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Abstract
Quantum technology is evolving faster than ever. Currently, all eyes are on the quantum computer,
the promising computer that can solve problems which are unsolvable for regular computers. In order
to understand this new technology, it is necessary to understand the qubit, the basic unit of quantum
information. This can be done by means of the density matrix: a mathematical representation of the
state of a system. The aim of this thesis is to find the density matrix of a single qubit in closed (isolated)
and open quantum systems. In the case of a closed system, an alternating sequence of two processes
with different Hamiltonians is considered, which both last a fixed amount of time after one another.
These systems have been solved using a direct formula for a 2 × 2 matrix with distinct eigenvalues
raised to the power n for any n ∈ N. In the case of an open system, dissipation is taken into account
compared to a single process in a closed system. These open systems have been solved numerically
using the Lindblad master equation and the spin-boson model to model the environment as a bath of
bosons. However, the use of multiple approximations and assumptions questions the validity of the
results for ’strong’ interactions. Suggestions for further research include investigating quantitatively
when the Lindblad equation is valid to use and solve open quantum systems using different models for
the environment.
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1
Introduction

Nowadays, most people cannot imagine life without a computer or without the internet. Though com-
puters have already evolved from huge inefficient machines to powerful supercomputers, humanity still
demands more computation power as time passes. As regular computers have trouble keeping up with
the current challenges the world is facing, a new kind of technology is required: the quantum computer.

The quantum computer is the new promising computer that should be able to outperform the clas-
sical computer based on properties like computation power and computation speed. Whereas the
classical computer consists of bits, the quantum computer consists of quantum bits (qubits), the basic
unit of quantum information. Being able to utilize the concepts from quantum mechanics allows the
quantum computer to outperform the classical computer. However, because of the current state of
development of quantum computers, the current quantum computers are too small to outperform clas-
sical computers, but this will change in the future. This is the reason that quantum computers or, more
specifically, qubits are the subject of a lot of papers at the moment, since qubits are the fundamentals
of quantum computers.

As the fundamentals of quantum computers, understanding qubits is extremely important for a vari-
ety of purposes. Applications include subjects in quantum mechanics like quantum information theory
[7], but also less obvious branches ranging from artificial intelligence [11] to finance [4]. In order to
advance in these areas, it is necessary to get a better understanding of qubits and the effect of manip-
ulations on them. This can be done by means of the density matrix, the mathematical representation
of the state of a qubit. After all, the density matrix contains all the information obtained on a qubit.

It is clear that qubits have a lot of applications and this is the motivation for this research which will be
described in this paragraph. Consider closed and open quantum systems with a particle with spin 1/2,
which represents a qubit, and a detector with coordinate q and Gaussian initial state. A closed/isolated
quantum system is a system where the environment is neglected; these systems are easier to solve
than open systems, but are less realistic. On the other hand, open quantum systems take dissipation
into account, the loss of energy towards the environment. This results in open quantum systems being
more realistic, but at the same time becoming almost impossible to solve exactly.

The qubit can undergo two different kind of transitions: free evolution and weak measurements
done by a detector. Free evolution is described by the Hamiltonian H0 = Bσz where B denotes an
external magnetic field. A weak measurement is a quantum measurement where the observer obtains
little information about a system, while also disturbing the system a little [2]. This is described by the
Hamiltonian Hint = g(t)qσx where g(t) denotes the interaction strength between the qubit and the
detector. Furthermore, σz and σx are Pauli spin matrices. The research question is then as follows:
what is the density matrix of the qubit in different closed and open quantum systems.

This thesis is a follow-up research on the works of K. Kramers who focused on observing the quan-
tum Zeno effect and determining the density matrix in simpler systems [8]. Kramers’ thesis formed the
start of the measurement set-up and some of their results have been used to expand to more com-
plicated systems. Moreover, this thesis does not consider the quantum Zeno effect, but adds open
quantum systems which have not been considered before.

The following structure has been used in this thesis. Chapter 2 provides some preliminary mathe-
matics which are related to quantum mechanics and this thesis and therefore necessary to understand.
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Chapter 1. Introduction 2

Chapter 3 elaborates on some concepts of quantum mechanics and results from the works of Kramers
that are used in this thesis. Chapters 4 and 5 provide the results on the density matrix of a qubit in
closed and open quantum systems respectively which are also accompanied by visual representations
in the form of graphs of the expectation values ⟨σx⟩, ⟨σy⟩ and ⟨σz⟩. Thereafter, chapter 6 provides a
discussion on the outcomes that have been presented in the previous chapter and chapter 7 will sum-
marize the results in a clear answer to the main question and suggests possibilities for further research.
Finally, there are also two appendices: appendix A contains a formal proof of an important formula,
which is explained in the last section of chapter 2. Appendix B provides the Python code that has been
used to generate the graphical results in chapter 4 and 5.

This research has been done as a bachelor thesis to complete the bachelors of science Applied
Physics and Applied Mathematics at the Delft University of Technology.



2
Preliminary mathematics

This chapter discusses some fundamental mathematical concepts that form the basis of quantum me-
chanics which are thus essential to understand.

2.1. Hilbert space
One of the most important mathematical concepts that paves the way for quantum mechanics is the
Hilbert space:

Definition. A Hilbert space H is a complex vector space on which an inner product is defined that
is also a complete metric space.

Hilbert spaces play a very important role in quantum mechanics, since the pure state of a quantum
system is represented by a unit vector in a Hilbert space. In addition, mixed states are represented by
a matrix which can be calculated from these vectors; the difference between pure and mixed states is
explained further in section 3.1. The notation used for these vectors is |ψ⟩, called a ”ket”, whereas ⟨ψ|,
called a ”bra”, is the hermitian conjugate of a ket. The inner product of two vectors |ψ⟩ and |ϕ⟩ is then
denoted by ⟨ψ|ϕ⟩.

Most quantum systems have an associated Hilbert space in the form of Cn where n ∈ N ∪ {∞}.
However, this thesis focusses on two-level systems (which are explained further in section 3.2) which
have an associated Hilbert space C2.

2.2. Tensor product
When discussing composite quantum systems, it is necessary to introduce the tensor product. Consider
two subsystems A and B respectively associated with Hilbert spaces HA and HB , then the Hilbert
space H of the total system consisting of these two subsystems is given by

H = HA ⊗HB . (2.1)

The same principle can be applied to any composition of a finite amount of subsystems. Furthermore,
the same can be true for the state vectors of the systems; when the two subsystems are prepared in
the states |ψ⟩A and |ϕ⟩B and the total state is given by |Ψ⟩ = |ψ⟩A ⊗ |ϕ⟩B , then the state |Ψ⟩ is called
separable. On the contrary, when |Ψ⟩ cannot be written as a single tensor product of |ψ⟩A and |ψ⟩B ,
but only as a linear combination, |Ψ⟩ is called entangled; a phenomenon that is not used in this thesis,
for further reading see A. Einstein, B. Podolsky and N. Rosen [3].

While the tensor product can be determined of any two vector spaces, it is solely used on matrices
in this thesis; for this reason, a simplified definition of the tensor product will be considered:

Definition. Consider a m × n matrix X and a p × q matrix Y , the tensor product X ⊗ Y is then a

3



Chapter 2. Preliminary mathematics 4

mp× nq matrix given by:

X ⊗ Y =

x11Y . . . x1nY
...

. . .
...

xm1Y . . . xmnY

 . (2.2)

2.3. Partial trace
Before going into the partial trace, consider the regular trace of a n × n matrix X which is defined as
the sum of its diagonal elements:

TrX =

n∑
i=1

xii (2.3)

where Tr denotes the trace. Similar to the tensor product, the partial trace is a powerful tool when
discussing composite quantum systems. Consider two square matrices X on HA and Y on HB where
HA and HB are Hilbert spaces. If the tensor product of X and Y on HA ⊗ HB is known, taking the
partial trace over one of the matrices yields the other matrix multiplied by some factor:

TrB(X ⊗ Y ) = X Tr(Y )

TrA(X ⊗ Y ) = Tr(X)Y.
(2.4)

In the more complicated case of a linear map C onHA⊗HB , a few more steps are required. Let {|ai⟩}
be a basis ofHA and {|bi⟩} be a basis ofHB . Any linear map C onHA⊗HB can then be decomposed
as

C =
∑
ijkl

cijkl|ai⟩⟨aj | ⊗ |bk⟩⟨bl|. (2.5)

The general partial traces can then be computed as:

TrB(C) =
∑
ijkl

cijkl|ai⟩⟨aj |Tr(|bk⟩⟨bl|) =
∑
ijk

cijkk|ai⟩⟨aj |⟨bk|bk⟩

TrA(C) =
∑
ijkl

cijkl Tr(|ai⟩⟨aj |)|bk⟩⟨bl| =
∑
ikl

ciikl⟨ai|ai⟩|bk⟩⟨bl|
(2.6)

where
∑

ijkl denotes the sum over all possible combinations of i, j, k and l.

2.4. Raising a 2 × 2 matrix to the power n
Consider a 2× 2 matrix X with distinct eigenvalues λ− and λ+; then the formula for Xn for any n ∈ N
is given by:

Xn =
λn+ − λn−
λ+ − λ−

X − λ+λ−
λn−1
+ − λn−1

−
λ+ − λ−

I. (2.7)

Here, I is the identity matrix. A proof of this formula is presented in appendix A.



