as virtual assistant and self-driving cars. Artificial Intelligence is a built
intelligence in a machine programmed to imitate humans' intelligence for doing particular
tasks. It helps humans process many variables that are difficult or takes time to articulate into
an output. Machine Learning (ML) is an approach that is commonly used in Al. The ML
approach uses historical data to train the machine for predicting a certain output.

The type of learning in ML is divided into three main categories: supervised, unsupervised,
and semi-supervised learning. Supervised learning is the type of learning required for human
supervision to train the algorithm, for instance, to solve classification problems. Unsupervised
learning is the type of learning that is not required human supervision. The result depends on
the algorithm to learn and decide, for instance, to solve a clustering problem. Semi-supervised
learning is the combination of supervised and unsupervised learning.

Along with the development of computer, ML algorithm can train more data and predict more
complicated output using a neural network algorithm known as Deep Learning (DL). Deep
Learning is based on multilayered neural networks that can learn from vast amounts of data.
Figure 6 shows the illustration of the relation between Al, ML, and DL.
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Figure 6. Artificial Intelligence, Machine Learning, and Deep Learning

The most important part of ML is to understand the target and choose the right model from ML
to achieve it. In this research, the target is a predictive model of Truck Cycle Time (TCT). TCT
is a continuous value that is suitable to be solved by a regression model. The regression model
can be found in the traditional ML and DL.

2.5. Literature Gap

The previous section has explained that TCT is a pivotal element in the construction industry
and has three main factors. Previous research shows that historical data can develop a
predictive model by applying the ML approach. However, no prior research developed a
predictive model of TCT using the historical dataset and ML approach. Therefore, this research
will use the historical dataset to develop a predictive model of TCT by applying the ML
approach.
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3. Data Preparation

The previous chapter presented the machine learning (ML) approach and factors affecting TCT
transporting the material. This chapter aims to explain the preparation of data to be a final
dataset before entering the algorithm. Therefore, this chapter consists of data collection and
analysis, consisting of initial data analysis (IDA) and exploratory data analysis (EDA). Then,
the data is analyzed and cleaned by removing the error in the dataset to obtain a good quality
of the dataset used as the final dataset.

3.1. Data Collection

This research tried to collect data that consist of variables in three main factors of TCT, such
as the operation practice, the operating condition, and machinery condition. There are two main
sources to obtain the data in this research. First, earthmoving machinery data is provided by
BAM. The second source is Visual Crossing, which is a weather data service that provides
weather data. Data from both sources consist of operating and machinery conditions, but the
operation practice variable is unavailable. Therefore, this research only uses the available data
and counts the unavailability of operation practice factor as the limitation of this research. The
following is the explanation of how the data is collected from respective sources.

3.1.1. Earthmoving Machinery Data

The earthmoving machinery data consists of two record data from construction projects in the
UK where BAM is involved as a contractor. The data are recorded in a different location, site
condition and with a different method. The information in data related to the project name,
location, and the serial number of vehicles are confidential. Hence, this research names the
manual data entry with manual data and automated data entry with automated data. The
engineer compiles both data into separate excel files. Therefore, both data will be understood
and explored separately in this research.

3.1.2. Weather Data

Visual Crossing is a weather data service or weather API that can provide historical weather
data and forecast weather data. This research collected the historical weather data by entering
each cycle's start date and time from BAM data. Then, the weather data is added into
earthmoving machinery data according to the date and time of data. Weather data consists of
many variables which relate to weather. Table 2 shows the variables, type, and unit that is
provided by generating the weather data.

Table 2. Variable, type, and unit from weather data

No Variables Type Unit
1 Location Name Object N/A

2 Date time Datetime N/A

3 Maximum Temperature Float Celsius
4 Minimum Temperature Float Celsius
5 Temperature Float Celsius
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6 Precipitation Float mm

7 Snow Float cm

8 Snow Depth Float cm

9 Wind Speed Float kph

10 | Wind Direction Integer N/A

11 | Wind Gust Float kph

12 | Relative Humidity Float Percentage
13 | Conditions Object N/A

3.2. Data Analysis

This research will analyze manual and automated data using two main steps: initial data
analysis (IDA) and exploratory data analysis (EDA). IDA is an initial exploration of data by
checking data quality, detecting and treating missing value, outliers, and other problem. Data
quality check aims to understand the data process and trust the data as the ground truth for a
predictive model. In data, sometimes there is a missing value which makes the algorithm cannot
process the data. The missing data should be checked and treated based on the analyzed result.
In addition, outliers that are often contained in the data need to be checked and treated. Outliers
might come from human or machine error in documenting the data. Outliers might also give
new information regarding the data is taken. Hence, outliers will not be eliminated directly.

EDA aims to maximize the understanding of data that includes the relationship between
variables and feature selection. A pairs plot, correlation matrix, and PCA are used in this
research and explained in the following sections.

Pairs Plot

The data distribution and relationship of a variable with other variables can be analyzed using
a pairs plot. Figure 7 is a sample of a pairs plot that will be used in this research. It also shows
regression lines for each relation and confidence interval illustrated by the shadow area around
lines. Confidence interval is the range value of uncertainty for a certain parameter. The shadow
area that wide indicates a high uncertainty to be able to get an accurate result. In addition, the
direction of the shadow area is analyzed to uncertainty tendency based on the given data
distribution.

*w* 4.|||.._ ‘ﬁ be
é& | |JI|||. f“ J
}r{ ||||||||

Flgure 7. |IIustrat|on of a pairs plot
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Correlation Matrix

The relation between all variables can be examined using correlation. The correlation value is
between -1 and 1, representing a negative correlation for -1, a positive correlation for 1, and no
correlation for 0. This research will use Spearman's correlation to assess the monotonic
relationship, whether linear or not. Equation 5 shows the formula to find the spearman's
correlation value which is indicated with p.

Equation 5. Spearman's Correlation Coefficient
63 d?
n(n?-1)
Where d; refers to the difference between the ranks of each observation, n is the number of
observations.

p=1

Principal Component Analysis

Principal Component Analysis (PCA) is a technique to emphasize variation and result in a
strong pattern in data. PCA reduces dimensionality and makes the data easy to be interpreted
with minimizing information loss. Figure 8 illustrates the comparison between data in original
coordinates and principal component coordinates. The principal component axis indicates the
direction that has high variance and more spread out. This research will use biplot to visualize
principle components using python. It will show how strongly each characteristic influences a
principal component.

Data in Original Coordinates Data in PC Coordinates

2
vy
= o < 0 -L’Ul

PC2

X PC 1
Figure 8. Illustration of how PCA work

However, each dataset contains a different range of value which can cause unequal calculation.
Hence, normalization data can be used to transform the range between O and 1. The
normalization function is as follows. Equation 6is the normalization equation, which is
indicated by z;. The input value is indicated by x;. The maximum value and the minimum
value are indicated by the max(x) and min(x), respectively.

Equation 6. Normalization

x; — min(x)

“= max(x) — min(x)
3.2.1. Manual Data
Manual data consists of 1500 data points or rows where each row represents one cycle and
contains 14 variables not included in weather data yet. In combining manual data and weather
data, the missing value in variable location makes the weather data not be generated. Hence,
the data points in manual data decrease into 878 data points.
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Table 3 consists of the list of variable, description, type, and unit of manual data. The data is
taken by asking drivers to record their activity while driving the trucks to move the material in
the project. Ten units of trucks operated in the four different months, between July and October
in 2020. In combining manual data and weather data, the missing value in variable location
makes the weather data not be generated. Hence, the data points in manual data decrease into
878 data points.

Table 3. Variables in manual data without weather data

No \ Variables Description Type Unit
1 Load Location Location name for loading materials Object N/A
2 Load Latitude Latitude coordinate of the loading location Object N/A
3 Load longitude Longitude coordinate of the loading location Object N/A
4 Load Time Date and time when loading materials Date Time N/A
5 Material Type of Material Object N/A
6 | Volume Volume of loaded material Integer m3

7 | Weight Weight of loaded material Integer Tonnes
8 | Unload Location Location name for unloading materials Object N/A
9 Unload Latitude Latitude coordinate of the unloading location Object N/A
10 | Unload Longitude | Longitude coordinate of the unloading location Object N/A
11 | Unload Time Date and time when unloading materials Date Time N/A
12 | Total Cycle Time | Total duration for a truck in a cycle Integer seconds
13 | Distance Distance from loading to the unloading location Float meter
14 | Vehicle Vehicle identification number Object N/A

3.2.1.1. Initial Data Analysis (IDA)

Manual data quality depends on the guideline or standard in documenting the data to anticipate
data errors, for instance, when drivers forgot to record the data. However, there is no clear
guideline and uneasy access to the project documentation of the data collection process. For
instance, the identity or the number of drivers is unknown because difficult to be traced back.
Hence, this research needs to analyze the data deeply for checking the possibility of error in
manual data.

Missing values in some variables are identified because of the unavailability of data on the
requested date and time. For instance, snow data is not available because the requested date
and time are in the summer. Variables containing many missing values are dropped from
manual data to ensure the quality of data. Variable in manual data can be categorized into target
and feature. Table 4 shows the variables in manual data that will be examined to detect and
threat error in the data.

Table 4. Variables from manual data

Type Factor | Variables |
Target Truck Cycle Time
Features | Operating Condition Distance

Temperature
Relative Humidity
Conditions
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Start Time Hour
Machinery Condition Volume
Weight

Target: Total Cycle Time

The total cycle time (TCT) variable from manual data is recorded from the starting location or
the loading location to the unloading location. According to the engineer, there is no queue
time to unload the material and load the material. Equation 7 shows the calculation formula of
TCT, and Figure 9 illustrates the recorded process in the data. The information about RT is
unknown because of the lack of project documentation. Therefore, TCT from manual data is
not included in RT and counted as the limitation of the predictive model.

Equation 7. Total cycle time in manual data

TCT = LT +HT +UT

.
Y s \
. LOADING - HAULING .

Cl_EO' A I

Figure 9. Illlustration of TCT from manual data

Feature

Features of manual data are categorized into operating condition and machinery condition.
Operating condition consists of distance, temperature, relative humidity, weather condition,
and start time hour. Machinery condition consists of volume and weight. Each feature variable
will be examined by visualizing the data points, and the problem will be detected and treated
to obtain a good quality dataset.

Operating Condition: Distance

Distance variable from manual data indicates the distance from the loading location to the
unloading location. The returning distance from the unloading location to the loading location
is unknown. It does not have the same value as the hauling distance because the retuning path
is different from the hauling path.
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Relation between Distance and Total Cycle Time
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Figure 10. Scatter plot of distance from manual data

Figure 10 shows the relation of each data point based on the distance variable and TCT. The
range of distance value is between 0 and 7 km. However, the data contains incorrect values
since the distance value and TCT should not be zero. Zero value for distance and truck cycle
time indicates a truck does not transport any materials. The incorrect value might be recorded
mistakenly due to equipment limitation to record the data or human error. Therefore, data
points that contain zero value for distance or TCT are eliminated as a part of data cleaning. As
a result, the remaining data points is 536.

Operating Condition: Temperature and Relative Humidity

The cleaned data is analyzed in terms of temperature and relative humidity, aiming to detect
any problem in the data. The range of temperature is between 6.5 and 31.5 degree Celsius from
July to October 2020. Figure 11 shows the temperature value of manual data each month where
the highest median value in August and the lowest mean value in October. Figure 12 shows
overall temperature value is mostly distributed between 0 and 1000 seconds. Some outliers are
detected in August, but they will remain because it helps consider the extreme temperature in
the predictive model.
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Figure 11. Boxplot of temperature for each month
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Figure 12. Scatter plot of temperature from manual data

The relative humidity from manual data is between 37.2 and 100 percent, with the same month
range. Figure 13 shows the temperature value of manual data each month where the highest
mean value in August and the lowest mean value in July. Figure 14 shows overall temperature
value is mostly distributed between 0 and 1000 seconds. Although the range of total cycle time
is similar between temperature and relative humidity, their value is not similar based on the
month. The outliers in relative humidity will not be eliminated because it will help to consider
unusual relative humidity for the predictive model.
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Figure 13. Boxplot of relative humidity in each month
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Figure 14. Scatter plot of relative humidity from manual data
Operating Condition: Weather Condition
Condition or weather condition refers to the sky condition such as cloudy and rain. Figure 15
shows the scatter plot of the condition in manual data. Clear is the only weather condition when
the data is taken. Clear refers to no cloud in the sky and not rain. It indicates that the data is
taken when the weather is good for moving the material. However, this information cannot be
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used because the machine will learn only one weather condition pattern. Thus, the weather
condition will be eliminated from manual data and count as the limitation of the predictive

model.

Relation between Weather Condition and Total Cycle Time
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Figure 15. Scatter plot of condition from manual data
Operating Condition: Start Time Hour
Figure 16 shows a box plot to examine the data based on the truck's starting time transporting
the material. Trucks are operated between 7 AM and 5 PM, where the highest truck cycle was
started at 2 PM. Some outliers are detected and kept in the boxplots because there is no
particular TCT at a certain time.

Relation between Start Time Hour and Total Cycle Time
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Figure 16. Box plot of start time hour from manual data
Machinery Condition: Weight and VVolume
The earthmoving machinery that is recorded in manual data is an eight-wheeler tipper which
shows in Figure 17. It is common to use this type of truck to move material on asphalt road.
The weight capacity and volume capacities are 20 Tonnes and 15 m3, respectively. This
information will be used to examine weight and volume data in manual data.

{1

Figure 17. Eight Wheel Tipper
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Data points contain zero as the value of volume and weight of the material that trucks are
transported. Since TCT in data is indicated as a cycle transporting material from the loading to
unloading area, it needs to be removed. The elimination of the zero value causes the reduction
of the data point, which is 430.

Figure 18 and Figure 19 show the scatter plot of volume and weight of material in project A,
respectively. The error data is detected because the volume value is 8 and 30 m3, and the weight
value is recorded for 0, 18, and 20 tons for all data point. Those values are unreliable because
weight value is usually continuous to value, and difficult to maintain the same value for each
cycle. The error might result from the manual method of data collection and equipment
limitation to scale the volume and weight accurately. Therefore, volume and weight are
dropped from manual data.

Relation between Volume and Total Cycle Time
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Figure 18. Scatter plot of volume from manual data

Relation between Weight and Total Cycle Time
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Figure 19. Scatter plot of weight from manual data

3.2.1.2. Exploratory Data Analysis (EDA)

Manual data is analyzed based on the relation between variables to understand patterns within
the data. Figure 20 shows the pairs plot of the manual data, indicating the relation between
variables and regression line. The last row of the plot shows the data distribution between each
variable and truck cycle time without return time. The data distribution is not spread out
equally, and most data is gathered between 0 and 1500 seconds. The lack of data above 1500
seconds causes the uncertainty of result from the regression line. The shadow area is located
above and under the regression line, indicating that regression underestimates or overestimates
time. However, suppose the regression and the shadow line is drawn farther. In that case, the
regression line and the confidence interval between variable temperature and total cycle time
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will go upright. It indicates that the higher value of temperature will cause more time for a
truck to transport material.
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Figure 20. Pairs plot of the manual data

The pairs plot's result can be analyzed further with Figure 21, which shows the manual data's
correlation matrix, which contains the correlation value. The correlation value between
temperature and total cycle time is positively correlated and higher than the correlation between
other variables and truck cycle time. The correlation values are positive except the correlation
value between variable start time hour and truck cycle time. The correlation matrix helps to
analyze the value, which is difficult to be captured by the pairs plot. It shows there is no high
correlation value between variables which indicated the pattern of variables is different. Hence,
variables can give a contribution and can be included to develop a predictive model.
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Figure 21. Correlation matrix manual data
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Figure 22 shows the principal component analysis (PCA) between variables respectively from
the manual data. It shows that both principal components (PCs) contribute approximately 75%
of the total variation in the dataset. PC 1 explains 48,72%, and PC 2 explains 25.68% of the
variation in the manual data. The difference between PCs depends on the influent of variables
on the PCs. Distance gives more influence to principal component (PC) 2 than 1. Relative
humidity and start time hour give more influence toward PC 1 than 2. The temperature has a
similar influence on both PCs. The difference between PCs in capturing the variation can base
model input in developing a predictive model.
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Figure 22. PCA manual data

3.2.2.Automated data
Automated data consists of 669 data points or rows which each data point consists of 21
variables not included in weather data.

Table 5 shows the detailed information of each variable, the variable description, type, and unit
in the automated data. The automated data is recorded using an application connected with a
sensor and earthmoving machinery to document the machinery activity. The application is
provided by Caterpillar and not widely known yet because it is a new application. Automated
data consists of data from 16 to September 17 2019, in project B.

