
Other Research project sponsor(s):

Conditions of (re-)use of this publication
The full-text of this report may be re-used under the condition of an acknowledgement and a
correct reference to this publication.

Title: DC-OMS Architecture

Author: Ir. S. Hummel Institute: WL | Delft Hydraulics

Author: B.S.T.I.M. The Institute: GeoDelft

June 2003
Number of pages : 26

Keywords (3-5) : Software architecture, data exchange, XML

DC-Publication-number : -

Institute Publication-number
(optional)

:

Report Type : Intermediary report or study

: Final project report

DUP-publication Type : DUP Standard

DUP-Science

Delft Cluster-publication: 07.05.04-01

Date:November 2003 DC-OMS Architecture p. 2

Abstract

The aim of the DC-OMS-Architecture project has been to:

• Specify a DC-OMS-Architecture,
in which software-components can perform interaction and data exchange.
This architecture will describe a set of conventions on how software components exchange
their data.

• Realise an Input/Output-library (DelftIO),
based on which components can exchange data, both in memory and by means of files. File
exchange is supported for partner-specific file formats, as well as for national (GEF) and
international standard XML).

Initially, the Architecture project made an inventory on the various run time and implementation
environments that are being used by the project partners. Due to the great variety of supported
platforms and programming languages (between partners and even at one partner), the project team
concluded that data exchange between software components should be based on self-defining XML-
files, unless the concerned data is voluminous (in which case binary file formats and/or on line data
exchange should be used).

To understand which types of data will be exchanged in which computation phases, some pilots were
performed, which showed that data exchange should be supported for:

• Data blocks (e.g. a 2D-array with the values of a set of quantities on a set of locations where
these values are computed).

• Hierarchical data (e.g. part of, or a whole schematisation for a certain model).

To facilitate this data exchange, a software component developer should be provide with a powerful,
yet simple mechanism to translate his component specific internal data types into a generic
representation, which can be easily stored and/or be retrieved from file.
During the project, this two-layer approach (generic layer and component specific layer) has been
studied and designed, leading to implementations for

• Fortran 90 / Fortran 77 / Visual Basic / Java / Delphi (data blocks).
• Delphi / Java (hierarchical data)

PROJECT NAME: DC-OMS Architecture P ROJECT CODE : 07.05.04
BASEPROJECT NAME: DC-OMS (DC Open Modelling Systems) BASEPROJECT CODE: 07.05
T H E M E N A M E : Knowledge Management T H E M E C O D E : 07

Delft Cluster-publication: 07.05.04-01

Date:November 2003 DC-OMS Architecture p. 3

Executive Summary

The Dc-Oms-Architecture project is part of the Delft Cluster base project ‘DC Open Modelling
Systems’. This base project focuses on coupling existing and/or new software-components that
(usually) perform a numerical task.

Initially effort has been put on defining a detailed DC-OMS-Architecture that specifies:
• The exact behaviour of a software-components;
• The implementation environments to be supported.
However, during the project the insight emerged that, for facilitating component coupling, it suffices to
specify the mechanism for data exchange.

The data exchange between software-components has been specified by means of:
a) Description of the file format to be used;
b) Specification of a two-layer approach for the implementation of data exchange:

The two-layer approach can be summarized as:
1. implement a generic data type (the aggregate or container class), that offers functions to put/get

(write/read) aggregated data.
2. based on this aggregate class, implement functions to put/get (write/read) component-specific data

types.

Although this approach has not yet been used for exchange of data between components of different
companies, it has been used intensively inside companies, and has proven to be very useful and to be
well fit for combining the software components of different partners.

PROJECT NAME: DC-OMS Architecture P ROJECT CODE : 07.05.04
BASEPROJECT NAME: DC-OMS (DC Open Modelling Systems) BASEPROJECT CODE: 07.05
T H E M E N A M E : Knowledge Management T H E M E C O D E : 07

Delft Cluster-publication: 07.05.04-01

Date:November 2003 DC-OMS Architecture p. 4

Applicability for the sector

Software systems are becoming increasingly important for knowledge transfer to the sector; this project
contributes to the availability of reusable software components that can be easily integrated into existing
software systems.

The baseproject Delft Cluster Open Modelling Systems (DC-OMS), and especially the DC-OMS

Architecture project, facilitate the integration of software components amongst the Delft Cluster partners
and the sector.

PROJECT NAME: DC-OMS Architecture P ROJECT CODE : 07.05.04
BASEPROJECT NAME: DC-OMS (DC Open Modelling Systems) BASEPROJECT CODE: 07.05
T H E M E N A M E : Knowledge Management T H E M E C O D E : 07

Delft Cluster-publication: 07.05.04-01

Date:November 2003 DC-OMS Architecture p. 5

Societal Relevance of the research

Society increasingly requires an integrated approach to water management.

The baseproject Delft Cluster Open Modelling Systems (DC-OMS), and especially the DC-OMS

Architecture project, facilitate the integration of software components amongst the Delft Cluster
partners and the sector.

