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the wearable or portable devices, which is widely used in heart rate
monitoring and cardiac diagnosis. However, automatic ECG signal
analysis is difficult in real application because the signals are easy
to be contaminated by the noise and artifacts. Thus, the quality of
ECG signals is essential for the accurate analysis. The objective of
this project is to design a reliable automated ECG signal quality in-
dicator based on the supervised learning algorithm, which intends to
estimate the quality of the signals and distinguish them.

The methodology of this project is creating a classification model
to indicate the quality of ECG signals based on the machine learning
algorithm. The model is trained by the extracted features based on
the Fourier transform, Wavelet transform, Autocorrelation function
and Principal component analysis of ECG signals. Subsequently, the
feature selection techniques are proposed to remove the irrelevant and
redundant features and then the selected features are fed to classifi-
cation algorithms. The classifier was then trained and tested on the
expert-labeled data from the collected ECG signals. Particularly, we
focus on the performance of classifier and use the best training model
to predict the quality of new ECG signals.
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Abstract

Wearable health has become a striking area in our daily life. Electrocardiogram (ECG)
is one of the biomedical signals collected by the wearable or portable devices, which
is widely used in heart rate monitoring and cardiac diagnosis. However, automatic
ECG signal analysis is difficult in real application because the signals are easy to be
contaminated by the noise and artifacts. Thus, the quality of ECG signals is essential
for the accurate analysis. The objective of this project is to design a reliable automated
ECG signal quality indicator based on the supervised learning algorithm, which intends
to estimate the quality of the signals and distinguish them.

The methodology of this project is creating a classification model to indicate the
quality of ECG signals based on the machine learning algorithm. The model is trained
by the extracted features based on the Fourier transform, Wavelet transform, Autocor-
relation function and Principal component analysis of ECG signals. Subsequently, the
feature selection techniques are proposed to remove the irrelevant and redundant fea-
tures and then the selected features are fed to classification algorithms. The classifier
was then trained and tested on the expert-labeled data from the collected ECG signals.
Particularly, we focus on the performance of classifier and use the best training model
to predict the quality of new ECG signals.
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Introduction 1
Wearable health has become a striking area in our daily life. The electrocardiogram
(ECG) is one of the biomedical signals collected by wearable or portable devices, which
is widely used in heart rate monitoring and cardiac diagnosis. It records the electrical
signal by measuring the voltage difference between the electrodes placed on the skin.
The heart rate is a typical feature extracted from the ECG signals. The ECG is a
non-stationary and time-varying signal where the intervals of adjacent heart beats vary
along with time. A normal cycle of the ECG signal represents a single heartbeat, which
always consists of the peaks and ECG waves. Figure 1.1 shows these identified waves
of the ECG signal in a normal cycle. The description of these waves in ECG signals is
also illustrated below.

Figure 1.1: The ECG signal

1. QRS complex: It is the central and most visually obvious part in the ECG
signal, which represents the main voltage variations on the ECG signal. The peak
with largest voltage is usually seen as the R wave. The Q wave is the left saddle
point near the R peak, and the S wave is the right saddle point near the R peak.
The combination of these waves consists of QRS complex.

2. P wave: It is the wave with a lower amplitude compared with the R wave which
always lies on the left side of QRS complex.

3. PR interval: It is a duration measured between the starting point of P wave and
the beginning of Q wave.
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4. T wave: It represents the other low amplitude wave which always lies on the
right side of QRS complex.

5. ST segment: It is a segment that connects the S wave and T wave. [4].

ECG signals can reflect the complex electrical and mechanical processes present in our
heart which represents the most valuable information of the heart. Also, ECG is widely
used in many applications like heart disease diagnosis, sleep apnea detection and heart
rate recording due to its stability and representative of heart activity.

1.1 Thesis Motivation

Wearable health has become a striking area in our daily life. Wearable sensors are
widely used in health care due to its portability and low cost. The ECG signal is one
of the most popular biomedical signals in wearable health. Most applications of ECG
signals require noise-free ECG characteristic points and morphological structures for
accurate measurements [5]. However, the ECG signals are often contaminated with
artifacts such as baseline wander, muscle activity and motion artifacts in the collection
phase due to the various activities of the subjects. To visualize the typical artifacts in
the ECG signal of wearable devices, Figure 1.2 is shown below.

(a) The ECG signal with baseline wander

(b) The ECG signal with muscle activity

(c) The ECG signal with motion artifacts

Figure 1.2: The typical artifacts in ECG signals
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Figure 1.2a illustrates the baseline wander which is a low-frequency noise present in
the ECG signal which varies the amplitude of baseline to an extent. Figure 1.2b illus-
trates the muscle activity which is generated if the subject is nervous or shaky during
the collection. Figure 1.2c illustrates the motion artifacts caused by body movements.
The body movements usually change the position of electrode of ECG devices which
results in the impedance variation between the electrode and the skin. Thus, the out-
put of ECG devices are altered because of the dependence between the voltage and
impedance. For the ECG signals with strong motion artifacts, the morphological struc-
ture of the ECG signal will be corrupted. In this case, it is demanding to perform
accurate analysis of these ECG signals. Thus, automatic assessment of the quality of
ECG signals is a crucial step before the measurements in ambulatory wearable record-
ings.

1.2 Related work

Researchers proposed multiple ECG signal quality assessment methods called SQA
before. Most methods aim to identify the collected ECG signals as acceptable or un-
acceptable. In the SQA methods with linear features and threshold approach, the
features of morphological structure and heart beats were extracted from the ECG sig-
nals. C.Orphanidou, et al.[6] presented six standard features to estimate the reliable
ECG signals. Then the template matching method was presented to make comparison.
This method has a decent accuracy but the performance of this method depends on
accurate QRS complex detection. In [7], D.Hayn et al. proposed four ECG features
based on the amplitude, the crossing point of each lead and the stability of the detector
to assess the quality of the ECG signals.

Further, SQA methods based on linear features and machine learning were also
presented. These methods were achieved by training the classifier with the extracted
features. In [8], G.D.Clifford et al. utilized six signal quality indices as features and
then trained them with classifiers like Naive Bayes, linear discriminant analysis, support
vector machine and multi-layer perceptron neural network. In [9], J.Kuzilek et al.
proposed a three stage algorithm to assess the quality of ECG signals. Statistical
features like standard deviation and maximum of ECG signals were extracted and
compared with the threshold by the decision rule. Then the decision result computed
a score for each observation. Next, new features like kurtosis and covariance matrix
were calculated. These features were given to the machine learning algorithm which
can produce the score of the result. In the last step, the combination of the first and
second score is utilized to identify the quality of ECG signals.

At last, some researchers proposed SQA methods with non-linear features. In these
methods, the features represent the temporal and spectral information of ECG signals.
J.Lee et al.[10] utilized the empirical mode decomposition (EMD) algorithm for the au-
tomatic identification of the artifacts. In addition to features like mean and standard
deviation of the first intrinsic mode function (IMF), the non-linear feature shannon
entropy is also calculated. In [11], U.Satija presented an automated ECG SQA method
with unsupervised learning algorithm based on Wavelet decomposition. The statistical
features like maximum absolute amplitude and difference of consecutive dynamic am-
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plitude range are computed in the low frequency sub-bands. The the high frequency
sub-bands based features are first maximum of autocorrelation function, kurtosis and
zero-crossing rate.

The above SQA methods with morphological and RR interval features have some
practical limitations illustrated below.

• To extract the QRS features, a reliable QRS complex detector under ambula-
tory recording environment is needed. It is a challenging task because the noise
and artifacts can contaminate the ECG signals and change their morphological
structure.

• The performance of the SQA methods will decrease under different ECG morpho-
logical structures. These methods need to be tested on more subjects.

• It is challenging to find an optimal threshold to classify the quality of ECG signals.
If the ECG signals have overlapping frequency bands of artifacts and ECG waves,
this SQA method can provide incorrect decision boundary.

In the EMD based method, the IMFs are calculated in the time domain, which lacks
the frequency information. The number of IMFs is demanding to determine due to
the variability of ECG structures and artifacts. Apart from that, the EMD algorithm
needs expensive computations because of the sifting operations.

In the Wavelet decomposition based method, the ECG signals are decomposed in
frequency domain through the convolution with wavelets. It solves the problem that
was present in the EMD based method. However, the proposed features extracted from
low frequency and high frequency sub-bands are not enough to distinguish the clean
and the contaminated ECG signals. More useful features demand to be extracted and
analyzed. Also, the hard decision thresholds for proposed features are not accurate due
to the variability of ECG signals.

Due to the presented limitations, the ECG signals require a reliable automated qual-
ity assessment method which does not rely on an accurate QRS complex detector and
hard threshold approaches. In this case, the features of SQA method need to represent
the characteristic of ECG signals with a supervised learning algorithm. Moreover, the
improvement of time and frequency domain features is also necessary in automated
quality assessment methods.

1.3 Proposed Methodology

The objective of this work is to develop a supervised learning method for automatic
ECG signal quality assessment which first computes the features from ECG signals and
then uses them in the supervised learning algorithm. To increase the quality assessment
resolution, the proposed methods calculate features in each ten-second segment. Also,
the supervised learning problem needs labels on each observation, which are manually
annotated by our researchers on each segment. Due to large variations of ECG signals
on different subjects, normalization is used as the preprocessing approach in this pro-
posed methodology. Since the information of ECG waves, noises and artifacts in time

4



and frequency domain are very crucial in the feature extraction procedure, we proposed
three feature extraction methods.

Discrete wavelet transform (DWT) is a widely used technique for analyzing the
temporal and spectral information of signals. It is suitable for non-stationary signals
with varying frequencies. The DWT can decompose the signal into sub-bands. The sub-
bands help to identify the clean and contaminated ECG signals at their corresponding
frequencies. Because of this advantage, we use the DWT algorithm as our first feature
extraction method.

Our second feature extraction method is based on Autocorrelation function. The
periodic information and correlations between different patterns of ECG signals can be
extracted from the Autocorrelation function to distinguish the clean and contaminated
signals.

Principal component analysis (PCA) is utilized as the last feature extraction
method. In this method, we construct a matrix including each QRS complex pre-
sented in ECG signals. Then we compute the eigenvalues of this matrix and calculate
the first three largest ratios between the eigenvalue and the sum of all the eigenvalues
as features by the PCA algorithm. The eigenvalue ratios represent the similarity be-
tween the successive QRS complex of ECG signals. The advantage of this method is
that it does not demand an accurate R peaks detector. If there are R peaks wrongly
detected, it illustrates that there are noise or artifacts in the ECG signals which can
also be reflected in the features.

After the feature extraction, the next procedure of this work is feature selection. We
use two feature selection methods named filter and wrapper method. The first one is
based on attributes of the feature itself, and the latter one is based on a specific classifier.
Afterwards, the performance of these two methods are compared and analyzed. Then
the feature matrix is constructed based on the selected features of all the observations.

