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THE LAPLACIAN MATRIX OF WEIGHTED THRESHOLD GRAPHS∗

YINGYUE KE† , WILLEM H. HAEMERS‡ , AND PIET VAN MIEGHEM†

Abstract. Threshold graphs are generated from one node by repeatedly adding a node that links to all existing nodes

or adding a node without links. In the weighted threshold graph, we add a new node in step i, which is linked to all existing

nodes by a link of weight wi. In this work, we consider the set AN that contains all Laplacian matrices of weighted threshold

graphs of order N . We show that AN forms a commutative algebra. Using this, we find a common basis of eigenvectors for the

matrices in AN . It follows that the eigenvalues of each matrix in AN can be represented as a linear transformation of the link

weights. In addition, we prove that, if there are just three or fewer different weights, two weighted threshold graphs with the

same Laplacian spectrum must be isomorphic.
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AMS subject classifications. 05C22, 05C50, 05C75.

1. Introduction. The adjacency matrix A of an unweighted graph G with nodes {1, . . . , N} is a matrix

N × N with elements aij , where aij = 1 if there is a link between node i and node j, otherwise aij = 0.

We use notation and notions from [1]. In a weighted graph, each link {i, j} is assigned a weight aij ∈ R,

which can be an arbitrary real value, including both positive and negative numbers. We identify a non-link

with a weight-zero link. Then the elements of the (weighted) adjacency matrix A are the link weights aij .

The Laplacian matrix of a (weighted) graph is defined by Q = ∆ − A, where ∆ = diag(d1, d2, ..., dN ) and

di =
∑N

j=1 aij is the (weighted) degree of node i. The Laplacian matrix necessarily has a zero eigenvalue

because its row sum is zero.

A threshold graph is a graph obtained from one node by repeatedly adding an isolated node or a

dominant node, where an isolated node is not connected to any other node in a graph and a dominant node

is a node that links to all other nodes in a graph. The concept of threshold graphs is introduced in [2].

A comprehensive review of threshold graphs is provided in [3]. Formulas for the Laplacian spectrum and

the number of spanning trees in a threshold graph are given in [4]. The application of threshold graphs in

building real-world networks is discussed in [5, 6, 7].

In the weighted threshold graph, we start with one node and add a new node in step i (i = 2, . . . , N),

which is linked to all existing nodes by a link of weight wi ∈ R. We label the nodes as 1, 2, 3, . . . , N according

to the order in which the nodes are added. Then, the N × N adjacency matrix A of a weighted threshold

graph equals
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(1.1) A =



0 w2 w3 · · · · · · wN

w2 0 w3 · · · · · · wN

w3 w3 0 · · · · · · wN

...
...

...
. . .

...
...

...
...

. . . wN

wN wN wN · · · wN 0


.

The vector W = (w2, w3, . . . , wN ) determines the weighted threshold graph. We call W the weight vector

and write GW for the corresponding weighted threshold graph.

The row sums of the adjacency matrix A in Eq. (1.1) give the degrees of the nodes in GW , that is,

(1.2) di = (i− 1)wi +

N∑
j=i+1

wj , for 1 ≤ i ≤ N.

The Laplacian matrix ∆−A of GW is written as:

(1.3) QW =



d1 −w2 −w3 · · · · · · −wN

−w2 d2 −w3 · · · · · · −wN

−w3 −w3 d3 · · · · · · −wN

...
...

...
. . .

...
...

...
...

. . . −wN

−wN −wN −wN · · · −wN dN


.

Figure 2 illustrates the threshold graph GW coded by weight vector W = (1, 0,−
√

2, 0, 2) and its

Laplacian matrix QW . The graph GW is constructed by sequentially adding node i, along with its associated

weight wi for 1 ≤ i ≤ 6 (see Fig. 1).
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Figure 1. Construction of GW coded by weight vector W = (1, 0,−
√

2, 0, 2). At each step, a node i (highlighted in red)

is added with links of weight wi, which connect it to all previous nodes j < i. Line colors represent link weights. Blue, orange,

and green lines have weights 1, −
√

2, and 2, respectively.

We define AN to be the set of Laplacian matrices of weighted threshold graphs of order N . The main

purpose of this paper is to investigate the structure of AN and the eigensystem of the matrices in AN . In

Section 2, we establish that AN constitutes a commutative algebra of dimension N − 1 and provide a basis.