3
Theory on quantum mechanics

This chapter gives an overview of the necessary theory on quantum mechanics aiming to supply the
reader with sufficient knowledge in order to understand the concepts used in the thesis.

3.1. Density matrix
The density matrix represents the quantum state of a system; from the density matrix, the probabilities
of possible measurement outcomes of the system can be calculated. The motivation for the density
matrix is that it can represent mixed states, whereas state vectors can only represent pure states.
Mixed states are used when the state of a system is unknown; in that case it is regarded as a statistical
ensemble of different states |ψj⟩ with corresponding probabilities pj [5]. The density matrix can then
be written as:

ρ =
∑
j

pj |ψj⟩⟨ψj | (3.1)

where the probabilities pj satisfy
∑

j pj = 1. Additionally, when the system is in a pure state |ψ⟩, the
density matrix is described by a single term:

ρ = |ψ⟩⟨ψ|. (3.2)

The density matrix has an important property and gives rise to the definition of the expectation of an
observable A, namely:

Tr(ρ) = 1 (3.3)

⟨A⟩ = Tr(ρA). (3.4)

The fact that Tr(ρ) = 1, has an important consequence for composite systems: when the density matrix
ρAB of a composite system consisting of subsystems A and B is known, the density matrices of the
subsystems can be computed:

TrB(ρAB) = ρA

TrA(ρAB) = ρB
(3.5)

where ρA and ρB are the density matrices of the subsystems A and B respectively.

3.2. Qubits
A quantum bit, qubit for short, is the quantum analog of the classical bit. Whereas a classical bit is used
to represent information in classical computers, a qubit is used to represent information in quantum
computers. A classical bit can only be 0 or 1, but a qubit is in a superposition of 0 and 1, allowing its
state to be written as:

|ψ⟩ = α|0⟩+ β|1⟩ (3.6)

where α, β ∈ C and |0⟩ and |1⟩ are the two orthonormal basis states. This representation can be used
for any two-level system, where |ψ⟩ is an element of the Hilbert space C2. The state of a qubit can

5



Chapter 3. Theory on quantum mechanics 6

also be represented visually by means of the so-called Bloch sphere. The Bloch sphere is a sphere
of radius 1 which is used to represent the state of a qubit as a vector in or on this sphere. The Bloch
sphere is illustrated in figure 3.1.

Figure 3.1: The state |ψ⟩ of some qubit which is represented as a vector on the Bloch sphere. |0⟩ and |1⟩ are defined as unit
vectors on the z-axis in the positive and negative direction respectively [12].

When using this representation, the so-called Born rule states that, when measuring the qubit, the
possible outcomes are |0⟩ and |1⟩ with respective probabilities |α|2 and |β|2. This implies that α and β
must satisfy the following constraint:

|α|2 + |β|2 = 1. (3.7)

3.3. Time evolution
A system’s time evolution is described by the time-dependent Schrödinger equation:

iℏ
d

dt
|ψ(t)⟩ = H|ψ(t)⟩ (3.8)

with ℏ the reduced Planck constant, |ψ(t)⟩ the state at time t and H the Hamiltonian operator. This
differential equation can be solved:

|ψ(t)⟩ = exp(− i

ℏ

∫ t

0

Hdt′)|ψ(0)⟩ (3.9)

with |ψ(0)⟩ the initial state. Furthermore, if the Hamiltonian is time-independent, the solution can be
written as:

|ψ(t)⟩ = exp(− i

ℏ
Ht)|ψ(0)⟩ = U(t)|ψ(0)⟩. (3.10)

The operator U(t) = exp(− i
ℏHt) is known as the time-evolution operator. When the time-evolution

operator and the initial state are known, the density matrix can be found:

ρ(t) = |ψ(t)⟩⟨ψ(t)| = exp(− i

ℏ
Ht)|ψ(0)⟩⟨ψ(0)| exp( i

ℏ
Ht) = exp(− i

ℏ
Ht)ρ(0) exp( i

ℏ
Ht) (3.11)

In the next subsections, three important cases of time evolution will be treated which will be used later
on in chapters 4 and 5 [8].
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3.3.1. Free evolution
First, consider a qubit that only evolves freely under the influence of a magnetic field. The Hamiltonian
is then given by H0 = Bσz with B the strength of the magnetic field and σz a Pauli spin matrix. Using
a Taylor series and defining α ≡ 1

ℏBt, the time-evolution operator can be written as:

U(t) = exp(−iασz) =
∞∑

n=0

(−iασz)n

n!
=

∞∑
n=0

(−iασz)2n

(2n)!
+

∞∑
n=0

(−iασz)2n+1

(2n+ 1)!
. (3.12)

Since σz =
(
1 0
0 −1

)
, it is clear that σ2

z = I, where I is the identity matrix, hence σ2n
z = I and σ2n+1

z = σz
∀n ∈ N. Using these simplifications and recognizing the Taylor series for the hyperbolic sine and cosine,
the time-evolution operator then becomes:

U(t) = I

∞∑
n=0

(−iα)2n

(2n)!
+ σz

∞∑
n=0

(−iα)2n+1

(2n+ 1)!
= I cosh(−iα) + σz sinh(−iα). (3.13)

This can then be written as a matrix:

U(t) =

(
cosh(−iα) + sinh(−iα) 0

0 cosh(−iα)− sinh(−iα)

)
=

(
exp(− i

ℏBt) 0
0 exp( i

ℏBt)

)
. (3.14)

Assuming for example an initial state |0⟩ = 1√
2

(
1
1

)
, the density matrix can then be computed as a

function of time:

ρ(t) =
1

2

(
exp(− i

ℏBt) 0
0 exp( i

ℏBt)

)(
1 1
1 1

)(
exp( i

ℏBt) 0
0 exp(− i

ℏBt)

)
=

1

2

(
1 exp(−2 i

ℏBt)
exp(2 i

ℏBt) 1

)
(3.15)

which clearly satisfies Tr(ρ) = 1 as expected.

3.3.2. Weak measurements
The idea of weak measurements was first introduced in 1988 [1]. A weak measurement is a quantum
measurement where the observer obtains little information about a system, while also disturbing the
system a little [2]. Consider a detector with coordinate q and Gaussian initial state:

ϕ(0) =
1

(πσ)1/4
exp(− (q − q0)

2

2σ
) (3.16)

with q0 the mean of the detector coordinate q and σ the dispersion. The initial state of the composite
system will then be given by the tensor product |Φ(0)⟩ = ϕ(0)⊗ |ψ(0)⟩ = ϕ(0)|ψ(0)⟩ where |ψ(0)⟩ is the
initial state of the qubit (the tensor product reduces to a regular product since ϕ(0) is a number).

When a weak measurement is performed on the x-component of the spin, the interaction Hamilto-
nian becomes Hint = g(t)qσx where g(t) denotes the interaction strength between the qubit and the
detector. Taking g independent of time and defining β ≡ 1

ℏgqt, the time-evolution operator then be-
comes U(t) = exp(−iβσx). Since σx =

(
0 1
1 0

)
implies that σ2

x = I, the same steps as in the previous
subsection can be applied to derive:

U(t) = I cosh(−iβ) + σx sinh(−iβ). (3.17)

This can also be written as a matrix:

U(t) =

(
cosh(−iβ) sinh(−iβ)
sinh(−iβ) cosh(−iβ)

)
=

(
cos( 1ℏgqt) −i sin( 1ℏgqt)

−i sin( 1ℏgqt) cos( 1ℏgqt)

)
(3.18)

where the formulas cosh(−ix) = cos(x) and sinh(−ix) = −i sin(x) have been used. Assuming an
initial state |Φ(0)⟩ where |ψ(0)⟩ = |0⟩ = 1√

2

(
1
1

)
, the total density matrix ρT can be computed in a similar

way as in equation 3.15:

ρT (t) =
1

2
√
πσ

exp(− (q − q0)
2

σ
)

(
cos( 1ℏgqt) −i sin( 1ℏgqt)

−i sin( 1ℏgqt) cos( 1ℏgqt)

)(
1 1
1 1

)(
cos( 1ℏgqt) i sin( 1ℏgqt)
i sin( 1ℏgqt) cos( 1ℏgqt)

)
=

1

2
√
πσ

exp(− (q − q0)
2

σ
)

(
1 1
1 1

)
.

(3.19)
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In order to find the density matrix of the qubit, q has to be integrated out as stated in [8]. Since the
integral over the real line of the probability density function 1√

πσ
exp(− (q−q0)

2

σ ) with respect to q is equal
to 1, the density matrix of the qubit is easily found as:

ρ(t) =
1

2

(
1 1
1 1

)
(3.20)

which obviously satisfies Tr(ρ) = 1 as expected.

3.3.3. Weak measurements during free evolution
For the last case, suppose that the processes of the previous subsections are happening simultane-
ously. This results in the Hamiltonian

H = H0 +Hint = Bσz + gqσx =

(
B gq
gq −B

)
(3.21)

where g is again taken time-independent. The initial state of the system is, as in the previous subsection,
the product |Φ(0)⟩ = ϕ(0)|ψ(0)⟩ where |ψ(0)⟩ is the initial state of the qubit and ϕ(0) is given in equation
3.16.