The last procedure of this work is to train a classifier with the supervised learning
algorithm. The feature matrix is split into training and validation data. The training
data and corresponding labels are utilized to train the classifier with cross validation
method. The best classification model is chosen according to the result of cross valida-
tion. Subsequently, the validation data are used to test the performance of the model.
Finally, the ECG signal quality can be predicted based on the posterior probability
produced by the SVM classifier.

The whole scheme of this work consists of five steps which is shown in Figure 1.3.

Figure 1.3: The whole scheme of ECG signal quality assessment

5



1.4 Research Question

Our research aims at designing an automated ECG signal quality indicator with an
easily implementable and accurate method. Our proposed approach includes feature
extraction, feature selection, model training and classification. The first step includes
the methodology about extracting features which focus on capturing the main charac-
teristics of clean (and contaminated) ECG signals. In accordance to the objective of
this step, the following research questions are

1. What is the difference between clean and contaminated ECG signals?

2. Which type of features can be extracted from ECG signals?

3. Which method can be used to extract features?

The second step aims at removing the irrelevant and redundant features and choos-
ing best feature subset to classify the clean and contaminated ECG signals. The main
research questions of this step are

1. How to identify the importance of each feature?

2. How to choose the best feature subset?

The last step involves training the classification model and identifying the ECG
signal quality. The trained classification model can automatically identify the quality
of new ECG signals. The main research questions behind this step are

1. Which classifier should be used for this problem?

2. How to evaluate the performance of classification result?

3. How to identify the quality of ECG signals automatically?

1.5 Thesis Contribution

The thesis presents an automated ECG signal quality indicator based on the supervised
learning algorithm. The major contributions of the thesis are summarized below.

1. New features are generated based on the Discrete wavelet transform algorithm. In
general, the wavelet transform is a favorite technique to extract features of ECG
signals due to its ability to capture the temporal and spectral information. In
our case, the information of ECG signals in the time and frequency domain are
both important. Excepting the traditional statistical features like mean, standard
deviation and variance, the new features based on the wavelet transform like
Median absolute deviation and Approximate Entropy are proposed in this work.

2. New features are generated based on the Autocorrelation function of ECG signals.
The ECG is a non-stationary and periodic time series signal. Because of that,
features based on Autocorrelation function is proposed as its ability to describe
the periodic information of time series signal. In this work, the features including
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periodic information such as the location and amplitude of local maximum peaks,
first zero-point location and zero-crossing rate are extracted from Autocorrelation
functions.

3. It is proposed to use the Principal component analysis to extract features. The
Principal component analysis (PCA) is a mathematical tool for finding patterns
in time series signals. To represent similarity between the successive QRS com-
plexes of ECG signals, the features based on PCA algorithm were extracted by
calculating the ratio of the first three eigenvalues after sorting the values in de-
scending order over the sum of all the calculated eigenvalues. The main advantage
of this method are shown as follows: 1) The value of eigenvalue ratios can reflect
the differences in each QRS complex; even if the differences are small; 2) This
method does not rely on an accurate R peak detection algorithm.

The objective of this work is to design an automated ECG signal quality indicator,
and the classifier we used in this work is supervised SVM which can produce a posterior
probability on each observation. Based on that, we propose a method to divide the
prediction result into several quality degrees according to the posterior probability.

1.6 Organization of the thesis

The thesis comprises six chapters and can be organized as follows. Chapter 1 presents
the introduction that consists of the background, related work, proposed methodology,
thesis motivation and thesis contributions. Chapter 2 introduces the wearable devices,
the methodology for collecting ECG signals, different types of noises contaminated in
ECG signals and the corresponding quality annotation works. Chapter 3 describes
the feature extraction methods based on Wavelet transform, Autocorrelation function
and Principal component analysis. Chapter 4 illustrates the popular feature selection
methods and their corresponding advantages and disadvantages. The implementation
of these methods in this work are discussed and the final feature selection result of
each method is compared in this chapter. Chapter 5 introduces the utilized classifier
to estimate the quality of ECG signals. The performance of classifier on each set of
features was also presented in this chapter. Chapter 6, the final chapter, provides a
discussion on the proposed methods. In addition, conclusions, limitations and further
research are also discussed in this chapter.
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Data collection and annotation 2
This chapter elaborates the introduction of the wearable devices, the methodology for
collecting ECG signals and how the signal quality annotation works.

2.1 Wearable devices

Wearable or portable devices are smart electronic devices which can be implanted into
clothing or worn on the body. It has developed in recent years and already entered
the area of healthcare. The wearable devices can be utilized in various biomedical
applications like heart rate monitoring, heart condition detection and respiration ex-
traction. Some wearable devices in the form of implants or accessories have already
been produced and applied in our daily life such as smart watches, armbands, and
glasses [12].

In our research, the ECG signals were collected from one wearable device attached
to two different body interfaces of IMEC. The first interface attached to our body is a
chest patch for collecting the ECG and acceleration signal. The wearable device was
designed to record two channel ECG signals with a sampling frequency 256 Hz and
the acceleration signal at 32 Hz. However, the acceleration was not considered in this
work. The other interface is a belt with the same device to collect ECG and acceleration
signals from different position of our body.

2.2 Data Acquisition

In our experiment, two datasets were collected from the wearable devices. The exper-
imental protocol was different for collecting these two datasets. For collecting dataset
one, the ECG belt was used, and six subjects participated in this experiment. The par-
ticipants were informed to accomplish the measurement under controlled conditions,
where the subjects need to perform six consecutive activities as shown in Table 2.1.

Controlled Experiment

Activities Time

Sitting 5 minutes

Lying 5 minutes

Walking 2 minutes

Walking upstairs 30 seconds

Walking downstairs 30 seconds

Jumping 30 seconds

Table 2.1: Controlled experiment
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After performing the last activity, the subjects need to tap the sensor inside the
device to have a marker of the end in the signal and return the device to the researcher.

For collecting dataset two, the ECG patch wearable device was used. In this ex-
periment, four subjects were asked to accomplish the measurement under uncontrolled
conditions, where the subjects were not restricted to specific activities. In other words,
the subjects were free to perform the activities as usual. Each participant was required
to wear the device for around eight hours.

The total duration of the data used in this study was 15 hours. Specifically, the
duration was one hour for the controlled experiment and 14 hours for the uncontrolled
experiment.

2.3 Quality annotation for ECG signals

To indicate the quality of ECG signals, it is usually in machine learning to divide the
raw signals into several small segments using sliding windows. The length of window
should be chosen in accordance to the application. Feature extraction on each window
can be achieved with low computational complexity by decreasing the window length.
However, the segments might not contain enough information to represent the features
in ECG signals. In contrast, increasing the length of the window could detect the
low frequency ECG morphological structures with the price of increasing the compu-
tational time. Thus, the selection of the window length is a trade-off. According to
the reference[6][13][8], the commonly used window length is ten seconds, which was the
same used in this work.

The annotation work was performed on each segment of single channel ECG signal
cut by sliding windows by four annotators that received previous training. The anno-
tators inspected the recording ECG signals and manually labeled the ECG segments
into two signal quality levels. The annotation rules of signal quality was summarized
as follows.

• Label 1: ECG signals are perfect, have clear QRS complex, P and T waves. There
are no obvious noise and abrupt variations in the signal.

• Label 0: ECG signals are not perfect. Baseline wander, transient high amplitude
impulse, motion artifacts and muscle activity noise exists in ECG signal.

If the annotators were not sure about the annotations on some segments, all the
annotators had to discuss about it and acquired a common result. The annotations
performed on 15 hours data from both the controlled and uncontrolled experiment.
After the labeling work, the total number of observations of label 1 and label 0 are
2908 and 3908 respectively.
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Preprocessing and Feature
Extraction of ECG Signal 3
This chapter describes the preprocessing of the original ECG signals and the feature
extraction methods based on specific algorithms, which is a necessary step in designing
an automated ECG signal quality indicator. The extracted features are essential in the
classification problem because it includes the important information of the data. In
this work, different types of features representing the ECG signal are proposed, which
involves the main information of ECG signals.

3.1 Theoretical Background

3.1.1 Discrete Wavelet Transform

The Fourier transform focus on the spectral information of the signal. In contrast with
the Fourier transform, the main advantage of the Wavelet transform is that it captures
both the temporal and spectral information. In numerical analysis, the Discrete wavelet
transform (DWT) is achieved with the discretely sampled wavelets which has similarity
with Discrete fourier transform (DFT). For example, the DWT of a signal x(t) is defined
as follows.

DWT (i, j) =
1√
2i

∫ ∞
−∞

x(t)ψ(
t− 2ij

2i
)dt (3.1)

where ψ is the wavelet function chosen from the wavelet family, i represents the de-
composition level and j is the shifting parameter in DWT. The DWT of signal x(n) is
achieved by passing it through the low pass and high pass filters. At the beginning, the
signals are convoluted with a low pass filter defined as g. This procedure is illustrated
as follows.

y(n) = x(n) ∗ g(n) =
∞∑

k=−∞

x(k)g(n− k) (3.2)

Simultaneously, the original signal is also convoluted with a high pass filter defined
as h. The outputs of the high pass and low pass filter are defined as the detail coeffi-
cients and approximation coefficients respectively. The cut-off frequency of these two
filters is in the middle of the maximum frequency of the input signals. Thus, half of
the frequencies of the input signal are remained after passing through the filter. In this
case, only half of the samples should be left according to the Nyquist rule. This pro-
cess is achieved by downsampling the output signals of the filters. Then the first level
decomposition is finished. After that, the next level decomposition is the repetition of
the previous step but only for the approximation coefficients. This further decompo-
sition of the approximation coefficients is processed by passing it through the filters
and then downsampling again. The advantage of DWT in each level decomposition
is that the frequency resolution of the output signal is doubled because only half the
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frequencies of the input signal have remained. However, the temporal resolution of the
original signal is reduced due to the downsampling. This procedure will continue until
multi-level decomposition is finished. For instance, the diagram of DWT with third
level decomposition is illustrated in Figure 3.1.

Figure 3.1: The diagram of third level discrete wavelet transform

In each level wavelet decomposition, the input signal is divided into the detail and
approximation coefficients. From equation 3.1, we can see that the number of samples
in the original signal has to be a multiple of 2i where i indicates the decomposition
levels. For the signal with 64 samples and the maximum frequency fm, the frequencies
and samples of it in fourth level decomposition are shown at Table 3.1.

Level Frequency Samples

4 0 to fm/16 4

4 fm/16 to fm/8 4

3 fm/8 to fm/4 8

2 fm/4 to fm/2 16

1 fm/2 to fm 32

Table 3.1: The frequency range and samples in signal decomposition

From table 3.1, we can clearly see that the frequency range and samples of coeffi-
cients are halved in each decomposition.