In Section 3, we derive eigenvectors and eigenvalues for the matrices in AN . In particular, we prove that the

spectrum of QW ∈ AN can be written as a linear transformation of its weight vector W . In Section 4, we

show that, in case of at most three values for the weights, two weighted threshold graphs are isomorphic if

their Laplacian matrices are cospectral, that is, they have the same eigenvalues.
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QW =



3−
√

2 −1 0
√

2 0 −2

−1 3−
√

2 0
√

2 0 −2

0 0 2−
√

2
√

2 0 −2√
2

√
2

√
2 2− 3

√
2 0 −2

0 0 0 0 2 −2

−2 −2 −2 −2 −2 10



Figure 2. The threshold graph GW coded by weight vector W = (1, 0,−
√

2, 0, 2) and its Laplacian matrix QW .

2. Structure of AN .

2.1. A basis. Consider the threshold graph GWi with N nodes and weight vector Wi = (0, . . . , 0, wi =

1, 0, . . . , 0), the corresponding Laplacian matrix Qi := QWi
is given by

(2.4) (Qi)mn =


−1 1 ≤ n < m = i, or 1 ≤ m < n = i,

1 1 ≤ m = n < i,

i− 1 m = n = i,

0 otherwise.

For any threshold graph GW coded by W = (w2, w3, . . . , wN ), its Laplacian matrix QW can be repre-

sented by

(2.5) QW =

N∑
i=2

wiQi,

which shows that AN = span{Q2, . . . , QN}. Clearly, the matrices Q2, . . . , QN are independent, which

implies that {Q2, . . . , QN} is a basis for AN which is an (N − 1)-dimensional linear subspace of RN×N , the

vector space of real N ×N matrices.

The Lapalcian matrix in Fig. 2 can be decomposed as:

Q =
∑5

i=2 wiQi = 1×


1 −1 0 0 0 0
−1 1 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 + 0×


1 0 −1 0 0 0
0 1 −1 0 0 0
−1 −1 2 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



−
√

2×


1 0 0 −1 0 0
0 1 −1 0 0
0 0 1 −1 0 0
−1 −1 −1 3 0 0

0 0 0 0 0 0
0 0 0 0 0 0

+ 0×


1 0 0 0 −1 0
0 1 0 0 −1 0
0 0 1 0 −1 0
0 0 0 1 −1 0
−1 −1 −1 −1 4 0

0 0 0 0 0 0

+ 1×


1 0 0 0 0 −1
0 1 0 0 0 −1
0 0 1 0 0 −1
0 0 0 1 0 −1
0 0 0 0 1 −1
−1 −1 −1 −1 −1 5

 .

2.2. The algebra AN . In this subsection, we establish that AN is an (N−1)-dimensional commutative

subalgebra of RN×N . We start with some properties of the matrices Qi defined in Eq. (2.4).

Lemma 2.1.

QiQj = QjQi = Qi for 2 ≤ i < j ≤ N.
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Proof. When i < j, every row (or column) of Qi is orthogonal with every column (or row) of Qj − IN .

Therefore Qi(Qj − IN ) = (Qj − IN )Qi = O, and hence QiQj = QjQi = Qi.

Lemma 2.2.

(2.6) Qp
i = ip−1Qi −

ip−1 − 1

i− 1

i−1∑
j=2

Qj for 1 ≤ p, 2 ≤ i ≤ N.

Proof. If p = 1, then Eq. (2.6) is obvious. If p = 2, we have

(
Q2

i

)
mn

=

N∑
k=1

(Qi)mk (Qi)kn =



1 1 ≤ m 6= n < i,

2 1 ≤ m = n < i,

i(i− 1) m = n = i,

−i 1 ≤ n < m = i or 1 ≤ m < n = i,

0 otherwise.

For (iQi −
∑i−1

j=2Qj)mn, we find the same value. Therefore, Q2
i = iQi −

∑i−1
j=2Qj .

Next, suppose that Eq. (2.6) holds. Using Lemma 2.1, we obtain

Qp+1
i = Qp

iQi =

ip−1Qi −
ip−1 − 1

i− 1

i−1∑
j=2

Qj

Qi = ip−1Q2
i −

ip−1 − 1

i− 1

i−1∑
j=2

Qj

= ip−1

iQi −
i−1∑
j=2

Qj

− ip−1 − 1

i− 1

i−1∑
j=2

Qj = ipQi −
ip − 1

i− 1

i−1∑
j=2

Qj .

