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THE LAPLACIAN MATRIX OF WEIGHTED THRESHOLD GRAPHS*

YINGYUE KEt, WILLEM H. HAEMERS!, AND PIET VAN MIEGHEMT

Abstract. Threshold graphs are generated from one node by repeatedly adding a node that links to all existing nodes
or adding a node without links. In the weighted threshold graph, we add a new node in step ¢, which is linked to all existing
nodes by a link of weight w;. In this work, we consider the set .Ax that contains all Laplacian matrices of weighted threshold
graphs of order N. We show that Ay forms a commutative algebra. Using this, we find a common basis of eigenvectors for the
matrices in Ap. It follows that the eigenvalues of each matrix in Ay can be represented as a linear transformation of the link
weights. In addition, we prove that, if there are just three or fewer different weights, two weighted threshold graphs with the
same Laplacian spectrum must be isomorphic.

Key words. Threshold graphs, Laplacian matrix, Commutative algebra, Cospectral graphs.
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1. Introduction. The adjacency matrix A of an unweighted graph G with nodes {1,..., N} is a matrix
N x N with elements a;;, where a;; = 1 if there is a link between node ¢ and node j, otherwise a;; = 0.
We use notation and notions from [1]. In a weighted graph, each link {7, j} is assigned a weight a;; € R,
which can be an arbitrary real value, including both positive and negative numbers. We identify a non-link
with a weight-zero link. Then the elements of the (weighted) adjacency matrix A are the link weights a;;.
The Laplacian matrix of a (weighted) graph is defined by @ = A — A, where A = diag(di,ds, ...,dn) and
d; = Z;vzl a;; is the (weighted) degree of node i. The Laplacian matrix necessarily has a zero eigenvalue
because its row sum is zero.

A threshold graph is a graph obtained from one node by repeatedly adding an isolated node or a
dominant node, where an isolated node is not connected to any other node in a graph and a dominant node
is a node that links to all other nodes in a graph. The concept of threshold graphs is introduced in [2].
A comprehensive review of threshold graphs is provided in [3]. Formulas for the Laplacian spectrum and
the number of spanning trees in a threshold graph are given in [4]. The application of threshold graphs in
building real-world networks is discussed in [5, 6, 7].

In the weighted threshold graph, we start with one node and add a new node in step ¢ (i = 2,...,N),
which is linked to all existing nodes by a link of weight w; € R. We label the nodes as 1,2, 3, ..., N according
to the order in which the nodes are added. Then, the N x N adjacency matrix A of a weighted threshold
graph equals

*Received by the editors on June 19, 2025. Accepted for publication on September 17, 2025. Handling Editor: Angeles
Carmona. Corresponding Author: Yingyue Ke.

TFaculty of Electrical Engineering, Mathematics and Computer Science, 2600 GA Delft, The Netherlands (y.y.ke@tudelft.nl,
P.F.A.VanMieghem@tudelft.nl).

ITilburg University, Tilburg, The Netherlands (haemers@tilburguniversity.edu).


mailto:y.y.ke@tudelft.nl
mailto:P.F.A.VanMieghem@tudelft.nl
mailto:haemers@tilburguniversity.edu

Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society I I

Volume 41, pp. 529-537, September 2025.

Y. Ke, W.H. Haemers, and P. Van Mieghem 530
i 0 wo ws wN_
Wao 0 w3 WN
w3 W3 0 wN
(1.1) A=
WN
_U}N wN WN te WN 0 1

The vector W = (wq,ws, ..., wy) determines the weighted threshold graph. We call W the weight vector
and write Gy for the corresponding weighted threshold graph.

The row sums of the adjacency matrix A in Eq. (1.1) give the degrees of the nodes in Gy, that is,

N
(1.2) di=(i— 1w+ Y wj, for1<i<N.
j=it1
The Laplacian matrix A — A of Gy is written as:
i dl 7w2 7w3 DY ... —wN—
_w2 d2 _w3 ... .. —wN
_wS _wS d3 e ... _wN
(1.3) Qw =
—wy
|—wy —wn —wy o —wy  dy |

Figure 2 illustrates the threshold graph Gy coded by weight vector W = (1,0, —v/2,0, 2) and its
Laplacian matrix Qu . The graph Gy is constructed by sequentially adding node 4, along with its associated
weight w; for 1 <4 <6 (see Fig. 1).

ey / e

1 1 3 1 3 1 3 5 1 3 5

FIGURE 1. Construction of Gy coded by weight vector W = (1,0, —+/2,0, 2). At each step, a node i (highlighted in red)
is added with links of weight w;, which connect it to all previous nodes j < i. Line colors represent link weights. Blue, orange,
and green lines have weights 1, —/2, and 2, respectively.