PROJECT NAME: DC-OMS Architecture P ROJECT CODE : 07.05.04
BASEPROJECT NAME: DC-OMS (DC Open Modelling Systems) BASEPROJECT CODE: 07.05
T H E M E N A M E : Knowledge Management T H E M E C O D E : 07

Delft Cluster-publication: 07.05.04-01

Date:November 2003 DC-OMS Architecture p. 6

Table of contents

DC-OMS Architecture..1

Abstract ..2

Executive Summary ..3

Applicability for the sector...4

Societal Relevance of the research ..5

1 Introduction...8

2 Components and their collaboration ..8
2.1 Components..8
2.2 Data exchange ..9
2.3 Data types .. 10
2.3.1 Data exchange MSettle/DIANA ... 10
2.3.2 Data exchange Generic Framework models... 11
2.4 Requirements for the DC-OMS-Architecture .. 12

3 DC-OMS-Architecture specification... 12
3.1 Component specification... 12
3.2 Data specification .. 13

4 Dc-Oms-Architecture and DelftIO context... 13

5 DelftIO design and implementation .. 13
5.1 The general DelftIO Data Object layer... 14
5.2 The Application Object Specific layer. .. 14

6 DelftIO for hierarchical data, Delphi .. 15
6.1 Functionality.. 15
6.2 Usage ... 15
6.3 Interface ... 16
6.4 DIO-Library GEF Implementation ... 17

7 DelftIO for hierarchical data, Java ... 18
7.1 Functionality.. 18

8 DelftIO for data blocks.. 19
8.1 Functionality.. 19
8.2 Interface ... 19

9 References ... 21

Delft Cluster-publication: 07.05.04-01

Date:November 2003 DC-OMS Architecture p. 7

Appendix 1 Context of the DC-OMS-Architecture and DelftIO.. 23

General Appendix: Delft Cluster Research Programme Information .. 25

List of Figures
Figure 1, Data exchange between components ...9
Figure 2, Data exchange between components by means of a translator ...10
Figure 3, Parameter / Location / Time step dataset...19

List of Tables
Table 1, Communication Diana / MSettle ...11
Table 2, Communication SOBEK / DELWAQ ...11
Table 3, Component specification ...13
Table 4, TDIOContainer interface ...17
Table 5, TDIOAggregateDefinition interface ...17
Table 6, Java Aggregates interface ..19
Table 7, DelftIO interface for Parameter / Location / Time step datasets ..20
Table 8, Related and comparable initiatives..24
Table 9, Consequences for DelftIO ...24

Delft Cluster-publication: 07.05.04-01

Date:November 2003 DC-OMS Architecture p. 8

1 Introduction

In Delft Cluster Theme 7 (see [DC-7]), the base project ‘Delft Cluster Open Modelling systems’ (DC-
OMS) is a co-operation between the Delft-Cluster partners GeoDelft, TNO-Bouw, and Delft
Hydraulics, which all develop, maintain and sell large software systems.

A description of the DC-OMS base project and its projects can be found in Appendix A and in
[DC-OMS]. Central project in DC-OMS is the DC-OMS-Architecture project [DC-OMS-ARCH],
which aims to:
• Specify a DC-OMS-Architecture,

in which software-components can perform interaction and data exchange. This architecture will
consist of a set of conventions on implementation environments and on the way components are
specified and implemented.

• Realise an Input/Output-library (DelftIO),
based on which components can exchange data, both in memory and by means of files. These
files will be based on partner-specific as well as national and international file format standards,
like NEFIS (WL), FILOS (TNO), GEF (GeoDelft and various Dutch companies and institutes), XML,
and HDF or NetCDF.

The present document describes the DC-OMS-Architecture and introduces the functionality and design
of the DelftIO library. This is done in the following way:
• Chapter 2 introduces components and their communication, which will lead to the functional

requirements of the Dc-Oms-Architecture
• Based on these requirements, Chapter 3 will present the DC-OMS-Architecture specification.
• Chapter 4 describes the context in which the Dc-Oms-Architecture, and thus DelftIO, will be

used, by summarising similar initiatives, and by providing an overview of the development and
run time environments of the involved DC-Partners.

• Finally, Chapter 5 elaborates the functional design of DelftIO, while Chapter 6 to 8 will described
the DelftIO libraries that have been developed.

2 Components and their collaboration

2.1 Components

Aim of the DC-OMS-Architecture project is to facilitate two or more components to communicate
with each other. For a better understanding of the term component, we provide part of the definition
that is extracted from [KRUCHTEN]:

A component is a non-trivial, nearly independent, and replaceable part
of a system that fulfils a clear function in the context of a well-defined
architecture. A component conforms to and provides the physical
realisation of a set of interfaces. The interface is seen as a 'contract'
between the component and its environment and can be defined as
a collection of operations that is used to specify a service of a
component.

The fact that a component offers ‘services’ suggests that it is designed and implemented in an object
oriented way. However, DC-OMS components, which mainly are legacy systems of the involved
partners, often are not designed and implemented this way.
To restructure the systems in such a way that they do adhere to the OO paradigm would be too
ambitious and too expensive, and therefore is definitely out of the scope of the DC-OMS project.

Delft Cluster-publication: 07.05.04-01

Date:November 2003 DC-OMS Architecture p. 9

Therefore, the DC-OMS-Architecture should interpret the interface of a component as the set of
operations it performs to:
• retrieve input
• deliver output.

‘Input’ mainly stands for ‘input data’, but it should be clear that part of the input could describe the
actions to be performed (in which order) by the component, the so-called control flow.

2.2 Data exchange

A component usually performs a well-defined task. A component is provided with input data from file
or from another component, executes its task, and produces output data, which in turn may serve as
input data for another component.
These data flows between two components will often be two-sided (see Figure 1). Component A may
be the sender as well as the receiver of data to and/or from component B.

Whatever the mechanism is that is used for the actual exchange of the data, both components need to
be aware of the meaning of the data structures that they receive and/or send.
In the ideal situation both components know the data structures to be exchanged, as pictured in Figure
1.

Sender
ReceiverSender

Datastructure N

Datastructure 1

Figure 1, Data exchange between components

However, in the case of existing components, there will often be a discrepancy in the way the data is
handled by different components. In this case the following alternatives arise to solve this problem:
• Rewrite both components in such a way that they will use the same data structures
• Rewrite one of the components in such a way that it will use the data structures of the other

component
• Create (a) new component(s) that convert(s) the data structures.