Thus, Eq. (2.6) holds for p ≥ 3 by induction.

Recall that QW ∈ AN with weight vector W = (w2, . . . , wN ) can be written as:

(2.7) QW =

N∑
i=2

wiQi.

Lemma 2.1 shows that any two matrices Qi and Qj commute, that is, QiQj = QjQi. Moreover,

Lemma 2.1 and 2.2 show that QiQj ∈ AN for 2 ≤ i, j ≤ N . Using Eq. (2.7), it follows that any two matrices

in AN commute and that AN is closed under multiplication. Thus, we have established that

Theorem 2.3. AN is an (N − 1)-dimensional commutative subalgebra of RN×N .

Take QW , QW ′ ∈ AN with weight vectors W = (w2, . . . , wN ) and W ′ = (w′2, . . . , w
′
N ). Then QW +QW ′ ∈

AN with weight vector W + W ′, and similarly aQW ∈ AN with weight vector aW for every a ∈ R. Also,

the product QWQW ′ ∈ AN , but more work is required to obtain the weight vector of QWQW ′ from W

and W ′.

Proposition 2.4. QWQW ′ =

N∑
i=2

iwiw
′
i −

N∑
j=i+1

(
wjw

′
j − wiw

′
j − wjw

′
i

)Qi.
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Proof. Using Lemma 2.1, we start from Eq. (2.7),

(2.8) QWQW ′ =

N∑
i=2

wiw
′
iQ

2
i +

N−1∑
i=2

N∑
j=i+1

(
wiw

′
j + wjw

′
i

)
Qi.

We invoke Lemma 2.2 and obtain

(2.9)

N∑
i=2

wiw
′
iQ

2
i =

N∑
i=2

iwiw
′
iQi −

N∑
i=2

i−1∑
j=2

wiw
′
iQj .

Reversing the i and j sums in (2.9) yields

(2.10)

N∑
i=2

i−1∑
j=2

wiw
′
iQj =

N−1∑
j=2

N∑
i=j+1

wiw
′
iQj =

N−1∑
i=2

N∑
j=i+1

wjw
′
jQi.

Substituting (2.10) and (2.9) into (2.8) proves Proposition 2.4.

3. An eigensystem. It is known that a set of mutually commuting symmetric matrices has a common

basis of eigenvectors [8]. In this section, we derive these common eigenvectors for the matrices in AN . As a

result, the eigenvalues of each QW ∈ AN can be obtained by a linear transformation of its weight vector W .

We have the following lemma on the eigenvalues and eigenvectors for each matrix Qi defined in Eq. (2.4).

Lemma 3.1. Let v1 be the all-one vector 1 and for 2 ≤ j ≤ N , we define the N × 1 vector vj as:

(3.11) (vj)k =


1 k < j,

1− j k = j,

0 k > j.

Then, {v1, · · · , vN} is an orthogonal basis of eigenvectors for each Qi. The corresponding eigenvalues Qivj =

(µi)j vj are

(3.12) (µi)j =


1 2 ≤ j < i,

i 2 ≤ j = i,

0 j > i or j = 1.

and the characteristic polynomial is PQi
(λ) = (λ− 1)

i−2
(λ− i)λN−i+1.

Proof. The vector Qiv1 equals the all-zero vector. Any two distinct vectors from {v1, · · · , vN} are

orthogonal, that is, vTl vm = δlm for 1 ≤ l,m ≤ N . Next, we consider three cases depending on the

relationship between i and j for each matrix Qi.

Case 1: 2 ≤ j < i. Each component (Qivj)m of the vector Qivj equals

(Qivj)m =

N∑
k=1

(Qi)mk(vj)k =

j∑
k=1

(Qi)mk(vj)k

=


(Qi)mm(vj)m = (vj)m m ≤ j,∑j

k=1(Qi)ik(vj)k = −
∑N

k=1(vj)k = 0 m = i,

0 otherwise.
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Thus, we deduce Qivj = vj for each vector vj with 2 ≤ j < i.

Case 2. 2 ≤ j = i. Each component (Qivi)m of the vector Qivi equals

(Qivi)m =

i∑
k=1

(Qi)mk(vi)k

=


(Qi)mm(vi)m + (Qi)mi(vi)i = i = i(vi)m m < i,∑i−1

k=1(Qi)ik(vi)k + (Qi)ii(vi)i = i(1− i) = i(vi)i m = i,

0 m > i.

which indicates Qivi = ivi for the vector vi.