We define Ay to be the set of Laplacian matrices of weighted threshold graphs of order N. The main
purpose of this paper is to investigate the structure of Ay and the eigensystem of the matrices in Ay. In
Section 2, we establish that Ay constitutes a commutative algebra of dimension N — 1 and provide a basis.
In Section 3, we derive eigenvectors and eigenvalues for the matrices in Ay. In particular, we prove that the
spectrum of Qw € Apn can be written as a linear transformation of its weight vector W. In Section 4, we
show that, in case of at most three values for the weights, two weighted threshold graphs are isomorphic if
their Laplacian matrices are cospectral, that is, they have the same eigenvalues.
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0 [3-v2 -1 0 V2 0 -2
-1 3-v2 0 V2 0 -2
- 0 0 2-v2 V2 0 -2
W=lve e V2 2-3v2 0 -2
2 4 0 0 0 2 —2
/ 2 -2 -2 2 -2 10

1 3 )

FIGURE 2. The threshold graph Gy coded by weight vector W = (1,0, —/2,0, 2) and its Laplacian matriz Qw .

2. Structure of Ay.

2.1. A basis. Consider the threshold graph Gy, with N nodes and weight vector W; = (0,...,0,w; =
1,0,...,0), the corresponding Laplacian matrix Q; := Qw, is given by

-1 1<n<m=i orl<m<n=i,
1 1<m=n <1,

i1—1 m=n=z,

0 otherwise.

For any threshold graph Gy coded by W = (we,ws, ..., wy), its Laplacian matrix Qw can be repre-
sented by

N
(2.5) Qw = > wQi,
i=2

which shows that Ay = span{Qa2,...,Qn}. Clearly, the matrices Q2,...,Qn are independent, which
implies that {Q2,...,Qn} is a basis for Ay which is an (N — 1)-dimensional linear subspace of RV*N  the
vector space of real N x N matrices.

The Lapalcian matrix in Fig. 2 can be decomposed as:

1 -1 0 0 0 0 1 0 -1 0 0 0
o 000 0 0 Y1 200 0
_ 5 . — - —
RQ=20wQi=1x| o 60 00 0[|T9%| 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 00 0
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 -1 0 0 1 0 0 0 -1 0 1 0 0 0 0 -1
0 o0 1 -1 0 0 0 o 1 0 1o 0 o 1 0 0 1
—V2x |y ] 1 "3 ¢ o |*TOx 0 0 0 1 -1 ¢ [|*+Ix 0 0 0 1 0 -1
0 0 0 00 0 1 -1 -1 -1 4 0 0 0 0 0 1 -1
O 0 0 0 0 0 0 0 0 0 0 0 1 -1 -1 -1 -1 5

2.2. The algebra Apy. In this subsection, we establish that Ay is an (N —1)-dimensional commutative
subalgebra of RV*¥N We start with some properties of the matrices @Q; defined in Eq. (2.4).

LEMMA 2.1.

QiQ; =Q;Q; =Q; for 2<i<j<N.
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Proof. When i < j, every row (or column) of @; is orthogonal with every column (or row) of Q; — In.

Therefore Q;(Q; — In) = (Q; — In)Q; = O, and hence Q,;Q; = Q;Q; = Q;. 0
LEMMA 2.2.
P 1
(2.6) Qf:i”’lQi—isz for1<p, 2<i<N.
j=2

Proof. If p =1, then Eq. (2.6) is obvious. If p = 2, we have

1 1<m#n<i,
N 2 1<m=n<zq,
=3 Q) Q) =i —1) m=n=1,
= —1 1<n<m=iorl<m<n=r1,
0 otherwise.