The first two alternatives lead to the situation giving in Figure 1 above, while the latter one leads to
the situation in Figure 2 below.

Delft Cluster-publication: 07.05.04-01

Date:November 2003 DC-OMS Architecture p. 10

Sender
ReceiverSender

Datastructure <N>

Datastructure <A>

Datastructure N

Datastructure 1

Translator

Translator

Figure 2, Data exchange between components by means of a translator

It should be clear that the previous paragraphs did not mention the way the actual data exchange is
realised. Indeed, this implementation aspect is not a part of the architecture specification.
The important issue is that the ‘Get/Read’ (input) and ‘Put/Write’ (output) operations of the
components are based on well-specified data structures.

The actual data exchange may be implemented by means of file, but also by other mechanisms, like
shared memory or CORBA on Windows and UNIX platforms, or COM technology on Windows
platforms.

2.3 Data types

To determine which types of data will be exchanged between components, some pilot studies were
performed. These pilots are described in detail in [ARCH-PILOTS] (Dutch). Their findings are
summarised in the subsections below.

2.3.1 Data exchange MSettle/DIANA

MSettle is GeoDelft’s application for computations of vertical stresses and displacements. Although
it’s powerful 1D-vertical analysis is sufficient for many problem areas, there are cases in which
information on the horizontal stresses and displacements would provide additional insight into the
physical phenomena involved. Therefore it was decided to use some modules of DIANA for the 2D
computation of stresses and displacements (DIANA is TNO-Bouw’s application for 2D and 3D
mechanics).
To realise this, the data exchange between MSettle and DIANA was analysed and implemented
(initially by defining the contents of two files, from MSettle to DIANA and vice versa). A summary of
this data is given in Table 1, where some of the data has been elaborated in some detail, to make clear
that:
• the data is organised in a hierarchical way
• the data is often not ‘one to one’ available.

The latter finding once again shows the need for conversion modules, as mentioned in Section 2.2.
The first finding imposes a requirement on the DC-OMS-Architecture: it should be able to handle
hierarchical data.

Delft Cluster-publication: 07.05.04-01

Date:November 2003 DC-OMS Architecture p. 11

MSettle sends DIANA receives
• Geometry:

o Points
o Curves
o Boundaries
o Piezo Lines
o Phreatic Line
o Layers
o Verticals

• Mesh (= set of elements)

 Point = X: double
 Y: double
 Z: double
 Node = Identification: string
 Point: Point
 Element = Identification: string
 NodeIdentifications[1..n]:string
 PhysicalPropertiesIdentification: string

• Material • Material properties

 PhysicalProperties = Identification: string
 ElementType: string
 CompressieIndex: double
 ZwellingsIndex: double
 PoissonRatio: double
 WrijvingsHoek: double

• Load:
o Non-uniform Loads
o Water Loads
o Other Loads

• Boundary conditions

DIANA sends MSettle receives
• Stress • Stress
• Displacement • Displacement

Table 1, Communication Diana / MSettle

2.3.2 Data exchange Generic Framework models

A Dutch initiative that is comparable to DC-OMS is the Generic Framework (see [GF-ARCH],
[GF-TD]). This project focuses on the time step based exchange of quantities on different locations on
a computational domain. Two of the models that will be incorporated in this framework are SOBEK

(1D-flow) and DELWAQ (1/2/3D-water quality). The data that can be exchanged is given in Table 2.

SOBEK can send SOBEK can receive
For each time step:
• Water levels on <NGrid> grid points
• Water volumes in <NGrid-1> grid cells
• Water levels on <NBound> boundary

locations
• Discharges on <NBound> boundary

locations

For each time step:
• List of BoundaryItems, where
• BoundaryItem =

<water level on boundary location(n)> |
• <discharge on boundary location(n)>

DELWAQ can send DELWAQ can receive
For each time step:

Water volumes in <Nseg> segments
For each time step:
• Concentration values of <MSubst>

substances on <NLoc> locations

For each time step:
• List of ConcentrationItems, where

ConcentrationItem =
<substance(m), value on location(n)>

Table 2, Communication SOBEK / DELWAQ

Once again it is clear that:
• the data is organised in a hierarchical way (less deep however then in the previous section)
• it’s important to receive ‘lists’ of items

Delft Cluster-publication: 07.05.04-01

Date:November 2003 DC-OMS Architecture p. 12

• the data is often not ‘one to one’ available
(conversion of water volumes on flow grid cells to volumes on water quality segments)

2.4 Requirements for the DC-OMS-Architecture

Given the types of applications that form the DC-OMS components, and given the type of data they
exchange, the following requirements can be imposed on the specification of the DC-OMS-
Architecture:

1. The DC-OMS-Architecture is mainly meant to be used by the (modules of the) existing legacy
systems of the involved partners, and should therefore focus on the way these components receive
their input data and send their output data.
In other words, the DC-OMS-Architecture should be expressed in terms of:
- Send or Put or Write operations, and
- Receive or Get or Read operations
Note: the three names per operation can be regarded as synonyms; they are mentioned explicitly
because all these terms are frequently used for data exchange.

2. Because of the wide variety of data used by the systems and modules of the DC-partners, the DC-
OMS-Architecture should be able to handle this variety of data, i.e.:
o It should support the data exchange specification for a limited set of ‘primitives’. Primitives

are the basic scalar types (real, double, integer, Boolean), n-dimensional arrays of these types,
and (n-dimensional arrays) of strings

o It should support the data exchange specification of in fact an unlimited set of aggregates of
primitives, where an aggregate itself once again is treated as an additional primitive.