Table 5. Automated data

No \ Variables Description

1 Cycle Start Time Start time of a truck cycle Date Time | N/A

2 Cycle End Time End time of a truck cycle Date Time | N/A

3 Material Type of Material Object N/A

4 Weight Weight of loaded material Integer Tonnes

5 Volume The volume of loaded material Integer m3

6 Source Location Latitude Latitude coordinate of the loading location Object N/A

7 Source Location Longitude | Longitude coordinate of the loading location Object N/A

8 Destination Location Latitude coordinate of the unloading location | Object N/A
Latitude

9 Destination Location Longitude coordinate of the unloading Object N/A
Longitude location

10 | Total Cycle Duration Total duration for a truck in a cycle Integer seconds

11 | Total Cycle Distance Distance from loading to the unloading Float meter

location
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12 | Start Location Name Location name for loading materials Object N/A
13 | End Location Name Location name for unloading materials Object N/A
14 | Load Time Duration for loading materials into a truck Integer seconds
15 | Haul Time Duration for transporting materials Integer seconds
16 | Loaded Stopped Time Queueing time for unloading materials (QTU) | Integer seconds
17 | Return Time Duration for picking materials Integer seconds
18 | Empty Stopped Time Queueing time for loading materials (QTL) Integer seconds
19 | Unload Time Duration for loading materials from a truck Integer seconds
20 | Total Cycle Fuel Liter Total fuel consumption for a cycle Float Liter
21 | Loader Serial Number Vehicle identification number Object N/A

3.2.2.1. Initial Data Analysis (IDA)

After adding the weather data into automated data, variables in automated data are categorized
into target and feature variables. However, automated data doesn't provide the information
about the latitude and longitude fully. Hence, the data points decrease from 669 to 589 because
the data points which contain missing value are eliminated. Variables in automated data are
categorized into target and feature. Table 6 shows the variables in automated data that will be
examined to detect and threat error in the data.

Table 6. Target and Features from Automated data

Type Factor Variables

Target Total Cycle Time (TCT)
Features Distance

Temperature

Relative Humidity
Conditions

Start Time Hour

Model

Volume

Weight

Operating Condition

Machinery Condition

Target: Truck Cycle Time (TCT)

Automated data consists of the record time of each activity in moving the material, such as
Total cycle duration, LT, HT, QTU, RT, QTL, and UT. Total cycle duration is the outcome of
the application that records a truck's duration in one cycle. In theory, the total cycle duration
value should be as equal as finish time minus start time. However, the data shows that the Total
Cycle duration value is bigger than the deviation time of the finish and start times. Furthermore,
the total sum of LT, HT, QTU, RT, QTL, and UT equals the deviation value. Therefore, Total
Cycle Duration is not reliable to be used as the target for this research.

QTU and QTL depend on the number of trucks operated in a day, the number of excavators to
fill the truck bucket, and the size of the unloading material site. Automated data does not have
any data about the number of excavators and the size of the site. And automated data only
provides the total number of trucks in two days, which is insufficient to analyze QTU and QTL.
Therefore, only LT, HL, RT, and UT are reliable for ML because of the limited information
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about QTU and QTL. The accumulation of individual activity is defined as total cycle time,
which is illustrated in Figure 23

RETURNING UNLOADING

Figure 23. lllustration of TCT

Features

Distance, temperature, relative humidity, weather conditions, and start time are categorized in
operating conditions. Model, volume, and weight are categorized into machinery condition
automated data. Feature in automated data is examined by visualizing each feature with various
plot types.

Operating Condition: Distance

Distance data in automated data is the accumulation value of hauling distance and returning
distance. The distance for each activity is unknown due to the application is not designed to
track each distance. Figure 24 shows no zero value for distance and TCT, which indicates each
data point recorded material moving.

The range is between 0.6 km and 3.9 km, resulting from a different path, although the loading
and unloading location are the same. It also shows that most trucks spend between 400 to 750
seconds for a distance between 1.2 and 2.0 km.

Relation between Distance and Total Cycle Time
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Figure 24. Scatter Plot of Distance from Automated data

Operating Condition: Temperature and Relative Humidity

Figure 25 and Figure 26 show that the temperature value is between 8.9 and 18.2 degree Celsius
and the relative humidity value is between 49.3 and 95.4 percentage, respectively. Trucks that
transported the material are mostly around 16 degrees Celsius and 50 per cent or 85 per cent
of relative humidity.
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Relation between Temperature and Total Cycle Time

181 . *e ‘.II." M%"d""’ﬁf."‘.’l" e e o* ¢ - ° N
... ,gg . s e o« e o 4 .
j %s g% . ’ %ni! *. ™ e ® o . .
s . .'Eg o%}“&' no::";"‘m" eég : :'3 . 3 . ® . ‘
o [l ® 2 ol L] . L .
o . . s, . ® . s o .
<z - % S ‘¢ eiltwgle .
£ 144 oo ole K ™ i . . °
= H M L4 *Tet .
gn’ o .'n .n ¢ ‘e LI -*
#12 . ¢ ‘ -. . . :
. .
. o0
10 . we .
. .
.
300 400 500 600 700 800 900 1000 1100

Total Cycle Time (sec)
Figure 25. Scatter Plot of Temperature from Automated data

Relation between Relative Humidity and Total Cycle Time
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Figure 26. Scatter Plot of Relative Humidity from Automated data

Figure 27 and Figure 28 shows the box plot of temperature and relative humidity based on the
starting time of a truck operation to move the material. Both box plots show a few outliers, but
they might indicate extreme temperature or relative humidity in the future.

The lowest mean value of temperature and relative humidity is when the truck operated at 7
AM and 5 PM, respectively. Moreover, the widest range of relative humidity is at 5 PM. This
finding shows that the truck cycle time is not highly impacted by temperature and relative
humidity compared to the previous finding.

Relation between Temperature and Start Time Hour
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Figure 27. Box Plot of Temperature based on Start Time Hour from Automated data
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Relation between Relative Humidity and Start Time Hour
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Figure 28. Box Plot of Relative Humidity based on Start Time Hour from Automated data

Operating Condition: Weather Condition

Figure 29 shows the weather condition when the data consists of clear, partially cloudy, rain,
overcast, rain and overcast, and rain and partially cloudy. It shows significant unbalanced data
between the type of condition where clear has the biggest data point. It impacts machine
learning to learn and create the prediction model because it will not learn enough about weather
conditions from low data. Some methods can be used for solving the unbalanced data issue.
Still, it requires enough data to generate synthetic data or eliminate the condition with low data
points. However, the amount of data point is not big, and it will decrease the potential of ML
to learn by eliminating the type of condition. Therefore, the condition is eliminated from the
feature and count as the limitation of this research.

Relation between Weather Condition and Total Cycle Time
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Figure 29. Scatter Plot of Condition from Automated data

Operating Condition: Start Time Hour

The Start Time Hour variable is an extracted result of the hour from the Cycle Start Time
variable. Starting time when the trucks are operated are between 7 AM and 5 PM. Figure 30
shows the highest mean value for a truck finishing one cycle when the truck starts to operate
at 7 AM. It shows that the truck number that starts to operate at 7 AM is lower and might cause
slower operation behaviour to transport the material. It also shows that the range of value at 7
AM is lower than other start time hour.
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Relation between Start Time Hour and Total Cycle Time

1100
+ *

1000 +

* R D
+

¢ L

¢ L]
N '
800 L]
700
o
500
400
L]
3 14 15 1

Total Cycle Time (sec)

300

7 8 9 10 11 12 1. 6 17
Start Time Hour

Figure 30. Box Plot of Start Time Hour from Automated data

Machinery Condition: Model
Automated data provides data about the model of the truck that is used to transport the material.
The type of truck is Articulated Dump Truck (ADT) which is commonly used for moving the
material in earthworks due to the capability to move in difficult soil conditions [8]. There are
two different models of ADT, which are Caterpillar 745 and VVolvo A45G. Both have the same
weight and volume capacity, which are 45.3 Tonnes and 25 m3, respectively.

Figure 31. Type of Trucks in Automated data: Caterpillar 745 and Volvo A45G
The data need to be modified from an object into binary value so the machine can process it.
Hence, Caterpillar 745 is replaced with 0, and Volvo A45G is replaced with 1. Figure 32 shows
that the mean value of TCT of model 0 is higher than model 1. Model 1 is faster than model O
to transport the material in one cycle. The condition of trucks might impact the result, for
instance, the age of the trucks or tire condition. However, no documentation can be shared
about it for this research. Therefore, this research assumes trucks are in good condition and not
have a difference.

Relation between Model and Total Cycle Time
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Machinery Condition: Weight and Volume

Figure 33 and Figure 34 show the data point of weight and volume of material transported and
recorded in Automated data. The range of weight is between 2.6 and 63.2 tonnes, where the
maximum weight is 45.2 Tonnes. It shows that many data point exceeds the maximum weight
capacity. The range of volume is between 1.1 and 27.7 m3, where the maximum volume
capacity is 25. There is only one data point that exceeds the maximum capacity. The value is
related to the operation practice in filling the truck bucket with the material. The operator fills
the bucket until it is full, not measure the weight.

Relation between Volume and Total Cycle Time
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Relation between Weight and Total Cycle Time
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Figure 34. Scatter Plot of Volume in Automated data

3.2.2.2. Exploratory Data Analysis (EDA)

The result from the IDA is analyzed based on the relation between variables and the regression
line in the automated data using a pairs plot shown in Figure 35. The five rows from the right
are the relation variables with load time, haul time, return time, unload time, and truck cycle
time. The data distribution is less spread on the load and unload time rows than a haul, return,
and truck cycle time. Most of the data is distributed between zero and 400 seconds for load
time and between zero to 60 seconds for unload times. The confidence interval is shown in the
area where less data is distributed above 400 seconds for load time and 60 seconds for unload
time. It indicates high uncertainty of the result from the regression line of the load time and the
unload time.

Moreover, the confidence interval and regression line between variable distance, relative
humidity, weight, and volume with the load time is estimated to go downright. It indicates that
the value of each variable which small, will cause a longer time to load the material. The
confidence interval and regression line between the variable model and the load time is
estimated to go upright, indicating that model one will cause a longer time to load the material.
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The confidence interval between variables and variable unload time is wide above and under

the regression line, indicating that the regression line result can be overestimated or

underestimated with high uncertainty. In addition, column weight and volume have a similar

pattern but different values. The pairs plot will be analyzed further using the correlation matrix.
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Figure 35. Pairs plot of the automated data

Figure 36 shows the heat map of the correlation matrix, where the calculated value is presented
in each box. The matrix shows that weight and volume have a high positive correlation with
0.99, which means the weight and volume value patterns are similar. Hence, ML will not learn
significantly from one variable if both variables are included as the input variables.
Furthermore, it causes inefficiency of the ML since it takes more time for ML to learn the same
pattern. Therefore, it is justified to eliminate one variable and pick one between weight and
volume to be the input. Variable volume is selected as one of the feature variables because it
proves that the operator is more concerned with the volume of material carried by truck than
weight.
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Moreover, the matrix shows weight and volume negatively correlated with LT, HT, RT, UT,
and TCT. The result indicates a decreasing monotonic trend between variables. However, in
theory, it should be a positive correlation which indicates an increasing monotonic trend. Thus,
this finding will be assessed from expert perspectives.
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Figure 36. Spearman's correlation matrix of automated data
Figure 37 shows the principal component analysis (PCA) from the automated data. It shows
that the principal components contribute approximately 56% of the total variation in the data.
PC 1 explains 33.58%, and PC 2 explains 22.89% of the variation in the automated data. PC 1
is influenced by variable temperature, start time hour, and relative humidity. And PC 2 is
mainly influenced by variable volume, distance, and model.
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Figure 37. PCA of automated data

3.3. Scenario

Based on the data analysis process, each can develop predictive models with different feature
combinations derived from PCA analysis. Variables that influence PC two will be used as the
feature combination two, and variables that iinfluencePC one will be used as the feature
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combination three. The feature combination one will consist of the complete variables. The
division of feature combination is applied in the automated data and manual data.

Manual Data
The manual data can be used to develop a predictive model of TCT without RT. The input of
the predictive model can use three different feature combination, as follows.

e Combination one: distance, relative humidity, temperature, and start time hour

e Combination two: distance and temperature

e Combination three: relative humidity, temperature, and start time hour

Automated Data
The availability of individual activity duration data in automated data can predict TCT with
three different scenarios. The scenarios aim to find the accurate prediction of different
predictive models.

e Scenario 1: LT+HT +UT +RT
This scenario requires predictive models of individual activity duration, such as LT, HT, UT,
and RT. The prediction result from each will be accumulated and evaluated.

e Scenario2: TTT+LT+UT
The second scenario requires a new variable which is truck travel time (TTT). Equation 8 is
the calculation formula for creating TTT, which is the sum of transporting activity.
Equation 8. TTT of Automated data

TCT = HT + RT

The predictive model of TTT can help estimate the big part of TCT without considering other
equipment, for instance, excavator. The prediction result from TTT will be accumulated with
the prediction result from LT and UT.

e Scenario 3: TCT
The second scenario requires a new variable which is TCT. Equation 9 is the formula for
creating variable TCT, which is the sum of individual activity duration. This scenario might

help to predict TCT more accurately and faster.
Equation 9. TCT of Automated data

TCT = LT + HT + UT + RT

Therefore, the ML approach will develop LT, HT, UT, RT, TTT, and TCT models. Each model
will be developed using three different feature combinations, as follows.
e Combination one: distance, relative humidity, temperature, start time hour, model, and
volume
e Combination two: distance, model, and volume
e Combination three: relative humidity, temperature, and start time hour.
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4. Predictive Modeling

The previous chapter explained the data preparation phase, where manual and automated data
are collected and analyzed into a cleaned data. The result led to different scenarios to achieve
output and feature combinations for developing the predictive model. This chapter aims to
develop predictive models using a machine learning approach. Hence, this chapter will explain
the process of each predictive model from manual and automated data.

4.1. Input and Output

Figure 38 presents the scheme to develop predive modelling. Manual data and automated data
are divided into features or input and the target or the output. The output from manual data is
TCT exclude RT. The output will be developed using feature combinations. The output from
automated data is TCT, TTT, LT, HT, UT, and RT. Individual output is required to combine
the prediction result for obtaining TCT. The output will be developed using three feature
combinations from automated data.

Manual Data Automated Data

Combination 1 Combination 2 Combination 3 Combination 1 Combination 2 Combination 3

Distance

Distance
K - i Relative Humidity }a"olume . Valume Relative Humidity
Relative Humidity Distance Relative Humidity X
Temperature Temperature Temperature Temperature Distance Temperature
. Start Time Hour P Model Start Time Hour
Start Time Hour Start Time Hour
Model
Truck Cycle Time ( TCT) Load Time (LT)
Haul Time (HT)

Unload Time (UT)
Return Time (RT)
Truck Travel Time (TTT)
Truck Cycle Time (TCT)

Figure 38. Scheme to develop the predictive model

4.2 Train, Validation, and Test Dataset

The machine learning approach requires the dataset to have a training dataset and a test dataset.
The training dataset is used for training the model to find the prediction pattern. The prediction
modelling performance is measured using the test dataset. Train data set and test dataset consist
of 80% and 20% of the total data point. The data split randomly for avoiding bias model or
result.

The training data set is divided into the training dataset and the validation dataset. The
validation dataset or development data set is used for developing the model by tuning the
parameters in the model. Tuning the parameters for a model is through a highly iterative
process that starts with an idea, finds the code, and does an experiment until finding a better
result [21]. Therefore, the training dataset and validation dataset need to be split properly for
obtaining a better result.
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This research aims to achieve a good performance model that gives an accurate prediction with
future input data. Figure 39 shows three possible predictive model performances: under-fitting,
good fit, and overfitting. Underfitting refers to a model that not able to generalize data or find
a fit pattern. Overfitting is a model that learns the data in detail and poorly predicts the new
data because it remembers the train data. And good fit/robust, which is the desired outcome,
refers to a model that learns data generally and predicts new data.
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Figure 39. lllustration of Underfitted, Good Fit, and Overfitted [22]

This research will use the k-fold cross-validation in splitting and iterating the training data, so
the predictive model is ensured not to have an overfitted performance. The explanation of k-
fold cross-validation will be explained in the following section.

4.3. Regression Technique

Based on data analysis, the relationship between variables and target can be linear and non-
linear. Hence, this research will use different types of regression algorithms to develop the
predictive model of TCT, which is a regression problem. This research will develop predictive
models by starting with a simple regression algorithm from traditional ML, such as multiple
linear regression (MLR) and support vector regression (SVR), and continuing with a more
complex algorithm from DL, such as Artificial Neural Network (ANN).

Each regression technique has a different approach to develop a regression model, such as
MLR uses Ordinary Least Squares, SVR uses hyperplanes, and ANN uses multilayers. Those
regression techniques will develop models from different feature combination as the input. The
results from different feature combinations and regression techniques might give insights and
understanding about predictive models.

Algorithms will develop the regression model in python with different library package. Hence,
a manual calculation is not required to develop the regression model. The following is a brief
explanation of each regression technique that will be used.

4.3.1. Multiple Linear Regression

Multiple Regression or Multiple Linear Regression (MLR) is a statistical technique that uses
explanatory variables to predict the outcome. The basic form of MLR is simple linear
regression which is illustrated in Figure 40. Linear regression functions well in predicting linear
data set and only fits one dependent and one independent variable. Equation 11 is the formula
for simple linear regression, where y is the dependent variable, x is the independent variable,
£ is coefficient and ¢ is the intercept value that dictating the equation.

Equation 10. Simple Linear Regression
y=pBx+¢
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Figure 40. Example of Simple Linear Regression.
However, it will spend times and effort for making one by one prediction model for different
variables. Thus, MLR is useful as an efficient way for predicting one dependent variable and
multiple independent variables. The general form of the equation for multiple regression, as
follows. Where f3; refers to the first independent variables until n number of input variables.
In linear regression,

Equation 11. Multiple Linear Regression

Vi = Bixin + Boxiz + o 4 PrXin + &
A regression model has good performance if it has a minimum value of the sum of squared
residual. Least squares is an approach in regression analysis that minimize the sum of the
squares of the residuals. Two categories of least squares are linear or ordinary least squares and
non-linear squares. Equation 12 shows Ordinary Least Squares (OLS) where y; is the target,
w;lis the coefficient, and x;is the input or feature.