For (iQ; — 23;12 Q;)mn, we find the same value. Therefore, Q? = iQ); — 23;12 Q.
Next, suppose that Eq. (2.6) holds. Using Lemma 2.1, we obtain

Q= Qrqi= Q- L ZQ] Q=i - ZQJ

i—1 1 _1 i—1
=i Q=) Q| - D@ ="Qi -
j=2 j=2

Thus, Eq. (2.6) holds for p > 3 by induction. d
Recall that Qw € Ay with weight vector W = (ws, ..., wy) can be written as:
N
(2.7) Qw = > wiQi.
i=2

Lemma 2.1 shows that any two matrices @; and @; commute, that is, Q;Q; = @;&;. Moreover,
Lemma 2.1 and 2.2 show that Q,;Q; € Ay for 2 <4, < N. Using Eq. (2.7), it follows that any two matrices
in Ay commute and that Ay is closed under multiplication. Thus, we have established that

THEOREM 2.3. Ay is an (N — 1)-dimensional commutative subalgebra of RV*N

Take Qw, Qw- € Ayn with weight vectors W = (wa, ..., wxn) and W' = (wh,...,wh). Then Qw+Qw' €
An with weight vector W + W’ and similarly aQw € Ax with weight vector aW for every a € R. Also,
the product QwQw: € Apn, but more work is required to obtain the weight vector of QwQw- from W
and W',
N N
PROPOSITION 2.4. QwQw' = Z iw;w; — Z (wjw) — wiw} — wyw) | Qs
i=2 j=it+1
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Proof. Using Lemma 2.1, we start from Eq. (2.7),

N
(2.8) QwQw = Zwlw Q7 + Z Z wiw + wjw w;) Q;.
=2 j=1+1
We invoke Lemma 2.2 and obtain
N N i—1
(2.9) Zwingz Zzw wiQ; — Z Z ww;Q;.
=2 1=2 j=2
Reversing the i and j sums in (2.9) yields
N -1 N-1 N N-1 N
210 Y IPIRTTIED S ST 3 SRS
i=2 j=2 J=2 i=j+1 i=2 j=i+1
Substituting (2.10) and (2.9) into (2.8) proves Proposition 2.4. |

3. An eigensystem. It is known that a set of mutually commuting symmetric matrices has a common
basis of eigenvectors [8]. In this section, we derive these common eigenvectors for the matrices in Ay. As a
result, the eigenvalues of each Qw € Ax can be obtained by a linear transformation of its weight vector W.
We have the following lemma on the eigenvalues and eigenvectors for each matrix @; defined in Eq. (2.4).

LEMMA 3.1. Let v1 be the all-one vector 1 and for 2 < j < N, we define the N x 1 vector v; as:

1 k<j,
(3.11) (vj)y=41-3 k=4,
0 k>j.
Then, {v1,--- ,vn} is an orthogonal bastis of eigenvectors for each Q;. The corresponding eigenvalues Q;v; =
(1i);v; are
1 2<5<4,
(3.12) (), =i 2<j=i,

0 7>to0rj=1.

and the characteristic polynomial is Po, (A) = (A —1)" "2 (A — i) AN =i+,

Proof. The vector Q;v; equals the all-zero vector. Any two distinct vectors from {vq,--- ,vy} are
orthogonal, that is, vlTvm = 0 for 1 < I,m < N. Next, we consider three cases depending on the
relationship between ¢ and j for each matrix @;.

Case 1: 2 < j <i. Each component (Q;v;),, of the vector Q;v; equals

J
(zmkvj Z zmkvg

1 k=1

{(Q1 mm U] m*(vj)m mé]a

Mz

(Qivj),, =

>
Il

Q)i (W) == () =0 m=1,

otherwise.
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Thus, we deduce Q;v; = v; for each vector v; with 2 < j < 4.
Case 2. 2 < j = i. Each component (Q;v;),, of the vector Q;v; equals

(lel) = Z i mk‘ vz

(Q;)mm(vi)m + (Qi)mi(vi)i =i = i(vi)m m <1,
= i (@) ()i + (Qi)is(v)i = i(1 — i) = i(v;); m =1,
0 m > 1.

which indicates Q;v; = iv; for the vector v;.
Case 3: j > i. Each component (Q;v;),, of the vector Q;v; can be written as (Q;v;), = Zfev:]_(Qi)mk('Uj)k =

Zzzl(Qi)mk(vj)k = ZZ:1(Qi)mk =>1-1(Qi) =0 for 1 <m < N. Consequently, we have Q;v; = Ov; for
each vector v; with j > i. ]

Now we compute the eigenvalues and eigenvectors of Qu € An.