3 DC-OMS-Architecture specification

As presented in the previous chapter, the DC-OMS-Architecture describes the way a component
interacts with other components, in other words:
• what input is required (and optionally: when)
• what output is delivered (and optionally: when)

So for every component a ‘specification’ is required in terms of these data exchange operations. Due
to the restricted project budget (main effort has been put in developing the DelftIO libraries), this
specification method has not been elaborated in detail yet. The following subsections provide a
suggestion for these specifications. It should be emphasized that current developments in the water
related sector start to focus on formalizing the specification; the Delft Cluster partners should keep
track of the progress in these projects, which are:
• HarmonIT (see ref. HarmonIT)
• Dutch Oms (see ref. Dutch Oms).

3.1 Component specification

A ‘component specification’ describes a component's functionality and its Get/Put behaviour, as
presented in Table 3.

Delft Cluster-publication: 07.05.04-01

Date:November 2003 DC-OMS Architecture p. 13

Component Some Component
Functionality Description of functionality

Data exchange:
Phase Get Put Remarks
Initialisation ... (e.g. InitialInput)

Begin of time step
Begin of iteration
End of iteration

End of time step ... (e.g. FlowResult)
... (other logical phase)
Termination ... (e.g. FlowResult)

Table 3, Component specification

The data items given in the Put and Get columns are explicitly described in a formal way, the ‘data
specification’.

3.2 Data specification

The data specification can be described in any suitable way, but preferably is provided in a Pascal-like
syntax, for instance:

Point = X: double
Y: double
Z: double

Node = Identification: string
Point: Point

At present, no additional requirements have been imposed on the data specifications. However, in the
near future extensions are foreseen regarding meaning, units, and validity of the data items.

4 Dc-Oms-Architecture and DelftIO context

As mentioned in the introduction, a DelftIO library will be realised that supports the exchange of data
between the various DC-OMS components. To implement such a library in an optimal way, it should
be clear in which operational and development environments it will be used. Also, the DC-OMS

approach for integrating components should take into account that there are quite a few similar ‘open
modelling’ initiatives ongoing in the outer world.
Therefore, in an early stage of the project an inventory was made on the context for the DC-OMS-
Architecture and DelftIO. This context is described in Appendix 1, as well as the consequences for
DelftIO. However, as can be concluded from Table 9 in this Appendix, these consequences all fit into
the requirements stated in Section 2.4.

5 DelftIO design and implementation

The main goal of the DC-OMS-Architecture project is to develop a standardised Input/Output library,
that takes care of the data-exchange between applications, and that supports self-descriptive data
storage, based on national and international file format standards.
However, this library should also support older proprietary formats, so backward compatibility for
existing applications can be maintained.

Delft Cluster-publication: 07.05.04-01

Date:November 2003 DC-OMS Architecture p. 14

To develop the DelftIO library, some pilots were defined to analyse the types of data to be handled,
and the storage of these data types in file formats like XML was investigated.
Based on these experiences we decided that the optimal design for the desired functionality is a two-
layer approach:
• The general DelftIO Aggregate/Container/Collection layer.

This layer provides some basic data object types, including the I/O functions for these general
objects, for the various file formats to be supported.
The basic data object types can be pictured as aggregate and/or collections of data items, like:
o reals, integers, strings
o arrays of these primitive elements
o once again basic data object types.

• The Application Object Specific layer.
A very thin layer providing the read and write functions for each actual aggregated data type to be
supported in typical civil engineering applications, like hydrodynamics, construction mechanics
and geotechnical applications.
This layer converts the application-specific data structure to a basic data object, thus providing its
storage in each of the supported file formats.

Details of this approach have been presented in DelftIO, Standardized Application Communication
(see [DELFTIO-HIC2000]). The approach offers optimal library development and maintenance, since
the supported file types as well as the number of specific data types can be extended independently.

5.1 The general DelftIO Data Object layer.

The general DelftIO Data Object is implemented as a collection of elements, and thus and be depicted
as an aggregate of data, or as a collection. Such a data object can contain the following elements:
• Integer
• Float
• Double
• Boolean
• String
• N-dimensional arrays of one of the 5 items above
• An other data object
• An array of data objects

Every basic element provides its own (usually very simple) write/read operation to/from different file
types. On top of that, the Read/Write operations DelftIO Data Object:
• Perform read/write actions that indicate the beginning of the data object
• Invoke the subsequent read/write operations of the contained elements
• Perform read/write actions that indicate the end of the object
The type of Input / Output stream that the data object is connected to (usually XML), determines
which specific read/write implementation will be called.

5.2 The Application Object Specific layer.

Given an existing data-structure in an existing application, a ‘DelftIO-version’ of this data-structure
can easily be derived, by using the general DelftIO Data Object.
This DelftIO-version of the application specific data structure effectively should provide two
functions, a Read and a Write operation. These functions can simply be implemented by:
• Creating a DelftIO Data Object
• Adding all elements of the existing data structure to this object
• Setting the values for the Write operation

Delft Cluster-publication: 07.05.04-01

Date:November 2003 DC-OMS Architecture p. 15

• Invoking the DelftIO Data Object Read or Write function
• Getting the values for the Read operation
• Deleting the DelftIO Data Object.