Equation 12. Ordinary Least Squares (OLS)

n
MIN Z()’i — wix;)?
=1

4.3.2 Support Vector Machine

Support Vector Regression (SVR) is a regression analysis using the Support Vector Machine
(SVM) method. SVM develops predictive models by constructing hyperplanes for solving
classification or regression problem. Figure 41 shows how SVR works by considering points
within the boundary line (grey line) and minimizing error. Equation 13 is used for calculating
the boundaries where y; is the target, w;is the coefficient, and x;is the predictor or feature, and
€ is is a margin of tolerance . Equation 14 is used for minimizing the error.

Equation 13. Boundary for SVR

ly; —wixi| <e
Equation 14. Minimize error

1
MIN EllWll2
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Figure 41. Example of Support Vector Regression

4.3.3.Artificial Neural Network
Acrtificial Neural Network (ANN) which is part of DL, imitates how the biological neural
networks process the information by processing the input data into layers. The system will find
the appropriate answer [23]. ANN has a collection of neuron, which is called artificial neurons.
Each neuron is connected with the edges. Like the brain activity where a signal is transmitted
to neurons, the artificial neurons also get a signal transmitted through the connection. ANN has
two main elements, which are knowledge and the interneuron connection strength [23].
Knowledge obtains through the learning process of the machine. Interneuron connection
strength is needed to store the knowledge. The machine learns from its environment, which
consists of three different types of layers, as follows.

- The input layer is a layer that receives the data as the input.

- Hidden layers are layers to optimize the weight to improve the prediction result.

- The output layer is a layer that gives the prediction result.

%
\
k-

Figure 42. Artificial Neural Network Structure

Figure 42 illustrates the connection between the input, hidden, and output layer in the ANN
structure. The number of hidden layer and number of neurons can be added more than one. The
structure aims to process the knowledge from data and create a predictive model. Figure 43
shows the learning process of ANN, which contains two main parts, such as front propagation
(FP) and backpropagation (BP). FP refers to input data processing that passes through neuron
layers in a neural network from the input to the output layers. BP refers to propagating the error
back into the network and updating each weight and bias.

Forward Back . Iterate until
Weight Update Convergence

Initialization propagation Error Function propagation

Figure 43. The process of ANN [24]
Front Propagation

Initial data is propagated through network architecture structured by its depth, width, and
activation function in each layer [25]. Depth is defined by the number of hidden layer in the
network. Width is defined by the number of neurons of nodes that is applied in each layer. An
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activation function calculates the sum of neuron weight in the input layer, adds the bias, and
transforms it into the output layer. Figure 44 is a sample of how an activation function works
in a neuron.
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Figure 44. Sample of Front Propagation in a neuron

Activation Function

An activation function is chosen for the hidden layer and output layer because they serve
different objectives. Many activation functions can be applied in ANN, such as Linear,
Sigmoid, Rectified Linear (ReLU). ReLu has a function which returns 0 for a negative value.
Otherwise, the value is returned. ReLU is the most used activation function for hidden layers
because it can overcome the vanishing gradient problem, allowing the model to learn faster
and better performance [21]. Therefore, this research uses ReLu for the hidden layers.

sigmoid RelU

| R(z) =maz(0, 2)

Figure 45. Activation Function: Linear, Sigmoid, and ReLu

Figure 45 shows different activation functions for the output layers, such as ReLU, Sigmoid,
and Linear Sigmoid activation function, which takes a real value as input and output values in
the range between 0 for negative value and 1 for a positive value. A linear activation function
is also known as no activation function because it does not change the weighted sum and return
the value directly.

Hyperparameter

Besides deciding activation functions, batch size and epoch must be set before the learning
process begins, called hyperparameter. Batch size is the number of training samples that are
used to be run in one iteration. A larger batch size will increase the speed of the learning rate,
but it can decrease the accuracy. Epoch refers to the number of a cycle that through training
dataset.

Backpropagation

After receiving the result from the forward propagation process, the backpropagation algorithm
calculates the gradient of the lost function to each weight. Figure 46 shows the illustration of
the backpropagation process with respect to the neural network weight. The loss function and
optimizer is required to be selected for ANN structure to conduct backpropagation.
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Figure 46. Sample of Backpropagation

Loss Function

The loss function is a mathematical algorithm that helps measure the model's performance
toward the desired result. The typical loss function used for the regression problem is Mean
Squared Error (MSE). Equation 15 is the function of MSE where ¥ is predicted value of y and
y is the mean value of y. This research will use MSE as the loss function because MSE is a
sensitive calculation for a big range of loss.

Equation 15. Mean Squared Error

1< -
MSE = NZ(}&- -9)
l=

Optimizer

The optimizer is a mathematical algorithm that helps the loss function reach its peak
performance without delay and provide the most accurate result. Adaptive Moment Estimation
(Adam) is one of the optimizer types commonly used in a neural network. Adam optimization
is a stochastic gradient descent method based on adaptive estimation for each parameter [26].

4.4. K-Fold Cross-Validation

The training dataset is split using the k-fold cross-validation method, a common method in
machine learning to overcome the overfitting problem [27]. Figure 47 illustrates the process of
k-fold cross-validation in a dataset. In the beginning, the training dataset is shuffled randomly
and split into a certain number of k. Each fold will select a group of data to be a validation set
and use the remaining data as the training set. The iteration process decides the number of k
until a better outcome for the model is found. Finally, the outcome is evaluated with
performance metric in this research.

|:| Validation Set

ooz [ N & s

All Data

Figure 47. lllustration of K-fold 10
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4.5. Performance Metrics

The model's performance is evaluated using common three statistical methods in ML, such as
RMSE, MAE, and R?. RMSE or Root Mean Squared Error is the error rate of the square root
of the difference between the original and predicted value extracted by squared the average
difference over the data set [28]. MAE or Mean Absolute Error is the error value calculated
from the absolute difference between the original and predicted values over the dataset. R2, or
the coefficient of determination, is a measurement to explain the variability of a variable to
another variable. The following is the function of the methods where y is predicted value of y
and y is the mean value of y

Equation 16. Root Mean Squared Error (RMSE)

IR
RMSE = |2 (=9
i=1

Equation 17. Mean Absolute Error (MAE)

1 N
MAE = NZ'”‘?'
i=

Equation 18. Coefficient of Determination (R?)

g 20i=9)
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The measurement has different purposes in evaluating predictive models. RMSE calculation is
sensitive to poor prediction, and MAE treats all the prediction error proportionally. It also the
reason why MAE is more robust to cope with outliers than RMSE. The value of RMSE and
MAE that closer to zero indicates better model performance. R calculation aims to know how
many data points that fall within the model. R? value that closes to one indicates better model
performance. The value can refer to a percentage of the goodness of fit. In addition, R2 can be
negative, which indicates the model has poor goodness of fit toward the data distribution or the
intercept (&) of the MLR from Equation 11 haven’t set. This research will set the intercept to
obtain the best model.
The modelling might have a trade-off, for instance, low RMSE and high R2 but high MAE.
Then, the predictive model that contained less error and high goodness of fit value will be
selected. Therefore, each value is considered in the modelling process, where the detailed
process is shown in Appendix 2.

4.6. Modelling

Figure 48 shows the scheme of using the dataset in the modelling process. However, this
research has limitation regarding the size of the dataset, which is not big enough, time, and the
capacity of the computer for developing models. Hence, this research does not use a high
parameter tuning where models are not developed with a big number for each parameter.
Instead, each predictive models will be developed between two and ten folds in the k-fold
cross-validation process.
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Predictive models with ANN method are developed by tuning the batch size 10, 50, 100, 150,
epochs within 10, 50,100,500, and 1000, neurons within one, four, 12, 36 for manual data and
1, 6, 12, 24, and 36 for automated data, and hidden layers between one to five. Then, the
selected predictive models will be tested with the test dataset.

Train Dataset
v

| K-Fold Cross Validation |

T ——
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Hyperparameter Tuning ‘

‘ MLR Model H SVR Model H ANN Model \

e, e — ;

‘ Compare models ‘

v
‘ Select Two Best Models ‘

Test Dataset

v
| Model Evaluation

Figure 48. Scheme of using the data set
4.6.1. Manual data
The data points in manual data are divided into two parts, where 344 data points for the training
dataset and 84 data points for the test dataset. The following is the outcome of predictive
models with different methods and different feature combination. The detailed development
process for each predictive model is presented in Appendix 2.

Multi Linear Regression

Table 7 shows the coefficient and intercept value of each TCT predictive model that uses the
Multi Linear Regression (MLR) method and different feature combinations from manual data.
Each model is developed with different folds. The number of folds for combination one is
seven-folds, combination two is five-folds, and combination three is two-folds. The coefficient
and intercept value affect the model performance.

Table 7. Multi Linear Regression result from manual data

o Combination Combination Combination
Coefficient
one three

Intercept 0.068 0.086 0.072
Start Time Hour 0.00004 - -0.024
Distance 0.0308 0.041 -
Temperature 0.0499 0.037 0.077
Relative Humidity 0.0235 - 0.027
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Comparison of Feature Combination
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Figure 49. Comparison of TCT models from manual data using MLR.

Figure 49 presents that MLR obtains the lowest RMSE value with 0.1088 using combination
one, the lowest MAE value with 0.0605 and the highest R2 value with 0.004 using combination
two. It indicates that MLR with combination two develops a TCT model which obtains the
lowest average error and can capture most data points compare with other models. However,
the model is considered to have low accuracy because the goodness of fit is close to zero.

Support Vector Regression

Figure 50 shows the comparison between TCT predictive models that use the Support Vector
Machine (SVR) method and different feature combinations from manual data. The number of
folds for combination one is eight-folds, combination two is seven-folds, and combination three
is two-folds.
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Figure 50. Comparison TCT models from manual data using SVR

The result presents that SVR obtains the lowest MAE value with 0.0735 and the lowest RMSE
value with 0.1131 using combination one and the highest R2? value with -0.0123 using
combination three. It indicates that SVR with feature combination one develops a TCT model,
which obtains the lowest average error and has few data points far from the model. However,
the model cannot capture most data points.

Acrtificial Neural Network

Figure 51 shows the comparison between TCT predictive models that use Artificial Neural
Network (ANN) method and different feature combinations from manual data. First,
combination one is developed by applying ten batch size, 100 epochs, 36 neurons in four
hidden layers, and three-folds. Next, combination two is developed by applying the ten batch
size, 500 epochs, 36 neurons in two hidden layers, and four-folds. Finally, combination three
is developed by applying the ten batch bize, 100 epochs, 36 neurons in five hidden layers, and
three-folds.
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Figure 51. Comparison of TCT models from manual data using ANN

The result presents that ANN obtains the lowest MAE value with 0.0441, the lowest RMSE
value with 0.0866, and the highest R? value with 0.0375 using combination one. It indicates
that ANN with combination one develops a TCT model, which has the lowest average error,
close to most data points, and can capture most data points.

Overview

Figure 52 shows the comparison between methods in each combination with manual data.
Combination one obtains the best predictive model with MLR, with the lowest MAE and
RMSE values, although ANN has the highest R2 value. It indicates that combination one is
suitable to develop a regression model using the MLR method. It can obtain prediction with a
small average error and is not far from the data points but cannot capture most data points.
With combination two, MLR has the lowest MAE value and the highest R? value, but ANN
has the lowest RMSE value. It indicates that combination two is suitable to develop a regression
model using MLR. It can capture most data points and low average error, but it is far from most
data points. With combination three, MLR has the lowest MAE, RMSE value and the highest
R2value. It indicates that combination three is suitable for developing a regression model using
the MLR method. The model can capture most data points, obtain a low average error, and
close to most data points.
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Figure 52. TCT models from manual data.

Overall, predictive models with manual data cannot capture most data points. The plausible
reason is due to the bad quality of data. The data collected manually is influenced by many
factors that might affect the result and the data pattern. Therefore, the methods are difficult to
develop a reliable predictive model. This result also is influenced by the data quantity where
the training dataset consists of 344 data points. Thus, the predictive models from manual data
will not be analyzed further because the models are insufficient to be used as TCT predictive
models in earthworks.

4.6.2. Automated data
This section's main objective is to develop a predictive model of TCT, individual activity
duration, and Truck Travel Time (TTT). The data points in automated data are divided into
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two parts, where 471 data points for the training dataset and 118 data points for the test dataset.
The following is the outcome of predictive models with different methods and different feature
combination. The detailed development process for each predictive model and the mathematic
equation from MLR are presented in the Appendix.

4.6.2.1. Load Time

The result from load time (LT) predictive models with different methods and feature
combinations will be explained.

Multi Linear Regression

Figure 53 shows the comparison between LT predictive models that use Multi Linear
Regression (MLR) method and different feature combinations from automated data. The
number of folds for combination one and two is three-folds, and combination three is ten-folds.
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Figure 53. Comparison of LT models from automated data using MLR

The result shows MLR obtains the lowest MAE value with 0.0778, the lowest RMSE value
with 0.1088, and the highest R2 value with 0.182 using combination one. It indicates that MLR
obtains an LT model with the lowest average error, close to most data points, and can capture
most data points with combination one.

Support Vector Regression

Figure 54 shows the comparison between LT predictive models that use the Support Vector
Machine (SVR) method and different feature combinations from automated data. The number
of folds for combination one is two-folds, combination two is nine-folds, and combination three
is nine-folds.
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Figure 54. Comparison of LT models from automated data using SVR
The result presents that SVR obtains the lowest MAE value with 0.068, the lowest RMSE value
with 0.096, and the highest R? value with 0.362 using combination one. It indicates that SVR
and combination one develop an LT model which obtains the lowest average error, close to
most data points, and can capture most data points.
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Artificial Neural Network

Figure 55 shows the comparison between LT predictive models that use Artificial Neural
Network (ANN) method and different feature combinations from automated data. First,
combination one is developed by applying ten batch size, 500 epochs, 36 neurons in one hidden
layer, and three-folds. Next, combination two is developed by applying the ten batch size, 500
epochs, 12 neurons in one hidden layer, and three-folds. Finally, combination three is
developed by applying the ten batch bize, 500 epochs, 12 neurons in one hidden layer, and ten-
folds.
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Figure 55. Comparison of LT models from automated data using ANN

The result presents that ANN obtains the lowest MAE value with 0.0630, the lowest RMSE
value with 0.0981, and the highest value of R2 with 0.3325 using combination one. It indicates
that ANN and combination one develop an LT model which obtains the lowest average error,
close to most data points, and can capture most data points.

Overview

Figure 56 shows the comparison between methods in each combination with automated data.
Combination one and two obtain the best predictive model with SVR, with the lowest RMSE
and the highest R2 value, although ANN has the lowest MAE value. Hence, it indicates that
combination one is suitable to develop a regression model using the SVR method. Each
predictive model is close to the data points and can capture most data points, although the
average error is not the lowest.

With combination three, the lowest RMSE value is obtained using MLR and ANN method.
MLR also has the highest R2 value, and ANN has the lowest MAE value. It indicates that the
input from combination three develops similar predictive models using MLR and ANN. Both
regression models are close to most data points. MLR model can capture most data points, and
the ANN model has the lowest average error.
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Figure 56. Comparison of LT models from automated data

Overall, the best LT model is developed by SVR with feature combination one from automated
data. It has a similar performance with the predictive model from ANN with feature
combination one.
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4.6.2.2. Haul Time

The results from haul time (HT) predictive models with different methods and feature
combinations will be explained.

Multi Linear Regression

Figure 57 shows the comparison between HT predictive models that use Multi Linear
Regression (MLR) method and different feature combinations from automated data. The
number of folds for combination one and two is three-folds, and combination three is ten-folds.
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Figure 57. Comparison of HT models from automated data using SVR

The result shows MLR obtains the lowest MAE value with 0.081, the lowest RMSE value with
0.107, and the highest R? value with 0.243 using combination two. It indicates that MLR and
combination two develop an HT model which obtains the lowest average error, close to most
data points, and can capture most data points.

Support Vector Regression

Figure 58 shows the comparison between HT predictive models that use the Support Vector
Machine (SVR) method and different feature combinations from automated data. The number
of folds for combination one, two, and three is nine-fold.
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Figure 58. Comparison of LT models from automated data using SVR

The result presents that SVR obtains the lowest MAE value with 0.068, the lowest RMSE value
with 0.089, and the highest R? value with 0.464 using combination two. It indicates that SVR
and combination one develops an HT model that obtains the lowest average error, close to most
data points, and can capture most data points.

Artificial Neural Network

Figure 59 shows the comparison between HT predictive models that use Artificial Neural
Network (ANN) method and different feature combinations from automated data. First,
combination one is developed by applying ten batch size, 500 epochs, 24 neurons in four
hidden layer, and seven-folds. Next, combination two is developed by applying the ten batch
size, 1000 epochs, 24 neurons in three hidden layers, and ten-folds. Finally, combination three
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is developed by applying the ten batch bize, 100 epochs, 6 neurons in one hidden layer, and
nine-folds.
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Figure 59. Comparison of HT models from automated data using ANN

The result presents that ANN obtains the lowest MAE value with 0.0670, the lowest RMSE
value with 0.0904, and the highest value of R? with 0.4518 using combination one. The result
indicates that ANN and combination one develop an HT model which obtains the lowest
average error, close to most data points, and can capture most data points.

