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Abstract
Continuous Human Activity Recognition (HAR) in arbitrary directions is investigated in
this paper using a network of five spatially distributed pulsed Ultra‐Wideband radars.
While activities performed continuously and in unconstrained trajectories provide a more
realistic and natural scenario for HAR, the network of radar sensors is proposed to
address the issue of unfavourable or occluded perspectives when using only a single
sensor. Different techniques to combine the relevant information from the multiple ra-
dars in the network are investigated, focussing on signal level fusion directly applied on
Range‐Time maps, and the selection of radar nodes based on location and velocity of the
target derived from multilateration processing and tracking. Recurrent Neural Networks
with and without bidirectionality are used to classify the activities based on the micro‐
Doppler (μD) spectrograms obtained for sensor fusion techniques. To assess classifica-
tion performances, novel evaluation metrics accounting for the continuous nature of the
sequence of activities and inherent imbalances in the dataset are proposed and compared
with existing metrics. It is shown that the conventional accuracy metric may not capture
all the important aspects for continuous HAR, and the proposed metrics can be
considered for a more comprehensive evaluation.

KEYWORD S
distributed sensors, micro Doppler, radar target recognition, radar tracking, signal classification, ultra wideband
radar

1 | INTRODUCTION

Monitoring Activities of Daily Living (ADL) by radar has
gained attention for safe and independent ageing‐in‐place of
older and vulnerable subjects. This includes recordings of
critical events such as falls, monitoring abnormalities in
movements and activities, and in general, providing an
appraisal of wellbeing in terms of cognitive and physical
state [1–3].
As Human Activity Recognition (HAR) by radar is typically

exploiting micro‐Doppler (μD) signatures of human move-
ments, distributed networks with multiple cooperating radars
have attracted significant interest to address the issue of
reduced μD signatures recorded at unfavourable aspect angles
[4–9]. However, the focus has been often on the classifier's
architectures, that is, neural networks [3], including those in our

work [10]. To the best of our knowledge, there are only limited
experimental studies on the most suitable number and topol-
ogy of the different radar sensors for HAR, and on the most
effective fusion techniques to combine their data [6, 11].
Hence, such questions remain widely open in HAR.
Griffiths et al. [12, 13] investigated drone payload classifi-

cation using 3 multistatic radar nodes and achieved superior
results by voting‐based decision fusion among independent
classifiers (named as ‘binary voting’ and ‘threshold voting’).
The same authors [14, 15] also investigated the usage of
handcrafted features of μD spectrograms (e.g. their centroid
and bandwidth) for other classification tasks based on the same
multistatic radar network of 3 nodes. These tasks included gait
analysis of individuals alone and in pairs to identify whether
they were armed or unarmed in outdoor surveillance scenarios.
Even in this case, decision fusion appeared to provide the best
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classification results, but little investigation was devoted to
lower level signal fusion approaches.
Unlike the aforementioned studies, this paper investigates

novel lower‐level fusion approaches applied to a network of
five spatially distributed monostatic radars simultaneously
observing a surveillance area. The proposed fusion schemes
aim to combine data from a selection of different radar nodes
prior to the generation of the μD spectrogram used for clas-
sification. Specifically a fusion method based on incoherent
fusion of the Range‐Time (RT) domain data from each radar
node is investigated. While rather simple in terms of compu-
tation, this approach proves to be the most effective in terms
of overall classification results, with the following potential
advantages given:

■ Minimising the number of classifiers to be defined and
trained in the pipeline to one.

■ Avoiding complex methods to combine the partial decisions
from separate classifiers.

■ Using one single μD spectrogram representation for the
whole network, containing information from all nodes with
computational simplicity.

Furthermore, two approaches are evaluated to select a
subset of the available radar nodes for the subsequent fusion
process. The first approach is the orthogonal radar selection,
whereby two radar nodes with orthogonal lines of sight are
selected in order to capture μD signatures along both the radial
and tangential directions. While this selection is static and done
once and for all, with the second approach, a dynamic selection
of the radar nodes is performed. In this weighted radar se-
lection, the location, velocity, and heading of the target are first
estimated by multilateration processing [16] combined with a
simple alpha‐beta‐(gamma) – α, β, (γ) tracking filter. Then, a
weighting function is implemented to select at any given time
the most suitable radar for classification, that is, the closest
radar to the target (thus assuming the highest SNR), or the one
radar with the most favourable aspect angle to the trajectory
(thus assuming the richest micro‐Doppler information).
The aforementioned different radar data fusion methods

are explored in this paper in the context of classifying
continuous sequences of human activities, as opposed to the
more conventional classification of artificially separated activ-
ities [6, 17, 18]. These continuous activities represent more
realistic and natural scenarios to evaluate radar‐based HAR
algorithms, where the transitions between different activities
can happen at any time and undefined instants. If performed
along unconstrained trajectories and directions, the classifica-
tion of such activities can clearly benefit from the multi‐
perspective views of distributed radar networks.
However, as discussed in our preliminary results in [19],

HAR on continuous sequences benefit from additional, alter-
native performance evaluation metrics beyond simple accuracy
or quantities directly extracted from confusion matrices,
regardless of the nature of the radar used for recording, that is,
monostatic or distributed/multistatic. Specifically, four aspects
of continuous HAR data need to be considered.

First, the Continuity. The activities are performed in a
natural way―a continuous sequence, where transitions between
them are not only happening at arbitrary times, but also
extended in time. So, it is difficult to pinpoint precisely the time
instant where one activity ends and the following activity starts,
even in the ground truth. Then the presence of Misalignments.
As a consequence of the difficulty to estimate precisely the
time instant of activity transitions, misalignments between
ground truth and predictions label can happen, that is, time
offsets between ground truth and predictions. Depending on
the overall goal of the HAR system, one needs to establish how
important such misalignments are in terms of the performance
evaluation of classification algorithms. Furthermore, the
possible Interruptions. As an activity occupies an extended
number of time bins, an ideal prediction would have the cor-
responding correct label for all of them. However, there may
be cases where the classifier returns temporary short fluctua-
tions (i.e. outliers) in the predicted label for one or a limited
number of time bins. This fluctuation of the predicted label is
generally overlooked when classifying human activities as
artificially separated, ‘snapshot’ images, and not captured when
using conventional evaluation metrics for continuous‐time
sequences. Finally, the Imbalance in the dataset. When evalu-
ating realistic sequences of activities, imbalances in the dataset
will naturally appear due to different occurrences and time
spans of activities during an observation period. As in this
paper, a typical example can be the prevalence of the ‘walking’
class while participants move about in the room to perform
single instances of other in‐place activities. Furthermore,
another typical situation is the small amount of available
samples for critical activities, such as ‘falling’.
To account for the continuous nature of human activities

and provide a more insightful performance analysis based on
the aforementioned aspects, this paper discusses a collection of
10 possible evaluation metrics with their advantages and dis-
advantages. These metrics are used to evaluate the different
radar data fusion methods on an experimental dataset with 5
radar nodes, 15 participants, and 9 labelled activity classes. The
presented methods are validated for single human target cases.
Although more complex scenarios exist, such as multiple in-
dividuals in the field of view or individuals with domestic an-
imals, these are left for future research work.
To summarise, the main contribution of this paper are:

■ Novel fusion methods to combine data from radars in a
spatially distributed network are investigated, focussing on
signal level fusion and selection of a subset of nodes to
improve HAR performances.

■ Original classification performance metrics are shown to
account for the continuous nature of human activities.
These metrics are used to evaluate an experimental dataset
containing data from 5 radar nodes, with 15 participants
performing unconstrained and continuous sequences of 9
activities.

