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I wish my supervisor Hüseyin Özdemir all the luck in the world, with the implementation

of the schemes which will be a daunting task for implicit time stepping (especially for
DG) but especially with Belgin (who cares about schemes anyway). I have come to know
you as a kind and warm person and I doubt I will ever again have such a friendly and

informal relation with a supervisor. Out of interest I will continue the work on the
schemes myself and I hope this will end up in a collaboration of some sort.

Based on the studied literature it is my conviction that this Msc thesis is probably the
most complete treatise on unsteady IBL methods that is currently available. I hope it is

considered useful beyond the walls of ECN and the TUDelft.

Velserbroek, 15 November 2009

Bram van Es

iii



Contents

Contents i

I General Introduction and Literature Review 1

1 Introduction 3

1.1 Wind energy and ECN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Goal of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Report outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Integral Boundary Layer equations 7

2.1 General Flow Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Boundary Layer Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Integral Boundary Layer Equations . . . . . . . . . . . . . . . . . . . . . . . 11

3 Overview of Closure Relations 15

3.1 Laminar Boundary Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Similarity Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.2 One-parameter Integral Methods . . . . . . . . . . . . . . . . . . . . . 19

3.1.3 Correlation Based Methods . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Laminar to Turbulent Transition . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Intermittency Transition Model . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Turbulent Boundary Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Velocity Profiles for Turbulent Boundary Layers . . . . . . . . . . . . 27

3.3.2 Unsteady Entrainment and Shear Stress Lag . . . . . . . . . . . . . . 29

3.4 Skin friction coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Dissipation Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Separation Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.7 Solution Procedure for Mildly Separated Flow . . . . . . . . . . . . . . . . . 35

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

II Selection of Models and Application of Theory 39

4 Description of Integral Boundary Layer methods 41

4.1 Steady Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Results of Steady Test Cases . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Unsteady Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
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Abstract

ECN’s project Rotorflow is focused on the development of an aerodynamic module which

is able to model the unsteady flow over wind turbine blades. This module is to be cou-
pled to structural dynamics modules for the analysis of wind turbine aeroelasticity . For
this aerodynamic module a zonal approach will be used which incorporates an external

unsteady potential flow solver and an unsteady integral boundary layer method(IBLM).
It was my task to develop an unsteady two-dimensional IBLM from existing methods
and then to apply the method using several Finite Differencing Methods (FDM), Finite

Volume Methods (FVM) and a particular Finite Element Method(FEM) namely Discontin-
uous Galerkin (DG). Several systems of IBL equations as well as closure relations have
been considered in some detail. All of the considered systems for the IBLM turn out to be

hyperbolic and thus warrant the implementation of a Riemann solver. Various test cases
were performed and compared with literature, most notably, the impulsively moved and
oscillating flat plate and the impulsively moved cylinder. Results show that the unsteady
IBLM is able to model the transient behavior correctly, even close to separation, for very

high Reynolds number numerical smoothing is required. All finite difference schemes
performed well, the same is expected for the finite volume methods. It is advised to
apply the closure relations by Matsushita et al for laminar boundary layer flow. Further

development is necessary for the DG method as the closure relations may give problems
in combination with an expansion in basis functions for the flux vector and the source
vector.
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Chapter 1

Introduction

1.1 Wind energy and ECN

The Energy research Center of the Netherlands is active in a multitude of areas which
can roughly be divided into technical research and policy studies. The technical re-

search is divided over several units with their own specialisation, ranging from biomass
to wind energy.

The wind energy unit has three research groups which focus on aerodynamics, inte-
grated wind turbine design, and operation and maintenance. The current thesis falls

within the framework of the aerodynamics research group and the integrated wind tur-
bine design research group.

To design windturbines the aerodynamic loading and the coupling of this loading with
the structural dynamics is crucial. To model the aeroelastic behavior time dependency

can not be neglected and the loading should be physically correct, to that end separation
and wake effects should also be resolved to some extent.

Current structural design tools that allow coupling are PHATAS (Program for Horizontal
Axis wind Turbine Analysis and Simulation), TURBU and SIMPACK, which examine the

mechanical loading of the wind turbines or wind turbine blades, a multibody-FEM is
currently under development. The input of these structural design tools can be pro-
vided by different aerodynamic programs/models. Currently the input methods are,

in increasing order of complexity, the BEM(Blade Element Momentum) theory, AWSM
(Aerodynamic Windturbine Simulation Module,which is based on a vortex line model)
and the Reynolds Averaged Navier-Stokes equations.

Both BEM and AWSM assume steady flow. Although BEM allows dynamic inflow con-

ditions BEM is very limited in the amount of physics that is resolved, using modified
actuator disc theory (including radial difference of inflow velocity due to a rotating wake)
to approximate the forces per chord section. AWSM is more advanced, using lifting line

theory, however it still requires user defined relations for the effect of viscosity, it lacks
time-dependency and turbulence modelling. RANS contains much of the fluid physics,
however like most turbulence models the practical application is limited due to compu-

tational cost in case of very high Reynolds numbers which is typical for wind turbines.

1.2 Problem Description

The need for an efficient but physically accurate time-dependent solver for aeroelastic
simulations of wind turbines and accurate flow modelling around wind turbines defines

the framework of the current thesis, which is captured in project Rotorflow. Rotorflow

3



4 CHAPTER 1. INTRODUCTION

is meant to produce an aerodynamic model (or set of models) which can simulate the

unsteadiness of the flow field over wind turbine rotors with incorporation of viscosity
and possibly also compressibility and which can serve as the input for the structural
design tools. The aim is that Rotorflow is physically more correct than AWSM in that the

most important features are present but can still be run on a normal desktop computer,
thus filling the gap between AWSM and RANS. Rotorflow is particularly relevant for the
analysis of fatigue loading which is primarily dependent on the time varying solution
and thus the quality of the unsteady flow determination becomes important.

To fulfill the requirements set out for Rotorflow a zonal approach is taken, the solution

domain is divided in an outer flow and a boundary layer flow, for both domains a dif-
ferent approximation is used. The coupling of the two domains is handled through an
interaction law. Each aspect, the outer flow, the boundary layer flow and the coupling

method are separate topics which cannot all be addressed in this thesis.

The outer flow is considered to be incompressible and non-viscous which allows for a
potential flow solver, where the boundary layer flow is considered to be viscous which
can be solved by the boundary layer equations. The unsteady incompressible potential

flow solver to be used is a multilevel unsteady panel method, which should show a
considerable speed-up compared to conventional panel methods. The boundary layer
equations are solved in the integral form which reduces the problem dimension by one
and which should decrease the computation time for the boundary layer by an order of

magnitude compared to the non-integral formulation (to be called the field form). An
unsteady Integer Boundary Layer Method (IBLM from now on) coupled to an unsteady
panel code should be able to capture the main viscous effects and the unsteady behavior

while maintaining a low computational footprint.

The existing code XFOIL and the more wind dedicated RFOIL use an integral boundary
layer method and are based on a coupled viscid-inviscid solver. They are however based
on steady formulations. The focus of this thesis will be the development of a two-

dimensional unsteady IBLM, which is implemented with several numerical methods.

1.2.1 Goal of this Thesis

From a range of existing closure relations and solution methods this thesis will present
a system of equations to solve the unsteady two-dimensional IBL equations, subse-

quently this system will be solved using a Finite Difference Method(FDM), a Finite Vol-
ume Method(FVM) and a Finite Element Method(FEM). The overlying objective is to pro-
vide some experience for the final unsteady three-dimensional compressible integral

boundary layer equations which are to be coupled to an unsteady panel method.

1.3 Report outline

The report consists of three parts, the first part will describe the existing literature and
will give an overview of the closure models that can be used, the second part describes
the selection of the closure models and solution methods based on the literature re-

search, some preliminary tests with steady models and a description of the numerical
methods, the third part describes the test cases and the results.

Part i In chapter two the integral boundary layer equations are derived starting from
the full Navier-Stokes equations. Chapter three gives a description of the basic problems

in boundary layer and so-called closure models used in literature.

Part ii Chapter four describes some of the solution methods found in literature, solution
methods being the combination of the closure models, a certain set of integral bound-

ary layer equations and some numerical method to solve the system. Starting from the
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knowledge of part i several combinations of closure models and integral boundary layer

equations are discussed at the end of chapter four from which a selection is made which
will be used for the final implementation. Chapter five discusses in general implementa-
tion issues such as stability, hyperbolicity, etc. Chapter six will deal with the numerical

methods which have been implemented.

Part iii Chapter 7 describes the test cases and results obtained with the current imple-
mentation1, chapter 8 finally contains the conclusion and recommendations.

Administrative notes by the author

• when there is a mentioning of dimensions the reader should assume physical dimensions

unless stated otherwise

• when there is a mentioning of inner solution or inner approximation the reader should as-

sume that it refers to the solution at the inner grid points

• when there is a mentioning of travelling information and directionality of information the

reader should interpret this as solution information travelling through the solution domain

in physical time

• when results are plotted abbreviations will be used for the specifications, e.g. second order

Runge-Kutta integration is RK2, a Courant-Friedrich-Lewy condition of 0.5 is CFL = 0.5

• edge velocity is synonym to tangential inviscid velocity

• ’scheme’ refers to a numerical discretisation scheme

• whenever there is a reference to an ’equation’, say ’equation 3.1’ equation 3.1 may be a single

equation or a system/set of equations

• when there is a mentioning of outer solution the reader should interpret this is as the solution

of the inviscid equations ’outside’ the boundary layer

• for the description of the DG method cell faces actual refer cell points, however the term ’face’

is more intuitive in relation to fluxes

• the kinetic energy integral equation and the moment-of-momentum equation refer to the

same equation

1It must be noted here that not all the implemented (read ’coded’) methods have actually been tested





Chapter 2

Integral Boundary Layer equations

As was said in the problem description the integral boundary layer(or IBL) equations will
form the basic equations with which the boundary layer velocity profile will be solved.

The IBL equations originate from the boundary layer (or BL) equations which in turn
originate from the full equations of motions for a fluid. This chapter will elaborate on
the IBL equations, explaining the derivation in some detail, and reviewing the relations

used to close the resulting system of equations.

The next section will explain the physical aspect of the boundary layer and the boundary
layer equations resulting from the simplifications. First very shortly the general flow

equations for a fluid are discussed.

2.1 General Flow Equations

Conventionally the problem of fluid flow is considered as a continuum mechanical prob-
lem. This means that the properties of the myriad of colliding atomic particles is de-

scribed by a continuous model. The continuous model for a Newtonian fluid is based
on the idea that (besides a continuum medium) the shear stress on the surface of a
fluid control volume can be directly related to the velocity gradient perpendicular to the

surface, i.e.

τsurface = µ
∂u

∂n
(2.1)

where µ is denoted as the viscosity which is basically an exchange of momentum

through molecular diffusion. The continuous model is characterised by several conser-
vation laws. These conservation laws state that each infinitesimal control volume has a
balanced gain and loss of mass, momentum and energy. Effectively it means that the

transport/creation/destruction of these properties is equal to the time rate of change
of these properties in the control volume. Based on the control volume these balances
can be cast into differential equations by taking the limit to zero for ∆t,∆x,∆y and ∆z.
For a detailed derivation off the equations of fluid motion, see for instance Warsi[151],

Anderson[5]. Commonly used is the Einstein or tensor notation which allows for a more
concise formulation, the conservation laws are written in Einstein notation as

∂ρ

∂t
+
∂ρui
∂xi

= 0,

∂ρui
∂t

+ uj
∂ρui
∂xj

=
∂σij
∂xj

+ ρfn,

∂ρE

∂t
+
∂ρEui
∂xi

= ρui fn +
∂uiσij
xj

− ∂qi
∂xi

,

(2.2)

7
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with

total stress tensor: σij = −pδij + τij ,

viscous stress tensor: τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)

+ λ
∂um
∂xm

δij ,

heat flux: qi = −k ∂T
∂xi

,

total energy: E = e+
1

2
ui ui,

bulk viscosity: λ,

body forces: fn.

Following the Stokes hypothesis it is assumed that λ = − 2
3
µ, see i.e. White[154]. For an

ideal gas the following relationships also hold

p = ρRT,

e = cvT,

R = cp − cv ,

Here cp and cv are the specific heats for constant pressure and volume respectively.
Although historically incorrect, the above set of equations shall be called the Navier-
Stokes(NS) equations. The above formulation of the equations of fluid motion has not

been solved analytically and in aerospace practice it is rarely applied numerically with-
out severe simplifications simply due to the computational cost. For the application
to boundary layer flows, the simplifications are many fold, on top of these simplifica-

tions the resulting boundary layer equations will be integrated to reduce the problem
dimension.

2.2 Boundary Layer Equations

For very high Reynolds numbers the incompressible NS equations can be simplified to
the boundary layer equations which were first derived by Prandtl in 1904. The boundary

layers described by the boundary layer equations emerge in flows over objects and at
the interfaces of multiple-fluid flows (shear layers). The flow problem at hand deals with
the flow over a flat plate, consider the flow domain in figure (2.1) for the nomenclature

of the flow problem. For high Reynolds numbers the boundary layer represents a very

L

x,u

y,v

V

U

δ(x)

Figure 2.1: Flat plate boundary flow, nomenclature.

thin layer with thickness δ ≪ L in which the flow adapts from the static wall where
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the tangential velocity is 0 (to be called the no-slip condition) to the outer flow where

viscosity has negligible influence.

Starting with the unsteady NS equations for compressible flow (see equation (2.2)), the
boundary layer equations will be derived by adding simplifications.

As stated in the introduction the flow is assumed to be incompressible where all time
derivatives of density ρ can be ignored. Applying this assumption the continuity equa-
tion reduces to

∂ui
∂xi

= 0, (2.3)

leading to a simplification in the formulation for τij

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)

. (2.4)

Using equation (2.4) and the continuity equation the stress term σij can be rewritten

∂σij
∂xj

=
∂p

∂xi
+
∂τij
∂xj

,

=
∂p

∂xi
+ µ

(

∂

∂xj

(
∂ui
∂xj

)

+
∂

∂xi

(
∂uj
∂xj

))

,

=
∂p

∂xi
+ µ

∂

∂xj

(
∂ui
∂xj

)

. (2.5)

The momentum equation and the energy equation can now be written as

∂ui
∂t

+ uj
∂ui
∂xj

=
1

ρ

(

∂p

∂xi
+ µ

∂

∂xj

(
∂ui
∂xj

))

+ fn, (2.6)

∂E

∂t
+
∂Eui
∂xi

=
1

ρ

(

ui
∂σij
∂xj

+ σij
∂ui
∂xj

− ∂qi
∂xi

)

+ ui fn. (2.7)

For Newtonian gases the viscosity coefficient µ is assumed to be a function of pressure
and temperature (see i.e White [154]). Since the gas is assumed to be incompress-
ible the pressure is related directly to the temperature through the equation of state.

However the temperature dependence of the viscosity will also be ignored for the very
simple reason that the assumption of incompressibility (and thus low subsonic veloci-
ties) brings along that the flow induced temperature effects will be of minor importance.

When supersonic velocities are considered the incorporation of varying viscosity might
be required.
Equations (2.3) and (2.6) describe the two dimensional incompressible flow where vis-

cosity is assumed to be constant.
Using the assumption that δ < L these equations are non-dimensionalised using the
following non-dimensional variables

u∗ =
u

U
v∗ =

v

V
,

x∗ =
x

L
y∗ =

y

δ
,

t∗ = t

√
U2 + V 2

L
p∗ =

p

ρ0

√
U2 + V 2

,

ρ∗ =
ρ

ρ0
µ∗ =

µ

µ0
,

where ρ0 and µ0 are the reference values for the density and the viscosity respectively.

Here gravity is ignored but please note that body forces play an important role when
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considering the rotation of the blade in three dimensions (see Van Garrel [52]). Applying

the non-dimensional variables to the continuity equation results in

U

L

∂u∗

∂x∗ +
V

δ

∂v∗

∂y∗
= 0. (2.8)

Now ∂u∗

∂x∗
∼ ∂v∗

∂y∗
= O(1) only if L

U
V
δ

= O(1) which results in V ∼ U δ
L

(see i.e. Veldman
[145]). So the velocity tangential to the body surface can be assumed to be much larger

than the velocity normal to the surface, i.e. V ≪ U and subsequently U2 + V 2 ≈ U2.
Writing out σij and substituting the non-dimensional variables the non-dimensionalised
momentum equation in x-direction is written as

L
∂u∗

∂t∗
+

U2

L
u∗ ∂u

∗

∂x∗ +
U2

L
v∗
∂u∗

∂y∗
= −U

2

L

∂p∗

∂x∗ +
µ0U

ρ0L2

∂2u∗

∂x∗2 +
µ0U

ρ0δ2
∂2u∗

∂y∗2
, (2.9)

and for the momentum equation in y-direction

δ
∂v∗

∂t∗
+

U2δ

L
v∗
∂v∗

∂y∗
+

U2δ

L
u∗ ∂v

∗

∂x∗ = −U
2

δ

∂p∗

∂y∗
+

µ0U

ρ0Lδ

∂2v∗

∂y∗2
+

µ0Uδ

ρ0L3

∂2v∗

∂x∗2 . (2.10)

Since the future three dimensional formulation will be applied to rotating profiles un-

steady behaviour may be prominent due to crossflow, also the inviscid outerflow is
unsteady therefore the time derivative will not be neglected. Also, the unsteady formu-
lation is noted to be more robust by Van der Wees en Van der Muijden (referenced by

Van Garrel[52]). Continuing with equations (2.8), (2.9) and (2.10) further simplifications
are possible.
Since the boundary layer is considered specifically the nomenclature will be changed

somewhat, the index 0 is usually the indicator for either free stream or initial condi-
tions, neither is suitable for the boundary layer, instead e will be used to indicate the
values at the edge of the boundary layer. The edge of the boundary layer is defined

as the value of y for which u = mue, where m is a constant and is usually 0.99 (see i.e.
Schlichting[118]), see figure (2.2). Dividing by the factor for the pressure term and using

δ

u
(

m

s

)

y(m)

= turbulent

= laminar

Figure 2.2: Velocity distribution in the boundary layer, δ is the boundary layer thickness.

Re =
ueL

ν∗
, (2.11)

the conservation of momentum in x-direction is written as

L2

u2
e

∂u∗

∂t∗
+

(

u∗ ∂u
∗

∂x∗ + v∗
∂u∗

∂y∗

)

= − ∂p∗

∂x∗ +
1

Re

∂2u∗

∂x∗2 +
L2

δ2
1

Re

∂2u∗

∂y∗2
. (2.12)
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Likewise for the conservation of momentum in y-direction

δ2

u2
e

∂v∗

∂t∗
+
δ2

L2

(

v∗
∂v∗

∂y∗
+ u∗ ∂v

∗

∂x∗

)

= −∂p
∗

∂y∗
+

1

Re

∂2v∗

∂y∗2
+
δ2

L2

1

Re

∂2v∗

∂x∗2 . (2.13)

If it is required that neither convection nor diffusion dominate in y-direction then δ
L

∼
√

1
Re

, subsequently it follows that

ν
∂2v

∂y2
∼ u

∂v

∂x
+ v

∂v

∂y
=
u2
eδ

L2
.

Neglecting all terms where the factor is ≪ 1 results in the boundary layer equations

∂u

∂x
+
∂v

∂y
= 0, (2.14)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

∂2u

∂y2
, (2.15)

0 = −1

ρ

∂p

∂y
. (2.16)

Since the pressure gradient is zero in y-direction we can replace the value of pressure p
at any location along the cross-section of the boundary layer with the pressure pe defined

at the inviscid outer flow. To obtain the pressure distribution outside the boundary layer
the fluid is assumed to be inviscid and parallel to the surface(therefore ve = 0). Using
these assumptions the momentum equation outside the boundary layer can be written
as

∂ue
∂t

+ ue
∂ue
∂x

= −1

ρ

∂pe
∂x

, (2.17)

and inserting into equation (2.15) results in

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=
∂ue
∂t

+ ue
∂ue
∂x

+ ν
∂2u

∂y2
. (2.18)

Equations (2.14) and (2.18) are the field form of the boundary layer equations. Using
the continuity equation and the chain rule the momentum equation can be rewritten to
conservative form

∂u

∂t
+
∂u2

∂x
+
∂v u

∂y
=
∂ue
∂t

+ ue
∂ue
∂x

+ ν
∂2u

∂y2
. (2.19)

The boundary layer equations is also commonly derived starting from the RANS equa-
tions, the boundary layer equation then contain a Reynolds stress term (see appendix

(K)). The field form is already a significant simplification from the form in equation (2.2)
but a further reduction is possible through integration, this will lead to the IBL equa-
tions. The IBL equations will be derived in section (2.3).

2.3 Integral Boundary Layer Equations

The boundary layer equations (2.14) can be rewritten using the integral formulation for
the displacement thickness and the momentum thickness, see appendix (B). Using the
fact that the continuity equation is identically zero, families of momentum equations

can be derived which in turn can be integrated. One such family is formed by (see i.e.
Matsushita[91], Mughal[99])

[Continuity equation] ×
(

un+1 − un+1
e

)

+ [Momentum equation] × (n+ 1)un. (2.20)
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For n = 0 equation (2.20) gives1 the common form of the unsteady Kármán integral

relation (see i.e. White [154])

1

u2
e

∂(ueδ
∗)

∂t
+
∂θ

∂x
+ (2 +

δ∗

θ
)
θ

ue

∂ue
∂x

=
Cf
2
, (2.21)

where (also see appendix (B))

Shape factor: H =
δ∗

θ
,

Wall friction coefficient: Cf =
τw

1
2
ρu2

e

,

Displacement thickness: δ∗ =

∫ ye

0

(

1 − u

ue

)

dy,

Momentum thickness: θ =

∫ y∗

0

u

ue

(

1 − u

ue

)

dy.

Rewriting the unsteady Von Kármán equation using the expression for H

1

u2
e

∂(ueHθ)

∂t
+
∂θ

∂x
+ (2 +H)

θ

ue

∂ue
∂x

=
Cf
2
, (2.22)

or in fully conservative form

2

u2
e





∂ (ueδ

∗)

∂t
+
∂
(

u2
eθ
)

∂x
+ ue

∂ue
∂x

δ∗




 = Cf . (2.23)

A similar procedure as for the momentum integral equation is followed to find a me-
chanical energy integral relation, using n = 1 equation (2.20) results in

1

ue

∂(θ + δ∗)

∂t
+ 2

θ

u2
e

∂ue
∂t

+
1

u3
e

∂(u3
eδ
k)

∂x
= CD, (2.24)

where

Viscous diffusion D =

∫ y∗

0

τ
∂u

∂y
dy,

Viscous diffusion coefficient: CD =
2D

ρu3
e

,

Kinetic energy thickness: δk =

∫ y∗

0

u

ue

(

1 − u2

u2
e

)

dy.

Following the same procedure as for the momentum integral and the kinetic energy

integral a third integral can be obtained. Using n = 2 equation (2.20) results in

1

u4
e

(

∂(u3
eδ
k)

∂t
+
∂(u4

eδ
k+)

∂x
+ u3

e
∂δ∗

∂t
− 3u2

e
∂ue
∂t

θ − 3u3
e
∂ue
∂x

θ

)

= 6CK , (2.25)

(2.26)

where

CK = 6
ν

u4
e

∫ y∗

0

u

(
∂u

∂y

)2

dy,

δk+ =

∫

0

u

ue

(

1 − u3

u3
e

)

dy.

1The unsteady Kármán integral equation can also be found by direct integration,(see i.e. Özdemir[107]).
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The reader is referred to appendix (A) for a complete derivation of the IBL equations.

Throughout the report equations (2.21), (2.24) and (2.25) will be denoted as the IBL
equations.2

The IBL equations can be written in the non-conservative form

AFt +BFx = C, (2.27)

where F is the primary variable vector,A and B are coefficient matrices and C is the
source vector. The conservative system is written as

Ft + fx = L. (2.28)

Independent of which combination of integral equations is chosen this system can not
be solved in the current form since there are more unknowns than equations, namely

CK , CD, Cf , θ, δ
∗, δk, δk+, therefore more equations are needed to close the system.

The benefit of the integral boundary formulation compared to the field form of the

boundary layer equations is firstly a reduction of order in computational effort. If N,M is
the amount of elements in x- and y-direction respectively the field form requires ∼ N×M
computations per time step whereas the integral form requires ∼ N ×K computations

per time step, where K is the amount of closure relations. It is yet unclear how much
impact the closure relations will have on the computational efficiency so for the purpose
of general comparison the boundary layer equations should also be solved in the field

form, this has not be done in the current work, the outline of such a method is given
for instance in Cebeci[19], Krainer[77] (also see appendix L). According to Cousteix the
Integral Boundary Layer method is one order of magnitude faster than the so-called

field method, see e.g. Cousteix[28]. Another clear advantage (as noted by Wirz[158]) is
the simplification of the initial condition formulation since there is no dependency on
y. Disadvantages are the lack of generality and accuracy since the usability of the IBL

equations is very much dependent on the choice of the closure relations which are in
practice empirical models. An advantage of using empirical models is that the accuracy
for specific situations is comparable to the accuracy obtained by using the field form of

the differential equations (see i.e. White[154],Van den Berg[136]).

The closure relations are the subject of the next chapter.

2In fact there is also the thermal-energy integral relation in case temperature is not assumed to be constant
(see White[154]).





Chapter 3

Overview of Closure Relations

The previous chapter ended with an unclosed system of equations, the purpose of this
chapter is to present common methods to close the IBL equations, the presented equa-

tions are meant as a reference and will not be discussed in detail. The closure relations
are needed to literally close the system of IBL equations, these closure relations are
based on empirical data which were obtained for certain test conditions or they are a

result of specific solutions of the boundary layer equations, consequently these approx-
imations are valid only in certain regions of the flow. More specifically laminar models
are only valid in laminar flow conditions and turbulent flow models are most effective for

turbulent flow, also most empirical models have difficulty with seperated flow (laminar
or turbulent).To facilitate the use of multiple models, laminar to turbulent transition
has to be considered as well as the point of flow separation.

It was shown by Nash (as referenced by i.e. Mughal[98])that there is close resemblance

between empirical data for three dimensional and two dimensional boundary layers,
provided there is little crossflow, this supports the idea to use a two dimensional model
as a means to compare numerical models for three dimensional boundary layers for the

case of negligible cross flow effects. In case there is strong cross flow, the hyperbolicity
of the system may be affected which directly changes the applied solution method, this
is discussed in section(5.6.4).

Most common methods for laminar boundary layers are due to Falkner and Skan,

Pohlhausen, Thwaites and others, some of these models will be discussed.
The IBL equations incorporates laminar as well as turbulent flow, this is reflected in
different closure relations. Turbulent boundary layer methods for instance due to

Heads and Greens, Spaldings, Coles and Swafford will be discussed shortly. For a
more detailed discussion on these closure relations see i.e. White [154], Warsi [151] and
Schlichting [118].

Since it is not the purpose of this thesis to study and compare closure models in detail

the evaluation of these models will be concise. Within this scope the writer aims to find
the most generic set of closure relations to describe a boundary layer flow, whether the
boundary layer is laminar, turbulent, separated or attached.

In a computational sense empirical relations are the cheapest way to close the momen-
tum and energy integral equations. For implementation, simple substitution in the IBL
equations suffices to reduce the number of unknown variables (for instance τw = f(x)).
It is not uncommon to employ pre-determined empirical boundary layer profiles as did

Mughal [98]. The range of applicability for all closure relations hinges on the initial
simplifications and assumptions or the specifications of the experimental data, this has
to be kept in mind when a closure model is implemented.

The inherent added difficulty of considering separate laminar and turbulent boundary

15
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layers is the fact that a transition point has to be determined. Considerable empirical

studies have been performed on this subject, some of the common methods will be pre-
sented.
Also a subject of discussion is the separation of the boundary layer, this will be dis-

cussed shortly. Subsequently there will be a short discussion on the coupled method
which is used to solve separated boundary layer flows. The difficulty of the unsteady

Figure 3.1: Laminar flow over a corner .

Figure 3.2: Turbulent flow over a corner .

approach comes from the fact that most closure relations are based on steady flows.
Unsteady boundary layers are perhaps not as well described as steady boundary lay-

ers, most likely measuring unsteady boundary layers was not feasible when most of
the basic theories arose and in general some unsteadiness parameter has to be defined
like e.g. the unsteady Pohlhausen parameter. Several integral methods for unsteady

incompressible boundary layers exist and are due to e.g. (also see Schlichting[118])

• Schuh(1953), Yang(1959), Rozin[116](1960) and Hayasi[61](1962) : guessed ve-

locity profile, two equation one parameter solution method, applied to laminar
boundary layers

• Lyrio et al[51](1982), Strickland and Graham[105](1983) : Von Kármán equation
in combination with Head’s entrainment applied to turbulent boundary layers

• Matsushita[91],[90](1984,1985) : correlation of variables, two and three equation

two parameter solution method, applied to laminar boundary layers

• He[62](1993), Hall[58](2001) : Von Kármán equation, kinetic energy integral equa-
tion and unsteady lag entrainment

Of these, the methods by Hayasi, Matsushita et al and He and Hall will be discussed
in more detail in section (4.2). Also a subject of discussion for the unsteady laminar
boundary layer is the steady two equation formulation by Drela(1985), this is written in

unsteady form, see section(4.2).
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IBL closure relations for unsteady turbulent boundary layers are scarcely available,

alternatively steady variants of turbulent models are used(see i.e. Swafford[129]), com-
mon turbulent closure relations are due to e.g.

• Head(1958),Green(1977) : entrainment equation and lag entrainment equation

• Swafford et al(1981),Swafford and Whitfield(1985) : full velocity profile description
of turbulent boundary layer

Of these models only Head’s entrainment method and Green’s lag entrainment have
been written in unsteady form however the empirical closure is still based on steady

boundary layers. Whitfield and Swafford have devised velocity profiles for the entire
turbulent boundary layer, including separation.

A quasi-steady approach is also possible, however this confines the range of problems
that can be considered. One speaks of quasi-steady boundary layers if it is assumed
that the boundary layers adapts to the external flow instantaneously. For a sinusoidal

free stream velocity over a flat plate the flow can be considered quasi-steady if (see
Moore[96])

Reδ
δ k

u2
e,0

≪ 1,

(

Reδ
δ k

ue,0

)2
u∗
e

ue,0
≪ 1,

frequency of oscillation: k,

amplitude of oscillation: u∗
e ,

undisturbed free stream velocity: ue,0.

Very large timescales of the flow perturbations allow for the assumption of quasi-steadiness

(see i.e. Schlichting[118]). Moore[96] stated specifically for the unsteady flat plate
boundary layer flow that the following non-dimensional parameters should be ≪ 1 to
assume quasi-unsteadiness.

x

u2
e

∂ue
∂t

,
x2

u3
e

∂2ue
∂t2

, · · · xn

un+1
e

∂nue
∂tn

.

Whenever it is possible (and appropriate) the actual equations are placed in appendix
(E).

3.1 Laminar Boundary Layer

The laminar boundary layers are well described by practical experiments which in turn

have led to the development of several different approximation methods. Two main
approximative ways to describe the laminar boundary layer are (also see Cebeci [22]
and White [154])

• similarity solutions, solution scales with one or more parameters dependent on
x, y, t (see chapter 1.2)

• integral methods, velocity profile is assumed or equations are reduced through
substitution of correlating primary variables

• Correlation based methods, derive closure relations using analytical, numerical or

experimental solutions
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Due to their relative mathematical simplicity similarity flows were developed early in the

pre-computer era. Blasius presented his flat-plate solution as early as 1908, the more
general Falkner-Skan equation was derived later in 1931 by Falkner and Skan.
The first integral method is a combination of the Von Kármán equation and a velocity

profile due to Pohlhausen who assumed the velocity profile to be a 4th order polynomial,
this was extended to 6th order by Libby [83] for variable viscosity. The most popu-
lar (integral) method for laminar boundary layer flow is due to Thwaites and Holstein
and Bohlen (see i.e. Schlichting [118]). The latter method, to be called the method

of Thwaites, is the most commonly used method for the approximation of the steady
laminar boundary layer. This method however is not suitable for unsteady boundary
layer flow and there has been no notable effort to change this, although an unsteady

version has been found in literature (see section (4.3)). The benefit of the method due
to Thwaites is that it does not require the prescription of a velocity profile as does for
instance the Von Kármán -Pohlhausen method. The solution methods for steady bound-

ary layers which use both equation (2.21) and equation (2.24) are found to be superior
to single equation models, see e.g. Hayasi[61]. For accelerated flow higher order one-
parameter polynomial profiles perform comparable to two-parameter methods of the

same order, see Libby[83].

3.1.1 Similarity Solutions

Starting from the boundary layer equations it is possible for certain external velocity
profiles to write a single ODE or a system of ODE’s dependent on one variable usually
denoted as η(x, y, t). This means that a solution for some η simply scales in any direc-

tion for which η is constant, the solution is called self-similar in that direction. The first
similarity solution was for a flat-plate boundary layer flow, due to Blasius in 1908. A
subset of the similarity solutions are the semi-similarity solutions where the problem

variable are reduced to two variables, see i.e. Hayasi[61].
Note that the flat-plate is defined as such through the external velocity profile, i.e.
ue = Constant. This should not be confused with the current flat-plat problem where

the flat-plate is assumed merely for the ease of using an orthogonal coordinate system.
The Falkner-Skan equation represented the similarity solution of the boundary layer
equations for a power law velocity distribution ue = Constantxm where m ranges from

−0.09043 which represents severely stagnation flow to m > 0 which represent accelerat-
ing flow. To obtain a Falkner-Skan like equation for the unsteady form of the boundary
layer equations the time derivative has to be incorporated. Specific unsteady similarity

solutions for the impulsively started semi-infinite wedge are given by Nanbu [102], Khan
et al (2006)[74] and Philip et al[110].

Matsushita[91] employed the original Falkner-Skan formulation using a slipping wall

boundary condition, i.e. f
′

(0) = uwall and extracted correlations for shape factors and

integral variables, see section (4.2.4). Matsushita refers to Tani[133] in stating that the
Falkner-Skan profiles are especially suitable for accelerating flows, also see for instance
Mughal[99].

Downside of the similarity solutions is their reliance on a velocity prescription ue =
f(x, t), this limits their applicability since an actual unsteady flow can in general not be

described through an analytical relation. However for laminar (boundary/wake) flow the
velocity distributions produced by the similarity solutions or semi-similarity solutions
can be used to create relations for the shape factors. To that end similarity and semi-

similarity solutions have been used to specifically approximate accelerating boundary
layer flow, decelerating boundary layer flow, stagnating boundary layer flow and wake
flow. The Falkner-Skan solution for power-law flow provides a reference for accelerat-

ing boundary layer flows. Often used for decelerating flow is the quartic profile due to
Tani, the shape factors are tabulated in his paper[132]. For the stagnating boundary
layer flow, Matsushita and Akamatsu[90] use a similarity solution by Proudman and

Johnson, and Robins and Howarth which they based on the rear stagnation point of a
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moving cylinder. For 0 < t < 5 the shape factors are assumed to be variable, for large t
the boundary layer will approach the similarity solution found by Hiemenz (see Proud-
man[111]).
In case the wake is laminar the semi-similar solution due to Williams[156] can be used.

The solution due to Williams was applied by Matsushita et al[91] for 0.2 < m < 1.3.

As the similarity solutions cannot be applied directly to solve general boundary layer

problems, however they can be used to obtain correlations for the integral variables, see
section(3.1.3). For more details on the specific (semi-similarity) problems the reader is
referred to appendix (C).

The one-parameter integral methods are suitable to be applied directly in generic IBL
application , these methods will be discussed in the next section.

3.1.2 One-parameter Integral Methods

The one-parameter integral methods are substitution methods for the IBL equations,
the most common substitution is provided by some assumed velocity profile. This ap-

proach was first suggested by Pohlhausen in 1921 for steady boundary layer flow, this
led to several alternative methods for the unsteady boundary layer flow due to for in-
stance Schuh(1953) and Tani(1954). The benefit of this approach is that once a suitable

guessed profile is found the integral parameters can be produced directly through inte-
gration without dependence on empirical relations.
The assumed velocity profile for the Pohlhausen method is a 4th order polynomial (see

for instance Schlichting[118])

f(η) =
u

ue
=
u(η)

ue
= a0 + a1η + a2η

2 + a3η
3 + a4η

4,

η =
y

δ
,

using

y = 0, u = 0,

y → ∞, u = ue(x),

y → ∞,
∂u

∂y
,
∂2u

∂y2
,
∂3u

∂y3
, · · · → 0,

and using the steady variant of the momentum equation (2.17) at the edge of the bound-
ary layer, the following values for the constants emerge

a0 = 0, a1 = 1 +
Λ

6
, a2 = −Λ

2
, a3 = −2 +

Λ

2
, a4 = 1 − Λ

6
,

where Λ (also known as the Pohlhausen-parameter) is defined as

Λ =
δ2

ν

due
dx

The velocity profile can now be written as

u

ue
=
(

2 − 2η2 + η3
)

η +
1

6
Λη(1 − η)3.

The 4th order method by Pohlhausen was dismissed by White[154] as not being very
accurate, also it gave less accurate results near seperation points, the latter would later

also bother the derived methods (see Libby [83]). Schuh considered the Pohlhausen
method with respect to unsteady flow and Libby applied Pohlhausen to the steady com-
pressible IBL equations, see i.e. Libby [83]. The Pohlhausen method can also be ex-

tended to three dimensions as was implemented by for example Smith and Young [125].
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By differentiating the boundary layer momentum equation more boundary conditions

can be found (see i.e. Rosenhead[114])

∂3u

∂y3

∣
∣
∣
∣
∣
y=0

= 0,
∂4u

∂y4

∣
∣
∣
∣
∣
y=0

=
1

ν

∂u

∂y

∣
∣
∣
∣
y=0

∂2u

∂x∂y

∣
∣
∣
∣
∣
y=0

, · · ·

The latter boundary condition can be written as

∂4u

∂y4

∣
∣
∣
∣
∣
y=0

=
u4
e

4ν3
Cf

dCf
dx

.

It is stated by Libby[83] that the polynomial approximation of the velocity profile will be

exact for an infinite polynomial order, i.e. if the polynomial distribution satisfies all of
the above boundary conditions. Infinitely many profiles can be derived based on differ-
ent combinations of the boundary conditions, see appendix D.

Several forms of the profile have been suggested which satisfy some set of the above
mentioned boundary conditions, the following form is due to Mangler(see Rosenhead[113])

u

ue
= 1 − (1 − η)n(1 + a1η + a2η

2 + · · · ), (3.1)

which satisfies n of the boundary conditions at η = 1 plus the boundary conditions

f
′

(0) = 0,f
′′

(0) = −Λ and f
′′′

(0) = 0. The Pohlhausen equation is a form of the Mangler

equation. Wieghardt used a two-parameter approach for the equation of Mangler with
n = 8 so the two-parameter method from Wieghardt satisfies eight of the earlier men-
tioned boundary conditions at η → 1 (see equation (E.1), Rosenhead[113]) Rosenhead

notes that the profiles due to Wieghardt may become inadequate in regions of sharply
falling pressure. The above methods derived from Mangler can have the unphysical re-
sult of u

ue
> 1 in case of strong adverse pressure gradient but is more accurate in case

of favorable pressure gradients. For Pohlhausen u
ue

> 1 will occur at Λ = 12.

Timman suggested a profile which meets all boundary conditions at η = 1 and which
cannot yield the unphysical result mentioned above (see equation (E.2), Rosenhead[113]).
Cooke[27] uses an following adaptation of Timman’s profile. The formulation by Cooke

however requires the application of two integral equations since both θ and δ are present
in the resulting differential equation(s) (see equation (E.3)). Drela[35] has found that
the Falkner-Skan similarity solutions are a very good approximation for attached, non-

similar flows. Mughal uses an empirical curve fit for solutions of the Falker-Skan equa-
tion (see equation (E.4), Mughal[99]). It was reported by Drela[37] that the previous
approximation overestimates negative velocities in separated regions. A more recent

method involving a two parameter method is due to Thomas and Amminger. For more
on steady approximate methods the reader is referred to Rosenhead[113] and Walz[149].
At present the unsteady variant of the momentum equation is considered, which has

the following boundary conditions for quasi-steady boundary layer flow

y = 0, u = 0

ν

(

∂2u

∂y2

)

0

= −
(
∂ue
∂t

+ ue
due
dx

)

,

y → ∞, u = ue(x),

y → ∞,
∂u

∂y
,
∂2u

∂y2
,
∂2u

∂y3
, · · · → 0.

Note that the (instantaneous) velocity distribution is incorporated in Λ and as will
be seen later, the approximate profiles are not time-dependent apart from the time-
dependency of the external velocity. Applying the boundary conditions leads to the

following description of the Pohlhausen parameter

Λ =
δ2

ν

(
∂ue
∂x

+
1

ue

∂ue
∂t

)

(3.2)
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here δ2

ν
may be regarded as a measure of the time required to diffuse a change through

the boundary layer (see i.e.Moore[96]). For application to unsteady flows Schuh, Yang,
and Hayasi[61] used the following parameter as a substitute of the original Pohlhausen

parameter which will be called the unsteady Thwaites’ parameter[62]

Λ = − θ2

νue

(

∂2u

∂y2

)

w

=
θ2

ν

(
∂ue
∂x

+
1

ue

∂ue
∂t

)

. (3.3)

A direct observation can be made with regard to the unsteadiness of the boundary layer;
if 1
ue

∂ue

∂t
≪ ∂ue

∂x
then the flow is in effect quasi-steady.

Note that the adapted Pohlhausen parameter contains the integral parameter θ, Hayashi

suggested to solve this through the momentum integral equation(2.21) or the mechanic
energy integral equation(2.24), see section (4.2.3). The two former methods (Yang,
Schuh) perform weakly under decelerating flow, Tani improved the method and came
up with a different quartic velocity profile which was more suitable for decelerating flow

(see Tani [132]). Tani’s method was applied to a separating and reattaching laminar flow
by Lees and Reeves (as referenced by Matsushita[91]).
Tani used the following velocity profile

u

ue
=
(

6 − 8η + 3η2
)

η2 + aη(1 − η)3. (3.4)

Here a is proportional to the square of the momentum thickness, i.e. a is not directly re-
lated to the pressure distribution (see Rosenhead[113]). Using two IBL equations (2.21)

and (2.24) in combination with the guessed velocity profiles by Tani and Hartree[60],
Hayasi[61] concluded that the quartic velocity profile is preferable over the Hartree pro-
file for Λ ≤ 0 and vice versa the Hartree profile is preferable for Λ ≥ 0, i.e. roughly

stating Hartree is best for accelerating flows and the quartic velocity profile is best for a
decelerating flow. Hayashi finds that the Hartree profile is appropriate for ue = ctα with
α being being close to 4. It should be mentioned that the Hartree profile is limited to the

power-law family of velocity profiles.

Starting from the general polynomial form
N∑

i=1

aip
i alternatives can be found using ar-

bitrary sets for the boundary conditions. It was concluded by Libby et al [83] that
increasing the order to 6 leads to an approximation which is comparable in accuracy to

a two-parameter integral method of lower order.

3.1.3 Correlation Based Methods

The closure models by Drela, Mughal, Nishida, Matsushita, Head’s and others rely on
predetermined relations for the shape factors and integral variables.

For turbulent boundary layer flow these predetermined relations are based on empirical

data and in all cases these relations are based on steady flow cases.

For laminar boundary layer flow however theoretical (semi-)similarity solutions are em-
ployed which assume certain types of velocity distributions like the power law distribu-

tion for the Falkner-Skan equation. These solutions are exact within the range of validity
for boundary layer theory and provide a realistic foundation for the laminar closure re-
lations. For example it was noted by Drela[35] that given a similar value for the shape

factor H the Falkner-Skan profile should be similar to the actual boundary layer pro-
file. Different (semi-)similarity solution families are employed in practice , for instance
solution families by Falkner-Skan, Proudman and Johnson, and Williams. These three

similarity solution families have specific ranges of applicability, namely accelerated flow,
rear-stagnation flow and wake flow. A set of integral variable values by Tani[132] can
be used to describe the boundary layer shape factors for retarded flow.This approach

of problem specific similarity solutions allows for a dedicated approach for the case of
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wind turbine flow using either experimental or numerical results.

Now that the general method for laminar boundary layer have been discussed it is time
to move on to turbulent boundary layers, or particularly, the transition from a laminar

boundary layer to a turbulent boundary layer.

3.2 Laminar to Turbulent Transition

Already in 1921 Prandtl predicted that all types of laminar boundary layers become

unstable at finite Reynolds numbers, this was confirmed by Tollmien in 1921. This
instability signals the transition of a laminar flow into a turbulent boundary layer which
requires a different solution approach. Empirically Cebeci and Smith[24] determined

the following criterion for completed transition in a steady flow with an adaptation of
Michel’s method

Reθ,tr ≥ 1.174

(

1 +
22, 400

Rex,tr

)

Re0.46x,tr ,

Reθ =
ueθ

ν
, Rex =

ue x

ν
,

(3.5)

which is similar to

Reθ,tr ≥ 2.9Re0.4x,tr + 208 exp

(

−Rex,tr
22400

)

,

where the left terms is Michel’s original one-step method, the adaptation should avoid

spurious transition soon after stagnation, see Michelsen[93]. Michel’s one-step method
is robust and relatively simple, therefore this method is applied amply in literature. Al-
ternatively the two-step method by Granville (see equation (E.10), Cebeci and Cousteix[22])

can be used or alternatively for turbulent external flow due to Arnal et al (see equa-
tion (E.11), Cebeci and Cousteix[22]). The method due to Arnal is used by Coenen[26]
with Coenen also using a relation for the critical Reynolds number to define a transi-

tion region (see equation (E.18)). Several other empirical relations for Recrit exist, e.g.
due to Drela[35], Drela and Giles[40], and Abu et al[47],[78] (see equations (E.21) -
(E.24)). The stability of a steady flow can be related to integral characteristics and the

flow Reynolds number, however for the unsteady boundary layers and the subsequent
unsteady formulation of the IBL equations there is also the influence of time-history.
This is expressed through temporal and spatial amplification of eigenmodes depend-

ing on the external velocity and pressure. This complex problem is encompassed in
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Figure 3.4: The critical Reynolds numberRecrit as a function of the shape factorH, see Bongers[14]

the Orr-Sommerfeld equation, which is a reduction of the NS-equations using the as-
sumption that the velocity components can be defined as constant components which
are perturbed by small-disturbances. These small disturbances are then described by

some complex valued function, commonly known as Tollmien-Schlichting waves, sub-
sequently further simplifications are possible, the result is

(ue − c)(v
′′

− α2v) − u
′′

e +
iv

α
(v

′′′′

− 2α2v
′′

+ α4v) = 0,

where c is the propagation speed of the waves and α is the wave number or frequency,
see i.e White[154]. It is usually assumed that all disturbance frequencies within a cer-
tain range occur at any given time, the maximum amplitude is then determining for the

stability.
For very high Reynolds numbers this results in the Rayleigh equation, see i.e. Schlicht-
ing[118]

(ue − c)(v
′′

− α2v) − u
′′

e = 0.