Overview

Figure 60 shows the comparison of HT models from different methods in each combination
with automated data. Combination one obtains the best predictive model with ANN, with the
lowest MAE and RMSE values and the highest R2 value. It indicates that combination one is
suitable to develop a regression model using the ANN method. It can predict with a small
average error, not far from the data points, and capture most data points. With combination
two, SVR has the lowest MAE, RMSE value and the highest R? value. It indicates that
combination two is suitable to develop a regression model using SVR. It can capture most data
points, has a low average error, and close from most data points. With combination three, MLR
has the lowest MAE value and the highest Rz value, but ANN has the lowest RMSE value. It
indicates that combination three is suitable for developing a regression model using the MLR
method. The model can capture most data points, obtain a low average error, but far from most
data points.
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Figure 60. Comparison of HT models from automated data

Overall, the best HT model is developed by SVR with feature combination two from automated
data. It has a similar performance with the predictive model from ANN with feature
combination one.

4.6.2.3. Unload Time
The following results from predictive models of unload time (UT) with different methods and
feature combinations.
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Multi Linear Regression

Figure 61 shows the comparison between UT predictive models that use Multi Linear
Regression (MLR) method and different feature combinations from automated data. The
number of folds for combination one and two is seven-folds, and combination three is ten-
folds.
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Figure 61. Comparison of UT models from automated data using MLR

The result shows MLR obtains the lowest MAE value with 0.0298, the lowest RMSE value
with 0.0596, and the highest R2 value with 0.1079 using combination two. It indicates that
MLR with combination two develops a UT model which obtains the lowest average error, close
to most data points, and can capture most data points.

Support Vector Regression

Figure 62 shows the comparison between UT predictive models that uses the Support Vector
Machine (SVR) method and different feature combinations from automated data. The number
of folds for combination one is three-folds, combination two is two-folds, and combination
three is eight-folds.

Comparison of Feature Combination

0200 0.0650.086 0.0600.084 0.0440.070

- - —
1 2 3
0.200
-0.400
-0.406
0,600
-0.800
-1.000

-1.008
1.200 -1.092

EMAE ®RMSE mR?
Figure 62. Comparison of UT models from automated data using SVR

The result presents that SVR obtains the lowest MAE value with 0.044, the lowest RMSE value
with 0.070, and the highest R2 value with -0.408 using combination three. It indicates that SVR
and combination three develop a UT model which obtains the lowest average error, close to
most data points, and can capture most data points.

Artificial Neural Network

Figure 63 shows the comparison between UT predictive models that use Artificial Neural
Network (ANN) method and different feature combinations from automated data. First,
combination one is developed by applying ten batch size, 100 epochs,6 neurons in one hidden
layer, and seven-folds. Next, combination two is developed by applying the ten batch size, 100
epochs, 6 neurons in one hidden layer, and six-folds. Finally, combination three is developed
by applying the 50 batch bize, 1000 epochs, three neurons in one hidden layer, and three folds.
The result presents that ANN obtains the lowest MAE value with 0.0291, the highest value of
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R2 with 0.1340 using combination two, and the lowest RMSE value with 0.0589 using
Combination one and 2.
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Figure 63. Comparison of UT models from automated data using ANN

The result presents that ANN obtains the lowest MAE value with 0.0291, the highest value of
R2? with 0.1340 using combination two, and the lowest RMSE value with 0.0589 using
Combination one and two. It indicates that ANN with combination two develops a UT model
that obtains the lowest average error, is close to most data points, and can capture most data
points.

Overview

Figure 64 shows the comparison of UT models from different methods in each combination
with automated data. Combination one obtains the best predictive model with ANN, with the
lowest RMSE and the highest R2 value, although MLR has the lowest MAE values. It indicates
that combination one is suitable to develop a regression model using the ANN method. It is not
far from the data points and can capture most data points. With combination two, ANN has the
lowest MAE, RMSE value and the highest R? value. It indicates that combination two is
suitable to develop a regression model using ANN. It can capture most data points, has a low
average error, and close from most data points. With combination three, MLR has the lowest
RMSE value and the highest Rz value, but ANN has the lowest MAE value. It indicates that
combination three is suitable for developing a regression model using the MLR method. The
model can capture most data points, obtain a low average error, but far from most data points.

Method Comparison for Combination 1 Method Comparison for Combination 2 Method Comparison for Combination 3

1058 1079 0.1340 0:1000 0.0644 0.070 0.0645
0.03090598" 0.0650.086 o‘umg.osag- 00298 us-;g- oo2ef 0585y [ 0.044 00328
— — — 0.0000 — — — 00000 - | -

MLR SV ANN MLR SWR ANN
-0.2000 -0.2000 MR SR ANN-0.0050
-0.1000

02000

0.0000

-0.4000 -0.4000

-0.2000
-0.6000 -0.6000

-0.3000
0.8000 0.8000
-0.4000

1.008 0.406
1.2000 1092 1.2000 ~0:5000

1.0000 1.0000

BMAE = RMSE mR® BMAE =RMSE mR* EMAE =RMSE =R

Figure 64. Comparison of UT models from automated data

Overall, the best UT model is developed by ANN with feature combination two from
automated data. It has a similar performance with the predictive model from ANN with feature
combination one.

4.6.2.4. Return Time
The following results from return time (RT) predictive models with different methods and
feature combinations.
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Multi Linear Regression

Figure 65 shows the comparison between RT predictive models that use Multi Linear
Regression (MLR) method and different feature combinations from automated data. The
number of folds for combination one is six-folds, and combination two and 3 are three-folds.
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Figure 65. Comparison of RT models from automated data using MLR

The result shows MLR obtains the lowest MAE value with 0.046, the highest Rz value with
0.693 using combination one, and the lowest RMSE value with 0.047 by combination two. It
indicates that MLR with combination two develops an RT model that obtains the lowest
average error and can capture most data points. However, the RT model is far from some data
points.

Support Vector Regression

Figure 66 shows the comparison between RT predictive models that uses the Support Vector
Machine (SVR) method and different feature combinations from automated data. The number
of folds for combination one and 2 is six-folds, and combination three is seven-folds.

Comparison of Feature Combination

0800 0.688 0.707
0.700

0.600

0.500

0.400

0.300

o0 0.122

0.100 0.0490-067 0,046 0-064 0.077

0,000 - - [ | .
1 2

0.100 3 -0.019

EMAE ®RMSE mR?
Figure 66. Comparison of RT models from automated data using SVR

The result presents that SVR obtains the lowest MAE value with 0.046, the lowest RMSE value
with 0.064, and the highest R2 value with 0.707 using combination two. It indicates that SVR
develops an RT model which has the lowest average error, close to most data points, and can
capture most data points with combination two

Artificial Neural Network

Figure 67 shows the comparison between RT predictive models that use Artificial Neural
Network (ANN) method and different feature combinations from automated data.
Combination one is developed by applying ten batch size, 100 epochs,6 neurons in one hidden
layer, and six-folds. Combination two is developed by applying the ten batch size, 100 epochs,
12 neurons in three hidden layers, and six-folds. Combination three is developed by applying
the ten batch bize, 100 epochs, 12 neurons in one hidden layer, and two folds. The result
presents that ANN obtains the lowest MAE value with 0.0303 and the lowest RMSE value with
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0.0589 using combinationl, and the highest R2 value with 0.7203 using feature combination
two
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Figure 67. Comparison of RT models from automated data using ANN

Overview

Figure 68 shows the comparison of RT models from different methods in each combination
with automated data. Combination one obtains the best predictive model with ANN, with the
lowest MAE and RMSE values, although MLR has the highest R2 value. It indicates that
combination one is suitable to develop a regression model using the ANN method. It is not far
from the data points and has the lowest average error. With combination two, ANN has the
lowest MAE and the highest R? value, although MLR has the lowest MSE value. It indicates
that combination two is suitable to develop a regression model using ANN. It can capture most
data points and has the lowest average error. With combination three, ANN has the lowest
MAE, RMSE value and the highest R2 value. It indicates that combination three is suitable for
developing a regression model using the ANN method. The model can capture most data
points, obtain a low average error, and close with most data points.
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Figure 68. Comparison of RT models from automated data

Overall, the best UT model is developed by ANN with feature combination two from
automated data. It has a similar performance with the predictive model from SVR with
combination two.

4.6.2.5. Truck Travel Time

The following presents truck travel time (TTT) predictive models with different methods and
feature combinations.

Multi Linear Regression

Figure 69 shows the comparison between TTT predictive models that use Multi Linear
Regression (MLR) method and different feature combinations from automated data. The
number of folds for combination one and two is three-folds, and combination three is two-
folds.
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Figure 69. Comparison of TTT models from automated data using MLR

The result shows MLR obtains the lowest MAE value with 0.052, the highest R? value with
0.69, and the lowest RMSE value with 0.747 using combination one. It indicates that MLR
with combination one develops a TTT model which obtains the lowest average error, close to
most data points, and can capture most data points.

Support Vector Regression

Figure 70 shows the comparison between TTT predictive models that use the Support Vector
Machine (SVR) method and different feature combinations from automated data. The number
of folds for combination one and 3 is seven-folds, and combination two is five-folds.
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Figure 70. Comparison of TTT models from automated data using SVR

The result presents that SVR obtains the lowest MAE value with 0.0523, the lowest RMSE
value with 0.0689, and the highest R? value with 0.7375 using combination two. It indicates
that SVR develops a TTT model which obtains the lowest average error, close to most data
points, and can capture most data points with combination two.

Acrtificial Neural Network

Figure 71 shows the comparison between TTT predictive models that use Artificial Neural
Network (ANN) method and different feature combinations from automated data. First,
combination one is developed by applying 100 batch size, 100 epochs, 12 neurons in five
hidden layer, and two-folds. Next, combination two is developed by applying the ten batch
size, 100 epochs, 12 neurons in five hidden layers, and six-folds. Finally, combination three is
developed by applying the ten batch bize, 100 epochs, 36 neurons in two hidden layer, and two
folds.
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Figure 71. Comparison of TTT models from automated data using ANN

The result presents that ANN obtains the lowest MAE value with 0.0511 and the lowest RMSE
value with 0.0689 using combination one, and the highest R? value with 0.7485 using
combination two. It indicates that ANN develops a TTT model that obtains the lowest average
error and can capture most data points, but it is far from some data points, with combination
two.

Overview

Figure 68 shows the comparison of TTT models from different methods in each combination
with automated data. Combination one obtains the best predictive model with ANN, with the
lowest MAE, RMSE, and the highest R2 value. It indicates that combination one is suitable to
develop a regression model using the ANN method. It is not far from the data points, has the
lowest average error, and can capture most data points. With combination two, ANN has the
lowest MAE and the highest R? value, although MLR has the lowest MSE value. It indicates
that combination two is suitable to develop a regression model using ANN. It can capture most
data points, has the lowest average error. With combination three, ANN has the lowest RMSE
value and the highest R2 value. It indicates that combination three is suitable for developing a
regression model using the ANN method. The model can capture most data points and close
from most data points.
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Figure 72. Comparison of TTT models from automated data
Overall, the best TTT model is developed by ANN with feature combination one from

automated data. It has a similar performance with the predictive model from MLR with
combination one.

4.6.2.6. Truck Cycle Time
The following results from truck cycle time (TCT) predictive models with different methods
and feature combinations.

Multi Linear Regression
Figure 73 shows the comparison between TCT predictive models that use Multi Linear
Regression (MLR) method and different feature combinations from automated data. The
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number of folds for combination one is three-folds, combination two is two-folds, and
combination three is three-folds.
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Figure 73. Comparison of TCT models from automated data using MLR

The result shows MLR obtains the lowest MAE value with 0.091, the lowest RMSE value with
0.1211, and the highest R? value with 0.3423 using combination one. It indicates that MLR
develops a TCT model which obtains the lowest average error, close to most data points, and
can capture most data points with combination two.

Support Vector Regression

Figure 74 shows the comparison between TCT predictive models that use the Support Vector
Machine (SVR) method and different feature combinations from automated data. The number
of folds for combination one is ten-folds, combination two is six-folds, and combination three
is seven-folds.
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Figure 74. Comparison of TCT models from automated data using SVR

The result presents that SVR obtains the lowest MAE value with 0.077, RMSE value with
0.1038, and the highest R? value with 0.5332 using combination one. It indicates that SVR
develops a TCT model which obtains the lowest average error, close to most data points, and
can capture most data points with combination one.

Acrtificial Neural Network

Figure 75 shows the comparison between TCT predictive models that use Artificial Neural
Network (ANN) method and different feature combinations from automated data.
Combination one is developed by applying ten batch size, 500 epochs, 36 neurons in three
hidden layer, and ten-folds. Combination two is developed by applying the ten batch size, 500
epochs, 36 neurons in three hidden layers, and four-folds. Finally, combination three is
developed by applying the ten batch bize, 100 epochs, nine neurons in one hidden layer, and
nine folds.

53



Comparison of Feature Combination

0.4837
0.4369

02 01194{)‘1523
.1146
q,onf'u”s 0‘085?

0.1 .
, W L _

1 2 3 -0.0075

mMAE ®RMSE mR*
Figure 75. Comparison of TCT models from automated data using ANN

The result presents that ANN obtains the lowest MAE value with 0.0782, RMSE value of
0.1075, and the highest R? value with 0.4837 using combination one. It indicates that ANN
develops a TCT model which obtains the lowest average error, close to most data points, and
can capture most data points with combination one.

Overview

Figure 68 shows the comparison of TCT models from different methods in each combination
with automated data. Combining one obtains the best predictive model with SVR, with the
lowest MAE, RMSE, and the highest R2 value. It indicates that combination one is suitable to
develop a regression model using the SVR method. It is not far from the data points, has the
lowest average error, and can capture most data points. With combination two, SVR has the
lowest MAE, RMSE value, and the highest R? value. It indicates that combination two is
suitable to develop a regression model using SVR. It can capture most data points, has the
lowest average error. With combination three, ANN has the lowest RMSE value, SVR has the
lowest MAE value, and MLR has the highest R? value. It indicates that combination three has
a trade-off using different methods because each model has its strength.

Method Comparison for Combination 1 Method Comparison for Combination 2 Method Comparison for Combination 3

06000 01800
0.1532 01523

0.1400

06
0.4837 0.1600

os 05000 o436

04 03823 0.4000 0.3555 01200
0.1000

03 03000 N

02 FeT] 0.2000 0.0600

0.1075|

PP L 00777103 00782 01000 oomd - 00808 0“553 onwe 0.0130
00200

, | | . o000

0000
MLR SVR ANN 0.0200 c 0103

Figure 76. Comparison of TCT models from automated data

Overall, the best TCT model is developed by SVR with feature combination one from
automated data. It has a similar performance with the predictive model from ANN with
combination one.

4.6.3. Overview of Automated data

The predictive model using automated data has a better result than the predictive model using
manual data. Table 8 presented the two best predictive model for each target using automated
data. Most models are developed by ANN or SVR, except the TTT model that MLR develops.
It also presents that most methods are developed using feature combination one or 2. The result
indicates that feature combination three cannot develop a good predictive model by the selected

methods.
Table 8. Overview result of automated data

LT = SVR 1 | 0.068  0.096 0.362 }
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It presents that each model has a different average error, distance to data points, and ability to
capture data points. It also shows that the UT model has the lowest average error and the closest
model to the data points. However, it cannot accurately capture most data points, approximately
13% accurate. On the other hand, the TTT model is the best model to capture most data points
which are approximately 74% accurate. However, high accuracy might cause overfitting,
which is unable to be detected using k-fold cross-validation. Hence, the following section will
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explain the evaluation of each model and scenario using the test dataset.
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5. Result

In the previous chapter, manual data and automated data are used for developing predictive
models. The models have been developed using different combination features as the input and
process with MLR, SVR, and ANN. The models are developed by concerning the error value,
robustness, and computational time. This chapter aims to evaluate the performance of the
selected predictive model from automated data. Therefore, each model will be tested using a
test dataset that is different from the training dataset. The result will be denormalized to the
original scale for evaluating the model in the original unit. Feature ablation will be used to find
the contribution of each feature in each predictive model.

5.1. Denormalization

In the previous section, predictive models are developed with the normalized value. The result
is difficult to be understood because of the range between zero and one. Hence, the result needs
to be denormalized to the original range. Denormalization is the inversion from normalization
value that aims to understand and evaluate the prediction result in the original range. Equation
19 is the denormalization equation which is indicated by x;. The normalized value is indicated
by z;. The maximum value and the minimum value are indicated by max(x) and min(x),
respectively.

Equation 19. Denormalization
x; = z; * (max(x) — min(x)) + min(x)

Table 9 is the sample of denormalization result from the LT model. Test and Test Denorm refer
to the ground truth in normalized and denormalized value, respectively. Predict and Predict
Denorm refer to the prediction result in normalized and denormalized value, respectively.
Deviation value refers to the different value between prediction and test in the original range
and unit in seconds.

Table 9. Sample of Denormalization Result

Test Predict Test Denorm  Predict Denorm Deviation Value

(Sec) (Sec) (Sec)
0.1490 0.2108 385 435 50.2
0.1539 0.3649 389 560 171.3
0.1589 0.3898 393 581 187.5

5.2. Feature Ablation

The contribution of each feature to the predictive model will be evaluated by removing one
feature and keep the rest features [29]. The objective is to identify that the performance of a
predictive model is affected unequally by a particular feature. The predictive model which is
affected by a certain feature will be analyzed further. Feature ablation will be conducted to the
predictive model that has a good performance in the test dataset.
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5.3. Model Evaluation

Each target has two predictive models, which shows a good result with the training dataset.
The performance of a predictive model is tested using a test dataset that consists of 118 data
points. The main part of the model evaluation is the robustness, prediction tendency, and
feature contribution for the model. The robustness of the model will be evaluated based on the
test result represented by the MAE value, RMSE value and R2 value. The prediction tendency
is assessed by analyzing the deviation value in the form of a box plot. The weakness of the
model also is identified by analyzing the data points of outliers. It will help to understand which
input is difficult to be estimated and the result of estimation. Table 10 shows the statistic data
of each variable. This value will be used for analyzing the poor prediction results, especially
the 25% and 75%, which refers to the interquartile range in a box plot. The feature contribution
and importance will be assessed using feature ablation.