■ Four Recurrent Neural Networks (RNNs) are used as
classifiers for HAR, namely Gated Recurrent Unit (GRU)
and Long Short‐Term Memory (LSTM), including their
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bidirectional implementation. These architectures are
considered very suitable for HAR based on continuous
sequences, as they can take directly as input a μD sequence.

The rest of the paper is organised as follows. Section 2
describes the experimental setup, the collected dataset, and the
class set distribution plus their separability, followed by Sec-
tion 3 showing the multilateration tracking approach. Section 4
presents the proposed fusion schemes for distributed radar
sensors. The evaluation metrics are introduced in Section 5 and
afterwards the hyperparameter tuning for the used RNN in
Section 6. The experimental results are presented in Section 7,
and final remarks are given in Section 8.

2 | EXPERIMENTAL SETUP AND
COLLECTED DATASET

2.1 | Experimental setup

Five Ultra‐Wide Band (UWB) radar nodes by Humatics P410
(former PulsON) are simultaneously employed with coded
waveform capabilities minimising interference between nodes.
The in‐phase back‐scattered signal is recovered by filter banks,
with the quadrature component obtained by Hilbert transform.
The Pulse Repetition Frequency (PRF) fPRF is equal to 122 Hz
(corresponding to a Pulse Repetition Interval [PRI] of 8.2 ms).
The unambiguous Doppler frequency results in �61 Hz
(�2.2 m/s), and the radar filterbanks have a time‐of‐flight
sampling rate of τ = 61 ps. The range resolution (rres) by us-
ing a bandwidth of B = 2.2 GHz is 68 mm according to
rres ¼ c

2⋅B.
The radar nodes are deployed over a circular baseline, with

a spacing of approximately 45° between them, covering a
surveillance area of about 4.39 m as shown in Figure 1.

2.2 | Dataset and class distribution

Continuous sequences of activities are recorded with 15 par-
ticipants available in a public dataset1 [20]. Test and training
data procedure is performed by excluding one participant from
the training data for testing. The procedure is well known as
leave one person out (L1PO). For all participants, each of the
collected recording has a total duration of 2 min, with all ac-
tivities performed at predefined locations (sequence type A),
and at freely chosen locations within the surveillance area
(sequence type B). It should be noted that the participants were
free to move in unconstrained directions between performing
each activity, and to face random directions in terms of aspect
angles to the five radars.
While nine activities were recorded, these were grouped

into 5 classes, namely: (I) ‘translation’ activities (i.e., essentially
walking); (II) ‘stationary’ activity (i.e., essentially the position of

standing between two other activities without performing any
specific movement); (III) ‘in‐place’ activities (namely, sitting
down, standing up from sitting, bending while sitting and
standing); (IV) ‘falling’ (including both falling from standing or
walking); and (V) ‘standing up from falling’.
This decision in terms of grouping activities together into

‘macro‐classes’ came from limited practical benefits gained by
too fine‐grained separation of very similar in‐place classes such
as ‘bending from walking’ and ‘bending from standing’, or by
distinguishing ‘falling from walking’ and ‘falling from standing’.
This also reduces in part the imbalance or skewness of the dataset
by grouping together minority classes of activities for which few
samples were available, especially the ‘in‐place’ activities. The t‐
distributed Stochastic Neighbor Embedding (tSNE) represen-
tation for the features extracted from the μD domain of the
original 9 classes and for the grouped 5 ‘macro‐classes’ are
presented in Figure 2 after feature scaling performed.
Furthermore, the pie diagram in Figure 3 illustrates the

sample distribution for the collected dataset after the class
grouping. As mentioned in the introduction, continuous ac-
tivities recorded in semi‐natural conditions may lead to
imbalanced datasets where walking is predominant compared
to in‐place activities or critical activities like fall events. This is
visualised with the ‘walking’ class being about 50% of the
dataset. Without resorting to generation of synthetic data to
correct for the imbalance [21], its effect in performance
assessment is addressed by the parameter optimisation process
shown in Section 6, where the dispersion using the standard
deviation of the F1 score across classes has been included in
the metrics evaluation process by minimising the F1 score
fluctuation as shown in Equation (31).

3 | MULTILATERATION AND
TRACKING APPROACH

This section introduces multilateration based localisation to
determine the target's position and is followed by an alpha‐
beta‐(gamma) – α, β, (γ) filter that is applied to estimate the
smoothed target's location, velocity, and acceleration. These are
then used in the selection of the radar nodes to be involved in
the data fusion process prior to classification. The multi-
lateration processing and the tracking approach with the α, β,
(γ) filter can be considered as subsequent processing ‘blocks’

F I GURE 1 Distributed radar network with five radars observing a
surveillance area of about 4.39 m in diameter at the MS3 laboratory, TU
Delft

1
Dataset doi: 10.4121/16691500.v2
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one after the other. Specifically, while the target's location can
be estimated directly from the multilateration processing, the
tracking filter is used for smoothing the location and addi-
tionally extracting the single target's velocity and acceleration.
Although more advanced methods such as various imple-
mentations of the Kalman filter may be applied, in this paper
the simpler α, β, (γ) filter provides satisfactory results for the
next stage of selection of radar nodes based on the target's
state, which is described in Section 4.3.

3.1 | Multilateration positioning

Multilateration processing is applied to estimate the target's
location in a multi‐sensor system. Hence, the system is an over‐

determined equation system, as it can easily be seen in Figure 4.
The peak power of the range pulse as in [22] provides the
radial range, rnx of the nth radar with known radar node
location (xnx, ynx). The target's estimated position ~x;~yð Þ can be
expressed as follows:

~x − x1ð Þ
2
þ ~y − y1ð Þ

2
¼ r21

~x − x2ð Þ
2
þ ~y − y2ð Þ

2
¼ r22

⋮ ⋮ ⋮ ⋮

~x − xNxð Þ
2
þ ~y − yNxð Þ

2
¼ r2Nx

8
>>>>><

>>>>>:

ð1Þ

Equation (1) is linearised for five radars such as:
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Walking
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Sitting down
Standing up
Bending (Sit)
Bending (Sta)
Falling (Wal)
Standing up (Fal)
Falling (Sta)

-50 0 50
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Falling
Standing up (Fal)

(a) (b)

F I GURE 2 The t‐SNE distribution shown for the original 9 classes and their combinations into 5 ‘macro‐classes’ to be classified. (a) before class
combination; (b) after combining classes to ‘macro‐classes’, such as, in‐place ← [sitting down, standing up, and bending] falling ← [falling from walking, and
falling from standing]

Walking
(50.32%)

Stationary
(27.79%)

in-place
(10.37%)

Falling
(4.51%)

Standing up (F)
(7.00%)

F I GURE 3 The pie diagram shows the imbalance of classes with the
minority and majority classes of ‘falling’ and ‘walking’ below 5% and above
50%, respectively

F I GURE 4 The distributed layout for the radar network uses five
nodes. The target's location is estimated by the intersections of the
determined ranges of each node using multilateration processing
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Then, Equation (2) can then be rewritten in matrix nota-
tion as follows:

A ¼
2 x1 − x5ð Þ 2 y1 − y5ð Þ

⋮ ⋮
2 x4 − x5ð Þ 2 y4 − y5ð Þ

2

4

3

5 ð3Þ

b¼
x21 − x25 þ y21 − y25 þ r25 − r21

⋮ ⋮ ⋮
x24 − x25 þ y24 − y25 þ r25 − r24

2

6
4

3

7
5 ð4Þ

The over‐determined equation system is solved by an or-
dinary least squares (OLS) estimation that minimises the error.
Thus, the target coordinates can be calculated as follows:

~xn ¼
~x
~y

� �

¼ ATA
� �−1

ATb ð5Þ

where ATA
� �−1

AT is the Moore–Penrose inverse and (⋅)n is
the discrete‐time instant index [16, 23, 24].