THEOREM 3.2. Let Gy be a weighted threshold graph on N nodes with weight vector W = (wa, ..., wx).
The spectrum of the Laplacian Qw of Gw is {0, pa, ..., un} with

N
(3.13) i =iw; + Y w;.
j=i+1
This can be written in a matriz form as
(3.14) = (pa, ..., un)t =UWT,

where U is an (N — 1) x (N — 1) upper triangular matriz defined by

1 1<i<j<N-1,
(3.15) Uij: i+1 1<i=j53<N-1,
0 otherwise.
Proof. Let v; be a common eigenvector for QQa, ..., Qn defined in Lemma 3.1. Then
Qwvj = (Z w; Q; ) v; = jw,v; + Z wiv; = | jw; + Z Wk | vy,
1=j+1 k=j+1
for j =2,...,N. This proves Eq. (3.13), and Eq. (3.14) follows straightforwardly. |

For the graph coded by weight vector W = (1,0, —V2,0, 2) in Fig. 2, Theorem 3.2 directly gives

2 1 1 1 1 1 4—+/2
03 111 0 2-2
pF=uwT=10 04 11 V2 | =|2=-4/2 |,
000 5 1 0 2
0000 6 2 12

and the Laplacian spectrum is {0, 4 — /2, 2 — /2, 2 — 42, 2, 12}.
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Independently, Andeli¢ and Stanic [9] also found a closed formula for the Laplacian eigenvalues of
weighted threshold graphs. They define the weighted Ferrers diagram and then prove that the Laplacian
eigenvalues of weighted threshold graphs are associated with the column sums of the corresponding weighted
Ferrers diagrams. For more details, the readers are referred to their paper.

Theorem 3.2 indicates that weighted threshold graphs with integral weights have integral spectrum.
Since U is an upper triangular matrix with nonzero diagonal, U is invertible, and it is straightforward to

compute its inverse U1

- _1r _1 _ 1 _ 1

2 6 12 20 (N—1)N
1 _ 1 _ 1 _ 1

3 12 20 (N—D)N
11 1

-1 1 20 (N-1)N

= 1 1 )

5 T (N-1)N

!
L N i
and obtain (ws,...,wx)T = U (ua,...,un)T. As a result, we have the following corollary.
COROLLARY 3.3. For any given real vector p = (0, o, ..., un), there exists a weighted threshold graph

of order N, whose Laplacian spectrum is {0, po, ..., un}.

Corollary 3.3 establishes that the set of vectors {1, v;} forms a totally ordered Soules basis [10, 11], which
is a specially constructed orthonormal basis of eigenvectors for symmetric matrices, particularly Laplacian
matrices of graphs. Given a prescribed spectrum p and a Soules basis {r,}, the matrix Q = vazl pirnrt
is the Laplacian matrix of an undirected, weighted graph. More importantly, if we ignore the actual link
weights and look only at which links are present or absent, then Corollary 3.3 reveals that the underlying
unweighted graphs arising from the Soules basis {1,v;} are not arbitrary, but threshold.

A different ordering of pa,...,un gives a different weight vector, and therefore, a different weighted
threshold graph with the same Laplacian spectrum.

The degree expression in Eq. (1.2) yields the following corollary.

COROLLARY 3.4. Let Gy be a weighted threshold graph of order N, coded by a weight vector W =
(wa,...,wy). The Laplacian spectrum of Gw is given by {1 = 0, o, ..., pn} with

pi = d; +w;, for2<2 <N,
where d; denotes the weighted degree for the node i.