Table 10. Mean, Max, and Max value of each variable

Distance Temperature Relative Start Time  Model Volume
(km) (°C) Humidity (%) Hour (m3)

Mean 1.66 15.9 73.27 12.35 0.2 17.15
Min 0.6 8.9 49.3 7 0 1.14
Max 3.9 18.2 95.4 17 1 27.7
25% 15 154 56.48 10 0 14.87
50% 1.66 16.1 79.43 12 0 17.5
75% 1.8 16.9 86.47 15 1 19.34

5.3.1. Load Time (LT)

Table 11 presents the test result of two LT models from SVR with combination one and ANN
with combination one. The models obtain good performance indicated by a lower MAE and
RMSE value and a higher R? value of the test dataset than the training dataset. The second
model has better performance than the first model in predicting the test dataset.

Table 11. Evaluation of LT models

No Method Combination Data MAE RMSE R2

1 SVR 1 Train | 0.068 | 0.096 | 0.362
Test | 0.0663 | 0.0844 | 0.3910

2 ANN 1 Train | 0.063 | 0.0981 | 0.3325
Test | 0.0569 | 0.0823 | 0.4219

Figure 77 shows box plots of deviation value after the result of LT models is denormalized.
The red box plot represents the LT model with SVR and combination two, and the blue box
plot represents the LT model with ANN and combination one. The red box plot has a wider
interquartile range and more outliers below -100 seconds than the blue box plot. However, the
blue box plot has more outliers above 100 seconds than the red box plot. It indicates that the
first predictive model tends to overestimate the load time while the second predictive tends to
underestimate the load time.
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Figure 77. Box plot of LT models

The second model will be analyzed further, particularly its outliers. Table 12 shows the outliers
data points, the prediction result, and the deviation values from the second LT model. The
predictive model cannot accurately predict data points with the volume input is 14.7 m3 and
1.1 m3, and model input is one or Volvo A45G. Also, temperature and distance input values
far from their median values in automated data are difficult to predict.

Table 12. LT model with ANN and combination one

Model Start Time Hour Volume {(m*) Relative Humidity (%) Distance (Km) Temperature (°C) Test Denorm (sec) Predict Denorm (sec) Deviation Value (sec)

1.0 9.0 14.692982 80.96 1.947 127 3440 140.403961 -203.596039
1.0 9.0 14.692982 82.24 0.957 124 3830 213.683243 -169.316757
1.0 16.0 14.692982 49.64 0778 177 326.0 210.310313 -115.189662
1.0 15.0 1.140351 50.71 1715 179 107.0 243624298 136.624298
1.0 16.0 14.692982 50.44 0.710 177 1.0 198.558807 197558807

Figure 78 shows the result of the feature ablation in the LT Model with ANN and combination
one. Distance, temperature, and model are identified to have a contribution to the predictive
model. The predictive model obtains worse performance by eliminating those features.
However, the result achieves better performance when volume and relative humidity are
eliminated from the feature input. Thus, it indicates the model might have a better performance
without having one of them.
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Figure 78. Feature ablation for LT model

The result indicates that the LT model with ANN and combination one has a robust
performance in the test dataset. The most prediction has a deviation value between -50 to 50
seconds. In addition, the accuracy from the LT model is not high enough because it only
achieves 42% accuracy. LT model is also required to keep distance, temperature, model, and
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start time hour as the input to ensure its performance. Volume and relative humidity might be
considered to be removed from the input for better performance.

5.3.2. Haul Time (HT)

Table 13 shows the test result of two HT models from SVR with combination two and ANN
with combination one. The models obtain poor performance indicated by a higher MAE and
RMSE value and a lower R? value of the test dataset than the training dataset. The second
model performs better than the first model in the test dataset, although it gave an opposite result
with the training dataset. It shows that the second predictive model has better fitting and more
robust than the first predictive model.

Table 13. Evaluation of HT models
No Method Combination Data MAE RMSE

1 SVR 2 Train | 0.068 | 0.089 | 0.464
Test | 0.0737 | 0.1121 | 0.3642
2 ANN 1 Train | 0.0670 | 0.0904 | 0.4518
Test | 0.0700 | 0.1116 | 0.3701

Figure 79 shows box plots of deviation value after the result of HT models is denormalized.
The red box plot represents the HT model with SVR and combination two, and the blue box
plot represents the HT model with ANN and combination one. Both box plots have a similar
interquartile range between -25 and 25 seconds and outliers below -50 seconds. The red box
plot has more outliers above 50 seconds. The blue box plot shows better performance because
it can predict more accurately and less error than the red box plot.
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Figure 79. Box plot of HT models

However, the blue box plot indicates that the HT model overestimates some predictions. Table
14 shows the outliers data points, the prediction result, and the deviation values from the
predictive model using ANN and combination one. The two highest deviation values have
similar distance input, which is 1.62 km. The model might not predict well with the distance
input is 1.62 km because it is the median value of the distance variable. It indicates many value
input for that value but might have a different result because of other variables not counted in
this research.

Table 14. HT model with ANN method and combination one
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Model Start Time Hour Volume (m®) Relative Humidity {%) Distance (Km) Temperature (°C) Test Denorm (sec) Predict Denorm (sec) Deviation Value (sec)

1.0
0.0
1.0

0.0
0.0

10.0
8.0
16.0

15.0
10.0

20.745614
10.964912
18.245614

19.868421
16.403509

8543
94.21
92.97

91.83
67.77

1822 156

1.200 1.6
1.629 16.5
19 16.5
19 144

3120
288.0
311.0

155.0
165.0

154.747711
132.838135
164.977982

201.388382
213.616257

-157.252289
-156.161865
-146.022018

46.388382
43 616257

Figure 80 shows the result of the feature ablation in the HT model with ANN and combination
one. It shows that all features contribute to the model because the result has more error and less
accurate when eliminating variables. The most contributing variable is the variable distance,
where the HT model has a higher error because the variable distance is eliminated.
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Figure 80. Feature ablation for HT model

The result indicates that the HT model with ANN and combination one performs better than
the model with SVR and combination two. Most predictions have a deviation value between -
25 to 25 seconds and tend to overestimate the hauling time. In addition, the accuracy from the
HT model is not high enough because it only achieves 45% accuracy. The model is required to
keep all the variables, particularly distance, to ensure the model performance.

5.3.3. Unload Time (UT)

Table 15 shows the test result of two UT models from ANN with combination two and ANN
with combination one. The models have an overfitted pattern and obtain poor performance
indicated by a higher MAE and RMSE value and a lower R2 value of the test dataset than the
training dataset. The first model performs better than the second model in the test dataset

because the model has less error and more robust.
Table 15. Evaluation of UT models

No Method Combination Data MAE RMSE R2
1 ANN 2 Train | 0.0291 | 0.0589 | 0.1340
Test | 0.0349 | 0.0664 | 0.0574
2 ANN 1 Train | 0.0303 | 0.0589 | 0.1118
Test | 0.0337 | 0.0669 | 0.0445

Figure 81 shows box plots of deviation value after the result of UT models is denormalized.
The red box plot represents the UT model with ANN and combination two, and the blue box
plot represents the UT model with ANN and combination one. Both box plots have a similar
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interquartile range around zero and outliers. The outliers led the models to have low accuracy.
The blue box plot has more outliers than the red box plot. The red box plot shows better
performance because it can predict more accurately and less error than the blue box plot.
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Figure 81. Box plot of UT model

The red box plot indicates that the UT model tends to overestimate some predictions. Table 16
shows the outliers data points, the prediction result, and the deviation values from the predictive
model using ANN and combination two. The model might not predict well with the volume
input is 14.7 m3, and model input is 0.7 km. It indicates that other variables that are not counted
in this research affect the result.

Table 16. UT model with ANN and combination two

Model Volume (m®y Distance (Km) TestDenorm (sec) Predict Denorm (sec) Deviation Value (sec)

0.0 18.026316 1.700 101.0 30.837704 -70.162296
1.0 14692952 0773 56.0 26.133913 -20.866037
1.0 14692932 0.937 520 26.133013 -25. 866037
0.0 10.394737 1.700 1.0 30832125 19.832125
1.0 14692952 0.710 40 26133913 22 133913

Figure 82 shows the result of the feature ablation in the UT model with ANN and combination
two. It shows that all features contribute to the model because the result is less when eliminating
any variables. The variables significantly contribute to the predictive model because the error
is higher and less accurate by eliminating distance.
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Feature Ablation of UT Model
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Figure 82. Feature ablation for LT model

The result indicates that the UT model with ANN and combination two performs better than
ANN and combination one. Most predictions have a deviation value around zero seconds, but
it tends to overestimate the unloading time. In addition, the accuracy from the UT model is not
high enough because it only achieves 6% accuracy. The model has to keep all the input
variables, particularly the variable model, to ensure the consistency of model performance.

5.3.4. Return Time (RT)

Table 17 shows the test result of two RT models from ANN with combination two and SVR
with combination two. The models are robust, indicated by the higher R? value. However, it
has more error indicated by a slightly increase MAE and RMSE value from the test dataset to
the training dataset. It also presents that the first model performs better than the second model
in the test dataset.

Table 17. Evaluation of RT models

No Method Combination Data MAE RMSE R2

1 ANN 2 Train | 0.0429 | 0.0623 | 0.7203
Test | 0.0498 | 0.0668 | 0.76

2 SVR 2 Train | 0.046 | 0.064 | 0.707
Test | 0.0513 | 0.0672 | 0.7572

Figure 83 shows box plots of deviation value after the result of RT models is denormalized.
The red box plot represents the RT model with ANN and combination two, and the blue box
plot represents the RT model with SVR and combination two. The box plots have a different
interquartile range where the red box plot range is between -25 and 25 seconds and the blue
box plot range is between zero and 50. The red box plot shows better results than the blue box
plot because the median value is close to zero, indicating that most of the prediction value is
close to the actual value. The red box plot has more outliers above 50 seconds but fewer outliers
below -70 than the blue box plot.
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Figure 83. Box plot of RT models

However, the red box plot indicates that the RT model has tendencies to underestimate and
overestimate some predictions. Table 18 shows the outliers data points, the prediction result,
and the deviation values from the predictive model using ANN and combination two. The
model might overestimate the return time if the value input is outside the interquartile range of
each variable. And it might underestimate the return time if the distance input is around 1.6 km
and the model input is 1. It indicates that other variables that are not counted in this research
affect the result.

Table 18. RT model with ANN and combination two

Model Volume (m® Distance (Km) Test Denorm (sec) Predict Denorm (sec) Deviation Value (sec)

0.0  21.403509 35 691.0 267.019012 -423.930933
0.0 12.938596 32 657.0 241.487503 -415.512497
0.0 17587719 32 537.0 251.702713 -335.297237
1.0 18245614 1.629 52.0 213.862961 161832961
1.0 20745614 1.622 46.0 219.194290 173.194290

Figure 84 shows the result of the feature ablation in the RT model with ANN and combination
two. It shows that the variable distance significantly contributes to the predictive model
because the error value is higher and less accurate by eliminating it. However, the model has a
better performance by eliminating variable volume or model from the feature.
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Figure 84. Feature ablation of RT model
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The result indicates that the RT model with ANN and combination two performs better than
the model with SVR and combination two. Most predictions have a deviation value between -
25 to 25 seconds and tend to overestimate and underestimate the returning time. RT model has
good performance because it only achieves 76% accuracy. The model is required to keep the
variable distance to obtain a good prediction.

5.3.5. Truck Travel Time (TTT)

Table 19 shows the test result of two TTT models from ANN with combination one and MLR
with combination one. The models obtain good performance indicated by a lower MAE and
RMSE value and a higher R2 value of the test dataset than the training dataset. The second
model has better performance and shorter computational time than the first model in predicting
the test dataset.

Table 19. Evaluation of TTT models
No Method Combination Data MAE RMSE R2

1 ANN 1 Train | 0.0511 | 0.0689 | 0.7485
Test | 0.0526 | 0.0673 | 0.7879
2 MLR 1 Train | 0.052 | 0.069 | 0.747
Test | 0.0524 | 0.0666 | 0.7923

Figure 85 shows box plots of deviation value after the result of TTT models is denormalized.
The red box plot represents the TTT model with ANN and combination one, and the blue box
plot represents the TTT model with MLR and combination one. Both box plots have some
outliers below -100 seconds. The red box plot has a narrower interquartile range and has more
outliers above 100 seconds than the blue box plot. The blue box plot has better performance
than the red box plot.
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Figure 85. Box plot of TTT Models

However, the red box plot tends to overestimate the truck travel time for some predictions.
Table 20 shows the outliers data points, the prediction result, and the deviation values from the
predictive model using MLR and combination one. The model might overestimate the truck
travel time if the distance input is outside the interquartile range of its variable and model input
is model 0. It indicates that the model requires more historical distance data to develop a more
robust model.

Table 20. TTT model with MLR and combination one
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Start Time Hour Model Volume (m®) Relative Humidity (%) Distance (Km) Temperature (*C) Test Denorm (sec) Predict Denorm (sec) Deviation Value (sec)

1.0
120
16.0
9.0
9.0

0.0
0.0
0.0
0.0

10

17.500000
16.622807
21.359649
15.526316

14.692982

60.72
56.48
92.44
75.91

80.96

20 158
19 172
20 16.4

1.600 13.7

1.947 127

624.0
579.0
535.0
292.0

309.0

484382044
464127118
433.198074
403.829528

445615671

-139.617956
-114.872882
-101.801926

111.829528

136.615671

Figure 86 shows the result of the feature ablation in the TTT model with MLR and combination
one. It shows that the variable distance significantly contributes to the predictive model because
the error value is higher and less accurate by eliminating it. However, the model has an equal
and better performance by eliminating variable temperature, relative humidity, and start time
hour from the input.
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Figure 86.Feature ablation for TTT model

The result indicates that the TTT model with MLR and combination one performs better than
the model with ANN and combination one. Most predictions have a deviation value between -
25 to 50 seconds and tend to overestimate and underestimate the truck travel time. TTT model
has good performance because it achieves 79% accuracy. The model is required to keep the
variable distance for maintaining the performance.

5.3.6. Truck Cycle Time (TCT)

Table 21 shows the test result of two TCT models from SVR with combination one and ANN
with combination one. The models obtain good performance indicated by a lower MAE and
RMSE value and a higher R? value of the test dataset than the training dataset. In addition, the
second model has better performance than the first model in predicting the test dataset.

Table 21. Evaluation of TCT models

No Method Combination Data MAE RMSE R2
1 SVR 1 Train | 0.077 | 0.1038 | 0.5332
Test | 0.0776 | 0.0987 | 0.5453
2 ANN 1 Train | 0.0782 | 0.1075 | 0.4837
Test | 0.0692 | 0.0955 | 0.5740

Figure 87 presents box plots of deviation value after the result from TCT models is
denormalized. The red box plot represents the TCT model with SVR and combination one, and
the blue box plot represents the TCT model with ANN and combination one. The box plots
have a similar interquartile range which is between -20 and 80 seconds. However, the blue box

65



plot shows better results than the red box plot because the median value is close to zero,
indicating that most of the prediction value is close to the actual value. In addition, the blue
box plot has more outliers above 150 seconds and fewer outliers below -150 than the red box

plot.
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Figure 87. Box plot of TCT models

However, the blue box plot shows that the model overestimates and underestimates the truck
cycle time for some predictions. Table 22 shows the outliers data points, the prediction result,
and the deviation values from the predictive model using ANN and combination one. The
model might not predict the truck cycle time if the input is outside the interquartile range of
each variable. It indicates that the model requires more historical distance data to develop a
more robust model.

Table 22. TCT model with ANN and combination one

Model Start Time Hour Volume (m®) Relative Humidity (%) Distance (Km) Temperature (°C) Test Denorm (sec) Predict Denorm (sec) Deviation Value (sec)

0.0 1.0 12938596 63.63 3.200 16.1 1073.0 864.516296 -208.483704
1.0 9.0 14692932 8224 0.957 124 651.0 501.140198 -149.858802
0.0 17.0 10.394737 5229 1.700 171 393.0 633.343140 240.343140
1.0 16.0 14692982 50.44 0710 177 264.0 551.515747 287515747
1.0 15.0 1.140351 50.71 1715 179 468.0 T86.846191 318.846191

Figure 88 shows the result of the feature ablation in the TCT model with ANN and combination
one. It shows that the variable distance significantly contributes to the predictive model because
the error is higher and less accurate by eliminating it. However, the model has a better
performance by eliminating variable relative humidity from the input.
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Figure 88. Feature ablation for TCT model

The result indicates that the TCT model with ANN and combination one performs better than
the model with SVR and combination one. Most predictions have a deviation value between -
25 to 50 seconds and tend to overestimate and underestimate the truck cycle time. TCT model
has good performance because it achieves 57% accuracy. The model is required to keep the
variable distance for maintaining the performance.