3.2 | Alpha beta (gamma) – α, β, (γ) filter

The output of α, β, (γ) filter is used to estimate the location,
velocity and acceleration of the single target in the scene,
respectively. The tracking filter is jointly used for track
smoothing, essential for slow performing movements as those
in HAR.
The estimated and unfiltered location is indicated as

~xn ¼ ~x;~y½ �
T attained from Equation (5) in Section 3.1. The

filter model is given by:

Xnþ1;n ¼ FXn;n ð6Þ

with the prediction state X, while F defines the target kine-
matic. The kinematic dependencies are expressed such as:

x̂nþ1;n ¼ x̂n;n þ _̂xn;nΔt þ €̂xn;n
Δt2

2
ð7aÞ

_̂xnþ1;n ¼ _̂xn;n þ €̂xn;nΔt ð7bÞ

€̂xnþ1;n ¼ €̂xn;n ð7cÞ

with _̂x and €̂x being the velocity and acceleration, respectively.
The target states in Equation (7) can be formulated in matrix
notation such as:

Xnþ1;n ¼

x̂nþ1;n
_̂xnþ1;n
€̂xnþ1;n

2

6
4

3

7
5¼

1 Δt
Δt2

2

0 1 Δt

0 0 1

2

6
6
6
6
4

3

7
7
7
7
5

x̂n;n
_̂xn;n
€̂xn;n

2

6
4

3

7
5

¼ FXn;n

ð8Þ

Xnþ1;n ¼

x̂nþ1;n
ŷnþ1;n
_̂xnþ1;n
_̂ynþ1;n
€̂xnþ1;n

€̂ynþ1;n

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

¼

1 0 Δt 0
Δt2

2
0

0 1 0 Δt 0
Δt2

2
0 0 1 0 Δt 0

0 0 0 1 0 Δt

0 0 0 0 1 0

0 0 0 0 0 1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

�

x̂n;n
ŷn;n
_̂xn;n
_̂yn;n
€̂xn;n

€̂yn;n

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

ð9Þ

The track update equations enclosing the present mea-
surement, ~xn, are given by:

x̂n;n ¼ x̂n;n−1 þ α ~xn − x̂n;n−1
� �

ð10aÞ

_̂xn;n ¼ _̂xn;n−1 þ β
~xn − x̂n;n−1

Δt

� �

ð10bÞ

€̂xn;n ¼ €̂xn;n−1 þ γ
~xn − x̂n;n−1

1
2 Δt2

� �

ð10cÞ

with the residual error included as ~xn − x̂n;n−1. Δt is the time
between instantaneous measurements and refers to the PRI.
The location‐, velocity‐, and acceleration parameters of the

~x − x1ð Þ
2
þ ~y − y1ð Þ

2 − ~x − x5ð Þ
2 − ~y − y5ð Þ

2
¼ r21 − r25

~x − x2ð Þ
2
þ ~y − y2ð Þ

2 − ~x − x5ð Þ
2 − ~y − y5ð Þ

2
¼ r22 − r25

⋮ ⋮ ⋮ ⋮
~x − x4ð Þ

2
þ ~y − y4ð Þ

2 − ~x − x5ð Þ
2 − ~y − y5ð Þ

2
¼ r24 − r25

8
>>>><

>>>>:

ð2Þ
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tracking filter, α, β, and γ, respectively, are found empirically
[25]. The prediction states from the tracking filter are used for
the selection of radar nodes and subsequent data fusion, as
described in Section 4.3.

4 | RADAR DATA FUSION APPROACHES

This section presents the proposed signal and feature fusion
approaches for the network of five UWB radars for HAR. The
notation in this section is defined as in Table 1, and the feature
vector length obtained from one μD spectrogram is defined by
k with feature scaling performed. Furthermore, Figure 5 shows
schematically the proposed fusion approaches presented in this
work and compared to the case of a single radar sensor being
used.

4.1 | Signal level fusion

The received radar echoes in fast time provide the target's
radial range. The main lobe is typically associated with the
target's position and the sidelobes defining the noise floor,
assuming sufficient SNR conditions. The simple summation of
the complex Range‐Time (RT) matrices from all radar nodes
implements incoherent signal‐level fusion as:

Xðm; tÞ ¼
1
Nx

XNx

nx¼#1

χðm; tÞðnxÞ ð11Þ

The obtained RTmatrix,X(m, t), contains information from
all radar nodes, as shown in the pipeline in Figure 6. This
resulting matrix is further used to calculate a μD spectrogram to
be fed as input to the classifier of choice after feature scaling.
The Short‐time Fourier transform (STFT) is applied on the

RT, X(m, t), as in [26]. The resulting μD spectrogram, Ψ(m’,t’),
contains the Doppler/velocity information of the target from
all nodes, where m’ refers to the μD spectrogram frequency
bins and t’ indicates the slow‐time bins, respectively. A variety
of STFT window sizes and overlap values were tested for the
best performance between clutter suppression and clarity of
limb motions. Clutter cancelation is performed by subtracting
the average Doppler frequencies from the μD spectrogram,
with satisfying classification achieved with the STFT overlap of
10 samples (82 ms → t’), and a Hanning window size of 150
samples (1.23 s) [22, 27].
Afterwards, the proposed method uses directly the slow‐

time bins of the resulting μD spectrogram as feature vectors
for classification based on Recurrent Neural Networks (RNN)
[28], rather than using sliding windows or other techniques to
segment the flow of continuous activities.

4.2 | Feature level fusion

Feature level fusion is applied on the individual μD spectro-
grams, indicated as ψnx(m’,t’). Thus, the STFT is applied on

the individual RT plot from each radar node, χnx(m, t), as
computed in [26], where (⋅)nx indicates the radar. Feature
fusion concatenates the individual μD spectrograms from each
radar node as:

Ψðm’; t’Þ ¼ ψ1ðm’; t’Þ
T
;ψnxðm’; t’Þ

T
;…;ψNxðm’; t’Þ

T
h iT

ð12Þ

with, t’, the slow time bins of the μD spectrogram. It should be
noted that the slow‐time sampling t of the RT map, χnx(m, t),
depends on the PRF of the radars, whereas the slow‐time
sample t’ of the μD spectrogram, ψnx(m’,t’), depends on the
STFT window and overlap parameters.
Both the proposed feature fusion and the signal level fusion

presented in Section 4.1 use information from all the radar nodes
in the network. However, with feature fusion, the length of the
resulting feature vector isNx� k, thus Nx times long compared
to signal level fusion (where in our case Nx is equal to five, the
total number of radar nodes in the network). Hence, an advan-
tage of signal level fusionmay be the dimensionality reduction of
the resulting feature vector.

4.3 | Weighted radar selection over time

As discussed in the previous section, feature fusion increases
the dimensionality of the feature vector by the number of radar
nodes used. Hence, there could be an advantage in reducing
the number of radars used in the fusion process by only
keeping those providing relevant information for classification.
In the proposed weighted radar selection, this process is not
done once and for all, but dynamically adjusted based on the
target behaviour. The position and movement of the target are
used to select the most suitable radar with respect to (w.r.t.) the
proposed weight function in Equations (13)–(15).
First, the prediction states of the alpha beta (gamma) – α,

β, (γ) filter from Section 3.2 provides the location, velocity, and
acceleration of the target ½x̂nþ1;n; _̂xnþ1;n; €̂xnþ1;n�. As the posi-
tion of the radar nodes xnx ¼ xnx; ynx½ �

T is assumed known, the
Euclidean distance computes the length of the vector differ-
ences and defines the target's distance to each node such as
k~ηnxkl2 ¼ kxnx − x̂nþ1;nkl2. It should be noted that the discrete
time index, (⋅)n+1,n, will be neglected for convenience to
improve the readability.