6 DelftIO for hierarchical data, Delphi

6.1 Functionality

According to the approach described in the previous Chapter, a Delphi DelftIO library has been made
available that implements both the general and the application specific layer. This Delphi
implementation defines two classes:
• TDIOAggregateDefinition,
• TDIOContainer,
and defines constants to designate the supported primitive data types:

const
 sDIOString = 'String';
 sDIOBoolean = 'Boolean';
 sDIOInteger = 'Integer';
 sDIODouble = 'Double';
 sDIOAggregate = 'Aggregate';
 sDIOCollection = 'Collection';
 sDIOArrayDouble = 'ArrayDouble';
 sDIOArrayInteger = 'ArrayInteger';
 sDIOBinaryData = 'BinaryData';
 sDIOReferenceInternal = 'ReferenceInternal';
 sDIOReferenceExternal = 'ReferenceExternal';

A TDIOAggregateDefinition objects describes the elements of a certain Container (which is a
synonym for Aggregate). Subsequently, a TDIOContainer object is an instance of an aggregate that
adheres to this definition.

6.2 Usage

To create a ‘DelftIO-version’ of the application specific data structure ‘Layer’ (which represents a soil
layer), the following steps need to be performed:

• Define the aggregate elements and their types, and assign them to a Container:

 FDIOLayer: TDIOContainer;
 LLayerAggregateDefinition: TDIOAggregateDefinition;

 LLayerAggregateDefinition.AddElement(
 sLayerBottomLocation, sDIODouble, '%6.2f', 0.0);
 LLayerAggregateDefinition.AddElement(
 sLayerTopLocation, sDIODouble, '%6.2f', 0.0);
 FDIOLayer.AddAggregateDefinition(
 LLayerAggregateDefinition);

• Initialize the Container (i.e. build the internal data-storage, based on the definition of the specified
AggregateDefinition):

FDIOLayer.Initialize(sMyLayer, sLayerIdentifier);

• The elements of the container now an be accessed by means of Set/Get functions:

Delft Cluster-publication: 07.05.04-01

Date:November 2003 DC-OMS Architecture p. 16

 procedure SetValue(AIdentifier: string; AValue: string); overload;
 procedure SetValue(AIdentifier: string; AValue: Double); overload;
 procedure SetValue(AIdentifier: string; AValue: Integer); overload;
 function GetValueInt(AIdentifier: string): Integer;
 function GetValueDouble(AIdentifier: string): Double;
 function GetValueString(AIdentifier: string): string;

where AIdentifier contains a full path description, for example:
 LBottom := FDIOBoring.GetValueDouble (‘MyBoring.Layers.3.Bottom’)
 FDIOBoring.SetValue(‘MyBoring.Layers.3.Top’, LTop);

6.3 Interface

Table 4 (the Container) and Table 5 (the AggregateDefinition) give an overview of the Delphi DelftIO
interface. Full interface documentation is available as HTML-pages at GeoDelft.

TDIOContainer, Properties:
AggregateDefinitions Array of aggregate definitions

(TDIOAggregateDefinition)
FileFormat File format: CffUnKnown, CffXML, CffGEF,

CffMyformat
GEFMapping object for translation of GEF format (TDIOGEFMapping)
TDIOContainer, Methods:
Initialize Initialize data structure
AddAggregateDefinition Add an aggregate definition to the definition list
LoadFromFile Load data from file in selected FileFormat
SaveToFile Save data to file in selected FileFormat
LoadFromFileGEF Load datastructure from file (GEF format)
SaveToFileGEF Save datastructure to file (GEF Format)

LoadFromFileXML
Load datastructure from file (internal XML-
datastructure)

SaveToFileXML Save datastructure to file (internal XML-datastructure)

SetCollectionCount
Set number of items in a collection element in this
container

SetValueString Set a string value of an element in this container
SetValueDouble Set a double value of an element in this container
SetValueInt Set an integer value of an element in this container
SetValue Set a value of an element in this container

GetCollectionCount
Get number of items in a collection element in this
container

GetValueInt Get an integer value of an element in this container
GetValueDouble Get a double value of an element in this container
GetValueString Get a string value of an element in this container

HandleSetValueString
Event handler to set a string value of an element in this
container

HandleSetValueDouble
Event handler to set a double value of an element in this
container

HandleSetValueInt
Event handler to set an integer value of an element in this
container

HandleGetValueInt
Event handler to get an integer value of an element in this
container

HandleGetValueDouble
Event handler to get a double value of an element in this
container

HandleGetValueString
Event handler to get a string value of an element in this
container

Delft Cluster-publication: 07.05.04-01

Date:November 2003 DC-OMS Architecture p. 17

HandleSetCollectionCount
Event handler to set number of items in a collection
element in this container

HandleGetCollectionCount
Event handler to get number of items in a collection
element in this container

Table 4, TDIOContainer interface

TDIOAggregateDefinition, Properties:
Identifier Unique identifier of this instance
ElementCount Number of elements in this definition
Elements Array of elements (TDIODataElementType)
ElementByString Array of elements indexed by identifier

(TDIODataElementType)
TDIOAggregateDefinition, Methods:
AddElement Add aggregate element
FindElementIndex Find index of element by identifier

Table 5, TDIOAggregateDefinition interface

6.4 DIO-Library GEF Implementation

GeoDelft has used the implementation of the Delphi DelftIO library to create a component to read and
write a GEF-Boring file. A GEF-Boring file is a recently defined standard to exchange borings.
GEF is a data exchange file format widely used in the geotechnical world. The most well known GEF
format is the GEF-CPT (see refs. [GEF], [GEF-CPT], [GEF-BORE]).