3.1.2 Autocorrelation function

Autocorrelation (ACF) is a measure of the similarity between different patterns of a
signal. The correlation is achieved by multiplying the original signal with a shifted
copy of itself. The main objective of the ACF is finding repeating observations of the
signal. It is commonly used in analyzing the periodic information of the time series
signal. In statistics, the normalized ACF of a signal x(n) is computed in equation 3.3.

R(k) =
E[(xn − µ)(xn+k − µ)]

σ2
(3.3)

where µ is the mean value and σ2 is the variance of x(n) that aims to normalize the ACF.
The advantage of the normalized ACF is that it reduces the influence of differences on
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the amplitude of signals. The maximum value of the normalized ACF is 1. We can
see that the ACF is a function of the shift delay k with correlations between different
values of the signal. The value of the ACF should lie in the interval between -1 and 1
from anti-correlation to high correlation, where 0 shows that no correlation between two
observations. For a discrete time series signal x(t) with n observations (x1, x2, ..., xn),
an estimation of the standardized ACF is obtained as

R(k) =
1

(n− k)σ2

n−k∑
t=1

(xt − µ)(xt+k − µ) , 0 < k < n (3.4)

where the mean of the signal is µ and the variance is σ2. In conclusion, the Autocor-
relation function is a method to describe the correlation between the past observations
and the future observations of the signal which depends on the delay they are separated
by. It is a useful tool to analyze the periodic information in the time series signal.

3.1.3 Principal Component Analysis

In signal processing and data analysis, the Principal component analysis (PCA) is a
mathematical method based on the eigenvalue decomposition of the covariance matrix
that reduces the dimensions of the data and remains the most important information
of the original data. The first principal component of this algorithm gives a record of
the maximum variance in the data. The subsequent principal component has the maxi-
mum variance in the remaining data. Besides, the matrix in the PCA algorithm usually
needs to subtract the mean value of it to center the data before the eigenvalue decom-
position. After that, eigenvalue decomposition of the computed covariance matrix is
implemented. The diagonal eigenvalue matrix and its corresponding eigenvectors will
be calculated then [14]. The singular value decomposition (SVD) is an essential matrix
decomposition method in signal processing and statistics. For example, the SVD of a
matrix Xm×n is shown below.

X = UΣW T (3.5)

where Σ is a singular value diagonal matrix; U represents the left singular matrix which
is a square matrix of order m; W is the right singular square matrix with order n. In
both matrix U and W , the columns are unit vectors which are orthogonal to each other.
Simultaneously, the SVD of the computed covariance matrix can be written as

XTX = WΣTUTUΣW T = WΣ2W T (3.6)

where the eigenvectors matrix of XTX are equal to the right singular matrix W of
matrix X and the singular values of matrix X are equivalent to the square-root of
the eigenvalues in XTX. The eigenvectors matrix W can be seen as the directions of
the projection and the eigenvalues can be considered as variance in this direction of
projection. After the matrix decomposition, we need to sort the eigenvectors matrix
W with its corresponding eigenvalues in descending order. Then our original matrix X
needs to multiply with the sorted eigenvectors matrix W . This process will transform
our data matrix into a principal component matrix with each column representing the
variance of each direction. The transformation of the original matrix is written as

T = XW = UΣW TW = UΣ (3.7)
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Thus, the left columns of the transformation matrix T corresponding to high singular
value represent the most principal components in the signal. In addition, this trans-
formation can also reduce the dimension of our original matrix, which is achieved by
keeping only the first N principal components with multiplication of the first N eigen-
vectors. This process is illustrated as

TN = XWL = UΣW TWL = ULΣL (3.8)

where the matrix TN has only N columns now and achieves the dimensional reduc-
tion. Therefore, the PCA algorithm is a functional method for visualizing the main
components and reducing the dimensions of the datasets.

In summary, the PCA algorithm includes the computation of the covariance matrix,
sorting the eigenvalues in descending order with its corresponding eigenvectors and
then projecting the data matrix by multiplying with the sorted eigenvectors. The most
variability of the original data are involved in the first few projections.

3.1.4 Approximate entropy

In signal processing, Approximate Entropy (ApEn) is a non-linear parameter to illus-
trate the regularity and unpredictability of variations in the signal. The ApEn quantifies
the similarity between the succeeding patterns of the signal. The signal that includes
many repetitive patterns with high regularity will produce a small value of ApEn, while
the less predictable signal will generate a large value of that [15].

The algorithm for computing ApEn is shown as follows. For a time series signal
x(t) with N samples. Before calculating the ApEn, two parameters pattern length k
and tolerance of similarity r need to be chosen. Then the whole algorithm of ApEn can
be summarized as

1. Generate k − vectors:

X(m) = [x(m), ..., x(m+ k − 1)], 1 < m < N − k + 1 (3.9)

2. Calculate the distance between two vectors X(m) and X(n) by finding the max-
imum absolute value of difference between them:

d[X(m), X(n)] = max[|X(m)−X(n)|] (3.10)

3. Define a parameter Ck
r (m) for each m = 1, ..., N − k + 1, which is

Ck
r (m) = Nk(m)/(N − k + 1) (3.11)

where Nk(m) is the number of d[X(m), X(n)] less than the tolerant parameter r.

4. Logarithmic the Ck
r (m) parameter and average it.

φk(r) =
1

N − k + 1

N−k+1∑
m=1

ln(Ck
r (m)) (3.12)

14



5. Calculate φk+1(r) for k+1 and then the ApEn is defined by

ApEn(k, r,N) = φk(r)− φk+1(r) (3.13)

Thus, ApEn quantifies the difference between the patterns of next intervals and this
interval. The small value of ApEn indicates that there is a high similarity between the
succeeding patterns of observations. The high value of ApEn implies that the previous
observations can not be predicted by the additional measurements, which indicates the
time series signal is highly irregular.

3.2 Preprocessing

Preprocessing of raw ECG signal is a crucial procedure before the feature extraction,
which involves two steps:

1. Band-pass filtering: the strong artifacts during the collecting phase could influence
the quality of ECG signals such as motion artifact, muscle activity and baseline
wander. To remove the strong noise and artifacts, the original ECG signals were
filtered by a zero-phase, third order Butterworth band pass filter with the cut-off
frequency at 0.5 and 40 Hz [16]. This filter helps to remove the low frequency and
high frequency noises while does not change the main structure of ECG signals.

2. Normalization: it normalizes the amplitude of the filtered signal from 0 to 1 which
reduce the influence of different amplitude across sensors. Let y be the filtered
signal, the normalized signal ynorm is determined as

ynorm =
y −min(y)

max(y)−min(y)
(3.14)

In addition, the raw ECG signals were divided into several small segments using
sliding windows as mentioned in Chapter 2. The length of window is selected as ten
seconds with a trade-off of the computational cost and the information involved in
the signal. Then the relevant features will be extracted from each window of signals.
To increase the number and variability of observations in the ECG belt data sets, an
overlap sliding window was used to divide the ECG signals collected from ECG belt.
In this work, 80% overlapping window was used and 1776 segments of ECG signals
were extracted with this overlapping window method, compared with 360 segments by
non-overlapping window method.

3.3 Feature extraction

Features are used to represent patterns in summarized way including as much informa-
tion as possible in signals. In this work, the features are extracted from each segment
of ECG signals dividing by sliding windows. The features need to train the classifica-
tion model and will influence the final performance of the quality assessment. Thus,
the distributions of selected features on different class should separate very well. The
objective of this procedure is extracting representative features to distinguish the clean
and contaminated ECG signals in order to obtain a high classification performance.
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3.3.1 Wavelet transform based feature extraction method

The original ECG signal can be contaminated by noises and artifacts in the signal
acquisition phase. In general, the noise and artifacts will be spread randomly in time
and frequency domain of ECG signals. In this case, the features based on DWT algo-
rithm was proposed in this work because of its ability to capture both the temporal
and spectral information. The selection of appropriate wavelet and decomposition level
is essential in the wavelet transform of ECG signals. In previous work[17] [18], the
Daubechies wavelet of sixth order (db6) is chosen from the wavelet family because of
its similar structure with the QRS complex. The decomposition level is chosen in accor-
dance to the maximum frequency in the given signals. In preprocessing of original ECG
signals, 0.5 to 40 Hz band pass filter was used, which means the maximum frequency
in ECG signal is 40 Hz. Thus, six levels wavelet decomposition are taken in this work.
After the decomposition, six detail coefficients D1-D6 are extracted from original ECG
signals. To illustrate the DWT algorithm on ECG signals, we show the level six wavelet
decomposition of the clean and contaminated ECG signal in Figure 3.2, 3.3 and 3.4.

Figure 3.2: The wavelet decomposition of clean ECG signal

The wavelet coefficients of ECG signal with motion artifacts are plotted in Figure
3.3.
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Figure 3.3: The wavelet decomposition of ECG signal with motion artifact

For ECG signal with high frequency noise, the corresponding wavelet coefficients
are plotted in Figure 3.4.

Figure 3.4: The wavelet decomposition of ECG signal with high frequency noise

In Figures above, the left part illustrates the high frequency coefficients of the
ECG signal, and the right part shows the low frequency coefficients. We can see that
the components remain its shape of original ECG waves because the selected DB6
wavelet has a high cross correlation with the ECG signal. The noise and artifacts of
contaminated ECG signals will display at its corresponding frequency coefficients. It
can be seen that the clean and contaminated signals differ a lot in specific frequency
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sub-bands in accordance to the artifacts. Thus, the extracted wavelet coefficients are
useful in ECG signal quality analysis because of its ability to indicate the temporal and
spectral distribution of ECG signals.

To describe the difference of wavelet coefficients on the clean and contaminated ECG
signal, statistical features over the wavelet coefficients are extracted. The temporal and
spectral distribution of ECG signals are represented by the following statistical features:
a. mean of the absolute value in each wavelet coefficient; b. standard deviation in each
wavelet coefficient; c. median absolute deviation (MAD) in each wavelet coefficient.

An overview of these features extracted from the wavelet coefficients is presented in
Figure 3.5.