5.3.7. Overview of Model Evaluation

Table 23 shows the overall performance evaluation for the two best models for each target
from automated data. The first row is the best model, and the second row is the second-best
model of each target. It also shows the overview of MAE, RMSE, and R? value with train and
test dataset. It shows that LT, RT, TTT, and TCT models have better performance in the test
dataset than the training dataset, but the other models have worse performance in the test
dataset than the training dataset. They have different performance result where the best model
is the RT model with 79% accuracy, and the worst model is UT with 4.5 % accuracy.

Table 23. Predictive models evaluation

Regressmn RMSE R?

1 0.063 A 0.0569 | 0.0981 | 0.0823 0.3325  0.4219

SVR 1 0.068 0.0663 | 0.096 | 0.0844 0.362  0.391

aT ANN 1 0.067 0.07 1 0.0904 | 0.1116 A 0.4518 0.3701
SVR 2 0.068 0.0737 0.089 | 0.1121 0.464 0.3642

UT ANN 2 0.0291 | 0.0349 H 0.0589 | 0.0664  0.1340 | 0.0574
ANN 1 0.0303 | 0.0337 | 0.0589 | 0.0669  0.1118 | 0.0445

RT ANN 2 0.0429 | 0.0498 0.0623 0.0668 | 0.7203 0.76
SVR 2 0.046 0.0513 0.064 0.0672 0.707 0.7572

T MLR 1 0.052 0.0524 0.069 | 0.0666 = 0.747 0.7923
ANN 1 0.0511 ' 0.0526 0.0689  0.0673 | 0.7485 0.7879

TCT ANN 1 0.0782 | 0.0692  0.1075 | 0.0955  0.4837 | 0.574
SVR 1 0.077 | 0.0776  0.1038 | 0.0987  0.5332  0.5453

Most targets have ANN as the best and SVR as their second-best of regression techniques.
Feature combination one, consisting of variable distance, start time hour, volume, relative
humidity, temperature, and model and feature combination two, consists of distance, volume,
and model input. It shows that ANN is more robust in predicting new input than the other
regression models because the test dataset results are higher than other models. In addition, the
result between models of each target has a similar value where the difference is not more than
five per cent. The previous analysis of deviation value comparison with box plots shows the
interquartile range difference is approximately 20 seconds. Hence, it can be an opportunity to
use different models according to the user intention.

5.4. Evaluation of Regression Techniques

The evaluation of regression techniques aims to know the strength and weakness of the
regression techniques in developing or using models. It is important to indicate that the

67



evaluation result might differ if the regression techniques solve different problems. The
evaluation of predictive models from different regression techniques can be concluded by
considering the prediction accuracy, ease of development and use, and transparency. Table 24
shows the evaluation comparison result between MLR models, SVR models, and ANN models.
The evaluation is given and comparatively determined with a high, medium, or low
performance toward most models. For instance, most ANN models have a higher prediction
accuracy compared with MLR and SVR models.

Table 24. Evaluation of regression techniques

. Model
Evaluation Aspect MLR SVR ANN
Prediction accuracy Low Medium High
Ease of development and use High High Low
Transparency High Medium Low

Prediction Accuracy

The prediction accuracy evaluation is derived based on the performance metrics of the models.
The evaluation models with test dataset show that ANN models have a higher accuracy
compare to other models. And the SVR models have higher accuracy than the MLR models.
The regression technique ability of the non-linear modelling relationship influences the model's
accuracy because the relation between some variables is non-linear. MLR can only develop a
linear relationship, while SVR and ANN can develop a non-linear relationship. However, the
best regression techniques for predicting TTT is MLR which has the highest accuracy
compared to other models. It indicates that the model's accuracy also influenced by the
provided data, not solely based on the ability of the regression technique.

Ease of Development

Besides predictive models accuracy, the ease of model development and use must be evaluated
as the user consideration in using the model. The ease of development is derived based on the
hyperparameter tuning and testing process of the models. MLR and SVR are easier to develop
and used because both techniques are less complex than ANN. The number of parameters in
ANN is more than others, so it requires a high iterative process to develop the models. The
ease of use is derived from the computational time to process the input and give the output.
ANN has the longest time processing the algorithm than MLR and SVVR because the algorithm's
complexity causes the computational time to be longer. The data size also affects the ability of
regression techniques to process it. MLR and SVR are faster in processing small data but
slower in processing big data compare to ANN. Therefore, ANN might not use a good
regression technique if the user requires a short time to predict TCT.

Transparency

Transparency of the model outcome and the development process is evaluated because it relates
to the trust toward the engineers who will develop, maintaining, and updating the model. The
transparency of the model is derived based on the accessibility to know the final mathematical
model. MLR is easier to interpret than SVR and ANN because the coefficient of each variable
and the model's intercept can be obtained (see Appendix 3). SVR can be visualized to
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understand how the hyperplane works in developing a regression model. However, SVR is
difficult to be visualized if the input has many variables. ANN is not a transparent regression
technique because how the variables reach the final prediction is complex and difficult to
understand [30]. Therefore, the transparency and interpretability of MLR can help the user to
understand the previous method's weakness and improve it than other regression techniques.

Overview

The evaluation of regression techniques in developing predictive models indicates the trade-
off in using a predictive model. MLR is easy to use and develop a predictive model and
transparent in understanding the mathematical model. However, it is only good for predicting
the linear relationship, not the non-linear relationship. Hence, it is suitable for a user who aims
to understand mathematical modelling and predict a linear model, such as the TTT model.
SVR is easy to use and developed and can develop non-linear relationships, but the
mathematical model's transparency is difficult to obtain. Hence, it is suitable for a user who
aims to obtain a fast result from a non-linear model with small data size. ANN can develop a
non-linear relationship with high accuracy and robustness, lower range of deviation value. It
can handle big data, but it has a high complexity in developing and understanding the
mathematical model. ANN might be an overkill regression technique for processing a small
data size. Hence, it is suitable for user to aims to obtain an accurate prediction.

5.5. Scenario Evaluation

Figure 89 shows box plots of deviation value from different scenario to predict TCT. It shows
that the first scenario, the sum of the individual model, has the widest interquartile range, the
most outliers, especially above 200 seconds. The second scenario is the sum of the LT, UT,
and TTT model. It has a smaller interquartile range than the first scenario, which is
approximately 6 seconds or 10 per cent decreased. It also has the least outliers among other
scenarios. Lastly, the third scenario, the TCT model, has the smallest interquartile range but
the most outliers below -150 seconds.
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Figure 89. Box plot of TCT scenario

The result indicates that each scenario to obtain TCT has their strength and weakness. The first
scenario is good for finding the detailed activity time. Experts can analyse the result, set a
buffer time in each activity, or optimize a certain activity time. However, the first scenario has
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the least accuracy amongst all scenarios, and it requires more time to get the result of TCT.
Moreover, it requires each model to give a result and accumulate the result. The second
scenario is good for finding the detailed activity time of LT and UT related to different
machinery types and site conditions. It also has the least outliers, which helps experts know the
close value from the actual value. However, it requires to obtain LT, UT, and TTT and
accumulate the result. And the individual time of HT and RT is unknown using this scenario.
The third scenario is good for predicting TCT that closes to the actual value quickly because it
has the highest accuracy in predicting TCT and requires only to run the TCT model to obtain
the prediction value of TCT. However, the third scenario cannot optimize individual activity
duration and might have underestimated or overestimated value if the input is outside the
interquartile range. Therefore, each scenario can be useful in different ways depending on the
aim of the prediction besides obtaining accurate time prediction.
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6. Practical Implications

The previous chapters focus on the result of predictive models from automated data. This
chapter evaluates the predictive models from a practical perspective and the implication in
monetary benefit. Therefore, this chapter will explain the stakeholder perspective based on the
interview, calculate the monetary benefit, and suggest using the predictive model.

6.1. Stakeholder Interview

An accurate truck cycle time prediction is important for stakeholders in earthworks, especially
contractor and construction machinery company. The interview was conducted with experts to
understand the finding from the predictive model and gain the perspective from the practical
point of view. The interview method used is a semi-structured interview because this method
can develop a new discussion or idea as the interviewee's response during the interview.
Different stakeholders might have different idea or perspective because they have different
interest and goal.

The interview's main structure consists of two main parts: the current condition and the
predictive model. The first part aims to know the current condition in obtaining an accurate
truck cycle time. The second part aims to know their opinion about the predictive models and
the finding found in the data. The answer from the contractor and construction machinery
company will be explained in the following section.

6.1.1. Contractor

A general contractor or contractor is an individual or organization that a client hires to execute
the project by building, oversight the construction process, managing the resources and trades.
In general, the contractor aims to gain profit by delivering the project. Client trust is an
important aspect for them to running their work or business. Contractors usually use sub-
subcontractors for earthworks projects because it is a large project which requires many
resources.

A sub-contractor is a smaller contractor with a specialist for particular construction works
employed by a general contractor. Sub-contractors calculate the estimation of truck cycle time
because they know the resources better than a general contractor, which focuses more on
managing the sub-contractors.

The interview was conducted with a general contractor's project manager who has experience
managing sub-contractors and resources for earthworks and communicates with clients. The
shared perspective from the project manager also considers other roles, for instance, driver, for
the practical implication of this research.

Current Practice

The predictive model might be a useful tool to replace the current practice using simple math.
The tool to estimate is important for the contractor because it helps contractor truck cycle time
in earthwork. The contractor needs to set up a good strategy in allocating resources because it
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affects contractor performance, anticipation plan, and client trust. The predictive model has
advantages in knowing the accuracy level, considering many variables, fast calculation, and
fewer human resources estimating the TCT. The expected accuracy of the predictive model is
approximately more than 80%. However, the uniqueness of the project and the unexpected
aspect is considered to be difficult to expect 100% accuracy. The most important part is to set
up an effective anticipation plan in delivering the project.

The Predictive Model

All the predictive model has a positive contribution in earthworks, especially the load time and
unload time. Load time is important to set up the loader excavator to ensure the trucks do not
need to wait. Unload time is also important because unloading is sometimes limited, and trucks
need to wait. The predictive model is also useful for moving overburdened material, which
usually has a short distance between the loading and unloading location.

The variable that is counted also covers more variables than the current practice. The most
important variables are start time hour and distance variables, among the other features in this
research. Start time hour as an input will help to manage the human resources and the
machinery. Distance has a contribution to calculating the truck cycle. Usually, the starting
point, load area, unload area, and endpoint are known before the earthworks are started.

However, the robustness of the predictive model from this research is not enough to be
implemented in real work. The project manager also pointed out the important part of counting
the operation practice, such as driver behaviour and operation condition factors, such as road
conditions and weather conditions.

6.1.2. Construction Machinery Company

A construction machinery company or supplier is a manufacturer of construction machinery
and equipment, for instance, trucks and excavators. They have a pivotal role in supplying
machinery to the client. In earthworks, the client is the contractor who is the buyer or dealer
who provides rental service for the machinery. They put safety as their priority in delivering
their product. It also an important aspect of gaining client trust.

The estimation of truck cycle time indirectly benefits the company because the market demand
depends on the strategy used by the contractor. As an instance, the contractor will order more
trucks from the supplier to obtain their project goal. Therefore, the time estimation also gives
a direct benefit in giving the information of truck performance.

The interview was conducted with a logistic and operation analyst at one of the world’s leading
construction machinery company. The interviewee has many experiences in analysing the good
quality machinery production and procurement process of various earthworks machinery.

Current practice

The supplier has a confidential strategy to calculate the TCT by utilizing the data from the user
in a certain time frame. Then, the engineering team will analyze the calculation result for
improving the performance of their company. Hence, the supplier improvement depends on
the given data from the contractor. Bad data will lead to bad improvement of the machinery
and client distrust.
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Moreover, the estimation of TCT affects the demand that their company suddenly requests.
The requested machinery has a large size where the company has a limitation of warehouse to
keep them. It impacts how the company use their resources and fulfil the request. Therefore,
the predictive model helps the supplier to have reliable data from the company that uses it.

The Predictive Model

A positive response is given to the development of predictive models, especially to the load
time. Loading activity involves more machinery, for instance, excavator and trucks, than the
other activities in earthworks. The calculation in loading material is more complicated than the
other activity because the type of soil, the combination of machinery, the condition of the site
impact the result.

Model is counted as the most important variable in predicting the truck cycle time from the
supplier perspective. The right machinery needs to be chosen in earthworks to deliver the
project. Despite the limitation of predictive models, they can be used in most earthworks.

However, the robustness of the predictive model from this research is not enough to be
implemented in real work. The supplier also pointed out the important part of counting the
operation practice, such as driver behaviour and experience. A driver should have enough skill
and experience in operating the machinery. The supplier highlighted the difficulty to operate
the excavator for loading the material into the truck bucket. Moreover, the site condition in
earthworks can be dangerous for all activities.

6.2. Cost and Benefit Analysis

Based on the stakeholder perspective and discussion with experts in the construction industries,
the accuracy improvement obtained from predictive models might benefit the stakeholders. It
might replace the current method or traditional method in predicting TCT. However, replacing
the current method with the predictive models requires cost, for instance, operational cost.
Therefore, the following section will analyse the benefit and cost of predictive models.

6.2.1. Benefit

This research will analyze the tangible and intangible benefits of the predictive models that are
used in scenarios. Tangible benefits are benefits that can be quantified, for instance, fuel
consumption. They are analyzed by calculating the deviation between TCT prediction and
actual value from predictive models and the traditional method. The deviation value indicates
the inaccurate value of TCT prediction, which causes a queue time of a truck to load or unload
material. A truck's queue time is considered ineffective because the resources are wasted in
that activity, for instance, fuel and human resources.

The traditional method will be used as the benchmark for the benefit comparison. The
traditional method will use Equation 2 for calculating haul time and Equation 3 for calculating
return time. Because of data and information limitation, the load and unload times will use the
average duration for those activities, 30 seconds [8]. It also uses 54.8 km/hour for the truck
speed, which is the average speed for truck models.

Intangible benefits are benefits that are difficult to be quantified, for instance, client trust. They
are analyzed based on the discussion result from experts.
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6.2.1.1. Tangible Benefits

This research will analyze two tangible benefits are considered by contractors, such as the
accuracy of truck productivity and the monetary benefit. The accuracy of truck productivity is
important for contractors to manage their resources such as equipment and workers. More
accurate the truck productivity prediction, the better the contractor to manage the resources.
The monetary benefit will be calculated from the fuel consumption and drivers productivity
because they are two of the main expenses in the earthworks.

The calculation will use the comparison result of deviation value in predicting the test dataset.
The test dataset consists of 118 data points or truck cycles, representing two truck activity in
two days. Therefore, it assumed that one truck has approximately 30 cycles to transport the
materials.

Truck Productivity Accuracy

An accurate TCT prediction has a benefit in increasing the accuracy of truck productivity
prediction. Estimating truck productivity can help a contractor set up a strategy so the target
can be achieved within the given time by a client, such as increasing the number of trucks.
Table 25 shows the comparison between productivity accuracy results obtained from scenarios
of TCT and the traditional method. The productivity is calculated by comparing the
productivity prediction with the actual productivity value from the test dataset. Productivity is
the calculation of TCT (hour) is divided by volume (m3).

The first row shows the average inaccurate value of productivity prediction for two trucks in
two days. The inaccurate value of productivity prediction will be higher along with the
increasing number of trucks and operational days. The second row shows the comparison
accuracy with the traditional method. It shows that the productivity accuracy using prediction
models are approximately 20% is more accurate than the traditional method.

Table 25. Productivity accuracy comparison

Scenario @ Scenario  Scenario Traditional

1 2 3 Method

Average inaccurate value of

productivity prediction (Hour/m3) 10.12 10.61 10.96 46.94
Comparison of Accuracy with

Traditional Method (%) 1216 1226 1234 100

Monetary Benefit

Table 26 presents the comparison of the monetary benefit between scenarios of TCT and the
traditional method. The first row shows the deviation prediction value from the actual value
from different prediction methods. It shows that scenarios of TCT are approximately five times
more accurate than the traditional method. Scenario three has the most accurate prediction.

The second row shows the inefficient fuel consumption, which is the multiplication result of
inefficient TCT and the fuel consumption. The amount of fuel consumption that is used in the
calculation is 12.11 litres/hour. It shows that scenarios of TCT have less waste fuel which is
approximately five times than the traditional method. It will also reduce the amount of pollution
which comes from burning fuel.
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The third row shows the inefficient cost for fuel which is the multiplication of the average fuel
consumption and the fuel cost. The fuel diesel cost that is used in the calculation is 1.5 € per
liter. The fourth row shows the inefficient cost for drivers, resulting from the multiplication of
driver salary per hours and the inefficient truck cycle time. The driver salary that is used in his
calculation is 20€ per hour. The fifth row shows the total inefficient cost is the sum of the
inefficient cost for fuel and drivers. It shows that accurate prediction benefits the contractor by
reducing the inefficient cost approximately five times than the traditional method.

Table 26. Monetary benefit comparison for TCT

. . . Traditional

Scenariol Scenario2 Scenario 3 Method
Inefficient Truck Cycle Time (Hours) 2.30 1.98 1.83 11.89
Inefficient fuel consumption (Litres) 27.81 23.96 22.17 144.06
Inefficient cost for fuel (€) 41.71 35.93 33.26 216.10
Inefficient cost for drivers (€) 45.91 39.55 36.61 237.86
Total inefficient cost (€) 87.62 75.49 69.87 453.96

In addition, the predictive models of TTT have more benefits than the traditional method. Table
27 compares the sum of the HT and RT model, the TTT model, and the traditional method. In
this analysis, the traditional method only includes haul time and return time. The result shows
that the predictive model is approximately five to seven times more beneficial in reducing the
inefficient cost for drivers and fuel.