For the GEF implementation we define two objects:
• TDIOGEFMapping: this is the object in which the specific GEF format is defined (in this case the

GEF-Boring)
• TDIOGEFReader: this is the object which is responsible for actual reading and writing the GEF-

File, based on the definition of the TDIOGEFMapping

To implement the GEF-Boring reader the following steps are needed:
1. Define the object inherited from TDIOContainer to define the Boring. In this case TDIOBoring.
2. Create an object that is inherited from TDIOGEFMapping, e.g. TDIOGEFMappingBoring. Define

the mappings of the GEF data-elements to the DIO object elements:
{ GEF Header mappings }
AddElementMapping(sBoringIDEndDepth, geMeasurementVar,
 CMeasurementVarEndDepth);
{ Scandata mappings }
AddElementMapping(sBoringIDLayerCount, geLastScan, CNoCode);
AddElementMapping(sBoringIDLayers, geScandata, CNoCode);
AddElementMapping(sLayerTopLocation, geColumnInfo, CColumnInfoTop);
AddElementMapping(sLayerBottomLocation, geColumnInfo, CColumnInfoBottom);

Reading a GEF file is the accomplished by the following code:
LGefMappingBoring := TDIOGefMappingBoring.Create;
try
 FDIOBoring.FileFormat := FileFormat;
 FDIOBoring.GefMapping := LGefMappingBoring;
 FDIOBoring.LoadFromFile(sMyBoring);
finally
 LGefMappingBoring.Free;
end;

Delft Cluster-publication: 07.05.04-01

Date:November 2003 DC-OMS Architecture p. 18

7 DelftIO for hierarchical data, Java

7.1 Functionality

According to the approach described in the previous Chapter, a Java package (the ‘Aggregate
package) been made available that implements the general data object layer (see Section 5.1). In fact,
this package offers the same functionality as the TDIOContainer class mentioned in the previous
Chapter. The Aggregates can be created, accessed, and can written/read to/from XML.

Full documentation on the Java Aggregates (functionality, examples of usage, and interface
specification) is available in reference Aggregate Design. In the present report, we just summarize the
interface (see Table Table 6):

Class Property/Method Description
Key Unique identification in persistent format
Name User identification
Type Type of aggregate
FileOwner Denotes whether child files are to be copied or deleted if

requested
Deleted Specifies that the aggregate will be removed when the

aggregate is written in the database.
Parent The parent of the aggregate
Database The database to be used for saving and restoring
Attributes Internal array of Relation objects
GetValue Gets a child object identified by an attribute or a list

index
SetValue Sets a child object identified by an attribute or a list

index. This can mean an insert or an update of a child
object.

AddValue Adds an aggregate as a child object. An attribute is
generated by first taking the type of the aggregate and
then appending a number, in such a way that a unique
attribute is created/

RemoveValue Removes an attribute
GetCount Returns the number of attributes
GetIndex Gets the list index of the specified attribute
SetIndex Sets the specified attribute at the specified position in

the list.
GetAttribute Gets the attribute at the specified list index.

Aggregate

CopyFrom Copies all child objects from a given source aggregate
to this aggregate. An ancestor is given, which specified
when to create a new instance of the child object (if the
child object has the given ancestor as one of it's
ancestors) or when to create a reference to the child
object (otherwise)

Attribute The attribute string
Child The child object

Relation

Owner The aggregate containing the child, mostly equal to the
parent of the child.

Read Abstract definition of the restore methodDatabase
Write Abstract definition of the save method

Delft Cluster-publication: 07.05.04-01

Date:November 2003 DC-OMS Architecture p. 19

Class Property/Method Description
Read Implementation of the restore method for an SQL

database
SQLDatabase

Write Implementation of the save method for an SQL database
Read Implementation of the restore method for an XML

database
Write Implementation of the save method for an XML

database
Import Reads a specified file and returns the aggregate saved in

it.
Export Writes an aggregate to a specified file
SetRoot Defines that aggregates of the specified type will be the

root of an XML file

XMLDatabase

IsRoot Tells whether an aggregates of the specified type is the
root of an XML file

Table 6, Java Aggregates interface

8 DelftIO for data blocks

8.1 Functionality

The Delft IO library for data blocks in fact only implements the application-specific layer (see Section
5.2). The reason for that is that this version of the library is dedicated to a data type that is widely used
in the components of Delft Hydraulics’ SOBEK-applications. This data type contains
Parameter/Location values per Time step, and therefore is known as the PLT type. Figure 3 pictures
the contents of a PLT dataset.

Figure 3, Parameter / Location / Time step dataset

DelftIO-PLT offers a variety of functions for defining (i.e. creating and writing) and getting (i.e.
reading) these PLT datasets.
The PLTs can be exchanged by file (currently only in Delft Hydraulics’s internal formats), and by
means of shared memory. A MPI based interprocess version will be available soon.

8.2 Interface

Parameter
names

location
names

time
step

Delft Cluster-publication: 07.05.04-01

Date:November 2003 DC-OMS Architecture p. 20

An overview of the Fortran 90 interface is given in Table 7. This Fortran 90 interface is used by the
computational core components. For other applications, like:
• Fortran 77 computational cores
• user interface components in SOBEK,
• the model wrappers in the Generic Framework,
interfaces in additional languages (Fortran 77, VB6, Delphi) have been put on top of this Fortran 90
interface.
Full interface documentation is available as HTML-pages at Delft Hydraulics. Detailed information
on the design and implementation can be found in Technical Documentation DelftIO [DELFTIO].

DioPLT, Type definitions
type DioPlt Handle to dataset
DioPLT, functions/subroutine

DioPltDefine

Define a Par./Loc./Time dataset (overloaded
function)
The function returns a handle to the PLT
dataset.