Figure 3.5: An overview of features extracted from wavelet coefficients

In statistics, the MAD is also a statistical parameter that measures the variability
of the signal. But the MAD is more functional for outlier detection than the variance.
For a time series signal Y = (y1, y2, ..., yn), the MAD is defined by the equation:

MAD = median(|Yi − Ỹ |) (3.15)

where Ỹ is the median value of Y. The formula starts with the deviations from the
median of the signal, the MAD is the median of their absolute values. Apart from these
features, the non-linear feature approximate entropy which represents the regularity of
patterns in wavelet coefficients was also calculated from the wavelet coefficients. The
approximate entropy can be used to distinguish the clean and contaminated ECG
signals because of its ability to quantify the complexity of the data. To perform the
distribution of the features on different class, the fisher score method was used to
evaluate each feature in this work [19]. The principal of fisher score method is illustrated
at Appendix definition 2, and the fisher score of each feature is shown in Appendix Table
A.1. Finally, the distributions of top three features extracted from DWT algorithm on
different class are illustrated in Figure 3.6.
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Figure 3.6: The distribution of top three features on DWT algorithm

In Figure 3.6, the green colour points represent the good quality observations and
the red colour points represent the bad quality observations. It can be seen that the
green points are concentrated at the top-right corner of the plot. In contrast, the red
points are more likely to locate at the bottom side with more sparse distributions. Thus,
it is easy to separate the good and bad quality observations and the final classification
result will be illustrated in Chapter 5.

3.3.2 Autocorrelation function based feature extraction method

In the theoretical background we mentioned that, the periodic information of ECG
signals can be extracted from the Autocorrelation function (ACF). Thus, the features
in ACF can possibly separate the clean and contaminated signals due to the significant
differences between the ACF of a clean periodic signal and a contaminated signal.
In order to demonstrate this statement, the Autocorrelation functions for clean and
contaminated ECG signals are illustrated in Figure 3.7.
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(a) The Autocorrelation function of the clean ECG signal

(b) The Autocorrelation function of the ECG signal with motion artifacts

(c) The Autocorrelation function of the ECG signal with high frequency noise

Figure 3.7: The Autocorrelation function of clean and contaminated ECG signal

From Figure 3.7, we can see that the Autocorrelation function of clean ECG signal
has clear peaks with a decreased amplitude which represents the periodic ECG waves
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in the original ECG signal. Besides, there are small up and downs between each pair
of peaks which illustrates the information of P wave and T wave. The Autocorrelation
function of ECG signal with motion artifacts looks quite different. The periodic peaks
are contaminated by the artifacts, and the amplitude of peaks varies a lot. The Au-
tocorrelation function of a contaminated ECG signal with high frequency noise looks
similar with the clean ECG signal because the amplitude high frequency variations are
small compared with the ECG waves. However, the high frequency noise increases the
number of up and downs between each pair of peaks, which can be used to extract
features to distinguish them. The maximum time lag is the length of samples in the
segment including the autocorrelation coefficients from all the morphological structures
in this segment. A number of differences can be observed from the above figures. To
characterize the ECG segments, eleven features derived from the ACF are used. The
features are described below.

1. The amplitude and location of the first three local maximum in the ACF (except
the first point). In general, the local maximum represents the correlation between
the heartbeats. The small value of the amplitude indicates two possible artifacts:
high- frequency muscle activity between the heartbeats and low-frequency baseline
wander caused by electrode movement.

2. First local minimum amplitude and location: the selection of this feature was
based on the assumption that a shift of the R-peak towards the deepest point of
S-wave represents the first local minimum of the ACF. If the baseline and high
frequency noise change the shape of S waves, it can be detected by this feature.

3. First zero-point location: this feature is the interval from perfect correlation to
no correlation in the ACF which depends on the morphological structure of ECG
signals (QRS complex waves). The noise varying the morphological structure of
ECG signals will also be detected in this feature.

4. Zero-crossing rate: this feature is the ratio of zero-crossing numbers over the
sample numbers. This feature aims to detect the variations in ECG signals. The
larger the zero-crossing rate is, the more likely that the ECG segment contains
abrupt alterations.

5. The variance of the zero-point to zero-point intervals: this feature also detects the
variations of amplitude in ECG signals. The high value of the variance indicates
that significant variations exist in the ECG segment.

The schematic overview of these features based on Autocorrelation function is shown
in Figure 3.8.
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Figure 3.8: An overview of features extracted from Autocorrelation function

The above features based on Autocorrelation function are proposed to separate the
clean and contaminated ECG signals. To illustrate how good the feature is, the fisher
score method mentioned before was also used to rank the extracted features. The
fisher score of each feature is shown in appendix Table A.2. Finally, top three features
marked at the table are selected to perform the distributions on different class, which
are illustrated in Figure 3.9.

Figure 3.9: The distribution of top three features on ACF algorithm

From the distribution of these features, we can see that some bad quality observa-
tions were far away from the good quality observations but it still has some bad quality
observations that merge with the good quality observations together in the clusters. In
other words, it would be difficult to separate the good and bad quality observations by
using a linear hyperplane with a small classification error.
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3.3.3 Principal component analysis based feature extraction method

The PCA is a mathematical algorithm for finding periodic information in time series
signals. To represent similarity between successive QRS complexes of ECG signals,
the features based on PCA algorithm were extracted by calculating the ratio of the
first three eigenvalues after sorting the values in descending order over the sum of all
the computed eigenvalues. The ratio of eigenvalues quantifies the importance of the
principal components in signals. The principal component with low eigenvalue indicates
that it contributes little to the variances in the signal. The construction of the objective
matrix is a crucial step in feature extraction. The generated objective matrix was based
on an ECG heart beat detection algorithm, Pan and Tompkins algorithm[20]. The
Pan and Tompkins algorithm is the most widely used algorithm for the QRS complex
detection of ECG signals due to its simplicity. In summary, this algorithm consists of
the procedures below.

1. Cancellation DC drift and normalization

2. Band-pass filtering

3. Derivative filtering

4. Squaring and moving window integration

5. Thresholds adjustment

After the Pan and Tompkins detection algorithm, the locations of R peaks were
computed by finding the index of the maximum amplitude of the signals over the
threshold. The R peaks location could help us to segment the ECG signal and then
construct the objective matrix. The segments were extracted by 0.5 second either side
of each R peak. The interval was chosen as 0.5 second because it will contain the
main structure of ECG signal (QRS complex, P and T waves). At last, the segments
represent the columns in the constructed matrix. As mentioned before, the rows of
matrix correspond to observations and columns correspond to variables. Thus, the
observations in the constructed matrix are the amplitudes at different time and the
variables are consecutive QRS morphological structures in ECG signals. The peak
detection result and constructed matrix for a clean ECG signal are shown in Figure
3.10.
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(a) The R peaks detection of a clean ECG
signal

(b) The constructed matrix of a clean ECG
signal for PCA

Figure 3.10: The R peaks detection result and the corresponding built matrix for a clean
ECG signal

For a contaminated ECG signal with motion artifacts, the constructed matrix is
shown in Figure 3.11.

(a) The R peaks detection of a contaminated
ECG signal with motion artifacts

(b) The built matrix for a contaminated
ECG signal with motion artifacts

Figure 3.11: The R peaks detection result and the corresponding built matrix for a
contaminated ECG signal

At last, the constructed matrix for a contaminated ECG signal with high frequency
noise is shown in Figure 3.12.
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(a) The R peaks detection of a contaminated ECG
signal with high frequency noise

(b) The built matrix for a contaminated
ECG signal with high frequency noise

Figure 3.12: The R peaks detection result and the corresponding built matrix for a
contaminated ECG signal

After using the PCA algorithm, the principal components and their corresponding
eigenvalue ratios are computed. The first two principal components of a clean ECG
signal are shown in Figure 3.13.

Figure 3.13: The principal components of a clean ECG signal

From Figure 3.13, it can be seen that the eigenvalue ratio of first principal component
is over 98% for the clean ECG signals, which occupies almost the whole components of
the observations of ECG signals. The reason is that each observation looks very similar
in the constructed matrix. There are no abrupt changes of morphological structure in
the successive observations. But for the contaminated ECG signals, the corresponding
eigenvalues ratios are much different which are illustrated in Figure 3.14.
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(a) The principal components of a ECG
signal with high frequency noise

(b) The principal components of a ECG
signal with motion artifact

Figure 3.14: The principal components of contaminated ECG signals

We find that the eigenvalue ratio of first principal component in the contaminated
ECG signal is smaller than it in the clean ECG signal, especially for the ECG signal with
motion artifacts. At the same time, the eigenvalue ratio of second principal component
in the contaminated ECG signal is higher than it in the clean ECG signal. To illustrate
the performance of these features, the fisher score result of each feature is shown in
Appendix Table A.3. The distributions of top three features are plotted in Figure 3.15.

Figure 3.15: The distribution of first three eigenvalue ratios on PCA algorithm

We can see that the shape of the whole distribution looks like a cone and the good
quality observations are concentrated at the top corner.

In conclusion, the first principal component represents the main morphological struc-
ture in the observations. For the clean ECG signal, all the observations in the matrix
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have similar patterns. In contrast, the observations may have different patterns for the
contaminated ECG signal because of the noise. Thus, the first component eigenvalue
ratio of clean signal is much higher than of the contaminated signal. In addition, the
second eigenvalue ratio usually represents the noise in ECG signals. From figure 3.4,
we can see that the high frequency and low frequency noises and artifacts are involved
in second principal component. This is the reason why the second eigenvalue ratio of
contaminated signal is much higher than the clean signal. Thus, the eigenvalue ratios
of principal components are chosen as features in view of its difference on clean and
contaminated ECG signal.

3.3.4 Normal feature extraction method

Apart from the feature extraction method we mentioned before, we also use the original
ECG signal and the Fast Fourier Transform (FFT) of that to extract features. The
features of the original ECG signal and the FFT include the temporal and spectral
information of the signal respectively. These two feature extraction methods are utilized
in this work because of their simplicity, and all the extracted features of these two
methods are shown in Table 3.2.

Methods Features

Original signal mean, standard deviation, MAD, kurtosis, skewness,
ApEn

FFT mean, max, standard deviation, kurtosis, skewness,
ApEn

Table 3.2: The extracted features of the original ECG signal and FFT

The ApEn is the only non-linear feature. All the other features are normal statistical
features. The kurtosis is a parameter to measure the outliers of the signal. The signal
with the high value of the kurtosis tends to have massive outliers [21]. The definition
of kurtosis for the dataset X is

kurtosis =

∑N
i=1(Xi − X̄)4/N

s4
(3.16)

The skewness is a parameter to measure the symmetry of the signal. The skewness
of symmetric signals is near zero, and the definition of it is

skewness =

∑N
i=1(Xi − X̄)3/N

s3
(3.17)

where X̄ is the mean, s is the standard deviation, and N is the size of the data.
In conclusion, five feature extraction methods based on the original signal, FFT,

DWT, ACF and PCA are used in this work. A total of 58 features are extracted from
these methods. Before training the classifier, the best set of features need to be selected.
The feature selection work is introduced in the next chapter.
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Feature selection for ECG
quality classification 4
4.1 Introduction

The extracted features are essential in the supervised learning algorithm. The classifier
can compute the decision boundary based on the input features to identify the dataset.
However, the irrelevant and redundant features might exist in the extracted features.
In this case, the performance of the classifier will deteriorate. Feature selection method
is proposed to choose the best feature subset from the extracted features and improve
the final performance of the classifier. Feature selection is an essential step before the
classification, which can also reduce the computational complexity and simplify the
classification model. In general, there are three fundamental methods in the feature
selection category which are filter, wrapper and hybrid methods[22].