The time-evolution operator then results in U(t) = exp(− i
ℏ tH) where the exponent will again be

expanded using a Taylor expansion and then the same method can be used as in the previous subsec-
tions. Note thatH2 = (B2+g2q2)I, which implies thatH2n = (B2+g2q2)nI andH2n+1 = (B2+g2q2)nH.
After rewriting some parts, the time-evolution operator becomes:

U(t) = I

∞∑
n=0

(B2 + g2q2)n
(−it/ℏ)2n

(2n)!
+H

∞∑
n=0

(B2 + g2q2)n
(−it/ℏ)2n+1

(2n+ 1)!

= I

∞∑
n=0

(
√
B2 + g2q2 · −it/ℏ)2n

(2n)!
+H

∞∑
n=0

1√
B2 + g2q2

(
√
B2 + g2q2 · −it/ℏ)2n+1

(2n+ 1)!

= I cosh(− i

ℏ
t
√
B2 + g2q2) +H

1√
B2 + g2q2

sinh(− i

ℏ
t
√
B2 + g2q2)

≡ I cosh(−iγ) +Hξ sinh(−iγ)

(3.22)

where in the last line the substitutions γ = 1
ℏ t
√
B2 + g2q2 and ξ = 1√

B2+g2q2
have been used. The

time-evolution operator can then be written as a matrix:

U(t) =

(
cosh(−iγ) +Bξ sinh(−iγ) gqξ sinh(−iγ)

gqξ sinh(−iγ) cosh(−iγ)−Bξ sinh(−iγ)

)
. (3.23)

Reverting the substitutions and using cosh(−ix) = cos(x) and sinh(−ix) = −i sin(x) results in:

U(t) =

cos( 1ℏ t
√
B2 + g2q2)− i B√

B2+g2q2
sin( 1ℏ t

√
B2 + g2q2) −i gq√

B2+g2q2
sin( 1ℏ t

√
B2 + g2q2)

−i gq√
B2+g2q2

sin( 1ℏ t
√
B2 + g2q2) cos( 1ℏ t

√
B2 + g2q2) + i B√

B2+g2q2
sin( 1ℏ t

√
B2 + g2q2)

.
(3.24)

Assuming an initial state |Φ(0)⟩ where |ψ(0)⟩ = |0⟩ = 1√
2

(
1
1

)
, the total density matrix ρT can be com-

puted in the same way as in equation 3.19:

ρT (t) =
1

2
√
πσ

exp(− (q − q0)
2

σ
)

(
ρ11 ρ12
ρ21 ρ22

)
(3.25)
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where
ρ11 =1 + 2

Bgq

B2 + g2q2
sin2( 1

ℏ
t
√
B2 + g2q2)

ρ12 = cos2( 1
ℏ
t
√
B2 + g2q2) +

−B2 + g2q2

B2 + g2q2
sin2( 1

ℏ
t
√
B2 + g2q2)

− 2i
B√

B2 + g2q2
cos( 1

ℏ
t
√
B2 + g2q2) sin( 1

ℏ
t
√
B2 + g2q2)

ρ21 = cos2( 1
ℏ
t
√
B2 + g2q2) +

−B2 + g2q2

B2 + g2q2
sin2( 1

ℏ
t
√
B2 + g2q2)

+ 2i
B√

B2 + g2q2
cos( 1

ℏ
t
√
B2 + g2q2) sin( 1

ℏ
t
√
B2 + g2q2)

ρ22 =1− 2
Bgq

B2 + g2q2
sin2( 1

ℏ
t
√
B2 + g2q2).

(3.26)

Similar to the previous subsection, q has to be integrated out in order to find the density matrix ρ of the
qubit. However, these integrals cannot be solved analytically. Nevertheless, it can be shown that the
trace of the resulting density matrix is 1. To this end, define x(q) ≡ Bgq

B2+g2q2 sin
2( 1ℏ t

√
B2 + g2q2) such

that ρ11 = 1 + 2x(q) and ρ22 = 1− 2x(q). This results in:

Tr(ρ) =
∫ ∞

−∞

1

2
√
πσ

exp(− (q − q0)
2

σ
)(ρ11 + ρ22)dq =

∫ ∞

−∞

1√
πσ

exp(− (q − q0)
2

σ
)dq = 1 (3.27)

There is one exception where the density matrix can be computed analytically. When σ → 0, the proba-
bility density function 1√

πσ
exp(− (q−q0)

2

σ ) converges towards the Dirac delta peak δ(q−q0). The density

matrix of the qubit is then equal to the total density matrix, but without the factor 1√
πσ

exp(− (q−q0)
2

σ ) and
every other q is replaced with q0.

3.4. Open quantum systems
An open quantum system is the combination of a quantum system of interest and an environment or
bath that interacts with this system, as shown in the figure below.

Figure 3.2: A total system (belonging to a Hilbert space HT , with states described by density matrices ρT , and with dynamics
determined by a Hamiltonian HT ) divided into the system of interest, ”system”, and the environment [9].

This leads to dissipation: the loss of energy from the system to the environment. Open quantum sys-
tems are more realistic than closed quantum systems, because no quantum system can be completely
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isolated. The next two subsections will introduce the general description of an open quantum system
and the Lindbladian (an equation that describes the evolution of the density matrix ρ). Finally, the spin-
boson model which is a commonly used model to describe dissipation in open quantum systems, is
explained in the last subsection.

3.4.1. Describing an open quantum system
An open quantum system is in general described by a Hamiltonian in the form of

HT = H ⊗ IE + I ⊗HE + gHI (3.28)

where H and HE are respectively the Hamiltonian of the system and the environment and IE and I
are respectively the identity matrices of the Hilbert spaces HE and H (i.e. IE |ψ⟩ = |ψ⟩ ∀|ψ⟩ ∈ HE and
I|ϕ⟩ = |ϕ⟩ ∀|ϕ⟩ ∈ H); HI is the Hamiltonian for the system-environment interaction and g denotes the
interaction strength [9]. Moreover, without loss of generality, the interaction Hamiltonian can be written
in the following way:

HI =
∑
i

Si ⊗ Ei (3.29)

where Si ∈ B(H) and Ei ∈ B(HE) with B(H) : H → H the space of bounded operators acting on the
Hilbert space H.

In order to determine the evolution of the total state of the system, the initial state of ρT is required.
It is assumed to be the tensor product of the initial density matrices ρ(0) of the system of interest and
ρE(0) of the bath:

ρT (0) = ρ(0)⊗ ρE(0). (3.30)
This assumption corresponds to the absence of correlations between the system and the environment.
Furthermore, a second assumption is made, where the initial state of the environment is thermal, mean-
ing that it is described by the following density matrix:

ρE(0) =
1

Z
exp(− HE

kBT
), Z = Tr(− HE

kBT
) (3.31)

where kB and T respectively denote the Boltzmann constant and the temperature. The evolution of
ρT is equivalent to equation 3.11, but now with the total Hamiltonian HT and provided that HT is time-
independent. Finally, ρ(t) can be determined by tracing out the environment of ρT (t):

ρ(t) = TrE(ρT (t)). (3.32)

3.4.2. Lindbladian
The Lindblad master equation, also known as the Lindbladian, is an equation that describes the evo-
lution of the density matrix of an open quantum system. The Lindblad equation for an N-dimensional
system’s density matrix ρ can be written as

ρ̇(t) = − i

ℏ
[H, ρ(t)] +

N2−1∑
i=1

gi(Liρ(t)L
†
i −

1

2
{L†

iLi, ρ(t)}) (3.33)

where the Hamiltonian H and the coefficients gi determine the system dynamics. [A,B] = AB − BA
and {A,B} = AB + BA are respectively the commutator and the anticommutator and Li are called
the Lindblad or jump operators of the system. The derivation of the Lindbladian will not be reproduced
here as it can be found in several sources [9].

The motivation for the Lindbladian is that it allows one to find the density matrix of the system of
interest without taking into account the Hamiltonian of the environment; the Lindblad operators are
determined from the Si term in equation 3.29. However, the Lindblad equation is restricted to some
more assumptions and approximations besides the one that was already mentioned in equation 3.30:

• First, it is assumed that the interaction is ’weak’ and that the environment is ’much larger’ than
the system of interest. This has two important consequences: the state of the environment does
not change significantly and equation 3.30 is valid for all times. These consequences can be
summarised in the following equation ∀t ≥ 0:

ρT (t) = ρ(t)⊗ ρE . (3.34)
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• Secondly, it is assumed that the time scales of correlation and relaxation of the environment are
much smaller than the time scale of the system of interest. As the coupling strength is very weak,
this is a reasonable assumption which induces an important approximation in the derivation of
the Lindbladian.

There are also other approximations which are only relevant in the mathematical derivation and hence
are not mentioned here [9].