Table 27. Monetary benefit comparison for TTT

"HT+RT TTT Traditional Method

Deviation with the actual duration (Hours) 1.74 1.27 8.94
Inefficient fuel consumption (Liters) 21.13 | 15.44 108.31
Inefficient Cost (€) 31.69 | 23.16 162.46
Inefficient cost for drivers (€) 34.89 25.5 178.82
Total inefficient cost (€) 66.58 | 48.66 341.28

6.2.1.2. Intangible Benefits

The predictive models have multiple intangible benefits: safety, trust in the decision-making
process, worker satisfaction, and client trust. Better accuracy of TCT prediction will help to
know the downtime of the machinery, road condition or routes. The monitoring process can
have better planned to ensure safety in the construction projects. It also helps the sub-contractor
gain the general contractor's trust, and the general contractor can check the correct estimation
of TCT. This situation will help the general contractor to decide which sub-contractor that can
be trusted. The accuracy also helps to obtain client trust. The worker's satisfaction might also
increase because the machinery and human resources management can be managed better.

6.2.1.3. Overview

The practical implementation of the predictive model benefits different stakeholders, such as
general contractor, sub-contractor, client, and machinery supplier. A Sub-contractor can gain
general contractor trust and reduce unnecessary expense in fuel consumption, drivers, and
machinery. It also helps to have a robust maintenance schedule of road and machinery. It is
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also beneficial for the general contractor to decide which sub-contractor to work with based on
the performance to manage their resources. A general contractor can increase client trust and
better management of resources in completing the project. A general contractor also can obtain
rewards because the project can finish earlier if the contract applied that system or avoid a fine
because of the delay. A supplier can reduce the expense of overtime worker and increase the
well-being of the employee. A client who owns the project will trust the contractor for
completing the project.

More benefit will be gained by including other benefits, for instance, the environmental impact
and the reduction of working hours to obtain TCT prediction. It also increases along with the
robustness of the predictive models, where the accuracy of the TCT model from scenario three
is only 57%. Hence, the predictive models can be used for improving the estimation accuracy
of TCT in earthworks.

6.2.2. Cost

The predictive models require operational cost for paying engineers who will operate and
maintain the predictive models, which approximately costs 27€ per hour, and paying the open
weather service data, which costs approximately 28.71€ per month. The engineers also can
help the reduction of inefficient work on the bigger scale of the contractors. It indicates that
more work can be done in a short time. Hence, the predictive models bring more monetary
benefit than the traditional method for earthworks. Moreover, both calculation only counts for
approximately two-day in earthworks for two trucks. The monetary benefit will be increased
by the increased number of trucks and days.

6.3. Strategy to Implement the Predictive Model

This research would like to suggest practical suggestions to the contractor, especially the
planner, using the predictive model. This strategy Figure 90 is the main steps of the strategy in
using the TCT model, which aims to improve the estimation of the truck cycle time.

Use the Predictive
Model

Set Up a Strategi
Scope Identification et VP @ Strateslc

Plan

Figure 90. Strategy for using TCT model

1. Scope ldentification

The similarity of the project needs to be should be analyzed before using the predictive model.
The predictive model will not be reliable enough to predict TCT where the new input is
different from automated data. The input limitation for each variable was explained in section
3.2.2, and the material type is limited to the overburden. TCT model from scenario three is
recommended to be used for estimating TCT. TTT model is also recommended to be used for
estimating TTT.

2. Use the predictive model

The predictive models are applied by inserting the input value for each variable. The variables
input are distance, volume, relative humidity, temperature, start time hour, and model. The
distance variable is the most required variable for the TCT model and TTT model. The models
might obtain better performance by eliminating variable relative humidity from the input for
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the TCT model and eliminating variable temperature, relative humidity, and start time hour
from the input for the TTT model.

3. Set Up a Strategic Plan.

An expert or engineer should analyse the prediction value because the predictive models do
not have 100% accuracy. The estimation from TCT and TTT models should be analyzed if the
input is outside the interquartile range of each variable (see Table 10). The experts can set up
the anticipation and strategic plans to manage the machinery and resources, such as setting up
a buffer time or adding more trucks to complete the project.
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{. Conclusion

This research has presented historical data for developing predictive models by utilizing
various machine learning approaches to improve truck cycle time in earthworks. This research
started with the identification of the problem gap by conducting a literature review. Then, truck
cycle time and the affected factor of TCT in earthwork are also investigated. The affected
factors are used as the starting point of which data need to be collected.

Data Exploration was conducted to understand the data quality and preparing the data to be an
input for predictive models. The modelling process also has been explained where parameter
tuning is conducted to find the best possible model. The predictive models also have been
tested to know the robustness. Moreover, the practical implication of the predictive model for
stakeholders has been explicated.

This chapter aims to conclude this research and give practical and scientific recommendations
for improving the estimation of TCT in earthworks. This chapter will discuss the main finding
and limitation of this research. The contribution and future recommendation for practical and
scientific will be explained based on the research result.

7.1. Discussion
This section will present the answer to each sub-questions and the limitation of this research.

7.1.1. Research Questions Answers

This research started with a research question based on the problem gap and the opportunity to
fill the gap. The following is the main research question of this research.

How can the historical data be utilized to improve the prediction accuracy of truck cycle time
in earthworks?

The main research question is answered by addressed the sub-questions. The answer to each
sub-question will be addressed as follows.

1. Which variables in the historical data should be included in the prediction model of truck
cycle time in earthworks?

The first sub-question was initially answered through the literature review and data exploration.
The literature review was intended to find the affected factor used as the starting point to collect
historical data. This research uses manual data and automated data for earthmoving activity
and weather data. Each data is explored for examining its quality and finding feature
combination by conducting data exploration (see chapter 3. Data Preparation). Manual data
has four input variables and three feature combinations. Automated data has six input variables:
distance, volume, relative humidity, temperature, start time hour, and model. The input
variables are combined into three different feature combinations

However, the development and evaluation of predictive models found that input variables
affect differently in each model. The variable contribution in each model is found through the
feature ablation. In addition, the input value for each variable affects the prediction accuracy
in each model.
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2. How to develop an accurate predictive model of truck cycle time using the machine learning
approach?

The second sub-question is answered by developing the predictive model from manual data
and automated data. The manual data can develop the TCT model without RT. Automated data
can develop the TCT model, TTT model, and individual activity model. The availability data
of each activity duration opened the opportunity to develop different scenarios for predicting
TCT (see section 3.3. Scenario). Different scenarios helped find the effective way to use the
models to achieve the best estimation of TCT.

The regression method is chosen because it is a suitable method for continuous value. MLR,
SVR, and ANN regression techniques are chosen based on the data preparation result.
Hyperparameter tuning was conducted for obtaining the regression model. The most potential
of a predictive model is listed in Table 8 based on the performance evaluation with the training
dataset. The assessment of predictive models used error measurement using MAE and RMSE
and the goodness of fit using R2. The result shows that the historical automated data can
develop the predictive model of TTT and RT with a good performance. The best predictive
model for TTT uses MLR with feature combination one, and RT uses ANN with combination
two.

The models were evaluated using the test dataset. Based on the evaluation outcome, the best
model is chosen to predict TCT with different scenarios. The first scenario is the sum of
individual prediction time from the LT, HT, UT, and RT model. The second scenario is the
sum of truck travel time, load time, and unload time prediction from TTT, LT, and UT model.
The third scenario is the TCT prediction from the TCT model. The result presents the best
result obtained by scenario three or the TCT model with 57% accuracy.

3.What is the practical implication of using the predictive model of truck cycle time?

The answer to the third sub-question is explained in chapter 4. The contractor and machinery
supplier is interested in having an accurate predictive model to improve their work. Predictive
modelling has a direct benefit for the contractor and an indirect benefit for the machinery
supplier. The predictive model might have a practical implication in setting up a plan before
the project start. The plan consists of the management of people and machinery and the
anticipation plan in delivering the project. The plan impacts the machinery supplier in
managing their resources to fulfil the demand.

The predictive model might replace the traditional method in estimating the truck cycle time
because it can consider many variables, which is difficult to be done in the manual calculation.
It is also able to cover earthworks, particularly for transporting overburdened material.
However, the predictive model is not reliable enough to be implemented because the accuracy
is not good enough, and operation practice has not yet been included. It required experts to
analyse the prediction from the predictive model.

The benefits of the predictive model are analyzed by comparing the scenarios and current
practice or traditional method in predicting truck cycle time in the test dataset, which
represented two trucks in two days. Based on the calculation, scenarios are approximately 20%
more accurate in predicting truck productivity. Scenarios can also decrease inefficient truck
cycle time approximately five to six times from the traditional method. The reduction of
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inefficient truck cycle time can reduce the cost for fuel and drivers, fuel emission. Based on
the comparison result, stakeholders might gain tangible benefits, such as reduce inefficient
expense. They might also gain intangible benefits, such as gaining partners trust, a better
strategic plan to complete the project, and increasing the employee's well-being. Therefore,
The prediction model has more benefits than the traditional method.

This research shows that historical data can be used for building a predictive model. Although
not all predictive models have a high accuracy result, the predictive model has a better
performance than the traditional method.

7.1.2. Limitation

This research has limitations in pursuing a better outcome, such as time constraint, the lack of
project documentation, and limited resources. Time constraint in finishing this research affects
the duration to obtain data. Hence, this research cannot produce high accuracy of predictive
models because of the limited data. Time constraint also affects the model development. This
research generated the weather data using the start time of a truck cycle. However, the weather
might change in truck cycle time. For instance, the temperature might increase in hauling and
decrease when unloading the material. This research did not conduct model exploration with
different combination data between weather and operational time due to time constraint and
the capacity of a computer to run the model. Hence, it also might impact the predictive model
accuracy.

Lack of project documentation hindered the understanding of the data. The limited resources
that refer to the limitation of people that can also be asked hindered data exploration. This
limitation is handled using an assumption that should be considered in applying the predictive
model.

7.2. Contribution

This research found some practical and scientific contributions in the process to answer the
research questions. The following is the explanation of each contribution.

7.2.1. Practical

The practical contribution is found when the research has an assumption that the correlation
between volume/weight and the target should be positive, not negative. However, stakeholders
agreed with the negative correlation. The size of the machinery has different capacity and
features, which makes the bigger excavator or bigger truck faster than the small machinery.
However, a big excavator cost more money than a small excavator. It also depends on the site
condition where the scattered material will take more time to be loaded. The contractor
considers the trade-off between time, money, and quality for achieving the most balanced
result.

7.2.2. Scientific

The scientific contribution is found when the research has an assumption that ANN is the best
technique in developing predictive models. However, this research found that ANN is not the
ultimate technique to develop predictive models. The complexity of a method will not always
give a better result than other regression techniques. The evaluation of regression techniques
shows that each technique has strength and weakness. Thus, the user needs to have a clear
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objective and use the regression techniques wisely (see section 5.4. Evaluation of Regression
Techniques).

Another scientific contribution is found in data exploration compared with the traditional
method of predicting haul time and return time. Figure 35, the pairs plot of the automated data,
shows a regression line with a small confidence interval between variable distance and haul
time and return time. Figure 91 shows the mathematic equation for each regression where y
refers to the distance (km).

Equation 20. Haul Time from automated data

Haul Time (Sec) = 175.6y — 81.77

Equation 21. Return Time from automated data

Return Time (Sec) = 49.61y + 98.76
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Figure 91. Regression Model for Haul Time and Return time using variable distance

Compared with Equation 2 and Equation 3, which are the traditional method in calculating haul
time and return time, the traditional method can predict haul time and return time with different
speed input, indicating a different type of truck model. However, the estimation of truck speed
for the equation input is difficult to be obtained. Therefore, Equation 20 and Equation 21 can
help predict haul time and return time where the used trucks are Caterpillar 745 and Volvo
A45G.

This equation might help contractors who do not have engineers that can operate predictive
models. Contractors can compare haul time and return time prediction from the equations with
the output of the traditional method and improve their prediction. However, the accuracy is
less than the predictive models. Thus, engineers need to check the outcome from the proposed
equations.

7.3. Recommendation

This section aims to give recommendations based on the main finding and lesson learned from
this research and insights from experts. Furthermore, recommendations for the application of
the predictive model and further research is given as follows.
7.3.1. Practical
This research has some recommendation for experts in the construction industry, as follows.

e Raise awareness about data
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Based on the discussion with experts, engineers mindset is important as the starting point
for improving the construction industry. This research showed that historical data is the
backbone in developing and resulting in a good predictive model. It is required an
awareness of the importance of collecting and storing data in a digital platform. This
awareness can lead to many opportunities in utilizing digital platforms to improve the
construction industry performance

e Hire a data analyst

Data analysts with construction knowledge are recommended to be hired to maintain and
develop a predictive model. Construction knowledge is important to understand the
problem and data. In addition, the data analyst can develop a new predictive model for
solving different problems in the construction industry.

e Improve the predictive model

Figure 92 shows the procedure to improve the predictive model, which refers to this
research. Collect data is a pivotal step for developing a robust predictive model. Based on
this research, the contractor lacks in documenting past projects. The data can be collected
using various methods. The operation condition data can be gathered using weather API,
GPS, and project documentation from different time and projects. The data about
machinery condition can be collected using sensors. The sensor can help engineers to
record difficult data, for instance, the volume. The data about the operation practice can
be collected through KPI, where the driver's performance is recorded.

Then, the target needs to be identified to narrow down the possible method to obtain the
prediction modelling, such as classification or clustering. Next, data preparation is
conducted where the quality of data and the understanding of data should be done in this
step. Itis also important to treat the outlier carefully. Hence, analyzing the data is important
because it might give a new finding.

In the modelling process, the method should be treated as a tool, not as a target. The
predictive model is suggested to be developed from a simple method to a complex method.
The predictive model should be tested after the development process. This procedure can
help to build a robust predictive model.
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Figure 92. Practical Recommendation

7.3.2. Scientific
This research can be a starting idea for future research in improving TCT estimation in
earthworks. The research recommendation can be given for future improvement, as follows.
e Explore hyperparameter tuning
This research can be developed deeper by exploring different hyperparameter, which might
obtain a different result. Especially to explore different hyperparameter tuning for
developing a load time model.
e Investigate the outliers
Detecting outliers also needs to be explored to understand the process in the truck cycle.
This research used the statistic method for capturing the outliers. However, there might be
some hidden outliers that have not yet be detected.
e Investigate the usage of synthetic data
Utilizing synthetic data can be insightful to know the minimum data size to improve the
predictive model. The quantity of data needed and the type of data needed might give a
vast contribution.
e Explore different methods
Research about the efficient method to attain good quality data can be explored, such as
using video or camera to attain real-time data. Exploring other deep learning methods for
image recognition to extract data can vastly contribute to the construction industry.
e Improve the data
The predictive model also can be improved by adding more data from different type of
projects and features. Since this is not a predictive model that can learn continuously, this
suggestion might achieve a more robust predictive model.
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e Investigate the usage of the predictive model.

This research started with the technological approach, where machine learning is currently
a popular method in many industries to improve prediction. Further research can assess the
usage of this predictive model in real work. The finding might lead to the finding of
engineer readiness for the application of machine learning. The proper way to collaborate
can be proposed to obtain an effective improvement in the construction industry.

e Investigate different construction site

Developing predictive models of TCT in an urban area is suggested because many factors
affect the prediction result, for instance, the time slot for a truck to transport the material.
An accurate prediction can help contractors in ensuring the client or government about the
logistics activity.
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Appendix

Box Plot

This section aims to briefly explain the box plot because it is used to analyze the data and
evaluate the result. Box plot is a method to illustrate the distribution of data through their
quartiles. Figure 93 shows an example of a box plot and the comparison with normal
distribution, consisting of median, Q1, Q3, IQR, Minimum, Maximum, and outliers.
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Figure 93. Box Plot [30]

The median of the 50" percentile is the middle value of a dataset. Q1 or 25" percentile is the
median of the lower half of the dataset. Q3 or 75" percentile is the median of the upper half of
the dataset. IQR or interquartile range is the distance between the upper and lower quartiles.
The minimum or 0" percentile is the lowest data point, excluding the outliers. The maximum
of 100" percentile is the largest data point, excluding the outliers. Outliers are data points that
differ significantly or have abnormal distance from the other values.
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Appendix 2

Hyperparameter Tuning: Manual Data

Truck Cycle Time without Return Time

Multi Linear Regression
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Figure 94. K-fold cross-validation for TCT model with MLR and combination one
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Figure 95. K-fold cross-validation for TCT model with MLR and combination two
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Figure 96. K-fold cross-validation for TCT model with MLR and combination three
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Figure 97. K-fold cross-validation for TCT model with SVR and combination one

Combination two
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Figure 98. K-fold cross-validation for TCT model with SVR and combination two

Combination three
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Figure 99. K-fold cross-validation for TCT model with SVR and combination three
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Figure 100. K-fold cross-validation for TCT model with ANN and combination one
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Figure 101. Batch Size for TCT model with ANN and combination one
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Figure 102. Epochs for TCT model with ANN and combination one
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Figure 103. Neurons for TCT model with ANN and combination one
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Figure 104. Hidden layers for TCT model with ANN and combination one
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Figure 105. K-fold cross-validation for TCT model with ANN and combination two
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Figure 106. Batch Size for TCT model with ANN and combination two
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Figure 107. Epochs for TCT model with ANN and combination two
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Figure 108. Neurons for TCT model with ANN and combination two
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Figure 109. Hidden layers for TCT model with ANN and combination two