A. Filter methods consider the attributes of feature itself like consistency, similarity
and statistical distribution, regardless of the classification model. The filter method
can also be classified into univariate filter method and multivariate filter method. Uni-
variate methods usually rank a single feature based on the parameter like symmetrical
uncertainty, fisher score and relief. In contrast, the multivariate methods assess an
entire feature subset such as MRMR and correlation based methods. The generation
of feature subsets depends on features searching methods. In general, there are three
usual searching methods: forward feature selection, backward feature reduction and
heuristic selection. Forward feature selection is commonly based on adding new fea-
tures to an empty feature subset. Backward feature reduction is typically based on
eliminating features from the whole feature subsets. The heuristic algorithm is utilized
in the heuristic selection to explore the generation of the feature subset [23].

B. Wrapper methods is achieved based on the performance of features in the clas-
sifier. A large number of classifiers like decision trees, K nearest neighbours and SVM
can be used in the wrapper method to asses the performance of the feature subset [24].
The generation of feature subsets also depends on a specific search method. Usually the
classification performance of feature subsets obtained by wrapper method was better
than filter method in view that the features are assessed based on a real classification
algorithm. However, wrapper methods are more computationally expensive than filter
methods because of their dependence on the performance of classifiers, especially when
using cross-validation.

C. Hybrid methods were achieved by combining the the advantages of filter and
wrapper methods. The filter method is used to eliminate the irrelevant features based
on the characteristics of features. The wrapper method is then utilized to extract the
best feature set. The Hybrid method usually achieves high performance because it
combines the best properties of two feature selection methods.
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4.2 Methodology

The filter, wrapper, and hybrid methods were all utilized to remove the redundant
and irrelevant features. The performance of the feature subset selected by these three
methods in classification are compared in Chapter 5. The filter method we used is
based on traditional statistic analysis. The utilized wrapper method is a recursive
feature elimination algorithm based on SVM classifier.

4.2.1 Wilcoxon signed rank test

In statistics, the Wilcoxon signed rank test is a non-parametric test. The objective of
this test is identifying whether two related samples have the equivalent distributions.
It does not rely on the assumption of a specific distribution (e.g. normal distribution)
of the data unlike t-test. However, it is nearly as efficient as the t-test on samples with
normal distributions. In this work, the two tested samples are the features extracted
from clean and contaminated ECG signals. To illustrate the dependency of these two
samples, we calculate the mutual information between them. If the mutual information
is not equal to 0, then these two samples are related. Finally, we find that all the
computed mutual information is larger than 0. Thus, these two tested samples are
relevant and can be utilized in Wilcoxon signed rank test. For two samples X and Y,
the null hypothesis of the two-sample Wilcoxon test is

H0 : P (X > Y ) = P (Y > X) (4.1)

Since we are assuming our distributions are equal, what we will try to disprove in
this test is that both samples have the same distribution with same median. P value
is the crucial parameter in the Wilcoxon rank-sum test which is the probability of
the occurrence of the null hypothesis. P value less than the default significance level
0.05 indicates strong evidence to reject the null hypothesis that these two samples have
equivalent medians [25]. Figure 4.1 shows the diagram of how to identify the hypothesis.
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Figure 4.1: The diagram of statistical test [1]

The Wilcoxon test is based on ranking the difference between two samples A and
B [26]. Each observation of the combined samples has a rank based on its value. The
whole process of this method is shown below.

1. Compute the difference di of paired observations from two samples.

2. Rank the absolute value of di (give rank 1 to the smallest value).

3. Calculate the sum of the ranks of the positive and negative differences denoted
by W+ and W− respectively.

4. Select the minimum value of W+ and W−, defined by W = min(W+,W−).

5. Use tables of critical values for the Wilcoxon signed rank test to find the p-value.

4.2.2 Correlation based feature selection

The Correlation based feature selection (CFS) algorithm is accomplished in accordance
to the correlations. The symmetrical uncertainty based on mutual information was used
to measure the correlations in this work because of its simplicity. Entropy measures the
complexity or uncertainty of a signal. For instance, the entropy of signal X is defined
by

H(X) = −
∑
x∈X

p(x)log2(p(x)) (4.2)

If there is another signal Y , then the joint entropy of signal X and Y is defined as

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y)log2(p(x, y)) (4.3)
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The mutual information measures the dependence between the two signals. The
mutual information between X and Y is defined as

I(X;Y ) = H(X) +H(Y )−H(X, Y ) (4.4)

Also, the mutual information depends on the number of observations in signals. To
remove this influence, the symmetrical uncertainty is utilized to normalize the mutual
information from 0 to 1, which is illustrated below.

symmetrical uncertainty =
2× I(X;Y )

H(X) +H(Y )
(4.5)

Besides, the selection criterion of this method is based on an evaluation function.
The evaluation function is a combined test which consists of the correlation between
features and class and the inter-correlation between features. It can be described as
follows.

MS =
n · rcf√

n+ n(n− 1)rff
(4.6)

where n is the size of the features; rff is the mean value of the feature to feature
correlations; rcf is the mean value of the feature to class correlations and MS is the
ranking criterion of a feature subset. From equation 4.6, we can be see that this evalu-
ation considers both the feature to class correlation and the inter-correlation between
features. The value of evaluation function gives a ranking on the feature subsets. After
ranking by the evaluation function, irrelevant features can be removed due to their low
correlations with the class and redundant features can also be eliminated because of
their high correlations with the remaining features. The diagram of this CFS algorithm
is shown in Figure 4.2.

Figure 4.2: The diagram of CFS algorithm

Forward selection was used as the search strategy in this method. The implementa-
tion of this method is described as follows. The search method starts with the empty
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set without features inside. Each additional feature added to the empty set is calculated
by the evaluation function and the feature with highest score is ultimately added to the
subset. The second step includes testing each of the remaining features added to the
subset and choosing the best one with the highest score. Similarly, the next step is the
repetition of the second step which tries to find next best feature from the remaining
features. The searching procedure will continue until the last remaining feature was
added to the subset. After that, the subset with the maximum score of the evaluation
function is selected [27]. Table 4.1 gives an example of CFS applied to a dataset with
four features, which illustrates a forward feature selection search through the whole
feature subset based on the evaluation function.

Feature subset k Ms

[ ] 0 0

[Feature 1] 1 0.12

[Feature 2] 1 0.18

[Feature 3] 1 0.04

[Feature2 Feature 1] 2 0.15

[Feature2 Feature 3] 2 0.22

[Feature2 Feature 4] 2 0.13

[Feature2 Feature3 Feature1] 3 0.16

[Feature2 Feature3 Feature4] 3 0.28

[Feature2 Feature3 Feature4 Feature1] 4 0.26

Table 4.1: Forward feature selection using the result of evaluation function

k is the size of the feature subset, Ms is the evaluation function in equation 4.6.
The subsets in bold have the best performance in each iteration with respect to Ms.
The best feature subset Feature 2, Feature 3 and Feature 4 is ultimately returned with
the highest value of Ms. After that, the dimension of features is reduced to contain
only the features selected by CFS algorithm and the reduced features can then pass a
machine learning algorithm for classification and prediction.

4.2.3 Recursive feature elimination with Support Vector Machines

Support vector machine (SVM) is a popular classification algorithm against other al-
gorithms related to computational simplicity. The SVM classifier aims to compute the
maximum margin between classes. The decision boundary ( hyperplane) is positioned
to leave the largest margin between classes. In general, the weights of the decision
function are calculated based on the observations lie on the margin, which are defined
as support vectors. The support vectors can be utilized to determine the final decision
boundary.

The SVM based recursive feature elimination (SVM-RFE) is a backward feature
reduction method. The weights w in SVM represent the contributions of each feature
to the classifier. In each iteration, the selected feature subset was utilized to train the
classifier and compute the weight vector of the features. The feature with smallest
weight is eliminated because of its small influence on the weight vector norm. [28]
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The whole algorithm is shown below. In the SVM-RFE algorithm, the classification

Algorithm 1 SVM-RFE

Input:
Training dataset: X = [x1,x2, ...,xn]T

Labels of class: y = [y1, y2, ..., yn]T

Initialization:
Subset of selected features: s = [1, 2, ..., i]
Output: The performance with each set of features.

1: Update the training dataset with the selected features: Xs = X(:, s).
2: Training phase: α = SVM(Xs,y).
3: Calculate the weights in the classifier: w =

∑
n αnynxn.

4: Evaluate the performance of the classifier for dataset Xs.
5: Compute the ranking criteria: ri = (wi)

2.
6: Find the feature with smallest ri: f = argmin(r)
7: Remove the found feature: s = s(1, 2, ..., f − 1, f + 1, ..., length(s)).
8: Rerun the previous procedure until the feature subset s is empty.

model needs to be trained on each feature subset and its performance computed in
each iteration. The output is the performance with each set of features generated
from recursive elimination of the least representative feature. After this algorithm, the
feature subset with the best performance will be selected.

4.3 Feature selection result

The feature selection methodology is introduced in the previous sections. Filter and
wrapper methods are combined in our work. In this section, the feature selection results
are described and illustrated.

Firstly, the filter method we used is based on the combination of Wilcoxon rank
sum test and CFS algorithm. There is an obvious shortcoming for the CFS algorithm.
If the irrelevant feature has low inter-correlation with other features, it can still be
selected by CFS algorithm. In case of that, we use the Wilcoxon test before the CFS
algorithm. The diagram of the whole process is shown in Figure 4.3.
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Figure 4.3: The diagram of the filter feature selection algorithm

In this work, 54 features were selected after the Wilcoxon test because their cor-
responding p-value is less than 0.05. Only 4 features were removed. After this filter
feature selection method, ten features were ultimately selected in view of its largest
value in the evaluation function 4.4. The ranking criterion MS in the evaluation func-
tion of each feature subset is shown in Figure 4.4.

Figure 4.4: The ranking criterion Ms of each feature subset

The green point of Figure 4.4 is the selected feature subset with the number of ten
because of its highest Ms value. The ten selected features are based on four feature
extraction algorithms which are shown in Table 4.2 : 1) Features of raw ECG sig-
nals; 2) Principal component analysis; 3) Autocorrelation function; 4) Discrete wavelet
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transform.