DioPltPut
Put values for a specific Julian time stamp, for
a specific His time step, or for the next time
step (for on line communication)

DioPltGetDataset

Get a Par./Loc./Time dataset, optionally from
a Stream.
The function returns a handle to the PLT
dataset

DioPltOpenedOK
Check if a Par./Loc./Time was opened
successfully

DioPltGetNPar Get number of parameters in the PLT dataset
DioPltGetNLoc Get number of locations in the PLT dataset
DioPltGetNTimes Get number of time steps in the PLT dataset
DioPltGetPars Get the parameter names in the PLT dataset
DioPltGetLocs Get the location names in the PLT dataset

DioPltGetTimes
Get the time steps in the PLT dataset (Julian
time stamps)

DioPltGet Get floats (=reals) for the next time step.

DioPltGetSelection
Get floats (=reals) for a selection of
parameters, locations and time steps; or get all
parameter/location values for one time step

DioPltRewind Rewind a (serial) file containing a PLT
DioPltClose Close and destroy the PLT dataset

Table 7, DelftIO interface for Parameter / Location / Time step datasets

Delft Cluster-publication: 07.05.04-01

Date:November 2003 DC-OMS Architecture p. 21

9 References
[DC-7] Price, R.K.P., Mynett, A.E.M., ed.,
Research Theme 7, Knowledge Management, research programme 1999-2002.
Delft Cluster, 1999.

[DC-OMS] Schrepper, G.M.A., Engering, F.P.H., Hummel, S.,
Basisprojectplan DC Open Model Systeem (DC-OMS),
Delft Cluster, 2000.

[DC- OMS-ARCH] Hummel, S.,
DC-OMS Architectuur Projectplan (Dutch),
Delft Cluster, 2000.

[ARCH-PILOTS] The, B.S.T., Hummel, S.,

DC-OMS Architectuur Pilots (Dutch, contact authors at WL|Delft Hydraulics, GeoDelft),
Delft Cluster, 2002.

[DELFTIO-HIC2000] Hummel, S., The, B.S.T., Branchett, S.E., Brinkman, R.,
DelftIO, Standardized Application Communication
in Proceedings of the 5th International Conference on Hydroinformatics, pp. 630–637, IWA
publishing, London, 2002.

[DUTCH-OMS] Dutch-OMS,
Migrate from SIMONA and Delft3D to one Dutch Open Modelling System (OMS),
http://www.dutch-oms.org (RWS/RIKZ, WL | Delft Hydraulics).

[KRUCHTEN] P. Kruchten,
Modeling Component Systems with UML, (a.o.) in Int. Workshop on Component Based SE, 1998,
http://www.sei.cmu.edu/cbs/icse98/papers/p1.html

[GF-ARCH] Van der Wal, T. (ed.),
Generic Framework Water Architecture,
Generic Framework, The Netherlands, 1999.

[GF-TD] Tacke, J., Brinkman, R., Frieswijk, E., Levelt, D., Otjens, T.,
Generic Framework Technical Design,
Generic Framework, The Netherlands, 2000.

[GEF] Stichting CUR,
GEF, Definition of the GEF language (see GeoNet),
Stichting CUR, Gouda, The Netherlands, 2000.

[GEF-CPT] Stichting CUR,
GEF-CPT-Report, Geotechnical Exchange Format for CPT-Data (see GeoNet),
Stichting CUR, Gouda, The Netherlands, 2002.

[GEF-BORE] Stichting CUR,
GEF-BORE-Report, Geotechnisch uitwisselingsformaat voor Boor-Data (Dutch, see GeoNet),
Stichting CUR, Gouda, The Netherlands, 2002.

Delft Cluster-publication: 07.05.04-01

Date:November 2003 DC-OMS Architecture p. 22

[DELFTWISE] Gijsbers, P.J.A., Brinkman, R., Levelt, D.F.,
DelftWISE specificaties (Dutch),

WL|Delft Hydraulics, 2000.

[XML] World Wide Web Consortium,
XML (Extended Markup Language),
W3C.

[HARMONIT] HarmonIT,
Development and implementation of a European Open Modelling Interface (OpenMI),
http://www.harmonit.org

[DELFTIO] Hummel, S.,
Technical Documentation DelftIO, Fortran 90 / Shared Memory / Tests
Delft Hydraulics, 2002.

[DELFTIO-AGGR] Brinkman, R.,
Aggregate Desing,
Delft Hydraulics, 2003.

Delft Cluster-publication: 07.05.04-01

Date:November 2003 DC-OMS Architecture p. 23

Appendix 1 Context of the DC-OMS-Architecture and DelftIO

As mentioned in the introduction, a DelftIO library will be realised that supports the exchange of data
between the various DC-OMS components. To implement such a library in an optimal way, it should
be clear in which operational and development environments it will be used. The following Sections
will describe these environments.

Inventory of systems and tools at DC-partners

Before specifying the DelftIO library, an inventory has been made of the environments in which the
models of the various DC-partners are developed and run (i.e. the operating systems, programming
languages, and additional tools). The results of this inventory are presented in Appendix B. It appears
that Windows as well as various UNIX platforms are supported, and that the following languages are
in use:
• C / C++ (for user interfaces and computational parts)

On Windows platforms the Microsoft Foundation Classes (MFC) are used, on UNIX the X and
OSF-Motif libraries. Also the multi-platform tool XVT is used.

• Fortran 77 / Fortran 90 (for computational cores)
• Java (for user interfaces)
• Delphi (mainly for user interfaces)

Right now Delphi is only available on Windows. In the ‘Kylix’ project, Borland is porting Delphi
to Linux.

• Visual Basic (for user interfaces)
This environment is only available on Windows.