3.4.3. The spin-boson model
The spin-boson model is used as a model for open quantum systems in order to make it easy to take
dissipation into account. It models the environment as a bath of bosons which behave like harmonic
oscillators [13]. The Hamiltonian of the spin-boson model is given by:

HT = (ϵσz +∆σx)⊗ IE + I ⊗
∑
k

ℏωkb
†
kbk + σz ⊗

∑
k

gk(b
†
k + bk) (3.35)

where gk and ωk respectively denote the interaction strength and angular velocity of boson k. Further-
more, b†k and bk are the creation and annihilation operators respectively, which are not relevant in this
thesis. Using this model, the Lindblad equation can actually be solved exactly with Li = σz. Take for
example the Hamiltonian with ∆ = 0, then the Lindblad equation reduces to:

ρ̇ = − iϵ
ℏ
[σz, ρ] + gσzρσ

†
z −

g

2
σ†
zσzρ−

g

2
ρσ†

zσz

= − iϵ
ℏ
[σz, ρ] + gσzρσz − gρ

(3.36)

where σzσ†
z = σ2

z = I has been used. This leads to four ordinary differential equations:

˙ρ00 = 0

˙ρ11 = 0

˙ρ01 = (−2iϵ

ℏ
− 2g)ρ01

˙ρ10 = (
2iϵ

ℏ
− 2g)ρ10

(3.37)

where ρ =
( ρ00 ρ01
ρ10 ρ11

)
. Assuming an initial state ρ(0) = 1

2

(
1 1
1 1

)
, the density matrix becomes:

ρ(t) =
1

2

(
1 exp((− 2iϵ

ℏ − 2g)t)
exp(( 2iϵℏ − 2g)t) 1

)
. (3.38)

It is clear that the off-diagonal elements, which are responsible for coherence, decay over time (in
quantum mechanics, every object has wave-like properties which allows the introduction of quantum
coherence).



4
Density matrices of closed quantum

systems
In this chapter, the outcomes of the calculations on closed quantum systems with alternating Hamilto-
nians will be provided, aiming to answer the research question as stated in the introduction. Multiple
graphs of ⟨σx⟩, ⟨σy⟩ and ⟨σz⟩ in different situations are also provided as a visual interpretation of the
results.

4.1. Results of a series of measurements alternated with free evo-
lution

For the first part, a qubit is considered which alternately is influenced by a magnetic field and a detec-
tor. The difficulty in determining the density matrix for general times now lies in the fact that different
Hamiltonians alternate. To this end, define the time steps tev + tm where tev is the duration of the qubit
evolving under the effect of the Hamiltonian H0 = Bσz and tm is the duration of the qubit being mea-
sured by the detector which causes an interaction Hamiltonian Hint = g(t)qσx. The time steps always
start with free evolution and subsequently, the measurement takes place. This results in the following
time-evolution operator:

U(tev + tm) = exp(− i

ℏ

∫ tev+tm

tev

Hintdt) exp(−
i

ℏ

∫ tev

0

H0dt)

=

(
cos( 1ℏgqtm) −i sin( 1ℏgqtm)

−i sin( 1ℏgqtm) cos( 1ℏgqtm)

)(
exp(− i

ℏBtev) 0
0 exp( i

ℏBtev)

)
=

(
exp(−iα) cos(β) −i exp(iα) sin(β)

−i exp(−iα) sin(β) exp(iα) cos(β)

) (4.1)

where equations 3.14 and 3.18 and the following substitutions have been used:

α ≡ 1

ℏ
Btev, β ≡ 1

ℏ
gqtm. (4.2)

Assuming for example an initial state of the qubit |0⟩ = 1√
2

(
1
1

)
and an initial state of the detector as in

equation 3.16, the state at time ntev + ntm ∀n ∈ N is given by:

|Φ(ntev + ntm)⟩ = 1

21/2(πσ)1/4
exp(− (q − q0)

2

2σ
)Un

(
1
1

)
. (4.3)

This allows for the calculation of the total density matrix at time ntev + ntm:

ρT (ntev + ntm) = |Φ(ntev + ntm)⟩⟨Φ(ntev + ntm)| = 1

2
√
πσ

exp(− (q − q0)
2

σ
)Un

(
1 1
1 1

)
Un∗

=
1

2
√
πσ

exp
(
− (q − q0)

2

σ

)(
(Un,00 + Un,01)(U

∗
n,00 + U∗

n,01) (Un,00 + Un,01)(U
∗
n,10 + U∗

n,11)
(Un,10 + Un,11)(U

∗
n,00 + U∗

n,01) (Un,10 + Un,11)(U
∗
n,10 + U∗

n,11)

)
(4.4)

12
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where Un =
( Un,00 Un,01

Un,10 Un,11

)
and ·∗ denotes the conjugate. It is now clear that, in order to find the density

matrix, the elements of the matrix Un are required. This is where equation 2.7 is used; the matrix
U(tev + tm) from equation 4.1 has two distinct eigenvalues, which implies that Un can be expressed as
a linear combination of U and the identity matrix I. Since U(tev + tm) is a 2× 2 matrix, the eigenvalues
of U(tev + tm) can be found:

λ± =
1

2
exp(−iα)

(
exp(2iα) cos(β)±

√
cos2(β)(1 + exp(2iα))2 − 4exp(2iα) + cos(β)

)
. (4.5)

This leads to the calculation of the elements of Un which are all written as fractions:

Un,00 =
λn+ − λn−
λ+ − λ−

exp(−iα) cos(β)− λ+λ−
λn−1
+ − λn−1

−
λ+ − λ−

=
Un,001

Un,002
(4.6)

Un,01 =
λn+ − λn−
λ+ − λ−

(−i exp(iα) sin(β)) = Un,011

Un,012
(4.7)

Un,10 =
λn+ − λn−
λ+ − λ−

(−i exp(−iα) sin(β)) = Un,101

Un,102
(4.8)

Un,11 =
λn+ − λn−
λ+ − λ−

exp(iα) cos(β)− λ+λ−
λn−1
+ − λn−1

−
λ+ − λ−

=
Un,111

Un,112
(4.9)

Un,001 =((exp(−iα))(exp(2iα) cos(β) +
√
(2 cos2(β)− 4) exp(2iα) + cos2(β)(exp(4iα) + 1)

+ cos(β))n(exp(−iα))(exp(2iα) cos(β)−
√

(2 cos2(β)− 4) exp(2iα) + cos2(β)(exp(4iα) + 1)

+ cos(β))− (exp(−iα))(exp(2iα) cos(β) +
√
(2 cos2(β)− 4) exp(2iα) + cos2(β)(exp(4iα) + 1)

+ cos(β))(exp(−iα))(exp(2iα) cos(β)−
√

(2 cos2(β)− 4) exp(2iα) + cos2(β)(exp(4iα) + 1)

+ cos(β))n)2−n+1 + 4 cos(β) exp(−iα)((exp(−iα))(exp(2iα) cos(β)

−
√

(2 cos2(β)− 4) exp(2iα) + cos2(β)(exp(4iα) + 1) + cos(β))n − (exp(−iα))(exp(2iα) cos(β)

+
√

(2 cos2(β)− 4) exp(2iα) + cos2(β)(exp(4iα) + 1) + cos(β))n)2−n

(4.10)
Un,002 =− 2(exp(−iα))(exp(2iα) cos(β) +

√
(2 cos2(β)− 4) exp(2iα) + cos2(β)(exp(4iα) + 1) + cos(β))

+ 2(exp(−iα))(exp(2iα) cos(β)−
√

(2 cos2(β)− 4) exp(2iα) + cos2(β)(exp(4iα) + 1) + cos(β))
(4.11)

Un,011 =− 2i exp(iα)(−(exp(−iα))(exp(2iα) cos(β)−
√
(2 cos2(β)− 4) exp(2iα) + cos2(β)(exp(4iα) + 1)

+ cos(β))n + (exp(−iα))(exp(2iα) cos(β) +
√
(2 cos2(β)− 4) exp(2iα) + cos2(β)(exp(4iα) + 1)

+ cos(β))n)2−n sin(β)
(4.12)

Un,012 = exp(−iα)(exp(2iα) cos(β) +
√

(2 cos2(β)− 4) exp(2iα) + cos2(β)(exp(4iα) + 1)

+ cos(β))− exp(−iα)(exp(2iα) cos(β)−
√

(2 cos2(β)− 4) exp(2iα) + cos2(β)(exp(4iα) + 1)

+ cos(β))
(4.13)

Un,101 =2i exp(−iα)((exp(−iα))(exp(2iα) cos(β)−
√
(2 cos2(β)− 4) exp(2iα) + cos2(β)(exp(4iα) + 1)

+ cos(β))n − (exp(−iα))(exp(2iα) cos(β) +
√
(2 cos2(β)− 4) exp(2iα) + cos2(β)(exp(4iα) + 1)

+ cos(β))n)2−n sin(β)
(4.14)

Un,102 = exp(−iα)(exp(2iα) cos(β) +
√

(2 cos2(β)− 4) exp(2iα) + cos2(β)(exp(4iα) + 1)

+ cos(β))− exp(−iα)(exp(2iα) cos(β)−
√

(2 cos2(β)− 4) exp(2iα) + cos2(β)(exp(4iα) + 1)

+ cos(β))
(4.15)
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Un,111 =((exp(−iα))(exp(2iα) cos(β) +
√
(2 cos2(β)− 4) exp(2iα) + cos2(β)(exp(4iα) + 1)