Algorithm Selected Features

Features of raw ECG signals median absolute deviation

Principal component analysis second eigenvalue ratio

Autocorrelation function first zero point location

Discrete wavelet transform
ApEn: level 1 2 3 and 6 detail coefficients
Mean: level 6 approximation coefficients
Standard deviation: level 2 and 3 detail coefficients

Table 4.2: Feature selection result of filter method

We can see that most of the selected features come from Discrete wavelet trans-
form algorithm. The reason is that the features of DWT algorithm capture both the
information from time and frequency domain. Simultaneously, the computational com-
plexity of DWT algorithm is much higher than the other algorithms. In other words,
the features based on DWT algorithm performs well at a cost of computational time.

For the wrapper feature selection method, the SVM based RFE algorithm was also
used in this work. In the procedure of this algorithm, the performance evaluation
method was the average accuracy of 5-fold cross validation in each iteration. The size
of elimination in SVM-RFE algorithm corresponds to the number of features to remove
at each iteration, which was chosen as one. In other words, only one feature would be
eliminated from the whole feature subset during each iteration. The performance of
the selected feature subset in each iteration is shown in Figure 4.5.

Figure 4.5: The performance of selected feature subset in each iteration

The maximum cross validation accuracy with a value of 0.934 is reached when 38
features were selected in this algorithm. All the selected features are shown in Table
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4.3.

Algorithm Selected Features

Features of raw ECG signals
mean, standard deviation, median absolute deviation,

ApEn, kurtosis, skewness

Features of FFT on ECG signals mean, max, standard deviation, skewness

Principal component analysis second, third and fifth eigenvalue ratios

Autocorrelation function
first zero point location, zero-crossing rate,

first minimum location and amplitude

Discrete wavelet transform

ApEn: level 1 to 5 detail coefficients and
level 6 approximation coefficient

Mean: level 2 to 6 detail coefficients
Standard deviation: level 1 to 4 and 6 detail coefficients,

level 6 approximation coefficient
Median absolue deviation: level 1, 4 and 6 detail coefficients

Table 4.3: Feature selection result of wrapper method

From the Table 4.3, we can see that much more features were selected in this algo-
rithm compared with the filter method. In the filter method, the features are evaluated
by the attributes of feature itself like consistency and statistical distribution. The
features which have a high correlation with others are also removed from the subset
because of the redundancy. Thus, only a small number of features will be ultimately
selected. However, the evaluation criterion is the performance of features in the classi-
fier for the wrapper method, regardless of the redundancy in the feature subset. The
combination of features which achieves the highest accuracy will be ultimately selected.
Both the filter and wrapper method have their own advantages and these two methods
can be applied for different objectives. The performance of the features selected by
these two method for classification model will be illustrated in Chapter 5.
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ECG signal quality
classification with SVM
classifier 5
5.1 Introduction

Chapter 3 and 4 introduced the feature extraction and selection methods from ECG
signal. This chapter discusses the classifier for identifying the quality of ECG signals.
The supervised learning algorithm is an approach where the classification model learns
from the datasets and the given labels and then uses this trained model to identify new
observations. Different types of classifiers like Naive Bayes, Random Forest, Decision
trees and Nearest Neighbours can be used in the supervised learning problems. Support
vector machine algorithm was used in this work with its advantage like high accuracy,
nice theoretical guarantees regarding overfitting and the acquisition of prediction prob-
ability.

5.2 Theoretical Background

Support vector machine (SVM) is widely applied in machine learning algorithm that de-
velops a hyperplane as the decision boundary to separate different class of observations,
which is widely used in data classification, image recognition and text categorization
[29]. In general, the long distance from the observations of different class to the bound-
ary indicates a good separation between them in SVM. For instance, a dataset of N
points xi, yi are given, where yi are the labels indicating the class to each point xi. The
role of SVM is to construct the two parallel hyperplanes that separate different groups
of data and make the distance from the hyperplanes to the nearest observations of each
group is maximized. The hyperplane is defined as

f(x) = wTx+ b = 0 (5.1)

where w is the weight vector for the hyperplane and b is the bias. For the binary
classification in SVM, if the data can be separated linearly, two parallel hyperplanes
called hard margin are generated to separate two groups of observations. The objective
is making the distance between the hard margin as large as possible. The maximum-
margin hyperplane is defined as the hyperplane which lies in the middle of hard margin.
The hard margin is generated from the data points lie on it, which are called support
vectors. These two parallel hyperplanes are illustrated as ~w ·~x+b = 1 and ~w ·~x+b = −1
respectively. The observations that below or above the margin will be classified into
two classes. The distance inside the margin is computed as 2

‖~w‖ . Thus, maximizing

the distance is equivalent to minimize ‖~w‖. Besides, the constraint should be added to
avoid data points that are falling into the margin as

yi(~w · ~xi + b) ≥ 1, 1 ≤ i ≤ n (5.2)
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The above hard-margin SVM problem is shown in Figure 5.1.

Figure 5.1: Hard margin support vector machine [2]

Thus, the optimization problem can be formulated as minimizing the equation be-
low.

J(w) =
wTw

2
=
‖w‖2

2
(5.3)

subject to
yi(w

Txi + b) ≥ 1, 1 ≤ i ≤ n (5.4)

To solve the optimization problem with constraint, the Lagrange function is con-
structed in equation 5.5.

J(w, b, α) =
1

2
wTw −

n∑
i=1

αi[yi(w
Txi + b)− 1] (5.5)

where the αi are called the Lagrange multipliers. The Lagrangian function can be solved
by setting the gradient of it to 0. By transforming the above function to Lagrangian
dual problem, the simplified optimization problem is obtained as

max f(α1...αn) =
n∑

i=1

αi −
1

2

n∑
i=1

n∑
j=1

αi(yiyjx
T
i xj)αj (5.6)

subject to
n∑

j=1

αiyi = 0, αi ≥ 0 (5.7)

If the data can not be separated linearly, the constraint is violated by introducing
a new non-negative variable ξi as follows.

yi(w
Txi + b) ≥ 1− ξi (5.8)
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ξi ≥ 0, i = 1, ..., N (5.9)

For ξi ≥ 0, the observations will fall into the margin. The concrete location of these
observations depends on the value of ξi. For ξi ≤ 1, the observations will fall on the
correct side of the hyperplane. In other case, the observations will fall on the incorrect
side of the hyperplane. The optimization problem with variable ξi is called soft-margin
SVM. Figure 5.2 illustrates the distribution of the observations based on ξi.

Figure 5.2: Soft margin support vector machine [2]

In soft-margin SVM, the hinge loss function is added in the cost function which are
shown below.

J(w, ξ) =
1

2
wTw + C

n∑
i=1

ξi (5.10)

The constraint conditions are same as equation 5.8 and 5.9. C is the parameter
which regulates the balance between the number of misclassified observations and the
complexity of the machine. The soft-margin SVM could choose decision boundary that
has some training error and thus is less likely to overfit the model. An example of how
C parameter controls the decision boundary is shown in Figure 5.3.
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Figure 5.3: The influence of C parameter for the decision boundary [3]

The circled points are support vectors. We can see that decreasing C parameter
causes classifier to sacrifice linear separable accuracy in order to gain stability. Thus,
tuning C parameter is a crucial procedure in SVM classification problem. Similarly,
the dual problem can be formulated by using the Lagrange multipliers in this case as

max f(α1...αn) =
n∑

i=1

αi −
1

2

n∑
i=1

n∑
j=1

αi(yiyjx
T
i xj)αj (5.11)

subject to
n∑

i=1

αiyi = 0, 0 ≤ αi ≤ C (5.12)

If the original data can not be separated linearly, the projecting function ϕ is re-
quired to project the data to higher dimensions. This allows the algorithm to fit a
hyperplane in the projected data space. Then the optimization problem becomes

min J(w, ξ) =
1

2
wTw + C

n∑
i=1

ξi (5.13)

subject to
yi(w

Tϕ(xi) + b) ≥ 1− ξi (5.14)

ξi ≥ 0, i = 1, ..., N (5.15)

The dual problem is also altered by replacing x by ϕ(x) in equation 5.11.

max f(α1...αn) =
n∑

i=1

αi −
1

2

n∑
i=1

n∑
j=1

αi(yiyjϕ
T (xi)ϕ(xj))αj (5.16)

subject to the same constraints

n∑
i=1

αiyi = 0, 0 ≤ αi ≤ C (5.17)
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The kernel function is related to the projecting function ϕ and defined as follows.

k(xi, xj) = ϕT (xi)ϕ(xj) (5.18)

Finally the dual problem becomes

max
n∑

i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjk(xi, xj) (5.19)

subject to
n∑

i=1

αiyi = 0, 0 ≤ αi ≤ C (5.20)

The weight vector w of the hyperplane with a kernel function is computed as
w =

∑n
i=1 αiyiϕ(xi). The coefficients αi can be calculated by solving the quadratic

programming problem. Finally, the decision function is generated to identify the new
input data z as

f(z) = sgn(wTϕ(z) + b) = sgn(
n∑

i=1

yiαik(z, xi) + b) (5.21)

5.3 Performance Evaluation

In this work, ten subjects including fifteen hours data are used to classify the quality of
ECG signals. The confusion matrix is a widely used method for performance evaluation
in supervised learning problem. In predictive analysis, the confusion matrix consists
of four parameters which represent the true positive (TP), true negative (TN), false
positive (FP) and false negative (FN) respectively [30]. TP measures the ratio of
actual positives that are corrected predicted; TN measures the proportion of actual
negatives that are corrected predicted; FP measures the ratio of actual negatives which
are incorrectly predicted; FN measures the proportion of actual positives which are
wrongly identified as negatives. For binary classification problem, the confusion matrix
is shown in Table 5.1.

Class 1 Predicted Class 2 Predicted

Class 1 Actual True Positives False Negatives

Class 2 Actual False Positives True Negatives

Table 5.1: The confusion matrix for binary classification

It allows more detailed analysis in performance evaluation than merely the accuracy
which is the proportion of correct classifications and can be written as

Accuracy =
TP + TN

TP + TN + FP + FN
(5.22)
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Sensitivity is the extent to which the actual positives are correctly classified, which is
defined by

Sensitivity =
TP

TP + FN
(5.23)

Specificity is the quantification for the actual negatives defined by

Specificity =
TN

TN + FP
(5.24)

Accuracy is not enough to represent the performance of the classifier, especially for the
unbalanced data sets (the numbers of observations in different classes vary a lot). The
accuracy can not reflect the performance of the class with small number of observations,
because it is the proportion of correct classifications in this class which depends on
the observation number. Therefore, another common used parameters like sensitivity,
specificity and AUC from ROC curve are applied in the performance evaluation. The
parameter true positive and false positive are two variables in the ROC curve. The ROC
curve is plotted based on these two variables at different thresholds, which illustrates
the diagnostic ability of a binary classifier across all possible distinction thresholds.
AUC (Area under the ROC curve) is a parameter for measuring the performance of
classifier when the discrimination threshold is changed [31].