The en envelope method first used by Smith[122] and Van Ingen[139] is based on lin-
ear stability theory of the Orr-Sommerfeld equation and uses either spatial or temporal
amplification theory. Originally the method was known as the e9-method where n = 9
is the highest exponent of a disturbance relative to the initial amplitude. Later the ini-
tial amplitude was replaced by an initial disturbance which introduced the need for a
variable value for the highest exponent, this would be called the en method, see i.e. and

Van Ingen(2008)[138] for an overview. Cebeci and Cousteix give a numerical procedure
to solve the Orr-Sommerfeld equation and to estimate the onset of turbulent flow using
the en method, see [22, ch.7]. The specific code by Cebeci and Cousteix is available and

can be implemented in the code for the IBL equations with the notation that it requires
a velocity profile in normal direction, this can be obtained from i.e. the Wieghardt or
Pohlhausen velocity profiles as was discussed in section(3.1.2).

The en envelope method is also used in the popular program XFOIL, which is described
in a paper by Drela[36]. The amplification envelopes can be found using an assumed
solution, i.e. the Falkner-Skan solution as used by Drela[35]. This can be integrated

in a future solver dependent on the computational load, independent of whether the
field method or the integral method is used. In 2003 Drela formulated a solution proce-
dure for a full en frequency method using a database to fetch the amplitude for a given

set of input variables, the method described in this paper is supposedly more accurate
for variable shape factors (non-similar flows), this method is used in the solver MSES
(see Drela[39]). For the en envelope method a database was applied by Johansen and

Sørensen[71]. Both the envelope method and the frequency method can be solved as
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part of the solution.

Simpler is the H −Rx envelope method by Wazzan et al[152]),the H −Rx method gives a
relation for the transitional local Reynolds number Rex,tr based only on the shapefactor
H, see equation (E.20). The H −Rx envelope method is limited to accelerated flows and

slightly retarded flows. Cebeci[22] notes that the H−Rx method gives reasonable results
if there is local similarity in the boundary layer. It should be noted that the relation by
Wazzan et al is based on more recent experimental data than the relations by Michel,
Cebeci and Smith, and Granville and is preferable for accelerated flows (ue = xm; m > 1

3
).

The Abu-Ghanam/Shaw transition criterion [1] is a so-called bypass method, here tran-
sition is induced by turbulence outside the boundary layer. 1. Modified by Drela[38]
this method was successfully applied to a Reynolds Averaged Navier-Stokes simulation

of a multistage turbine (see Kraus[65]). Abu-Ghannam/Shaw modified by Drela is given
by equation (E.14). The outer turbulence level is incorporated in the transition criterion
through a variable critical amplification factor n as used in the en method. Different em-

pirical formulas exist that relate the critical and transitional amplification factor to the
outer turbulence level , e.g. due to Mack (equation (E.15)), Henkes and Van Ingen[14]
(equation (E.16)), Anderson et al (equation (E.17)), also see figure (3.5) for the critical

and transitional amplification factor from Henkes and Van Ingen.

Rotational effects are also of importance and most somehow be incorporated in the
determination of the critical point and the transition point. Du[41] in reference to John-

ston applies the following criterion for the critical displacement thickness

Reδ,crit >
8.8√
Roδ

, |Roδ| ≪ 1,

with the rotational parameter

Roδ =
2Ωδ

ue
.

If the flow is turbulent there is still the possibility that it becomes laminar, this is
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Figure 3.5: Values for the amplification factors in case of bypass turbulence

called relaminarisation (see i.e. Schlichting [118]). This phenomena may occur in

1Transition from laminar to turbulent boundary layer flow over rough surfaces and for turbulent outer flow
is often referred to as bypass transition
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strongly accelerated flow, in reference to Narasimha and Sreenivasan, Schlichting[118]

and White[154] state the following criterium

ν

u2
e

due
dx

≥ K

Schlichting: K = 3.5 · 10−6,

White: K = 3 · 10−6.

Besides relaminarisation it might occur that the amplification factor decreases, i.e. af-
ter reaching a critical Reynolds number, a favorable pressure gradient may reduce the

amplifications of the disturbances.

Literature suggests that laminar boundary layer flow over profiles is quite normal for
Re ∼ 100, 000, if only for the first 10% − 30% of the chord, provided that the outer flow is

in fact laminar. However in case the outer flow is turbulent the critical Reynolds number
at which the laminar boundary layer flow transitions into a turbulent boundary layer
flow decreases with increasing turbulence level, exponentially at high Reynolds numbers

(Re > 500, 000)and linearly at lower Reynolds numbers (see Andersson, Berggren and
Henningson[6]). According to the relations which based the transitional amplification
factor on the bypass turbulence level it can be assumed that starting from a bypass

turbulence of Tu ≈ 2.2% the transition to turbulence starts immediately, also see figure
(3.5). The average bypass turbulence for offshore windturbines is about 5% (see figure
(3.6)), and thus, disregarding for instance frequency dependency, the boundary layer

will start to develop to a turbulent boundary layer immediately.

Early measurement on the flat plate with zero incidence showed a critical Reynolds
number of about 3.5 105 − 5.0 105, which was presumably obtained from windtunnel

results with a turbulence intensity of about 1%. Later the experiment was repeated by
Dryden,Skramstad and Schubauer with a turbulence intensity 50 times lower than the
earlier experiment which gave a critical Reynolds number of about 3.9 106, more than

10 times(!) larger. This latter value was supposedly the asymptotic value so a lower
turbulence level would not increase the critical Reynolds number, see Schlichting[118].
In a later experiment by Wells acoustic disturbances were also removed, this increased

the transition point to 4.9 106. The above is mentioned because it shows the sensitiv-
ity of laminar-to-turbulence transition, not only to the turbulence of the surrounding
flow(bypass turbulence) but also to acoustic noise. With regard to the bypass turbu-

lence the following should be noted; The turbulence level in the athmospheric boundary
layer is between 5%(off shore) and 40% (see Sicot et al[121]), this means that the criti-
cal Reynolds number may be reduced to near zero (see Cowley[31] and Van Ingen[140])
which in turn would mean that a laminar boundary layer over a windturbine profile is

rather unlikely.

Figure 3.6: Turbulence intensity for off shore farm over long measurement period
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Whether a given disturbance grows(unstable), remains constant (neutral) or decays(stable)

depends on the frequency of the disturbance, the shape of the velocity profile, the
Reynolds number, the amplitude of the disturbance and other more illusive factors
like the receptivity of the flow. Therefore the turbulence intensity is not sufficient to

determine the decrease in the critical Reynolds number due to turbulence in the outer
flow. According to a recent study by Schepers and Van Ingen the turbulence frequency
is much lower (O(1) Hz) than the frequency at which the critical amplification factor
occurs (O(3) Hz), which prevents the possibility of interference. This suggests that the

en amplification method can still be used with confidence to detect transition over wind
turbine profiles, however more experimental data is needed to confirm the result.

Disregarding the effect of bypass turbulence on transition, in practice, a fully turbulent
boundary layer is often assumed for the three dimensional flow over rotors, mainly be-
cause the computational logic for tracking the transition point is difficult to integrate

in general flow solvers (see Bak et al[8]). Here it should be noted that for instance
Nishida[103] and Milewski[94] use a so-called attachment line within a few steps of the
stagnation point, with the additional note that supposedly the major part of the profile

is insensitive to the boundary condition at the leading edge. On a side note, recently
there has been much interest in applying active flow control through suction/blowing
to reduce the friction drag over cars but also lifting surfaces, this increases the stability
of the boundary layer and may even cause re-laminarisation. In case suction is ap-

plied the transition criterion can be determined with the method by Van Ingen(see Van
Ingen[140] and Bongers[14]). A more recent method of controlling the boundary layer
uses plasma induced velocity, here a body force is created through two electrodes and

a dielectric material. This has the benefit of not inducing drag through bleeding suction
air as would occur with suction methods. Beside boundary layer suction or plasma
induced velocity, cooling also has a positive effect on the stability of the boundary layer

flow(see Wazzan[152]).

Literature on turbulence transition over wind turbine blades is scarce, more research

has to be performed to obtain dedicated closure models.

The approaches discussed above are based on steady boundary layer flows when it

is clear that time-dependent fluctuations in the external velocity influence the tran-
sition requirements (see i.e. Schlichting[118]). The unsteady boundary layer transi-
tion including wake effects can be approximated using a method due to Chakka and

Schobeiri[119] which uses eddy viscosity with a time-dependent intermittency factor.
For three dimensional boundary layer flow, Menter and Langtry[92] provide a method
using added differential equations involving the intermittency factor, this recent method

is applied in the Ansys CFX solver. The intermittency factor is a measure in which the
boundary layer can be considered turbulent, an intermittency factor of near 1 suggests
the entire boundary layer is turbulent and a near zero factor indicates a fully lami-
nar boundary layer. To determine what is actually turbulent inside the boundary layer

some turbulence criterion has to be given. The transition Reynolds number and the
critical Reynolds number form the upper and lower bound for the intermittency. This
still necessitates the use of a separate transition model, i.e. Orr-Sommerfeld.

3.2.1 Intermittency Transition Model

In recent years there has been much (renewed) interest in the development of inter-
mittency transport equations to describe the transition from laminar to turbulent. The

methods are hinged upon other turbulence methods for the entire flow, i.e. κ − ω, κ −
ǫ, SST . The transport of the intermittency γ is dependent on the distribution of κ,ǫ
and/or ω and thus this can not be implemented as-is. A starting point for practical im-

plementation is the technical report from the Risø institute by Bak [8], in this report the
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wall intermittency function by Menter et al[92] is addressed and the missing constants2

are retreived through wind tunnel experiments. More on turbulence intermittency can
be found in Schobieri and Wright[119], Akhter and Ken-Ichi[3] and Elsner et al[78]. The
intermittency equation is typically written as

∂(ργ)

∂t
+
∂(ρuiγ)

∂xi
= Pγ +

∂

∂xi

[(

µ+
µt
σγ

)
∂γ

∂xi

]

,

where Pγ is a production term which may be dependent on quantities describing the
turbulence of the flow, i.e. ω, k and ǫ. Although the intermittency models are proba-
bly more refined in describing the development of turbulence than the en amplification

theory it is still dependent on empirical models to describe the point where turbulence
development begins, i.e. the earlier mentioned Recrit. A local value for the turbulence
intensity may be obtained using the following expression given by Elsner et al[78] in

reference to Mayle

Tulocal = 1.93Tu 5

√

θ

Lt
, Lt =

√
k

0.09ω
.

Since the starting point for the intermittency transport function is signaled with conven-
tional correlations for Recrit, since the region where the intermittency is between zero

and one is actually quite small and since the computational implementation of the tran-
sition does not seem to affect the solution of the turbulent boundary layer (see Drela[35])
it is considered unnecessary to introduce an intermittency transport model for the pur-

pose of capturing the intermittency region. More important in the unsteady case is the
transient behaviour of the intermittency region which is missing from the current tran-
sition criteria used for the (integral) boundary layer equations. A detailed discussion on

this subject can be found in the references already provided above, also see Menter’s
PhD for a literature review on intermittency[80]. It is advised that the steady transition
models are critically assessed for typical wind turbine flow situations and that perhaps

a specific transition model is devised which incorporates the main characteristics of the
unsteady outer flow. If indeed the transition prediction is inappropriate a transition
point needs to be preset.

Once the turbulence boundary layer flow is established the laminar models should be

replaced by turbulence models, this is discussed in the next section.

3.3 Turbulent Boundary Layer

With the onset of turbulence specific closure models for turbulent boundary layers need
to be employed to ensure the solubility of the boundary layer equations.

It should be noted that most turbulence closure models for the IBL equations assume

quasi-steady flow (see e.g. Zhang[160], Swafford[129]), probably due to a limited amount
of experimental data (see e.g. Cebeci[22, §9.10]). The same holds for the field form
of the boundary layer equations, although several unsteady turbulence models are in

existence unsteady closure relations for near wall turbulence were difficult to find, one
due to Cebeci is presented in appendix (K).

3.3.1 Velocity Profiles for Turbulent Boundary Layers

The simplest closure model for the integral equations is probably the power law distribu-
tion of the velocity which describes the entire boundary layer. The velocity distribution

can be described simply by

u = ueη
β,

2Menter et al give an almost complete description of their method but forfeit to give two constants due to
proprietary reasons
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where β = 1
7

is commonly used for boundary layers (see i.e. Warsi[151], Mughal[99]),

this was introduced by Prandtl in 1921. The 1/7th power law method gives a simple

analytical description of the entire boundary layer (see equation (E.25) for the integral
variables), however it assumes the turbulent boundary layer can be described by a single
profile. As with the closure models for the Reynolds stress it is assumed that the velocity

profile has two distinct layers, see figure (3.7). In general the following expressions are

Figure 3.7: Sublayers in turbulent boundary layer,[24].

used (see i.e. Cebeci[22],White[154])
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where

y+ =
yuτ
ν
, uτ =

√
τw
ρ
, u+ =

u

uτ
.

The separate relations for the inner layer were deduced to a single composite formula
by Spalding (see equation (E.26), White[154]). Coles law of the wake is an extension of

the log-law of the wall to the outer layer and is given by (see Cebeci and Cousteix[22])

u+ =
1

κ
ln y+ + c+

Π(x)

κ
f

(
y

δ

)

, (3.6)

where Π(x) ≈ 0.55 for Reθ > 5000, c is set to 5.0 (see White[154]), further White proposes
two curve fits, see equation (E.29). Granville proposed a simplification of Coles law (see
equation (E.30)), which can be supplemented by a set of relations due to Thompson

(see equation (E.31), Cebeci and Cousteix[22]). The parameter Π in equation (3.6) varies
strongly with the so-called Rotta-Clauser parameter β (see i.e. White[154, fig:6-27]),
which is defined as

β =
δ∗

τw

dpe
dx

.

White gives a function β(Π) with which Π is given implicitly (see equation (E.32)) and an

extra function β(Π, θ,H) (see equation (E.33)). Using the two relations for β the Rotta-
Clauser parameter β, Π can be written as a function of θ and H. Now given θ and H there
results an indication for the velocity profile of a turbulent BL, this might be used to com-

plement an integral method which lacks information on the velocity profile as does for
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instance the well known procedure by Drela (see sections (I.1.6),(4.2.1)). Near separation

of the boundary layer flow the above discussed law of the wake becomes inappropriate
as β and Π go to infinity and a specific curve fit was found, the so-called sin-squared
wake law (see equation (E.34), e.g. White[154]). Whitfield(1979) devised a composite

solution method for the inner and outer layer of the complete turbulent boundary layer
using trigonometric formulas, Swafford extended the solution for separated boundary
layers. The solution due to Swafford[129] and Whitfield[155] is described by equation
(E.27). It is convenient to have one formulation for the complete profile of attached

and separated boundary layers, although the above method is somewhat laborious it
does not require a separate check for the separation, the above formulation is used by
Mughal[99]. Turbulent velocity profiles which incorporate the cross flow angle are given

by Cross[32] (see equation (E.28)).

A one-parameter integral method can not be constructed simply because there are at
least two parameters for the turbulent velocity profiles, furthermore the different sub

layers prevent a direct implementation. The one equation velocity profile by Swafford
and Whitfield is very cumbersome and requires multiple steps therefore a multiple pa-
rameter integral method analogous to what is discussed in section (3.1.2) will not be

considered.

In the following section two semi-empirical methods are discussed, namely the unsteady
entrainment equation and the unsteady lag entrainment equation.

3.3.2 Unsteady Entrainment and Shear Stress Lag

Alternatively the so-called entrainment equation can be derived (see Head [63] and
Green [57]). The entrainment equation was specifically created to involve the rate at

which mass from the boundary layer is mixed with the irrotational external flow. The
entrainment is given by

dQ

dx
=

1

ue

d (ueθH1)

dx
= F (H1), (3.7)

where

shape factor H1 =
δ − δ∗

θ
,

boundary mass flow Q =

∫ δ

0

udy.

The above differential equation is still generic, it holds for laminar and turbulent flow.

Veldman[145] suggests to take (H − H1)min as an estimate for the separation. Here
F is some empirical function relating the boundary mass to the shape factor. Cebeci
and Bradshaw produce several curve fits using Head’s empirical data for F and H1 for

turbulent boundary layers (see equation (E.47), e.g. Cebeci and Cousteix [22]). Where
the closure relation for H1 is not appropriate for separating flows (see White[154]). Co-
enen[26] uses (in reference to Lock and Williams) a closure relation for separated flows

which has a minimum value for H1 at about H = 2.85, see equation (E.48). For severe
trailing edge separation Coenen uses (in reference to Houwink) yet another closure re-
lation for H1 which has a minimum of about H = 2.732, see equation (E.49). Ferziger et

al (see the report by Strickland[105]) rewrite the entrainment method using the shape
parameter ζ = δ∗

δ
, according to White[154] the resulting method is in better agreement

in case of adverse pressure gradient but is less satisfactory for favorable pressure gradi-

ents. The entrainment method can be rewritten to hold for unsteady flow, consider that
the entrainment for boundary layer flow can be written as

F (H1)steady =
∂δ

∂x
− ve
ue
,
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if this is explained as the non-dimensional boundary layer growth velocity with respect

to the normal velocity of the external flow then the following extension seems natural

F (H1)unsteady =
∂δ

∂x
+

1

ue

∂δ

∂t
− ve
ue
.

Given the extra term the entrainment equation has to be rewritten

F (H1)steady +
1

ue

∂δ

∂t
=

1

ue

∂ (ueθH1)

∂x
, (3.8)

F (H1)steady =
1

ue

∂ (ueθH1)

∂x
− 1

ue

∂ (θH1 + δ∗)

∂t
.. (3.9)

Although this extension is intuitive formal proof is absent. This was applied by Cousteix[29]
in a study on three dimensional turbulent boundary layers.

An extra equation may be formed by the shear stress lag equation due to Green et
al[56]. The Green lag-entrainment method gives the following differential equation for
the entrainment (see Cebeci and Cousteix[22])

dF

dx
=
F (F + 0.02) + 0.2667Cf0
θ(H −H1)(F + 0.01)

Π (3.10)

with

Π = 2.8
[√

Cτ,eq −
√
Cτ
]

+

(
δ

ue

due
dx

)

eq

− δ

ue

due
dx

,

with equation set (E.52) for the closure (also see Green[57] and Green et al[56]). Here the

suffix eq stands for equilibrium boundary layer which is defined as a turbulent boundary
layers for which the velocity and shear-stress profiles do not vary in shape with x, equal
to similarity flows in laminar boundary layers they scale with some similarity variable.
For the lag entrainment method specific relations for Cf and H1 are used (see equation

set (E.53), Green et al[56]). Drela[35] derived a different lag equation using the shear
stress coefficient Cτ

Cτ =
1

u2
e

(−u′v′)max,

where (−u′v′)max is the maximum Reynolds stress. Drela defined the normal velocity
gradient as

∂u

∂η
=

1

L

√

(−u′v′)max,

where L is the dissipation or mixing length. Substituting ∂u
∂η

and Cτ in the Reynolds

stress transport equation, neglecting normal convection and keeping only the terms
with Cτ Drela finds

δ

Cτ

∂Cτ
∂x

= Kc

(√

Cτ,eq −
√
Cτ
)

, (3.11)

which is closed using equation set (E.50). The original value for Kc is 5.6 but Drela re-
ported better results using Kc = 4.2 (see Drela[35]). Cτ can be initialized with a formula-

tion used by Nishida[103], see equation (E.51). Drela’s assumption that the higher order
terms of the lag entrainment equation can be neglected was supported by Bhanderi and
Babinksy[10]. The derivation of Drela’s altered lag entrainment equation assumed the
steady Reynolds stress transport equation, in the unsteady case the lag entrainment

equation can be written as (see Hall[58] in reference to Cebeci and Bradshaw)

δ

u3
eCτUmax,s

∂
(

u2
eCτ

)

∂t
+

δ

u2
eCτ

∂
(

u2
eCτ

)

∂x
= Kc

(√

Cτ,eq −
√
Cτ
)

,

here Us,max is the equilibrium slip velocity (see figure (3.8)) at the point of maximum
shear stress which is equivalent to the local slip velocity as given by Drela (see Hall[58]).

Note that the unsteady variant of Green’s lag entrainment equation contains the external
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u
ue

y
δ

us

Figure 3.8: Impression of slip velocity

velocity ue inside the differential terms, also changing the behavior of the lag equation

in case of steady flow. Writing out the differential and rearranging, the unsteady lag
entrainment equation becomes

δ

ueCτUmax,s

∂Cτ
∂t

+
δ

Cτ

∂Cτ
∂x

= Kc

(√

Cτ,eq −
√
Cτ
)

− 2δ

u2
eUmax,s

∂ue
∂t

− 2
δ

ue

∂ue
∂x

. (3.12)

The unsteady lag entrainment equation was written somewhat differently by Fenno et
al[50]

δ

ueCτUmax,s

∂Cτ
∂t

+
δ

Cτ

∂Cτ
∂x

= Kc

(√

Cτ,eq −
√
Cτ
)

+

(

2
δ

ue

∂ue
∂x

)

EQ

− 2
δ

ue

∂ue
∂x

, (3.13)

where the measure for the diffusion namely
(

2 δ
ue

∂ue

∂x

)

EQ
is not ignored. Doing the same

for the formulation used by Hall gives the third formulation

δ

ueCτUmax,s

∂Cτ
∂t

+
δ

Cτ

∂Cτ
∂x

=

Kc

(√

Cτ,eq −
√
Cτ
)

+

(

2
δ

ue

∂ue
∂x

)

EQ

− 2
δ

ue

∂ue
∂x

− 2δ

u2
eUmax,s

∂ue
∂t

. (3.14)

Once anyone of the models (3.12), (3.13) or (3.14) above is implemented implementation
of the other models is trivial.

3.4 Skin friction coefficient

The skin friction coefficient is perhaps the most important parameter for aerodynamic

body design and is therefore well described by empirical data. In this section some
of the formulations to obtain the skin friction coefficients are presented. All of the
following Cf formulations are for turbulent boundary layer flow unless otherwise noted.

The most commonly used relation for the skin friction coefficient is due to Ludwieg
and Tillman, which is based on empirical data on turbulent flow over a flat plate, see
equation (E.35). According to White[154] the relation by Ludwieg and Tillman is within

10% of the empirical data. With equation (E.37) White[154] gives a correlation which is
more accurate. White suggested an approximation for the skin friction coefficient for
Karman-based integral methods with a pressure gradient in x-direction, see equation

(E.36), White[154] states that this relation fits empirical data within 3%.
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Figure 3.9: Closure relation for friction coefficient Cf , (left) for laminar boundary layer based on
equation (E.9), (right) for turbulent boundary layer based on equation (E.41)

The downside of the relations mentioned above is they cannot be negative, as would oc-
cur in seperated/separating flows. Green, Ferziger et al, and Swafford provide closure
relations which can be negative.

For Green[57] different empirical correlations were used, for both correlations the max-
imum Reynolds number for a reasonable curve fit is of order 105, which is too low for
wind turbine applications (see equation (E.38).
Ferziger et al present a solution method for the IBL equations where the friction co-

efficient is dependent on the so-called blocked factor ζ which is defined as the ratio
between the displacement thickness δ∗ and the boundary layer thickness δ (i.e. ζ = δ∗

δ
)

(see equation (E.39), White[154]).

This approximation is supposedly good for adverse pressure gradients but not for favor-

able pressure gradients (see White[154]). For the above method it is assumed that there
is ’full’ separation for ζ = 1

2
, see section(3.6).

Lyrio et al (as referenced by Strickland and Graham[105]) give description for the un-

steady laminar boundary layer flow based on the blockage factor ζ and the unsteady
Thwaites parameter. The closure relations for the equation from Lyrio et al are based
on unsteady wedge flow (i.e. an unsteady similarity solution).

Based on solutions of the Falkner-Skan equation, in reference to Drela-Giles to Sekar[120]
gives a set of closure relation for the friction coefficient of a laminar boundary layer flow,
see equation (E.9). A relation due to Swafford[129] is also able to approximate negative
values for the skin friction coefficient. Swafford empirically extended the relation due

to White (equation(E.36)) using data on separated flows, see equation (E.41). Swafford
claims the relation is a good approximation for both attached and separated boundary
layers.

Cousteix and Houdeville[30] used an expression based on Coles log law for an unsteady
turbulent boundary layer flow over a flat plate, see (E.42).

Cross flow is incorporated in the formulation by Du and Selig[41] in reference to Lak-
shiminarayana and Govindan, see equation (E.40). Finally it must be noted that the

friction coefficient for separated flow might be fixed to a very small negative number, in
reference to Lock and Williams Coenen[26] uses Cf = −0.00001.

3.5 Dissipation Coefficient

The dissipation coefficient CD is the rate at with which energy is dissipated at the wall
due to a wall normal gradient in velocity. If either (semi-)similarity solutions or guessed
velocity profiles are employed the dissipation coefficient may follow from the profile (see

i.e. Matsushita[91], Mughal[99], Swafford[129]). It is also possible to resolve the dis-
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sipation coefficient through empirical relations, some of these relations are presented

below. Mughal[98] uses a formulation by Whitfield which is based on a numerical inte-
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Figure 3.10: Closure relation for diffusion coefficient CD, (left) for laminar boundary layer based
on equation E.5, (right) for turbulent boundary layer based on equation (E.44)

gration of turbulent velocity profiles for the inner and outer layer, see equation (E.43).
Drela[35] used a correlation for the laminar boundary layer, following from the Falkner-

Skan profiles, see equations (E.5),(E.6). For the equilibrium turbulent boundary layer
flow Drela uses equation (E.44) for the dissipation coefficient and equation (E.45) for
the kinetic shape factor H∗. These closure relations follow directly from the relations

given by Whitfield[155] and Swafford[129], see equation (E.27). Drela also gives an ex-
pression for CD for a non-equilibrium turbulent boundary layer which requires the wall
shear stress Cτ , and thus the lag entrainment equation comes into play, see equation

(E.46). The third and last coefficient that will be considered is the CK term in the third
integral equation. If the third IBL equation is used CK can be solved by writing out
the integral using a guessed velocity profile or CK has to be considered as a primary

variable in the solution procedure, the latter means that the non-primary variables will
have to be (cor)related with CK which is only possible using either guessed velocity pro-
files, similarity solutions or numerical solutions of viscous models since this term is

not as such empirically described in literature. Matsushita et al ([91], [90]) use several
(semi)-similarity solutions for this purpose.

The next section deals with the occurrence of separation.

3.6 Separation Point

Following the flow over a body, pressure gradients may accelerate or decelerate the

flow. Acceleration through negative(or favorable) pressure gradients enforces the flow
direction of the boundary layer whilst deceleration through positive pressure gradients
may cause the flow to reverse direction at some height above the body surface, this

initial reversed flow causes an even larger positive pressure gradient cascading into
a region of large circulation and low pressure, the flow now becomes detached from
the surface, see figure (3.11), i.e. flow separation(which starts in the boundary layer)

leads to detached flow. The seperation point is roughly the location where the boundary
layer detachment starts, For steady flow it holds that there is a pressure minimum if
seperation occurs, vice versa is not necessarily true (see Philip [110]). Also, the presence

of ∂u
∂y

= 0, i.e. zero friction, in steady flow is usually the indicator that the flow solution
will become singular, the so-called Goldstein singularity. This singularity is associated
with flow separation because near this point of singularity the boundary layer thickness

grows very rapidly and exactly at the point of separation dδ∗

dx
→ ∞, which is of course
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Figure 3.11: Laminar separation

Figure 3.12: Turbulent separation

non-physical and it simply signals the break down of the method. Also used for steady
flow is the criterium

Thwaites parameter: λ =
θ2

ν

due
dx

< −0.09. (3.15)

For unsteady flow this is not true except if conditions are locally steady (see Brad-

shaw[15]), seperation occurs if there is a discontinuity (see e.g. Schlichting[118]) e.g.
∂δ∗

∂x
→ ∞, which is again a mathematical singularity. To recognize this singularity before

it actually occurs, there is the so-called MRS-criterion due to Moore, Rott and Sears (see

i.e. Schlichting[118]) which states there is separation if

u = us,
∂u

∂y
= 0,

where us is the seperation velocity. The separation velocity us follows from the displace-

ment of the point where it holds that ∂u
∂y

= 0, therefore the MRS criterion is difficult to
control computationally, see i.e. Krainer[77]. The MRS-criterion will be used for both
laminar and turbulent boundary layers although, admittedly, the added complexity of

turbulence is ignored, see i.e. Smith [123]. Heuristically, the MRS criterion may be
applied to the mean velocities in a turbulent boundary layer flow.
For methods which do not incorporate the velocity profile in the solution, as do most

integral procedures, a different approach has to be used. For turbulent boundary layer
flow Veldman suggests to take the minimum of H − H1, which will have to be the first
minimum in case of an arbitrary external velocity profile (see Veldman[145]). For un-

steady laminar boundary layer flow without velocity profile information the criterion
used for steady boundary layer flow, namely zero wall friction, may be used as a crude
engineering approach.

If the system of equations is hyperbolic, discontinuities arise through the formation of

shocks, which is used by Matsushita et al[91] to predict separation. Methods which do
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Figure 3.13: Boundary flow seperation according to the MRS-criterion

contain velocity profile information, like i.e. Hayasi[61], allow the monitoring of the zero

friction point and thus have a direct way of predicting separation.

Another unsteady separation check was found in a report by Strickland and Gra-
ham[105], supposedly it is meant for the detection of intermittent separation, the crite-

rion is directly based on the unsteadiness in the edge velocity,

H >
2 − ζ

1 − ζ
, (3.16)

where ζ follows from equation(E.8). Bong-Jin[13] reports that the intermittent separa-

tion check actually performs much better to detect separation than the ’full’ separation
check.

Alternatively, if all else fails, one may resort to an ad hoc procedure, whereby a blow-up

of integral variables is the indicator for a singularity, obviously this method requires the
storage of at least two time steps. In fact, as can be read in section (4.2.4), a negative
value for the momentum thickness signals a break down of the conventional integral

methods which contain the shape factor H as a primary variable.

Once separation is detected, the solution procedure can be changed so that the strong
interaction between the boundary layer and the outer flow is modelled correctly. This

is treated in the next section but will not be included in the code development since
it requires a direct integration of the external flow solver, relevant however is the way
in which the proposed discretisation schemes lend themselves to applying the inverse

method.

3.7 Solution Procedure for Mildly Separated Flow

As said, at flow seperation the IBL equations have to be coupled strongly to the inviscid
solution to ensure solvability (see i.e. Cousteix [28], Cebeci et al[23]). The validity of
the boundary layer equations is questionable for fully separated flow since the physi-

cal boundary layer ceases to exist. In practice it is found that the integral boundary
layer equations can still be used to resolve the boundary layer for mildly separated flow.
The term ’mildly’ must be explained, it is suspected that is based on the requirement

that the characteristic length scale of the separated bubble is similar to the boundary
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layer thickness([142]), no formal definition is given in the referenced papers, although

Coenen[26] makes a similar statement. The nearly separated boundary layer flow pro-
duces a discontinuity through ∂δ∗

∂x
→ ∞, which is known as the Goldstein singularity.

The singularity is not a physical phenomenon but rather a result of a recurring mis-

match between the inviscid outer solution and the viscid inner solution.

Several methods exist to solve the coupled inviscid/viscid problem for separated flow,
most notably the inverse, semi-inverse, simultaneous and quasi-simultaneous method
(see figure (3.14)). The coupling methods are built around the concept that the external

velocity and the displacement thickness are coupled in some way.

When a coupled method is applied to overcome the discontinuity, there may still be a
large growth of the boundary layer which signals fully separated flow. It is unclear to

what extent of separation the coupled method can be used and how the small scale
separation should be discriminated from the large scale separation.

Figure 3.14: Coupling methods, see Veldman[145]

Direct Method

The direct method is the traditional coupling method wherein the velocity at the edge of
the boundary layer is given by the inviscid solution. The inviscid velocity distribution

forms the input for the IBL equations which produce a displacement thickness which
is fed back into the inviscid formulation to give a new velocity distribution, etcetera ,
this process continues until the displacement thickness and the velocity are converged.

Downside of this iteration process is that in case of separation there will be no conver-
gence because one (or more) of the parameters/variables in the IBL equations becomes
discontinuous. The direct method is used by e.g. Swafford[130]. The advantage is that

it has a straightforward implementation, there are no added requirements except that
there is an iteration process to find the converged solution. In general the direct method
can only be used when there is weak interaction between the inviscid outer layer and

the boundary layer, i.e. when there is a weak coupling between the two layers.
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Inverse Method

Literally the inverse of the direct method since the IBL equations and the inviscid solver
are treated in an inverse manner, the inverse inviscid solution gives the boundary layer

thickness and the inverse IBL solution gives the velocity, again this is solved recursively
until the solutions are converged. Downside is that the inverse form of the equations is
much more elaborate than the normal form and an inverse form will not always exist.

The (semi-)inverse method will fail for attached flow (e.g. Sekar[120],Edward[44],Howlett[67])

and it is known to converge slowly (see i.e. Veldman[145]).

The (semi-)inverse method seems to perform well for unsteady boundary layer flow
(Howlett[67],Zhang[160],Hall[58]).

Semi-inverse method

Here only the IBL equations are solved in inverse form, the resulting velocity is com-
bined with the velocity that results from the inviscid solution to form the update of the

displacement thickness through some relaxation parameter. Basically when the two ve-
locities are equal there is convergence. This was applied by e.g. Howlett[67],Edwards[44]
and Zhang[160].

Simultaneous

Here the system of IBL equations is directly coupled with the system of equations for

the inviscid solution through for instance an adapted continuity equation which incor-
porates the boundary displacement (see Hall[58]) , a direct normal displacement of the
streamline with the boundary thickness (see Drela[35]) or through the concept of wall

transpiration (see Nishida[103],Milewski[94] or Mughal[99]).
The advantage of the simultaneous method is that there is no need for an interaction
law. The simultaneous method has been applied successfully by for instance Drela[35]
for the steady case which involved a coupled system of the steady IBL equations and

the steady Euler equations in an iterative manner using a Newton-Rhapson procedure.
Hall[58] applied simultaneous coupling successfully for the unsteady case. For the
unsteady formulation no iterations are needed per time step, see Hall[58]. Downside is

that extra assumptions have to be made to obtain the physical coupling of the boundary
layer and the inviscid outer flow.

The (quasi-)simultaneous method may also be used directly for the attached flow, this
may well be more robust than an initial attached flow formulation since any separation

like phenomenon is then automatically incorporated in the solution and for the unsteady
procedure there is no need for an iterative procedure if the fully simultaneous method
is used

Quasi-simultaneous

The main idea of the quasi-simultaneous method is that instead of directly coupling the

complete inviscid solution to the boundary layer solution some simple approximation
for the inviscid solution is used. The difference between the approximation and the ac-
tual inviscid solution is handled iteratively. The quasi-simultaneous method has been

applied first by Veldman and Houwink[146] and involved the asymptotic solution of the
potential problem near the boundary layer. This solution could be described by a finite
number of terms, the more terms the better the boundary layer would match the invis-

cid solution, but the more costly the matrix operations, it was shown that the number of
off-diagonals can be reduced to zero, leaving only the diagonal terms, see Veldman[145]
and Coenen[26]. Quasi-simultaneous coupling using only the diagonal of the external

coefficient matrix leads to a simple and robust coupled method, this was successfully
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applied by Coenen[26]. The diagonal simply functions as a relaxation factor for the iter-

ation process. The iteration process does not require the inverse solution of the integral
boundary layer equations and the added coupling term is very simple. The advantage
is the great simplicity with which the coupling can be formulated, the downside is the

large number of iterations needed for convergence (order 100).

The quasi-simultaneous and simultaneous methods should be more suitable to solve
strongly coupled problems than the inverse and semi-inverse since the coupling is in-

tegral part of the solution procedure, the former methods are called strongly coupled
schemes and the latter weakly coupled schemes, see Milewski[94] in reference to Lock
and Williams. An approach could be to use the direct method for the attached region

and one of the other coupling methods for the separated region, this has merit because
of the simplicity of the direct method compared to the other coupling methods. The
downside is the requirement that separation has to be monitored, however it is reason-

able to assume that separation is also monitored for other purposes. This approach is
a necessity if the (semi-)inverse method is applied. The (quasi-)simultaneous methods
can be run for both attached and separated flows and thus warrants the option to apply

the coupling methods for both the attached and the separated flow.

The methods above assume that the coupling is achieved through the displacement

thickness δ∗, as is done in for instance MSES and MISES, another approach could be
a coupling through the surface transpiration as is done in e.g. XFOIL and by Hall et
al[58]. Using a transpiration velocity is beneficial compared to the displacement thick-

ness in that no grid adaptation is required, the normal outflow boundary condition at
the wall is simply adapted, see Jameson et al[69].

3.8 Conclusion

A wide variety of closure models and approximations have been discussed. This serves
as the stepping stone to the implementation of several combinations of models to deter-
mine the models of choice for the present thesis, this will be done in part II. Once the

global solution method has been chosen the numerical methods (FEM,FVM,FDM) are
discussed in more detail and specific choices are made, such as the order of discretisa-
tion and the choice between implicit and explicit, grid type, stability etc.

Finally in part III the chosen selection(s) of models will be applied to several test cases
using the FEM, FVM and FDM implementations.



Part II

Selection of Models and Application of

Theory
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Chapter 4

Description of Integral Boundary Layer

methods

Given the IBL equations and the closure models the integral variables can be approxi-
mated numerically. Before the numerical procedures are discussed the previously dis-

cussed closure models are considered in actual solution procedures. Several combina-
tions of closure relation have been used to solve for the integral boundary layer equa-
tions, some of these methods will be discussed in this section. Starting with the steady

Von Kármán equation (2.21) the general solution procedure is discussed together with
any implementation issues that may arise, the complexity is increased up to unsteady
flow with turbulence and detachment, this incremental approach will help put the pre-

vious theory in context and it will serve as the rationale for using the final combination
of IBL equations and closure models. The models that will be used are presented at the
end of this chapter.

4.1 Steady Flows

The absence of time-dependency significantly simplifies the solution procedure and
many writers have simply assumed their usage to be valid through quasi-steady bound-

ary layer behavior. Even flutter cases have been approached by using the steady formu-
lations for the boundary layer (e.g. Zhang[160] or Sekar[120]). In appendix (I.1) some
of the steady IBL methods will be elaborated which will subsequently be tested using a

Finite Difference Method (FDM) with a fourth order Runge-Kutta integration in space.
The steady methods are written in Matlab, especially the methods using guessed veloc-
ity profiles rely heavily on the symbolic math toolbox which is not available in Fortran.

The tested steady methods are

• Von Kármán equation with Pohlhausen guessed velocity profile,

• Von Kármán equation with higher order guessed velocity profiles,

• Von Kármán equation with Timman velocity profile,

• Von Kármán equation with Wieghardt velocity profile,

• Thwaites’ integral method,

• Von Kármán equation, kinetic energy integral equation and Drela’s closure rela-
tions.

These steady methods were applied to the following cases

41
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• Von Kármánue = xm with several values for m, from retarded flow m < 0 to strongly

accelerating flow m > 1,

• Von Kármán several velocity distributions with steady separation.

The most important result of those test cases involves the boundary condition, this is
discussed in the next section, for more details above the steady test cases see appendix

(I.2).

4.1.1 Results of Steady Test Cases

More boundary conditions for the guessed velocity profiles is not necessarily a recipe
for a more accurate solution. The boundary conditions should not be concentrated

on either the edge or the wall, and the order of the velocity profile polynomials is not
unlimited due to oscillatory behavior. More advanced guessed velocity profiles such as
the profiles due to Wieghardt and Timman do not have much merit over much simpler

lower order polynomial guessed velocity profiles and are more difficult to implement.

The use of the boundary layer thickness δ should be done with caution as the value is

very sensitive to the definition, i.e. δ will vary strongly if uδ
ue

is changed slightly.

As for the boundary conditions the following recommendations are made;

• as a generic initialisation for the laminar boundary layer it is recommended to use

Thwaites integral (equation (I.22)),

• for stagnation flow it is recommended to use the values by Nishida (equation (I.27)),

Milewsi (equation (I.28)) for laminar flow and Coenen (equation (I.29)) for turbulent
flow,

• for non-stagnation flow it is recommened to use flat plate solution e.g. the Blasius

solution for laminar flow (equation (I.20)), 1/7th power law profile for turbulent flow
(equation (E.25)).

Grid refinement is recommended near the stagnation point to suppress influence of the
initial wiggle and to improve the initial value obtained with Thwaites’ integral.

4.2 Unsteady Flows

Both the method due to Drela and the method using Head’s entrainment equation have
H and θ as primary variables. If δ∗ = θH is used for the unsteady Von Kármán equation

together with the steady closure relations an extension to unsteady boundary layers is
straightforward for Head’s method since no new unknown is added. For Drela’s method
the energy integral needs to be rewritten to obtain the time dependent shape factor H∗.

The system of ordinary differential equations for the steady case is now replaced by one
or two partial differential equations which can be solved numerically.
The unsteady formulation due to Hayasi is based on a similar shape factor formulation

as the method due to Drela, however Hayasi used a guessed polynomial velocity profile
to close the system.
If the guessed velocity profiles using polynomials are extended to the unsteady case two

IBL equations are needed to solve for the primary variables Cf and δ, see appendix D.
Alternatively if Cf is closed directly through one of the empirical models discussed ear-
lier the primary variables are θ and δ or H and δ.
Finally the method due to Matsushita will be considered, Matsushita uses two and three
IBL equations in combination with closure relations via similarity or semi-similarity so-
lutions. Matsushita produces a system of equations which is hyperbolic in nature.

It must be said that using an unsteady model for the turbulent boundary layer might
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not be a significant improvement over using a steady model since as already mentioned

Howlett[67] and Zhang[160] successfully applied a steady turbulent approach to a cou-
pled unsteady boundary layer problem. Cousteix and Houdeville did extensive research
on turbulent BL’s over oscillating flat plates and found that the time-mean flow is not

affected by a forced oscillation of the external flow, however they also state that even at
low reduced frequencies the response of the boundary layer is not quasi-steady and that
unsteady effects are present near the wall. They state that a quasi-steady closure rela-
tion for the skin friction can be used for reduced frequencies ωx

ue
lower than 5. Different

from the steady methods the unsteady methods will be programmed in Fortran.

4.2.1 Unsteady Von Kármán Equation, Kinetic Energy Integral and Unsteady Lag

Entrainment Equation

Starting from the unsteady Von Kármán equation and energy integral equation

1

2
Cf =

1

u2
e

(

ueH
∂θ

∂t
+ ueθ

∂H

∂t
+ θH

∂ue
∂t

)

+
∂θ

∂x
+

θ

ue
(2 +H)

∂ue
∂x

,

CD =
1

ue

∂θ

∂t
+

1

ue

∂δ∗

∂t
+ 2

θ

u2
e

∂ue
∂t

+
3δk

ue

∂ue
∂x

+
∂δk

∂x
,

(4.1)

now dividing the unsteady Von Kármán equation and the energy integral equation by the

momentum thickness θ and the energy thickness δk respectively and subsequently sub-
tracting the resulting momentum integral from the resulting energy integral equation
results in

CD
H∗θ

− 1

2

Cf
θ

= (1 −H)
1

ue

∂ue
∂x

+
1

H∗
∂H∗

∂x
+ 2

1
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e
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ueθ
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− 1
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− H
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e

∂ue
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+
1

ueH∗θ

∂θ

∂t
+

1

ueH∗θ

(

H
∂θ

∂t
+ θ

∂H

∂t

)

. (4.2)

where

1

H∗
∂H∗

∂x
=

1

δk
∂δk

∂x
− 1

θ

∂θ

∂x
, H∗θ = δk, Hθ = δ∗.

For the steady case this results in a differential equation with only the shape factors as

primary variables, for the unsteady case this is obviously not the case. Making use of
the closure relations for H∗, the energy integral equation can be written as

CD =
1

ue
(1 +H)

∂θ

∂t
+

θ

ue

∂H

∂t
+H∗ ∂θ

∂x
+ θ

∂H∗
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∂H
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+ 2

θ
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e
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+ 3
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∂ue
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. (4.3)

Equation (4.2) or (4.3) together with the unsteady Von Kármán equation form a system
of partial differential equations.

Ft +KFx = L,

K = A−1B,

L = A−1C.
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Using (4.2) the coefficient matrices are as follows

F =

(

θ
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,

A =
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H
ue
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− H
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,
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where K and L are found as
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Using the closure relation from Drela for the laminar boundary layer gives for 1
H∗

dH∗

dH

1

H∗
dH∗

dH
=

1

1.515 + α (H−4)2

H

[

α2
H − 4

H
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,

α =

{

0.076, H < 4,
0.040, H > 4.

The eigenvalues and eigenvectors are found as
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where the root term G is given by

G = H2

(
∂H∗

∂H

)2

+ 2H
∂H∗

∂H
− 2HH∗ ∂H

∗

∂H
+ 1 − 2H∗ +H∗2

+ 4
∂H∗

∂H
.

The eigenvalue is dependent on H,H∗ and dH∗

dH
, this reduces to H using the laminar

closure relations for H∗ and given the fact that dH∗

dH
is directly dependent on H. Using

the turbulent closure relations from Drela this would result in H and θ. For the laminar

closure G is unconditionally positive, the eigenvalues are plotted using the laminar
closure relations by Drela and an external velocity ue of 100[m

s
], see figure 4.1. The

smallest eigenvalue is smaller than zero for H > 4, this corresponds to Cf = 0 with the

given closure relations (see Drela[35], also see Cousteix and Houdeville[29]).
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Figure 4.1: eigenvalues for Drela’s system, with laminar closure using ue = 100

Hyperbolicity

The hyperbolicity of the system of equations (2.27) is determined by considering the
coefficient matrix K = A−1B, the system is hyperbolic if (see Wesseling[153])

(nB − λA)F = 0 ⇒ |K − λ| = 0,

leads to a full set of linearly independent eigenvectors with real valued eigenvalues.
Indeed it is found that there is full set of distinct and real eigenvalues for the coefficient
matrix K, this helps to determine the numerical approximation method, see chapter (5).