+ cos(β))n(exp(−iα))(exp(2iα) cos(β)−
√

(2 cos2(β)− 4) exp(2iα) + cos2(β)(exp(4iα) + 1)

+ cos(β))− (exp(−iα))(exp(2iα) cos(β) +
√
(2 cos2(β)− 4) exp(2iα) + cos2(β)(exp(4iα) + 1)

+ cos(β))(exp(−iα))(exp(2iα) cos(β)−
√

(2 cos2(β)− 4) exp(2iα) + cos2(β)(exp(4iα) + 1)

+ cos(β))n)2−n+1 + 4 cos(β) exp(iα)((exp(−iα))(exp(2iα) cos(β)

−
√

(2 cos2(β)− 4) exp(2iα) + cos2(β)(exp(4iα) + 1) + cos(β))n − (exp(−iα))(exp(2iα) cos(β)

+
√

(2 cos2(β)− 4) exp(2iα) + cos2(β)(exp(4iα) + 1) + cos(β))n)2−n

(4.16)
Un,112 =− 2(exp(−iα))(exp(2iα) cos(β) +

√
(2 cos2(β)− 4) exp(2iα) + cos2(β)(exp(4iα) + 1) + cos(β))

+ 2(exp(−iα))(exp(2iα) cos(β)−
√

(2 cos2(β)− 4) exp(2iα) + cos2(β)(exp(4iα) + 1) + cos(β)).
(4.17)

However, in order to find the density matrix of the qubit, q has to be integrated out again. Unfortu-
nately, this is not possible analytically, since β depends on q. Similar to subsection 3.3.3, it is possible
when σ → 0, which results in 1√

πσ
exp(− (q−q0)

2

σ ) → δ(q − q0). The integral is then easy to solve and
results in the following density matrix:

ρ(ntev + ntm) =
1

2

(
(U ′

n,00 + U ′
n,01)(U

′∗
n,00 + U ′∗

n,01) (U ′
n,00 + U ′

n,01)(U
′∗
n,10 + U ′∗

n,11)
(U ′

n,10 + U ′
n,11)(U

′∗
n,00 + U ′∗

n,01) (U ′
n,10 + U ′

n,11)(U
′∗
n,10 + U ′∗

n,11)

)
(4.18)

where ·′ implies that β should be replaced by β′ ≡ 1
ℏgq0tm. Note that this formula only holds for discrete

time steps; the method to find the density matrix at any time has been explained on page 16 of the report
of Kramers [8].

In order to visualise these equations, graphs of the expectation values of the Pauli spin matrices
⟨σx⟩, ⟨σy⟩ and ⟨σz⟩ over time are provided using equation 3.4. These graphs can be made for any
value of α and β′ which are proportional to respectively tev and tm (as stated in equation 4.2). Figure
4.1 contains these graphs for a few cases of equal α and β′; in particular, the cases for π

20 and π
50 have

been illustrated.

(a) α = β′ = π/20. (b) α = β′ = π/50.

Figure 4.1: Graphs of the expectation values of the Pauli spin matrices ⟨σx⟩ (cyan), ⟨σy⟩ (red) and ⟨σz⟩ (green) over time for
different cases of equal α ≡ 1

ℏBtev and β′ ≡ 1
ℏgq0tm. The horizontal axis contains the time steps n such that the total time

t = ntev + ntm where tev is the duration of the qubit experiencing free evolution which is continued by a time period of tm
where weak measurements are being performed on the qubit. The cases that are being considered here are when α and β′

take on the values of (a) π
20

and (b) π
50

.

As the time steps become smaller, the graphs look more like continuous functions. This makes
sense since, over time, the expectation values are computed more often. All these graphs also show
a clear oscillatory behaviour for any time step.

Besides the cases for equal α and β′, another interesting case would be when tm << tev or tev <<
tm. A few of these cases have been illustrated in figure 4.2 to show these effects.
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(a) α = π/5; β′ = π/100. (b) α = π/100; β′ = π/5.

Figure 4.2: Graphs of the expectation values of the Pauli spin matrices ⟨σx⟩ (cyan), ⟨σy⟩ (red) and ⟨σz⟩ (green) over time for
different cases of α ≡ 1

ℏBtev and β′ ≡ 1
ℏgq0tm where tm << tev or tev << tm. The horizontal axis contains the time steps n

such that the total time t = ntev + ntm where tev is the duration of the qubit experiencing free evolution which is continued by
a time period of tm where weak measurements are being performed on the qubit. The cases that are being considered here

are (a) α = π
5
; β′ = π

100
and (b) α = π

100
; β′ = π

5
.

The subfigures 4.2a and 4.2b show the effects of a small perturbation of respectively weak mea-
surements and free evolution since the difference between α and β′ is very large. These graphs can
be compared to the cases of only free evolution or only weak measurements. When only free evolution
is being applied, the graph looks almost the same as in subfigure 4.2a, but then ⟨σz⟩ = 0. Furthermore,
the graph corresponding to only weak measurements is very similar to the graph from subfigure 4.2b,
but then ⟨σx⟩ = 1 and ⟨σy⟩ = ⟨σz⟩ = 0.

4.2. Results of a series of measurements during free evolution al-
ternated with only free evolution

For the second part, a qubit is considered which also experiences free evolution while being measured.
The time steps are again defined as tev + tm where tev is the duration of the only qubit evolving under
the effect of the Hamiltonian H0 = Bσz and tm is the duration of the qubit being measured while
experiencing free evolution; this process is described by the HamiltonianH = H0+Hint = Bσz+gqσx.
The time steps always start with only free evolution and thereafter the measurement takes place while
the free evolution continues. This results in the following time-evolution operator:

U(tev + tm) = exp(− i

ℏ

∫ tev+tm

tev

Hdt) exp(− i

ℏ

∫ tev

0

H0dt)

=

(
cos(γ)− iBξ sin(γ) −igqξ sin(γ)

−igqξ sin(γ) cos(γ) + iBξ sin(γ)

)(
exp(−iα) 0

0 exp(iα)

)
=

(
exp(−iα)(cos(γ)− iBξ sin(γ)) −igqξ exp(iα) sin(γ)

−igqξ exp(−iα) sin(γ) exp(iα)(cos(γ) + iBξ sin(γ))

) (4.19)

where equations 3.14 and 3.23 and the following substitutions have been used:

α ≡ 1

ℏ
Btev, γ ≡ 1

ℏ
tm
√
B2 + g2q2, ξ ≡ 1√

B2 + g2q2
. (4.20)

Assuming the initial state |Φ(0)⟩ = ϕ(0)|ψ(0)⟩ with ϕ(0) given as in equation 3.16 and |ψ(0)⟩ = |0⟩ =
1√
2

(
1
1

)
and using the same method as in the previous section, the total density matrix for general

discrete times ntev + ntm ∀n ∈ N can be found using equation 4.4. To this end, it is necessary to
find the elements of the matrix Un =

( Un,00 Un,01

Un,10 Un,11

)
using equation 2.7, hence the eigenvalues of the

time-evolution operator are required which can be computed since it is a 2× 2 matrix:

λ± =
1

2
((−iBξ sin(γ)±

√
D + cos(γ)) exp(−iα) + exp(iα)(cos(γ) + iBξ sin(γ))) (4.21)
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where

D =((4g2q2ξ2 + 2B2ξ2 − 2) cos2(γ)− 2ξ2(2g2q2 +B2)) exp(2iα) + ((B2ξ2 + 1) cos2(γ)
+ 2 iB cos(γ) sin(γ)ξ −B2ξ2) exp(4iα) + (B2ξ2 + 1) cos2(γ)− 2 iB cos(γ) sin(γ)ξ −B2ξ2.

(4.22)
This leads to the calculation of the elements of Un:

Un,00 =
λn+ − λn−
λ+ − λ−

exp(−iα)(cos(γ)− iBξ sin(γ))− λ+λ−
λn−1
+ − λn−1

−
λ+ − λ−

=
Un,001

2
√
D

(4.23)

Un,01 =
λn+ − λn−
λ+ − λ−

(−igqξ exp(iα) sin(γ)) = Un,011√
D

(4.24)

Un,10 =
λn+ − λn−
λ+ − λ−

(−igqξ exp(−iα) sin(γ)) = Un,101√
D

(4.25)

Un,11 =
λn+ − λn−
λ+ − λ−

exp(iα)(cos(γ) + iBξ sin(γ))− λ+λ−
λn−1
+ − λn−1

−
λ+ − λ−

=
Un,111

2
√
D

(4.26)

Un,001 =(2−n
√
D + cos(γ)(exp(2iα)− 1)2−n + i(exp(2iα) + 1) sin(γ)ξB2−n)((−

√
D + (cos(γ)

+ iBξ sin(γ)) exp(2iα)− iBξ sin(γ) + cos(γ)) exp(−iα))n − (−2−n
√
D + cos(γ)(exp(2iα)

− 1)2−n + i(exp(2iα) + 1) sin(γ)ξB2−n)((
√
D + (cos(γ) + iBξ sin(γ)) exp(2iα)− iBξ sin(γ)

+ cos(γ)) exp(−iα))n
(4.27)