Case 3: j > i. Each component (Qivj)m of the vectorQivj can be written as (Qivj)m =
∑N

k=1(Qi)mk(vj)k =∑i
k=1(Qi)mk(vj)k =

∑i
k=1(Qi)mk =

∑N
k=1(Qi) = 0 for 1 ≤ m ≤ N . Consequently, we have Qivj = 0vj for

each vector vj with j > i.

Now we compute the eigenvalues and eigenvectors of QW ∈ AN .

Theorem 3.2. Let GW be a weighted threshold graph on N nodes with weight vector W = (w2, . . . , wN ).

The spectrum of the Laplacian QW of GW is {0, µ2, . . . , µN} with

(3.13) µi = iwi +

N∑
j=i+1

wj .

This can be written in a matrix form as

(3.14) µT = (µ2, . . . , µN )T = UWT ,

where U is an (N − 1)× (N − 1) upper triangular matrix defined by

(3.15) Uij =


1 1 ≤ i < j ≤ N − 1,

i+ 1 1 ≤ i = j ≤ N − 1,

0 otherwise.

Proof. Let vj be a common eigenvector for Q2, . . . , QN defined in Lemma 3.1. Then

QW vj =

(
N∑
i=2

wiQi

)
vj = jwjvj +

N∑
i=j+1

wivj =

jwj +

N∑
k=j+1

wk

 vj ,

for j = 2, . . . , N . This proves Eq. (3.13), and Eq. (3.14) follows straightforwardly.

For the graph coded by weight vector W = (1, 0,−
√

2, 0, 2) in Fig. 2, Theorem 3.2 directly gives

µT = UWT =


2 1 1 1 1

0 3 1 1 1

0 0 4 1 1

0 0 0 5 1

0 0 0 0 6




1

0

−
√

2

0

2

 =


4−
√

2

2−
√

2

2− 4
√

2

2

12

 ,

and the Laplacian spectrum is {0, 4−
√

2, 2−
√

2, 2− 4
√

2, 2, 12}.
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Independently, And̄elić and Stanic [9] also found a closed formula for the Laplacian eigenvalues of

weighted threshold graphs. They define the weighted Ferrers diagram and then prove that the Laplacian

eigenvalues of weighted threshold graphs are associated with the column sums of the corresponding weighted

Ferrers diagrams. For more details, the readers are referred to their paper.

Theorem 3.2 indicates that weighted threshold graphs with integral weights have integral spectrum.

Since U is an upper triangular matrix with nonzero diagonal, U is invertible, and it is straightforward to

compute its inverse U−1

U−1 =



1
2 − 1

6 − 1
12 − 1

20 · · · − 1
(N−1)N

1
3 − 1

12 − 1
20 · · · − 1

(N−1)N
1
4 − 1

20 · · · − 1
(N−1)N

1
5 · · · − 1

(N−1)N

0 . . .
...
1
N


,

and obtain (w2, . . . , wN )T = U−1(µ2, . . . , µN )T . As a result, we have the following corollary.

Corollary 3.3. For any given real vector µ = (0, µ2, . . . , µN ), there exists a weighted threshold graph

of order N , whose Laplacian spectrum is {0, µ2, . . . , µN}.

Corollary 3.3 establishes that the set of vectors {1, vj} forms a totally ordered Soules basis [10, 11], which

is a specially constructed orthonormal basis of eigenvectors for symmetric matrices, particularly Laplacian

matrices of graphs. Given a prescribed spectrum µ and a Soules basis {rn}, the matrix Q =
∑N

i=1 µirnr
T
n

is the Laplacian matrix of an undirected, weighted graph. More importantly, if we ignore the actual link

weights and look only at which links are present or absent, then Corollary 3.3 reveals that the underlying

unweighted graphs arising from the Soules basis {1, vj} are not arbitrary, but threshold.

A different ordering of µ2, . . . , µN gives a different weight vector, and therefore, a different weighted

threshold graph with the same Laplacian spectrum.

The degree expression in Eq. (1.2) yields the following corollary.

Corollary 3.4. Let GW be a weighted threshold graph of order N , coded by a weight vector W =

(w2, . . . , wN ). The Laplacian spectrum of GW is given by {µ1 = 0, µ2, . . . , µN} with

µi = di + wi, for 2 ≤ 2 ≤ N,

where di denotes the weighted degree for the node i.