As was said Drela also formulated closure relations for turbulent boundary layers, in
fact, Drela formulated two different turbulent closure relations for the dissipation coeffi-

cient. One assumes an equilibrium turbulent BL and the other forfeits this assumption
and requires the lag entrainment equation to close the system. The equilibrium turbu-
lent boundary layer closure relations require an adaptation of the coefficient matrix B
since it contains the derivative 1
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∂H
. Writing out 1
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,

where

H0 = 3 +
400

Reθ
.

If the system is closed using the non-equilibrium closure relations and the lag entrain-
ment equation the coefficient matrices give a singular matrix for K since A−1B contains

a zero division. The steady lag entrainment equation is uncoupled from the system and
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can thus be taken out of the system to be solved in parallel. However since the steady

lag entrainment equation is in principle not suitable for the unsteady problem, an un-
steady lag entrainment equation is used, see equation (3.12). Using the unsteady lag
entrainment equation the coefficient matrices become
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where an extra eigenvalue and eigenvector is produced compared to the equilibrium
turbulent closure, namely

λ3 = us ue, ξ3 =


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The coefficient matrix K and the coefficient vector L are expanded with
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The non-conservative system is now given by
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(4.4)

The eigenvalues are plotted in figures (4.2), (4.3) and (4.4), ue was again set at 100 [m
s

]

and the kinematic viscosity ν was set at 2· 10−4 [ kg
ms

], finally the Reynolds number Reθ is

taken as [100, 5000], for Reθ < 100 the eigenvalues show erratic behavior1. It can be seen

1From the Falkner-Skan solutions it seems Reθ is normally well above 100 within 10% of the plate length
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that λ− becomes negative for relatively low values of the shape factor H, for decreasing
values of the shape factor, λ− stays positive for increasing values of Reθ, until it becomes
invariably positive at H ≈ 1.3. The third eigenvalue λ3 becomes negative for H > 4 which

means that the slip velocity becomes negative. It must be said that in the original paper
by Green et al[56] it is questioned whether the validity of the lag entrainment closure
holds for H > 2.5, this is related to the range of data considered to relate H1 and H.

The steady lag entrainment equation is also suitable for turbulent wakes (see Green,
Weeks and Brooman[56]) and mild separation (see Drela[35]). For suitability in predict-

ing wake flow, the friction coefficient is set to zero and it is assumed that the dissipation
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Figure 4.4: Contourplot of eigenvalue λ3
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Figure 4.5: Comparison of eigenvalues for laminar and turbulent boundary layer flow, the solid
lines represent the turbulent eigenvalues for different values of Reθ

length scale is doubled (see Green[57]). The latter assumption is based on the presump-
tion that the wake consists of two symmetric parts, one from the upper boundary layer

and one from the lower BL. In case the boundary layer thicknesses of the upper and
lower boundary layer flows are vastly different this assumption breaks down. The con-
stant Kc in the lag entrainment equation is affected by this change of the dissipation

length scale and it is adviced that the best value is determined on a case by case basis.
Given some laminar to turbulent transition criterium the entire boundary layer is de-
scribed including the wake since, following Drela, a laminar wake is unlikely to survive

very long since it will be very sensitive to disturbances. More importantly, the transition
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point will most likely occur far ahead of the trailing edge, and in fact it is not uncom-

mon to assume a fully turbulent boundary layer as has been mentioned earlier (see i.e.
Vermeer et al[147]).
The next methods to be discussed use the entrainment equation and the lag entrain-

ment equation and form a dedicated method for turbulent boundary layers.

4.2.2 Unsteady Entrainment Method

Using the formulation for the steady Head’s entrainment method using the closure from

Cebeci and Bradshaw in combination with the unsteady Von Kármán equation results
in
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,

H1 =

{

0.8234(H − 1.1)−1.287 + 3.3, H < 1.6,
1.5501(H − 0.6778)−3.064 + 3.3, H ≥ 1.6.

The above system of ordinary differential equations cannot be solved numerically. It

requires the first two timesteps to be known since the time derivatives do not follow
directly from the other derivatives, a direct result from the fact that the entrainment
equation is steady. It is not possible to solve directly even if two timesteps are initialised

since the individual time derivatives cannot be solved for using the solution values after
the initialisation. So Head’s method may seem easily extended to unsteady flow, the
entrainment equation itself has not been altered which leads to an unsuitable problem

formulation. Adding the time-dependent version of the Head’s equation will produce a
solvable system as will be explained later. Mughal and Nishida use the shear stress lag
equation due to Drela, this however requires the use of the energy integral equation.

In case the three equation approach due to Matsushita et al is used this method has
the advantage that the only change is the replacement of moment-of-moment equation
by the simplified shear stress lag equation. It must be noted that the steady lag en-

trainment equation has been used successfully for the application of an viscid-inviscid
solver to unsteady boundary layer flow with separation, see i.e. Zhang and Liu[160]
or Howlett[67] and more importantly the unsteady lag entrainment equation has been

successfully applied by Hall et al [58].

Applying the unsteady variant of Head’s method the entrainment equation is written

as

1

ue

∂ (ueθH1)

∂x
− 1

ue

∂ (θH1 + δ∗)

∂t
= 0.0306 (H1 − 3)−0.6169 ,

isolating the differential terms for H and t gives

− θ

ue
(1 +

dH1

dH
)
∂H

∂t
− H +H1

ue

∂θ

∂t
+H1

∂θ

∂x
+ θ

dH1

dH

∂H

∂x
= 0.0306 (H1 − 3)−0.6169 − H1θ

ue

∂ue
∂x

,

with the same relations for H1 and dH1
dH

as in the steady case. Care must be taken here
since the original closure is based on steady turbulent flow. The system of equations

is now formed by the unsteady Von Kármán equation and the unsteady entrainment
equation

Ft +KFx = L,

K = A−1B,

L = A−1C,
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with

F =

(

θ
H

)

, A =

(
H
ue

θ
ue

−H+H1
θ

− θ
ue

(1 + dH1
dH

)

)

, B =

(

1 0

H1 θ dH1
dH

)

,

C =

(

− θH
u2

e

∂ue

∂t
− θ 2+H

ue

∂ue

∂x
+ 1

2
Cf

0.0306 (H1 − 3)−0.6169 − H1θ
ue

∂ue

∂x

)

.

The procedure is started using initial values for H and θ, these follow from the preceding
laminar boundary layer flow solution.
The matrices K and L are found as

K =
1

−θH − θH dH1
dH

+ ueH + ueH1

(

−θue(1 + dH1
dH

+ dH1
dH

) −θ2 dH1
dH

ue
ue

θ
(ueH +HH1θ + ueH1) Hθ dH1

dH
ue

)

,

L(1) =
θue(1 + dH1

dH
)

Hθ +Hθ dH1
dH

− ueH − ueH1

(

−θH
u2
e

− θ(2 +H)

ue

due
dx

+
1

2
Cf

)

+
θue

(

0.0306(H1 − 3)0.6169 −H1θ/ue
due

dx

)

Hθ +Hθ dH1
dH

− ueH − ueH1

,

L(2) = − (H +H1)u
2
e

θ
(

Hθ +Hθ dH1
dH

− ueH − ueH1

)

(

−θH
u2
e

− θ(2 +H)

ue

due
dx

+
1

2
Cf

)

−
Hue

(

0.0306(H1 − 3)0.6169 −H1θ/ue
due

dx

)

Hθ +Hθ dH1
dH

− ueH − ueH1

.

With the eigenvalues and eigenvectors given by

λ± = −ue
Hθ dH1

dH
− θ − θ dH1

dH
−H1θ ±

√
G

2
(

Hθ +Hθ dH1
dH

− ueH − ueH1

) ,

ξ± =




1

1

2θ2
dH1
dH

ue

[

−A
B
ueHθ − A

B
ueHθ

dH1
dH

+ A
B
u2
eH + A

B
u2
eH1 − ueθ − ueθ

dH1
dH

− ueH1θ
]



 ,

with

G = H2θ2
dH1

dH

2

+ 2Hθ2
dH1

dH
+ 2Hθ2

dH1

dH

2

− 2Hθ2
dH1

dH
H1 + θ2 + 2θ2

dH1

dH
+

2H1θ
2 + θ2

dH1

dH

2

+ 2θ2
dH1

dH
H1 +H2

1θ
2 − 4Hθ

dH1

dH
ue− 4θ

dH1

dH
ueH1,

A = Hθ
dH1

dH
− θ − θ

dH1

dH
−H1θ ±

√
G,

B = Hθ +Hθ
dH1

dH
− ueH − ueH1.

Cousteix and Houdeville[29] found that the system with the unsteady entrainment equa-

tion leads to a set of distinct and real eigenvalues and eigenvectors for the coefficient
matrix K. Cousteix and Houdeville used a simplified relationship for H1

H1 =
0.631H2 +H

H − 1
.
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Figure 4.6: Eigenvalues for unsteady Head’s entrainment and the Von Kármán equation with
Drela’s closure for H1 for several values of Reθ

Next the unsteady lag entrainment equation is considered. The unsteady lag entrain-
ment equation is used together with the momentum integral equation and the unsteady

entrainment equation

1

2
Cf =

1

u2
e

(

ueH
∂θ

∂t
+ ueθ

∂H

∂t
+ θH

∂ue
∂t

)

+
∂θ

∂x
+

θ

ue
(2 +H)

∂ue
∂x

,

0.0306 (H1 − 3)−0.6169 = − θ

ue
(1 +

dH1

dH
)
∂H

∂t
− H +H1

ue

∂θ

∂t
+H1

∂θ

∂x
+ θ

dH1

dH

∂H

∂x
+
H1θ

ue

∂ue
∂x

,

Kc

(√

Cτ,eq −
√
Cτ
)

= 2
δ

ue

(
1

ueUmax,s

∂ue
∂t

+
∂ue
∂x

)

+
δ

ueCτUmax,s

∂Cτ
∂t

+
δ

Cτ

∂Cτ
∂x

−
(

2
δ

ue

∂ue
∂x

)

EQ

,

where Cf ,Cτ,eq and H1 are closed using the turbulent closure relations suggested by
Drela in his PhD thesis[35], also see sections (2) and (4.2.1). The boundary layer thick-

ness δ is then closed using the definition for H1

δ = (H1 +H) θ,

the measure for diffusion is given by

(

2
δ

ue

∂ue
∂x

)

EQ

= 2 (H1 +H)

[

Cf
2

−
(
H − 1

αH

)2
]

1

Hβ
,

Green,Weeks and Brooman[56]: α = 6.432, β = 0.8,

and without the entrainment factor

(

2
δ

ue

∂ue
∂x

)

EQ

= 2

[

Cf
2

−
(
H − 1

αH

)2
]

1

β
,

Drela[35]: α = 6.7, β = 0.75.

Note that the diffusion term does not incorporate the time-derivative. From the paper

by Green et al[56] it can be seen that this equivalent diffusion term is based on the
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advection term ue
∂ue

∂x
. In the unsteady case this would become ∂ue

∂t
+ ue

∂ue

∂x
which gives

for the equivalent diffusion term
(

2
δ

ue

[
1

ue

∂ue
∂t

+
∂ue
∂x

])

EQ

.

The unsteady lag entrainment equation is implemented in the same manner as de-
scribed in section (4.2.1). Again an extra eigenvalue and eigenvector is produced com-

pared to the equilibrium turbulent closure, namely

λ3 = us ue, ξ3 =






0
0
1




 .

For the laminar case the shear lag is identically zero and the unsteady laminar method

described in section 4.2.1 can be used. Use Green’s equations for the turbulent wake
flow with zero wall friction Cf , also see Yoshihara[148], Green[57]. Green suggests to
use a different definition for the entrainment coefficient in the wake, namely

Fwake = β 0.435(H − 1)0.907 + (1 − β)0.0306 (H1 − 3)−0.6169 ,

where

β = 1 − exp
xte − x

5δte
.

The unsteady variants of Head’s entrainment method and Green’s shear stress lag equa-
tion employ empirical relations based on steady flow, or more specifically steady external
flow. As has been mentioned earlier, for unsteady turbulent boundary layer flows there

are few empirical models and for the integral boundary layer none was found. This sug-
gests that the validity is limited to gradually changing boundary layer flows. Howlett[67]
however found that Green’s steady lag entrainment equations coupled to a transonic

small disturbance potential equation give a good approximation of the viscous effects of
an oscillating aileron up to as far 20 Hz at high subsonic velocity (κ = 0.137). Hall[58]
had good results using the lag entrainment equation for a pitching motion around the

mean chord with a reduced frequency of κ = 0.85, where the amplitude is 2◦. Using
κ = ωc

u∞
for the reduced frequency and a chord of one meter the frequency is ω = κu∞.

4.2.3 Unsteady Integral Method by Hayasi using Guessed Velocity Profiles

Hayasi devised a one-parameter integral method which uses a guessed velocity profile
to close the integral equations. The strength of this approach comes from the fact that

it is relatively general in nature given a suitable velocity profile, the main limitations are
the relative complexity of the formulation of the integral variables and the dependency
on δ.

The solution procedure suggested by Hayasi is as follows; first (shape) factors are intro-

duced

H =
δ∗

θ
,H∗ =

δk

θ
, (4.5)

P = 2
θ

ue

∂u

∂y

∣
∣
∣
∣
y=0

, Q = 4
δk

u2
e

∫ δ

0

(
∂u

∂y

)2

dy, Z =
θ2

ν
. (4.6)

Following Schuh, a one parameter (to be called γ) velocity profile is assumed, all the
shape factors are now a function of this shape factor. In Schuh’s original method the
Von Kármán equation is rewritten to

H
∂Z

∂t
+ ue

∂Z

∂x
+ 2

[
H

ue

∂ue
∂t

+ (2 +H)
∂ue
∂x

+
∂H

∂t

]

Z = P,
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and the energy equation

(H + 1)
∂Z

∂t
+ UH∗ ∂Z

∂x
+ 2

[
2

ue

∂ue
∂t

+ 3H∗ ∂ue
∂x

+
∂H

∂t
+ ue

∂H∗

∂x

]

Z =
Q

H∗ .

Since the shape factors are definite functions of the profile parameter γ, Z can be written
as a function of γ. Using either the momentum integral equation or the energy integral
equation γ can be retrieved by applying the following expression for Λ

Λ = Z

(
∂ue
∂x

+
1

ue

∂ue
∂t

)

= −νZ
ue

(

∂2u

∂y2

)

y=0

Once γ is known, the shape factors and integral variables follow from the velocity profile.
Hayasi transformed the momentum and energy integral equations directly using the fact
that Z = f(γ) and for the flat plate of the present case R = 1

r
∂r
∂x

≈ 0,

H
∂Z

∂t
+ ue

∂Z

∂x
+ 2Z

dH

dγ

∂γ

∂t
= P − 2

[
H

ue

∂ue
∂t

+ (2 +H)
∂ue
∂x

]

Z,

(H + 1)
∂Z

∂t
+ ueH

∗ ∂Z

∂x
+ 2Z

dH

dγ

∂γ

∂t
+ 2ueZ

dH∗

dγ

∂γ

∂x
=

Q

H∗ − 2

[
2

ue

∂ue
∂t

+ 3H∗ ∂ue
∂x

]

Z.

(4.7)

Given a chosen velocity profile the above system of ordinary differential equations can be
solved to obtain Z and γ. Before Hayasi can be applied h, h∗, p and Q must be described

by a single parameter velocity profile where γ is the parameter, one profile supposedly
suitable for retarded flows is due to Tani (see i.e. Hayasi [61], Tani [132]), restating
Tani’s profile

u

ue
= f =

(

6 − 8η + 3η2
)

η2 + γη(1 − η)3. (4.8)

Tani’s profile adheres to the following boundary conditions

f(0) = 0, f(1) = 1,
∂f

∂η
=
∂2f

∂η2
= 0,

which means that the velocity profile is independent from the instantaneous velocity
distribution at the edge. Alternatives to Tani’s profile can be easily found and compared

using symbolic mathematical tools, one simply assumes an nth degree polynomial with
n− 1 boundary conditions, the profile parameter is then equal to the floating coefficient.
Continuing with Tani’s profile the shape factors and integral variables can be written as

a function of γ explicitly (also see Tani[132])

δ∗ = − 1

20
δγ +

2

5
δ,

θ = − 1

252
δγ2 +

1

105
δγ +

4

35
δ,

δk = − 1

2860
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5460
δγ2 +
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5005
δγ +
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5005
δ,

H = 63
−8 + γ

−12γ − 144 + 5γ2
,

H∗ =
3
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−876γ − 10512 + 21γ3 + 253γ2

−12γ − 144 + 5γ2
,

P = 2
θ

δ
γ,

Q = − 3

25025
ueγ5 − 9

7007
ueγ4 +

376

75075
ueγ3 +

5296

175175
ueγ2 +

168192

175175
ue.

(4.9)

Given Z and γ the boundary layer thickness can be found with the relation for the
momentum thickness θ

δ =

√
Z
ν

− 1
252

γ2 + 1
105

γ + 4
35

.
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Hayasi did not construct a solution method for the general formulation stated above,
instead he simplified the differential equations for specific test problems. The general

system of non-linear partial differential equations can be written as

Ft +KFx = LF,

K = A−1B,

L = A−1C.

(4.10)

with

F =
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K and L are found as
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The above formulation is still generic since it is independent of the velocity profile. Using
Tani’s velocity profile and freezing the right-hand-side of equation (4.10) the eigenvalues

and eigenvectors for K are determined, it has a full set set of eigenvalues and eigenvec-
tors. The eigenvalues λ1,2 and the accompanying eigenvectors ξ1,2 are given by

λ1,2 =
1

2∂H
∂γ

[

H∗ ∂H

∂γ
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∗
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,

where the root is given by

G = H∗2
(
∂H

∂γ

)2

− 2H∗ ∂H

∂γ

∂H∗

∂γ
H − 2H∗

(
∂H
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(
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H
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+ 4
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∂H∗

∂γ
.

The root in the eigenvalues and eigenvectors has 4 variables, which can be reduced
to a single variable γ using the expressions derived earlier for the profile by Tani (see

equation (4.9)). The root is written as a quotient where the nominator has two roots
meaning there are two poles. The lowest value for γ in the steady case is zero which
translates to zero wall friction and the occurrence of separation, in the unsteady case

zero wall friction does not necessarily mean separation so the lower value of γ is set
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below zero. The considered range of γ is [−1, 5], where the upper limit is taken from

Tani[132], where it must be noted that there is a pole at γ = 6.7. The eigenvalues and
eigenvectors are discontinuous at γ = 4 since both ∂H

∂γ
and ∂H∗

∂γ
are zero valued, see

figure (4.7). For γ > 4 the root is non-unique, there are two values for γ which produce
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Figure 4.7: Root term in eigenvalues and eigenvectors

the same shape factor relations, subsequently γ is limited to [−1, 4]. For this range of γ
the eigenvalues are continuous and the eigenvalues are real valued, see figure (4.8).
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Figure 4.8: Eigenvalues of Hayasi’s system using Tani’s velocity profile

Unconditionally real eigenvalues with linearly independent eigenvectors give a system
of equations which is unconditionally hyperbolic. The general approach to solve hyper-

bolic systems will be discussed in section (5.1).
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Hayasi’s method can be seen as an improvement of the method due to Schuh (see
Hayasi[61]), giving better results for retarded flows. Tani subsequently employed a two-
equation model without the application of a velocity profile, instead Tani found shape

factor relations using the Falkner-Skan velocity profile. This work was continued by
Matsushita, Murata and Akamatsu resulting in a two and three equation two parameter
integral method. Before these methods can be applied the shape factor relations have to
be found for different solution families, see section 3.1.3. Strictly the similarity or semi-

similarity solutions for the boundary layer equations are only applicable for specific
types of velocity distributions which may in fact be far off from the actual flow problem.
Therefore it makes sense to apply problem specific velocity distributions, either result-

ing from the solution procedure or resulting from actual measurements. As was said
earlier throughout literature it is assumed implicitly that steady laminar boundary layer
profiles are very close to the Falkner-Skan similarity solutions.

The minimum value for H is 2.25 which limits it to equivalent linearly accelerating flows
(ue = c x), a maximum shapefactor of 4.5 is in line with the focus of this method , namely

retarded flows. However it does necessitate the use of a 2nd velocity profile for strongly
accelerating flows, Hayasi uses the Hartree profile for this purpose (see Hayasi[61]).
In case of turbulence the original system is only useful if a suitable turbulence veloc-

ity profile is found which contains the parameter γ, this is not directly available from
literature.

4.2.4 Two and Three Equation Model by Matsushita et al

Schuh applied unsteady Pohlhausen to a general class of unsteady boundary layers
using only one IBL equation, failing for strong adverse pressure gradients, his method

was improved by Tani[132] who applied 2 IBL equations and a different quartic velocity
profile. Building on the work of Tani in 1984 Matsushita et al[91] developed a 2 param-
eter integral method for the unsteady laminar boundary layers which can handle flow

seperation.

Starting with the dimensional form of the three IBL equations (2.21), (2.24) and (2.25)
Matsushita et al construct a system of equations. First the shape parameters are defined

E =
θ

δ∗
, F =

δk

δ∗
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δk+

δ∗
,

B =
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µue
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e

D

τ
, Q =
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e

∫ ∞

0

u

(
∂u

∂y

)2

dy,

which are substituted in the IBL equations, the resulting system is

wt + fx = z,
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


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
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
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∗
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∗




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



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∂ue
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− (E + 1)δ∗ ∂ue
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S
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∂ue
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− 2Fδ∗ ∂ue

∂x

3Q
δ∗

+ 3(E−F )δ1
ue

∂ue

∂t
+ 3(E −G)δ∗ ∂ue

∂x









.

(4.11)

With the displacement thickness δ∗, the inverse shape factor E and the energy shape
factor F as the unknowns. Matsushita considers the laminar boundary layer flow over
a cylinder and assumes two regions, a laminar region (attached/detached) over the

cylinder and the trailing edge flow aft of the the rear stagnation point. The laminar flow
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over the cylinder is approximated using the Falkner-Skan[48] equation with a slipping

wall boundary condition uw 6= 0, see equation (C.1). The trailing edge flow is assumed
to be semi-similar (2 similarity parameters) which is approximated by a method due to
Williams[157]. As pointed out by Drela, the assumption of a laminar wake is not very

realistic, any wake is most likely turbulent in nature (see Drela[35]).
Matsushita solves equation (4.11) using a first order upwind scheme for the attached
region and a central Lax scheme for the separated region. The quasi-linear system is
given by

wt +Awx = z
′

, z
′

= z −






Eδ∗ ∂ue

∂x

Fδ∗ ∂ue

∂x

Gδ∗ ∂ue

∂x




 ,

A = ue






−1 1 0
−1 0 1

G− (E + 1) ∂G
∂E

− (F + 1) ∂G
∂F

∂G
∂E

∂G
∂F




 .

This system has distinct real roots and thus it is hyperbolic, subsequently this sys-

tem can be solved using a Riemann-like solver, Matsushita and Akamatsu[90] use the
Steger-Warming Flux Vector Splitting scheme (see sections (5.1.1) and (6.1.1)). For
H = 3.5 the wall shear stress vanishes and for H > 3.5 a reversed flow starts to develop

(see Matsushita and Akamatsu [90]). This confirms the correct implementation of the
method by Hayasi which has negative eigenvalues for H > 3.5.

Summarising, Matsushita et al use three momentum integrals, the earlier derived IBL
equations, together with functional relations based on two shape parameters E and
F and the displacement thickness δ∗. Matsushita et al assume a self-similar laminar
boundary layer flow which is approximated using the Falkner-Skan equation with slip-

ping wall. Matsushita et al approximate the wake profile with a semi-similar solution
due to Williams.

Some time later Matsushita and Akamatsu use a two equation and one parameter model
and multiple (semi-)similarity solutions to determine shape factor relations; Falkner-
Skan for accelerating flow[60], Tani[132] for decelerating low and Proudman and John-

son[111] for the rear stagnation flow, and as was already mentioned they employ the
Steger-Warming Riemann solver for the solution procedure. The solution method due to
Matsushita and Akamatsu also allows separation. Which may be attributed to the fact

that the inverse shape factor E is used which gives that near separation E goes through
zero where otherwise the shape factor H would go to infinity. Note that starting from the
original formulation by Matsushita et al the solution method is generic, the subsequent

choice of the closure relations confines the range of applicability in this case. Most in-
teresting is the assertion that this method can handle separated flows which avoids the
need to use an (semi-)inverse solution procedure and may possibly lower the amount

of iterations needed for the quasi-simultaneous method. However since the separation
can be identified from the convergence of characteristics one is free to apply a coupled
method (inverse or with some interaction law). Also, Matsushita et al use specific simi-

larity solutions which are suitable for (nearly) separated flow and with that give closure
for large values of the shape factors which is not the case for say Drela’s closure.
For the converging characteristics Matsushita and Akamatsu found that together with

the singularity in the integral variables the wall friction becomes zero for the steady
boundary layer flow. A similar result was also found by Cousteix and Houdeville[29].

As was said the solution method is generic and thus empirical closure relations for
turbulent boundary layers can be used to relate H,F and δ∗ to the other shape factors

and integral variables, the shape factor G requires the use of a velocity profile of the
turbulent boundary layer like Coles law of the wake (see section (3.3)). To close the
shape factors other approximate methods can be used, for instance the earlier discussed

methods due to Drela,Head’s and Green. For this thesis the system of Matsushita will
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be used together with closure relations from Drela. The closure relations for Ck and H∗∗

can be obtained from the Falkner-Skan equation for the laminar profile, the turbulent
profile is more difficult to close. For practical purposes another approximative method
may be employed which does not require Ck and H∗∗, then using one of the turbulent

velocity profiles in section (3.3.1) Ck and H∗∗ can be retrieved. Alternatively Swafford’s
turbulent velocity profile can be used to together with a definition for Cf and the integral
definitions for δk+ and θ, this can be solved implicitly (see i.e. Drela[35]). The laminar
closure relations are obtained by solving the Falkner-skan equation using the shooting

method, also see figure (4.9)

H∗∗ = −0.049H3 + 0.57H2 − 2.2H + 4.7

CkReθ
H

= 96H∗3 − 450H∗2

+ 700H∗ − 360

From the paper by Matsushita and Akamatsu correlations can be extracted which
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Figure 4.9: Falkner-Skan correlations

are suitable for separating flow through the earlier mentioned combination of Tani’s

data, Falkner-Skan’s similarity solution and Proudman and Johnsons semi-similarity
solution, see figure (4.10). The interpolation plots in figure (4.10) are given by

B :







Bleft = −225.86E3 − 3016.6E2 − 208.68E − 17.915 , E < −0.0616

Bmiddle =
Bleft+Bright

2
,−0.0616 < E < −0.0395

Bright = 131.9E3 − 167.32E2 + 76.642E − 11.068 , E > −0.0395

,

(4.12)

F = 4.8274E4 − 5.9816E3 + 4.0274E2 + 0.23247E + 0.15174, (4.13)

S :







Sleft = 451.55E3 + 2010E2 + 138.96E + 11.296 , E < −0.0582

Smiddle =
Sleft+Sright

2
,−0.0582 < E < −0.042

Sright = −96.739E3 + 117.74E2 − 46.432E + 6.8074 , E > −0.042

,

(4.14)

where

E =
1

H
, F =

H∗

H
, B = CfReδ∗ , S = CdReδ∗ .

The sets of third order interpolations are favored over single fifth or higher order in-
terpolations due to the computer accuracy. The third and fourth order of the inter-

polations may still give numbers which are not in range of the numerical accuracy for
very small values of E. The values are also added to the algorithm with tables, inter-
mediate values are extracted using interpolation. Especially near separation this will

most likely produce better results than the closure relations based on the Falkner-Skan
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Figure 4.10: Matsushita and Akamatsu’s closure correlations obtained for this Thesis

equations (without slip). The strength of Matsushita et al’s choice of parameters lies

in the fact that E can become negative continuously, which will occur for strong sep-
aration since the momentum thickness can become negative in a continuous fashion.
The weakness of e.g. Drela’s system is that the shape factor becomes negative in a dis-

continuous manner. In fact the shape factor becomes very large near separation as the
momentum thickness goes through zero and the displacement thickness becomes very
large(analytically δ∗ → ∞) , i.e. the sign of the shape factor changes discontinuously

whereas with E as a primary variable the change would be continuous from positive to
negative.
Concluding, the above correlation functions with E will likely produce better results

near separation than the Falkner-Skan derived closure relations as used by i.e. Drela.
However when the momentum thickness becomes negative the shape factor changes
abruptly from very large positive to very large negative. Separated flow to the extent

that the momentum thickness becomes negative would require the use of a coupled
solver or a different set of primary variables which can handle the change in sign con-
tinuously.

Together with the shape factor H also the kinetic shape factor H∗ switches sign from
large positive to large negative, starting from the equations (2.22),(2.23) and (2.25) a
system can be written which contains E and δ∗ as primary variables, note that θ = δ∗E

1

2
CfE =

1

u2
e

[

ue
∂ (δ∗E)

∂t
− ueδ

∗ ∂E

∂t
+ θ

∂ue
∂t

]

+E
∂ (δ∗E)

∂x
+

θ

ue
(2E + 1)

∂ue
∂x

,

CD =
1

ue

∂ (δ∗E)

∂t
+

1

ue

∂δ∗

∂t
+ 2

δ∗E

u2
e

∂ue
∂t

+
∂ (Fδ∗)

∂x
+ 3

Fδ∗

ue

∂ue
∂x

.
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For laminar boundary layer flow the above formulation should give results equal to

the results by Matsushita and Akamatsu, for turbulent boundary layer flow the typical
turbulent closure models used by i.e. Drela, Nishida and Milewski may be used with
the note that a negative shape factor is in general not within the range of application

for any empirical turbulence model (Oudheusden [142]). The downside of the above set
of equations is that a conservative formulation requires a division by 1

E
, the original

system from Matsushita does not have this issue.

Applying the closure relations provided by equations (4.12),(4.13) and (4.14) should

already be an improvement for laminar separated flow compared with the Falkner-Skan
closure relations which are typically used for laminar BL’s.

Assuming the two-equation system by Matsushita and Akamatsu is solved using a FVM

or FEM the Jacobian needs to be written out explicitly. For the laminar case this is
trivial, for the turbulent case the derivative ∂F

∂E
needs some elaboration. Given turbulent

closure relations which are most often written in terms of the Reynolds momentum

thickness Reθ and the shape factor H. Writing out the derivative in terms of the shape
factor and the kinetic shape factor gives

∂F

∂E
=
∂
(
H∗

H

)

∂
(

1
H

) ,

∂F

∂E
= −H2

∂
(
H∗

H

)

∂H
,

∂F

∂E
= −H∂H∗

∂H
+H∗,

which can be readily written out with the presented turbulent closure relations for H∗.

4.3 Unsteady Thwaites

An unsteady method was found in a paper by He and Denton[62] using Thwaites’ in-
tegral, the unsteady Von Kármán equation and the unsteady Thwaites parameter they
arrive at

∂(θ2u6
e)

∂x
=

[

0.45 − 2θ

νue

(

ue
∂δ∗

∂t
+ θ

∂ue
∂t

)]

νu5
e.

They use the correlations based on the steady Thwaites’ parameter i.e., quasi-unsteadiness
is assumed which automatically limits the method to low reduced frequencies. Unsteady

Thwaites’ will not be considered beyond this point simply because of the inherent quasi-
unsteadiness.

4.4 Laminar-to-Turbulence Transition

Using the Falkner-Skan profile family Drela[35] produced spatial amplification curve
envelopes. Drela gives the following solution procedure to determine the amplification

factor
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dñ

dx
=

dñ

dReθ

m+ 1

2

l

θ
, (4.15)

l =
6.54H − 14.07

H2
,

m =
1

l

(

0.058
(H − 4)2

H − 1
− 0.068

)

,

ñ =

∫ x

xcrit

dñ

dx
dx,

Drela[35]:
dñ

dReθ
= 0.01

√
(

2.4H − 3.7 + 2.5 tanh
[
1.5(H − 3.1)

])2

+ 0.25,

Drela and Giles:
dñ

dReθ
= 0.028 (H − 1) − 0.0345

exp

[

−
(

3.87
H−1

− 2.52
)2
] . (4.16)

The integration for ñ can take place when Reθ ≥ Reθ,crit, where the critical Reynolds

number Reθ,crit is given by equations (E.20), (E.21), (E.22) and (E.23). The transitional
Reynolds number can be determined in a variety of ways, most noteworthy is the cri-
terion by Michel, see equation (3.5). The first fulfilment of the critical or transitional

criteria based on equations (E.20), (E.21), (E.22), (E.23) and the criterion by Michel2 will
be used as the starting point for integrating the differential equation 4.15.

The transition criterion ranges between ñtr = 7 and ñtr = 11, commonly used is ñtr = 9.

In combination with the Falkner-Skan based transition method by Drela this leads to a
hybrid method, one combining free transition and bypass transition. It must be noted
that White[154] gives a different validity range namely 0.07% < Tu < 2.98%. The empir-

ical formulation indicates the obvious, for higher external turbulence levels transition
occurs sooner(at lower amplification levels). The differential equation defined above can
be solved together with the integral variables, once ñ reaches the transition criterion the
amplification differential is dropped from the solution procedure.

Once the transition criterion has been met, a certain transition boundary layer is in
effect. Drela uses the following averaging method for the integral variables

val = (1 − γtr)vallam + γtrvalturb,

where γtr follows from

γtr =
ñturb − ñtr

dñ
dx

1

xturb − xlam
,

where ñtr is the transition criterion. Drela assumed laminar to turbulent transition in
one step , in reality there will be a transition region. Drela set the shear stress coefficient
Cτ to be 0.7Cτ,eq at the transition point.

Stock and Haase compared several transitional length models and produced the followed
modified model (see Stock and Haase[127])

Re∆x = 4.6Re
3
2
δ∗tr
.

In reference to Chen and Thyson Johansen and Sørensen[70] used a different transition
region

γtr = 1 − exp





(

− u3
e

ν2Gγtr

)

Re−1.34
xtr

(x− xtr)

∫ x

xtr

1

ue
dx



,

where Johansen and Sørensen use an expression for Gγtr adapted by Cebeci(see Jo-

hansen and Sørensen[70])

Gγtr = 213
log (Rextr ) − 4.732

3
.

2Although admittedly the criterion from Michel is meant for the transition value of the momentum thickness
Reynolds number
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γtr will become one for large x, a prescribed transitional length may still be required

depending on the length of the profile. Lian and Shyy[82] suggest an intermittency
function for low-Reynolds number flow (Re∼ 105 − 106) which also incorporates the sep-
aration point.

Alternatively the intermittency factor γtr is based on the amplification factor directly;
two main options are considered

1. Starting from the critical Reynolds number, base the intermittency factor on the
current amplification factor in relation to the transition amplification number, this

is to be called pre-transition model

2. Starting from the transition point, base the intermittency factor on the current
amplification factor in relation to a reference amplification number , this is to be
called post-transition model

The pre-transition model has the requirement that γtr = 0 for ñ = 0, and γtr = 1 for
ñ ≥ ñtr. The post-transition model has the requirement that γtr = 0 for ñ = ñtr, and

γtr = 1 for ñ ≥ ñref where ñref is the value for the amplification factor at which the
entire boundary layer is assumed to be turbulent.
There are several ways to meet the above requirement using some continuous function,

for this thesis, roughly a convex and a concave function is constructed. The convex
function is formed by an exponential and the concave function by a polynomial of arbi-
trary degree, see equation (4.17) and figure (4.11).

exponential: γ =







exp
(

−1
cχ

)

exp(− 1
c )

pre-transition

exp

(

−1
cχ(χ−1)

)

exp

(

− 1
c(χref −1)

) post-transition
,

polynomial: γ =

{
1 − (1 − χ)c pre-transition

(χ−1)χc

(χref−1)χc
ref

post-transition
,

(4.17)

where

χ =

(
ñ

ñtr

)

, χref =

(
ñref
ñtr

)

.

It should be exemplified that the pre- and post-transition models of figure (4.11) are
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Figure 4.11: Intermittency function with χref = 2, post-transition model, (left) exponential, (right)
polynomial.

not based on actual empirical data other than the observation that there is a transi-

tion region. The transition amplification factor, the reference amplification factor and
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the shape constant c are settable by the user. The above treatment of the transition

assumes that the intermittency is only a spatial variable and thus it assumes that the
transition is an instantaneous event. Obviously this is not true, the turbulence tran-
sition may occur within a small time-scale it will still take time to propagate over the

profile, nevertheless, for this thesis it is assumed that the transition is instantaneous,
which is in line with using a steady transition method. The separation of the boundary
layer in a laminar, a transitional and a turbulent part can perhaps be reduced to a tran-
sitional part and a turbulent part by using a suitable intermittency function, in line with

the intermittency transport relations by Menter and Langtry, however relying on some
empirical function instead of (semi-empirical) differential equations, to experiment with
this idea the critical Reynolds number can be set to zero and subsequently a suitable

value for ñref can be chosen to fit the reference results.

Sekar[120] uses data from Schubauer and Klebanoff to validate the en method for the

steady, the same will be done for the present case, see section(7.1.1).

4.5 Conservative Formulation

To be able to apply the FVM and FEM consistently (without any corrective measures)

one needs a conservative system of equations.

The methods due to Matsushita et al and Matsushita and Akamatsu are already written

in conservative form by default, this leaves the unsteady method derived from Drela,
the unsteady entrainment method and the method by Hayasi.

Unsteady Von Kármán Equation, Kinetic Energy Integral and Unsteady Lag Entrainment
Equation

Starting with equation set (4.1) a conservative formulation is already provided since

this was derived in section(2), see equations (2.23) and (2.24). Equation (3.12) which
represents the lag entrainment poses a slight problem since the flux component us

∂Cτ

∂x

is non-conservative. If it is assumed that ∂us

∂x
= 0 locally it holds that us

∂Cτ

∂x
= ∂(Cτus)

∂x
.

The following conservative formulation emerges

Ft + uefx = ueB,

F =






δ∗

θ + δ∗

Cτ




 , f =






θ
H∗θ
usCτ




 ,

B =








1
2
Cf − θ

ue
(2 +H) ∂ue

∂x
− δ∗

u2
e

∂ue

∂t

CD −
(

2θ
u2

e

∂ue

∂t
+ 3H

∗θ
ue

∂ue

∂x

)

KcCτus

δ

(√
Cτeq −

√
Cτ
)

− 2Cτ

u2
e

∂ue

∂t
− 2Cτus

ue

∂ue

∂x







,

(4.18)

of course one of the other unsteady lag entrainment formulations can be chosen, see

equations (3.12), (3.13), (3.14). So with relative ease the unsteady system from Drela can
be written in a conservative form where the characteristics have already been derived
from the non-conservative form earlier, the above system is used by Hall[58] and Fenno

et al[50]. The quasi-linear form of the above system requires the Jacobian matrix which
is given by

K = ue







0 ∂θ
∂(θ+δ∗)

0

θ ∂H
∗

∂δ∗
∂H∗θ
∂(θ+δ∗)

0

Cτ
∂us

∂δ∗
Cτ

∂us

∂(θ+δ∗)
us






,
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where the composed differential terms can be written as

∂f(δ∗, θ)

∂(θ + δ∗)
=
∂f(δ∗, θ)

∂θ

∂θ

∂(θ + δ∗)
+
∂f(δ∗, θ)

∂δ∗
∂δ∗

∂(θ + δ∗)
,

now using ∂δ∗

∂(θ+δ∗)
= ∂θ

∂(θ+δ∗)
= 1 the Jacobian can be written as

K = ue








0 1 0

θ ∂H
∗

∂δ∗
H∗ + θ

(
∂H∗

∂θ
+ ∂H∗

∂δ∗

)

0

Cτ
∂us

∂δ∗
Cτ
(
∂us

∂θ
+ ∂us

∂δ∗

)

us







,

which can be written out explicitly in terms of the primary variables since, at least for

the closure relations in this thesis, H∗ and us are functions of θ and δ∗.

Unsteady Entrainment Method

Using H1θ = δ − δ∗ equation (3.9) is written as

1

ue

∂δ

∂t
− 1

ue

∂ueθH1

∂x
= −0.0306 (H1 − 3)−0.6169 ,

which can be added to system (4.18). The combined system has, as far as could be
found in literature, not yet been applied in practice.

The combined system would become

F =








δ∗

θ + δ∗

Cτ
δ







, f =








θ
H∗θ
usCτ
−θH1







,

B =










1
2
Cf − θ

ue
(2 +H) ∂ue

∂x
− δ∗

u2
e

∂ue

∂t

CD −
(

2θ
u2

e

∂ue

∂t
+ 3H

∗θ
ue

∂ue

∂x

)

KcCτus

δ

(√
Cτeq −

√
Cτ
)

− 2Cτ

u2
e

∂ue

∂t
− 2Cτus

ue

∂ue

∂x

−0.0306ue (H1 − 3)−0.6169 + θH1
∂ue

∂x










,

(4.19)

with the Jacobian

K = ue










0 1 0 0

θ ∂H
∗

∂δ∗
H∗ + θ

(
∂H∗

∂θ
+ ∂H∗

∂δ∗

)

0 0

Cτ
∂us

∂δ∗
Cτ
(
∂us

∂θ
+ ∂us

∂δ∗

)

us 0

1 1 0 −1










.

Hayasi’s Method

The system from Hayasi can be written in conservative form if the coefficient matrix K
can be integrated with the primary variables, i.e.

∫
K∂F leads to an analytical solu-

tion. Given that the shape factors lead to simple quotients with γ as the main variable
analytical integrals are sure to exist. The flux vector can be written as

f =




(−ue + ueH

∗)Z + 2ueZH
∗

1
2
ueZ

H+1

Z ∂H
∂γ

− 1
2

∫
ue

HH∗

Z ∂H
∂γ

dγ −
∫
ue

H
∂H
∂γ

∂H∗

∂γ
dγ



 ,

where the remaining integrals are dependent on the description of the velocity profiles,
therefore the system by Hayashi is not suitable for general applications.

The unsteady Green’s lag entrainment equation and the unsteady Head’s entrainment

need to be applied only for turbulent boundary layer flow.
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4.5.1 Hyperbolicity of the Conservative Systems

The hyperbolicity of the system by Matsushita et al is given and system(4.7) by Hayasi is
not considered beyond this point, this leaves system (4.18). For the determination of the
hyperbolicity first the eigenvalues of the Jacobian matrix are determined algebraically,

then any set of closure relations can be used to obtain the eigenvalues as functions of
the primary variables.

The eigenvalues are

λ± = (
1

2
H∗ +

1

2
θ
∂H∗

∂θ
+

1

2
θ
∂H∗

∂δ∗
± 1

2

√
G)ue,

λ3 = ueus,

G = (H∗)2 + 2H∗θ
∂H∗

∂θ
+ 2H∗θ

∂H∗

∂δ∗
+ θ2

(
∂H∗

∂θ

)2

+ 2θ2
∂H∗

∂θ

∂H∗

∂δ∗
+ θ2

(
∂H∗

∂δ∗

)2

+ 4θ
∂H∗

∂δ∗
,

where the term ueus has already been treated in section (4.2.1). The eigenvectors are

given by

ξ±(1) = 1,

ξ±(2) =
1

2
H∗ +

1

2
θ
∂H∗

∂θ
+

1

2
θ
∂H∗

∂δ∗
± 1

2

√
G,

ξ±(3) = −Cτ ξ±(2)

θ ∂H
∗

∂δ∗

(
−ξ±(2)ue + ue us

)T

T = ξ±(2)ue
∂us
∂δ∗

+
∂us
∂θ

ueθ
∂H∗

∂δ∗
− ueH

∗ ∂us
∂δ∗

− ueθ
∂H∗

∂θ

∂us
∂δ∗

,

ξ3 =






0
0
1




 .

To get representative values for the root term G and the eigenvalues the laminar clo-
sure relations from equations (4.12),(4.13) and (4.14) are applied and for the turbulent

closure relations equations (E.41), (E.44), (E.45) and (E.46).

The derivatives ∂H∗

∂θ
, ∂H

∗

∂δ∗
are written as follows for the laminar boundary layer

∂H∗

∂θ
=

1

θ

(

3aE3 + 2bE2 + cE − eH
)

,

∂H∗

∂δ∗
=

1

θ

(

−3aE4 − 2bE3 − cE2 + e
)

,

where the coefficients are given as

a = 4.8274, b = −5.9816, c = 4.0274, e = 0.15174.

The derivatives ∂us

∂θ
, ∂us

∂δ∗
are written as follows for the turbulent boundary layer

∂us
∂θ

=
1

6

∂H∗

∂θ

(
4

H
− 1

)

+
2

3

H∗

δ∗
,

∂us
∂δ∗

=
1

6

∂H∗

∂δ∗

(
4

H
− 1

)

+
2

3
H∗θ.

The derivative ∂H∗

∂θ
for the turbulent boundary layer is given by
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H < H0:
∂H∗

∂θ
= − 4

θReθ
+

0.8

θ
√
Reθ

(
H0 −H

H

)1.6

+
4.8

δ∗

(

0.165 − 1.6√
Reθ

)(
H0 −H

H

)0.6

,

H > H0:
∂H∗

∂θ
= − 4

θReθ
+ 2(H −H0)

(

−H
θ

+
400

θReθ

)







0.04

H
+ 0.007

ln(Reθ)
(

H −H0 + 4
ln(Reθ)

)2







+ (H −H0)
2








0.04

δ∗
+ 0.007

1
θ

(

H −H0 + 4
ln(Reθ)

)2

− 2 ln (Reθ)
(

H −H0 + 4
ln(Reθ)

)(

−H
θ

+ 400
θReθ

− 4

θ(ln(Reθ))2

)

(

H −H0 + 4
ln(Reθ)

)4







,

where

H0 = min

(

3 +
400

Reθ
, 4

)

.

The derivative ∂H∗

∂δ∗
for the turbulent boundary layer is given by

H < H0:
∂H∗

∂δ∗
=

(

0.165 − 1.6√
Reθ

)(

−1.6(H0 −H)0.6H − (H0 −H)1.6

δ∗H

)

,

H > H0:
∂H∗

∂δ∗
= 2

H −H0

θ







0.04

H
+ 0.007

ln(Reθ)
(

H −H0 + 4
ln(Reθ)

)2







+

(H −H0)
2






− 0.04

δ∗H
− 0.014

ln(Reθ)

θ
(

H −H0 + 4
ln(Reθ)

)3






.

The following value ranges are used to test the hyperbolicity

Laminar: H = [2, 10], Reθ = [0, 10000],

Turbulent: H = [1, 5], Reθ = [0, 20000],

with ν = 2 · e− 5
[
kg
ms

]

, ue = 50
[
m
s

]
.