K-fold cross validation is utilized to estimate the performance and stability of the
classifier in this work. Cross-validation is primarily applied in supervised learning
problem, which can be used to check the overfitting. It will produce a less biased
estimation of the model than other methods like a simple train-test split method [32].
The general procedures are shown below:

1. Mix the dataset.

2. Uniformly divide the dataset into k groups.

3. Take one group as test dataset and the remaining groups as training dataset.

4. Fit a model on the training dataset and evaluate its performance on the test
dataset.

5. Repeat above steps until all the groups are selected.

The scheme of a 5-fold cross validation procedure is shown in Figure 5.4.
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Figure 5.4: The scheme of 5-fold cross validation

In each iteration, the parameters like accuracy, sensitivity and specificity quantifying
the performance of classifier on test dataset is calculated. Finally, the average value of
these parameters represents the absolute performance and the variance of it represents
the stability of the classification model. Thus, cross-validation can also be used to
check whether the model has been overfitted. The overfitting problem indicates that
the trained model is not sensitive to new dataset. In this case, the classifier will achieve
a bad performance for new dataset even if it has a high performance for the training
data.

5.4 Experimental results

Before performing the classification experiment, 25 % of datasets are extracted as val-
idation data. The remaining 75 % of datasets are applied into k-fold cross validation
to assess the performance and stability of the classification model. The parameter k is
chosen as five (5-fold). In addition, tuning the penalty parameter C of SVM classifier
is required in this work because of the unbalanced training data (the number of obser-
vations in each class is different). For the balanced data set, the penalty parameter C
of each class in the optimization function is equal (see in equation 5.13). However, this
optimization function is changed for the unbalanced data set as follows.

min J(w, ξ) =
1

2
wTw + C+

∑
i∈C+

ξi + C−
∑
j∈C−

ξj (5.25)

where C+ is the class labeled as 1 and C− is the class labeled as 0. To tuning the
parameter C, its value is adjusted inversely to class frequencies in the input data. In
this case, the SVM classifier will give higher penalty to the class with less number of
observations, which can improve the classification accuracy in this class. The 5-fold
cross validation generates five classification models in total and the best one of them is
the model with the maximum average of accuracy, sensitivity and specificity. The best
model is then applied in the prediction work of the validation data.
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5.4.1 Classification performance for filter feature selection method

As exposed in Chapter 4, two feature selection methods are used in this work. For
filter method, ten features were ultimately selected (show in Table 4.2). The features
were then utilized to train the SVM classifier with 5-fold cross validation. The evalu-
ation criterion of performance depends on accuracy, sensitivity, specificity, f1-score of
confusion matrix and ROC curve of the classification model. The performance based
on confusion matrix is shown in Table 5.2.

Performance Average value Standard deviation

Accuracy 0.920 0.053

Sensitivity 0.952 0.027

Specificity 0.891 0.102

F1-score 0.919 0.047

Table 5.2: The performance of 5-fold cross validation for features from filter method

It can be seen that the performance of confusion matrix is acceptable as all the
values are over 0.89. The performance based on ROC curve in each iteration of cross
validation was also plotted in Figure 5.5. The AUC measures the performance of the
classification model. The statistical features of AUC were both annotated in the plot.

Figure 5.5: The ROC curve of cross validation for filter method

From Figure 5.5 we can see the value of AUC is near one in all 5 iterations of cross
validation, which illustrates that the training model performs well in separating the
good and bad quality observations. It also does not show over-fitting problem related
to the small value of standard deviation. After the cross validation, five models are
generated and the second model is chosen as the best model with the highest accuracy
and F1-score. Then we use this model to make predictions of the new validation data.
The performance of this classification model is shown in Table 5.3.
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Performance Average value

Accuracy 0.916

Sensitivity 0.837

Specificity 0.949

F1-score 0.856

AUC 0.967

Table 5.3: The performance of filter method for validation data

From the performance of the selected model for validation data, we can see that
the evaluation parameters are all above 0.8. The sensitivity and F1-score are lower,
meaning that the prediction error for bad quality observations is higher compared with
the training phase.

5.4.2 Classification performance for wrapper feature selection method

38 features were selected based on wrapper method which are shown in Table 4.3.
The classification performance was achieved by using the same training procedure as
mentioned before. Table 5.4 shows the performance of 5-fold cross validation with these
38 features.

Performance Average value Standard deviation

Accuracy 0.942 0.039

Sensitivity 0.954 0.007

Specificity 0.930 0.062

F1-score 0.940 0.036

Table 5.4: The performance of 5-fold cross validation for features from wrapper method

The ROC curve in each iteration of cross validation was also plotted in Figure 5.6.

Figure 5.6: The ROC curve of cross validation for wrapper method
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From Table 5.4 and Figure 5.6, we can see the mean and standard deviation of
AUC for wrapper method are equivalent to the filter method. The performance based
on confusion matrix of wrapper method is improved compared with the filter method.
Also the performance of wrapper method in training phase is more stable considering
the standard deviation. In this case, the second model is chosen as the best model with
the highest accuracy and F1-score. Then we use this model to predict labels of the
validation data. The performance of this model is shown in Table 5.5.

Performance Average value

Accuracy 0.924

Sensitivity 0.943

Specificity 0.916

F1-score 0.882

AUC 0.981

Table 5.5: The performance of wrapper method for validation data

Compared the performance in Table 5.3 and 5.5, we find that almost all the evalu-
ation parameters are improved by the wrapper feature selection method. The model is
accurate enough to classify the quality of ECG signals on new subjects.

5.4.3 Classification performance for hybrid feature selection method

If we combine the filter and wrapper feature selection method as hybrid method, only
four features were selected which are shown in Table 5.6.

Algorithm Selected Features

Features of raw ECG signals median absolute deviation

Discrete wavelet transform
ApEn: level 3 detail coefficients
Standard deviation: level 2 and 3 detail coefficients

Table 5.6: Feature selection result of hybrid method

Table 5.7 shows the performance of 5-fold cross validation with these four features.

Performance Average value Standard deviation

Accuracy 0.923 0.044

Sensitivity 0.946 0.039

Specificity 0.902 0.091

F1-score 0.922 0.040

Table 5.7: The performance of 5-fold cross validation for features from hybrid method

The corresponding ROC curve of each iteration in cross validation was plotted in
Figure 5.7.
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Figure 5.7: The ROC curve of cross validation for hybrid method

Also, the performance of best training model on validation data is shown in Table
5.8.

Performance Average value

Accuracy 0.918

Sensitivity 0.876

Specificity 0.936

F1-score 0.865

AUC 0.974

Table 5.8: The performance of hybrid method for validation data

From Figure 5.7, Table 5.7 and 5.8, we can see the mean and standard deviation of
AUC for hybrid method are equivalent to the other methods. The performance based
on the confusion matrix of the hybrid method is improved compared with the filter
method but not better than the wrapper method.

In conclusion, all of these three feature selection methods achieve good performance.
The choice of the method appears the trade-off between accuracy and computational
complexity. In this work, we choose the hybrid method because only four features have
remained. It tremendously reduces the computational time in the real application but
still performs well.

5.4.4 Classification performance for each feature extraction method

To compare the proposed feature extraction methods, we also compute the classification
performance of each set of features. Table 5.9 shows the mean and standard deviation
of performance on different feature extraction methods in the cross validation phase.

49



Features Acc Sen Spe F1 AUC

Raw 0.861+0.061 0.905+0.047 0.822+0.101 0.862+0.055 0.92+0.07

ACF 0.741+0.023 0.843+0.083 0.651+0.059 0.752+0.031 0.83+0.05

PCA 0.819+0.030 0.899+0.089 0.749+0.062 0.822+0.038 0.92+0.03

DWT (ApEn) 0.899+0.070 0.907+0.074 0.892+0.072 0.895+0.072 0.96+0.04

DWT (Mean) 0.658+0.039 0.728+0.257 0.595+0.170 0.644+0.110 0.78+0.09

DWT (Std) 0.804+0.098 0.840+0.172 0.773+0.047 0.793+0.125 0.89+0.07

DWT (MAD) 0.805+0.089 0.821+0.103 0.792+0.177 0.801+0.078 0.90+0.09

Table 5.9: Performance comparison of the proposed feature extraction methods in cross
validation phase

The performance comparison between the proposed feature extraction methods for
the validation data is shown in Table 5.10.

Features Acc Sen Spe F1 AUC

Raw 0.756 0.872 0.610 0.692 0.865

ACF 0.711 0.760 0.663 0.635 0.781

PCA 0.805 0.868 0.725 0.738 0.875

DWT (ApEn) 0.925 0.892 0.941 0.876 0.948

DWT (Mean) 0.710 0.858 0.612 0.645 0.853

DWT (Std) 0.816 0.861 0.798 0.742 0.898

DWT (MAD) 0.782 0.871 0.714 0.726 0.872

Table 5.10: Performance comparison of the proposed feature extraction methods for
validation data

From Table 5.9 and 5.10, we can see that the ApEn of DWT achieves the best
performance because of its high computational complexity. The ApEn needs to compare
the similarity between succeeding patterns of ECG signals. The calculation of ApEn
considers each fragment of the given signals. The statistical features standard deviation
and median absolute deviation are not better than ApEn but still achieve a satisfying
performance in both training and validation phase. The features of the PCA algorithm
and raw ECG signals both perform well, but the performance of the PCA algorithm is
more stable than the features from raw signals. The ACF method does not achieve a
good performance compared with other methods. The reason of that is the features of
ACF are sensitive to the low-frequency noise. In other words, even small low-frequency
variations of ECG amplitude can change the shape of ACF. Thus, some good quality
ECG signals with small low-frequency variations can be mistakenly classified in this
case.

In conclusion, the features of the DWT algorithm achieve the best performance
because of its high computational complexity. It considers both the temporal and
spectral information of ECG signals. The PCA algorithm also performs well with only
five features and low computational complexity. The performance of features on raw
ECG signals is acceptable but not stable enough. The ACF method still requires to be
improved in the future.
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5.4.5 Discussion

The classification results illustrate that the performance of features selected by the
filter, wrapper and hybrid methods are both over 0.8. On the other hand, the per-
formance of wrapper method is higher compared to the other methods, especially for
the validation data. But the filter method has the advantage of low computational
time and low redundancy. The features are selected based on the feature to class and
feature to feature correlations regardless of the classifier. After that, the irrelevant
and redundant features are eliminated, which also reduces the dimensions of the whole
dataset. For the wrapper method, it is a classifier based feature selection method.
The performance is generated by training the classifier for each feature subset and the
features are ultimately selected with the best performance. Because of that, the total
computational time is increased, but the selected features achieve the best performance
for a certain classifier. As we mentioned in Chapter 4, 38 features are selected by the
wrapper method in contrast to 10 features by the filter method. It indicates that more
information of the ECG signals has been captured by these 38 features and the clas-
sifier can distinguish the quality of ECG signals on different dimensions. This is why
the performance of wrapper method is better than the filter method. For the hybrid
method, it combines the advantage of both filter and wrapper methods. The perfor-
mance has been improved on average compared with the filter method but with fewer
features. In other words, the hybrid method can achieve a satisfying performance with
low computational time in the training phase.