Un,011 =igqξ exp(2iα)2−n(−((
√
D + (cos(γ) +Bξ sin(γ)i) exp(2iα)− iBξ sin(γ) + cos(γ)) exp(−iα))n

+ ((−
√
D + (cos(γ) +Bξ sin(γ)i) exp(2iα)− iBξ sin(γ) + cos(γ)) exp(−iα))n) sin(γ)

(4.28)
Un,101 =igqξ2−n(−((

√
D + (cos(γ) +Bξ sin(γ)i) exp(2iα)− iBξ sin(γ) + cos(γ)) exp(−iα))n + ((−

√
D

+ (cos(γ) +Bξ sin(γ)i) exp(2iα)− iBξ sin(γ) + cos(γ)) exp(−iα))n) sin(γ)
(4.29)

Un,111 =− (−2−n
√
D + cos(γ)(exp(2iα)− 1)2−n + (exp(2iα) + 1) sin(γ)ξB2−ni)((−

√
D + (cos(γ)

+Bξ sin(γ)i) exp(2iα)− iBξ sin(γ) + cos(γ)) exp(−iα))n − (2−n
√
D + cos(γ)(exp(2iα)

− 1)2−n + (exp(2iα) + 1) sin(γ)ξB2−ni)((
√
D + (cos(γ) +Bξ sin(γ)i) exp(2iα)− iBξ sin(γ)

+ cos(γ)) exp(−iα))n
(4.30)

Again, q has to be integrated out in order to find the density matrix of the qubit at time ntev + ntm,
which is once again only possible when σ → 0. The density matrix of the qubit at time ntev + ntm then
becomes

ρ(ntev + ntm) =
1

2

(
(U ′

n,00 + U ′
n,01)(U

′∗
n,00 + U ′∗

n,01) (U ′
n,00 + U ′

n,01)(U
′∗
n,10 + U ′∗

n,11)
(U ′

n,10 + U ′
n,11)(U

′∗
n,00 + U ′∗

n,01) (U ′
n,10 + U ′

n,11)(U
′∗
n,10 + U ′∗

n,11)

)
(4.31)

where ·′ implies that γ should be replaced by γ′, ξ should be replaced by ξ′ and D should be replaced
by D′; these accents indicate that every q in these formulas is replaced by q0. Note that this formula
only holds for discrete time steps; the method to find the density matrix at any time is explained on
page 26 of the report of Kramers [8].

Similar to the previous section, graphs will be provided of the expectation values of the Pauli spin
matrices ⟨σx⟩, ⟨σy⟩ and ⟨σz⟩ over time using equation 3.4. As it does not matter what value the constants
B, g and q0 take, these are all chosen to be 1, from which it follows that ξ′ = 1√

2
. Figure 4.3 contains

the graphs for the cases where α and γ′ are both equal to π
20 and π

50 .
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(a) α = γ′ = π/20. (b) α = γ′ = π/50.

Figure 4.3: Graphs of the expectation values of the Pauli spin matrices ⟨σx⟩ (cyan), ⟨σy⟩ (red) and ⟨σz⟩ (green) over time for
different cases of equal α ≡ 1

ℏBtev and γ′ ≡ 1
ℏ tm

√
B2 + g2q2. The horizontal axis contains the time steps n such that the

total time t = ntev + ntm where tev is the duration of the qubit experiencing free evolution which is continued by a time period
of tm where weak measurements are being performed on the qubit while the qubit is experiencing free evolution. The cases

that are being considered here are when α and γ′ take on the values of (a) π
20

and (b) π
50

.

Furthermore, the cases tm << tev and tev << tm will be analysed again. Some examples of these
situations are illustrated in figure 4.4.

(a) α = π/5; γ′ = π/100. (b) α = π/100; γ′ = π/5.

Figure 4.4: Graphs of the expectation values of the Pauli spin matrices ⟨σx⟩ (cyan), ⟨σy⟩ (red) and ⟨σz⟩ (green) over time for
different cases of α ≡ 1

ℏBtev and γ′ ≡ 1
ℏ tm

√
B2 + g2q2 where tm << tev or tev << tm. The horizontal axis contains the

time steps n such that the total time t = ntev + ntm where tev is the duration of the qubit experiencing free evolution which is
continued by a time period of tm where weak measurements are being performed on the qubit while the qubit is experiencing

free evolution. The cases that are being considered here are (a) α = π
5
; γ′ = π

100
and (b) α = π

100
; γ′ = π

5
.

These graphs show very similar behaviour to the graphs from the previous subsection. The only
difference this time is that subfigure 4.4b is still very hectic in comparison with subfigure 4.2b. This
makes sense since both subfigure 4.2a and 4.4a almost neglect the part where weak measurements
are being performed. This results in both graphs being very similar to the case of only free evolution.
On the other hand, both subfigure 4.2b and 4.4b almost neglect the part where only free evolution takes
place. In the previous section, this results in weakmeasurements dominating the experiment. However,
in this section, this results in weak measurements during free evolution dominating the experiment,
which explains the difference.



5
Density matrices of open quantum

systems
In this chapter, the outcomes of the calculations on open quantum systems with one continuous Hamil-
tonian will be provided, aiming to answer the research question as stated in the introduction. Multiple
graphs of ⟨σx⟩, ⟨σy⟩ and ⟨σz⟩ in different situations are also provided as a visual interpretation of the
results.

When considering open quantum systems, finding an exact solution for the density matrix is often
not possible, which necessitates the use of numerical methods to solve the system dynamics. The
Python library QuTiP [6] is used to solve these processes using the Lindbladian and the results of the
different situations will be compared with section 3.3, where the corresponding closed systems have
been discussed.

When using QuTiP, only 2 inputs are necessary. The first one is the Hamiltonian that describes
the qubit alone (the first term in equation 3.28), which determines the first term in the Lindbladian. If
there was no environment, i.e. gi = 0, the Lindbladian would reduce to the von Neumann equation
which describes the evolution of the density matrix in a closed quantum system. Secondly, a list of
the collapse operators Ci is necessary, defined as Ci =

√
giLi. These operators fully describe the

interaction of the system of interest with the environment. Using the spin-boson model, the Lindblad
operators are equal to the Pauli spin matrix σz. As mentioned in subsection 3.4.3, the spin-boson model
actually allows an exact calculation of the density matrix using the Lindbladian, but here QuTiP will be
used to demonstrate how the density matrix can be found numerically when the used model has no
exact solution. The used Python code can be found in appendix B.

5.1. Results of a Hamiltonian of the form H = aσz where a ̸= 0
First, consider the case where the system Hamiltonian is in the formH = aσz where a ̸= 0. Solving the
corresponding Lindblad equations from equation 3.33 yields the graphs presented in figure 5.1 on the
next page. In these graphs, it can be seen that ⟨σz⟩ = 0 for all times and ⟨σx⟩ and ⟨σy⟩ show oscillatory
behaviour, but converge to 0 when g > 0. The value for a is chosen to be 1, which does not change the
result since a only determines the frequency of the oscillations.

5.2. Results of a Hamiltonian of the form H = bσx where b ̸= 0
Next, consider the case where the system Hamiltonian is in the form H = bσx where b ̸= 0. Solving
the corresponding Lindblad equations yields the graphs presented in figure 5.2 on the next page. In
these graphs, it can be seen that ⟨σy⟩ = ⟨σz⟩ = 0 for all times and ⟨σx⟩ = 1 for all times when g = 0,
but decays to 0 when g > 0. The value for b is chosen to be 1, which does not change the result since
the graph does not change for different values of b.
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(a) g = 0. (b) g = 0.01.

(c) g = 0.1. (d) g = 0.5.

Figure 5.1: Graphs of the expectation values of the Pauli spin matrices ⟨σx⟩ (red), ⟨σy⟩ (blue) and ⟨σz⟩ (green) over time for
different values of the interaction strength g in an open quantum system (only the first graph corresponds to a closed quantum
system). The system is solved using the Lindblad equation with system Hamiltonian H = σz and collapse operator √gσz . The

cases that are being considered here are (a) g = 0, (b) g = 0.01, (c) g = 0.1 and (d) g = 0.5.

(a) g = 0. (b) g = 0.01.

(c) g = 0.1. (d) g = 0.5.

Figure 5.2: Graphs of the expectation values of the Pauli spin matrices ⟨σx⟩ (red), ⟨σy⟩ (blue) and ⟨σz⟩ (green) over time for
different values of the interaction strength g in an open quantum system (only the first graph corresponds to a closed quantum
system). The system is solved using the Lindblad equation with system Hamiltonian H = σx and collapse operator √gσz . The

cases that are being considered here are (a) g = 0, (b) g = 0.01, (c) g = 0.1 and (d) g = 0.5.

There is a clear difference between these two sections. Figure 5.1 shows a oscillatory behaviour
while figure 5.2 shows a very simple behaviour. However, this is as expected since the spin matrices σx
and σz have different effects on the qubit and this is also in accordance with the theory from subsections
3.3.1 and 3.3.2.
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5.3. Results of a Hamiltonian of the form H = aσz + bσx where
a, b ̸= 0

Finally, consider the case where the system Hamiltonian is in the form H = aσz + bσx where a, b ̸= 0.
Solving the corresponding Lindblad equations yields the graphs presented in figure 5.3.