The results are plotted in figure (4.12), λ− for the laminar closure relations goes through
zero for H ≈ 3.44 which is close to the value 3.5 found by Hayasi and Matsushita and

Akamatsu. For the turbulent closure relations λ− goes through zero for H = 4 at a
Reynolds momentum thickness of 100 and decreases to about 3 for a Reynolds mo-
mentum thickness of 10000. This corresponds with the minimum value of H∗(H) for

different values of the Reynolds momentum thickness. Most importantly, the hyperbol-
icity of the conservative system (4.18) is confirmed for a realistic range of the problem
parameters/variables.

4.6 Overview of Unsteady Integral Boundary Layer Methods in Literature

Schuh, Hayasi[61], Yang and others apply a guessed velocity profile for laminar bound-

ary layer flow which they substitute in the unsteady Von Kármán equation and the
unsteady kinetic energy integral equation. These methods have the benefit that the ve-
locity profile information is also known.

Daneshyar and Mugglestone, and after that, Smith[123],Strickland[105], Bong[13], He
and Denton[62] and Lyrio et al use the unsteady Von Kármán equation in combina-

tion with the steady Head’s method for the turbulent boundary layer flow. He and
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Figure 4.12: Eigenvalues λ− and λ+ (top) for the laminar closure relations, (bottom) for the turbu-
lent closure relations

Denton, and Strickland apply the unsteady Thwaites parameter to the unsteady Von
Kármán equation. This method is limited to low reduced frequencies of unsteadiness.

Matsushita et al[91][90] use the unsteady Von Kármán equation and the kinetic en-
ergy integral equation plus a third equation. Matsushita et al use closure relations
for laminar flow based on specific semi-similarity solutions of accelerating, stagnating

an separating flow. They apply an upwind finite difference scheme for the attached
boundary layer flow and a Lax finite difference scheme for the separated boundary layer
flow. Very interesting is the approach of using inverted shape factors as primary vari-

ables/parameters.

Swafford and Whitfield[129][128][130] apply the Von Kármán and the kinetic energy in-

tegral equations to three-dimensional compressible flow boundary layer flow. They use
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an FDM and incorporate the geometry of the profile directly in the differential terms.

Swafford and Whitfield use a central differencing scheme with numerical smoothing
and an upwind difference scheme without smoothing.

Hall[58] applies system (4.18) together with Drela’s en envelope method, for the cou-
pling he uses source terms and the continuity equation in defect form. Fenno et al[50]
apply the semi-inverse coupling method with the displacement thickness as the con-
necting variable. Fenno et al apply both the equilibrium and non-equilibrium closure

for the diffusion coefficient CD.

Mughal[99] discusses the hyperbolicity of the unsteady IBL equations and suggests

to enforce the hyperbolicity through the eigenvalues, the benefit is that it guarantees
the validity of the solution method but also influences the closure relations to an un-
predictable degree. Mughal[99] has a particular approach for the closure relations, he

chooses to use guessed velocity profiles to obtain the integral equation through numer-
ical quadrature, both for the laminar as for the turbulent boundary layer.

Although this thesis deals specifically with the unsteady integral boundary layer equa-
tions for the purpose of e.g. aeroelastic simulations in literature there are several (re-
cent) examples of aeroelastic simulations with the steady integral boundary layer equa-

tions. See Zhang[160], Howlett[67], Edwards[44][45] and Sekar[120].

4.7 Selection of Models

The main choice is now between the system by Matsushita et al and the unsteady Von
Kármán equation plus the unsteady kinetic energy integral equation, both systems can
be augmented with the unsteady lag entrainment and the unsteady entrainment equa-
tion. Assuming for each given point that the gradient in x-direction is very small, the

boundary layer flow is likely to show a distribution close to some self-similar profile. As
was noted, Falkner-Skan similarity profiles supposedly give a good approximation for
steady laminar boundary layers for given shape factors. Thus using Falker-Skan based

closure relations in combination with shape factors as primary variables is likely to pro-
duce good results for steady laminar boundary layers. Hayasi produces a system of
equations which is conditionally hyperbolic, this significantly increases the complexity

of the solution procedure and it will require an iterative procedure in case the system
becomes non-hyperbolic. The method due to Hayasi was not found in any applications
by other writers and Hayasi himself only applied his method for special cases, the ben-

efit of using Hayasi is that the velocity profile is part of the solution which allows for a
relatively straightforward prediction of separation. A different approach might be found
by simply extending the guessed velocity profile to the unsteady case which would give

Cf and δ as primary variables, see appendix (D).

The extension of the steady solution method by Drela to unsteady is likely to be com-

parable to the two equation method by Matsushita and Akamatsu, in the latter case
multiple profiles are used to provide the closure relations with one parameter (the shape
factor H), whereas the former method uses one profile to provide two-parameter(H and

the momentum thickness θ) closure relations. It is likely that using the two parameter
two equation approach by Drela in combination with multiple profiles as do Matsushita
and Akamatsu provides a more robust approach than using a one parameter method,

also it must be noted that Drela’s approach gives excellent results for Falkner-Skan like
flows. The turbulent closure by Swafford[129] (see equation(E.27)) requires the shape
factor and the momentum thickness to equate the integral variables, this is compatible

with i.e. the two equation model by Drela and the two equation model by Matsushita et
al which would avoid the use of a third differential equation. The two and three equa-
tion models by Matsuhita et al are hyperbolic and can handle mildly separated laminar

boundary layer flow. This is made possible first by the closure relations which cover
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separating flow and second because the inverse shape factor is used which avoids the

discontinuity in the shape factor when the momentum thickness goes through zero. The
handling of separated flow is not necessarily an argument pro since it is already clear
that a viscid-inviscid interation method will be employed at separation. However it is

clear that if one can continue to use the direct method without blow-up of the solution it
is very much preferable over the other coupling methods which require extra computa-
tions (e.g. an iteration procedure) for matching the solutions. This is certainly worth an
investigation, the set of laminar closure models is already given by Matsushita et al and

the turbulence closure models might be extracted in a similar way as did Matsushita et
al by using separate models for different flow situations.

It was noted that Green’s steady lag entrainment equation and Head’s steady entrain-
ment equation have been used successfully for an viscid-inviscid solution procedure
applied to unsteady problems. This was also done for the unsteady lag entrainment

equation. The (un)steady lag entrainment equation has been used successfully without
Head’s entrainment equation by Drela, Hall, Fenno et al.

Based on the previous considerations, the following choices are made; Either the conser-
vative system (4.18) or the non-conservative system (4.4) will be applied and the system
by Matsushita et al(see system 4.11) is advised for future research. 3 Furthermore the

unsteady lag entrainment method is employed and an employment of unsteady Head’s
entrainment equation is advised for future implementation.

The linear amplification method as used by Drela[35] (see equation (4.15) in his PhD
thesis will also be employed in the present case although the more advanced full transi-
tion criterion is supposedly more accurate. The mere simplicity of the envelope method

and the fact that it seems to produce good results (see Drela[35], Hall[58], Sekar[120]) is
reason to use it for this thesis. The effect of unsteadiness on the laminar-to-turbulence
transition is ignored, this approach is also used by Hall[58]. Somewhat easier methods

which do not entail an extra differential term are the methods due to Michel and Wazzan
as discussed in chapter(2), these may be used for comparison.

Following the discussion in this chapter and the previous chapter the following com-
bination of models will be used for the implementation, see table 4.1.

problem approach

initialisation Rayleigh solution (first Stokes problem)
equations used Von Kármán equation, kinetic energy integral equation, un-

steady Green’s lag entrainment [58]
laminar closure Matsushita et al [91]
turbulent closure equilibrium and non-equilibrium boundary layer closure, see

Drela[35]
transition en, amplification envelope method following from Falkner-

Skan profiles[35]
separation all discussed methods (λ,H1(H)min,shock formation, etc.)

Table 4.1: Selection of models

3Although the elaboration of the numerical methods is generic the non-conservative system is erroneously
approximated with a FVM,FEM, this will be explained later
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The specific closure relations that are implemented are given in table (4.2).

case approach

laminar equations (E.6), (E.9), (E.5), (4.14), (4.13), (4.12)
turbulent equations (E.41), (E.45), (non-equilibrium) (E.46), (E.50),

(equilibrium) (E.44)
transition equations (4.15), (E.21), (E.22), (E.23), (3.5), (E.20), (4.17)

Table 4.2: Relevant equations



Chapter 5

Application of Unsteady Integral Methods

5.1 Solution Procedures for Unsteady Integral methods

Given the system of equations and the closure relations the problem can be solved. In
the previous chapter several systems of equations were investigated in terms of hyper-

bolicity.

Since the system of equations is hyperbolic characteristic directions might be deter-
mined. Assume M contains the eigenvectors as columns, dividing equation (2.27) with
the coefficient matrix A and multiplying with M−1 gives

M−1Ft + (M−1KM)M−1Fx = M−1L,

where K = A−1B and L = A−1C, here M−1KM is a diagonal matrix containing the
eigenvalues of K, now the problem is divided into a dimension number of uncoupled

non-linear ordinary differential equations. The importance for the numerical implemen-
tation lies in the fact that the solution propagates in the directions of the characteristics.

Mughal[98] uses the characteristic directions, as defined by the eigenvectors, to help
determine whether the closure relations are coherent. Mughal elucidates that the char-

acteristics should be contained within the boundary layer, the directions should be
comparable to the external streamline. In a more practical sense the characteristic di-
rections will determine the direction of upwinding for the finite difference schemes, it
allows for certain boundary conditions and the eigenvalues will be of importance for the

stability requirement.

5.1.1 Hyperbolic System

Solution methods for hyperbolic systems rely on the eigenvalues and eigenvectors to
determine the flux over the cell faces (for FVM’s and FEM’s) or through the nodal points

(for FDM’s) and to determine the direction of upwinding. Several methods can be ap-
plied, two general approaches for an arbitrary direction of the characteristics are the
flux vector splitting and the flux difference scheme and for each approach several meth-

ods are in existence. For the present case the Steger-Warming scheme, the Roe scheme
and the Kurganov-Tadmor scheme will be considered. The Steger-Warming scheme be-
cause it is applied with success to the integral boundary layer equations by Matsushita

and Akamatsu[90]. The Roe-scheme because it is well known from gasdynamics to be
accurate near discontinuities, also it is likely to produce less numerical diffusion than
the Steger-Warming scheme. The Steger-Warming scheme is an FDM to solve hyper-

bolic conservation laws, the Roe scheme is known as an approximate FVM Riemann

71
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solver with the original intent to solve the Euler equations. The Kurganov-Tadmor finite

volume scheme is added because of it’s relative simplicity. For the DG approach one is
free to choose either the Roe-scheme or the Kurganov-Tadmor scheme.

In addition several scalar(-based) FDM’s are implemented.

More on the numerical procedure can be found in section (6).

5.1.2 Method of Lines

Before a numerical method can be defined a general approach has to be outlined. The
general approach to solve the system of equations is the method of lines. The method of

lines treats all but one dimension in a discrete manner which results in a semi-discrete
approach.

Using the method of lines Swafford and Whitfield[131],[129] solve the system

A
∂f

∂t
+B

∂f

∂x
= C,

which in their case is written as

A
∂f

∂t
= b, b = C −B

∂f

∂x
,

where the right-hand-side vector contain the spatial derivatives. In this thesis, the

system is written as
∂f

∂t
= b, b = L−K

∂f

∂x
,

An important aspect is that the temporal integration is separated from the spatial inte-

gration , this allows for more flexibility in the choice of a temporal and spatial integrator.
Also important, the method of lines allows for a vector-based implementation. For the
time-integration a one to fourth order Runge-Kutta method will be implemented. A

Runge-Kutta integration with adaptive timestep is possible (e.g. Runge-Kutta-Fehlberg)
but requires at least ten evaluations of the spatial difference vector. It was noted by
Swafford and Whitfield[131] that applying the CFL condition already provided the nec-

essary stability, therefore the adaptive Runge-Kutta method is not considered for this
thesis.

Using the method of lines, the approach is as follows, initially the entire profile is con-
sidered laminar, the relevant closure models are then applied using the initial values
for the primary variables, now given the initial distribution the turbulence transition

point is detected, the current timestep is redone for the transition/turbulent region of
the profile and finally the values at the next timelevel are found through integration. For
the following timesteps a similar procedure is followed, however (see figure(5.1)). The

transition model by Drela[35] is based on the Falkner-Skan equation which is steady,
this means that each consideration of the transition takes place with no reflection of
the history of the transition point. The treatment of the transition point underlines that

the assumption of a fully turbulent boundary layer is perhaps not only physically more
robust but it will also simplify the computation. For the test cases both a transition
check will be used as well as an assumed fully laminar and fully turbulent boundary

layer.

5.1.3 Physical Interpretation of Hyperbolicity

The equations from which the integral boundary layer originate are parabolic which
means that the single eigenvalue is directly dependent on time, any change in the
outer conditions propagates in the normal direction through a diffusive process and

the change in the tangential direction is propagated through a convection process. Now
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Figure 5.1: Algorithmic logic for moving transition point

if the y-dependent differential terms are removed a one-dimensional (non-linear) convec-
tion equation is yielded, similar to the equation in section (5.4), which is hyperbolic. The

integration of the diffusion term in the boundary layer equation results in a first order
dependency, i.e. the advection in space-time is the direct result of the integration of the
second order diffusion term. This is effectively what happens in constructing the inte-

gral boundary layer equations. To construct the integral equations the y-dependency1 is
removed from the differential terms, now through pre-multiplication with suitable vari-
ables a set of differential equations is obtained with different factors but with unchanged

differential order, not surprisingly the resulting system is purely convective in nature.
Heuristically the hyperbolicity of the system is a direct result of the hyperbolicity of the
initial field form in case y-dependency is removed.

Physically the hyperbolicity of the integral boundary layer equations relates to the con-

vection of disturbances, in the two dimensional field form of the boundary layer equa-
tions this is simply a change in tangential velocity which is convected downstream and
for the integral boundary layer equations this relates to the less intuitive integral vari-

ables which change as a result of the change in distribution u(y) upstream.

A practical proof comes from the instantaneously moved semi-infinite flat plate; the
solution domain has separate regions based on the signal transfer from the disturbance

at the plate nose, based on the value of uet
x

as would be expected since the speed with
which the disturbance propagates should be equal to the eigenvalue (see Lighthill[84],
Stewartson[126], Smith[124], Riley[112]) which is ue initially.

5.2 Initialisation and Boundary Conditions

A crucial step in any numerical simulation is the definition of the boundary conditions
and the initialisation of the numerical solution, these will be treated separately.

5.2.1 Initialisation

The previous treatment of the initialisation was based on a steady formulation of the

IBL equations and required a special treatment to get the shape factors and integral
variables at the most forward point. This difficulty was caused in part by the fact that a
steady solution implicitly assumes the boundary layer to have been developed already.

1More general would be; the profile normal dependency
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The unsteady solution simply starts at the point where there is no boundary layer what-

soever, this simplifies the initialisation. This is not trivial as the shape factors are
non-zero regardless of the zero-valued integral variables, the shape factors will require
a separate treatment.

A full Dirichlet approach may be suitable for the initial step, depending on the coef-
ficient matrices. In case the coefficient matrices rely heavily on the shape factors the
steady solution approach is more suitable compared to a Dirichlet approach since the
shape factors will be non-zero instantaneously, then any isolated integral variables may

be set to zero. The former is the case with the solution methods presented earlier (Drela,
Hayasi, etc.).

As an example consider the method by Hayasi, see equation (4.10). First it is assumed

that the integral variable Z = θ2

ν
is zero, then if the stagnation point is fixed in space

∂ue

∂t
can be set to zero also and the following equation emerges

H∗ (H + 1)P = HQ,

the above leads to an equations from with γ as the only variable, once γ has been
retrieved the eigenvalues and eigenvectors are known and the solution can be started.
Matsushita and Akamatsu[90] assume for an impulsively started cyilinder that initially

there is a boundary layer of the Rayleigh type which effectively means that each point on
the cylinder is considered to be a point on an infinitely long impulsively moved flat plate
(also see Cebeci and Bradshaw[20] and Cowley[31]). For small time this is probably a

good approximation since the variance of the external velocity in spatial direction has
not yet influenced the neighboring points, i.e. all convective terms are negligible. The
initial time-step has to be chosen such that the information of the grid points upstream

has not yet reached the local grid point (also see Lighthill[84]). From the field form of
the conservative boundary layer equation it can be seen that for small t the equation

behaves like a diffusion equation since u ≪ 1 and therefore ∂2u
∂y2

∼ ∂u
∂t

≫ u∂u
∂x

(also see

Cowley[31], Telionis and Tsahalis[134]). Also, this flat-plate assumption is (obviously)
limited to profiles with a negligible curvature ∂r

∂x
≪ 1. Ideally the velocity gradient in time

is also taken into account with the initialisation, this can be done with Duhamel’s folding

integral (see equation (I.33), however this function is very cumbersome to solve and
requires the external velocity at two points in time. If Rayleigh’s solution (see equation
(I.32) for the instantaneously moving infinite flat plate is used, the initial values for the

boundary layer velocity follow from

u(x, y, t) = ue(x, t)erf(η), η =
y

2
√
ν∆t

.

For η = 1.83 the boundary layer velocity is 99% of the external velocity, hence y can be
limited to [0, 3.66

√
ν∆t], where the initial timestep ∆t follows from the requirement that

for each point on the profile ∆tue(x, 0) < ∆x. Applying the definition for the displacement
thickness with the error function gives

δ∗ = δ − 1√
π

√
∆tν

[

−2 + 2 exp

(

− 1

4∆tν
δ2
)

+
1√
∆tν

δ
√
πerf

(
1

2
√

∆tν
δ

)]

, δ = 3.66
√
ν∆t

unfortunately no explicit integral was found for the momentum thickness, applying the

11th order polynomial fit that was also used for the Timman profile leads to an ex-
tremely cumbersome expression so a 4th order polynomial fit is chosen which is almost
completely within plotting accuracy.

The initialisation using the Rayleigh solution assumes some instantaneously moving
profile which would be the case for most applications. A true zero initialisation, where

the profile is assumed static initially, would lead to the added difficulty of plate wise
zero divisions and it begs to differ whether the integral boundary layer equations would
produce meaningful results for near zero velocities (and thus very low Reynolds num-

bers).
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Cousteix and Houdeville[30] discuss the unsteady boundary layer and IBL equations

in relation to unsteady turbulent flow and suggest to use a steady solution as the ini-
tialisation. Cousteix and Houdeville also raise the point that for oscillating airfoils the
stagnation point will change position, for low reduced frequencies they suggest to use

a quasi-steady value, otherwise they use experimental data to extract a boundary con-
dition, for more detailed solutions Cousteix and Houdeville refer to a paper by Cebeci
and Carr[21]. Hall et al[58] apply a similarity solution from Cebeci and Bradshaw[19] to
relate the stagnation displacement thickness to the edge velocity.

5.2.2 Boundary Conditions

The eigenvectors indicate the direction in which perturbations are propagated into the

solution domain, that being said; if the incoming characteristics are initialised the prob-
lem is fully defined and thus the outgoing characteristics do not need to be defined at
the flow exit, conversely the solution is insensitive to the value at the outer bound. The

value of the incoming characteristic is determined by the stagnation value. A useful
assumption is to consider the forward stagnation value to be instantaneously equal to
the steady stagnation value. This can be justified by considering that the stagnation
point is the immediate and local representation of the stagnation flow upstream. With

this assumption the approach to approximate the stagnation point value for the steady
case can be directly applied to the unsteady case. A problem arises when this BC is
applied; since the initial values of the profile are independent of the boundary value,

thus at the boundary, going from the BC to next point on the profile, there is a, possibly
very large, flux which is directly dependent on the stepsize. In reference to Cebeci and
Bradshaw, Hall et al [58] employ an analytical similarity solution for the initial points.

Swafford[130] applies a clamped boundary layer with success, he however sets the ini-
tial primary values over the entire profile to be equal to the boundary value, which
prevents the initial high flux at the boundary, this is however unphysical and should

not be used for transient solutions. Both methods will be implemented.

Specifically, for the stagnation flows the following solutions are implemented

• laminar stagnation value by Nishida[103]

• laminar stagnation value by Milewski[94]

• the first step of Thwaites integral

• turbulent stagnation value by Coenen[26]

and for the flat plat (like) boundary layer flow

• the first step of Thwaites integral, at from x = 0 to x = ∆x

• Blasius solution at x = ∆x for laminar flow

• Rayleigh solution at x = ∆x

• 1/7th power law for turbulent flow at x = ∆x

The boundary condition for the right side of the profile/plate is left open, no solution
is imposed there. Thus the boundary value on the right side most follow from the left
neighboring points, or more correctly all information needed for the right boundary

value comes from the inner solution.

For the specific numerical application of the boundary conditions the reader is referred

to chapter (6).
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5.3 Stability Considerations

To be able to transport the perturbations through the solution domain it is required that

the grid (in time-space) has the correct relative grid size. For more details see section
(6.5).A general remark can be made about the stability of the numerical scheme in case
an explicit discretisation is used in time; the direction in which the information is carried

determines the direction in which the upwind differencing should take place. Suppose
that from some point two or more different characteristics are emanated, meaning two or
more different information carriers with information about the same point, these char-

acteristics diverge since they travel with different velocities. Since each point emanates
these characteristics there are intersections of characteristics, these intersections allow
the solution to be solved exactly if the invariants (the initial solutions which are carried

with the characteristics) are known. The basic requirement is that given characteristics
moving in the positive x-direction, backward-differencing is required to be able to use
the correct characteristic information. If forward differencing is used one basically ap-

plies information that is physically unavailable. Central differencing will cause wiggles
and has a stricter stability requirement, the positive side is that these wiggles directly
convey information on the solution quality and there is no artificial diffusion. The FDM

flux solvers are basically either upwind differencing schemes or central differencing
schemes, the FVM and FEM flux solvers will use a mixed formulation based on the di-
rection of the individual eigenvectors. The characteristics give a first requirement on the

grid resolution since it constraints the relative grid size to ∆x
∆t

< min (λ), this guaran-
tees that all characteristics have passed the next grid point downstream of the current
point. As was said, this applies to explicit time-marching schemes only, if the condition

is too restrictive an implicit scheme should be considered. For different time-integration
schemes the condition changes based on the stability of the specific time-integration
scheme, in general the following applies for the local stability requirement

(
∆t

∆x

)

local

≤ CFL

ρ(K)
, spectral radius: ρ(K) = max(|λ|) (5.1)

where the CFL-number, after the inventors Courant-Friedrich-Lewy, is dependent on the
time-integration scheme. The global stability (in case of a spatially constant time-step)
then follows from

∆t

∆x
≤ min

((
∆t

∆x

)

local

)

, (5.2)

which will be relatively slow compared to adaptive methods e.g. a local timestep, if the
higher gradients are confined locally. The approach is to first determine the distance

steps ∆x based on the gradients of the integral variables, then base the timestep ∆t on
the relative grid size requirements stemming from the CFL-condition which has to be
based on the specific time-integration scheme.

. It must be kept in mind that the effect of numerical diffusion increases for decreasing
relative grid size, therefore the largest possible relative grid size should be applied. Also

see Mughal[99] who discusses the region of influence for three-dimensional unsteady
boundary layer flow.

Where for the left boundary it was assumed that only the incoming characteristics
determine the solution, for the right boundary the same is assumed for the outgoing
characteristics. Whereas this approach requires an imposed value for the left boundary

condition, the right boundary condition can be left open, the outgoing characteristics
simply follow from the solution. To facilitate this open right boundary condition, a back-
ward difference scheme is enforced. This approach is taken by for instance Smith[124]

who assumes that information convects downstream for the entire profile.
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Figure 5.2: Dark area: domain of dependence of x1 at new time level, Light area: domain of
influence of x0 at old time level, dashed lines indicate actual characteristics which may be curved
in x− t

5.4 Predicting Separation using Converging Characteristics

As has been confirmed by several writers the convergence of characteristics signals the

onset of separation. This can be explained directly by the simple notion that through the
coalescence of characteristics there is a discontinuity over which the eigenvalues, and
thus the solution, change instantaneously, the coalesced characteristics will be referred

to as a shock, a term also used by Shen and Nenni(see Cousteix[28]).

In reference to Shen Matsushita and Akamatsu [90] state that these singularities, i.e.
∂δ∗

∂x
→ ∞, are reducible to the formation of a shock-like formation of the characteristics.

To predict the formation of a shock and thus the onset of separation, some measure

for the coalescence of characteristics is defined as the separation indicator. Depending
on whether forward or backward differencing is used the shock indicator Isep in a point
in some spatial direction is defined as the difference in characteristic velocity in the

direction opposite to the direction of the characteristic , relative to the cell velocity ∆x
∆t

.
For a one-dimensional advection problem this becomes

a > 0, backward differencing : Isep,1D =
∆t

2∆x
(aj,i−1 − aj,i+1) ,

a < 0, forward differencing : Isep,1D =
∆t

2∆x
(aj,i+1 − aj,i−1) ,

where a is the characteristic velocity. Now the critical value for the separation indicator

Isep is user dependent. The separation indicator is positive for shocks and negative for
expansion fans2, both can be discriminated from the normal solution merely by the
magnitude of the indicator for shocks/expansions relative to the average magnitude of

the indicator. The relative shock indicator is denoted as Jsep =
Isep

Isep
, here Isep is based

on the values of the previous timestep.
Assuming a finite thickness the discontinuity is strongest perpendicular to the shock,
especially in numerical sense since the thickness is at least the size of one distance step.
To optimize the separation prediction one can resort to using older values for increasing

2(centrally) diverging characteristics
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speed of the characteristic, effectively increasing the angle with respect to the shock, the

downside is that at least two timesteps are required to determine the shock indicator
and the detection is off by at least one timestep (see figure 5.3).

Figure 5.3: Detection of shock using neighbouring eigenvalues

To get an idea of the relative shock indicator value a non-linear one-dimensional advec-
tion problem is formulated and solved for a given initial distribution, the initial distri-

bution is then varied to investigate the magnitude of the relative shock indicator. The
non-linear one-dimensional advection problem shock indicator is defined by

ut + uux = 0,

and is solved using forward Euler for the time integration and backward differencing for
the flux determination. As an initial distribution consider the following

Distribution A: u =







sin (πx), 0 ≤ x < 1,
1.5, 1 ≤ x < 1.5,
sin (π(x− 1.5), 1.5 ≤ x < 2.5,
1.5, 2.5 ≤ x ≤ 3.

Distribution B: u =







x, 0 ≤ x < 1,
1.5, 1 ≤ x < 2.5,
0.5(x − 1.5), 1.5 ≤ x < 2.5,
1.5, 2.5 ≤ x ≤ 3.

Using the following relation the exact intersection point of the characteristics can be

determined for distribution (A)

tshock = − 1
(
∂a
∂x

)

min

,

xshock = tshocka( ∂a
∂x )

min

.

(5.3)

See figures (5.4) and (6.10), these figures were produced using 600 elements in x-
direction and 400 elements in t-direction. Using equation (5.3) the shocks for velocity
distribution (A) should start forming at

x =
3

2π
+ 1, t =

1

π
,

x =
3

2π
+

3

2
, t =

1

π
.
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Figure 5.4: non-linear advection equation with double sin velocity distribution, (left) Jsep distribu-
tion, (right) u distribution, (bottom) initial velocity.

Plotting the separation indicator in the above points the shock is clearly visible, see

figure (5.6). It seems that for shocks and expansions the relative magnitude is in the
order of at least order ten. The relative shock indicator magnitude is proportional to the
perturbation magnitude, To remove this dependency the relative shock indicator can

be divided by the max difference in successive eigenvalues, in other words the relative
shock indicator is normalized with the jump over the strongest shock. This however
leads to an overprediction over the shock strength since normalization has the effect

that in time levels with a small maximum velocity gradient in x-direction even small
velocity differences appear to be large. A test will have to be done for the final system of
integral boundary layer equations using known separation problems to establish typical

magnitudes of the separation indicator.

The apparant downside of this approach is that the separation indicator needs to be

calculated and stored. For the integral boundary layer equations this becomes in gen-
eral

λj,i > 0 : Jsep =
∆t

∆x

λj,i−1 − λj,i+1

Nλ
,

λj,i < 0 : Jsep =
∆t

∆x

λj,i+1 − λj,i−1

Nλ
,

λj =

N∑

i=1

λj,i

N
.

(5.4)

Alternatively, instead of dividing by the averaged eigenvalues one can also divide by the
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Figure 5.5: non-linear advection equation with double linear velocity distribution, (left) Jsep distri-
bution, (right) u distribution, (bottom) initial velocity.

average difference of the eigenvalues, this however cannot detect the presence of shock
since the maximum value will be the same for a given problem regardless of any shocks.

According to the triple deck model, the transition to the small scale separation should

take place within O(Re−
3
8 ) [m] (see i.e. Veldman[145]), this may be an indication of the

required resolution to identify separation.

The above described method suffers a flaw, the left boundary will form the first (and
maybe the largest) discontinuity for non-stagnation flow due to inevitable mismatching
between the boundary value and the inner solution, obfuscating the presence of any

discontinuity in the ’inner’ solution. For the stagnation flow the separation indicator
may form a useful prediction tool.

Alternatively the paths of the characteristics can be monitored and therefore any in-
tersection of characteristics can be predicted, (see figure(5.7). On the same chord one
can use the motion of the zero friction point to predict the point of seperation by esti-

mating if and where the zero friction point comes to a halt. The benefit of the current
separation indicator is that the strength of the shock is monitored, the next step would
be to relate this shock strength to the degree of separation, that is however outside the

scope of this thesis.
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Figure 5.6: Jsep distribution for non-linear advection equation with double sin velocity distribution,
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5.5 Adaptive Grid

The integral boundary layer method is primarily of interest because the reduction of
the problem dimension significantly decreases the amount of computations needed to

resolve the integral variables. To further optimize the computational efficiency an adap-
tive grid may be employed. The adaptive grid might be initialised using a uniform spatial
grid, subsequently the spatial grid distribution follows from the integral variables in the

previous timestep. Only the time step or the distance step can be refined at each time
step, whereby the other step size follows directly from the stability requirements. Per
time step, because there is nothing preventing an alternating grid adaptation.

The adaptiveness can be global, which relates the new overall step size to the maxima
of the space-derivatives so basically a new grid is created at each time step but with the
same relative distances, or it can be local where the local space-derivatives determine

the step size. The major issue with spatial grid adaptation is that the sum of all the dis-
tance steps must be constant, which means that when the grid is refined, more points
need to be created and conversely points to be removed if the grid is coarsened. For

uniform grids this is trivial and non-uniform grids with global adaptation only require
treatment at the edge of the grid. Locally adaptive grids require points to be created
and removed from between other points, this is not trivial. Also, for locally adaptive

grids there may be the issue of conflicting adaptations between coarsening the grid and
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Figure 5.7: Converging characteristics of a quasi-linear IBL system for a flow over a cylinder, see
Matsushita [91]

refining the grid. A typical grid refinement correlation is given by

∆x ∝
[

C1
∂I

∂x

]m

max

,

here C1, C2 and m will have to be determined by trial-and-error, I is some integral
variable. Conceptually the easiest grid adaptation follows from the use of the local
eigenvalues to, given a certain timestep, reconstruct the grid completely. So starting

from the left boundary one marches to the right with the distance which follows from
the eigenvalue and the timestep. After a new grid is obtained the values of the previous
grid is projected onto the current grid. Whether global or local spatial grid adaptation

is used interpolation is required to extract the values at the new grid points and thus
requires the storage of results over two time steps. Furthermore in the final approach,
the IBL equations will be coupled to an external solver which completely defines the

grid points over the profile. This means that the IBL result on the refined grid needs
to be interpolated again to get the values on the external grid points, i.e. there are two
interpolation steps. For these reasons local adaptiveness of the distance step will not be

considered for this thesis.

To ensure stability the CFL criterion will be used to determine the required value

for the global time step, the global time step at some time level n is given by

∆tn ≤ ∆xlocal

[
CFL

|λ|max

]n

min

. (5.5)

A local time stepping method is completely different from the spatial grid refinement in

that there is no need for interpolation while the solution convergence for the IBL equa-
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Figure 5.8: One-dimensional grid with local step size

tions is indeed accelerated, see i.e. Swafford[130], Jameson[68]. Local time stepping
is however primarily used to accelerate the convergence for problems with a definite

steady state solution (see e.g. Anderson et al[4, p.301]) as it produces an unphysical
transient solution: each point/cell marches with a local time step, at the next time level
the adjacent values are used for the flux although these values represent a different

time level thus giving unphysical values for the flux, see e.g. Jameson[68]. To make the
local time stepping method physical one may apply extrapolation and interpolation to
obtain newer values and intermediate values respectively, however for smooth problems

it is questionable whether the added work of finding extrapolated/interpolated values
outweighs the gain in performance, not to mention the loss in accuracy due to the ex-
trapolation/interpolation. It is possible to use local time-stepping for transient solutions

by means of a space-time method for the DG-FEM, see Klaij[75], Gassner[87] and then
naturally also for the FVM since that is basically a DG with zeroeth order basis func-
tions, see section (6.3), for the FDM there is the so-called FDTDM (or finite difference

time domain method) but a local time stepping method could not be found.

Whether global or local time stepping is chosen depends on the application. If the IBL

equations are to be used in a coupled time-dependent method, as is the case, the tran-
sient solution of the IBL equations should be synchronous to the external flow solution.
The time steps used to integrate the IBL equations should be smaller than or equal to

the time steps used by the external solver but preferably of course the time steps are as
close as possible to the time step of the external solver. Assuming that each global time
step has preferably only one time step for the IBL equations an implicit time integration

scheme must be used if the time step required for the IBL equations is lower than the
time step for the external solver.

Local Order Refinement

The purpose of local order refinement is that local higher order phenomena in the prob-
lem are captured more accurately without increasing the number of grid points. This
prevents the need for interpolation/extrapolation as is required for an adaptive spatial

grid.
The downside of the finite difference method and the finite volume method is that to
increase the order of accuracy the stencil size needs to be increased. Which means

that the approximation of the flux through/over a point/cell requires information from
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more neighboring points/volumes. Also, higher order finite difference and finite volume

schemes cannot be arbitrarily generated, they need to be hard coded.
For the DG method local order refinement is straightforward since each control volume
has their own order of accuracy which is given by the maximum (polynomial) order of

the basis function, this is described in section (6.7.2).

5.6 Extensions

The IBL equations can be extended, firstly of course by adding a dimension, secondly
by adding physical effects which are related to the three-dimensionality and thirdly by

adding effects related to the specific problem that is considered.

5.6.1 Three Dimensionality

Figure 5.9: three dimensional boundary layer

Going from two to three dimensions requires the addition of one momentum equation
and extra differential terms to account for the added dimension, see e.g. Mughal[99].Also,
the closure relations have to account for the effect of crossflow effects, for negligible

cross flow two-dimensional behavior is assumed in stream wise direction[99]. The de-
tection of separation and transition becomes more complex, whereas for two dimensions
there is a point of separation and a point of transition three dimensions requires the

consideration of a separation and transition line. Often transition is assumed after a
small percentage of the chord length, then a transition line is imposed on the solution,
this is forced transition. Natural transition through transition detection requires the

consideration of the direction in which the transition occurs. For separation coalesc-
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ing streamlines can form a separation line which should be comparable to the lines of

vanishing wall shear stress3.

Figure 5.10: The separation line is determined by the coalescing streamlines, see Mughal[99]

3for the steady case coalesced streamlines and lines of vanishing wall shear stress should coincide
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5.6.2 Addition of Body Forces for Wind Turbines

To apply the two-dimensional system to an inherently three dimensional problem like a
rotating profile the most important added forces should be incorporated somehow. As-
suming a quasi-steady rotational velocity and a rigid blade the centrifugal force follows

directly from the radius and the rotational velocity of the blade.

ρf1 = −ρΩ×
(

Ω × r
)

. (5.6)

Given the centrifugal force, there will be an induced crossflow which in turn will induce
a Coriolis force, which directly affects the effective pressure gradient over the profile in
chordwise direction.

ρf2 = −2ρ
(

Ω × u
)

. (5.7)

A contribution for the case of a HAWT(Horizontal Axis Wind Turbine) rotor is the period-

ically changing direction of gravity which directly influences the magnitude of the pres-
sure gradient in chordwise direction and thus acts to enforce/counteract the centrifugal
force and the Coriolis force depending on the azimuth angle of the blade. Suppose the

magnitude of the gravitational acceleration is only dependent on time and the frequency
with which the blade rotates, then assuming the rotation frequency is constant

fgrav = ±g0 sin(ωt)

Where the sign depends on the rotation direction and the direction of the axes in three

dimensions, for the present two dimensional case the sign will be assumed positive.
This term can easily be added to the integral equations since it is independent of the
boundary layer thickness. Unfortunately this requires an alteration of the two and

three equations models that have been presented earlier, however this will not affect the
characteristics of the problem formulation, i.e. the hyperbolicity is unaffected since the
gravity term is not dependent on the primary variables. The time dependent force term

due to gravity can also be added to the field form of the boundary layer equations which
allows for a numerical reference result

If the time-dependency of the angular velocity is considered an extra force vector is
added namely

ρf3 = −ρ∂Ω

∂t
× r, (5.8)

which will also not affect the hyperbolicity directly. Finally, in case three-dimensional
boundary layer flow is considered the twist of the blade in radial direction will induce

a crossflow component. Whereas the body forces are easily added as they do not affect
the integral formulation, the profile induced crossflow requires special closure relations,
i.e. due to Stock for laminar and Mager or Johnston for turbulent boundary layer

(see Van Garrel[52]). The closure models for the crossflow are however based on flows
over rotationally static profiles (i.e. conventional aircraft wings, flat plates etcetera),
a dedicated closure model for windturbines, with significant contributions of the above

mentioned fictitious forces, has yet to be derived. The separation point is slightly delayed
due to rotational effects, mostly because of the effect of the centrifugal force and the
coriolis force (see e.g. Du and Selig[42], [41]). Some clues may be derived from early

experiments with rotating discs with laminar boundary layer flow (see e.g. Banks and
Gadd [9]), or from numerical tests (see e.g. Miller[95]), however more research is needed
to determine a complete set of closure relations which incorporate all the rotational

effects.

5.6.3 Compressibility

Drela devised a correction term for the varying density based on the Mach number,

this correction can be readily substituted in the current formulation (see Drela [35],
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Sekar[120] in reference to Drela and Giles, and Wolles). The correction enters the sys-

tem of equations through an extra shapefactor. In case the compressibility becomes
negligible the extra shapefactor becomes equal to the shapefactor for incompressible
flow and the extra terms in the partial differential equations drop out or become unity,

this ensures a continuous solution and avoids the need for extra logic.

5.6.4 Effects on Hyperbolicity

The addition of cross flow, the Coriolis force and compressibility will affect the hyper-
bolicity of the IBL equations. To evaluate the effect a three dimensional boundary layer

flow is assumed with the addition of fictitious body forces and crossflow. Compress-
ibility is considered negligible since the Mach number will be at most ∼ 0.3 and only
near the edge of the rotor blade. Starting with the two-dimensional IBL equations one

can already introduce the fictitious forces assuming a given radius, rotational speed
and crossflow velocity, this is done in RFOIL for the steady case using the chord/radius
ratio.
As said, only the cross flow and the Coriolis force directly affect the hyperbolicity, how-

ever the fictitious forces will likely also affect the hyperbolicity indirectly through a
contribution to the closure relations. Again, this will have to be investigated further
through numerical or experimental studies.





Chapter 6

Description of Numerical Methods

Using an finite difference method (FDM) for a three-dimensional boundary layer might

come at premium cost compared to the finite volume method (FVM) and the finite el-
ement method (FEM) to account for the grid transformation and the cross flow angle.
Furthermore, the fact that the differential equations need to be adapted to accommodate

the local geometry requires on the fly changes in the code and finally certain transfor-
mation terms in the differential equations might grow excessively large for large angles.
In general the following qualitative statements can be made

• FDM

– Conservation is not maintained automatically

– Limited to smooth shapes

– Higher order requires increase of resolution

+ easy to implement for simple geometries

• FVM

– Higher order requires increase of resolution

– difficult to apply to three dimensional geometries in order higher than two

+ Conservation is maintained

+ easy to implement for simple geometries

• FEM

– Ill-formed formed matrices

– Selection of weight functions

+ Conservation is maintained

+ Can handle complex geometries

+ Order can be increased more easily

All presented numerical methods use the method of lines and the time integration will

be done explicitly using a one to fourth order Runge-Kutta scheme, see section (5.1.2).
For stability of higher order schemes smoothing may be applied and/or a so-called
flux/slope limiter. For expediency the methods will be described using a uniform spa-

tial grid. The flux/slope limiter basically selects and/or modifies the fluxes at the cell
faces in order to preserve monotonicity. The method is only suitable for the FVM and
FEM, FDM may require smoothing for the central difference schemes(see Swafford[128]).

For the FVM and FEM A so-called Total Variation Diminishing(or TVD) scheme for the

89
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spatial discretisation combined with a TVD preserving Runge-Kutta temporal scheme

(or Strong Stability Preserving-RK) should lead to a suppression of wiggles or spurious
modes (see e.g. Hesthaven[64],Cockburn[25] or Naber[101]), this should take away the
need for smoothing. Following Cockburn and Shu, Naber employs a minmod limiter

in combination with the SSP-RK integration to preserve monotonicity. The higher or-
der flux discretisations for the FVM and FEM can be found through Monotone Upwind
Schemes for Conservation Laws (or MUSCL), see Hesthaven[64],Cockburn[25]. Starting
with the FDM the basics of numerical approximations will be discussed, then naturally

followed by the FVM and finally the FEM followed by a discussion on the time integra-
tion and stability considerations.

For the FDM’s the non-conservative system is used, see system (4.4). For the FVM’s
and the FEM the conservative system should be used, see system (4.18).

6.1 Finite Difference Method

The discretisation methods will be elaborated for the following exemplary non-conservative
partial differential equation (PDE)

Ft +KFx,

which should not be confused with the quasi-linear form of the conservative PDE’s.

∆x

Fi−1, Ki−1 Fi, Ki Fi+1, Ki+1Fi−2, Ki−2

Figure 6.1: Representation of discretision for the FDM

6.1.1 General Descriptions

The first and most obvious way to discretise the differential equation is to consider nu-
merical approximations of the differential terms e.g. using Taylor expansions. Consider
the expansions around the point x

F (x+ ∆x) = F (x) + ∆x
dF

dx
+

∆x2

2

d2F

dx2
+ O(∆x3),

F (x− ∆x) = F (x) − ∆x
dF

dx
+

∆x2

2

d2F

dx2
+ O(∆x3),

...

F (x± n∆x) = F (x) ± n∆x
dF

dx
+ n2 ∆x2

2

d2F

dx2
+ O(n3∆x3),

with combinations of these approximations the differential terms dnF
dxn can be approxi-

mated to various orders of accuracy. Using more points and higher order expansions

higher order approximations can be found for the differential terms. The approximation
is consistent if in the limit ∆x→ 0 it becomes equal to the exact differential terms. This
consistency holds surrounding the nodal points at which the differential equations are

considered. Many combinations are possible to obtain different schemes, the following
well known finite difference schemes are implemented

• First, Second, Third order upwinding and Quadratic Upstream Interpolation for

Convective Kinematics(QUICK)
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• Second and Fourth order central differencing

• single step Lax-Wendroff scheme and MacCormack scheme

First, Second, Third order Upwinding and QUICK Differencing Schemes

An important (and wellknown) downside of using upwinding is the introduction of artifi-
cial diffusion; in upwind discretisation the neighboring nodes are used with directional

bias, this asymmetry causes the first even differential term (i.e. ∂2F
∂x2 ) to be present in

the approximation for the first order differential term (i.e. ∂F
∂x

). The importance of this
first even differential term is directly dependent on the grid resolution, the importance
decreases for increasing order of upwinding. The asymmetry (i.e. the directional bias) is

also present due to the forward explicit time integration.

If one has to solve for problems with a very small timestep the distance step is neces-
sarily lowered to prevent artificial diffusion from polluting the solution, i.e. the CFL-

number is maintained (see sections (5.3), (6.5)). This however requires a very fine grid
to be solved for very small time steps. Inversely, given a spatial discretisation the time
step is limited due to stability considerations.

In case of central differencing the artificial diffusion is not present and the distance step
size ∆x can be maintained (lowering the CFL number) without the addition of diffusion
or any other even order effect. However odd order effects remain present for central
differencing and it is clear that for hyperbolic problems upwind differencing produces

more stable solutions provided that the direction of upwinding corresponds roughly with
the average direction of the characteristics, see the next section. The first order upwind
differencing scheme is written as

Forward differencing: a<0 Fx =
Fi+1 − Fi

∆x
+ O(∆x2),

Backward differencing: a>0 Fx =
Fi − Fi−1

∆x
+ O(∆x2),

and a popular second order upwind differencing scheme is given by

Forward differencing Fx =
−Fi+2 + 4Fi+1 − 3Fi

2∆x
+ O(∆x3),

Backward differencing Fx =
Fi−2 − 4Fi−1 + 3Fi

2∆x
+ O(∆x3).

The above choice between forward and backward differencing is implemented with a

switch which uses the sign function to discriminate between the predominant direction
of the information flow. Predominant because for this thesis a system is solved with
not one but three directions in which information travels. The predominant direction

for this thesis is determined simply by considering the sign of the averaged eigenvalue1.
Alternatively one can choose the sign of the largest eigenvalue, then the overall direction
of information travel is assumed to be equal to the direction of the characteristic which
accompanies the largest eigenvalue.

When the characteristics do not travel in the same direction selecting one direction of
upwinding will effectively cause downwind discretisation for one or more of the charac-

teristics. Since downwind discretisation is unconditionally unstable stability issues are
expected for upwind differencing. This may not be a problem if the downwind discreti-
sation takes places for the characteristic which has a relatively small eigenvalue.

Forward differencing:
1

2

[
1 − sign(λi,max)

]
∆x,

Backward differencing:
1

2

[
1 + sign(λi,max)

]
∇x,

1i.e. the sign of the sum of the eigenvalues
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where ∆x and ∇x are commonly used to denote the forward and backward differencing

operator respectively.

In the absence of diffusion the central differencing scheme is prone to oscillatory behav-
ior due to odd-even decoupling, to alleviate this a discretised third derivative is added
to the solution, see e.g. Gerritsma[53]

Forward: K<0 Fx =
Fi+1 − Fi−1

2∆x
− λ

Fi−1 − 3Fi + 3Fi+1 − Fi+2

∆x
+ τ,

Backward: K>0 Fx =
Fi+1 − Fi−1

2∆x
− λ

Fi+1 − 3Fi + 3Fi−1 − Fi−2

∆x
+ τ.

where

τ = ∆x2

(

λ− 1

6

)
∂3u

∂x3
+ O(∆x4).

now depending on the value of λ different schemes emerge, λ = 1
6

gives a third order
upwind discretisation and λ = 1

8
gives the QUICK scheme which, if applied to a FVM

would amount to upwind/downwind quadratic interpolation for the face values.