4. Cospectrality. Two matrices are called cospectral if they have the same eigenvalues. In the previous
section, we observed that different weighted threshold graphs can have cospectral Laplacian matrices. We
will show that the observation is not the case if the number of distinct weights is limited to three. We start
with an observation about the Laplacian matrix of arbitrary weighted graphs (see [1], Art. 125).



Electronic Journal of Linear Algebra, ISSN 1081-3810

A publication of the International Linear Algebra Society I L
Volume 41, pp. 529-537, September 2025.
Y. Ke, W.H. Haemers, and P. Van Mieghem 536

ProPOSITION 4.1. Consider two weighted graphs of order N with cospectral Laplacian matrices @ and
Q'. Then aQ + b(Jy — NIy) and aQ’' 4+ b(Jny — NIn) are also cospectral Laplacian matrices for any real
numbers a and b, where Jy is the N x N all-one matrix and Iy is the identity matrix of order N.

Proof. Let vy, ...,vy be an orthogonal basis of eigenvectors for Laplacian () corresponding to eigenvalues
1, 2, -« -5 i, such that g1 = 0 and v; = 1 is the all-ones vector. Then vy, ..., vy is also a set of eigenvectors
for Jy with eigenvalues N, 0, ...,0. Therefore, aQ+b(Jy — NIy) has eigenvalues 0, apo —bN, ... aun —bN.
Since @’ has the same spectrum as @, we find by the same argument that a@Q’ + b(Jy — NIy) also has
eigenvalues 0, aus — N, ..., auny — ON. ]

THEOREM 4.2. Consider two threshold graphs Gyw and Gy with N nodes and weight vectors W and
W'. Suppose that all weights are taken from {x1,x9,x3}. If Gw and Gy have cospectral Laplacian matrices,
then Gw and Gy are isomorphic.

Proof. For convenience. we first apply Proposition 4.1 and assume without loss of generality that
—1 =21 <2y < x5 =1. Suppose Gy and Gy both have spectrum {0, uga,...,un}, and define per =
max{pa, ..., un} and fyin = min{ue, ..., un . We apply Eq. (3.15). The matrix U has all row sums equal
to N, no negative entries, and only positive entries in the last column. This implies that U1 = N1, and
Uv < N1 for every vector v < 1 (recall that 1 is the all-one vector). Suppose wy = 1. Then clearly
wT <1, 7 = UWT < N1, and pny = N. This implies that tmee = N. Next, suppose wy < 1, then
WT < 1 and, therefore, UWT < N1; hence, jimar < N. Thus, we conclude that wy = 1 if and only if
tmaz = N. Similarly, wy = —1 if and only if gy, = —N. Therefore, wy = x5 if and only if —N < pmin
and fmer < N. The same holds for Gy and, hence, wy = w’. Now, the result follows by deleting node N
and applying induction. ]

If the weights take more than three distinct values, then two weighted threshold graphs with cospectral
Laplacian matrices need not be isomorphic as shown by the following two matrices (both have spectrum

{0,0,6}):

3 =30 1 1 =2
-3 3 0],]|1 1 =2
0O 0 0 -2 -2 4
If 21 = =1, z2 = 0, and x3 = 1, then the considered weighted threshold graphs are signed graphs.

Signed threshold graphs are studied in [12], where the name ‘net-Laplacian’ instead of ‘Laplacian’ is used.
(because the Laplacian matrix of a signed graph has a different meaning). Two signed threshold graphs
with cospectral net-Laplacian matrices must be isomorphic [12]. Our theorem generalizes the result in [12]
to three possible weights with arbitrary real value.

Theorem 4.2 does not imply that in case of three weights, a weighted threshold graph is determined by
its Laplacian spectrum. There could be a weighted graph with the same weights and the same Laplacian
spectrum, which is not a threshold graph. However, we do not expect that this will happen. It is known
[4] that unweighted threshold graphs are determined by their Laplacian spectrum. This means that any
unweighted graph with the same Laplacian spectrum as a threshold graph G must be isomorphic to G.
Proposition 4.1 shows that in the case of only two possible weights, a weighted threshold graph is also
determined by its Laplacian spectrum. In particular, if all weights are +1 the matrix is known as the
Seidel Laplacian, and thus we conclude that threshold graphs are determined by the spectrum of the Seidel
Laplacian matrix.
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