In general, all of these three feature selection methods can be used in the classifica-
tion problem. Each method has its own advantages. In real application, our objective is
designing a ECG signal quality indicator with low computational time and acceptable
performance. Thus, we choose the hybrid method as the feature selection method.

5.5 ECG signal quality prediction result

The SVM classifier will produce a posterior probability of each observation after the
training phase, which is very useful in practical predictions. The posterior probability
gives a degree of certainty about the classification result. In this work, the ECG quality
can be predicted based on the posterior probability. As we mentioned before, the output
of the SVM classifier is

f(x) = h(x) + b (5.26)

where

h(x) =
∑
i

yiαik(xi, x) (5.27)

To map the output of SVM to probabilities, the Platt scaling algorithm is used to
solve this problem. It produces the posterior probability estimates based on a sigmoid
function as shown below [33].

P (y = 1|x) =
1

1 + exp(Af(x) +B)
(5.28)
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where A and B are two parameters which are generated by this algorithm, f(x) is the
output of SVM classifier. The range of the posterior probability is from 0 to 1, which
indicates the predictions can now be made according to the rules that y = 1 if P > 0.5
and y = 0 if P < 0.5. For linear SVM classification, a flat hyperplane is generated
as the decision boundary to distinguish different classes. In this case, the posterior
probability of SVM classifier represents the distance to the decision boundary. The
high value of probability for good quality signals indicates that these observations are
far from the decision boundary.

In this work, the ECG signals are predicted as three quality levels depending on the
posterior probability computed by the SVM classifier. The prediction rules are shown
as follow.

1. Perfect quality: the posterior probability is over 0.5.

2. Average quality: the posterior probability is between 0.001 and 0.5.

3. Bad quality: the posterior probability is below 0.001.

We use the best three features based on Fisher score method for visualization of the
prediction result of SVM with linear kernel function. The 3D plot of the observations
with its corresponding quality is shown in Figure 5.8.

Figure 5.8: The 3D plot of ECG quality prediction result

The annotation rules are that the ECG signal will be labeled as class 1 if it is perfect.
Thus, if the probability is over 0.5, the quality will be predicted as perfect. Considering
that the observations with poor quality will decrease the probabilities a lot, we make a
low threshold 0.001 of probability to separate the average and bad quality ECG signals.
Because the ten-second window was used to divide the whole ECG signals, the quality
prediction result will display on each window, which is shown in Figure 5.9.
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Figure 5.9: The quality prediction result of ECG signals

The green, yellow and red color represent the perfect, average and bad quality
separately. The total period of the ECG signals is almost three hours. To make the
quality prediction result more clear, we zoom in the figure and plot four segments of it
as shown in Figure 5.10.

Figure 5.10: The quality prediction result of ECG signals
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Apart from that, we also choose another four segments and plot their corresponding
prediction result in Figure 5.11.

Figure 5.11: The quality prediction result of ECG signals

From Figure 5.10 and 5.11, we can see that the classifier predicts the quality of
ECG signals on each ten-second window. The red color parts are ECG signals with bad
quality, which includes a lot of variations on the amplitude. The green color parts are
perfect ECG signals. The yellow color parts represent ECG signals with intermediate
quality, which are not perfect but have only small fluctuations on the amplitude. The
perfect ECG signals can be used directly for any ECG analysis work. The intermediate
quality ECG signals can be implemented for the applications like heart rate calculation
where the morphology of the low frequency components is not relevant. For the bad
quality signals, further processing needs to be applied to enhance the quality of these
signals.
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Conclusion and Future Work 6
6.1 Conclusion

In this work, we aim to design a automatic ECG signal quality indicator with a super-
vised learning algorithm for wearable devices. The ECG signal is the non-stationary
and time series signal which includes a large amount of morphological structures like
QRS complex, P wave and T wave. In the practical application, the ECG signals are
easy to be contaminated by the noise and artifacts because of the respiration, body
movement and muscle activity in the collection. Sometimes these artifacts have over-
lapping spectra with the ECG waves, which results in the difficulty of identifying these
contaminated ECG signals. As we mentioned before, the Discrete wavelet transform
(DWT) is a convenient technique for decomposing the non-stationary signals into sub-
bands. The temporal and spectral information of the ECG signal can be achieved after
this algorithm. Also, the computational complexity of DWT is not high compared
with other popular signal decomposition techniques like empirical mode decomposition
(EMD) and independent component analysis (ICA). Besides, there are many types of
wavelets to choose for different application. In this work, we choose the Daubechies
wavelet of order six from the wavelet bank as the utilized wavelet due to its similar
morphological structure with the ECG waves. In the reference [34], we can see that the
Daubechies wavelet of order six achieves the maximum cross correlation coefficient with
the ECG signal, which indicates the ECG signal in each sub-band will remain its orig-
inal morphological structure as much as possible. The sub-bands can help to identify
different ECG waves and noises located at their corresponding frequencies. Because
of these advantages of Wavelet decomposition, we develop the first feature extraction
method based on this approach. Our second feature extraction approach is based on
Autocorrelation function (ACF). The ACF is a technique to measure the similarity
between different components of a time series signal. The analysis of autocorrelation is
a mathematical tool for finding the periodic information of a signal. The ACF is well
suitable for analyzing the ECG signals because of the repeated patterns in this signal.
Our last method for extracting features is based on Principal component analysis. In
this method, we construct a matrix including each QRS complex detected by the R
peaks detector in each column. Then we compute the first three eigenvalue ratios over
the sum of all eigenvalues as features by the PCA algorithm. The eigenvalue ratios
represent the similarity between the successive QRS complex of ECG signals. The ad-
vantage of this method is that it does not demand an accurate R peaks detector. If
there are R peaks are wrongly detected, it illustrates that there are noise or artifacts in
the ECG signals which can be reflected in the features. Besides, the extracted features
are sensitive to the variations in any QRS complex, even a small change of it. After-
wards, it is necessary to select the best features before training a classifier. We use two
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feature selection methods named filter and wrapper method to choose the best features.
Then the selected features are utilized to train a SVM classifier. The SVM classifier
was used due to its high accuracy and low computational complexity. Besides, the
SVM classifier can produce a posterior probability of each observation, which is useful
in the quality prediction. For example, we can predict the quality of ECG signals into
several degrees by thresholding the probabilities. In addition, both of these two feature
selection methods achieve high performance, but the performance of wrapper method is
better than the other feature selection method at a price of computational complexity.

At last, we compare the classification result of the features from these three algo-
rithms. The DWT algorithm achieves the best performance due to its ability to capture
both the temporal and spectral information of the ECG signal. Also, more features are
extracted of this algorithm in contrast with other algorithms. The performance of the
PCA algorithm is better than the ACF algorithm, and the reason for that is its ability
to distinguish small changes in the QRS complex.

6.2 Future work

The designed automated ECG signal quality indicator achieves a decent performance
to distinguish the good and bad signals. However, there are still some limitations for
this algorithm. At first, the labelling work is focus on the perfect and not perfect
ECG signals. After training the classification model, a large amount of ECG segments
will be predicted as bad quality, even we set a low threshold of the probability. In
real applications like heart rate monitoring, lots of ECG signals need to be eliminated
and recovered if they are predicted as bad quality. In this case, we will lose too much
information of the signal for analysis. In addition, the other applications for ECG
signals like cardiovascular disease diagnosis and arrhythmia recognition are also crucial
in our daily life. However, this automated quality indicator is focus on the ECG
signals from the healthy people. For the unhealthy people, the quality of these ECG
signals might be incorrectly predicted because of its irregular morphological structure
of the ECG signals. In the future, this algorithm still needs to be tested for the ECG
signals from the unhealthy people. The features based on DWT are the combination of
statistical and non-linear features. The non-linear features achieve high performance
but at the expense of high computational complexity. The future work can be the
proposition of new features with low complexity on the DWT algorithm.

Besides, deep learning algorithm based on neural network can also be used in the
quality evaluation. It does not need any feature extraction methods to represent the
signal. The input of the training model can be the original temporal or spectral ECG
signal including all the information. Thus, the neural network can achieve a high per-
formance but with expensive computation. Except for the ECG signal, the PPG signal
is also a famous biomedical signal of the wearable sensors. Both of these two biomed-
ical signals are non-stationary and periodic signals. Our proposed feature extraction
methods are based on these properties of the ECG signal. At the same time, these
methods might also be suitable for the PPG signals, which demands to be confirmed.
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Appendix A
Definition 1: Continuous wavelet transform of signal x(t) is illustrated below.

CWT (i, j) =

∫ ∞
−∞

x(t)
1√
|a|
ψ(
t− j
i

)dt (A.1)

where i is the scaling parameter; j is the shifting parameter and ψ is the wavelet
function.

Definition 2: Fisher score is a parameter to quantify how well the two samples a
and b can be separated.

F (a, b) =
(µ1 − µ2)

2

s21 + s22
(A.2)

where µ1 and s21 are the mean and variance of class 1; µ2 and s22 are the mean and
variance of class 2.

Features
(Detail coefficient)

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Mean 0.206 0.206 0.203 0.205 0.199 0.186

Std 0.070 0.103 0.494 0.547 0.327 0.028

MAD 0.177 0.190 0.238 0.014 0.192 0.056

ApEn 0.265 0.594 0.628 0.521 0.003 0.038

Table A.1: The Fisher score of the DWT features

Features Fisher score

First local maximum amplitude 0.130

First local maximum location 0.067

Second local maximum amplitude 0.127

Second local maximum location 0.054

Third local maximum amplitude 0.112

Third local maximum location 0.043

First local minimum amplitude 0.071

First local minimum location 0.029

First zero point location 0.296

Zero-crossing rate 0.028

Variance of zero-zero intervals 0.035

Table A.2: The Fisher score of the ACF features
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Features
(Eigenvalue ratio)

1st ratio 2nd ratio 3rd ratio 4th ratio 5th ratio

Fisher score 0.585 0.559 0.428 0.362 0.319

Table A.3: The Fisher score of the PCA features

Features Fisher score

Mean 0.207

Std 0.191

MAD 0.179

Kurtosis 0.132

Skewness 0.185

ApEn 0.416

Table A.4: The Fisher score of the features on the original ECG signal

Features Fisher score

Mean 0.362

Max 0.036

Std 0.286

Kurtosis 0.038

Skewness 0.002

ApEn 0.005

Table A.5: The Fisher score of the FFT features
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