Second and Fourth Order Central Differencing Schemes

Previously the differential term ∂F
∂x

was approximated by taking the nodes predominantly

in one direction based on the sign of the average eigenvalue. For central differencing
schemes no such distinction is made, the neighboring nodes are used equally, this
reduces the spatial numerical diffusion. However, the forward differencing in time indi-

rectly causes negative diffusion and this negative diffusion term causes errors to growth
unbounded, the forward in time, central in space scheme is unconditionally unstable
(see Gerritsma[53]). For this reason smoothing or added artificial diffusion is usually

required to maintain stability. The second order accurate central differencing scheme is
given by

Fx =
Fi+1 − Fi−1

2∆x
+ O(∆x3),

and for the fourth order central differencing, from Veldman[143]

Fx =
−Fi+2 + 8Fi+1 − 8Fi−1 + Fi−2

24∆x
+ O(∆x5).

Lax-Friedrich, Single step Lax-Wendroff and MacCormack Difference Schemes

The differencing schemes to be discussed now are basically of mixed composition in that
they combine upwinding, central differencing and multiple time steps, to obtain better
properties in terms of accuracy and/or stability.

As said the forward in time central in space schemes are unconditionally unstable, one

way to solve this is to add artifical diffusion which is done for the Lax-Friedrich scheme
and the Lax-Wendroff scheme. The Lax-Friedrich scheme adds the following diffusion
term to the central differencing scheme

∆x2

2∆t

Fi+1 − 2Fi + Fi−1

∆x2
.

For the single step Lax-Wendroff scheme a different diffusion term is added. Originally

the Lax-Wendroff scheme is meant for scalar advection equations, this scalar value can
be approximated by the spectral radius of the coefficient matrix which gives

ρ2(K)
∆t

2∆x2

Fi+1 − 2Fi + Fi−1

∆x2
,

where ρ(K) is the spectral radius of the (Jacobian) coefficient matrix K, alternatively

the full coefficient matrix K can be used which gives a matrix-vector multiplication.
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The MacCormack scheme consists of two steps, namely a predictor and a corrector step,

the predictor step uses either forward or backward differencing and the corrector step
uses the opposite scheme. For this thesis a method of lines approach is taken so a
semi-discrete formulation is used.

Predictor, forward:
∂F

∂t
= − K

∆x
(Fi+1 − Fi) + L, → Fn+1,

Corrector, backward:
∂F

∂t
= − K

2∆x
(Fn+1
i − Fn+1

i−1 ) +
L

2
, → Fn+1,

The next time step is then given by

Fn+1 = Fn+1 + Fn − Fn+1

2
.

In the current implementation the MacCormack scheme can be part of a higher order
Runge-Kutta time integration.

Steger-Warming Flux Vector Splitting Scheme

Matsushita and Akamatsu[90] use a second order differencing scheme applied to a set
of conservative IBL equations

Ft + fx = L,

The approach of Matsushita and Akamatsu consists of two distinct parts, one being
the first order scheme and the other the required extension to obtain second order

differencing. For the Steger-Warming scheme the left and the right flux are split in
a positive and a negative direction and what results is basically an eigenvalue based
upwind scheme. The first order differencing scheme is defined by

Fn+1
i = Fni − ∆t

∆x

(

f+,n
i − f+,n

i−1 + f−,n
i+1 − f−,n

i

)

+ ∆tLni ,

The second order differencing scheme is then defined by

Fn+1
i =

1

2

(

Fni + Fn+1
i

)

− ∆t

2∆x

[

f+,n
i − 2f+,n

i−1 + f+,n
i−2 − f−,n

i + 2f−,n
i+1 − f−,n

i+2

+f+,n+1
i − f+,n+1

i−1 + f−,n+1
i+1 − f−,n+1

i

]

+
1

2
∆tLn+1

i ,

where

f± = K±F, (6.1)

K± = MΛ±M−1, (6.2)

with M containing the right-eigenvectors ξ1,2 and Λ+ and Λ− containing the eigenvalues

λ+ and λ− which are defined by

λ± =
1

2

(
λ± |λ|

)
.

Note that the overbar values indicate the values at the new timestep of the first order
solution. The above scheme is basically a Lax-Wendroff time-step combined with a first
and a second order Steger-Warming scheme. Since for this thesis the method of lines is

used the time derivative needs to be written explicitly, the first order step is then

(
∂F

∂t

)n

= − 1

∆x

(

f+,n
i − f+,n

i−1 + f−,n
i+1 − f−,n

i

)

+ Lni ,
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and the second order scheme

∂F

∂t
=

1

2

∂Fn

∂t
− 1

2∆x

[

f+,n
i − 2f+,n

i−1 + f+,n
i−2 − f−,n

i + 2f−,n
i+1 − f−,n

i+2

+f+,n+1
i − f+,n+1

i−1 + f−,n+1
i+1 − f−,n+1

i

]

+
1

2
Ln+1
i .

If a one-step approach is taken instead of a two-step approach the semi-discrete second
order scheme can be written directly as

∂F

∂t
= Lni − 1

2∆x

(

3f+,n
i − 4f+,n

i−1 + f+,n
i−2 + 3f−,n

i − 4f−,n
i+1 + f−,n

i+2

)

,

and analogously, the standard 3rd order scheme is written as

∂F

∂t
= Lni − 1

6∆x

(

3f+,n
i − 6f+,n

i−1 + f+,n
i−2 + 2f+,n

i+1 + 3f−,n
i − 6f−,n

i+1 + f−,n
i+2 + 2f−,n

i−1

)

,

which can be added easily since it does not require an increase of the stencil size.

6.1.2 Boundary Conditions

The numerical treatment of the left and the right boundary condition depend on the
numerical scheme that is used to approximate the inner solution. For any higher or-
der FD scheme the first step(s) at the left boundary are based on lower order backward

schemes of successively higher order accuracy with each next step until the final higher
order accuracy is reached, see figure (6.2) For the right boundary a backward differ-

left BC
1st backward

2nd backward

3rd backward

i = 1 i = 1 i = 2 i = 3 i = 4

3rd backward

Figure 6.2: Left boundary condition for higher order FDM

encing scheme is used, preferably of the same order as the scheme for the inner ap-
proximation. For the Steger-Warming scheme the right BC is left open using backward
differencing, although one can also choose to ignore the negative flux vector f− which

represents left travelling characteristics.

6.2 Finite Volume Method

The finite volume discretisation and the finite element discretisation will be elaborated
for the following exemplary set of conservative partial differential equations (PDE)

Ft + fx = L,

and in quasi-linear form

Ft +KFx = L.
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Fi−1

Fi

Fi+1

∆x

i − 1 i i + 1

fi−1/2 fi+1/2

Figure 6.3: Definition of control volumes for the FVM

6.2.1 General Description

The FVM is currently the most popular discretisation method for fluid mechanics due
to the relative ease, the intuitiveness of the implementation compared to other method,
and the automatic conservation of variables. FVM is considered intuitive because the

control volume is physically significant as are the derived conservation relations. In
terms of the implementation the FVM’s and the FDM’s are almost identical for one-
dimensional problems, the only appreciable difference is that the FVM’s will make use of

eigenvalues/eigenvectors of the coefficient matrix K and the flux difference is considered
instead of nodal differences as with the FDM’s. For the finite volume scheme the domain
is divided in non-overlapping control volumes. The conservative form of the differential

equations is now integrated over the control volume and rewritten using the divergence
theorem ∫

FtdΩ =

∫

LdΩ −
∮

f · ndΓ,

which is taken discretely over the control volume. To allow non-zero integration of the

ξ

ζ

1

fluxrightfluxleft

fluxrightfluxleft

Figure 6.4: Dummy dimension ζ to allow integration

boundary integral a dummy dimension ζ is introduced, the profile will be assumed to

be of length one in this direction, see image (6.4). The surface and line integrals for
the one dimensional case are simply the length of the one dimensional element and a
point respectively, multiplying these with a unit length width gives a surface area and

a length respectively. Assuming the solution is piecewise constant per control volume
this results for the one-dimensional case in

Ft∆x = L∆x− (fR − fL) ,

and the semi-discrete system becomes

Ft = L− 1

∆x
(fR − fL) .

The resulting schemes in FVM are based on space and time averaged values, whereas

the FDM are based on nodal values, the FEM can use both. Consider the Jacobian of
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the conservative system,

Kij =
∂fi
∂Fj

,

now the flux over the cell faces can be found by integration. Consider the flux over the
right face, the flux is estimated first by integrating the Jacobian from the left volume to
the right volume

(

f̃i
)

L
= (fi)L +

∫ FR

FL

(Kij)L dFj ,

then from the right to the left volume

(

f̃i
)

R
= (fi)R −

∫ FR

FL

(Kij)R dFj ,

taking a linear approximation for the Jacobian

1

2

[(

f̃i
)

R
+
(

f̃i
)

L

]

=
1

2

(
(fi)L + (fi)R

)
− 1

2

(
(Kij)R − (Kij)L

)
∆Fj ,

which, written in scalars, boils down to the following approximation for the differential
term

∂g

∂x
≈

∆(
∫ Fr

Fl
KdF )

∆x
.

This approximation shows the basic components of the flux difference schemes, the
actual flux difference term ∆Fj is used in different way for different flux schemes, one
of the most used schemes is the Roe-scheme.

Roe Flux Differencing Scheme

The semi-discrete Roe scheme is written as (see Wesseling[153])

∂F

∂t
= Li − 1

∆x

(

fi+ 1
2
− fi− 1

2

)

,

where

fi± 1
2

=
1

2
(fi + fi±1) − 1

2

∣
∣
∣Ki± 1

2

∣
∣
∣ (±Fi±1 ∓ Fi) ,

and instead of Roe-averaging, the coefficient matrices are initially averaged solely based

on the grid spacing

Ki± 1
2

=
hiKi±1 + hi±1Ki

hi + hi±1
,

or simply Ki± 1
2

=
Ki±1+Ki

2
for a uniform grid. The requirement that needs to be fulfilled

by the Riemann flux is that

Ki± 1
2

(±Fi±1 ∓ Fi) = ±fi±1 ∓ fi,

suppose the average coefficient matrix is constructed as follows

Ki± 1
2

=








k
1
2
11 k

1
2
12 k

1
2
13

k
1
2
21 k

1
2
22 k

1
2
23

k
1
2
31 k

1
2
32 k

1
2
33







, Ki±1 =






k±1
11 k±1

12 k±1
13

k±1
21 k±1

22 k±1
23

k±1
31 k±1

32 k±1
33




 ,



6.2. FINITE VOLUME METHOD 97

then based on the requirement each element is given by

i+
1

2
: k

1
2
nm =

k+1
nmF (m)i+1 − knmF (m)i
F (m)i+1 − F (m)i

,

i− 1

2
: k

1
2
nm =

knmF (m)i − k−1
nmF (m)i−1

F (m)i − F (m)i−1
,

(6.3)

which needs to be constructed for each cell face. Obviously the averaged coefficient ma-
trix does not fulfill the requirement. The problem of the above reconstruction method

is that for e.g. a flat plate problem there will be locations on the plate where F (m)i −
F (m)i−1 = 0 leading to zero divisions2 , fortunately exactly in these situations there is
no flux over the cell boundaries, it does however impose the requirement that the flux
is set to zero where the difference of successive primary variables is zero. In general the

initialisation is independent of the location on the plate, i.e. this cannot be discarded
as an artificial problem related to specific theoretical test cases.

The Roe scheme originally has problems if some eigenvalue becomes zero, this is cor-
rected by the so-called sonic entropy fix.
The entropy fix was proposed by Harten in 1984 and is described by (see Wesseling[153])

|λ̃p| =
1

2

(
λ

ǫ
+ ǫ

)

, |λ̃p| < ǫ, p = 1, . . . 3,

where ǫ is a small number. If this occurs, the Jacobian coefficient matrix needs to be
retrieved through equation (6.2).

Kurganov - Tadmor Scheme

The Kurganov-Tadmor scheme uses a scalar value instead of the Roe-averaged Jaco-
bian, the scalar value is equal to the maximum of the spectral radii of the , i.e.

ki±1/2 = max
(
ρ(KL), ρ(KR)

)
,

where the flux over e.g. the right cell face is given by

fi+1/2 =
1

2
(fi + fi+1) − ki+1/2∆Fi+1/2.

Specifically for the Roe scheme the change of the flux over the cell face is approximated
linearly using the Roe-average Jacobian matrix and for the Kurganov-Tadmor scheme
this is done with the maximum spectral radius.

The implementation of the discussed FVM’s is almost identical to the FDM due to the
one-dimensionality, except that the grid transformation can take place a posteriori as

discussed in the introduction.
The benefit of the Roe-scheme compared to the Kurganov-Tadmor scheme is that it
is not necessary to employ eigenvalues or eigenvectors as long as |λ| > 0. Higher order

Roe-schemes can be obtained through monotone upwind schemes for conservation laws
(MUSCL), which uses extrapolated states left and right to determine the flux vector, see
section (6.6).

6.2.2 Boundary Conditions

The boundary conditions for the FVM schemes are not so straightforward as for the FDM

schemes. The different nature of the FVM requires a somewhat different treatment of

2at all points, except the first point near the left boundary point, and at x > max
(∫

λ+ dt,
∫

λ− dt,
∫

λ3 dt
)
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the boundaries. As is clear from the problem definition the left boundary condition is

fixed and information should only travel away from the boundary condition and the right
boundary condition should basically float based on the inner solution where it should
not have any influence on the inner solution. This suggests the use of the characteristics

as a means to control the directionality of the information. For the Roe scheme this can
be incorporated by using a ghost cell on the right boundary, the left neighboring cell
then uses only the right travelling characteristics to ensure that the right BC does not
influence the cells to the left. The left boundary value fills up the first FV, the right

neighboring cell only uses the positive valued eigenvalues to determine the flux over the
left face. A basis approach is depicted in figure (6.5), The ghost cell for the Roe scheme

λ
−

λ+ λ+

left BC

control volume

λ
−

λ+

control volume

λ
−

λ+ λ+

control volume

λ+

control volume

λ
−

right BC

Figure 6.5: Boundary conditions for the FVM

is arbitrary since it does not influence the inner solution, to have a smooth outflow a
Von Neumann BC is chosen.

6.3 Finite Element Method

The finite element discretisation and the finite element discretisation will be elaborated

for the following exemplary set of conservative partial differential equations (PDE)

Ft + fx = L,

and in quasi-linear form

Ft +KFx = L.

Fi−1

Fi Fi+1

∆x

i − 1 i i + 1

fi−1/2 fi+1/2

Figure 6.6: Control volumes for the Discontinous Galerkin method
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6.3.1 General Description

Discontinuous Galerkin(DG) was the first FEM which could be applied to hyperbolic

systems, the conventional (or continuous) Galerkin method assumed continuity on the
interfaces of control volumes. In FEM the general idea is to use functionals in combi-
nation with a minimisation formulation to find the closest approximation to the exact

solution. The conservative formulation allows for a consideration of control elements
much like the control volume of the FVM, in fact the first order DG scheme is equivalent
to the first order FV scheme.

The discontinuous Galerkin scheme was developed for the purpose of solving hyperbolic

equations and has been in use for over 30 years. Benefits in comparison with Contin-
uous Galerkin are the suitability for parallel processing, the geometric flexibility, the
possibility of local h refinement and local p refinement, and the invertibility of the mass

matrices which allows for explicit time integration. The control volumes are now con-
trol elements, these elements may have nodal points in case of a nodal expansion base,
the points determine the order of the approximation which is given by a summation of

the approximations over the element. In an element centered expansion base the basis
functions form the approximation surrounding the cell center, the local values in the
control element simply follow from there location with respect to the cell center. The

latter approach will be used for this thesis.3 The elements are tied together through
shared element boundaries, this immediately allows for an easy implementation of the
boundary conditions since the nodal points lie directly on the boundary. For this hyper-

bolic problem the nodal points are merely used for the flux determination over the cell
faces and in that way the elements are connected. The control elements can be of ar-
bitrary shape as long as the nodal points can be connected to neighboring points. This

allows for geometrical flexibility but has the inherent downside of being inefficient in
terms of matrix indexing, see figure (6.7). Likewise for the continuous Galerkin method
this leads to a large bandwidth of the global mass matrix.

In the following text about DG several indices will be used, see table for the nomencla-
ture of these indices.

name index
maximum order of basis functions/time-integration p
polynomial order i,j
element index/Runge-Kutta step k
neighboring element index l
Runge-Kutta substep m
time step n
dimension d

Table 6.1: FEM indices

The solution somewhere in the control element is defined as the sum of the separate

values of the different (polynomial) orders of the basis functions ψi(x) times a different
weight factor for each polynomial order i

F̂ k(x) =

p
∑

i=1

Wiψi(x), x ∈ Dk, (6.4)

where k is the kth element, Dk is the space of the kth element, Wi is the ith weight

factor and p is the maximum (polynomial) order. For polynomial basis functions the
approximation with respect to the center point of the finite element is similar to a series
solution approximation surround the center point, i.e. a Taylor expansion, see e.g.

Naber[101].

For each cell this gives p number of unknowns versus p equations since the summation
is simply a linear combination, i.e. each contribution can be considered separately

3has the immediate but inconsequential downside that the solution approximation at the cell faces is least
accurate, which of course is exactly where the numerical flux is approximated.



100 CHAPTER 6. DESCRIPTION OF NUMERICAL METHODS
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Figure 6.7: Space-time FEM grid (left),Space FEM grid (right)

leading to a different equation for each order/part of the basis function, the summation
of which gives the solution in a given point. In general there can be p-refinement, which
increases the order of the approximation but also h-refinement which refines the grid

resolution, i.e. more or less control elements.

The weight factors will serve as the height of the nodal points and the scaling factors
for the global approximation. Given some set of basis functions and weight factors,

a solution procedure has to be formulated. To formulate the solution procedure the
relevant equations need to be considered, in conservative form the IBL equations are
given by

Ft + fx = L,

this differential equation should hold over the entire solution domain, so

Space FEM:

∫

Ω

(
∂F

∂t
+
∂f

∂x
− L

)

dx = 0,

Space-Time FEM:

∫

Ω

(
∂F

∂t
+
∂f

∂x
− L

)

dxdt = 0.

(6.5)

If space-time Galerkin is used the basis functions should be dependent on x and t
whereas the space Galerkin approach only has space dependency, see for instance Klaij
who applies space-time DG in his thesis[75]. The space-time formulation will allow

for an arbitrarily accurate time-discretisation and a natural extension to local time-
stepping. However since higher order time-discretisation is not deemed necessary given
the approximative nature of the IBL equations, given the relative newness of space-time

DG and given time-constraints only a Runge-Kutta Discontinuous Galerkin method will
be used for the FEM. Interesting from the viewpoint of performance optimisation is the
possibility to use a p− level multigrid approach with parallel implementation (see Luo et

al[88]).

Continuing with the space-FEM, since the bracketed term in equation (6.5) is identically
zero it can be multiplied with an arbitrary function φ(x) which will be called the test

function,
∫

Ω

(
∂F

∂t
+
∂f

∂x
− L

)

φ(x)dx = 0.

Using the approximations this is written as

∫

Ω

(

∂F̂

∂t
+
∂f̂

∂x
− L̂

)

φ̂(x)dx = 0, (6.6)
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where the hat indicates the approximated value. To obtain the continuous Galerkin

formulation the test functions φ and the basis functions ψ are assumed to span the
same space. Given the following definition of the inner product

〈φ(x), ψ(x)〉 ≡
∫

R

φ(x)ψ(x)dx = 0,

this means that the residual is orthogonal to the basis function, i.e. the approxima-
tion is orthogonal to the error of the approximation which is beneficial for stability and

convergence. The test functions are written as

φ̂k(x) =

p
∑

i=1

Viψi(x), x ∈ Dk,

which is only different from the basis functions through the different weight factors.
The integral is rewritten using integration by parts

∫

Ω

∂F̂

∂t
φ̂dΩ +

∫

Γ

f̃ · nφ̂dΓ −
∫

Ω

∇φ̂ · f̂dΩ −
∫

Ω

L̂φ̂dΩ = 0,

where the integral over the boundary is a definite integral, this requires an approxima-

tion for the flux on the boundary, this is called the numerical flux, hence the difference
in notation for the two flux terms.

Note that using φ̂ = 1 would result in a FVM. If the approximations are applied directly
in the above formulation of the integral the continuous Galerkin method emerges with

some global mass and stiffness matrix. The Discontinuous Galerkin method applies the
integral element wise with the alteration that the variables at each node are duplicates
so as to ensure that each element has a local description, this effectively means there

are two times more variables compared to continuous Galerkin.

The resulting difference over the nodes leads to a flux which needs to be treated sepa-
rately, this numerical flux is the only means to connect the elements with each other,
otherwise the elements are isolated.

Following Özdemir[106] it will be assumed that the solution is separable in space and
time and since the basis functions are considered in space only it holds for any element
that

F̂ k(x, t) = F̂ ki (t)Wiψ
k
i (x), (6.7)

where the Einstein notation is used for the summation, here i = 0 . . . p. For higher
dimensions the separability is assumed for each dimension so (also see Naber[101])

F̂ k(x, y, t) = F̂ ki1,i2(t)Wi1,i2ψ
k
i1,i2(x)χki1,i2(y),

where i1 and i2 indicate the polynomial order of the basis functions in x and y direc-
tion respectively, for these orders it should hold that given a selected order of spatial

accuracy p, id is limited by
1

d!

d

Π
s=1

(p+ s),

where d is the spatial dimension, this is to ensure that the combined polynomial order
of the basisfunctions does no exceed the pre-selected polynomial order.

If Gaussian quadrature is chosen the approximations can be integrated exactly if mono-
mial or polynomial basis functions are used, a computationally cheaper way to integrate
is to expand the source term L̂k and the flux f̂k in terms of the basis functions (see e.g.
Atkins and Shu[7])

f̂kd = f̂kdi(t)ψ
k
i (x), L̂k = L̂ki (t)ψ

k
i (x),

here the terms f̂kdi and L̂ki are the flux vector and the source vector based on the primary

variable vector F̂ ki . Substituting the approximation in the integral and using Einstein
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notation gives for some finite element

∫

Ωk

∂F̂ ki (t)

∂t
V ki W

k
j ψ̂

k
i ψ̂

k
j dΩ +

∫

Γk

f̃kd n
k
dV

k
i ψ̂

k
j dΓ −

∫

Ωk

V ki f̂
k
diψ̂

k
i

∂ψ̂kj
∂xd

dΩ

−
∫

Ωk

L̂ki ψ̂
k
i ψ̂

k
j dΩ = 0.

From the above formulation a final discretisation cannot yet be derived, first the flux
terms have to be treated and the surface areas of the elements have to be determined.
The weight functions are simply set to 1 and thus ψ̂ki = φ̂ki .

Coordinate transformation in the one dimensional case is rather trivial as there is only
a single angle transformation possible. For higher dimensional problems the Jacobian
of the local coordinate system with the global coordinates system has to be applied, the

integral terms are affected through the dimensionality of the surface areas, the bound-
ary line segment and the basis functions. Basically the formulation of the problem is
based in the computational domain (η, ξ) whereas the solution is sought in the physical

domain (x, y), see figure(6.8). The Jacobian for the two dimensional problem is given by

J =

[
∂x
∂η

∂y
∂ξ

∂y
∂η

∂x
∂ξ

]

,

and the derivatives follow from the chain rule

[
∂
∂x
∂
∂y

]

=

[
∂η
∂x

∂
∂η

+ ∂ξ
∂x

∂
∂ξ

∂ξ
∂y

∂
∂ξ

+ ∂η
∂y

∂
∂η

]

,

which can be written as (also see i.e. Özdemir[106],De Maerschalk[34])

[
∂
∂x
∂
∂y

]

=

[

R11
∂
∂η

+R21
∂
∂ξ

R12
∂
∂ξ

+R22
∂
∂η

]

, R = |J |−1.
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Figure 6.8: Quadrilateral Element transformation for two dimensional problem

The transformation through the Jacobian is placed directly in the integration formula-
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tion, writing out the individual integral terms(see Özdemir [106])

∫

Ω̂k

dF̂ ki (t)

dt
ψ̂ki ψ̂

k
j |Jk|Ω̂,

∫

Γ̂k

hkd|Jk|ψ̂kj dΓ̂,

∫

Ω̂k

f̂kdi(t)
(

J−T
k

)

dl
|Jk|ψ̂ki

(

∂ψ̂kj
∂ξd

)

l

dΩ̂,

∫

Ω̂k

L̂ki (t)ψ̂
k
i ψ̂

k
j |Jk|dΩ̂.

where the flux hkd is given by

hkd = f̃kd n
k
d,

where nkd is the dth component of the unit outward normal vector on ∂Ω̂k. For the two-

ξ

x

left-BC

yη ξ

η

η

ξk

k − 1

k + 1αk−1

Figure 6.9: three 1D-elements representing some profile

dimensional IBL equations the problem is effectively one-dimensional and therefore the
elements are not transformable. In the physical domain however the one-dimensional
line segments represent actual segments of a profile segment but this can obviously not

affect any direction since there is only one dimension, yet it will affect the magnitude
of say the flux, the Jacobian for the (effectively) one-dimensional case will simply be a
scalar. The Jacobian can be moved in front of the integrals if it is assumed constant

per cell, it makes sense to apply the geometric information of the profile to generate
an analytic expression for the direction of the local profile aligned axes (both for the
two-dimensional as for the three-dimensional IBL equations). Also, the time derivative

can be moved out of the integral since it was assumed that the solution is separable
in space and time, also noting that the Jacobian term |Jk| can be divided out of the
equation, using the expansion in basis functions for the source vector and flux vector

the integral terms are now written as

(a)1
dF̂ ki (t)

dt

∫

Ω̂k

ψ̂ki ψ̂
k
j Ω̂,

(b)1

∫

Γ̂k

hkdψ̂
k
j dΓ̂,

(c)1
(

J−T
k

)

dl
f̂kdi(t)

∫

Ω̂k

ψ̂ki

(

∂ψ̂kj
∂ξd

)

l

dΩ̂,

(d)1 L̂ki (t)

∫

Ω̂k

ψ̂ki ψ̂
k
j dΩ̂.

where the source term L̂k and the flux term fkdi are written in terms of the basis func-

tions, the latter assumption also allows to write the unknowns outside the integrals.

This means that mass matrices, i.e.
∫

Ω̂k
ψ̂ki ψ̂

k
j Ω̂ and

∫

Ω̂k
ψ̂ki

∂ψ̂k
j

∂ξl
dΩ̂, can be constructed a



104 CHAPTER 6. DESCRIPTION OF NUMERICAL METHODS

priori which avoids the need to integrate over elements at each time level. Expanding the

source vector and the flux vector in terms of the basis functions limits the application to
a flux vector and a source vector which are linearly dependent on the primary variable
vector in the sense that a linear dependency conserves the accuracy of the primary vari-

able vector. In case the Jacobian transformation matrix is not constant over the element
an expansion in basis functions can also be applied to the Jacobian, more details on
this can be found in Özdemir[106], this is not relevant for the one-dimensional case.

The above formulation was used originally to simulate aeroacoustic with the Linearized
Euler Equations, see Özdemir[106] and Blom[12], in these theses the coefficient ma-

trices for the perturbations can be considered constant. In the current thesis the co-
efficient matrix, the source vector and the flux vector consist of the primary variables
and can thus not be assumed constant and in fact, looking at section(4.2),they are not

linearly dependent on the primary variables. To account for this non-linearity in the
integration completely, the non-linear terms must be contained within the integral. The
most accurate form is simply given by the full form

(a)2
dF̂ ki (t)

dt

∫

Ω̂k

ψ̂ki ψ̂
k
j Ω̂,

(b)2

∫

Γ̂k

hkdψ̂
k
j dΓ̂,

(c)2
(

J−T
k

)

dl

∫

Ω̂k

f̂k
(

∂ψ̂kj
∂ξd

)

l

dΩ̂,

(d)2

∫

Ω̂k

Lkψ̂kj dΩ̂,

which requires a quadrature rule for integrating the flux term (c)2 and the source term

(d)2.

For the expansion in basis functions (formulation 1) it should be noted that the expan-
sion is centered around the midpoint of the element, also, the expansion of the source
vector and the flux vector has automatically the same order as the expansion of the

primary variable vector. Thus a higher than linear primary variable dependency of the
source term and the flux term will increase the order of the truncation error since the
approximation is of lower order, i.e. on top of the error in the primary variable vector

an extra error is introduced because of the polynomial mismatch, so even if the primary
variable would be known exactly an error would result from the assumed linear depen-
dence of the source/flux term on the primary variable vector. However, if the polynomial

order is increased the added error due to the non-linearity of the source/flux term will
be of increasingly higher order, thus p−refinement is useful despite the non-linearity.

For Gaussian quadrature (formulation 2) there is the immediate benefit that the num-
ber of quadrature points for the source vector and the flux vector are independent

from the polynomial order of the basis functions so the difference in dependency of
the source/flux term on the primary variable can be accounted for by using a different
number of roots and weights. For this thesis a linear dependency will be assumed for

the GQR implementation.

Both the expansion in basis functions and the GQR will be applied and compared.

Gaussian Quadrature Rule

Numerical Quadrature refers to the numerical integration of functions. To numerically
integrate a function one can use direct rules like the Trapezodial rule or Simpson’s rule,

which are basically different ways of summating the function value at discrete steps on
the integration interval. A more efficient rule, and the rule which will be implemented for
this thesis, is the Gaussian Quadrature Rule (GQR). The GQR uses specific points with

specific weights for the summation which can give an exact value for the integration
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depending on the polynomial order and the number of nodes. The number of points

required to produce an exact integration of an pth order polynomial is equal to 2p − 1.
The basic approach using the GQR is as follows

∫ 1

−1

f(ξ)dξ =

2p−1
∑

i=1

= cif(ξi),

where ci and xi are the weights and the nodes respectively. For GQR the Gauss-Legendre
coordinates are used for the weights and node locations. To get the weights and the
nodes for the quadrature rule e.g. the Golub−Welsch algorithm can be used. Calling this

algorithm on the fly in case of p−refinement is not necessary and it would be expensive,
given that the polynomial order will most likely not exceed a number O(1) the values for
the weights and the nodes can be tabulated a priori up to a high order. The flux Term

(c) requires a 4p+1 number of nodes because of the tensor product and the source term
(d) requires a 2p + 1 number of nodes. The downside of using Gaussian quadrature as
opposed to an expansion in basis functions is apparent, the number of nodes for a two-

dimensional problem (like the three-dimensional IBL equations) becomes 4p + 1 for the
source term (d) and 8p + 1 for the flux term (c). For this reason, the expansion in basis
functions is a viable option, although accuracy will be lost, the gain in computational

efficiency is substantial; the difference lies only in integral terms (c) and (d). For a
constant uniform or non-uniform grid the expansion in basis functions requires either
only one evaluation to obtain the general mass/stiffness matrix or 2 × N-number of

evaluations respectively whereas the GQR requires 2 × N-number of evaluations for
each time step, also per evaluation of the integrals (c) and (d) the GQR requires 6p + 1
or 12p + 1 evaluations of the flux and source vector versus only p for the expansion in

basis functions.

Expansion in Basis Functions

As said the expansion in basis functions is beneficial from the viewpoint of computa-
tional efficiency and should be investigated further for application. The application of
the expansion in basis functions is straightforward, both the flux vector in term (c)1 and

the source vector in (d)1 are written as functions of the weights for the approximation
F̂ k. For each order of the approximation of F̂ there is basically a separate differential
equation, considering the final formulation (see equation (6.10))

dF̂ k0 (t)

dt
= · · · +

(

M
k
ij

)−1

S
k
jif̂

k
0 + L̂k0 ,

dF̂ k1 (t)

dt
= · · · +

(

M
k
ij

)−1

S
k
jif̂

k
1 + L̂k1 ,

...

dF̂ kp (t)

dt
= · · · +

(

M
k
ij

)−1

S
k
jif̂

k
p + L̂kp ,

where f̂ki , L̂
k
i are formed by substituting the ith weight F̂ ki in the relations for f and

L from the original conservative formulation of the IBL equations (see e.g. equations

(4.18), (4.11)). A problem now arises: The relations for f and L contain closure relations
based on the primary variables in F̂ ki , however the weights F̂ ki for i > 0 are not confined
to the applicable value ranges of the closure relations and so the flux and the source

vector for these weights will produce erratic numbers causing instability and in any case
unpredictability.

In general no physical meaning can be attributed to the weights of the expansion and

this collides with the inherent physical representation of the closure relations which are
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based on either empirical data or exact analytic solutions. If the exact range of appli-

cability of the closure relations is determined and subsequently extended with smooth
well-behaved functions the expansion in basis functions may well be stable and smooth.
However, heuristically, the non-physical values would make the solution inconsistent.

Given the heuristic nature of the argument and the importance of the expansion in basis
functions for the performance of the DG method a test should be performed compar-

ing both the expansion in basis functions and the Gaussian quadrature. In terms of
solution quality for one and second in terms of the actual computational efficiency.

For this reason both approaches will be elaborated.

Basis Functions

Given the final form of the discretisation the basis functions have to be chosen. Polyno-
mial basis functions of arbitrary order can be used in the following form

Normalised Monomial: ψk =

p
∑

i=0

ξi
√

2

2i+ 1
,

Lagrange: ψk = l(x)

p
∑

i=0

wi
ξ
, wi =

1

Π
p
i=k,k 6=i(xi − xk)

,

Legendre: ψk =

p
∑

i=0

P ki , P ki =

p
∑

j=0

(−1)j
(2i− 2j)!

2ij!(i− j)!(i− 2j)!
ξi−2j

√

2

2i+ 1
,

with

ξ =
2(x− xk)

∆xk
→ ξ = [−1, 1]

where the monomials and the Legendre polynomials are L2-orthogonal which allows to
write ∫

ψk(x)χk(y)dΩ =

∫

ψk(x)dx

∫

χk(y)dy,

which simplifies a future two dimensional implementation of the DG FEM. The La-

grangian polynomials require a nodal expansion base. If high order polynomials are
chosen for the approximation the so-called spectral DG-FEM or the p-version DG-
FEM emerge for Lagrange and Legendre polynomials respectively. The nodal expansion

base of the Lagrangian polynomials is then applied using for instance Gauss-Lobatto-
Legendre roots, see i.e. [34],[137]. The usefulness of employing a spectral method for
the space-discretisation is questionable if the flux determination is not of similar order,

also, the accuracy is limited by the accuracy of the time integration. Furthermore, the
coefficients of the Legendre polynomials will become excessively large for higher order,
to the extent that starting from about 4th order computer accuracy may not suffice,

especially for the inner products of these basis functions (see e.g.Özdemir[108]). The
monomials merely have the weight factors as the coefficients and thus do not suffer the
above problem, also, the Legendre polynomials can be constructed by a linear combina-

tion of monomials (see Blom[12] in reference to Råde and Westergren).

As was mentioned an equivalent first-order time accurate scheme can be constructed

with higher order spatial accuracy, for a higher equivalent time accuracy one must
resort to using a space-time formulation.
It must be noted that non-normalized monomials give badly conditioned mass matrices

which means that numerical precision becomes an issue for higher order monomials, a
problem which can be avoided by using normalised monomials as is done for this thesis,
see Hesthaven[64], Blom[12].

For the above reasons normalised monomials are chosen as basis functions, the order

will be implemented as a free parameter.
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Riemann Solver

The numerical flux h needs to be considered in more detail, for some element the flux
over the edges is given by

∫

Γ̂k

hkdψ̂
k
j dΓ̂,

where for the one-dimensional case for some element k the flux is given by 4 (see i.e.

Cockburn[25],Blom[12],Özdemir[106])

local Lax-Friedrich:
(

hk1

)

R
=

1

2

[

fk(ξ = 1) + fk+1(ξ = −1)−

θ|λd|max,R
(

F k+1(ξ = −1) − F k(ξ = 1)
)]

, θ ≥ 0,

Characteristics based:
(

hk1

)

R
=

1

2

[

fk(ξ = 1) + fk+1(ξ = −1)−

θKd

(

F k+1(ξ = −1) − F k(ξ = 1)
)]

, θ ≥ 0,

where the maximum eigenvalue |λd|max may be determined from the average of the

eigenvalues of the two neighboring elements or by taking the maximum eigenvalues of
the two neighboring elements.

For the characteristics based flux the total flux through the element over the edges is

given by

∫

Γ̂k

hkdψ̂
k
j dΓ̂ =

Nedges∑






∫

∂Ωkl

1

2

{(

f̂knkd + f̂ lnkd
)

−θ 1

2

[

Kk
dnkd +Kl

dnld
] (

F ki − F li

)}

ψ̂kj dΓ

]

,

(6.8)

where the coefficient matrix Kd is simply taken as the average of the Jacobian matrices
left and right from the edge based on averaged eigenvalues or through equation (6.3).
For the present one-dimensional case integral drops out and the flux values f̂k and f̂ l

can be obtained directly from filling in the exact cell faces of F̂ in the formulation for f .
For higher dimensions Gaussian quadrature has to be applied to obtain the integral.

Blom[12],Özdemir[106] base the numerical flux on the centered values, i.e. they only ac-

count for the zeroth order approximation. Cockburn[25] and Naber[101] use the higher
order terms but apply a conventional Godunov type Riemann solver. The approximate
Riemann solver to obtain the flux values is not of arbitrary order like the approximation

of the solution inside in the finite element. However using a multi-stage time integra-
tor in combination with a first order Riemann solver leads to equivalent accuracy as
would be obtained using a single stage integrator with a higher order Riemann solver

(see e.g. Naber[101]), i.e. the time accuracy is limited to first order for arbitrary order
approximations. A generalized Riemann solver can also be used to obtained higher order
accurate flux approximations but this is not considered for this thesis. A generalised

Riemann solver which accounts for the non-linearity of the flux is arguably not neces-
sary to obtain higher order accuracy, the procedures for the generalised Riemann solver
as described in Castro and Toro([18]) are somewhat similar to the procedure described

above in equation (6.8). Castro and Toro make use of polynomial expansions to express
the non-linearity within one cell as opposed to using interpolated cell face values for
conventional Riemann problems and the cell face values are expanded in time (also see

Toro and Titarev[135]). The non-linearity in this case is represented by higher order
basis functions and the non-linearity in time is accounted for by applying a multi-stage
time integrator (also see Naber[101]).

4note that the local Lax-Friedrich scheme is also known as the Kurganov and Tadmor central scheme
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Figure 6.10: non-linear advection equation with double linear velocity distribution, (left) classical
Riemann problem, (right) derivative Riemann problem.

Solution Procedure

At each time level there are p equations per element and given a total of N elements,
there are a total of p×N equations. The equations are formed by the discrete represen-
tation of the weak formulation (see equation 6.6) for each order of the basis functions.

For clarity the weak formulation is written out, first only using the test functions, then
the basis functions are introduced, for this explanation one-dimensionality is assumed
and Einstein notation is dropped

∫

Ω

∂F̂ k

∂t
ψ̂kj dΩ +

∫

Γ

f̃k · nψ̂kj dΓ −
∫

Ω

∂ψ̂kj
∂ξ

· f̂kdΩ −
∫

Ω

L̂kψ̂kj dΩ = 0,

here there are p + 1 equations, given by ψ̂kj , j = 0, . . . p, noting that the test functions

are immediately assumed equal to the basis functions with unity weight factors. The
primary variable vector is written as a summation of p + 1 basis functions and weights
which are separable in space and time, considering the integral with the time derivative

∫

Ω

∂F̂ k

∂t
ψ̂kj dΩ =

p
∑

i=0

∂F̂ ki
∂t

∫

Ω

ψ̂iψ̂jΩ, j = 0, . . . p

=











∂F̂k
0

∂t

∫

Ω
ψ̂0ψ̂0dΩ + · · · + ∂F̂k

p

∂t

∫

Ω
ψ̂pψ̂0dΩ

∂F̂k
0

∂t

∫

Ω
ψ̂0ψ̂1dΩ + · · · + ∂F̂k

p

∂t

∫

Ω
ψ̂pψ̂1dΩ

...
∂F̂k

0
∂t

∫

Ω
ψ̂0ψ̂pdΩ + · · · + ∂F̂k

p

∂t

∫

Ω
ψ̂pψ̂pdΩ











,

= M
k
ji
∂

∂t







F̂0

...

F̂p







= M
k
ij
∂

∂t







F̂0

...

F̂p









6.3. FINITE ELEMENT METHOD 109

where the mass matrix M
k
ij is given by

M
k
ij =







∫

Ω
ψ̂0ψ̂0dΩ · · ·

∫

Ω
ψ̂pψ̂0dΩ

...
. . .

...
∫

Ω
ψ̂0ψ̂pdΩ · · ·

∫

Ω
ψ̂pψ̂pdΩ






,

i.e. for every time step there is an explicit equation for F̂ ki , i = 0, . . . p if the remaining
terms are divided by the mass matrix M

k. Now the Runge-Kutta integration scheme
can be applied to the resulting p + 1 ordinary differential equations, this results in the
following semi-discrete formulation for the multidimensional case

dF̂ k(t)

dt
= −

(

M
k
ij

)−1
∫

Γ̂k

hkdψ̂
k
j dΓ̂

︸ ︷︷ ︸

(a)

+
(

M
k
ij

)−1 (

J−T
k

)

dl

∫

Ω̂k

Kk
d ψ̂

k
i

(

∂ψ̂kj
∂ξd

)

l

dΩ̂ F̂ k(t)

︸ ︷︷ ︸

(b)

+
(

M
k
ij

)−1
∫

Ω̂k

L̂kψ̂kj dΩ̂

︸ ︷︷ ︸

(c)

,

which for the one-dimensional case can be written as follows for the general case

formulation A:
dF̂ k(t)

dt
= −

(

M
k
ij

)−1
∫

Γ̂k

hkψ̂kj dΓ̂ +
(

M
k
ij

)−1
∫

Ω̂k

f̂k
∂ψ̂kj
∂ξ

dΩ̂

+
(

M
k
ij

)−1
∫

Ω̂k

Lkψ̂kj dΩ̂,

(6.9)

and if the expansion in basis functions is applied to source vector and the flux vector

formulation B:
dF̂ k(t)

dt
= −

(

M
k
ij

)−1
∫

Γ̂k

hkψ̂kj dΓ̂ +
(

M
k
ij

)−1

S
k
jif̂

k + L̂k, (6.10)

where formulation B uses the expansion in basis functions for the source term and the

flux term. The stiffness matrix is given by

S
k
ji =

∫

Ω̂k

ψ̂ki
∂ψ̂kj
∂ξ

dΩ̂,

S
k
ji =








∫

Ω̂k
ψ0

∂ψ0
∂ξ
dΩ · · ·

∫

Ω̂k
ψp

∂ψ0
∂ξ
dΩ

...
. . .

...
∫

Ω̂k
ψ0

∂ψp

∂ξ
dΩ · · ·

∫

Ω̂k
ψp

∂ψp

∂ξ
dΩ







.

Using monomials5 and assuming a uniform grid the mass matrix and the stiffness ma-

trix can be written as

5non-normalised for expediency
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M
k
ij = ∆x













[ξ]1−1
1
2

[

ξ2
]1

−1
· · · 1

p+1

[

ξp+1
]1

−1

1
2

[

ξ2
]1

−1

1
3

[

ξ3
]1

−1
· · · 1

p+2

[

ξp+2
]1

−1

...
...

. . .
...

1
p+1

[

ξp+1
]1

−1
· · · · · · 1

2p+1

[

ξ2p+1
]1

−1













,

S
k
ji = ∆x












0 · · · · · · 0

[ξ]1−1
1
2

[

ξ2
]1

−1
· · · 1

p+1

[

ξp+1
]1

−1

...
...

. . .
...

ξp p
p+1

[

ξp+1
]1

−1
· · · · · · p

p+p

[

ξp+p
]1

−1












,

where ∆x should be placed inside the matrices for a non-uniform grid spacing. This can
be written directly as

Mij =
∆x

2

1

i+ j + 1

[

1 − (−1)i+j+1
]

, Sji =
∆x

2

j

i+ j

[

1 − (−1)i+j
]

, i, j = 0, . . . p,

and using the normalised basis functions (also see Blom[12])

Mij = ∆x

√

1

2i+ 1

√
1

2j + 1

1

i+ j + 1

[

1 − (−1)i+j+1
]

,

Sji = ∆x

√

1

2i+ 1

√
1

2j + 1

j

i+ j

[

1 − (−1)i+j
]

, i, j = 0, . . . p.

Formulations A and B are constructed with the assumption that the angle α is zero
for all elements (see figure 6.9), i.e. a flat plate. The mass matrix and the stiffness
matrix are only dependent on the basis functions, given that the unknowns are placed

outside the integral the integral can be determined beforehand for all elements. For
formulation A the two integral terms (c) and (d) can be found using Gaussian quadrature
given the elementwise distribution of the primary variables for the current timestep.

For formulation B the terms (c) and (d) contain the predetermined mass and stiffness
matrices multiplied by the weight factors of the flux expansion and the source expansion
respectively. The numerical flux integral (equation(6.8)), term (b), is expanded as follows

if the expansion in basis function is applied

∫

Γ̂k

hkψ̂kj dΓ̂ =

(
∫ 1

0

hkψ̂kj dζ

)

left

+

(
∫ 1

0

hkψ̂kj dζ

)

right

=
1

2

p
∑

i=1

{[(

f̂ki

)

ξ=−1
+
(

f̂k−1
i

)

ξ=1

]

−1

2
θ
[

Kk
ξ=−1 +Kk−1

ξ=1

] ((

F ki ψ̂
k
i

)

ξ=−1
−
(

F k−1
i ψ̂k−1

i

)

ξ=1

)}

ψ̂kj (ξ = −1)

+
1

2

p
∑

i=1

{[(

f̂ki

)

ξ=1
+
(

f̂k+1
i

)

ξ=−1

]

−1

2
θ
[

Kk
ξ=1 +Kk+1

ξ=−1

] ((

F k+1
i ψ̂k+1

i

)

ξ=−1
−
(

F ki ψ̂
k
i

)

ξ=1

)}

ψ̂kj (ξ = 1),

(6.11)
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and if Gaussian quadrature is used for the flux and the source term

∫

Γ̂k

hkψ̂kj dΓ̂ =

(
∫ 1

0

hkψ̂kj dζ

)

left

+

(
∫ 1

0

hkψ̂kj dζ

)

right

=
1

2

{[(

f̂k
)

ξ=−1
+
(

f̂k−1
)

ξ=1

]

−1

2
θ

p
∑

i=1

[

Kk
ξ=−1 +Kk−1

ξ=1

] ((

F ki ψ̂
k
i

)

ξ=−1
−
(

F k−1
i ψ̂k−1

i

)

ξ=1

)





ψ̂kj (ξ = −1)

+
1

2

{[(

f̂k
)

ξ=1
+
(

f̂k+1
)

ξ=−1

]

−1

2
θ

p
∑

i=1

[

Kk
ξ=1 +Kk+1

ξ=−1

] ((

F k+1
i ψ̂k+1

i

)

ξ=−1
−
(

F ki ψ̂
k
i

)

ξ=1

)





ψ̂kj (ξ = 1).