TABLE 1 Notation for radar data fusion approaches in Section 4

k/K Individual/total feature vector length

nx/Nx Individual/total radar nodes with {#1, …, #5}

χnx/X Individual/combined range‐time (RT) map

ψnx/Ψ Individual/combined μD spectrogram feature map

m/t RT map fast time –, and the slow‐time index

m0/t0 μD spectrogram frequency bin –, and the slow‐time index
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Then, a weighting function can be computed as:

w ηð Þ ¼
1

~ηnxk k
4
l2

PNx

nx¼#1

1
~ηnxk k

4
l2

¼
1

PNx

nx¼#1
~ηnxk k

−4
l2

1
~η1k k

4
l2

1
~η2k k

4
l2

⋮
1

~ηNxk k
4
l2

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

ð13Þ

where the term 1/(⋅)4 is related to the SNR distance‐power
relationship inspired by the radar equation [29]. The denomi-
nator,

PNx
nx¼#1 ~ηnxk k

−4
l2 , is a normalisation term such that

PNx
nx¼#1wnxðηÞ ¼ 1, for wðηÞ ¼ w1ðηÞ;wnxðηÞ;…;wNxðηÞ½ �

T .
The radar associated with the maximum value of the weighting
function at a given time is the one selected for the subsequent
classification process, typically the one physically closest to the
target and typically providing the highest SNR. Only its feature
vector is forwarded to the RNNclassifier as sketched in Figure 5.
Two further weight functions are formulated accounting

for the target's aspect angle, cos(ϕnx), and radial velocity, ϒnx,
respectively. As previously shown, the first partial derivative of
the predicted state, _̂xnþ1;n is the velocity. The projection of the
velocity onto the line‐of‐sight vector,~ηnx, is the radial velocity

to each radar node such as, ϒnx ¼
_̂x⋅~ηnx
~ηnxk k

2
l2

~ηnx. The weight

function of the person's velocity to the radar nodes is
computed similar to Equation (13) such as:

w ϒð Þ ¼
~ϒnx

�
�
�

�
�
�
l2

PNx

nx¼#1

~ϒnx

�
�
�

�
�
�
l2

ð14Þ

with ⋅k kl2 (the l2‐norm) as the absolute velocity w.r.t. the radar
nodes.
The target's aspect angle to the radar nodes is determined

by the angle between the velocity vector, _̂xnþ1;n, and the line‐
of‐sight vector, ~ηnx such as, cos ϕnxð Þ ¼

_̂x⋅~ηnx
_̂xnxk kl2

⋅ ~ηnxk kl2

. The

weight function of the target's aspect angle to the radar nodes
is then computed as:

w cos ϕnxð Þð Þ ¼
cos ϕnxð Þj j

PNx
nx¼#1 cos ϕnxð Þj j

ð15Þ

with the angle term cos ϕnxð Þ ranging between [‐1,1] and
0 indicating a tangential movement to the radar node ( ⋅j j
denotes the absolute value). It should be noted that the

F I GURE 5 Sketches of the proposed fusion approaches of ‘signal fusion’, ‘feature fusion’, ‘weighted radar selection’, and ‘orthogonal radar selection’ (in
two forms) compared with ‘single radar’ classification applied for HAR in a distributed radar network

Classifier

Time [sec]

F I GURE 6 Pipeline of incoherent signal fusion, from individual
Range‐Time (RT) maps to one μD spectrogram used for the Recurrent
Neural Network (RNN) classifier
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aspect angle of facing the radar, cosð0Þj j = 1, as well as
facing away, cosð2πÞj j = 1, are expected to provide the
highest Doppler response and radar cross‐section for HAR
(i.e., directly facing back or torso of the person). The radar
node associated with the maximum value of the weighting
function w(ϒ) or w cos ϕnxð Þð Þ at a given time is the one
selected for the subsequent classification process, essentially
the one perceiving the highest radial velocity or located at the
most superior aspect angle, respectively.
It should be noted that during this research test which

combines the aforementioned weight functions as
w¼ wðηÞ ⋅ wðϒÞ ⋅ w cos ϕnxð Þð Þ were performed, but led to
limited performance improvement, hence they are not re-
ported in this paper.

4.4 | Orthogonal radar (static) data fusion

It has been found that classification of unconstrained HAR
using a single radar suffers from the lack of recognition
capabilities of orthogonal movements, that is, tangential to
the line of sight. Hence, with orthogonal radar fusion a pair
of 2 nodes are deliberately chosen in the network with lines
of sight along radial and tangential directions. As shown in
Figure 5, this orthogonal pair of radars is separated by a
quarter circle (90°). The choice of this pair of radars is
static, that is, not changing during the measurement. An
example of a resulting 2D‐µD spectrogram is shown in
Figure 7, with velocity (Doppler) components in principle
covering all standard movement directions needed for un-
constrained HAR.
Two possible selections are considered in this paper:

■ Orthogonal radars 2&4. The chosen subset of radar nodes
nx = {#2, #4} with the RT maps χ#2(m, t), and χ#4(m, t)
are used to extract the μD spectrograms by applying the
STFT. The resulting μD spectrograms ψ#2(m’,t’), and
ψ#4(m’,t’) are combined via feature fusion as

Ψðm’; t’Þ ¼ ψ#2ðm’; t’Þ
T
;ψ#4ðm’; t’Þ

T
h iT

and then used

for classification. The feature vector domain doubled in size
compared to using a single radar or the signal level fusion in
Section 4.1.

■ Orthogonal radars one‐fifth&3. Here the orthogonal radar
nodes #1 and #5 are first incoherently fused at signal level
as in Section 4.1, as: X#1;#5ðm; tÞ← 1=N

P#5
nx¼#1χnxðm; tÞ.

Then the STFT applied on the concatenated RT domain
X#1;#5ðm; tÞ
� �

obtains the spectrogram as: ψ#1;#5ðm’; t’Þ
← STFT X#1;#5ðm; tÞ

� �
. Finally, feature fusion is per-

formed together with node #3 needed for generating the
2D‐µD spectrogram of the target of interest such as

Ψ#1;#5;#3ð2m’; t’Þ ¼ ψ#1;#5ðm’; t’Þ
T
;ψ#3ðm’; t’Þ

T
h iT

. Thus,

the concatenated features are used for subsequent classifi-
cation with a feature vector length of 2 � k ≔ 2 � len(m’).

4.5 | Summary of radar data fusion
approaches

This section introduced different fusion methods for
combining data collected by distributed radar nodes. Low
level signal fusion combines directly the RT data of
different radars and generates one single μD spectrogram
for classification, hence a feature vector with size equivalent
to just using only one radar. Feature fusion calculates and
concatenates the spectrograms from different nodes, hence
enlarging the size of the feature vector. Rather than
selecting all nodes all the time for feature fusion, only pairs
of orthogonal radars have been considered. Furthermore, a
weighted radar selection over time has been formulated,
whereby the most suitable radar node is selected at any
given time based on a criterion mapped to a weighting
function (i.e. the closest radar to the target, the one with
the most favourable aspect angle, or velocity presented).
The proposed methods are summarised in Table 2, and
their performances will be compared to just using one
single radar for classification, as if there was no distributed
radar network.

5 | EVALUATION METRICS

In this section, evaluation metrics for continuous and un-
constrained HAR introduced in our earlier work [19] are
described in detail using the notation in Table 3. These
metrics will be used in the following sections for perfor-
mance assessment.