(a) g = 0. (b) g = 0.01.

(c) g = 0.1. (d) g = 0.5.

Figure 5.3: Graphs of the expectation values of the Pauli spin matrices ⟨σx⟩ (red), ⟨σy⟩ (blue) and ⟨σz⟩ (green) over time for
different values of the interaction strength g in an open quantum system (only the first graph corresponds to a closed quantum
system). The system is solved using the Lindblad equation with system Hamiltonian H = σz + σx and collapse operator √gσz .

The cases that are being considered here are (a) g = 0, (b) g = 0.01, (c) g = 0.1 and (d) g = 0.5.

In these graphs, it can be seen that all expectation values show oscillatory behaviour and decay to
0 when g > 0. The values for a and b are chosen to be 1; changing these values can change the
amplitude, frequency and position of the oscillations, but it does not change the process.

The graphs in these sections corresponding to g = 0, should be exactly the same as when ⟨σx⟩,
⟨σy⟩ and ⟨σz⟩ are computed using equation 3.4 and the density matrices from subsections 3.3.1, 3.3.2
and 3.3.3.

5.4. Deriving a density matrix from ⟨σx⟩, ⟨σy⟩ and ⟨σz⟩
In the last three sections, the focus was on finding the graphs for ⟨σx⟩, ⟨σy⟩ and ⟨σz⟩, but one question
remains: how can one find the density matrix of such a system? Writing ρ =

( ρ00 ρ01
ρ10 ρ11

)
and using

equations 3.3 and 3.4 for the spin matrices, a system of 4 equations can be found:

ρ00 + ρ11 = 1 (5.1)

ρ01 + ρ10 = ⟨σx⟩ (5.2)

i(ρ01 − ρ10) = ⟨σy⟩ (5.3)

ρ00 − ρ11 = ⟨σz⟩ (5.4)

which can be solved:

ρ =

(
1+⟨σz⟩

2
⟨σx⟩−i⟨σy⟩

2
⟨σx⟩+i⟨σy⟩

2
1−⟨σz⟩

2

)
. (5.5)

This shows that the density matrix of the system can be computed when the formulas for ⟨σx⟩, ⟨σy⟩ and
⟨σz⟩ are known (which can be determined from the graphs).



6
Discussion

This chapter will provide a critical reflection on the obtained results and will elaborate on their signifi-
cance.

In the case of closed quantum systems, the total density matrices of the system (the qubit and the
detector) were found succesfully, but when it was required to integrate over q, the problem arises that
this is not possible analytically. Evaluating the density matrix of the qubit was therefore only possible in
the specific case σ → 0 which narrows down the applicability of these results. Solving these integrals
in general will require the use of numerical methods.

Looking into the figures for equal time steps, it is clear that the expectation values of the Pauli
spin matrices look more like sinusoids for smaller time scales; this is as expected, since the values are
evaluated more quickly after another. Besides the chosen values of π

5 ,
π
10 ,

π
20 and π

50 , one can of course
choose any value, but the behaviour that the graphs show will remain the same. For the graphs where
tm << tev or tev << tm, it is expected that those are very similar to respectively tm = 0 and tev = 0
which is also verified.

Next, in the case of open quantum systems, one should be more careful when validating the results.
Since the Lindblad equation and a model for the environment are used, a lot of approximations and
assumptions have been made. Especially the first assumption for the Lindblad equation is restricting:
it assumes that the interaction is ’weak’ and that the environment is ’much larger’ than the system of
interest. Unfortunately, there is no useful quantitative description of these assumptions, which makes
it harder to validate results. Analysing for example the graphs in chapter 5 for the cases g = 0.5, it
is clear that the interaction is already much stronger compared to the other cases. This implies the
possibility that it is actually not correct to use the Lindblad equation here, which limits the applicability
of this method, since it only works for values of g under a certain unknown threshold. Only the case
g = 0 (which is equivalent to a closed system since there is no interaction) is definitely correct and can
be compared with the equations presented in chapter 3.
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7
Conclusion

The aim of this thesis was to find the density matrix of a single qubit in closed and open quantum
systems. In the case of a closed system, a sequence of two alternating processes corresponding to
different Hamiltonians is considered where both processes take a fixed amount of time. In the case of
open systems, where dissipation is taken into account, only one continuous process is considered with
a fixed Hamiltonian.

The difficulty in the case of closed systems was mainly due to massive calculations, but this was
solved by using a formula for a 2 × 2 matrix with 2 distinct eigenvalues raised to the power n for any
n ∈ N. This allowed for the computation of the density matrix in the case of any sequence of alternating
processes at discrete time steps. Since these equations are very long, they are not reproduced here.

On the other hand, it is not even possible to solve open systems analytically due to the complexity of
these calculations. Open quantum systems can be described by the Lindblad master equation, which
can be solved numerically. However, this does require a model to describe the environment. Here, the
spin-boson model has been used, which models the environment as a bath of bosons which behave
like harmonic oscillators. Using this model, it is possible to solve open systems numerically, which
resulted in graphs of the expectation values of the Pauli spin matrices. Combining these results with
the fact that Tr(ρ) = 1, resulted in a method to find the density matrix of the qubit.

Reviewing the results and the course of the research, some improvements will be suggested for
follow-up research. Starting with the case of closed quantum systems, there have been multiple inte-
grals which could only be solved analytically in a specific case; to gain more insights in these integrals
for more general cases, one would need to use a numerical method to solve these. Furthermore, it
could be an interesting attempt to solve even more difficult systems; consider for example alternating
processes with different time periods for every time step.

In the case of open quantum systems, there are many possibilities for follow-up research. Starting
with the Lindblad master equation, which depends on multiple assumptions and approximations, it
could be interesting to work out the equation for systems where not all of those assumptions and
approximations are viable. On the other hand, one can also attempt to solve an open quantum system
without using the Lindblad equation. Furthermore, the spin-boson model is not the only model that is
used to model dissipation; another commonly used model is the Caldeira-Leggett model, where the
environment is modeled as an infinite sum of harmonic oscillators. Lastly, instead of only energy loss
from the system to the environment, one can also take into account energy flowing from the environment
to the system, making the system even more complex and allowing the introduction of new models.

Finally, the first assumption of the Lindblad equation which says that the interaction should be ’weak’
needs a more quantitative description. This would facilitate determining whether a certain interaction
strength allows the use of the Lindblad equation to determine the density matrix.
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A
The proof of equation 2.7

Theorem. Let A be a 2 by 2 matrix with distinct eigenvalues λ− and λ+ and. Then, ∀n ∈ N, the formula
for An is given by:

An =
λn+ − λn−
λ+ − λ−

A− λ+λ−
λn−1
+ − λn−1

−
λ+ − λ−

I (A.1)

with I the 2 by 2 identity matrix.

Proof [10]. First, it’s necessary to write A2 as a linear combination of A and I; to this end, write
A =

(
a b
c d

)
, then:

A2 =

(
a2 + bc ab+ db
ac+ dc d2 + bc

)
=

(
a2 + ad− ad+ bc ab+ db

ac+ dc d2 + ad− ad+ bc

)
=

(
(a+ d)a (a+ d)b
(a+ d)c (a+ d)d

)
−
(
ad− bc 0

0 ad− bc

)
= (a+ d)A− (ad− bc)I

(A.2)

Next up, the eigenvalues of A can be found by solving

Det(A− λI) = (a− λ)(d− λ)− bc = 0 (A.3)

Solving this yields the following eigenvalues:

λ± =
a+ d±

√
(a+ d)2 − 4(ad− bc)

2
(A.4)

Now it can be noted that a+ d = λ± + λ∓ and ad− bc = λ±λ∓ and this leads to the formula for A2:

A2 = (λ± + λ∓)A− λ±λ∓I (A.5)

For the rest of the proof, a new matrix will be defined:

B± ≡ ∓(A− λ±I) (A.6)

and then it is clear that

λ∓B± + λ±B∓ = (±λ± ∓ λ∓)A ⇐⇒ A =
λ∓B± + λ±B∓

±λ± ∓ λ∓
=

λ−
λ+ − λ−

B+ +
λ+

λ+ − λ−
B− (A.7)

In the next two steps, the formula for A2 from equation A.5 will be used to compute B±B± and B±B∓:

B±B± = (∓(A− λ±I))(∓(A− λ±I)) = A2 − 2λ±A+ λ2±I

= (λ± + λ∓)A− λ±λ∓I − 2λ±A+ λ2±I

= (λ∓ − λ±)A− (λ±λ∓ − λ2±)I = (λ∓ − λ±)(A− λ±I)

= ∓(λ∓ − λ±)(∓(A− λ±I)) = (λ+ − λ−)B±

B±B∓ = (∓(A− λ±I))(±(A− λ∓I)) = −(A2 − (λ± + λ∓)A+ λ±λ∓I)

= −((λ± + λ∓)A− λ±λ∓I − (λ± + λ∓)A+ λ±λ∓I) = 0

(A.8)
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Appendix A. The proof of equation 2.7 25

Subsequently, as B±B± = (λ+ − λ−)B±, it can be shown using induction that, ∀n ∈ N, the following
holds:

Bn
± = (λ+ − λ−)

n−1B± (A.9)

Furthermore, since B±B∓ = 0, equation A.7 can be raised to the power n ∀n ∈ N:

A =
λn−

(λ+ − λ−)n
Bn

+ +
λn+

(λ+ − λ−)n
Bn

− (A.10)

It is clear that equation A.9 can be applied to equation A.10 to yield the following result:

A =
λn−

λ+ − λ−
B+ +

λn+
λ+ − λ−

B− (A.11)

Then finally, B+ = −(A − λ+I) and B− = A − λ−I can be substituted back into equation A.11 to end
up with the desired result:

A =
λn−

λ+ − λ−
(−A+ λ+I) +

λn+
λ+ − λ−

(A− λ−I)

=
λn+ − λn−
λ+ − λ−

A− λ+λ−
λn−1
+ − λn−1

−
λ+ − λ−

I

(A.12)

□



B
Python code

B.1. Closed quantum systems
The Python code below has been used to plot the expectation values of the spin operators over time for
closed quantum systems as described in chapter 4. The values of a and b can be changed depending
on the time steps. All constants are chosen to be 1.