(6.12)

Given an initialisation of the primary variables and a value for the flux at the left
boundary the solution at the following time levels is found by applying the Runge-Kutta

scheme(equations (6.14),(6.16)). Directly after the initialisation the solution is described
as a constant in each element, this means that only the weight for the zeroth order basis
function is non-zero. Through the flux term the basis function weights for the higher
order terms become non-zero at the next time level.

The solution is naturally taken as the center values of the finite elements, i.e. as the
zeroth order weight factors, these values are used for the transition check and the

separation check.

6.3.2 Boundary Conditions

In principle the same applies for DG as for the FVM, to guarantee that the control volume
only receives information from the inner domain the flux vectors should be splitted as

is done for the Steger-Warming scheme.

6.3.3 Cubic Spline and Matrix Inversion

For the DG method information of the edge velocity profile is required at the faces of

the control elements. For the final implementation most likely the center points of the
control elements will be used as the coupling points between the external (edge) velocity
profile and the boundary layer. Therefore the values of the edge velocity must be ac-

quired through interpolation. To interpolate the external velocity profile the well known
cubic spline method is applied. The cubic spline algorithm is described in Burden and
Faires[16, p.146].

The matrix inversion is obtained by a pivoting method, the credits for the algorithm

go to Aswith J. Rego. It should be stressed here that the matrix inversion process is
not optimal, for large matrices e.g. LU-decomposition is often used as well as Cholesky
factorisation.

Note that if the polynomial order as well as the length (or surface for three-dimensional
IBL equation) is the same for all elements the mass matrix only has to be determined
once which obviously takes away the need for optimising the inversion process given the

small computational size of the IBL problem.
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6.4 Time Integration

Once the semi-discrete form is obtained the question remains how the solution is up-
dated, following for instance Cockburn[25], Naber[101] and Özdemir[106] a multi-stage
explicit Runge-Kutta approach is chosen to obtain (at least) a first order accurate solu-

tion in time.

Explicit Time Integration

For the integration first the time derivative is written as

dF̂

dt
= L(F̂ ).

The general Runge-Kutta schemes are written as

F̂n+1 = F̂n + ∆t

p
∑

i=1

biki.

ki = L(F̂n + ∆t

p
∑

j=1

aijkj).

(6.13)

The table with coefficients aij , bj is the called the Butcher-tableau, see table (6.2) with
the Butcher tableau of the well known fourth order Runge-Kutta scheme in brackets.
For j < i the Runge-Kutta scheme is explicit.

0
∑1
j=1 aij a21

(
1
2

)

∑2
j=1 aij a31(0) a32

(
1
2

)

∑3
j=1 aij a41(0) a42(0) a43(1)

b1(
1
6
) b2(

1
3
) b3(

1
3
) b4(

1
6
)

Table 6.2: Butcher Tableau for Runge-Kutta scheme

The multi-stage RK-integrator applied to DG is usually written as (see Cockburn[25] in

reference to Shu and Osher)

F̂0 = F̂n−1,

F̂k =

k−1∑

m=0

αkmw
km, wkm = F̂m +

βkm
αkm

∆tnL(F̂m), k = 1 . . . , p,

F̂n+1 = F̂np .

(6.14)

The coefficients αkm and βkm are given in table (6.3) (see Gottlieb and Shu[54]). The RK
coefficients give a Total Variation Diminishing(TVD) scheme which means that oscilla-
tory behavior near discontinuities is suppressed which increases the overall stability,

also see Cockburn and Shu[25]. The coefficients of table (6.3) can be directly applied
to the Runge-Kutta scheme (6.14) with the exception that for the negative values of β
the linear operator should be adapted. For negative β’s the scheme should be stable

backward in time which requires a linear operator which solves the hyperbolic equation
backward in time in TVD, i.e. analogously for the spatial discretisation a reversed up-
wind direction should be employed. In case of DGFEM (or FVM) in combination with

a Roe scheme this linear operator, to be called L̃ follows directly from negating the
eigenvalues of the Jacobian since this directly determines the direction of upwinding.
Likewise for FDM the direction of upwinding is determined directly by the sign of the

eigenvalues and thus allows for a simple determination of the adapted linear operator.
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Order αkm βkm

2
1 −
1
2

1
2

1 −
0 1

2

3

1 − −
3
4

1
4

−
1
3

0 2
3

1 − −
0 1

4
−

0 0 2
3

4

1 − − −
649
1600

951
1600

− −
53989
25e5

4806213
2e7

23619
32e3

−
1
5

6127
3e4

7873
1e4

1
3

1
2

− − −
− 10890423

25193600
5e3
7873

− −
− 102261

5e6
− 5121

2e4
7873
1e4

−
1
10

1
6

0 1
6

Table 6.3: Runge-Kutta coefficients

Alternatively, a fourth order TVDRK scheme without the presence of negative valued

coefficients can be obtained by introducing an extra stage, see Hesthaven and Warbur-
ton[64, p.158]. A TVD Low storage Runge-Kutta scheme(LSRK) was found in Gottlieb et
al[55] for third order accuracy with CFL = 0.32, Ketcheson and Robinson[73] derived a

third order LSRK with CFL = 0.838, allowing a time step which is more than two times
larger. If TVD is deemed unnecessary or if third order accuracy is sufficient the LSRK
can be considered which has the advantage that less primary variable vectors have to

be stored at each stage. In the paper by Gottlieb et al the following two-register(i.e. two
vectors are stored per step) scheme is used for the LSRK

F̂0 = F̂n, dF0 = 0

dFk = αkdFk−1 + ∆tnL

(

F̂k−1

)

F̂k = F̂k−1 + βkdFk






k = 1, . . . , p,

F̂n+1 = F̂p,

(6.15)

which is a specific form of scheme (6.14) where only the diagonal terms for α and β
are maintained. Several LSRK schemes can be found in an ICASE report by Kennedy et
al[72], for the two-register scheme they effectively use the same scheme. The coefficients

for the two-register LSRK scheme are given in table 1 of their report. A fourth order LSRK
scheme was applied by Blom[12] and Özdemir[106]. The LSRK scheme used by Blom
and Özdemir is given by

F̂0 = F̂n,

F̂k = F̂0 + γk∆tnL

(

F̂k−1

)

, k = 1, . . . , p,

F̂n+1 = F̂p,

(6.16)

where for a N-stage scheme the coefficients are given by γi = 1
N+1−i i = 1, . . . N , which

is most applicable for linear Jacobians. For this thesis the SSPRK and the two-register
LSRK schemes are implemented but not tested, note that the LSRK schemes are sim-

ply assumed to be non-TVD since they were not devised with TVD in mind, thus the
availability of this property would be fortuitous. A benefit of an SSPRK-scheme is that
it allows for a direct extension of the stability requirement for the first order Euler time-

integration(6.5) and for non-linear systems it will be stable for higher CFL numbers.
Ketcheson observes that non-TVD RK schemes can still preserve monotonicity if the
CFL is lowered (well) below the maximum CFL, this should be kept in mind when com-

paring the LSRK with the SSPRK. If monotonicity for non-TVD RK schemes is indeed
preserved it is advisable to apply higher order LSRK schemes as can be found in the
report by Kennedy et al[72], or the simple LSRK scheme from Blom. Clearly for the sta-

bility preserving time integration scheme as the order of the time-integration increases
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it becomes increasingly tedious to extract the Runge-Kutta coefficients and therefore

the order of integration is practically limited.

The simple LSRK-scheme used by Blom [12] and Özdemir[106] allows for arbitrary or-

ders of accuracy, has relatively low memory requirements and can be applied for non-
linear problems problems while maintaining strong stability[73].

For the finite difference and the finite volume scheme the standard Butcher tableau

for Runge-Kutta will be used up till 4th order. For the DG method the LSRK-scheme
by Blom and Özdemir is implemented as well as the SSP preserving schemes discussed
above6.

Suggested by e.g. Kennedy et al[72] and Gottlieb et al[55] is the use of a multi-step time
integration scheme,

F̂n+1 =

p
∑

k=1

(

αkF̂
n+1−k + ∆tβkL

(

F̂n+1−k
))

, αk ≥ 0,

p
∑

k=1

αk = 1,

where the simulation is started with a single step, with each new time-level the number
is of steps is increased by one until the maximum number of steps is reached. A table

with multi-step schemes until 5th order is given in Gottlieb et al[55].

Implicit Time Integration

In the time integration methods discussed above explicitness was assumed, this will
turn out to be very restrictive for the maximum time step. A larger time step is possible
if an implicit time integration scheme is chosen, therefore implicit time integration will

be discussed shortly.

The time derivative of the primary variable vector is determined implicitly by

(
∂F

∂t

)n

= (L− fx)
n+1 , (6.17)

and using a first order approximation in time this gives

(
∆F

∆t

)n

= (L− fx)
n +

∂ (L− fx)

∂F

(
∆F

∆t

)n

∆t+ O(∆t2),

solving this for Fn+1 gives the linearised backward Euler scheme

Fn+1 =

(

I

∆t
− ∂L

∂F
+

∂2f

∂x∂F

)−1
(
Ln − fnx

)
+ Fn.

The immediate downside of this implicit scheme is the inverse term and the fact that ∂L
∂F

and ∂2f
∂x∂F

have to be determined per node/element which excludes the method of lines

for the general solution procedure. This above implicit scheme is first order accurate
in time, for higher order accuracy the inverse term becomes more involved. The most
efficient method for treating the inverse term is to solve the matrix algebraically a priori,

during each time step the inverse can be found immediately. Using the Jacobian K = ∂f
∂F

the inverted term is written as
I

∆t
− ∂L

∂F
+
∂K

∂x
,

where ∂K
∂x

has to be determined numerically. This time-integration scheme can be ap-
plied directly to all the presented finite difference schemes, for the FVM and the DG
method the inverted term can be obtained with the cell-centered values.

6only the LSRK-scheme is tested
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Using a first order backward Euler scheme with a Newton-Rhapson iteration process

the updated value Fn+1 can be obtained through

F i+1 = F i − ∆t (L− fx)
i + Fn − F i

∆t
(
∂L
∂F

− ∂K
∂x

)i
,

where i is the iteration count, for the first iteration F i is a guessed value following
from the value(s) for the previous time step(s). The iteration can be stopped when
F i+1−F i

F i drops below a preset value. See Gottlieb et al[55] for implicit Runge-Kutta
and multi-step schemes who state that implicit higher order Strong Stability Preserving

time-integration is not possible.

Persson and Peraire[109] performed a study on low memory iterative solvers for DG
applied to the time-dependent compressible Navier-Stokes equations and advise the

restarted generalised minimal residual method (GMRES) for general use. GMRES and
restarted GMRES are matrix based iterative solvers for which algorithms are freely avail-
able, see e.g. Saad and Schultz[117] for a GMRES algorithm and e.g. Erhel et al[46] and

Morgan[97] for a restarted GMRES algorithm.

For any multi-stage or multi-step scheme the linear operator L requires a different
edge velocity for each stage/step since each stage/step represents a different time-level.

To fulfill this requirement in the current implementation is trivial since there is an
exact algebraic representation of the edge velocity. For the final coupled method this is
dependent on the exact implementation of the coupling procedure and whether implicit

or explicit time integration is used. It is likely that in case explicit time integration is
used the IBL equations have to solved in a nested fashion since the time step will be

very small, in the order of O
(

∆x
ρ(K)

)

, which is likely to make any intermediate change in

edge velocity negligible.

6.5 Stability

Although the CFL-criterion, as discussed in section (5.3) will be applied with a con-

servative value for the CFL-number, a more detailed stability consideration cannot be
omitted.

6.5.1 Hyperbolic Problems

The stability of hyperbolic systems was shortly discussed in section (5.3), now a short

numeric explanation will be given, see Van Kan et al[141].
The system at hand can be written simply as

∂F

∂t
= C F + L, (6.18)

where C is the spatial difference operator defined by the coefficient matrix K and the
spatial discretisation scheme. For a source vector which is independent of the primary
variables this leads to the error equation

∂ǫ

∂t
= Cǫ, (6.19)

and this leads to the numerical solution

ǫn+1 = G(C∆tǫn, (6.20)

where G is the amplification matrix which is dependent on the time integration scheme,

now there is a stable solution if all eigenvalues of the amplification matrix are smaller
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than one in absolute sense. Solving this gives in general

∆t <
CFL

|λ|max
,→ ∆t <

CFL

ρ
(6.21)

where ρ is the spectral radius of the discrete difference operator C, the CFL number

depends on the amplification matrix. Assuming a first order Runge-Kutta time integra-
tion,i.e. forward Euler, the stability can be determined for the different spatial discreti-
sation schemes. The amplification matrix is given by

G = I + ∆tC.

The added difficulty is that the source vector is actually directly dependent on the pri-

mary variable vector, i.e. L = f(U), and should thus be part of the stability analysis.
Rewriting equation (6.20)

ǫn+1 = G(C∆t)ǫn + ∆tL(ǫn), (6.22)

which can be treated as follows; separate the flux term and the source term and in-

dependently determine the stability requirements, the stability range is now formed by
the overlapping requirements, this has the assumption that the stability requirements
of the flux vector and the source vector are independent. The above method describes

global stability as the discrete operator contains the coefficient for all nodes, i.e. one
has to determine the eigenvalues of the global system, of course there is the benefit that
this global stability can be calculated once per timestep. For DG the spatial difference

operator is considered per element.

For the local stability analysis the method by Von Neumann is often used. Standard Von

Neumann analysis starts by assuming an harmonic error solution ǫnk = ǫ̂n exp kiθ, k =
∆xj which is substituted in the system of equations This does not necessarily lead to
any difficulties except for finding the eigenvalues of the amplification matrix, the source

vector however is riddled with empirical closure relations which are not likely solvable in
an analytical manner. A coarse remedy may be formed by polynomially approximating
the closure relations with respect to the primary variables so that the terms which are

dependent on the primary variables can be added to the spatial difference operator. The
Von Neumann stability analysis applies to equi-space rectangular grids with constant
coefficients. To be able to find a solution for a non-linear (or quasilinear) system valid

on the global domain one must conservatively assume values for the coefficients so as
to establish a stability criterion which is valid throughout the domain.

The Von Neumann stability analysis can be performed for the individual characteris-
tics

M−1
1 Ft + λ1M

−1
1 Fx = M−1

1 L, (6.23)

M−1
2 Ft + λ2M

−1
2 Fx = M−1

2 L, (6.24)

M−1
3 Ft + λ3M

−1
3 Fx = M−1

3 L, (6.25)

(6.26)

with M being the matrix containing the right eigenvectors as columns. The least rigor-

ous approach is formed by taking the scalar advection equation for the different spatial
schemes and substituting the largest expected eigenvalue, i.e. Ft + |λ|maxFx = 0, where
the source term is ignored. Applying the assumed harmonic error solution will lead to

an amplification factor of which the squared modulus should be smaller than one.

For the Shu & Osher formulation of the Runge-Kutta method (see system (6.14)), the
following holds for strong stability preserving RK schemes (see Cockburn and Shu[25],
Kubatko et al[79])

∆ ≤ κ∆tFE, κ = min

(
αkm
|βkm|

)

,
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where ∆tFE is the stability condition for a forward Euler time-integration scheme, i.e.

one only has to determine the stability criterion for a forward Euler time-integration
scheme. Likewise for a multi-step time integration scheme

∆ ≤ κ∆tFE, κ = min

(
αk
|βk|

)

.

Due to the large number of schemes a scheme dependent stability analysis will not be
performed, rather the CFL-number will be set conservatively for all tests.

6.5.2 Discontinuous Galerkin

Again the stability is mostly dependent on the CFL number which for the specific case of
a degree p order basis function and a p + 1 order Explicit Runge-Kutta time integration

is approximated by (see i.e. Cockburn and Shu[25], Kubatko et al[79])

c
∆t

∆x
≤ 1

2p+ 1
,

where c is formed by the spectral radius of the Jacobian matrix K, this estimate for

the stability is exact for p = 0 and p = 1 and is within 5% for p ≥ 2 (see Kubatko[79]).
Obviously the above criterion is very restrictive for higher polynomials orders.

6.6 Flux Limiter

It was already mentioned in section (5.4) that separation is announced by a conver-

gence of characteristics and leads to what can be considered a shock. Another case in
which a discontinuity might arise is when due to transition the closure relations are
suddenly switched, this effectively gives rise to a discontinuity. For higher order Rie-

mann schemes spurious wiggles will occur around discontinuities, to prevent this from
happening the values at faces are altered so that the flux is monotonously increasing or
decreasing over each cell.

In general a limited flux consist of part higher order flux and a part lower order flux.
The limiter function φ determines to what degree the higher order approximation should
be incorporated based on a non-linearity parameter r which is defined as

ri =
Fi − Fi−1

Fi+1 − Fi
, i =element index

where ri is close to one for a smooth solution since the successive gradients are equal
and for ri close to zero the next gradient is much larger than the previous gradient which

is caused by a local discontinuity.

For the limiter function many options exist, where the general division is between con-

tinuous (e.g. the Albada limiter) and discontinuous limiters (e.g. the minmod limiter),
symmetric and asymmetric7. Considering

Ft = − 1

∆x

(
fi+1/2 − f1−1/2

)
,

the general flux limited values are given by

fi+1/2 = f lowi+1/2 − φ(ri)
(

f lowi+1/2 − fhighi+1/2

)

,

fi−1/2 = f lowi−1/2 − φ(ri−1)
(

f lowi−1/2 − fhighi−1/2

)

.

Flux limiters for the FVM are often incorporated in the Monotone Upstream-centered

Schemes for Conservation Laws (MUSCL) scheme which is second order accurate through
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x

F

flux

F r
i+1/2F l

i+1/2

ii − 1 i + 1 i + 2

Figure 6.11: MUSCL extrapolation for FVM

linear interpolation of the cell centered values, see figure (6.11). In the MUSCL scheme
the flux limiter acts directly on the face values

FLi−1/2 = Fi−1 +
1

2
φ(ri−1) (Fi − Fi−1) , FRi−1/2 = Fi − 1

2
φ(ri) (Fi+1 − Fi) ,

FLi+1/2 = Fi +
1

2
φ(ri) (Fi+1 − Fi) , FRi+1/2 = Fi+1 − 1

2
φ(ri+1) (Fi+2 − Fi+1) .

(6.27)

MUSCL is intended for FVM’s in that there is no accountancy for the location in the cell
for the determination of the extrapolation and the limited values. To apply MUSCL to

DG one simply has to realise that instead of centered values in neighboring elements
one takes the higher order coefficients of the approximations in the directly neighboring
cells (see e.g. Naber[101], Cockburn and Shu[25], Hesthaven[64])8. One such scheme

is the generalised minmod limiter which is given by (see e.g. Cockburn and Shu[25]
in reference to Osher) two steps; first the limited cell face values (denoted with ∗) are
determined using

F ∗
i−1/2 = Fi − 1

2
minmod

(
2(Fi − Fi−1/2), Fi+1 − Fi, Fi − Fi−1

)
,

F ∗
i+1/2 = Fi +

1

2
minmod

(
2(Fi+1/2 − Fi), Fi+1 − Fi, Fi − Fi−1

)
,

(6.28)

where Fi±1/2 are the exact cell face values i.e. including all basis functions. The minmod
function is given as (from Cockburn and Shu[25])

minmod(a1, a2, a3) =

{

s = min|an|, if s = sign(a1) = sign(a2) = sign(a3)
0 otherwise

. (6.29)

Now if F ∗
i+1/2 = Fi+1/2 and if F ∗

i−1/2 = Fi−1/2, the original values for F are maintained, if
not, a limiter is applied. Cockburn and Shu then use the following limiter

F ∗
i = Fi + ξF̂ i∗1

F̂ i∗1 = minmod(F̂ i1, Fi+1 − Fi, Fi − Fi−1),
(6.30)

where F̂ i1 is the weight factor for the first order basis function for element i, i.e. only the
first order basis function is changed and all higher order basis functions are ignored,
this reduces the accuracy to second order in case limiting is applied. If higher than

7if the limiter works the same in all directions it is symmetric
8Of course one can apply the center values of the neighboring elements but this undermines the locality of

the DG method.
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F (1)i
F (−1)i

= original face values

= limited solution

= original solution

ξ

F

= center value

F (−1)i+1 F (1)i+1

ξ

F

i + 1/2

Figure 6.12: Limiter applied to cell face i+ 1/2

second order accuracy is required Cockburn and Shu suggest a scheme which is Total
Variation Bounded in the Mean (TVBM), which means that local non-monotonicity is
allowed. Key to their scheme is an adapted minmod routine which contains the con-
stant M which represents ”an upper bound of the absolute value of the second order

derivative of the solution at local extrema”. Finding the value for M in the TVBM method
is considered impractical (see Cockburn and Shu[25], Hesthaven[64], Naber[101]) and
negatively affects the robustness of the method since M is problem dependent.

An alternative limiter which is higher order accurate is given by Biswas et al[11]. Biswas
et al, conditionally applies a limiter to all orders of the basis functions by limiting solu-
tion moments. Biswas et al use Legendre polynomials for the solution moments, in this

case monomials are used. The solution moments for the monomials are given by (see
Biswas[11])

1∫

−1

F̂ kξidξ =

1∫

−1





p
∑

j=0

F̂ kj ξ
j



 ξidξ,

here i and j are the order of the basis functions and k is the element index. Since the

monomials are L2-orthogonal the integral is given by

1∫

−1

F̂ kξidξ = F̂ ki
2

2i+ 1
, i = 0, . . . p.

Since the solution moment is now only dependent on the element varying weights the

solution moment can thus be made monotonous through the weights. Biswas et al pro-
ceed as follows, starting from the highest order the following minmod-limiter is applied

F k∗i+1 = minmod

(

F̂ ki+1,
F̂ k+1
i − F̂ ki
2i+ 1

,
F̂ ki − F̂ k−1

i

2i+ 1

)

,

once all orders are limited, the higher orders are limited again with the previous limited
weights.

Combining this arbitrary order flux limiter in combination with an arbitrary order time
integrator gives a solution strategy which is of arbitrary order of accuracy in time and
space.

The downside of the arbitary order limiter from Biswas et al is that there is no stability
criterium.

The flux limiter must be applied at each stage/step of the time integration scheme,

see Hesthaven[64]. Strictly speaking, according to Godunov’s barrier theorem (see e.g.
Wesseling[153]) any higher order Riemann solver is non-TVD, i.e. monotonicity is not
preserved. This non-TVD characteristic becomes relevant when discontinuities appear,

non-physical spurious wiggles may be introduced. Thus preferably the limiter should
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not be applied at all unless it is certain that a discontinuity appears. It will be clear

from the transition test case that this is purely a local requirement.

At present the flux limiters are implemented but untested.

6.7 Grid Non-Uniformity and Geometry

6.7.1 Grid Non-uniformity

As was already discussed for the steady stagnation flows grid refinement will help to es-
timate the correct stagnation value, also any wiggles or discontinuities may be confined

to a smaller region. The refinement grid will start with a grid size s times smaller than
the standard grid size ∆xdef , then the grid size is successively increased by the factor f .
The grid size is then given by

∆xi =
∆xdef
s

f ∆xi−1,

both s and f are user settable in the parameter file. For the stagnation boundary layer
problem the must smaller spatial step size does not lead to a much smaller overall

temporal step size due the fact that the eigenvalues are close to zero near the stagna-
tion point. For a non-stagnation boundary condition the decreased spatial step size
may lead to an overly conservative temporal step size. When the grid is considered to

be non-uniform, the numerical approximations for the differential terms are usually
adapted. Conventionally the so-called weighted averages are used to directly incorpo-
rate the stretching of the grid in scaling the nodal values. Already in 1986 Manteuffel

and White showed that the unweighed averaged scheme produce good convergence for
low grid resolution. This mimetic type of discretisations also applies to the time in-
tegration which would require an implicit scheme of some sort. See Manteuffel and

White[89],Gerritsma[53] and Veldman[143].

6.7.2 Adaptive Polynomial Order

How to implement the p-adaptiveness? Firstly it is based on at least the local value of

the spectral radius since that remains in the stability requirement, secondly it must be
related to reference values of the initial polynomial order and basically all solution values
on which the local polynomial order is based. The p-adaptation is effectively a change

in local spatial accuracy and should therefore also be based on the rate of change of
the primary variables. This rate of change is directly reflected in the eigenvalues of the
Jacobian matrix K of which the spectral radius is the largest in absolute sense, therefore
it suffices to use the spectral radius as the measure for the polynomial order. Given

the spectral radius from the initial solution a suitable correlation needs to be chosen
to relate the spectral radius to the polynomial order. Suppose there is the following
correlation for the local polynomial order

ceiling

[

pref

(
|ρ|

|ρref |

)n
]

= p,

where n is a free parameter which determines the rate the change of the polynomial
order with changing value of the spectral radius compared to the initial spectral radius.
To implement p-adaptiveness either ∆t or ∆x needs to be adaptive also to continuously

adhere to the stability requirement. This stability requirement is very restrictive for the
application of an adaptive polynomial order since a global time step is used. Based on
the time step one might as well apply global polynomial refinement based on the largest

spectral radius. For the above reasons an adaptive local polynomial order for the space-
DG with global time stepping is ill-adviced. Further consideration of a local adaptive
polynomial order is therefore omitted, although, as was mentioned in section (5.5) local

time stepping might accelerate convergence for steady state problems.
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6.7.3 Geometry

In literature often the profile geometry plays a role in constructing the solution method
for the integral boundary layer equations. The way in which the geometry enters the so-

lution formulation differs per numerical method. Drela[35], Mughal[98] and Coenen[26]
who use a FVM consider the transformation through an ad hoc transformation, first
the system is solved, then the transformation takes place. Mughal[99] Nishida[103] and

Milewski[94] who employ a FEM, apply a metric Jacobian to account for the rotation in
all directions. Myring[100], Swafford and Whitfield[131], and Cousteix[28] who employ
an FDM apply the transformation directly to the differential equations, this is typical for

the FDM. For the flat plate assumption and indeed the overall boundary layer equations
it is required that the curvature effect is negligible since stream normal pressure gradi-
ents are neglected. If this assumption holds and if the tangential velocity distribution

over the profile is given it is not necessary to include geometric curvature terms if the
boundary layer is considered in local profile coordinates. If local profile coordinates are
used, following the profile is effectively equal to following the x-axis in the profile coor-

dinate system, i.e. a quasi-flat plate. Once the primary variables are known in the local
profile coordinates the global coordinate values can be retrieved for the two dimensional
case with

Cf,X = Cf,x cosα(x), δ∗X = δ∗x cosα(x), θ∗X = θx cos2 α(x),

δkX = δkx cos3 α(x), δk+X = δk+x cos4 α(x),
(6.31)

where α is the local angle of the profile coordinate system with the global coordinate
system. Also since the largest rate of curvature occurs at the leading edge where the
friction drag and the displacement thickness are of minor importance it might be argued

that the transformation can be omitted from the boundary layer and IBL equations with
the exception that the crossflow angle should be accounted for in three-dimensional
boundary layer flow.

For the coupled procedure Veldman[144] suggests to include streamline curvature through
a pressure jump between boundary layer and the inviscid flow.

6.8 Convergence

Following Lax’ theorem convergence should be guaranteed given a stable and consistent
discretisation. This is important for the validity of the comparison of the numerical

methods. The aim is to compare the methods for similar levels of convergence. To
check convergence of the system the results will be compared to the Blasius solution
for different grid sizes. This convergence test can be used to the verify that higher order

schemes indeed convergence in accordance with their respective order of accuracy. The
L2-error norm is used as the convergence indicator. The L2-error norm is defined as

L2 =

√
∑

(Fexact − F ∗)2
∑
F 2
exact

,

the error norm is taken over the common points of the successive grids. The exact
values of the Blasius solution at any x−station are repeated here

θ =
0.664x√
Rex

, δ∗ =
1.7208x√
Rex

, Cf =
0.664√
Rex

.

The laminar flat plate is chosen as the only convergence test case for the simple rea-

son that the closure relations should give an exact representation of the boundary layer
since the relations are based on the Falkner-Skan solution. The convergence test will
be done for a small selection of schemes to draw qualitative conclusions.
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For general cases the convergence is monitored using the L2-norm of the current values

in relation to the L2-norm of the previous values, the metric is denoted by C2

C2 =
|L2,new − L2,old|

L2,old
, (6.32)

unless otherwise noted C2min is set to 1e− 13.

6.9 Why the Jacobian is not just some coefficient matrix, a lesson learned

Although the FVM and the FEM descriptions clearly assume a conservative set of dif-

ferential equations the author used the non-conservative formulation for the actual
implementation. Little adaptation of the code is required due to the modular set-up,
however it remains a monumental mistake.

The confusion was mainly caused by misinterpreting the paper from Matsushita and
Akamatsu. Matsushita and Akamatsu used a quasi-linear form of a conservative sys-

tem of equations and using the Jacobian they stated f = Aw (i.e. ∂f
∂w

∂w
∂x

=
∂
(

∂f
∂w

w
)

∂x
),

which was directly translated by the author as f = KF , hence the flux terms fi±1 in
the FVM and FEM schemes were mistakingly taken as fi±1 = Ki±1Fi±1. Furthermore,

initially extensive used was made of the PhD-theses of Blom and Özdemir for the DG
implementation, these theses however deal with DG applied to the linearized Euler equa-
tion where the quasi-linear form is the final system. The quasi-linear form assumes a

constant Jacobian which is not the case for the non-conservative system. The conser-
vative form is already given in equations (4.18). The current approximation leads to the
following

Originally used system: Ft +KFx = L,

Conservative system: Ft + fx = L,

Actual approximated system: Ft + (KF )x = L,

Correction to regain consistency: Ft + (KF )x − FKx = L,

For the test cases the correction term −FKx is added to the FVM and the DG scheme

for the sake of testing the implementation. What was actually happening, the vector f
is defined by

K
∂F

∂x
=
∂f

∂F

∂F

∂x
→ f =

∫

K∂F,

writing out the integration

f =






∫
K11∂F1 +

∫
K12∂F2 +

∫
K13∂F3 + C1∫

K21∂F1 +
∫
K22∂F2 +

∫
K23∂F3 + C2∫

K31∂F1 +
∫
K32∂F2 +

∫
K33∂F3 + C3




 , (6.33)

which cannot be done symbolically a priori since the turbulent boundary closure models

do not allow an analytical integration of the coefficient matrix. Alternatively the flux
vector can be approximated by numerical integration

f = f0 +






∂f1
∂F1

∆F1 + ∂f1
∂F2

∆F2 + ∂f1
∂F3

∆F3
∂f2
∂F1

∆F1 + ∂f2
∂F2

∆F2 + ∂f2
∂F3

∆F3
∂f3
∂F1

∆F1 + ∂f3
∂F2

∆F2 + ∂f3
∂F3

∆F3




 . (6.34)

this however assumes a constant coefficient matrix which is not the case here, also f0 is
not known, therefore to go from a non-conservative system to a conservative system the

Jacobian must be integrated exactly. This is very difficult in general and it is specifically
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Module Subroutine Module Subroutine
PROG Main SUBR Boundary MOD Gauss SUBR BasisFunction
MOD Closure SUBR charOutput SUBR CSplineCoeff
MOD Declare SUBR ConvergenceCheck SUBR FINDInv 9

MOD External SUBR Flux SUBR FluxLimiter
SUBR GridGen SUBR FluxLimiterHO
SUBR Init SUBR FluxLimiterMinMod
SUBR Integrator SUBR MSmatrix
SUBR KL SUBR NumFluxV ector
SUBR Output SUBR SourceAndF luxV ector
SUBR Parameters
SUBR SeparationCheck
SUBR TransitionCheck

Table 6.4: Overview of subroutines and modules, (left) for the FDM/FVM algorithms (right) and the
extra routines for the DG algorithm

hard for this case, it would be considerably easier to differentiate the flux vector to
obtain the Jacobian, therefore one should in general start with the conservative form.

To at least test the current implementation a fix will be introduced , the term −F ∂K
∂x

is
approximated by the following discretisation

FVM: Fi(Kx)i =
Fi
2

(Ki+1 −Ki−1) ,

FEM: Fi(Kx)i =
Fi−1/2 + Fi+1/2

4

(
Ki+1 +Ki+1/2 −Ki−1/2 −Ki−1

)
.

The only test case considered for the FVM and the FEM scheme is the impulsively moved
flat plate, see section(7.1.1).

6.10 Numerical Smoothing

Numerical smoothing is applied over the transition region, i.e. the region where the
intermittency is valued between 0 and 1, and basically whenever the numerical simula-

tion is unstable and lowering the CFL-number does not relieve the problem. Smoothing
is attained by the simple averaging procedure

Fi =
Fi−1 + Fi+1

2
.

6.11 Code Development for Integral Boundary Layers

To facilitate the further development of the code and the final implementation in the full
three dimensional solver an overview of the basic programming logic is given. Also, a

there is a short discussion on performance optimisation. Since the code development is
intrinsically related to the performance of a numerical scheme this cannot be omitted.
The basic outline is given in figure 6.13

The parameters module in figure (6.13) may well be linked directly to all other modules

as all modules may offer the possibility of user specified settings, by linking it to the
central integrator module this general linkage is satisfied.

6.11.1 Program Elements

Shortly the program elements are discussed, the functionality and , the program el-
ements are given in table (6.4). The main program PROG Main contains the main

loop, connects all the routines , updates the primary variables and calls output routine
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Figure 6.13: Functional logic outline, the green functional blocks represent the extra logic intro-
duced for the DG algorithm

SUBR Output. For the DG algorithm, at every time step in the main loop, the cubic
spline coefficients are generated for the edge velocity distribution.

The module MOD Declare declares the common variables and the parameters.

The module MOD Closure contains the closure relations and the relations for the eigen-

vectors and the eigenvalues.

The module MOD External generates the velocity profile including the spatial and the

temporal derivative.

The subroutine SUBR Boundary generates the left boundary condition.

The subroutine SUBR charOutput supports the subroutine SUBR Output, it generates
file name prefixes for the output files, credits to H.Özdemir.

The subroutine SUBR ConvergenceCheck generates the convergence parameter C2 (see
equation (6.32)), if the convergence parameter meets the convergence requirement the

main loop in PROG Main is aborted.
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The subroutine SUBR Flux generates the temporal flux ∂F
∂t

, this subroutine is called by

subroutine SUBR Integrator.

The subroutine SUBR Gridgen generates the new timestep based on the eigenvalues,
for the DG algorithm this subroutine also contains the code for the adaptive polynomial
order.

The subroutine SUBR Init first generates the grid, then allocates the variables with the

appropriate size (based on the number of grid points) and then assigns the initial values,
this subroutine is called by PROG Main.

The subroutine SUBR Integrator uses on of the Runge-Kutta time integration schemes

and the temporal flux subroutine SUBR Flux to obtain the primary variables for the
new time level.

The subroutine SUBR KL generates the Jacobian matrix and the source vector, for the
DG algorithm a cubic splines function is added to obtain the interpolated value for the

velocity at the cell face.

The subroutine SUBR Output is called from the main program and prints out all the
data files and the plot files, created with assistance from H.Özdemir.

The subroutine SUBR Parameters processes the parameter file, the parameter file can

be found in appendix (H).

The subroutine SUBR SeparationCheck applies the separation indicator based on the
shock strength (see equation (5.4)) and several of the discussed separation indicators
(see equations (3.16), (3.15)) , also the zero friction point is monitored.

The subroutine SUBR TransitionCheck applies the theory of section (5.4) to detect the
point where the boundary layer becomes critical up to the point where the boundary
layer transitions from laminar to turbulent. In this subroutine the so-called intermit-

tency vector is created, this vector contains for each point a value between 0 and 1
to indicate the degree of turbulence. This intermittency vector can be pre-set in the
parameter file.
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Specifically for the DG method several extra subroutines are created.

The subroutine SUBR CSplineCoeff creates cubic spline coefficients, in this case for

the vector containing the edge velocity values.

The subroutine SUBR FINDInv finds the inverse matrix, in this case of the mass ma-
trix, this subroutine is called in the initialisation subroutine SUBR Init and should also
be called in SUBR GridGen if an adaptive stepsize or an adaptive polynomial order is

used.

The subroutines SUBR FluxLimiter, SUBR FluxLimiterHO and SUBR FluxLimiterMinMod
determine the flux limited cell face values, using conventional limiters, the higher order

limiter and the minmod limiter from Cockburn and Shu[25] respectively (see section
(6.6)). These subroutines are called in the subroutine SUBR NumFluxV ector which
determines the numerical flux over the cell faces.

The subroutine SUBR SourceAndF luxV ector generates the flux vector and the source

vector i.e. the last two terms of equations (6.9) and (6.10).

6.11.2 Vectors or Scalars

In the code a scalar approach is taken in general and where easily implemented a vector
approach is taken. For example,

K(1:currSteps,1) = (-1.0d0+Hstar)*ue

and not

DO i=1,currSteps
K(i,1) = (-1.0d0+Hstar(i))*ue(i)
END DO

The following code snippet is an example of what is considered too ’complex’ to imple-
ment in vectorised form

DO i=3,currSteps-2
Fl(i,1) = 0.5d0 * (sum(K(i,1:3)*Flocal(i,1:3))+sum(K(i-1,1:3)*Flocal(i-1,1:3))) &

-0.5d0*sum(abs(Ksl(i,1:3))*(Flocal(i,1:3)-Flocal(i-1,1:3)))
...
END DO

Most compilers are optimised for vector-based operations and irrespective of that, in
most cases a vector-based operation has less overhead than a scalar-based operation
for the simple reason that with each vector call an entire range of memory locations

are processed in one go whereas for a scalar based approach each memory location
is processed separately. Vector optimised compilers will for instance make sure that
the memory locations are sequential.This means considerable gain can be achieved by

writing out the algorithms in terms of vectors, irrespective of the compiler used.

Vectorisation in DG will require more effort due to the added nested loops for the poly-
nomial orders.

6.11.3 Boolean Operators

The closure models of have defined ranges which need to be checked using boolean

operators, this not only causes overhead in the loops it also prevents the use of a full
vector-based approach since the vectors have to be broken. For optimisation the closure
models should thus be made continuous over the range of applicability.
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Chapter 7

Test Cases

Using a combination of numerical results and experimental data the results from the

current IBL system can be verified, the unsteady test cases are

• Impulsively started flat plate,

• Impulsively started cylinder,

• Oscillating infinite flat plate,

and other test cases are possible, see e.g. Sekar[120] for several flutter cases using a

coupled approach for the IBL equations (also see appendix(I.4)). The logic behind the
selection of test cases is as follows; with the flat plate case both the laminar and the
turbulent closure models are verified and the transition criterium is tested. With the

cylinder case the simulation of transient behavior and the robustness for separating
flow are tested. The oscillating flat plate for the turbulent case contains a velocity distri-
bution which is both time and location dependent, this may verify that the system can

properly handle simultaneous time and location changing outer velocity.

This list is by no means exhaustive, several topics can be addressed considering the

numerical techniques that have been discussed. In the chapter on the numerical meth-
ods several time integration methods have been discussed. This leaves out several time
integration schemes which supposedly have better stability properties. Also the subject
of flux limiters will not be tested, indeed the first question that needs to be answered

is if flux limiters are really necessary at all. Stability in general will not be treated and
differences in numerical schemes will not be investigated in any detail due to time con-
straints.

The values of constants used in the test cases differ per test case and will thus be
indicated per test case.

For all test cases appendix (J) contains more plots which do not fit the body text.

7.1 Flow over a Flat Plate

The initial and most obvious testcase is the original flat plat flow with constant external

velocity. The flat plate flow with constant external velocity is well described, analyti-
cally and empirically. This basic problem can be solved analytically and thus forms an
excellent test case for the unsteady flow solver. Based on the impulsively started flat

plate an exact solution can be derived for infinite flat plates with arbitrary prescribed

129
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velocity. A more challenging problem is given by the impulsively moved semi-infinite flat

plate which can be approximated algebraically for small and large times. Treating this
problem with the IBL equations requires that the reference frame is fixed to the plate
since zero boundary conditions were used for the wall surface. See appendix(I.4.3) for

background information on the laminar flow over a flat plate.

7.1.1 Impulsively Moved Flat Plate

The first test case assumes the flat plate with a uniform velocity distribution which
changes in time. The assumption of a flat plate removes the necessity to apply coordi-

nate transformations and should thus level out the performance of the FDM’s, FVM’s
and the FEM, this will be the base comparison. Two subcases will be considered, a
periodically changing velocity and an impulsively moved flat plate. These subcases can

be compared directly to the earlier discussed limit cases where the only appreciable
difference should be the presence of a wake which may also affect the boundary layer
before the plate-end.

Laminar Flow, Re = 100, 000

The first test case that is performed is the laminar flow over a flat plate in which only

the steady state solutions are considered. For the global parameters see table(7.1). The

parameter value unit
plate length 1.0 [m]
run time convergence [s]
temporal scheme Runge-Kutta 2/4

[
n/a

]

refinement none
[
n/a

]

kinematic viscosity 1.5e-5
[
kg
ms

]

edge velocity 1.5
[
m
s

]

Table 7.1: Global variables for laminar flow over impulsively moved flat plate

upwind schemes were tested for several grid resolutions and show grid convergence as

should be expected( see e.g. figure(7.2)).
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Figure 7.1: Comparison of result for the upwind schemes applied to laminar flow over a flat
plate,RK = 2,CFL = 0.5 at t = 4.5 (s) at various grid resolutions, (top) Displacement thickness,
(bottom) Friction coefficient

The remaining finite difference schemes behave in a similar fashion, no significant is-
sues arose, see figure (7.2). All finite difference schemes produced good results being
very close to the reference solution, this indicates that the laminar closure models have

been implemented correctly. Now considering the results obtained with the DG scheme,
the Roe scheme and the Kurganov-Tadmor scheme, see figure(7.3). Figure (7.3) shows
the results for the corrected and the uncorrected schemes, this has been explained in

section(6.2). For the DG scheme the three-point Gaussian quadrature was used with
linear basis functions, the use of the expansion in basis functions does not work at
present. The results for the Steger-Warming schemes were found to be in good agree-

ment with the exact solution, however this was obtained by dividing the spatial flux by
four. This artificial fix was maintained in the code.
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Figure 7.2: Comparison of the steady state result for various schemes applied to laminar flow over
a flat plate, RK = 2,CFL = 0.5, (top) Displacement thickness, (bottom) Friction coefficient

A convergence check with the L2-norm shows that all schemes converge with a 1st order
convergence rate (see figure(7.5)), this may be due to the first order accuracy at the left

boundary which pollutes the rest of the solution domain, this remains a guess however.
No smoothing was necessary for stability. When smoothing was applied the solution
quality deteriorated significantly. It was already stated in the theory section that the

steady state should be reached within four seconds based on the reference results (see
(I.4.3)), indeed for finer grids the convergence of the finite difference schemes is reached
in about four seconds, see figure (7.4).
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Figure 7.3: Comparison of result using the DG, Roe, Kurganov-Tadmor schemes applied to laminar
flow over a flat plate (top) friction coefficient Cf , (bottom) displacement thickness δ∗

Turbulent Flow, Re = 10, 000, 000

This test case involves a fully turbulent boundary layer over a flat plate, again only the
steady state solutions are considered, for the global parameters see table(7.2). The

flat plate produces an equilibrium boundary layer so as could be expected the results
with the equilibrium closure model compare well with the reference results, using the
non-equilibrium closure model leads to different quantitative results which still com-

pare well with the reference results. The non-equilibrium model produces a slightly less
stable solution, however no additional stability measures are needed for t = [0, 0.01].
For t = [0.01, 0.1] stability issues arise both using the non-equilibrium model and the

equilibrium model: no finite difference scheme is stable for CFL = 0.5 with first order
Runge-Kutta time integration and for higher order Runge-Kutta time integration the
first and second order upwind scheme and the MacCormack scheme remain unstable.

The upwind schemes are less stable if the eigenvalues are of mixed sign which is the
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case for high Reynolds turbulent flow. In this case the third order upwind scheme is

more stable than the lower order upwind schemes maybe due to the fact that it uses
nodes from both sides. The application of smoothing stabilised all schemes and did not
significantly affect the steady state result, see figure (7.7).

The (1/7)th power law distribution formed a suitable left boundary condition together
with the adapted Rayleigh solution as the initial condition. Suitable in the sense that

a steady state solution could be attained, however the shape factor was qualitatively
different from the reference value. This was presumably caused by the initial condition
over the plate, the Rayleigh solution used in this thesis was not based on empirical

data and was merely meant as a quick fix to be able to attain a converged solution,
i.e. the transient result should not be considered as physical. A comparison between a
smoothed and a non-smoothed solution is shown in figure (7.7), clearly the smoothing

has some effect at the boundary but otherwise the solutions overlap. If indeed a tur-
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parameter value unit
plate length 1.0 [m]
run time 0.01 [s]
temporal scheme Runge-Kutta 4

[
n/a

]

refinement none
[
n/a

]

kinematic viscosity 1.5e-5
[
kg
ms

]

edge velocity 150
[
m
s

]

Table 7.2: Global variables for turbulent flow over impulsively moved flat plate

bulent initial boundary layer is considered at all, it should be investigated whether an

adapted (1/7th) power law condition can be used for the fully turbulent layer, this (1/7th)
power law distribution should be initialised using the time derivative of the Rayleigh so-
lution for t = ∆t multiplied with some factor to account for the higher mixing rate of

the turbulent boundary layer (and thus the shorter development time and likely larger
time derivative). Overall, applying the non-equilibrium closure relation decreased the
numerical stability for all schemes. Smoothing was needed for the 2nd order upwinding

scheme, even for the equilibrium turbulent boundary layer, however this did not affect
the solution quality significantly as it did for the laminar case.

It is concluded here that the current implementation of the IBL equations can handle

both laminar and turbulent boundary layer flows.

Transitional Flow, Re = 6, 250, 000

Now the transition criterium will be tested using a steady flat plate transition flow. For
the global parameters see table(7.3). The steady results are shown in figure (7.8) and

parameter value unit
plate length 3.75 [m]
run time 1.0 [s]
temporal scheme Runge-Kutta 1

[
n/a

]

refinement none
[
n/a

]

left boundary condition Thwaites
[
n/a

]

kinematic viscosity 1.5e-5
[
kg
ms

]

edge velocity 25
[
m
s

]

∆x 0.01 [m]

Table 7.3: Global variables for laminar/turbulent flow over an impulsively moved flat plate

are quite satisfactory, the non-equilibrium closure uses a maximum amplification fac-

tor of 8.9 and a reference amplification factor of 9.1 so starting from amplification factor
8.9 the intermittency is increased until the amplification factor is equal to the reference
amplification factor1. It was found that the difference between the maximum amplifi-
cation factor and the reference amplification factor cannot be larger than about ≈ 0.3.