5.1 | Accuracy

To compare predictions and ground truth labels the identity
function for each class c IðcÞ ŷp; yp

� �
is introduced to measure

incorrect predictions:

F I GURE 7 The 2D orthogonal spectrogram spanning an x‐and y‐
plane over time domain generating the 2D‐µD spectrogram
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I ðcÞ ŷp; yp
� �

¼
0← ŷp ¼ yp
1← ŷp ≠ yp

�

ð16Þ

The number of misclassifications is provided by:

MðcÞ ¼
1
P

XP

p¼1
IðcÞ ŷp; yp
� �

ð17Þ

with the resulting accuracy being equal to:

AðcÞ ¼ 1 − MðcÞ ð18Þ

When evaluating classification performances, the accuracy
metric does not capture inequalities of false negative (fn) and
false positive (fp), and does not account for imbalanced
datasets. This may lead to overlook drops in performance [30].

5.2 | Fβ score (F1) with precision, recall and
specificity

The Fβ score (F1) provides a more concise metric accounting
for fn and fp imbalances, and consists of a combination of
precision and recall. Together with precision, recall, and Fβ
score (F1), the specificity can be also computed as:

precision¼
tp

tpþ f p
ð19aÞ

TPR¼ sensitivity¼ recall¼
tp

tp þ f n
ð19bÞ

TNR¼ specificity¼
tn

tn þ f p
ð19cÞ

Fβ
ðcÞ ¼ 1þ β2

� �
�

precision� recall
β2 ⋅ precisionþ recall

ð19dÞ

In the formula for the Fβ score, precision and recall are
evenly treated if β = 1, known as the F1 score. Otherwise, the
formula favours precision if β > 1 [31].

5.3 | Dice index

The Dice similarity index (also named as Sørensen‐Dice co-
efficient) normalises the length of the vector labels ŷ and
ground truth y, and divides them by the total number of non‐
zero entries. Multiplication by a factor of 2 scales the mea-
surement range between [0, 1] with 1 indicating label vectors
identical to the ground truth [32]. It is expressed as:

DiceðcÞ ¼ 2�
Â ∩ A
�
�
�

�
�
�

jÂj þ Aj j
¼

2tp
2tpþ f pþ f n

ð20Þ

5.4 | Jaccard index

The Jaccard index or Tanimoto coefficient defines the inter-
section divided by the union of two label vectors.

JacðcÞ ¼
Â ∩ A
�
�
�

�
�
�

Âj þ Aj j − Â ∩ A
�
�
�

�
�
�
¼

tp
tp þ f pþ f n

ð21Þ

It should be noted that the denominator denotes the union
as jÂj þ Aj j − Â ∩ A

�
�
�

�
�
�¼ Â ∪ A
�
�
�

�
�
�.

5.5 | Consecutive block detection (CBD)

This proposed metric considers and penalises interruptions
and misalignments in the sequence of predicted samples, ŷp,
with respect to the corresponding ground truth labels, yp. To
the best of our knowledge, this aspect is not always well
considered in the literature when evaluating radar‐based HAR
for continuous activities.

TABLE 2 Overview of the fusion
methods for distributed radar and the relative
feature vector length together with the
author's objective notes

Fusion method Feature size Notes

Signal fusion K Best case reference

Feature fusion 5�k Longest feature vector

Weighted radar fusion K Tracker needed

Orth. fusion {#2,#4} 2�k Not all nodes included

Orth. fusion {#1,#5,#3} 2�k Not all nodes included

Single radar K Not suitable for unconstrained HAR

TABLE 3 Notation for metric definitions in Section 5

y, A/by; bA Ground truth/predicted label/area

y/by Mean ground truth/mean predicted samples

s/bs Ground truth/predicted block

(⋅)p, P Sample, set of samples

(⋅)(c) Class index (later neglected for readability)

tp; tn; fp; fn True/false positive/negative rate
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5.5.1 | Unweighted consecutive block detection
(CBD)

Firstly, the individual ground truth blocks and the prediction
blocks are counted as shown for the ground truth in Equa-
tion (22) and the predictions in Equation (23), respectively, as:

s yp
� �
¼
1
2

XP−1

p¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

yp − yp−1
� �2

q

ð22Þ

and

ŝ ŷp
� �

¼
1
2

XP−1

p¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ŷ ŷjyp ¼ 1
� �

p − ŷ ŷjyp ¼ 1
� �

p−1

� �2
r

ð23Þ

with the counter index, (⋅)p, in the sequence of a total length, P.
The ratio of blocks, as shown in Figure 8, is computed as:

EdðcÞ ¼
s yð Þ
ŝðŷÞ

ð24Þ

with the range between [0, 1], where 1 indicates the same number
of blocks found within the ground truth sequence of a class and
the prediction. It should be noted that block length differences
are not considered in Equations (22)–(24), and this can affect the
result with a solution provided in the following Section 5.5.2.

5.5.2 | Weighted consecutive block detection
(CBD)

Due to the aforementioned concern of the block length dif-
ferences, a corresponding penalty factor can be computed as:

w¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Â ∩ A
�
�
�

�
�
�

Aj j

v
u
u
t

ð25Þ

with the numerator indicating the intersection between the
ground truth and the prediction, Â ∩ A

�
�
�

�
�
�, over the ground

truth, Aj j. The non‐linearity impact of the weight, w¼
ffiffiffiffiffiffi
⋅ð Þ

p
,

is introduced to minimise penalisation on small misalignments.
The weighted Consecutive Block Detection (CBD) is then
computed by combining Equations (24) and (25):

Edw
ðcÞ
¼ Ed ⋅ w¼

s yð Þ
ŝðŷÞ

⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Â ∩ A
�
�
�

�
�
�

Aj j

v
u
u
t

ð26Þ

5.6 | Intersection‐Over‐Union (IoU)

IoU is another metric that penalises interruptions and mis-
alignments in the sequences of predictions. It is a known
technique for evaluating camera‐based object detection algo-
rithms and is under certain conditions equivalent to the Jaccard

with

with

Ground Truth

Predicion

F I GURE 8 The intersection and union sequences are demonstrated
and are used for CBD and IoU, as well as, the penalisation term of IoU as,
H bs; sð Þ ¼ 3=4, for this example

index. It defines the similarity on the bounding boxes [33],
which are generally uninterrupted entities in vision‐based
detection methods. A modified expression can account for
interruptions in vectors of labels as:

H ŝ; sð Þ ¼ 1 −
2 ⋅ ŝ
ŝþ s

− 1
� �2

ð27Þ

with s and ŝ the concatenated sequence blocks for ground truth
and predictions, respectively:

IoUðcÞ ¼ Jac ⋅ H ŝ; sð Þ

¼
Â ∩ A
Â ∪ A

 !

⋅ 1 − 2⋅̂s
ŝþs − 1
� �2

� �
ð28Þ

Equation (28) penalises interrupted sequences even if the
predictions are broadly correct and aligned with the ground
truth [34].

5.7 | Correlation index or Matthews
Correlation Coefficient (MCC)

The correlation index or Matthews Correlation Coefficient
(MCC) is less commonly used for classification performance
assessment. It is based on the Pearson's Linear Correlation
Coefficient, typically used to find linear similarities between
vectors. This can also be used for sequence classification as:

RðcÞ ŷ; yð Þ ¼

PP

p¼1

�
yp − y

��
ŷp − ŷ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PP

p¼1

�
yp − y

�2PP

p¼1

�
ŷp − ŷ

�2
s ;R ∈ R; ½−1; 1�

ð29Þ

GUENDEL ET AL. - 1153



with ŷ and y the means of the ground truth and prediction
vector, respectively. Alternatively, the equation can be
expressed as:

RðcÞ ¼
tp ⋅ tn þ f p ⋅ f n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtpþ f pÞ ⋅ ðtpþ f nÞ ⋅ ðtnþ f pÞ ⋅ ðtnþ f nÞ

p ð30Þ

and is known as MCC [35]. It should be noted that
R ŷ; yð Þ ¼ −1 is equivalent to perfectly misclassified and
R ŷ; yð Þ ¼ 1 to perfectly classified sequences, respectively,
whereas R ŷ; yð Þ ¼ 0 is the expected value from an unbiased
‘coin tossing classifier’ for a balanced dataset.