Effectively this means that, besides of the functional requirements for the DelftIO library from
Section 2.4, there is a strong technical requirement imposed on this library: it should support a wide
variety of languages and platforms.
In short term, it will be difficult to support all languages and platforms at once. Therefore it has been
decided that DelftIO will be developed in different libraries, each supporting the currently most
needed languange and data type combination.

Similar initiatives

The DC-OMS-Architecture is related to comparable Dutch and international initiatives, which are
listed in Table 8. Details of these initiatives can be found in the References (Chapter 9).

Project Partners Focus References
Dutch OMS

(Open
Modelling
System)

RWS/RIKZ, Delft
Hydraulics

Restructuring of modules for 3D
hydrodynamics, transport and morphology;
Design and implementation of an underlying
architecture (‘backbone’) for data exchange,
synchronisation and parallelisation.

Dutch-OMS

GF (Generic
Framework)

Six Dutch
companies and
institutes

Time step based exchange of a varying number
of quantities on a varying number of locations
in several models and/or domains

GF-ARCH,
GF-TD

GEF-Bore CUR, GeoDelft Extension of GEF for storage of bore hole
information

GEF,
GEF-BORE

DIANA-
Specials
Group

TNO-Bouw Design and implementation of a generic library
for accessing hierarchical data
(initially based on Filos, extendible to, for
instance, XML).

No external
reference
available yet

Delft Cluster-publication: 07.05.04-01

Date:November 2003 DC-OMS Architecture p. 24

DelftWISE Delft Hydraulics Delft Hydraulics' System Architecture,
focussing on data exchange, case management
(the DataServer) and module invocation order
and conditions (the WorkflowServer).

DelftWISE
specificaties

HarmonIT Twelve
European
companies and
institutes

Data exchange between hydrodynamics,
transport and other models.

HarmonIT

Table 8, Related and comparable initiatives

Given the focus of these projects, Table 9 describes the consequences for the DC-OMS-Architecture
and especially for the DelftIO library.

Project Consequences for DC-OMS-Architecture
Dutch OMS DelftIO must support effective exchange of large <n>D-data-arrays.

GF (Generic
Framework)

DelftIO must be implemented in such a way, that one of the exchange
mechanisms is the one used in GF

GEF-Bore DelftIO must be able to read a GEF-Bore file
DIANA-Specials
Group

DelftIO must be compatible to the C++-library of the DIANA Specials Group

DelftWISE DelftIO must be able to attach to the DelftWise DataServer and the DelftWise
WorkflowServer

HarmonIT No implications yet, however: the DelftIO developers should keep track of the
progress of and developments in HarmonIT.

Table 9, Consequences for DelftIO

Delft Cluster-publication: 07.05.04-01

Date:November 2003 DC-OMS Architecture p. 25

General Appendix: Delft Cluster Research Programme Information

This publication is a result of the Delft Cluster research-program 1999-2002 (ICES-KIS-II),
that consists of 7 research themes:
►Soil and structures,►Risks due to flooding,►Coast and river , ►Urban infrastructure,
►Subsurface management,►Integrated water resources management,►Knowledge management.

This publication is part of:

Research Theme : Knowledge Management

Baseproject name : DC-OMS (Delft Cluster Open Modeling Systems)

Project name : DC-OMS Architectuur

Projectleader/Institute Ir. S.Hummel GeoDelft

Project number : 07.05.04

Projectduration : 01-04-2000 - 30-06-2003

Financial sponsor(s) : Delft Cluster

GeoDelft

WL|Delft Hydraulics

TNO Construction

Stowa (GF, Generic Framework)

Projectparticipants : WL|Delft Hydraulics

GeoDelft

TNO Construction

Total Project-budget : € 200.000

Number of involved PhD-students : 0

Number of involved PostDocs : 0

Keverling Buismanweg 4 Tel: +31-15-269 37 93
Postbus 69 Fax: +31-15-269 37 99
2600 AB Delft info@delftcluster.nl
The Netherlands www.delftcluster.nl

Delft Cluster is an open knowledge network of five
Delft-based institutes for long-term fundamental strategic
research focussed on the sustainable development of
densely populated delta areas.

Delft Cluster-publication: 07.05.04-01

Date:November 2003 DC-OMS Architecture p. 26

Theme Managementteam: Knowledge Management

Name Organisation

Prof. R.K. Price IHE

Prof. Dr. Ir. A.E. Mynett WL|Delft Hydraulics

Projectgroup

During the execution of the project the research team included:

Name Organisation

Stef Hummel WL|Delft Hydraulics

Tom The GeoDelft

Jos Jansen TNO Construction

Susan Branchett TNO Construction

	DC-OMS Architecture
	Abstract
	Executive Summary
	Applicability for the sector
	Societal Relevance of the research
	Table of contents
	1 Introduction
	2 Components and their collaboration
	2.1 Components
	2.2 Data exchange
	2.3 Data types
	2.3.1 Data exchange MSettle/DIANA
	2.3.2 Data exchange Generic Framework models

	2.4 Requirements for the DC-OMS-Architecture

	3 DC-OMS-Architecture specification
	3.1 Component specification
	3.2 Data specification

	4 Dc-Oms-Architecture and DelftIO context
	5 DelftIO design and implementation
	5.1 The general DelftIO Data Object layer.
	5.2 The Application Object Specific layer.

	6 DelftIO for hierarchical data, Delphi
	6.1 Functionality
	6.2 Usage
	6.3 Interface
	6.4 DIO-Library GEF Implementation

	7 DelftIO for hierarchical data, Java
	7.1 Functionality

	8 DelftIO for data blocks
	8.1 Functionality
	8.2 Interface

	9 References
	Appendix 1 Context of the DC-OMS-Architecture and DelftIO