4. Cospectrality. Two matrices are called cospectral if they have the same eigenvalues. In the previous

section, we observed that different weighted threshold graphs can have cospectral Laplacian matrices. We

will show that the observation is not the case if the number of distinct weights is limited to three. We start

with an observation about the Laplacian matrix of arbitrary weighted graphs (see [1], Art. 125).
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Proposition 4.1. Consider two weighted graphs of order N with cospectral Laplacian matrices Q and

Q′. Then aQ + b(JN − NIN ) and aQ′ + b(JN − NIN ) are also cospectral Laplacian matrices for any real

numbers a and b, where JN is the N ×N all-one matrix and IN is the identity matrix of order N .

Proof. Let v1, . . . , vN be an orthogonal basis of eigenvectors for Laplacian Q corresponding to eigenvalues

µ1, µ2, . . . , µN , such that µ1 = 0 and v1 = 1 is the all-ones vector. Then v1, . . . , vN is also a set of eigenvectors

for JN with eigenvalues N, 0, . . . , 0. Therefore, aQ+b(JN−NIN ) has eigenvalues 0, aµ2−bN, . . . , aµN−bN .

Since Q′ has the same spectrum as Q, we find by the same argument that aQ′ + b(JN − NIN ) also has

eigenvalues 0, aµ2 − bN, . . . , aµN − bN .

Theorem 4.2. Consider two threshold graphs GW and GW ′ with N nodes and weight vectors W and

W ′. Suppose that all weights are taken from {x1, x2, x3}. If GW and GW ′ have cospectral Laplacian matrices,

then GW and GW ′ are isomorphic.

Proof. For convenience. we first apply Proposition 4.1 and assume without loss of generality that

−1 = x1 ≤ x2 ≤ x3 = 1. Suppose GW and GW ′ both have spectrum {0, µ2, . . . , µN}, and define µmax =

max{µ2, . . . , µN} and µmin = min{µ2, . . . , µN}. We apply Eq. (3.15). The matrix U has all row sums equal

to N , no negative entries, and only positive entries in the last column. This implies that U1 = N1, and

Uv < N1 for every vector v < 1 (recall that 1 is the all-one vector). Suppose wN = 1. Then clearly

WT ≤ 1, µT = UWT ≤ N1, and µN = N . This implies that µmax = N . Next, suppose wN < 1, then

WT < 1 and, therefore, UWT < N1; hence, µmax < N . Thus, we conclude that wN = 1 if and only if

µmax = N . Similarly, wN = −1 if and only if µmin = −N . Therefore, wN = x2 if and only if −N < µmin

and µmax < N . The same holds for GW ′ and, hence, wN = w′N . Now, the result follows by deleting node N

and applying induction.

If the weights take more than three distinct values, then two weighted threshold graphs with cospectral

Laplacian matrices need not be isomorphic as shown by the following two matrices (both have spectrum

{0, 0, 6}):  3 −3 0

−3 3 0

0 0 0

 ,
 1 1 −2

1 1 −2

−2 −2 4

 .
If x1 = −1, x2 = 0, and x3 = 1, then the considered weighted threshold graphs are signed graphs.

Signed threshold graphs are studied in [12], where the name ‘net-Laplacian’ instead of ‘Laplacian’ is used.

(because the Laplacian matrix of a signed graph has a different meaning). Two signed threshold graphs

with cospectral net-Laplacian matrices must be isomorphic [12]. Our theorem generalizes the result in [12]

to three possible weights with arbitrary real value.

Theorem 4.2 does not imply that in case of three weights, a weighted threshold graph is determined by

its Laplacian spectrum. There could be a weighted graph with the same weights and the same Laplacian

spectrum, which is not a threshold graph. However, we do not expect that this will happen. It is known

[4] that unweighted threshold graphs are determined by their Laplacian spectrum. This means that any

unweighted graph with the same Laplacian spectrum as a threshold graph G must be isomorphic to G.

Proposition 4.1 shows that in the case of only two possible weights, a weighted threshold graph is also

determined by its Laplacian spectrum. In particular, if all weights are ±1 the matrix is known as the

Seidel Laplacian, and thus we conclude that threshold graphs are determined by the spectrum of the Seidel

Laplacian matrix.
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