6 | HYPERPARAMETERS
OPTIMISATION

The following Recurrent Neural Networks (RNN) are
considered as classifiers in this work:

■ GRU Gated Recurrent Unit

■ Bi‐GRU Bidirectional Gated Recurrent Unit

■ LSTM Long Short‐Term Memory

■ Bi‐LSTM Bidirectional Long Short‐Term Memory

Their key hyperparameters are optimised using the
experiment manager of MATLAB with Bayesian optimisa-
tion, as this is key to boost performances in classification
tasks [36]. The following hyperparameters are considered:
number of epochs, hidden units, mini batch size, initial
Learning Rate (LR), LR drop factor, and the L2 regular-
isation factor [37], with the range over optimisation per-
formed and the determined optimal parameter for each
network presented in Table 4. The optimisation algorithm
ran over a cycle of 50 trials for each RNN network.
Hyperparameter optimisation is evaluated using the
following metric:

max
∀Opti:Parameter

F1macro

1þ std F1 macroð Þð Þ
2

 !

ð31Þ

with F1 macro being the macro F1 score, that is the mean of the
F1 score for the individual classes. The denominator,
1þ std F1macroð Þð Þ

2, ensures that the fluctuation across the
classes is minimised, while the numerator strives towards a
high macro F1 score. Furthermore, the three optimisers Sto-
chastic Gradient Descent Momentum (SGDM), Root Mean
Square Propagation (RMSProp), and Adaptive Moment Esti-
mation (ADAM) were tested, with the best results achieved
using ADAM across all networks.

7 | EXPERIMENTAL RESULTS

In this section, the classification results for the four selected
RNNs and proposed data fusion methods for multiple radar
nodes are reported.

7.1 | RNN results utilising sensor fusion
approaches

The section presents the results achieved by using the previ-
ously discussed radar fusion methods, namely: signal fusion,
feature fusion with all nodes, weighted radar selection,
orthogonal radar fusion of node {#2,#4} and of node {#1,#5,
#3}. These results are compared with those obtained when
using only one single radar classification with a Bi‐LSTM
classifier, implemented with the default parameters presented
in Table 4. The results are reported in Table 5 for L1PO test
and visualised in Figure 9.
For the different metrics, the diversity of the shown fusion

methods highlights superior performances of one method over
others by analysing the standard deviation across the tested
methods. In this regard, the results show higher dispersion
(standard deviation) for metrics other than the more conven-
tional accuracy or F1 score, such as the Dice, Jaccard, and
Correlation (MCC) indexes as block‐based metrics such as
CBD and IoU.
Across these metrics, the best suitable fusion method is the

incoherent signal fusion, followed by feature fusion and
orthogonal radar fusion of nodes {#1,#5,#3}, which show
almost equivalent performance. The weighted radar selection
and orthogonal radar fusion of nodes {#2,#4} perform
slightly worse than the other fusion methods. All the presented
radar data fusion approaches improve performances in
contrast to single radar classification across all metrics, as also
visible by inspecting Figure 9.
Focussing on the block‐based evaluationmetrics, such as the

CBD, weighted CBD, and the IoU, the low‐level signal fusion
approach appears to be clearly the best performing approach
with more than+7% performance gain over the mean across all
methods by analysing IoU and even more than +8% by evalu-
ating the weighted CBD. Performance‐wise, feature fusion ap-
proaches follow with just about+1% better performance versus
the mean across all fusion methods. Specifically, feature fusion,
weighted radar selection, and orthogonal radar fusion of nodes
{#1,#5,#3} achieve an average IoU of about 0.05 (50%),
whereas single radar classification achieves only 0.436.

7.2 | RNN results with hyperparameter
tuning

The section presents performance results achievedwith different
RNNs as classifiers when incoherent signal fusion is applied, as
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this was shown to be the best fusion approach. Table 6 shows the
results by using default parameters in the rows indicated as [⋅]*,
whereas the bold rows marked as [⋅]# show the attained results
after hyperparameter tuning. In all cases, the L1PO approach
meant that one test sequence was excluded while training the
classifier, and this is repeated and averaged across all participants.
Moreover, these results are also summarised in the bar graphs in
Figure 10, focussing on performance improvements due to
hyperparameter tuning, as shown in Figure 10c.
The accuracy metric provides again inconclusive evaluation

for the macro results across the tested network architectures,
which is indicated in low standard deviation of around 0.012;
thus the performance improvement after hyperparameter tun-
ing is not too evident. In contrast, for the F1 score about 0.036
(3%) is obtained, specifically for the Bi‐GRU network that
gained in performance with the optimised hyperparameters
from Table 4. The next metrics, the Dice and Jaccard index,
provide an even better evidence that the hyperparameter tuning

of the RNN yields to performance improvement of approxi-
mately 5% for the Bi‐GRU, whereas the Bi‐LSTM dropped
slightly. It should be noted that the little decrease in perfor-
mance is only given for the sample based evaluation metrics,
such as accuracy, F1 score, Jaccard, Dice, or correlation (MCC)
indices and can be neglected. Instead, the block‐based evalua-
tion metrics as CBD, weighted CBD, and IoU provide a more
reliable evaluation of sequence detection since interruptions
and outliers towards other classes will be taken into account.
The results achieved after hyperparameter tuning have
increased compared to the default values for all network ar-
chitectures tested, with the most significant improvement for
the Bi‐GRU. Nonetheless, the Bi‐GRU and the Bi‐LSTM
provide nearly comparable results, as shown for the sequence
evaluation metrics, that is, IoU or both CBD metrics. Even
more, the weighted CBD and IoU provide the highest standard
deviation indicating superior evaluation capabilities compared
to, that is, simply accuracy evaluation.

TABLE 4 Range of hyperparameters
and their best performing values after Bayesian
optimisation

Descr. Range Bi‐LSTM LSTM Bi‐GRU GRU Default

Optimiser ADAM Best performing: ADAM –/–

RMSprop

SGDM

Epochs [10, 50] Flatten growth after 45 –/–

Hidden unit [3, 200] 168 60 199 189 –/–

Mini batch [32, 128] Converging → 128 128

Initial LR [10−4, 0.1] 0.0076 0.0029 0.0015 0.0025 0.0010

LR drop fac. [0.1, 0.5] 0.2484 0.1361 0.1778 0.1039 0.1000

L2 reg. [10−7, 1] 0.0001 0.0001 0.0003 0.0039 0.0001

Abbreviations: ADAM, Adaptive Moment Estimation; Bi‐GRU, Bidirectional Gated Recurrent Unit; Bi‐LSTM, Bidirectional
Long Short‐Term Memory; RMSProp, Root Mean Square Propagation; SGDM, Stochastic Gradient Descent Momentum.

TABLE 5 Classification performance metrics for the proposed radar data fusion methods using a Bi‐LSTM classifier with the default hyperparameters
from Table 4

Method/Metric Accuracy F1 score TPR TNR Dice Jaccard CBD Weighted CBD IoU Corr.