The mechanism for turbulence transition is devised for steady boundary layer flow in
that there is no description of transient behavior locked inside the transition models,
this was the reason for considering the intermittency transport function. A major as-

sumption with the current implementation is that upon establishing transition in a
certain point the points downwind are considered to be fully turbulent, this is followed
by checking the assumed turbulent boundary layer for relaminarisation. Thus directly

after transition, the following time step contains the intermittency distribution following
from the transition check of the previous time step and at the same time the primary
variables which are used to determine the new flux vector are still laminar; the bound-

ary layer is considered turbulent after the transition point, yet the primary variables

1 an exponential post-intermittency function was used here
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Figure 7.6: MacCormack spatial discretisation scheme with RK4 time integration scheme applied
to turbulent flow over a flat plate (top) friction coefficient Cf , (bottom) displacement thickness δ∗

are still laminar at the time, this causes problems because the laminar values for the
primary variables are not suitable for the turbulent closure relations, i.e. it will generate

unphysical values. This was demonstrated by the travelling disturbance following the
transition for the non-equilibrium boundary layer flow, see figure(7.9).

A more realistic approach would be to consider a simplified version of the intermit-
tency transport function , in which the intermittency is continuously dependent on the
flow (integral) variables both in time and space, this would avoid the mentioned unphys-

ical behavior at transition. So the obvious problem of the current formulation is that the
transition is instantaneous in time, although continuous in space, the main question is
how this time dependency is integrated in such a way that the intermittency behaves in

a physically correct manner and yet can be fitted in the IBL approach.Secondarily, the
shock indicators produced a clear spike at transition which was due to the eigenvalues
changing value discontinuously upon transition, in light of the earlier discussion this is

likely unphysical, see figure(7.10). The discontinuous change in eigenvalues supports
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Figure 7.7: Comparison of effect of numerical smoothing for second order upwind scheme applied
to turbulent flow over a flat plate, (top) Shapefactor H at 0.01(s),∆x = 0.005(m), with RK4 time
integration, (bottom) Displacement thickness δ∗ for a smoothed and a non-smoothed solution

the idea to implement a flux limiter for higher order conservative schemes, at the same
time the flux limitation can be limited to a very small region. Exactly the region of tran-
sition is indicated by the intermittency being valued between 0 and 1. Based on this

result higher order conservative schemes can be implemented without flux limitation.
Another situation in which discontinuities may arise is the case of separation, see sec-
tion (5.4). The friction coefficient for the non-equilibrium boundary layer has a slight

overshoot compared to the equilibrium boundary layer, this is comparable to the results
by Fenno et al[50]2.

2although in their case there was also a shock which may have amplified any existing differences
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Figure 7.8: Comparison of results for the transition simulation obtained with a 4th order central
differencing scheme with RK1 time integration, (top) friction coefficient Cf (bottom) shape factor
H

7.1.2 Oscillatory Moving Flat Plate

The following test case will cover both an edge velocity gradient in the spatial direction
and in the temporal direction and will thus cover the extent of the terms in the Jacobian
matrix K and the source vector L. First a laminar boundary layer flow over an oscillating

flat plate is considered with only a temporal edge velocity gradient, then the turbulent
boundary layer flow over an oscillating flat plate is considered, now with inclusion of
spatial edge velocity gradient.

Laminar Flow

The basis comparison for the oscillating flat plate is formed by the analytic solution of

the second Stokes problem. The second Stokes problem describes an infinitely long flat
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Figure 7.9: Comparison of results for non-equilibrium transition flow, obtained with 4th order
central differencing scheme, (top) friction coefficient Cf , (bottom) shape factor H

plate which is undergoing an oscillatory motion. For this thesis the plate is of finite
length with no wake influence, furthermore for the boundary conditions it was assumed

that the flow direction at the boundaries is unchanged, this limits the comparison.
First of all the result can only be compared for the points which are unaffected by
the boundaries, secondly the edge velocity can not be negative at the left boundary

therefore the time cannot exceed a quarter period. The velocity distribution is given by
(see appendix(I.4.3))

u

ue
= 1 − e−η cos(ωt− η)

cos(ωt)
, ue = u0 cos(ωt), (7.1)

with ω = 2πf and η =
√

ω
2ν
y, where f is the frequency from the velocity distribution it

follows that the friction coefficient is described by

Cf = 2
ν

uo

√
ω

2ν
(cos(ωt) − sin(ωt)) ≡ 2

ν

uo

√
ω

2ν
cos(ωt+

1

4
π). (7.2)
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So the friction coefficient Cf is ahead of the velocity distribution by 1
4
π ◦ and thus al-

ready for time t = 1
8
T , where T = 1

f
, the friction coefficient becomes negative, therefore

the time should be limited to t < 1
8
T . Assuming that the disturbance of the left boundary

propagates to the right with the initial velocity of the plate and using the global param-
eters from table(7.4) the undisturbed reference point is x > 1

8
Tue.

This specific test only involves the source vector since it is assumed that the boundaries
do not affect the reference point. The boundary layer velocity distribution of the second
Stokes problem allows for algebraic integration of the integral variables. The closure re-

lations used for the laminar boundary layer are based on the boundary layer thickness
δ99% where u(δ)

ue
= 99%, to facilitate this the boundary layer thickness is determined for

each time level, see figure (7.13). The most suitable initialisation of this problem is of

course formed by the analytical solution of the second Stokes problem. There are now
four cases using the Rayleigh solution or the Stokes solution as initialisation and either
the closure relations used by Drela or the closure relations used by Matsushita et al.
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parameter value unit
plate length 3.0 [m]
run time 1

8
T [s]

frequency of oscillation 5,50
[

1
s

]

reference point 1.5 [m]
CFL number 0.25 [−]
spatial scheme indifferent3

[
n/a

]

temporal scheme Runge-Kutta 4
[
n/a

]

refinement none
[
n/a

]

left boundary condition Thwaites
[
n/a

]

kinematic viscosity 1.5e-5
[
kg
ms

]

edge velocity 1
[
m
s

]

Table 7.4: Global variables for the laminar flow over an oscillating flat plate
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Figure 7.11: 2nd Stokes problem, (left) relative velocity distribution,(right) relative velocity difference
with edge velocity

In appendix J.4, the plots for δ∗, θ and Cf are shown for δ100%, it seems that the rela-

tions for the friction coefficient fail for small times where there is not even a qualitative
similarity with the exact solution. The displacement thickness is approximated very
well, the momentum thickness is overestimated throughout the domain which may be

caused by the overestimation of the friction coefficient.

It is clear from experiments(see e.g. Lighthill[84]) and from the Stokes velocity dis-

tribution that the velocity increase from the plate to the edge is not monotonous, based
on the velocity overshoot the upper layer is lagging behind the lower layer. It is sus-
pected that the effect of this lagging behavior of the upper layer is completely removed

by considering only the region of monotonous velocity increase (i.e. the first 99%). The
degree of unsteadiness of the entire velocity distribution is limited by the assumption in
boundary layer theory that neither convection nor diffusion dominate as the transport

phenomenon. As was shown by Lighthill[84] the boundary layer will show an increasing
phase lag for increasing frequency, this is caused by the fact that due to inertia the
boundary layer is dominated by convection in the upper part and by diffusion in the

lower part. Suffice to say that for high frequencies the assumption of similar convec-
tion and diffusion is no longer valid and more general, the velocity distribution in the
flow can no longer be represented by general approximations since phase lag within the

boundary layer cannot be predicted with the integral formulation. At a certain degree
of unsteadiness (as measured by for instance the reduced frequency), the closure re-
lations should take the unsteadiness into account e.g. by incorporating the unsteady

Thwaites/Pohlhausen parameter. The above test case was also performed using the
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Figure 7.12: 2nd Stokes problem for frequency f = 50 Hz, time history of friction coefficient Cf

friction closure relation by Strickland[105] (see section3.4), which was based on the un-
steady wedge flow, unfortunately no overall improvement was noticed, it showed better

similarity for t < 0.01(s) but it was in worse agreement for longer times. The closure
relation from Strickland contains the unsteady Pohlhausen parameter which was en-
countered already in section (3.1.2), applying this parameter to the guessed velocity

profiles from Wieghardt, Pohlhausen and Falkner-Skan approximation from Drela some
indication may be given regarding the suitability of the guessed velocity profiles for un-
steady boundary layer flow. Figure (7.14) shows that the guessed velocity profiles with

unsteady 4 Pohlhausen parameter does not produce similar velocity profiles to the exact
solution. This may be due to the aforementioned difference between the upper and the
lower layer, the result is somewhat disappointing nonetheless since the viscous sublayer

should still be well captured by boundary layer theory. Recall that for the laminar IBL
the closure relations due to Drela are implemented, these are based on solutions of the
Falkner-Skan equations. Considering the poor resemblance of the Falkner-Skan pro-

files in figure (7.14) the reasonable results that were obtained using the Falkner-Skan
based closure relations might be considered as fortuitous.

Turbulent Flow

The turbulent reference case by Fan et al will be considered next, see equation (7.3). The
specific reference result by Fan et al[49] contains phase and amplitude values for the

friction coefficient Cf and the displacement thickness δ∗, to obtain these values some
post-processing is required. Fan et al apply a k − ǫ turbulence model to the boundary
layer equations.

The flat plate velocity is described by the following function

ue(x, t) = u0

[

1 + A(x) sin
{
ωt+ ψ(x)

}]

, (7.3)

4using θ or δ∗ instead of δ did not produce significantly different results
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Figure 7.13: 2nd Stokes problem for frequency f = 50 Hz, time histories of (top) displacement
thickness δ∗,(bottom) momentum thickness θ

with two cases

low frequency: u0 = 21.9 [
m

s
], f = 38Hz, ω = 2πf

A(x) = 0.152 − 0.0743(x − 0.047), ψ(x) = 0.1326(x − 0.047),

high frequency: u0 = 16.8 [
m

s
], f = 62Hz,

A(x) = 0.118 − 0.114(x − 0.047), ψ(x) = 1.55(x − 0.047)2 + 0.116(x − 0.047).

This test case has been performed with IBL equations by Cousteix and Houdeville
in 1983 which showed that the result is heavily damped for values of ωx

u0
> 5, see

Cousteix[28] or Cousteix and Houdeville[30]. For more unsteady turbulent test cases

see Cousteix and Houdeville[30] and Carr[17]. The following quantities need to be re-
trieved

• amp(δ∗) : amplitude of first Fourier component

• phase(δ∗) : phase angle of first Fourier component
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the unsteady Pohlhausen parameter

The Fourier series for arbitrary domains are based on the frequency of the edge velocity5

, using only the first component the a and b coefficients are defined as follows

a0 =

∫ nT

0

δ∗dt
′

, a1 = (−1)n
ω

π

∫ nT

0

δ∗ cos (ωt)dt,

b1 = (−1)n
ω

π

∫ nT

0

δ∗ sin (ωt)dt, δ̃∗ = δ∗ + Aδ∗ cos(ωt+ φδ∗), δ∗ =
a0

2

the amplitude and phase angles are then given by

A =
√

a2
1 + b21, φ = arctan

(
a1

b1

)

.

The coefficients a1, b1 are found by first order Euler integration over 26 periods based on
the frequency ω of the edge velocity. The edge velocity is written as

ue = u0 + u0Aue cos(ωt+ φuev −
π

2
).

The comparison requires the following quantities.

ζδ∗ = φδ∗ − φue + π, ξδ∗ =
Aδ∗/δ∗

Aue/u0
.

The test has the following global variables, see table(7.5).

Low Frequency Oscillating Flate Plate

The edge velocity distribution is plotted in figure (7.15). The low frequency case is
simulated using the QUICK scheme with a second order Runge-Kutta time integration
and a CFL number of 0.25. The momentum thickness over about ten periods of the edge

velocity oscillation is shown in figure (J.19).

High Frequency Oscillating Flate Plate

For the high frequency case significant wiggles were present(see figure(7.19)), these wig-
gles seemed to be neutral in amplitude. For the friction coefficient a different closure

5this was not mentioned in the paper by Fan et al[49] and had to be derived from comments by Cousteix[28]
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parameter value unit
plate length 17ωx

u0
[−]

run time 26
f

[s]
CFL number 0.25 [−]
spatial scheme QUICK

[
n/a

]

temporal scheme Runge-Kutta 2
[
n/a

]

refinement time
[
n/a

]

kinematic viscosity 1.4717
[
kg
ms

]

Table 7.5: Global variables for turbulent flow over oscillating flat plate
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Figure 7.15: x− t edge velocity distribution for low-frequency unsteady flat plate

relation due to Cousteix and Houdeville is tested which should hold for a reduced fre-

quency ωx/u0 < 5, see section(3.4), no significant improvement was noted, it did however
allow a finer grid resolution (∆x = 0.002), the results using this closure relation for Cf
are presented in (7.20). Despite the wiggles the amplitude and the phase values are

only affected in higher order, the results are again in reasonable agreement with the
experimental data and the result from Fan et al who use a k − ǫ turbulence model in
combination with the boundary layer equations. The low frequency case was close to the

theoretical and experimental results, the plots for the displacement thickness seemed
a bit displaced in x−direction with respect to the k − ǫ result from Fan et al[49]. For a
reduced frequency ωx

u0
< 8 the solution from the current IBL system is in good agreement

with the k − ǫ results from Fan et al. In all cases the current IBL system is in better
agreement with the experimental data and the k − ǫ result.
For the high frequency case the oscillating turbulent flat plate showed wiggles for all

schemes, however these wiggles did not diverge. Smoothing removed the wiggles but
also damped the solution, to the extent that the oscillatory behavior of the amplitude
and the phase quickly dissipated. The wiggles are presumably caused by an unsuitable

left boundary condition for the turbulent flat plate. The wiggles do not change if more
periods are used for the integration of the coefficients, this suggests that either the wig-
gles are static or the frequency of the wiggles is a multiple of the disturbance frequency.

For the high frequency case the IBL equation with the equilibrium closure relations
produces a result close to the result obtained by Cousteix and Houdeville who also use
IBL formulation. The non-equilibrium closure relations give better results being in good

agreement with the experimental and theoretical reference values.
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Figure 7.16: Ratio of relative amplitudes of displacement thickness δ∗,(top) using equilibrium clo-
sure, (bottom) using non-equilibrium closure

7.2 Impulsively Moved Cylinder

The impulsively moved cylinder is a widely used test case for flow solvers and is well
documented by experimental data. Being a well documented example of a flow with a

strong adverse pressure gradient and a known location for unsteady laminar separation
it forms an interesting test case for this thesis.

7.2.1 Laminar Flow

A cylinder is moved instantaneously with constant velocity u0. The edge velocity dis-
tribution over the cylinder is then defined by a potential flow solution which is used

directly to obtain the the integral variables. The potential flow solution over the cylinder
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Figure 7.17: Relative phase shift of the displacement thickness δ∗,(top) using equilibrium closure,
(bottom) using non-equilibrium closure

is given by (also see figure(7.21))

ue = 2u0 sin (x), x = [0, π].

First determined by Goldstein the steady separation point for the cylinder is about

α = 104.6 ◦. The separation location is somewhat different from the steady case, based
on singularity studies of the boundary layer equations Dommelen and Shen, Cebeci and
Cowley determined that the separation point for the unsteady boundary layer flow over

a cylinder is approximately located at α = 111 ◦, also see section (I.3.4). The separation
of the boundary layer should be accompanied with a convergence of characteristics of
the quasi-linear system (see e.g. Matsushita[91]) and the separation indicator as de-

fined in section(5.4) should thus show a maximum value. Near the separation point the
shape factor H and the displacement thickness δ∗ should grow very large over a short
distance, the separation point is then characterised by a steeply diminishing momen-

tum thickness(see figure (J.22)) and a sharply rising displacement thickness(see figure
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Figure 7.19: Time evolution of the momentum thickness at half of the plate length

(7.25)) and shape factor(see figure (7.22)).

The global settings for this test case are given in table(7.6). This test case is purely

parameter value unit
plate length π [m]
run time until breakdown [s]
spatial scheme QUICK

[
n/a

]

temporal scheme Runge-Kutta 1/2/4
[
n/a

]

refinement left-boundary
[
n/a

]

kinematic viscosity 1.0
[
kg
ms

]

undisturbed velocity u0 0.5, 1.0
[
m
s

]

Table 7.6: Global variables for the boundary layer flow over an impulsively moved cylinder

theoretical for the laminar case since for the used settings the boundary layer thickness
is of the same order of magnitude as the radius of the cylinder. The finite difference

schemes perform equally well, there were no noteworthy differences, see figure (7.22).
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Figure 7.20: Harmonic results for the displacement thickness δ∗ for the high frequency case using
the non-equilibrium closure, (top) ratio of relative amplitude , (bottom) ratio of phase shift

grid refinement near the left boundary near the stagnation point improves the result

and does not necessarily decrease the overall temporal step size since the eigenvalues
near the stagnation point are very small, it is therefore recommended to be used for
stagnation flows. For the left boundary condition several values were used, namely, the

stagnation point values used by Nishida and Milewski, the value following from one step
of Thwaites integral equation and the value for the Rayleigh flow at t = ∆t. It was found
that the overall solution was practically indifferent to the type of boundary condition

used. In figure (7.23) the results using the Milewski left boundary value are shown for
the wall shear stress and the points of zero friction, it is in good agreement with the
reference result by Cebeci, the agreement deteriorates as the degree of separation in-

creases.
It was shown that the degree to which the separation could be simulated is at least de-

pendent on the closure relations, the closure relations due to Matsushita and Akamatsu

were better able to handle separated boundary layer flow than the closure relations
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Figure 7.21: Problem definition of impulsively moved cylinder

due to Drela. The explanation has already been given earlier in the text, Matsushita
and Akamatsu simply consider a wider range of (semi)-similarity solutions to obtain
the closure relations. Although the Drela closure relations are more accurate for the

non-separated flow, with increasing shape factor Drela’s Falkner-Skan based closure
relations are pushed beyond their envelope and the solution blows up. For a negative
inversed shape factor E the closure relations by Matsushita and Akamatsu also lose

their validity. For high values of the shape factor the momentum thickness goes to zero
and the displacement thickness levels out (see figure (7.24)). The separation indicator
produces a clear spike at/near the separation point, also the momentum thickness θ
and Reθ have a maximum near the separation point (see figure(J.28)). From the tests
with the impulsively moved cylinder it is clear that the Falkner-Skan based closure re-
lations as used by Drela performs better than the closure relations by Matsushita and

Akamatsu for low values of the shape factor which inversely performed better at the
higher values of the shape factor (approximately H > 3), this may be due to extrapola-
tion inaccuracies. From the convergence plots (7.26) it is clear that divergence starts

with the shape factor,
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Figure 7.22: Comparison of results obtained for impulsively moved cylinder with various schemes
for ue = 2 sin(x), with grid refinement near the left boundary, ∆x = 0.01, (top) Wall shear stress,
(bottom) Shape factor

Purely based on the eigenvalue plots (see figure (7.27)) a flux limiter is not necessary.
This is because no discontinuity is present and because long before the expected dis-

continuity will appear the current set of IBL equations fails due the shape factor H going
to infinity as the momentum thickness θ goes through zero. In case the equation set
from Matsushita et al is used the discontinuity can be reached. In the final coupled

procedure however the discontinuity is likely to be avoided due to the strong interaction
between the boundary layer and the outer flow.

Turbulent Flow

The impulsively moved cylinder case is performed again but now with a turbulent

boundary layer flow, the global variables can be found in table (7.7).
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parameter value unit

plate length 2π [m]
run time 0.5 [s]
spatial scheme QUICK

[
n/a

]

temporal scheme Runge-Kutta 2
[
n/a

]

spatial stepsize 0.001 [m]
refinement left-boundary

[
n/a

]

kinematic viscosity 1.5e-5
[
kg
ms

]

edge velocity 1.8
[
m
s

]

Table 7.7: Global variables for the turbulent boundary layer flow of an impulsively moved cylinder
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Figure 7.24: Separation indicators for ue = 2 sin(x), obtained with smoothed QUICK scheme, RK1
time integration, CFL = 1.75, with grid refinement near the left boundary, (top) Separation predic-
tions,(bottom) Separation indicator J

The reference result was obtained using the commercial flow solver CFX, the k − ω SST
turbulence model from Menter was used for the turbulence modeling. The stepsize over
the cylinder was 25 mm, the boundary layer was meshed with 20 layers starting with

0.1 mm and a growth factor of 20%, the boundary layer thickness is about 19 mm. The
intermittency over the entire cylinder was about 7%. The intermittency for the entire
boundary layer was pre-set at 7%, i.e the boundary layer is 7% turbulent. Only the wall

shear stress τ was compared, it is clear from figure (7.29) that the IBL fails completely
using a non-equilibrium closure model. Using the equilibrium closure model the best
result was obtained at the beginning of the cylinder, it seems that a separation bub-

ble moves upwind which causes the friction zero point to move upwind also, literature
suggests that turbulent separation over a cylinder takes places at about α = 126 ◦ (see
e.g. Li et al[81]), this brings the validity of the reference result into question. Given the

higher mixing rate of the turbulent boundary layer with the flow outside the boundary



154 CHAPTER 7. TEST CASES

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  0.2  0.4  0.6  0.8  1

δ* (m
)

x(πm)

IBL t=0.1(s),
IBL t=0.3(s)
IBL t=0.5(s)
IBL t=0.7(s)
IBL t=1.0(s)

IBL t=1.205(s)
Cebeci,t=0.1
Cebeci,t=0.3
Cebeci,t=0.5
Cebeci,t=0.7
Cebeci,t=1.0

Cebeci,t=1.25

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0  0.2  0.4  0.6  0.8  1

H

x(πm)

IBL t=0.1(s)
IBL t=0.2(s)
IBL t=0.3(s)
IBL t=0.4(s)
IBL t=0.5(s)
IBL t=0.7(s)

Cebeci,t=0.1
Cebeci,t=0.2
Cebeci,t=0.3
Cebeci,t=0.4
Cebeci,t=0.5
Cebeci,t=0.7

Figure 7.25: Results obtained using the smoothed QUICK scheme, RK1 time integration, CFL =
1.75, ∆x = 0.01 with grid refinement near the left boundary, (top) displacement thickness
δ∗,(bottom) shapefactor H

layer it should be able to overcome higher pressure gradients than the laminar bound-

ary layer.

The closure relation for the friction was the model by Swafford, see section (3.4), apply-
ing the friction model by Cousteix and Houdeville[30](see section (3.4)) did not improve

the result.

7.3 Comparison of Run times

As a coarse means of establishing a coarse comparison between the different numerical
methods in terms of computational loading a simple test case is executed. For this

purpose the Blasius case is simulated for three different grid resolutions, namely ∆x =
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Figure 7.26: Convergence criterium C2 for ue = 2 sin(x), obtained with smoothed QUICK scheme,
RK1 time integration, CFL = 1.75, ∆x = 0.01 with grid refinement near the left boundary

scheme ∆x = 0.01 ∆x = 0.005 ∆x = 0.0025

2nd order DG 8.1 31 116
Roe FVM 1.3 5.1 19.3
MacCormack FDM 1.5 6 23.9
1st order upwind 0.85 3.4 13.5

Table 7.8: Computation run time, with RK1 time integration,CFL = 0.5

0.01, 0.005, 0.0025 with CFL = 0.5. Koo et al[76] find that a 2nd order DG method is 12.5
times slower than a non-limited 2nd order FVM for a one dimensional scalar problem and
about 3 times slower for a two dimensional Euler problem. In this case the 2nd order

DG method is about 9 times slower than the first order upwind differencing scheme and
about 5 − 6 times slower than the Roe scheme and the MacCormack scheme. It should
be kept in mind that the code is not optimised yet, the mass and the Gaussian6 matrices

are very sparse so this can be achieved easily by LU-decomposition.

7.4 Summarising

The results show that the current formulation of the IBL equations plus the chosen clo-
sure relations can handle unsteady laminar and turbulent boundary layer flows quite
well despite the usage of steady closure models. No smoothing was required for the
central schemes. Smoothing was required for the very high Reynolds number flat plate

case which may have been caused by an unsuitable left boundary condition. Grid re-
finement at the left boundary for the cylinder case (i.e. the stagnation case) showed no
significant change in the global time step while improving the solution quality. At the

same time different stagnation point values (i.e. the left boundary condition) showed no
significant difference for the results for the cylinder case. The prediction of separation
and transition for unsteady boundary layers is still a matter of ongoing research, espe-

cially given the extra difficulties of severe cross flow and added body forces in the case
of three dimensional wind turbine flow, as has been discussed earlier.

6for each element there is matrix with the Gaussian nodes and weights
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Figure 7.28: A section of the grid near the cylinder wall for the CFX simulation
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Chapter 8

Conclusions and Recommendations

Following the results of the test cases and the earlier discussions, several conclusions
and recommendations are presented.

8.1 Conclusion

The usage of steady flow based closure models do not seem to bother the transient
solution quality in a qualitative sense, for a quantitative conclusion unsteady closure

models are necessary for comparison.

The usage of closure relations may bring severe limitations for the Discontinuous Galerkin
method since heuristically it prohibits the use of an expansion in basis functions for the

source vector and the exact flux vector. Further investigation is required comparing the
results of the expansion in basis functions with the results obtained through Gaussian
quadrature.

The fully turbulent cases have more stringent requirements on the step size, most likely
due to the mixed signs of the eigenvalues. Also, the stability was more affected by the left
boundary condition, this seemed to affect the upwind methods the most. The latter can

be explained by the fact that the upwind method is stable only for the characteristics in
the upwind direction.

Numerical smoothing stabilised the solution in all cases, for zero or low pressure gradi-

ent boundary layer flows the solution quality will be affected as was experienced for the
laminar flat plate.

The use of an equilibrium closure relation or a non-equilibrium closure relation for

the diffusion coefficient CD significantly influenced the results, the non-equilibrium
closure relation produces more physical temporal results for the unsteady turbulent
cases. However, this increase in physical accuracy was accompanied by decrease sta-

bility compared to the equilibrium case.

The solution quality for the Finite Difference Methods was degraded to first order for the
steady state solutions, this might be explained by the fact that first order differencing is

used for the first steps on the left boundary.

For several reasons the comparison should be considered as provisory, all of which lie
in the simplification of the problem considered and the fact that only two-dimensional

boundary layer flow was considered. The simplifications are, the negligence of curva-
ture terms, the treatment of two dimensional instead of three dimensional boundary
layer equations, and the omittance of fictitious forces. One of the downsides of imple-

menting the finite difference method in case of curved surfaces is the requirement that

159
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the geometric gradients are directly incorporated in the differential equations. The sub-

sequent presence of goniometric formulae will affect the computational efficiency and
large geometric gradients may cause very large differential terms. As a consequence
the comparative results are likely skewed, it is therefore advised to run a comparative

study for the two dimensional integral boundary layer equations with curvature terms.
Also it is advised to test the hyperbolicity of the current system in case fictitious forces
are added and in case a dimension is added, this is simply a matter of obtaining the
eigenvalues for realistic values of the primary variables.

The temporal step size for the explicit time integration scheme is approximately equal

to the spatial stepsize divided by the edge velocity which may have a negative impact on
the coupling of the unsteady integral boundary layer equations to the unsteady potential
solver which will have a time step several orders larger, this supports the investigation of

an implicit time integration scheme for the unsteady integral boundary layer equations.

8.2 Recommendations

Based on the results obtained it is advised to use a flux limiter for the transition region
in case the conservative equations are solved. It is clear from the results that negative
friction preceding separating flow does not give rise to a discontinuity of the eigenvalues.

This discontinuity does appear for a transition from a laminar to a turbulence bound-
ary layer, over the transition region the closure relations are switched from laminar to
turbulent which indirectly causes a discontinuity in the primary variables.

It is recommended to consider test cases which specifically aim to test the non-linearity
and the stability characteristics of the system for specific schemes, especially in relation

to stability preserving schemes, flux limiters and perhaps an equivalent entropy-fix for
the Roe scheme.

As a reference result in general it is recommended to use the field form of the boundary
layer equations, since it is more flexible than a full incompressible Navier Stokes-solver
and since it forms a direct reference value for the integral boundary layer equations,

i.e. results maybe differ from the incompressible Navier Stokes-solver due to physical
effects which are not modeled by the integral boundary layer equations, in this respect
the boundary layer equations should be of equal value.

In general, to investigate the suitability of the integral form of the boundary layer equa-

tions to model unsteady behavior an analytical analysis should be performed of the
integral equations by substitution of the velocity distribution.

Literature shows that the steady integral boundary layer equations can be used in a
coupled procedure to model unsteady flow phenomena such as flutter, it is therefore
advised to consider implementing and testing a quasi-steady integral boundary layer

formulation, see e.g. Howlett[67], Edwards[44],Zhang[160] and Sekar[120].

Some notes by the author

The initial thesis assignment was to compare numerical methods for the unsteady two-
dimensional integral boundary layer equations, this quickly shifted to a more general

comparison of complete solution methods, including the closure models and the transi-
tion detection, mainly because the application of closure models to the unsteady integral
boundary layer equations is not straightforward and it is not well described in literature.

Be that as it may, purely looking at the thesis assignment the closure models were of
secondary importance. Because of this dilution of effort I humbly admit that the numer-
ical comparison has perhaps not attained the relative size it deserves1, topics like total

1which surely attributed to incorrectly applying the non-conservative equations to the finite volume and the
finite element method
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variation diminishing, strong stability preserving, space-time discontinuous Galerkin,

adaptive grids, etc. etc. could have been discussed in more detail if at the start of my
thesis work a quick selection was made for the closure models. It is my opinion that
the listing/discussion of a wide range of closure models is certainly useful for anyone

interested in applying integral boundary layer equation and especially for my successor.
For a future study I strongly recommend to apply focus on either the closure models or
the numerical methods.
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Appendix A

Integral Boundary Layer Equations

n = 0

For n = 0 equation (2.20) gives1

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ (u− ue)

(
∂u

∂x
+
∂v

∂y

)

=
∂ue
∂t

+ ue
∂ue
∂x

+ ν

(

∂2u

∂y2

)

.

Collecting terms results in

∂(u− ue)

∂t
+ 2u

∂u

∂x
− ue

∂u

∂x
− ue

∂ue
∂x

+ v
∂u

∂y
+ (u− ue)

∂v

∂y
= ν

(

∂2u

∂y2

)

.

Since u∂v = ∂uv − v∂u this can be rewritten

∂(u− ue)

∂t
+ 2u

∂u

∂x
− ∂(uue)

∂x
+ u

∂ue
∂x

− ue
∂ue
∂x

+ v
∂u

∂y
+
∂v(u− ue)

∂y
− v

∂(u− ue)

∂y
= ν

∂2u

∂y2
,

∂(u− ue)

∂t
+
∂u2

∂x
− ∂(uue)

∂x
+ u

∂ue
∂x

− ue
∂ue
∂x

+
�

��v
∂ue
∂y

+
∂v(u− ue)

∂y
= ν

∂2u

∂y2
,

∂(u− ue)

∂t
+
∂u(u− ue)

∂x
+ (u− ue)

∂ue
∂x

+
∂v(u− ue)

∂y
= ν

∂2u

∂y2
.

Integrating over y from 0 to some y = y∗ > ye the displacement thickness and the

momentum thickness can be retrieved, also using ν ∂
2u
∂y2

= 1
ρ
∂τ
∂y

results in

∂

∂t

∫ y∗

0

(u− ue)dy +
∂

∂x

∫ y∗

0

u(u− ue)dy +
∂ue
∂x

∫ y∗

0

(u− ue)dy

+
∂

∂y

∫ y∗

0

v(u− ue)dy = − τw
ρ
. (A.1)

1The unsteady Kármán integral can also be found by direct integration,(see i.e. Özdemir[107]).
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Writing out individual terms

∂

∂t

∫ y∗

0

(u− ue)dy = − ∂

∂t

∫ y∗

0

ue

(

1 − u

ue

)

dy

= −∂ueδ
∗

∂t
, (A.2)

∂

∂x

∫ y∗

0

u(u− ue)dy = − ∂

∂x

∫ y∗

0

u2
e
u

ue

(

1 − u

ue

)

dy

= −
(

u2
e
∂θ

∂x
+ 2θue

∂ue
∂x

)

, (A.3)

∂ue
∂x

∫ y∗

0

(u− ue)dy = −∂ue
∂x

∫ y∗

0

ue

(

1 − u

ue

)

dy

= −∂ue
∂x

δ∗ue , (A.4)

∂

∂y

∫ y∗

0

v(u− ue)dy =
[
v(u− ue)

]y∗

0
,

= 0. (A.5)

where (see appendix (B))

displacement thickness: δ∗ =

∫ ye

0

(

1 − u

ue

)

dy, (A.6)

momentum thickness: θ =

∫ y∗

0

u

ue

(

1 − u

ue

)

dy. (A.7)

Substitution of equations (A.2), (A.3), (A.4) and (A.5) in equation (A.1) results in

∂ueδ
∗

∂t
+ u2

e
∂θ

∂x
+ (2θ + δ∗)ue

∂ue
∂x

=
τw
ρ
. (A.8)

Dividing by u2
e results in the common form of the unsteady Kármán integral [154] rela-

tion
1

u2
e

∂(ueδ
∗)

∂t
+
∂θ

∂x
+ (2 +H)

θ

ue

∂ue
∂x

=
Cf
2
. (A.9)

Where

H =
δ∗

θ
,

Cf =
τw

1
2
ρu2

e

.
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n = 1

A similar procedure as for the momentum integral equation is followed to find a me-
chanical energy integral relation, using n = 1 equation (2.20) results in

2u
∂u

∂t
+ 2u2 ∂u

∂x
+ 2uv

∂u

∂y
+ (u2 − u2

e)

(
∂u

∂x
+
∂v

∂y

)

= 2u
∂ue
∂t

+ 2uue
∂ue
∂x

+ 2uν
∂2u

∂y2
.

Collecting terms results in
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e
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∂ue
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+ u2 ∂v

∂y
− u2

e
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∂y
= 2uν

∂2u

∂y2
.

Again using the fact that u∂v = ∂uv − v∂u this can be rewritten as

2u
∂(u− ue)

∂t
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e
∂(u)
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∂(u)

∂x
− 2uue

∂ue
∂x

+ v
∂u2

∂y
+ u2 ∂v

∂y
− u2

e
∂v

∂y
= 2uν

∂2u

∂y2
,

2u
∂(u− ue)

∂t
+
∂u(u2 − u2

e)

∂x
+
∂u2v

∂y
− ∂u2

e v

∂y
+

�
��v
∂ue
∂y

= 2uν
∂2u

∂y2
,

2u
∂(u− ue)

∂t
+
∂u(u2 − u2

e)

∂x
+
∂v(u2 − u2

e)

∂y
= 2uν

∂2u
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Again integrating over y from 0 to some y = y∗ > ye and using ν ∂
2u
∂y2

= 1
ρ
∂τ
∂y

2
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u
∂(u− ue)
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����2
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∗
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ρ
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0

τ
∂u

∂y
dy. (A.10)
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Writing out the individual terms

2

∫ y∗
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2
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, (A.11)

∂

∂x

∫ y∗
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u(u2 − u2
e)dy = − ∂

∂x

∫ y∗

0

u3
e
u

ue

(

1 − u2

u2
e
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dy

= −∂u
3
eδ
k

∂x
, (A.12)

∂

∂y

∫ y∗

0

v(u2 − u2
e)dy =

[

v(u2 − u2
e)
]y∗

0
,

= 0. (A.13)

Introducing the dissipation integral D and the kinetic energy thickness δk

D =

∫ y∗

0

τ
∂u

∂y
dy, (A.14)

δk =

∫ y∗

0

u

ue

(

1 − u2

u2
e

)

dy. (A.15)

The kinetic energy integral is obtained by substituting the individual terms (A.11),
(A.12), (A.13) in equation (A.10) and subsequently dividing by u3

e

1

ue

∂(θ + δ∗)

∂t
+ 2

θ

u2
e

∂ue
∂t

+
1

u3
e

∂(u3
eδ
k)

∂x
= CD, (A.16)

where

CD =
2D

ρu3
e

.
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n = 2

Following the same procedure as for the momentum integral and the kinetic energy
integral a third integral can be obtained. Using n = 2 equation (2.20) results in

3
∂u

∂t
+ 3u3 ∂u

∂x
+ u2v

∂u

∂y
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(
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e
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.

Collecting terms results in
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Again using ∂uv = u∂v + v∂u this can be rewritten
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Again integrating over y from 0 to some y = y∗ > ye and using ν ∂
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∂y2

= 1
ρ
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Writing out individual terms

3

∫ y∗

0

u2 ∂(u− ue)

∂t
dy = −3

∂

∂t

∫ y∗

0

u2(ue − u)dy + 3

∫ y∗

0

(ue − u)
∂u2

∂t
dy

= −3
∂

∂t

∫ y∗

0

u2(ue − u)dy + 3

∫ y∗

0

∂u2 ue
∂t

dy − 3

∫ y∗

0

u2 ∂ue
∂t

dy − 2

∫ y∗

0

∂u3

∂t
dy

= − ∂

∂t

∫ y∗

0

u2(ue − u)dy +

∫ y∗

0

∂ue u
2

∂t
dy − 3

∫ y∗

0

u2 ∂ue
∂t

dy

= − ∂

∂t

∫ y∗

0

u
(

u2
e − u2

)

dy − ∂

∂t

∫ y∗

0

(

u3
e − u2

eu
)

dy −
XXXXXXX
∂

∂t

∫ y∗

0

ueu
2dy

+
∂

∂t

∫ y∗

0

u3
edy +

XXXXXXX
∂

∂t

∫ y∗

0

ueu
2dy − 3

∫ y∗

0

u2 ∂ue
∂t

dy

= − ∂

∂t

∫ y∗

0

u
(

u2
e − u2

)

dy − ∂

∂t

∫ y∗

0

(

u3
e − u2

eu
)

dy + 3

∫ y∗

0

(

u2
e − u2

) ∂ue
∂t

dy

= − ∂

∂t

∫ y∗

0

u
(

u2
e − u2

)

dy − ∂

∂t

∫ y∗

0

(

u3
e − u2

eu
)

dy + 3
∂ue
∂t

∫ y∗

0

(

ueu− u2
)

dy

+ 3
∂ue
∂t

∫ y∗

0

(

u2
e − ueu

)

dy

= − ∂

∂t

∫ y∗

0

u3
e
u

ue

(

1 − u2

u2
e

)

dy − ∂

∂t

∫ y∗

0

u3
e

(

1 − u

ue

)

dy

+ 3
∂ue
∂t

∫ y∗

0

u2
e
u

ue

(

1 − u

ue

)

dy + 3
∂ue
∂t

∫ y∗

0

u2
e

(

1 − u

ue

)

dy

= −∂u
3
eδ
k

∂t
− ∂u3

eδ
∗

∂t
+ 3u2

e
∂ue
∂t

θ + 3u2
e
∂ue
∂t

δ∗

= −∂u
3
eδ
k

∂t
− u3

e
∂δ∗

∂t
+ 3u2

e
∂ue
∂t

θ, (A.18)

∂
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3ue
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∂ue
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θ, (A.20)

∂

∂y
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e)
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0
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Introducing the following integral variables

K = 6ν
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dy,
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∫
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u
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dy.

Now the third momentum equation is obtained by substituting the individual terms

(A.18), (A.19), (A.20) and (A.21) in equation (A.17) and dividing by u4
e
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(A.23)
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where

CK = 6
ν

u4
e

∫ y∗

0

u

(
∂u

∂y

)2

dy.





Appendix B

Boundary Layer Characteristics

The boundary layer along objects is caused by the viscosity which deters the flow near
the surface of the object, in fact in normal practice it is assumed that the surface
velocity is identically zero. This boundary condition together with the diffusive nature

of the viscosity terms gives rise to a boundary layer in which the body attached flow
diffuses with the external flow. The velocity perpendicular to a solid surface is also
assumed to be zero, therefore the common boundary condition for boundary layers is

ū = 0 x̄ ⊂ Γsurface (B.1)

The boundary layer has a tangential velocity profile which is characterized first and
foremost by the boundary layer thickness δ (see figure (B.1)).

δ = yu=mue (B.2)

A typical value for m is 99%, i.e. the boundary layer is considered until the velocity
inside the boundary layer is 99% of the external velocity. Other characteristics are the

displacement thickness δ∗, the momentum thickness θ and the wall friction τw.

δ

u
(

m

s

)

y(m)

= turbulent

= laminar

Figure B.1: Velocity distribution in the boundary layer

T he displacement thickness δ∗ of the boundary layer is defined as the thickness

needed for the external flow to produce the reduced mass flow. The reduced massflow
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for an incompressible flow is given by

mred = ρueye − ρ

∫ ye

0

udy (B.3)

The displacement thickness then follows directly from

δ∗ =
mred

ρue
(B.4)

or

δ∗ =

∫ ye

0

(

1 − u

ue

)

dy (B.5)

Here ye is unknown a priori but a semi-arbitrary value for y can be chosen since the

integral has no contributions for y > ye. Suppose y = y∗ > ye

δ∗ =

∫ y∗

0

(

1 − u

ue

)

dy (B.6)

=

∫ ye

0

(

1 − u

ue

)

dy +
��������∫ y∗

ye

(

1 − u

ue

)

dy (B.7)

T he momentum thickness θ of the boundary layer is defined as the additional thick-
ness (on top of the displacement thickness) needed for the external flow to produce the
reduced momentum. The reduced momentum for an incompressible flow is given by

ζred = ρ

∫ ye

δ∗+θ

u2
edy − ρ

∫ ye

0

u2dy (B.8)

The derivation is completely analogous to the derivation of the displacement thickness
and results in

θ =

∫ y∗

0

u

ue

(

1 − u

ue

)

dy (B.9)

Note that the momentum thickness is a direct measure for the specific wall shear force

over a flat plate ([154]) through
τw(x) = 2ρu2

eθ (B.10)

The same procedure can be followed to obtain higher order integral variables, also see
figure(B.2)

δk =

∫ y∗

0

u

ue

(

1 −
(
u

ue

)2
)

dy, δk+ =

∫ y∗

0

u

ue

(

1 −
(
u

ue

)3
)

dy, · · ·
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δ

u
(

m

s

)

y(m)
u2

u3

ue

δ

y(m)

ue

δk

θ

δ∗

Figure B.2: Physical interpretation of integral variables





Appendix C

Similarity Solutions

Starting from the boundary layer equations it is possible for certain external velocity

profiles to write a single ODE or a system of ODE’s dependent on one variable usually
denoted as η(x, y, t). This means that a solution for some η simply scales in any direc-
tion for which η is constant, the solution is called self-similar in that direction. The first

similarity solution was for a flat-plate boundary layer flow, due to Blasius in 1908. A
subset of the similarity solutions are the semi-similarity solutions where the problem
variable are reduced to two variables, see i.e. Hayasi[61].

Note that the flat-plate is defined as such through the external velocity profile, i.e.
ue = Constant. This should not be confused with the current flat-plat problem where
the flat-plate is assumed merely for the ease of using an orthogonal coordinate system.

The similarity solution of the Falkner-Skan equation is given by

f
′′′

+
m+ 1

2
ff

′′

+m
(

1 − f
′2
)

= 0

η =

√
ue
νx
y, f(η) =

ψ(x, y)√
ueνx

, m =
x

ue

due
dx

boundary conditions :f(0) = 0 , f
′

(0) = 0 , f
′

(∞) = 1,

(C.1)

which was adapted by Hartree (as reference by Cebeci and Cousteix[22]) to a more
convenient form

f
′′′

(η) + f(η)f
′′

(η) + β
(

1 − f
′2(η)

)

= 0,

η = y

√

m+ 1

2

ue(x)

νx
, u(x, y) = ue(x)

√

m+ 1

2
f

′

(η), β =
2m

1 +m
,

boundary conditions :f(0) = 0 , f
′

(0) = 0 , f
′

(∞) = 1,

(C.2)

where β is a measure of the pressure gradient, β = 0 results in the Blasius equation for

a flat plate. The Falkner-Skan equation has a unique solution for (see Rosenhead[113])

0 < η < ∞, β∗ < β < 2, 0 < f
′

(η) < 1, f
′′

(η) > 0,

here β∗ is the value of β for which f
′′

(0) = 0.

The external velocity is assumed to be consistent with a power-law freestream velocity
distribution

ue(x) = K xm.
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To obtain a Falkner-Skan like equation for the unsteady form of the boundary layer

equations the time derivative has to be incorporated. Specific unsteady similarity so-
lutions for the impulsively started semi-infinite wedge are given by Nanbu [102], Khan
et al (2006)[74] and Philip et al[110]. Using a perturbation method Khan et al derived

the unsteady variant of the Falkner-Skan equation for a second-grade fluid, the zeroeth
order system is given as [74]

f
′′′

+

(

f +
η

2

)

f
′′

+ f
′

(1 − f
′

) = 0,

η =
y∗√
t∗
, ψ∗ =

x∗
√
t∗
f(η),

boundary conditions :f(0) = 0 , f
′

(0) = 0 , f
′

(∞) = 1,

where

x∗ =
x

L
, y∗ =

√

Re(x)
y

L
, t∗ =

t ue
L
.

Khan does not give parameters that describe the wedge shape since the solution by
Khan assumes ue = u0

(
x
t

)m
with m = 1, it is not clear where and how m enters the

differential equations. Philip et al derived general classes of similarity solutions for the
unsteady boundary layer equations and found that the earlier specific solutions were
indeed subsets of the more general solutions. Philip et al found 6 classes of solutions,

one particular class prescribes the external velocity as ue = x g(t).
Within this class a solution exists for g(t) = A > 0 and g(t) = A

t
, where A is some

constant. The solution for g(t) = A > 0 is given by

f
′′′

+ ff
′′

+ 1 − f
′2 = 0,

η =
√
Ay, ue = Ax, u = Axf

′

(η), v = −A 1
2 f(η),

boundary conditions :f(0) = 0 , f
′

(0) = 0 , f
′

(∞) = 1.

(C.3)

This is of course equal to the Falkner-Skan equation with β = 1. More interesting is the

solution for g(t) = A
t

which is given by

f
′′′

+ (Af +
1

2
η)f

′′

+ (1 − Af
′

)f
′

+ A− 1 = 0,

η =
y√
t
, ue =

A

t
x, u =

A

t
xf

′

(η), v = − A√
t
f(η),

boundary conditions :f(0) = 0 , f
′

(0) = 0 , f
′

(∞) = 1.