Combination three
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Figure 110. K-fold cross-validation for TCT model with ANN and combination three
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Figure 111. Batch Size for TCT model with ANN and combination three
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Figure 112. Epochs for TCT model with ANN and combination three
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Figure 113. Neurons for TCT model with ANN and combination three
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Figure 114. Hidden layers for TCT model with ANN and combination three
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Hyperparameter Tuning: Automated Data

Load Time

Multi Linear Regression
Combination one
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Figure 115. K-fold cross-validation for LT model with MLR and combination one
Combination two
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Figure 116. K-fold cross-validation for LT model with MLR and combination two
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Figure 117. K-fold cross-validation for LT model with MLR and combination three

Support Vector Machine
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Figure 118. K-fold cross-validation for LT model with SVR and combination one
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Figure 119. K-fold cross-validation for LT model with SVR and combination two
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Combination three
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Figure 120. K-fold cross-validation for LT model with SVR and combination three
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Figure 121. K-fold cross-validation for LT model with ANN and combination one
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Figure 122. Batch Size for LT model with ANN and combination one
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Figure 123. Epochs for LT model with ANN and combination one
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Figure 124. Neurons for LT model with ANN and combination one
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Figure 125. Hidden layers for LT model with ANN and combination one
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Figure 126. K-fold cross-validation for LT model with ANN and combination two
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Figure 127. Batch Size for LT model with ANN and combination two
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Figure 128. Epochs for LT model with ANN and combination two
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Figure 129. Neurons for LT model with ANN and combination two
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Figure 130. Hidden layers for LT model with ANN and combination two
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Figure 131. K-fold cross-validation for LT model with ANN and combination three
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Figure 132. Batch Size for LT model with ANN and combination three
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Figure 133. Epochs for LT model with ANN and combination three
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Figure 134. Neurons for LT model with ANN and combination three
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Figure 135. Hidden layers for LT model with ANN and combination three
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Figure 136. K-fold cross-validation for HT model with MLR and combination one
Combination two
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Figure 137. K-fold cross-validation for HT model with MLR and combination two
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Figure 138. K-fold cross-validation for HT model with MLR and combination three
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Figure 139. K-fold cross-validation for HT model with SVR and combination one
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Figure 140. K-fold cross-validation for HT model with SVR and combination two
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Figure 141. K-fold cross-validation for HT model with SVR and combination three
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Figure 142. K-fold cross-validation for HT model with ANN and combination one
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Figure 143. Batch Size for HT model with ANN and combination one
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Figure 144. Epochs for HT model with ANN and combination one
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Figure 145. Neurons for HT model with ANN and combination one
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Figure 146. Hidden layers for HT model with ANN and combination one
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Figure 147. K-fold cross-validation for HT model with ANN and combination two
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Figure 148. Batch Size for HT model with ANN and combination two
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Figure 149. Epochs for HT model with ANN and combination two
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Figure 150. Neurons for HT model with ANN and combination two
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Figure 151. Hidden layers for HT model with ANN and combination two
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Figure 152. K-fold cross-validation for HT model with ANN and combination three
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Figure 153. Batch Size for HT model with ANN and combination three
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Figure 154. Epochs for HT model with ANN and combination three
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Figure 155. Neurons for HT model with ANN and combination three
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Figure 156. Hidden layers for HT model with ANN and combination three
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Figure 157. K-fold cross-validation for UT model with MLR and combination one
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Figure 158. K-fold cross-validation for UT model with MLR and combination two
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Figure 159. K-fold cross-validation for UT model with MLR and combination three
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Figure 160. K-fold cross-validation for UT model with SVR and combination one
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Figure 161. K-fold cross-validation for UT model with SVR and combination two
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Figure 162. K-fold cross-validation for UT model with SVR and combination three

Artificial Neural Network
Combination one

MAE

0.0320

00310 00305 0.0304
0.0300
0.0290

0.0280
10

NUMBER OF FOLDS

RMSE

0.0680 0.0658

0.0660
0.0640
0.0620
0.0600
0.0580
0.0560
0.0540

0.0634,
0.0627,
0'06240.0614
0-05940'06020'06010.0588

2 3 4 5 3 7 8 9 10
NUMBER OF FOLDS

RZ
0.1500
0.1086
0.1000 0.06749-0753 0.08115 6719
0.05450.0485
0.0500
0.00;
0.0000
2 3 4 5 6 7 8 9

-0.0500

NUMBER OF FOLDS

Figure 163. K-fold cross-validation for UT model with ANN and combination one
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Figure 164. Batch Size for UT model with ANN and combination one
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Figure 165. Epochs for UT model with ANN and combination one
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Figure 166. Neurons for UT model with ANN and combination one
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Figure 167. Hidden layers for UT model with ANN and combination one
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Figure 168. K-fold cross-validation for UT model with ANN and combination two
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Figure 169. Batch Size for UT model with ANN and combination two
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Figure 170. Epochs for UT model with ANN and combination two
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Figure 171. Neurons for UT model with ANN and combination two
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Figure 172. Hidden layers for UT model with ANN and combination two
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Figure 173. K-fold cross-validation for UT model with ANN and combination three
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Figure 174. Batch Size for UT model with ANN and combination three
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Figure 175. Epochs for UT model with ANN and combination three
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Figure 176. Neurons for UT model with ANN and combination three
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Figure 177. Hidden layers for UT model with ANN and combination three
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Figure 178. K-fold cross-validation for RT model with MLR and combination one
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Figure 179. K-fold cross-validation for RT model with MLR and combination two
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Figure 180. K-fold cross-validation for RT model with MLR and combination three
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Figure 181. K-fold cross-validation for RT model with SVR and combination one
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Figure 182. K-fold cross-validation for RT model with SVR and combination two
Combination three
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Figure 183. K-fold cross-validation for RT model with SVR and combination three
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Figure 184. K-fold cross-validation for RT model with ANN and combination one
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Figure 185. Batch Size for RT model with ANN and combination one
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Figure 186. Epochs for RT model with ANN and combination one
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Figure 187. Neurons for RT model with ANN and combination one
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Figure 188. Hidden layers for RT model with ANN and combination one
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Figure 189. K-fold cross-validation for RT model with ANN and combination two
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Figure 190. Batch Size for RT model with ANN and combination two
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Figure 191. Epochs for RT model with ANN and combination two
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Figure 192. Neurons for RT model with ANN and combination two

MAE
oospo 00719
0.0531
0.0600 0.0461 0.0466 0.0443
0.0400
0.0200
0.0000
1 3 6 9 12
NUMBER OF NEURONS
MAE
0.0450 0.0471
0.0453
00460 §paa3  0.0443
0.0440
0.0420
0.0400
1 2 3 a 5
NUMBER OF LAYERS

0.0660
0.0650
0.0640
0.0630
0.0620
0.0610
0.0600

RMSE
0.0652
0.0647 0.0650
0.0638
062
1 2 3 4 5

NUMBER OF LAYERS

0.7300
0.7200
0.7100
0.7000
0.6900
0.6800
0.6700
0.6600

NUMBER OF LAYERS

Figure 193. Hidden layers for RT model with ANN and combination two
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Figure 194. K-fold cross-validation for RT model with ANN and combination three
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Figure 195. Batch Size for RT model with ANN and combination three
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Figure 196. Epochs for RT model with ANN and combination three
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Figure 197. Neurons for RT model with ANN and combination three
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Figure 198. Hidden layers for RT model with ANN and combination three

Truck Travel Time
Multi Linear Regression
Combination one

0.0522
0.0520
0.0518

0.0516 0.0514

0.0514
0.0512
0.0510

0.0515

MAE
0.0696

0.0518
- 00518 p5170,0517 ~ 00694
0.0692

0.0690
0.0688
0.0686

NUMEBER OF FOLDS

0.0693

5 6 7 8
NUMBER OF FOLDS

0.0690

0.7500 0.745:

0.7400

0.7300

0.7200

0.7100

0.7440 0.7433

30.7471

0.0095

Figure 199. K-fold cross-validation for TTT model with MLR and combination one
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Figure 200. K-fold cross-validation for TTT model with MLR and combination two
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Figure 201. K-fold cross-validation for TTT model with MLR and combination three
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Figure 202. K-fold cross-validation for TTT model with SVR and combination one
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Figure 203. K-fold cross-validation for TTT model with SVR and combination two
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Figure 204. K-fold cross-validation for TTT model with SVR and combination three
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Figure 205. K-fold cross-validation for TTT model with ANN and combination one
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Figure 206. Batch Size for TTT model with ANN and combination one
MAE RMSE R?
0.7485 0.7535
03 02742 0.4 1
0.3045
0.25 0
0.3
0.2 -1
0.15 0.2 0.1236
01 00511 0.0502 o1 00689  0.0881 2
0.05 -3
) o 4
10 50 100 500 1000 10 50 100 500 1000 5
NUMBER OF EPOCHS NUMBER OF EPOCHS NUMBER OF EPOCHS

Figure 207. Epochs for TTT model with ANN and combination one
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Figure 208. Neurons for TTT model with ANN and combination one
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Figure 209. Hidden layers for TTT model with ANN and combination three

Combination two
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Figure 210. K-fold cross-validation for TTT model with ANN and combination two
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Figure 211. Batch Size for TTT model with ANN and combination two
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Figure 212. Epochs for TTT model with ANN and combination two
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Figure 213. Neurons for TTT model with ANN and combination two
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Figure 214. Hidden layers for TTT model with ANN and combination three

Combination three
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Figure 215. K-fold cross-validation for TTT model with ANN and combination three
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Figure 216. Batch Size for TTT model with ANN and combination three
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Figure 217. Epochs for TTT model with ANN and combination three
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Figure 218. Neurons for TTT model with ANN and combination three
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Figure 219. Hidden layers for TTT model with ANN and combination three
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Figure 220. K-fold cross-validation for TCT model with MLR and combination one

Combination two
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Figure 221. K-fold cross-validation for TCT model with MLR and combination two
Combination three
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Figure 222. K-fold cross-validation for TCT model with MLR and combination three
Combination one
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Figure 223. K-fold cross-validation for TCT model with SVR and combination one
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Figure 224. K-fold cross-validation for TCT model with SVR and combination two

Combination three
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Figure 225. K-fold cross-validation for TCT model with SVR and combination three
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Figure 226. K-fold cross-validation for TCT model with ANN and combination one

MAE RMSE R?
0.4503
0.15 0.2 0.5
0.1075 0.1183 0.1205 01372 0.1491 0.1518 o
0.1 n.om//——— 015 0.1_1-1_-___’____._-—-—-—_— .
0.1 03 0.1817
0.05 005 0.2
X 01 0.0396 0.0052
] 0 0
10 50 100 150 10 50 100 150 10 50 100 150
BATCH SIZE BATCH SIZE BATCH SIZE
Figure 227. Batch Size for TCT model with ANN and combination one
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Figure 228. Epochs for TCT model with ANN and combination one
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Figure 229. Neurons for TCT model with ANN and combination one
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Figure 230. Hidden layers for TCT model with ANN and combination one
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Combination two
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Figure 231. K-fold cross-validation for TCT model with ANN and combination two
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Figure 232. Batch Size for TCT model with ANN and combination two
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Figure 233. Epochs for TCT model with ANN and combination two
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Figure 234. Neurons for TCT model with ANN and combination two
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Figure 235. Hidden layers for TCT model with ANN and combination two
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Combination three
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Figure 236. K-fold cross-validation for TCT model with ANN and combination three
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Figure 237. Batch Size for TCT model with ANN and combination two
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Figure 238. Epochs for TCT model with ANN and combination two
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Figure 239. Neurons for TCT model with ANN and combination two
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Figure 240. Hidden layers for TCT model with ANN and combination two
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Appendix 3

This section aims to show the best prediction model of load time, haul time, unload time, return
time, truck travel time, and truck cycle time models developed using MLR. Table 28 shows
the coefficient value for each variable and intercept of each model that has been normalized.
Thus, this model requires normalization of the input and denormalisation of the output to obtain
the result in actual scale.

Table 28.MLR model result from automated data
Model Temperature StartTime Volume  Relative Distance Intercept
Hour Humidity
Load Time

Haul Time

oo | - | - oow | - | o3 | 04

Unload Time

oo% | - | - | ome | - | oo | 025

Return Time

“oon | oos | 007 | 0165 | 0022 | 085 | o015

Truck Travel Time

Truck Cycle Time
-0.022 -0.098 -0.025 -0.336 -0.097 0.7522 0.452
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Appendix 4

Interview

Yusuf Santoso — Project Manager PT. Abdi Sarana Nusa

Part I. Current Situation

1. a. How is currently TCT estimated?

We use simple math to estimate TCT and doing record manually

b. How is the result?

It is difficult because there are many combinations which is difficult to be done manually.

2. What are the effects that an early/late arrival of a truck?

It will affect the target, lost money because of the inefficiency. It also affects client trust
because we promise to them to deliver on time.

3. What would the benefit of more accurate truck cycle time predictions?

Make easy by knowing the capacity and time needed. It also can help for better anticipation .
and gain client trust.

4. What is the accuracy required for the truck cycle time to improve the efficiency in
earthworks?

80% until 100%. However, gaining 100% is difficult because there are many factors involved.
But the deviation of around 1 minute is acceptable.

Part 1. Predictive Modelling

1. Inyour opinion, what is the most significant element in TCT?

Temperature

Relative Humidity

Start Time Hour

Distance

Volume

Model

Start Time Hour and distance is important for managing the drivers.

2. Can you think of other elements that might influence the result?

Road condition, type of material because the type of material affects the truck speed. If the
material is not rigid, for instance, mud, the driver needs to be more careful in carrying the
material.

Weather condition, rain or no rain.

Driver behaviour and experience

Tires condition

3. The following table is the range of the predictive model.

ooo0o0o0oo
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Distance Temper_’ature RelatlveoHumldlty Start Time Hour Model Volume (m?)
(Celsius) (%)
(km)
mean | 1.665419 | 15.907301 73.266452 12.353141 17.149157
min | 0.600000 8.900000 49.330000 7.000000 ADT Type 1 1.140351
max | 3.900000 | 18.200000 95.410000 17.000000 ADT Type 2 27.719298

Does this limitation cover most projects?

It will not cover most projects because the distance often more than 3.9 km. However,
transporting overburdened material will be useful for a long term project.

4. Which activity in a truck cycle is important for you to know?

LOADING

L) =
RETURNING UNLOADING

All of them are important. Load time and unload time are important because the location to
unload sometimes is limited, and trucks need to wait.

5. Which of them that you want to be improved in terms of the accuracy level?

Unload Time Return Time

Load Time (LT) Haul Time (HT) (T (RT) HT +RT LT+ HT+UT+RT

33% 31% 5.8% 78% 79% 56%
Load and Unloading time.

6. The result shows that it requires a short time to unload/load a big amount of material, volume
and weight. In your opinion, What is the possible reason behind it?

It is possible because an excavator with a big material capacity tends to be faster than an
excavator with a small capacity. The big excavator is also better at manoeuvring. Unloading
material depends on the condition of the unloading area, whether it ready or not.

7.Can you think of other parties that might be interested in such an information system?
Perhaps, finance department. They need to estimate how many trucks that they need to buy for
the company.

8. Do you have a recommendation for this research?
Add more vehicle type, for instance, Komatsu, XCMG, Hitachi, Dell.
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Add road condition, whether flat or slope.
Anonymous- Logistic and Operation Analyst — Caterpillar Inc.

Part I. Current Situation

1. How is currently TCT estimated?

We have engineer review regularly to update the estimation, but it is confidential.

2. What are the effects that an early/late arrival of a truck?

It will impact the truck order. And, the company will ask the employee to overtime so the order
can be achieved. So, we can’t produce trucks in a big number because it will impact the
warehouse.

3. What would the benefit of more accurate truck cycle time predictions?

It helps for better anticipation and gains client trust.

4. What is the accuracy required for the truck cycle time to improve the efficiency in
earthworks?

I don’t know.

Part Il. Predictive Modelling

2. Inyour opinion, what is the most significant element in TCT?

Temperature

Relative Humidity

Start Time Hour

Distance

Volume

Model

Model. the project needs to use the right vehicle for achieving the

2. Can you think of other elements that might influence the result?

Type of excavator, site condition, drivers experience. If the soil needed to be excavated located
in one location, it will be faster.

3. The following table is the range of the predictive model.

ooo0o000o

Distance Temper_’ature RelatlveoHumldlty Start Time Hour Model Volume (m?)
(Celsius) (%)
(km)
mean | 1.665419 | 15.907301 73.266452 12.353141 17.149157
min | 0.600000 8.900000 49.330000 7.000000 ADT Type 1 1.140351
max | 3.900000 | 18.200000 95.410000 17.000000 ADT Type 2 27.719298

Does this limitation cover most projects?
| think yes, it covers most projects. But it depends on the type of project. this range might be
useful for mining project
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4. Which activity in a truck cycle is important for you to know?

All of them are important. For example, load time and unload time are important because the
location to unload sometimes is limited, and trucks need to wait.

5. Which of them that you want to be improved in terms of the accuracy level?

Unload Time Return Time

Load Time (LT) Haul Time (HT) (uT) (RT) HT +RT LT+ HT+UT+RT

33% 31% 5.8% 78% 79% 56%
Load Time because it relates to many types of equipment.

6. The result shows that it requires a short time to unload/load a big amount of material, volume
and weight. In your opinion, What is the possible reason behind it?

Perhaps, the material is scattered, so it needs more time to load the material. Require time to
process the dump material.

7.Can you think of other parties that might be interested in such an information system?
Dealer Company

8. Do you have a recommendation for this research?
Add excavator type.
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