Signal fusion Bi‐LSTM 0.933 0.84 0.693 0.95 0.722 0.583 0.829 0.686 0.566 0.68

Feature fusion Bi‐LSTM 0.924 0.814 0.63 0.941 0.669 0.526 0.774 0.615 0.5 0.625

Weighted radar Bi‐LSTM s:t: w ηð Þ 0.92 0.803 0.623 0.94 0.654 0.51 0.725 0.573 0.463 0.604

Weighted radar Bi‐LSTM s:t: w ϒð Þ 0.916 0.793 0.61 0.938 0.634 0.493 0.746 0.589 0.477 0.584

Weighted radar Bi‐LSTM s:t: w cos ϕnxð Þð Þ 0.887 0.719 0.5 0.914 0.514 0.383 0.582 0.42 0.293 0.436

Orthogonal radar one‐fifth&3 Bi‐LSTM 0.925 0.815 0.625 0.942 0.665 0.523 0.782 0.618 0.5 0.626

Orthogonal radar 2&4 Bi‐LSTM 0.919 0.796 0.603 0.939 0.635 0.495 0.729 0.569 0.463 0.589

Single radar average Bi‐LSTM 0.909 0.773 0.566 0.93 0.599 0.456 0.687 0.521 0.436 0.543

Mean across all fusion methods 0.922 0.807 0.623 0.94 0.657 0.516 0.754 0.597 0.488 0.611

Standard deviation across all fusion methods 0.008 0.023 0.042 0.006 0.041 0.042 0.051 0.056 0.045 0.045

Note: For comparison, the performance for average classification using only 1 single radar is shown. The bold methods, ‘signal‐’, ‘feature‐’, ‘weighted radar s:t: w ηð Þ’, both ‘orthogonal
fusion’ concepts, and the ‘single radar average’ are used to compute the mean and the standard deviation shown in the last two rows of this table.
Abbreviations: Bi‐LSTM, Bidirectional Long Short‐Term Memory; CBD, Consecutive block detection; IoU, Intersection Over Union; TNR, true negative rate; TPR, true positive rate.
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7.3 | Class evaluation using spider diagram

The previous Sections 7.1 and 7.2 discussed the most suitable
multi‐sensor fusion methods and performance improvements
by using various RNNs with optimised hyperparameters.
However, the discussion and conclusions were drawn on the
‘macro’ results across all classes of interest. In this section,
class specific results (‘micro’ results) for the individual classes
are discussed for incoherent signal fusion using uni‐ and
bidirectional RNN architectures, namely, the GRU, LSTM, Bi‐

GRU and Bi‐LSTM. These results are reported in Figure 11
and discussed in this section for each considered performance
metric.

7.3.1 | Accuracy

Accuracy appears to be very high for all considered classifiers
(macro accuracy >90%). However, it should be noted that
accuracy as a single evaluation does not capture the
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F I GURE 9 Overview of classification
performance metrics for all investigated radar data
fusion methods in L1PO test with Bi‐LSTM network
with default hyperparameters as classifier

TABLE 6 Classification performance metrics for different considered RNN classifiers using signal level fusion

Method/Metric Accuracy F1 score TPR TNR Dice Jaccard CBD Weighted CBD IoU Corr.

Signal fusion GRU * (0.91) (0.77) (0.579) (0.931) (0.595) (0.463) (0.7) (0.531) (0.365) (0.537)

Signal fusion GRU# 0.909 0.778 0.59 0.932 0.612 0.473 0.699 0.539 0.406 0.553

Signal fusion LSTM* (0.91) (0.772) (0.58) (0.932) (0.595) (0.462) (0.713) (0.538) (0.379) (0.539)

Signal fusion LSTM# 0.91 0.769 0.58 0.931 0.592 0.464 0.709 0.55 0.395 0.534

Signal fusion Bi‐GRU* (0.924) (0.817) (0.656) (0.944) (0.681) (0.539) (0.773) (0.629) (0.515) (0.632)

Signal fusion Bi‐GRU# 0.933 0.844 0.705 0.95 0.731 0.592 0.826 0.695 0.579 0.688

Signal fusion Bi‐LSTM* (0.933) (0.843) (0.708) (0.951) (0.731) (0.592) (0.823) (0.69) (0.562) (0.686)

Signal fusion Bi‐LSTM# 0.931 0.836 0.697 0.949 0.718 0.577 0.829 0.692 0.569 0.671

Single radar average Bi‐LSTM* (0.909) (0.773) (0.566) (0.93) (0.599) (0.456) (0.687) (0.521) (0.436) (0.543)

Single radar average Bi‐LSTM# 0.909 0.773 0.566 0.93 0.599 0.456 0.687 0.521 0.436 0.543

Mean across all* (0.917) (0.795) (0.618) (0.938) (0.64) (0.502) (0.739) (0.582) (0.451) (0.588)

Mean across all# 0.92 0.806 0.638 0.94 0.661 0.522 0.76 0.611 0.488 0.609

Standard deviation across all* (0.011) (0.033) (0.062) (0.009) (0.063) (0.061) (0.057) (0.074) (0.085) (0.068)

Standard deviation across all# 0.012 0.036 0.066 0.01 0.066 0.064 0.068 0.083 0.085 0.073

Note: Each network’s results are compared before [⋅]*, and after [⋅]# hyperparameter tuning. For comparison, the performance for average classification using only 1 single radar is
shown. The mean and standard deviation are shown in the last four rows of this table across all architectures.
Abbreviations: CBD, Consecutive block detection; IoU, Intersection Over Union; RNN, Recurrent Neural Network; TNR, true negative rate; TPR, true positive rate.
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performances of datasets with class imbalances (e.g., fewer
samples of ‘falling’ compared to other classes). By visual in-
spection of the other metrics apart from accuracy, the GRU
classifier in Figure 11a suffers in detecting the falling class in
the lower left corner of each spider diagram, whereas both
bidirectional classifiers, Bi‐GRU (Figure 11b) and Bi‐LSTM
(Figure 11d), outperform their unidirectional counterparts.
This will be widely overseen using just the accuracy metric.

7.3.2 | F1 score, TPR, TNR

Evaluating true positive rate (TPR) (sensitivity or recall) and true
negative rate (TNR) (specificity) on their own is less effective
thanusing the F1 score, as this can provide a better global viewon
performances for each specific class. An average of the F1 score
across all classes, macro F1 score, is also possible. For this case
study, the performance differences between individual classes
increase to approximately 12% for signal fusion using Bi‐LSTM,
specifically referring to the ‘translation’ (91.6%) and ‘standing up
from falling’ (78.9%) activity, as shown in Figure 11d. However,
the drastic difference can be seen for the unidirectional RNNs,
for example, the LSTM where the differences between ‘trans-
lation’ and ‘standing up from falling’ rises to more than 20%.

7.3.3 | Dice index

The Dice index is a more rigorous metric than the prior shown
metrics of accuracy or F1 score. Here, for example, ‘standing
up from falling’ degrades to 58.8% (F1 score: 78.9%) and
‘translation’ to 91.7% (F1 score: 91.6%) for the Bi‐LSTM.
Nonetheless, the bidirectional classifiers perform almost
equally high across the individual classes, whereas, LSTM
(Figure 11c) shows a break down by detecting ‘falling’, which,
in general, will be overseen by using the previous more con-
ventional metrics.

7.3.4 | Jaccard index

The Jaccard index is related to the Dice index, with perfor-
mance always lower than the Dice index except at their
extrema [19]. In fact, this metric will report even lower per-
formances, that is, ‘standing up from falling’ degrades to 41.6%
(Dice index: 58.8%). In fact, the metric is the most rigorous
evaluation method for individual sample detection, apart from
block sequence based detection, such as the IoU.