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 a = np.pi/5
5 b = np.pi/5
6 K1 = 1/2*np.exp(-1j*a)*(np.exp(2j*a)*np.cos(b) + np.sqrt(np.cos(b)**2*(1 + np.exp(2j*a))**2 -

4*np.exp(2j*a)) + np.cos(b))
7 L1 = 1/2*np.exp(-1j*a)*(np.exp(2j*a)*np.cos(b) - np.sqrt(np.cos(b)**2*(1 + np.exp(2j*a))**2 -

4*np.exp(2j*a)) + np.cos(b))
8

9 n_vals = np.arange(0,31,1)
10 x_vals = np.array([])
11 y_vals = np.array([])
12 z_vals = np.array([])
13

14 for n in range(len(n_vals)):
15 U_n01 = (K1**n - L1**n)/(K1 - L1)*-1j*np.exp(a*1j)*np.sin(b)
16 U_n10 = (K1**n - L1**n)/(K1 - L1)*-1j*np.exp(-a*1j)*np.sin(b)
17 U_n00 = (K1**n - L1**n)*np.exp(-1j*a)*np.cos(b)/(K1 - L1) - K1*L1*(K1**(n - 1) - L1**(n -

1))/(K1 - L1)
18 U_n11 = (K1**n - L1**n)*np.exp(a*1j)*np.cos(b)/(K1 - L1) - K1*L1*(K1**(n - 1) - L1**(n -

1))/(K1 - L1)
19 rho11 = 1/2*(U_n00 + U_n01)*np.conj(U_n00 + U_n01)
20 rho12 = 1/2*(U_n00 + U_n01)*np.conj(U_n10 + U_n11)
21 rho21 = 1/2*(U_n10 + U_n11)*np.conj(U_n00 + U_n01)
22 rho22 = 1/2*(U_n10 + U_n11)*np.conj(U_n10 + U_n11)
23 sigmax = rho12 + rho21
24 sigmay = (rho12 - rho21)*1j
25 sigmaz = rho11 - rho22
26 x_vals = np.append(x_vals, sigmax)
27 y_vals = np.append(y_vals, sigmay)
28 z_vals = np.append(z_vals, sigmaz)
29

30 plt.figure(figsize = (14,6))
31 plt.plot(n_vals, x_vals, 'D', c='cyan')
32 plt.plot(n_vals, y_vals, 's', c='r')
33 plt.plot(n_vals, z_vals, 'o', c='g')
34 plt.xlabel("n", fontsize=18)
35 plt.ylabel("Expectation value", fontsize=18)
36 plt.xlim(n_vals[0], n_vals[-1])
37 plt.legend((r"$\langle \sigma_x \rangle $", r"$\langle \sigma_y \rangle $", r"$\langle \

sigma_z \rangle $"))
38 plt.grid()
39 plt.show()

26
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40

41 B = 1
42 q_0 = 1
43 g = 1
44 d = 1/np.sqrt(B**2+g**2*q_0**2)
45 E = ((4*d**2*g**2*q_0**2 + 2*B**2*d**2 - 2)*(np.cos(b))**2 - 2*d**2*(2*g**2*q_0**2 + B**2))*

np.exp(2j*a) + ((B**2*d**2 + 1)*(np.cos(b))**2 + 2j*B*np.cos(b)*np.sin(b)*d - B**2*d**2)*
np.exp(4j*a) + (B**2*d**2 + 1)*(np.cos(b))**2 - 2j*B*np.cos(b)*np.sin(b)*d - B**2*d**2

46 K1 = ((-B*d*np.sin(b)*1j + np.sqrt(E) + np.cos(b))*np.exp(-1j*a))/2 + np.exp(1j*a)*(np.cos(b)
+ B*d*np.sin(b)*1j)/2

47 L1 = ((-B*d*np.sin(b)*1j - np.sqrt(E) + np.cos(b))*np.exp(-1j*a))/2 + np.exp(1j*a)*(np.cos(b)
+ B*d*np.sin(b)*1j)/2

48

49 n_vals = np.arange(0,31,1)
50 x_vals = np.array([])
51 y_vals = np.array([])
52 z_vals = np.array([])
53

54 for n in range(len(n_vals)):
55 U_n01 = (K1**n - L1**n)/(K1 - L1)*-1j*g*q_0*d*np.exp(a*1j)*np.sin(b)
56 U_n10 = (K1**n - L1**n)/(K1 - L1)*-1j*g*q_0*d*np.exp(-a*1j)*np.sin(b)
57 U_n00 = (K1**n - L1**n)*np.exp(-1j*a)*(np.cos(b)-1j*B*d*np.sin(b))/(K1 - L1) - K1*L1*(K1

**(n - 1) - L1**(n - 1))/(K1 - L1)
58 U_n11 = (K1**n - L1**n)*np.exp(1j*a)*(np.cos(b)+1j*B*d*np.sin(b))/(K1 - L1) - K1*L1*(K1

**(n - 1) - L1**(n - 1))/(K1 - L1)
59 rho11 = 1/2*(U_n00 + U_n01)*np.conj(U_n00 + U_n01)
60 rho12 = 1/2*(U_n00 + U_n01)*np.conj(U_n10 + U_n11)
61 rho21 = 1/2*(U_n10 + U_n11)*np.conj(U_n00 + U_n01)
62 rho22 = 1/2*(U_n10 + U_n11)*np.conj(U_n10 + U_n11)
63 sigmax = rho12 + rho21
64 sigmay = (rho12 - rho21)*1j
65 sigmaz = rho11 - rho22
66 x_vals = np.append(x_vals, sigmax)
67 y_vals = np.append(y_vals, sigmay)
68 z_vals = np.append(z_vals, sigmaz)
69

70 plt.figure(figsize = (14,6))
71 plt.plot(n_vals, x_vals, 'D', c='cyan')
72 plt.plot(n_vals, y_vals, 's', c='r')
73 plt.plot(n_vals, z_vals, 'o', c='g')
74 plt.xlabel("n", fontsize=18)
75 plt.ylabel("Expectation value", fontsize=18)
76 plt.xlim(n_vals[0], n_vals[-1])
77 plt.legend((r"$\langle \sigma_x \rangle $", r"$\langle \sigma_y \rangle $", r"$\langle \

sigma_z \rangle $"))
78 plt.grid()
79 plt.show()

B.2. Open quantum systems
The Python code below has been used to plot the expectation values of the spin operators over time for
open quantum systems as described in chapter 5 [6]. The values of a and b can be changed depending
on the desired hamiltonian defined in line 7. Furthermore, the value of g determines the strength of the
coupling to the environment where g = 0 describes a closed quantum system.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from qutip import *
4

5 def qubit_integrate(a, b, g):
6

7 H = a * sigmaz() + b * sigmax() #system hamiltonian
8

9 c_ops = [np.sqrt(g) * (sigmaz())] #collapse operators
10

11 e_ops = [sigmax(), sigmay(), sigmaz()]
12

13 output = mesolve(H, psi0, tlist, c_ops, e_ops)
14



Appendix B. Python code 28

15 return output.expect[0], output.expect[1], output.expect[2]
16

17 a = 1
18 b = 1
19 g = 0.1
20

21 psi0 = (basis(2,0)+basis(2,1)).unit() #intial state
22

23 tlist = np.linspace(0,15,200)
24

25 sx1, sy1, sz1 = qubit_integrate(a, b, g)
26

27 fig, ax = plt.subplots(figsize=(12,6))
28 ax.plot(tlist, np.real(sx1), 'r')
29 ax.plot(tlist, np.real(sy1), 'b')
30 ax.plot(tlist, np.real(sz1), 'g')
31 #plt.axhline(np.real(sx1[-1]), linestyle='dashed')
32 ax.set_xlim(tlist[0], tlist[-1])
33 ax.grid()
34 ax.legend((r"$\langle S_x \rangle $", r"$\langle S_y \rangle $", r"$\langle S_z \rangle $"))
35 ax.set_xlabel('Time')
36 ax.set_ylabel('Expectation value');
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