7.3.5 | Consecutive block detection (CBD)

The CBD operates differently than the previously shown
metrics. Here, interruption ratios of prediction label blocks
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F I GURE 1 0 Overview of performance classification metrics for
different RNNs without and with hyperparameter tuning (from Table 6).
Signal level fusion is considered in L1PO test. (a) Performance metrics
without hyperparameter tuning. (b) Performance metrics with
hyperparameter tuning. (c) Performance improvement (positive values refer
to performance improvements after hyperparameter tuning)

GUENDEL ET AL. - 1157



to ground truth label blocks have an impact, see Equa-
tion (24). In a particular example drawn, the activities
‘stationary’ and ‘in‐place’ provide the best and worst clas-
sification results, respectively, for incoherent fusion using
the Bi‐LSTM classifier (see Figure 11d) with 88.0% and
78.3%. Furthermore, both bidirectional RNNs (Bi‐GRU and
Bi‐LSTM) show good results that are equally distributed
across all classes.
However, the simple CBD defined in Section 5.5.1 ac-

counts for the number of detected blocks only, while dif-
ferences in block length are neglected. The weighted CBD
instead, as defined in Section 5.5.2, considers the detection
length differences of the predictions versus the ground
truth labels. Specifically (see Figure 11d for Bi‐LSTM), the
best and worst class become the activity ‘translation’ and
‘falling’ with 83.5% and 56.6%, respectively. Correspond-
ingly, the bidirectional RNNs outperform unidirectional
RNNs with significant improvement provided for minority
classes as ‘falling’.

7.3.6 | Intersection‐Over‐Union (IoU)

The IoU metric is an alternative metric accounting for detected
block ratio and the block length differences. The IoU is the
most extreme evaluation metric for our dataset since it is a
product of the Jaccard index (hard metric on its own) multi-
plied with a block detection term [34]. Thus the activity
‘standing up from falling’ degrades to 41.1% (Jaccard index:
41.6%), and the ‘translation’ activity to 82.4% (Jaccard index:
84.7%) as the best class. Likewise, using unidirectional classi-
fiers (LSTM and GRU) has adverse effects specifically on
minority classes as ‘standing up from falling’, ‘falling’, and ‘in‐
place’ activities.

7.3.7 | Correlation index or MCC

The MCC is rather challenging to compare with the previously
introduced metrics due to its diverse definition. An advantage
of this metric (MCC) is a distinct indication when classifiers
provide outputs resulting in R ŷ; yð Þ < 0. Such results imme-
diately indicate a mismatch between the ground truth and
prediction samples. As a side note, it will be mentioned, a coin
tossing classifier would converge towards the limit R ŷ; yð Þ ¼ 0
for a balanced dataset. For the presented dataset, the activities
‘falling’ and ‘translation’ provide the worst and best results with
57.7% and 83.1%, respectively. Similarly to the metrics intro-
duced before, the unidirectional classifiers (LSTM and GRU)
suffer for minority classes as previously inspected, which can
be seen for the macro results in Figure 10 and for the micro
results in Figure 11.

7.4 | Performance w.r.t. radar nodes

A Monte Carlo simulation was set up to investigate the ef-
fect on the proposed classification performance metrics of
selecting a different number of radar nodes. The Monte
Carlo approach selects different nodes out of the possible
combinations of 2, 3, and 4 nodes respectively, but in all
cases the verification is performed with the L1P0 approach.
As shown in Figure 12, the lowest performance for each
metric is achieved by using just one single node. This is
related to the degraded performance of one single node for
unfavourable trajectories of the target, and is compensated
by considering more nodes, which leads to an increase of all
metrics.
It is important to notice that such increase as a function of

number of nodes is less pronounced for sample‐based metrics
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more nodes are selected). Training/testing is
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such as accuracy and F1‐score (i.e., the curve in Figure 12 is
flatter), but more evident when block sequence‐based metrics
such as the CBD, weighted CBD, or IoU are used. In this latter
case the increase in performances with the number of radar
nodes is more noticeable. From this analysis it appears that a
higher number of radar nodes achieves better performances
when using incoherent signal fusion and the Bi‐LSTM classi-
fier, specifically for the metrics proposed for continuous
sequential activities.

7.5 | Discussion overview on performance
metrics

In the analysis of the results, pros and cons of each evaluation
metric were discussed when applied to the different RNN
architectures and radar data fusion methods. Some consider-
ations from this initial analysis follow:

■ For balanced (equally‐distributed) data evaluation: The
conventional accuracy metric provides satisfactory results,
even if it does not describe where mistakes (e.g., missed
detections or false alarms) occur for a given class. For that,
precision/recall or their combination into F1 score are more
suitable.

■ For imbalanced (skewed) data evaluation: The F1 score
becomes a more sophisticated metric than plain accuracy and
is widely used. Its importance becomes crucial as accuracy

can significantly overestimate performances, as seen in our
case study. The same applies to the Dice and Jaccard indices.
Both, Dice and Jaccard, are the most drastic sample‐based
metrics as seen in the results from the considered dataset.
Also, the correlation index or MCC accounts for imbalances
in the dataset and it is widely used in the medical domain [34].

■ For evaluating continuous sequences of activities: The prior
metrics suffer by evaluating continuous sequences of ac-
tivities with unconstrained and seamless transitions.
Therefore, the proposed CBD is preferable for such cases
with its modification as weighted CBD, and the IoU. These
metrics can account for outliers (i.e., misalignments and
interruptions) in the prediction label vector and are well
suited for HAR based on continuous sequences. When used
at the output of RNN classifiers, they can directly assess
their sequential output predictions and penalise in-
stabilities/interruptions that propagate errors within the
network's memory cells.

8 | CONCLUSION

The paper proposed a variety of approaches for data fusion in
a network of five distributed radar sensors in the context of
human activities classification. The implementation of signal
level fusion applied on Range‐Time (RT) maps has been
researched and is compared to state‐of‐the‐art methods.
Within the fusion process, the selection of radar nodes based
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on a weighting function that accounts for the target location
and velocity/trajectory has also been investigated. RNN‐based
classification algorithms, namely GRU, LSTM, Bi‐GRU, and
Bi‐LSTM, were used to process the resulting μD spectrograms
derived from the fusion process.
The proposed techniques are evaluated on an experimental

dataset with 15 participants and 9 activities, combined into 5
macro‐classes. Notably, the dataset contains continuous se-
quences of activities performed in random locations and with
arbitrary and unconstrained trajectories and unfavourable
aspect angles to the radar sensors. New evaluation metrics are
proposed and compared to account for the specific nature of
continuous activities in radar‐based HAR, such as the presence
of misalignments and interruptions (e.g., outliers).
The results show the need for metrics other than plain

accuracy or precision/recall when evaluating continuous HAR,
especially using recurrent networks for classification assessing
performance at a fine scale, that is, in continuous sequences of
time bins analysed. Specifically, evaluation metrics that account
for outliers in the prediction vector (i.e., misalignments, in-
terruptions, and fluctuations) such as weighted CBD and IoU
appear to provide a more comprehensive performance evalu-
ation than simple accuracy. For example, while IoU shows
around 20% difference between imperfect and reasonable
performing classifiers, conventional accuracy evaluation gives
only 2% discrepancy, hence a too coarse assessment. It is
demonstrated that classifiers with bidirectional capabilities
provide superior performance, especially for classes with few
samples in the imbalanced dataset used for evaluation. This
imbalance is to some extent typical in continuous, realistic
activities. For example, there will be more walking samples
than in‐place activities, whereas critical activities (e.g., falls) will
be generally rare. For the radar data fusion, the incoherent
signal level fusion of the RT data from each node appeared to
outperform other methods, with the best results provided by
using the full set of radars in the used network.
Future work will extend the proposed techniques and

assess the evaluation metrics in more realistic home environ-
ments and scenarios, such as those including multiple targets
(e.g., couple of people, or person plus pet). This could be
approached by implementing a multi‐target tracker with
modified hypotheses for a dynamic radar selection in such
scenarios of multiple targets in home environments. Moreover,
the usage of diverse radar sensors in the network could be
considered (e.g., adding V/W‐band MIMO nodes).
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