(C.4)

The zeroeth-order system of Khan can indeed be recognized as a specific similarity so-
lution if A is set to 1.

Whereas system (C.3) has a unique solution, system (C.4) has more than one solu-
tion for all A > 0. For A = 1 one solution represents attached flow and one solution
represents seperated flow, in general there is flow seperation for A < 1 and flow attach-

ment for A > 1 Philip[110].
The power-law flow that determined the Falkner-Skan flow is not retrieved as an un-
steady flow similarity solution by Philip et al, however Nanbu [102] specifically investi-
gated the time dependent similarity solution for a power-law velocity distribution and

found 2 seperate solution methods. For m < 1

(
1 − (1 −m)u∗t∗

) ∂u∗

∂t∗
=

1 +m

2

∂2u∗

∂η2
+m(1 − u∗2) +

(
1 −m

2
ηu∗ + v∗

)
∂u∗

∂η
,

∂v∗

∂η
= mu∗ − 1

1 −m

2
η
∂u∗

∂η
− (1 −m)t∗

∂u∗

∂t∗
,
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and for m ≥ 1

ξ1−m
∂u∗

∂τ
=

1 +m

2

∂2u∗

∂η2
+m(1 − u∗2) − (1 −m)ξ1−mu∗ ∂u∗

∂ξ1−m
+

(

v∗ +
1 −m

2
ηu∗

)
∂u∗

∂η
,

∂v∗

∂η
= mu∗ + (1 −m)ξ1−m

∂u∗

∂ξ1−m
− 1 −m

2
η
u∗

η
,

where

τ =
u0t

L
, ξ =

x

L
, t∗ =

τ

ξ1−m
, η =

√

(m+ 1)u0

2νL
ξ

1−m
2 ,

u = u0ξ
mu∗, v = −

√

2u0ν

(m+ 1)L
ξ

1−m
2 v∗.

Both methods require a two-way approach, firstly the equations need to be integrated

in time to end up with an instantaneous form of a non-linear differential equation,
secondly the differential equations needs to be integrated to obtain a final solution.
Note that these are coupled partial differential equations, decoupling this for the plate

problem can be done by simply ignoring the y-velocity component in the x-momentum
equations.

A detailed solution procedure can be found in Hall [59]. Yet another approach was

used by Matsushita[91], who employed the original Falkner-Skan formulation using a

slipping wall boundary condition, i.e. f
′

(0) = uwall, see section (4.2.4). Matsushita

refers to Tani[133] in stating that the Falkner-Skan profiles are especially suitable for
accelerating flows, also see for instance Mughal[99].

Downside of the similarity solutions is their reliance on a velocity prescription ue =
f(x, t), this limits their applicability since an actual unsteady flow can in general not be
described through an analytical relation. However for laminar (boundary/wake) flow the

velocity distributions produced by the similarity solutions or semi-similarity solutions
can be used to create relations for the shape factors. To that end similarity and semi-
similarity solutions have been used to specifically approximate accelerating boundary

layer flow, decelerating boundary layer flow, stagnating boundary layer flow and wake
flow. As was said, the Falkner-Skan solution for power-law flow provides a reference for
accelerating boundary layer flows.

Often used for decelerating flow is the quartic profile due to Tani, the shape factors are
tabulated in his paper[132].
For the stagnating boundary layer flow, Matsushita and Akamatsu[90] use a similarity
solution by Proudman and Johnson, and Robins and Howarth which they based on the

rear stagnation point of a moving cylinder. The similarity solution is given by

fyt − fyyy + ffyy + 1 − f2
y = 0,

u = −xFy, v = F, x =

√
α

ν
x, y =

√
α

ν
y, t = αt

boundary conditions :(f(0, t) = f(0, t)y = 0, f(∞, t)y = 1, f(x, 0)y = 1.

For 0 < t < 5 the shape factors are assumed to be variable, for large t the boundary layer
will approach the similarity solution found by Hiemenz (see Proudman[111]).

In case the wake is laminar, the following semi-similar solution due to Williams[156]
can be used

∂2w

∂η2
+ α1

∂w

∂η
+ α2w + α3 = α4

∂w

∂ξ
,

∂f

∂w
= w,

w(ξ, 0) = f(ξ, 0) = 0, w(ξ,∞) = 1,
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where

α1 = −
[

mξ +
1

2
(1 −m)

[
ξ + (1 − ξ) ln (1 − ξ)

]
f +

1

2
(1 − ξ)η + (m− 1)(1 − ξ) ln (1 − ξ)

∂f

∂ξ

]

,

α2 = mξ
∂f

∂η
,

α3 = −mξ,

α4 = (1 − ξ)

[

ξ + (m− 1) ln (1 − ξ)
∂f

∂η

]

.

At ξ = 0 the solution is started using

∂3f

∂η3
+
η

2

∂2f

∂η2
= 0.

The solution due to Williams was applied by Matsushita et al[91] for 0.2 < m < 1.3. The
similarity solutions cannot be applied directly to solve general boundary layer problems,
the one-parameter integral methods however can, these will be discussed in the next

section.



Appendix D

Alternative Velocity Profiles

Starting from the general polynomial
∑N
i=1 aip

i several alternative profiles are derived
using different combinations of the boundary conditions. For purpose of illustration
sextic profiles will be used, the polynomial order can be increased arbitrarily using more

boundary conditions at the edge of the boundary layer.

D.1 Profile 1

D.1.1 a

Using five boundary conditions at the edge and one at the wall will result in a single

parameter profile.

f(η) = a1η + a2η
2 + a3η

3 + a4η
4 + a5η

5 + a6η
6

f(1) = a1 + a2 + a3 + a4 + a5 + a6 = 1

f
′

(1) = a1 + 2a2 + 3a3 + 4a4 + 5a5 + 6a6 = 0

f
′′

(1) = 2a2 + 6a3 + 12a4 + 20a5 + 30a6 = 0

f
′′′

(1) = 6a3 + 24a4 + 60a5 + 120a6 = 0

f
′′′′

(1) = 24a4 + 120a5 + 360a6 = 0

f
′′

(0) = 2a2 = − δ
2

ν

(
∂ue
∂x

+
1

ue

∂ue
∂t

)

= −Λ

Resulting in the following coefficients.

a1 =
1

10
Λ + 3

a2 = −1

2
Λ

a3 = −10 + Λ

a4 = −Λ + 15

a5 =
1

2
Λ − 9

a6 = 2 − 1

10
Λ
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Again this order can be increased arbitrarily using the boundary conditions at the edge.

However in focusing the requirements of the polynomial on the edge conditions the more
important region near the wall is neglected. Therefore in the next section a boundary
condition at the wall is added.

D.1.2 b

Adding a boundary condition for f ′′′(0) and removing a boundary condition at the edge

will result in a the following single parameter profile.

f(η) = a1η + a2η
2 + a3η

3 + a4η
4 + a5η

5 + a6η
6

f(1) = a1 + a2 + a3 + a4 + a5 + a6 = 1

f
′

(1) = a1 + 2a2 + 3a3 + 4a4 + 5a5 + 6a6 = 0

f
′′

(1) = 2a2 + 6a3 + 12a4 + 20a5 + 30a6 = 0

f
′′′

(1) = 6a3 + 24a4 + 60a5 + 120a6 = 0

f
′′

(0) = 2a2 = −Λ

f
′′′

(0) = a3 = 0

Resulting in the following coefficients.

a1 =
1

5
Λ + 2

a2 = −1

2
Λ

a3 = 0

a4 = Λ − 5

a5 = −Λ + 6

a6 = −2 +
3

10
Λ

In literature f
′′′

is taken as zero at the wall due to the assumption of incompressibility,

it follows from the assumption of incompressibility that

∂u

∂x
= −∂v

∂y
⇒ ∂u

∂x

∣
∣
∣
∣
y=0

= − ∂v

∂y

∣
∣
∣
∣
y=0

= 0,

Since the velocity gradient of v normal to the plate is not prescribed as zero and since

such an assumption was not used for the derivation of the boundary layer equations or

the integral boundary layer equations it effectively means that ∂v
∂y

∣
∣
∣
y=0

= 0 is an added

boundary condition resulting from the assumption of incompressibility. Using f
′′′

= 0
leads to a very instable approximate method, for Falkner-Skan flows with m = 1, 2 . . . 5

there was no stable solution. Setting f
′′′

to a positive value improved the results, in

fact much better results were obtained using f
′′′

(0) = 1
2
Λ. Perhaps the prescription of a

zero valued third derivative at the wall leads to oscillatory behaviour for higher orders
of the polynomial, a non-zero boundary condition at the wall seemed to the oscillatory

behaviour.

Re-assessing the boundary conditions

× ∂n

∂yn
:

∂n+1u

∂t∂yn

∣
∣
∣
∣
∣
y=0

+ u
∂n+1u

∂x∂yn

∣
∣
∣
∣
∣
y=0

+ v
∂nu

∂yn+1

∣
∣
∣
∣
y=0

=

∂n

∂yn

(
∂ue
∂t

+ ue
∂ue
∂x

)
∣
∣
∣
∣
∣
y=0

+ ν
∂n+2u

∂yn+2

∣
∣
∣
∣
∣
y=0

, n = 0 . . . N
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these N + 1 equations will describe the following boundary conditions for f(η)

fn+2(0), n = 0 . . . N

In general the value for each term which is not differentiated with y explicitly is equal
to the boundary value, also the external velocity terms are constant throughout the

boundary layer in the direction normal to the wall, this means for the time derivative
that

∂n+1u

∂t∂yn
6= 0, n = 1, . . . N. (D.1)

If ∂u
∂t

is not neglected the boundary conditions at the wall are given by

f(0) = 0

f
′

(0) =
ueδ

2ν
Cf

f
′′

(0) = −1

2
Λ

f
′′′

(0) =
3δ3

ueν2

(

Cf
∂u2

e

∂t
+ u2

e
∂Cf
∂t

)

D.2 Profile 2

If the time derivatives are incorporated in the boundary conditions an unsteady profile
can be produced which is dependent on Cf and Λ.

D.2.1 a

First a profile is created with four conditions at the edge and two at the wall.

f(η) = a1η + a2η
2 + a3η

3 + a4η
4 + a5η

5 + a6η
6

f(1) = a1 + a2 + a3 + a4 + a5 + a6 = 1

f
′

(1) = a1 + 2a2 + 3a3 + 4a4 + 5a5 + 6a6 = 0

f
′′

(1) = 2a2 + 6a3 + 12a4 + 20a5 + 30a6 = 0

f
′′′

(1) = 6a3 + 24a4 + 60a5 + 120a6 = 0

f
′

(0) = a1 =
ueδ

2ν
Cf

f
′′

(0) = 2a2 = −Λ

Resulting in the following coefficients.

a1 =
ueδ

2ν
Cf

a2 = −1

2
Λ

a3 = 2Λ − 10
ueδ

2ν
Cf + 20

a4 = −3Λ + 20
ueδ

2ν
Cf − 45

a5 = −15
ueδ

2ν
Cf + 2Λ + 36

a6 = 4
ueδ

2ν
Cf − 1

2
Λ − 10



192 APPENDIX D. ALTERNATIVE VELOCITY PROFILES

D.2.2 b

Now a condition at the wall is added and a condition at the edge is removed.

f(η) = a1η + a2η
2 + a3η

3 + a4η
4 + a5η

5 + a6η
6

f(1) = a1 + a2 + a3 + a4 + a5 + a6 = 1

f
′

(1) = a1 + 2a2 + 3a3 + 4a4 + 5a5 + 6a6 = 0

f
′′

(1) = 2a2 + 6a3 + 12a4 + 20a5 + 30a6 = 0

f
′

(0) = a1 =
ueδ

2ν
Cf

f
′′

(0) = 2a2 = −Λ

f
′′′

(0) = 6a3 =
3δ3

ueν2

(

Cf
∂u2

e

∂t
+ u2

e
∂Cf
∂t

)

Resulting in the following coefficients.

a1 =
ueδ

2ν
Cf

a2 = −1

2
Λ

a3 =
δ3

2ueν2

(

Cf
∂u2

e

∂t
+ u2

e
∂Cf
∂t

)

a4 = 3Λ − 3δ3

2ueν2

(

Cf
∂u2

e

∂t
+ u2

e
∂Cf
∂t

)

− 10
ueδ

2ν
Cf + 15

a5 = 15
ueδ

2ν
Cf − 4Λ +

3δ3

2ueν2

(

Cf
∂u2

e

∂t
+ u2

e
∂Cf
∂t

)

− 24

a6 = −6
ueδ

2ν
Cf +

3

2
Λ − δ3

2ueν2

(

Cf
∂u2

e

∂t
+ u2

e
∂Cf
∂t

)

+ 10

These 2-parameter profiles can only be solved if an extra equation is used, i.e. the

energy integral equation or the moment-of-moment equation. Again the order of the
polynomial can be increased arbitrarily using more or less boundary conditions at the
edge.
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Closure Relations

E.1 Laminar Boundary Layer Flow

Wieghardt:
u

ue
= f1(η) + af2(η) + bf3(η),

f1 = 1 − (1 − η)8(1 + 8η + 36η2 + 120η3),

f2 = (1 − η)8η(1 + 8η + 36η2),

f3 = −(1 − η)8η2(1 + 8η),

a =
τwδ

µue
, b =

1

2
Λ.

(E.1)

Timman:
u

ue
= 1 −

∫ ∞

η

e−η
2
(

a+ cη2
)

dη − e−η
2
(

b+ dη2
)

,

a =
4

3
√
π

(1 − b),

c =
4

3
√
π

(1 − b),

b =

{

−Λ, θ2

ν
due

dx
< 0,

− 1
2
Λ, θ2

ν
due

dx
≥ 0.

d =

{

− 1
2
Λ, θ2

ν
due

dx
< 0,

0, θ2

ν
due

dx
≥ 0.

(E.2)

Cooke:
u

ue
= f + ζg,

f = 1 − 2

3
√
π
ηe−η

2

− 2
2√
π

∫ ∞

η

e−η
2

dη,

g =
1

2

(

1 − e−η
2

− f
)

,

ζ =

(
1

0.293

)
θ2

ν
.

(E.3)

Mughal:
u

ue
= 1 − (1 − η)ζ

(

1 + a1η + a2η
2
)

a1 =
2

3
(ζ − 1) +

Λ

ζ + 1
, a2 =

ζ (ζ − 1)

6
(ζ − 1) +

Λ

2
, ζ = − 7

40
Λ + 5

(E.4)
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CD =
H∗

Reθ

{

0.207 + 0.00205 (4 −H)5.5 , H < 4,

0.207 − 0.003 (H − 4)2 , H > 4,
(E.5)

where

H∗ =

{

1.515 + 0.076 (H−4)2

H
, H < 4,

1.515 + 0.040 (H−4)2

H
, H > 4.

(E.6)

Lyrio et al: Cf = 2
(1.91 − 4.13Λ)

Reδ∗
, (E.7)

with

λ =
θ2

ν

(
∂ue
∂x

+
1

ue

∂ue
∂t

)

, Λ = 0.325 − 0.13λH2, H =
1

0.68 − 0.922Λ
. (E.8)

Sekar: Cf =







1
Reθ

[

0.0727 (5.5−H)3

H−1
− 0.07

]

H < 5.4

2
Reθ

[

−0.067 + 0.01977 (7.4−H)2

H−1

]

7.4 > H > 5.4

2
Reθ

[

−0.067 + 0.022
(

1 − 1.4
H−6

)2
]

H > 7.4

. (E.9)

E.2 Laminar to Turbulent Transition

Granville: Reθ,tr ≥ 375 + e6.1+55λθ +Reθ,crit, −0.04 ≤ λθ ≤ 0.024, (E.10)

Arnal et al: Reθ,tr = Rθ,crit − 206e25.7λθ

[

ln(16.8Tu) − 2.77λθ
]

,

turbulence intensity: Tu =

√

1
2

(

u′2 + v′2
)

ue
.

(E.11)

where

Reθcrit
=

{
54.2124

H(H−2.48)
+ 31.6

H
H > 2.591

520
H

+ 2.5 exp 6
H

(
1
H

− 1
2.591

)1.95
H ≤ 2.591

, (E.12)

here λθ is the mean Thwaites parameter

λθ =
1

x− xcr

∫ x

xcr

θ2

ν

due
dx

dx. (E.13)

Abbu-Ghannam/Shaw: Reθ,crit = 155+89(ncrit)
5/4

[

1 +
1

4
tanh

(
10

H − 1
− 5.5

)]

, (E.14)

with e.g.

Mack: ncrit = −8.43 − 2.4 ln[0.027 tanh(Tu/2.7)]. (E.15)

Henkes and Van Ingen:

{

ncrit = 2.13 − 6.18 log10(Tu)
ntrans = 5 − 6.18 log10(Tu)

. (E.16)

Anderson et al: ntr = −8.43 − 2.4 ln (Tu), 0.1% < Tu < 2%, (E.17)

Coenen: Reθcrit
= exp

(
52

H
− 14.8

)

. (E.18)
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Bongers[14]: Reθcrit
= exp (26.3 − 8H), 2.2 < H < 3. (E.19)

Wazzan et al: log10(Rex,tr) ≈ −40.4557+64.8066H−26.7538H2+3.3819H3 , 2.1 < H < 2.8,
(E.20)

Drela[35]: log10 (Reθ,crit) =
(

1.415

H − 1
− 0.489

)

tanh

(
20

H − 1
− 12.9

)

+
3.295

H − 1
+ 0.44, ]

(E.21)

Drela and Giles: log10 (Reθ,crit) =

0.7 tanh

(
14

H − 1
− 9.24

)

+ 2.492

(
1

H − 1

)0.43

+ 0.62,

(E.22)

Abu et al[47]: Reθ,crit =

163 + 74.3[0.94ncrit + 1]

[

0.55 tanh

(
10

H − 1
− 5.5

)

+ 1

]

,

(E.23)

Abu et al[78]: Reθ,crit = 163 + exp

(

f − f

6.91
Tu

)

(E.24)

f =

{

6.91 + 12.75λθ + 63.64λ2
θ , λθ < 0

6.91 + 2.48λθ − 12.28λ2
θ , λθ ≥ 0

λθ =
θ2

ν

∂ue
∂x

.

E.3 Turbulent Boundary Layer Flow

1/7th power law: δ∗ =
1

8

0.16x
7
√
Rex

, θ =
7

72

0.16x
7
√
Rex

, H =
9

7
. (E.25)

Spalding: y+ = u+ + e−κ c
(

eκu
+ − 1 − κu+ − (κu+)2

2
− (κu+)3

6

)

. (E.26)

Swafford: u =
ue s

u+
e 0.09

arctan (0.09y+) +
ue

u+
e

(

u+
e − sπ

0.18

)
√
√
√
√tanh

[

a

(
y

θ

)b
]

, (E.27)
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where

Cf =
0.3e−1.33H

(log10Reθ)
1.74+0.31H

+ 0.00011

[

tanh

(

4 − H

0.875

)

− 1

]

u+
e =

√

2

|Cf |

s =
cf
|cf |

u

ue
(2) =

1

1.95

[

tanh−1

(
8.5 −H

7.5

)

− 0.364

]

u

ue
(5) = 0.155 + 0.795sech[0.51(H − 1.95)]

g(2) =

[

u
ue

(2) − 2

0.09u+
e

tan−1
(

0.18Reθ

u+
e

)]

1 − sπ

0.18u+
e

g(5) =

[

u
ue

(5) − 2

0.09u+
e

tan−1
(

0.45Reθ

u+
e

)]

1 − sπ

0.18u+
e

b =
ln
(

tanh (g2(5))
tanh (g2(2))

)

ln 2
5

a =
1

2b tanh
(
g2(2)

)

Cross:







u = ueuτ cos (βw)
κ

(
1
2

ln (Reδuτη)
2
)

+ qeB
(

sin
(
π
2
η
))χ

uc = ueuτ sin (βw)
κ

(
1
2

ln (Reδuτη)
2
)

+ qeBc
(

sin
(
π
2
η
))χc , (E.28)

where

B = 1 − uτ cos(βw)

κ

[
1

2
ln (Reδuτ )

2 + A

]

, Bs = −uτsin(βw)

κ

[
1

2
ln (Reδuτ )

2 +A

]

,

A is the law of the wall constant which is 5.0 for a smooth wall and 8.0 for a fully rough
wall (see Schlichting[118, p.523]). The cross flow exponents χ and χc are not given by

Cross, he does suggest that χ and χc are correlations of χ, βw, atan
(
Bc

B

)

where χ is the

wake exponent.

White: f(η) ≈ sin

(
π

2
η

)2

, f(η) ≈ 3η2 − 2η3. (E.29)

Granville: u+ =
1

κ
ln y+ + c+

1

κ

[

Π(1 − cosπη + (η2 − η3))
]

, y+ ≥ 30. (E.30)

Thompson: u+ =







y+, y+ ≤ 4,

1.0828 − 0.414 ln y+ + 2.2661
(

ln y+
)2

− 0.324
(

ln y+
)3

, 4 < y+ < 30.

(E.31)

White: β = −0.4 + 0.76Π + 0.42Π2 (E.32)

White: β = −λ2H
θ

ue

due
dx

,

λ =
2 + 3.179Π + 1.5Π2

κ(1 + Π)

H

H − 1
,

(E.33)
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u

ue
≈ 1 − ζ + 0.4ζ

3
2

√
(
y

δ∗

)

+ 0.6ζ sin

(
π

2
ζ

y

2.86δ∗

)

, ζ =
us
ue
, (E.34)

where us is defined as a characteristic velocity scale

Ludwieg and Tillman: Cf = 0.246 10−0.678H

(
ueθ

ν

)−0.268

. (E.35)

White, adverse pressure gradient: Cf =
0.3e−1.33H

(log10 Reθ)
1.74+0.31H

(E.36)

White, flat plate flow: Cf =




0.027

Re
1
7
x



 . (E.37)

Green, adverse pressure gradient:: Cf = Cf0

(

0.9

0.4 H
H0

− 0.5

)

, (E.38)

where Cf0 is the friction coefficient for zero pressure gradient, this is taken as

Green 1972 Cf0 =
0.012

log10 Reθ − 0.64
− 0.00093,

Green et al 1977 Cf0 =
0.01013

log10 Reθ − 1.02
− 0.00075,

and

Green 1972 H0 =
1

1 − 6.8
√

Cf0

2

,

Green et al 1978 H0 =
1

1 − 6.55

√
Cf0

2

.

Ferziger et al: Cf = 0.1017 |1 − 2ζ|1.732
(

ζ

H Reθ

)0.268

sign(1 − 2ζ), (E.39)

where the so-called blockage factor ζ is given by

ζ =
δ∗

δ
,

this expression for Cf is used in conjunction with the following expression which is
derived from Coles wall-wake law

H − 1

H
≈ 1.5ζ + 0.309

√

Cf + 0.955
Cf
ζ
.

Du and Selig: Cf = 0.172Re−0.268
θ 10−0.678H



1 +B1

√

tan

(

βw
x− xtrans

c

)


 , B1 = 0.52.

(E.40)

where βw is the crossflow angle.

Cf =
0.3e−1.33H

(log10 Reθ)
1.74+0.31H

+ 0.00011
[
tanh (A) − 1

]
, (E.41)



198 APPENDIX E. CLOSURE RELATIONS

where Sekar[120] uses

A =

{

4 − H
0.875

H > 5.25
104 − H

0.875
H ≤ 5.25

,

Sekar also replaces the logarithm by the value 3 for a momentum thickness Reynolds
number lower than 20.

Cousteix and Houdeville:G =
H − 1

H

√

2

Cf
,

D = 2G− 4.25
√
G+ 2.12,

Cf =
2

(
1
κ

ln (Reδ∗) +D
)2 .

(E.42)

Mughal: CD = 2
(

0.009 − 0.011 exp (−0.15H2.1) + 0.00003 exp (0.117H2) + aRe−0.574
θ

)

,

(E.43)
where

a =

{

0.438 − 0.280H, H ≤ 3.5,
0.160 (H − 3.5) − 0.55, H > 3.5.

Drela: CD = H∗

[

Cf
2

(
4

H
− 1

)
1

3
+ 0.03

(
H − 1

H

)3
]

, (E.44)

where

H∗ =







1.505 + 4
Reθ

+

(

0.165 − 1.6√
Reθ

)

(H0−H)1.6

H
, H < H0,

1.505 + 4
Reθ

+ (H −H0)
2



 0.04
H

+ 0.007 lnReθ
(

H−H0+ 4
ln Reθ

)2



 , H > H0,
(E.45)

with

H0 = 3 +
400

Reθ
, H0 = min(H0, 4).

Drela: CD = H∗

[

Cf
2

(
4

H
− 1

)
1

3
+

2

H∗Cτ (1 − us)

]

, (E.46)

where

us =
H∗

6

(
4

H
− 1

)

.

E.3.1 Unsteady Entrainment and Shear Stress Lag

Head: F (H1) = 0.0306(H1 − 3)−0.6169,

H1 =

{

0.8234(H − 1.1)−1.287 + 3.3, H < 1.6
1.5501(H − 0.6778)−3.064 + 3.3, H ≥ 1.6

.
(E.47)

Coenen: H1 =







2 + 1.5
(

1.12
H−1

)1.093

+ 0.5
(
H−1
1.12

)1.093

, H < 4.

4 + 1
3
(H − 4), H ≥ 4,

, (E.48)
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Coenen: H1 =







(0.5H+1)H
H−1

, H < 2.732,
(0.5G+1)G

G−1
, G ≤ 4 & H ≥ 2.732,

1.75 + 5.2273G
G+5.818181

, G > 4 & H ≥ 2.732.

,

G = 0.5(H − 2.732) + 2.732.

(E.49)

Drela:

Cτ,eq =
0.015H∗(H − 1)3

(1 − Us)H3
,

us
ue

= Us = 0.5H∗
(

1 − H − 1

0.75H

)

,

δ = θ

(

3.15 +
1.72

H − 1
− 0.01 (H − 1)2

)

+ δ∗

(E.50)

where the energy shape factor H∗ is defined by

H∗ =
δk

θ
,

,

Nishida:
√
Cτ init = 1.8 exp

(
−3.3

H − 1

)
√

Cτ,eq (E.51)

Cebeci and Cousteix:

flat plate friction: Cf0 =
0.01013

logReθ − 1.02
− 0.00075,

equilibrium entrainment: Feq = H1

[

Cf
2

− (H + 1)

(
θ

ue

due
dx

)

eq

]

,

shear stress coefficient:
√
Cτ =

√

−0.32Cf0 + 0.024F + 1.2F 2,

equilibrium shear stress coefficient:
√

Cτ,eq =
√

0.32Cf0 + 0.024Feq + 1.2F 2
eq ,

(
θ

ue

due
dx

)

eq

=
1.25

H

[

Cf
2

−
(
H − 1

6.432H

)2
]

,

(
δ

ue

due
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)
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= (H1 +H)

(
θ

ue

due
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)

eq

.

(E.52)

Green et al:

Cf = Cf0

(

0.9

0.4 H
H0

− 0.5

)

,

H0 =
1

1 − 6.55

√
Cf0
2

,

H1 = 3.15 +
1.72

H − 1
− 0.01(H − 1)2.

(E.53)





Appendix F

Blasius correlation

First the boundary conditions are related through

f
′′

(0)

f ′(∞)
= B, (F.1)

where B is the value of f
′′

(0) for which f
′

(∞) = 1.

Note that a boundary condition can be rewritten

f
′

(∞) = 1 →
[

f
′

(∞)
]n

= 1

Then note that if f0(η) fulfills the Blasius equation this also holds for af0(aη). The
boundary conditions are fulfilled if

a3f
′′

0 (0) = B, a2f
′

0(∞) = 1

or
a3f

′′

0 (0) = B,
[

a2f
′

0(∞)
]n

= 1

Again relating the boundary conditions and equating with equation (F.1) for f0:

f
′′

0 (0)

f
′

0(∞)
= a3−2n f

′′

0 (0)

f
′

0(∞)

a3−2n = 1 → n =
3

2

Given a first iteration through integration, the final value for B is obtained with

f
′′

(0) =




f

′′

(0)
[
f ′(∞)

] 3
2





iter
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Appendix G

Profile Comparison for Falkner-Skan flows

In the following tables m is the power of the power-law velocity distribution, the errors
are considered for the end of the plate, the number of steps was set to 500.

m ǫδ(%) ǫδ∗ (%) ǫθ(%) ǫCf
(%)

Method ... Ti Dr P4 Ti Dr P4 Ti Dr P4 Ti Dr P4
-0.09043 n/a n/a -16.8 n/a 11.3 16.6 n/a -10.7 -15 n/a n/a n/a

0.25 48.3 n/a -14.1 0.61 0.43 0.33 20.8 0.53 1.8 13.7 1.0 1.5
1 52.2 n/a -11.9 2.1 -0.35 1.2 21.2 -0.45 4.0 11.6 0.13 3.0
3 53.3 n/a -14.4 2.5 -0.30 1.5 20.8 -0.26 4.4 10.7 0.03 3.2
5 53.5 n/a -16.2 2.6 -0.02 1.6 20.7 -0.14 4.5 10.3 -0.06 3.2

Table G.1: Ti:Timman, Pn:Pohlhausen of nth order, Dr: two parameters with Drela closure,
An:Alternative of nth order, Wi: Wieghardt profile

m ǫδ(%) ǫδ∗ (%) ǫθ(%) ǫCf
(%)

Method ... A4 Wi A4 Wi A4 Wi A4 Wi
-0.09043 12.5 -56.6 8.3 -8.3 5.2 -4.8 n/a n/a

0.25 -13.5 -131.8 1.4 -4.8 3.0 -12.4 0.78 -8.1
1 n/a -109.4 n/a -6.5 n/a -15.5 n/a -10.2
3 n/a -99.3 n/a -7.1 n/a -16.3 n/a -10.7
5 n/a -97.2 n/a -7.1 n/a -16.4 n/a -10.9

Table G.2: Ti:Timman, Pn:Pohlhausen of nth order, Dr: two parameters with Drela closure,
An:Alternative of nth order, Wi: Wieghardt profile

m ǫδ(%) ǫδ∗ (%) ǫθ(%) ǫCf
(%)

Method ... Tw P6 A6 Tw P6 A6 Tw P6 A6 Tw P6 A6
-0.09043 n/a -63.3 -16.9 19.0 20.6 18.1 -3.8 -22.9 -5.6 n/a n/a n/a

0.25 n/a -56.0 -28.7 -1.8 -0.45 0.24 2.0 -2.1 0.91 1.62 -1.17 0.89
1 n/a -46.1 n/a -0.02 0.7 n/a 5.0 1.7 n/a 2.8 1.7 n/a
3 n/a -43.0 n/a 0.21 1.2 n/a 5.5 3.0 n/a 3.1 2.4 n/a
5 n/a -42.1 n/a 0.4 1.4 n/a 5.3 3.4 n/a 2.8 2.5 n/a

Table G.3: Pn:Pohlhausen of nth order,An:Alternative of nth order,Tw: Thwaites

m ǫδ(%) ǫδ∗ (%) ǫθ(%) ǫCf
(%)

Method ... P9 A9 P9 A9 P9 A9 P9 A9
-0.09043 -134.3 -65.9 20.4 20.9 -28.40 -12.0 n/a n/a

0.25 -121.2 -76.2 -1.2 -0.01 -5.5 -1.1 -3.5 -0.43
1 -104.3 n/a 0.01 n/a -0.89 n/a 0.11 n/a
3 -98.3 n/a 0.6 n/a 0.71 n/a 1.04 n/a
5 -97.2 n/a 0.8 n/a 1.13 n/a 1.21 n/a

Table G.4: Pn:Pohlhausen of nth order,An:Alternative of nth order,Tw: Thwaites
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m ǫδ(%) ǫδ∗ (%) ǫθ(%) ǫCf
(%)

Method ... Ti A4 Ti A4 Ti A4 Ti A4
-0.09043 n/a 3.5 n/a 14.8 n/a -8.2 n/a n/a

0.25 57.6 -28.7 1.1 0.24 5.6 0.91 4.9 0.89
1 61.3 31.3 2.1 5.0 8.4 18.0 5.5 11.6
3 62.6 34.1 2.4 5.7 9.1 19.3 5.6 11.9
5 62.8 34.7 2.5 5.9 9.3 19.7 5.5 11.9

Table G.5: Altered profiles,Ti:Timman(η = 2ηoriginal), An:Alternative profile(f
′′′

(0) = 1
2
Λ)

m ǫδ(%) ǫδ∗ (%) ǫθ(%) ǫCf
(%)

Method ... A6 A9 A6 A9 A6 A9 A6 A9

-0.09043 -23.0 -70.4 18.4 20.8 -10.6 -14.4 n/a n/a

0.25 -121.2 -76.2 -1.2 -0.01 -5.5 -1.1 -3.5 -0.43

1 -8.0 -59.8 2.4 1.3 7.9 3.5 5.5 2.9

3 -6.2 -58.6 2.8 1.6 8.6 4.1 5.7 3.1

5 -5.9 -58.7 2.9 1.7 8.7 4.3 5.7 3.1

Table G.6: Altered profiles,Ti:Timman(η = 2ηoriginal), An:Alternative profile(f
′′′

(0) = 1
2
Λ)



Appendix H

Parameter File

cDebug=0 ! Debug mode
!
! Run parameters, grid
!
cDeltaX0=0.005d0 ! (initial) distance step
cDeltaT0=0.005d0 ! (initial) time step, timestep shall never be larger than this value
cZeroRange=1.d-14 ! margin for zero value
cT0=0.d0 ! starting time
cX0=0.d0 ! starting distance
cPlateLength=1.0d0 ! 0.75 for high frequency, 1.6 for low frequency
cBCValue=4 ! BC-left,1: Nishida, 2: Milewski, 3: Coenen(turb), 4: Thwaites, 5: flat
plate(1/7th power law or Blasius/Rayleigh)
cInitValue=1 ! Init: 1: Rayleigh solution, 2: Use value equal to boundary value
cRightBC=0 ! 0 = no BC, 1 = Neumann BC (for flat plate)
cInitM1=8 ! number of steps using Thwaites to determine the initial value for theta
cMaxTimeSteps=40000 ! max number of time steps
cMaxDistanceSteps=100000 ! max number of distance steps
cGridGenInterval=20 ! Grid Generation interval in number of time steps
cGapDx=0.01 ! if adaptive grid refinement, this step is used to fill the gap at the end
cVariableTimeStep=0 ! will fix the distance step and base the timestep on the largest maximum
eigenvalue
cVariableDistanceStep=0 ! variable distance step,will create non-uniform grid for the left bc
cSpline=1 ! Cubic spline, use to interpolate velocity
cRefPerc=0.10d0 ! max. region which is refined, is between [0,1]
cDxFactor=10.d0 ! if variable distance step,will divide cDeltaX0 by this number as initial
step
cDxGrowth=1.085d0 ! successive growth for each next distance step
!
! Run parameters, solution
!
cConvergenceCriterium=10.d-15 ! Convergence Criterium for the RMS
cCFL=0.25 ! CFL number, stability requirement
cUpWrun=0 ! this number determines how many initial points are based on upw1ind
differencing,min. 1 for 4th central, set to 0 for Roe/Steger Warming!
cLamPerc=0.0d0 ! max. quasi-laminar region from left boundary compared to platelength, is
between [0,1], intermittency will increase linearly
cUinf=1.5d0 ! 150.d0 !1.4717 !21.9 !16.8 ! outside velocity (25 m/s for flat plate)
cNu=1.5d-5 !1.4717d-5 !1.4717d-5 ! 1.5e-5 ! kinematic viscosity
cRho=1. ! 1.2 density
cTu=0.00 ! turbulence intensity
cFrequency=50.d0 ! frequency for oscillation test cases
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cTurbInit=0 ! Turbulent boundary layer from the get-go
cTransitionCheck= ! Do transition check
cTransitionInterval=25 ! interval count(in time level) for transition check
cEquilibrium=1 ! equilibrium turb. boundary layer
cSeparationCheck=0 ! check for separation or not
cSeparationInterval=15 ! interval count(in time level) for separavarition check
cPreSetIntermittency=0.00d0 ! set intermittency over entire plate, set to zero for laminar !!!
cUseIntMitt=4 ! use intermittency factor, 0:none, 1:linear pre, 2:linear post,
3: exp pre, 4: exp post, 5: poly pre, 6:poly post, 7 : Drela post
cIntMittShape=10.d0 ! shape value for intermittency function
cInterInsertIntoSolution=0 ! 0: insert averaged variables into K/L, 1: average K/L
cBCSmoothing=0 ! Smooth BC using internal value,1: 1 internal value,....3:
cSmoothing=0 ! nr. of smoothed internal values starting from left boundary
cKc=5.6d0 ! 4.2 or 5.6, constant for lag entrainment
csepIndicatorMax=1. ! value for separation indicator
cNmax=8.9 ! Maximum value amplification factor
cNref=9.1 ! Value of amplification factor at which transition is assumed complete
cUseMatsushitaClosure=0 ! Use Matsushita closure for laminar flow
cSepStrong=1 ! for strong separation,H/theta is expected to flip
!
! output parameters
!
cPrintTimeStep=.5 ! min time step with which the results are printed
cRunTime=4.5 ! Maximum solution time, 0.41935 for high frequency, 0.6842 for low
frequency

cPrintAll=0 ! print all timesteps
cPrintToEps=1 ! Save plots as .eps
cShowPlots=1 ! show plots
cShowLambdaPlots=0 ! show plots with eigenvalues,sep. indicator,
cShowRefPlot=1 ! 0 = none, 1 = flat plate, 2 = cylinder
cAlphaElliptic=0.25 ! times pi for the angle of attack of the elliptic cylinder
cMessageInterval=200 ! every xx steps print runtime time
!
! Numerical scheme
!
cDifference=9 ! 1,2 = first/second order upwind differencing/ 3,4 = second/fourth order

! central /5 = Lax-Wendroff(one step) / 6 3rd upw /7 QUICK differencing/ 8,9
! = Roe/Steger-Warming Note that 2nd Order central +
! smoothing is equiv. to Lax-Friedrich/ 10 = StegerWarming 2nd order / 11
! StegerWarming 3rd order / 12 = MacCormack / 13=Kurganov-Tadmor

cFluxLimiter=0 ! Flux limiter for Roe, only if flux limiter is used
cMuscl=0 ! use MUSCL for higher order Roe
cFluxLimiterRegion=0 ! 0 : over entire profile, 1 : over transition region
cEntropyFix=0 ! use entropy scheme for Roe
cEntropyFixValue=1.0d-1 ! value when eigenvalue is considered to small and entropyfix is used
cRKorder=1 ! order of Runge-Kutta time integration, 1..

Extra input parameters for the DG algorithm

cUseFormulation=0 ! 0 = Gaussian int. order greater than 0,
1 = Expansion in Basis functions, order=0

cUseBasisFunction=0 ! 0 = unweighted monomials, 1 = weighted monomials
cInitPolOrder=1 ! Initial polynomial order for the basis functions, also determines Gauss nodes
cVaryingPolyOrder=0 ! p-refinement
cGaussPolyCreate=128 ! Create table with Gaussian nodes/weights
cSSP=0 ! 0=LSRK(Blom,Ozdemir),1= use SSPRK, 2=LSRK(Kennedy), 3= LSRK3SSP(Ketcheson)
cUseHigherOrderFlux=0 ! 0= only centered values used for the flux,1= all coefficients are used
cTheta=1.d0 ! parameter to determine the weight of the characteristic flux, see phd van
Ozdemir and thesis of Bram van Es



Appendix I

Test Cases

I.1 Steady Methods

I.1.1 Von Kármán Equation and Pohlhausen Velocity Profile

First consider the steady Von Kármán equation

dθ

dx
+

θ

ue
(2 +H)

due
dx

=
1

2
Cf . (I.1)

Here θ, H and Cf are unknown and ue is prescribed. A direct way of resolving θ, H and
Cf with one closure model is by assuming a velocity profile, for instance the Pohlhausen

profile. Restating the Pohlhausen profile

f(η) =
(

2 − 2η2 − η3
)

η +
1

6
Λη (1 − η)3 ,

Λ =
δ2

ν

due
dx

.

Applying the definitions for the integral variables gives in general

δ∗ = fδ(δ, ue),

θ = fθ(δ, ue),

and the same for the friction coefficient; Cf = fCf
(δ, ue), i.e. θ, H and Cf can be written

as functions of δ and the Von Kármán equation reduces to an ODE which can be solved.

Writing out the integral variables for the Pohlhausen velocity profile and simplifying
results in

δ∗ = − 1

120

δ

ν

(

−36ν + δ2
due

dx

)

,

θ = − 1

45360

δ

ν2

(

−5328ν2 + 48δ2
due
dx

ν + 5δ4
(
due
dx

)2
)

,

Cf =
ν

ueδ

(

4 +
1

3

δ2

ν

due
dx

)

.

Using the chain rule for dθ
dx

dθ

dx
=
dθ(η, λ)

dδ

dδ

dx
,

207
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Where

θ(η, λ) = − δ

45360

(

−5328 + 48Λ + 5Λ2
)

. (I.2)

rewriting the Von Karman equation

dδ

dx
=

(
dθ

dδ

)−1 [

− θ

ue
(2 +H)

due
dx

+
1

2
Cf

]

. (I.3)

This can be solved numerically given an initial value for dδ
dx

, obviously the initial value
for δ is zero. To initialize the Pohlhausen method for an initial flat plate flow note that

δ ∼ √
x at the beginning of the plate (i.e. see Schlichting[118]), this means δ = C

√
x.

Now the expression for the integral variables are substituted in equation(I.3), and if
x→ 0 only the lowest order remains, the following expression for C is found

C = 2
√
x

2ν
Cue

√
x

37
315

= 4
315

37

ν

Cue
,

C = 2

√

315

37

ν

ue
.

So for x→ 0 the solution is obtained from

δ = 2

√

315xν

37ue
. (I.4)

Now equation (I.3) can be solved given the expressions for the integral variables, starting
with equation (I.4) for the first integration steps the solution can be obtained for 0 < x <
L.

In case of a forward stagnation point, i.e. ue is zero, there will be a singularity if due

dx
6= 0,

to remove the singularity the term θ(2 +H) should be zero, to that end Rosenhead[113]
suggests as starting values at the stagnation point

θ =

√

0.077ν
due

dx

, δ∗ = θ

√

Λ

0.077
,

now δ follows from the expression for θ

√

0.077ν
due

dx

= − 1

45360
δ

(

−5328ν2 + 48δ2
due
dx

ν + 5δ4
(
due
dx

)2
)

,

which can be solved iteratively. If ue = 0 and due

dx
= 0 then Cf is set to zero and 1

ue

due

dx

follows from l’Hôpital’s rule. This is not possible for the Falkner-Skan solutions (m 6= 0)

which will give 1
ue

due

dx

∣
∣
∣
x→0

= 1
x

→ ∞. However, general external velocity distributions

may be initialised using a Falkner-Skan solution with

m(0) =

(
x

ue

due
dx

)

x→0

, (I.5)

this however requires the solution of an arbitrary Falkner-Skan profile[142].

As was in said section 3.1.2 and explained further in D, the guessed velocity profile

can be chosen to fit an arbitrary number of boundary conditions. This can lead to
higher order polynomials using a single parameter but it can also produce higher or-
der polynomials with more than one parameter, the former will be discussed in section

I.1.3, the latter will be omitted. Likewise, it is possible to introduce velocity profiles
for the entire turbulent BL, for instance the sin-squared law , thus the guessed veloc-
ity profile approach can lead to a complete description of the attached boundary layer.

Using higher order velocity profiles with the moment of moment equations Cf becomes
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a primary variable together with δ, Cd still requires a closure relation. The strength

of this approach is the relative generic nature of the closure which can describe any
profile as long as the profile parameters stay within certain bounds. The weakness is
the dependency on the rather superfluous boundary layer thickness δ and the fact that

the polynomial profiles may give u
ue

> 1 somewhere in the profile for certain values of
the profile parameters. Mughal used assumed velocity profiles to obtain the integral
variables ’on-the-fly’. The apparent weakness of the Von Kármán -Pohlhausen method,
or any velocity profile method for that matter, is the initial boundary layer profile to

start the procedure. To create a generic initial profile the method due to Thwaites is
considered in the next section.

I.1.2 Method of Thwaites

Thwaites produced the most used one-parameter integral method for laminar boundary

layers. His method uses a parameter (say λ) which is dependent on the momentum
thickness θ, and Thwaites introduces a universal function l(λ)

λ =
θ2

ν

due
dx

,

l(λ) =
θ

ue

du

dy
.

Substituting this in the steady Von Kármán equation and rewriting results in

F (λ) =
ue
ν

dθ2

dx
= 2

[
l(λ) − λ (H + 2)

]
.

Using a wide range of empirical data, Thwaites approximated this using a linear function

F (λ) = 0.45 − 6λ, (I.6)

which results in a single differential term after substitution in the Von Kármán equation,
now θ can be found by integration

θ2u6
e

ν
= 0.45

∫ x

0

u5
edx+

(

θ2
u6
e

ν

)

0

⇒ (I.7)

θ =

√
√
√
√ ν

u6
e

[

0.45

∫ x

0

u5
edx+

(

θ2
u6
e

ν

)

0

]

, (I.8)

see i.e. White[154], schlichting[118] and Cebeci[22]. With the empirical data used to
extract the linear correlation l and H can be related to the Thwaites parameter λ by (see

Cebeci[22], sekar[120])

l = 0.22 + 1.57λ − 1.8λ2

H = 2.61 − 3.75λ + 5.24λ2

}

0 ≤ λ ≤ 0.1, (I.9)

l = 0.22 + 1.402λ + 0.018λ
0.107+λ

H = 0.0731
0.14+λ

+ 2.088

}

− 0.0898 ≤ λ ≤ 0, (I.10)

l = 0.3590
H = 2.2874

}

λ > 0.1. (I.11)

For λ < −0.0898 it is assumed that the flow separates. Alternatively White gave the
following curve fits for −0.09 < λ < 0.25

l = (λ+ 0.09)0.62,

H = 2 + 4.14z − 83.5z2 + 854z3 − 3337z4 + 4576z5, z = 0.25 − λ.
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Now the friction coefficient and the density thickness follow from the definitions for l
and H

Cf = 2
l

Reθ
,

δ∗ = Hθ.

The starting value for θ is obtained by considering the differential (see [104])

d

dx

(

u6
e

∣
∣
∣
x→0

θ2
)

= 0.45ν, u5
e

∣
∣
∣
x→0

(I.12)

this is valid even for non-stagnation flows. Consider a 2rd order Taylor expansion of the
velocity near the starting point (x = 0)

ue = ue(0) + x
due
dx

∣
∣
∣
∣
x=0

+
x2

2

d2ue
dx2

∣
∣
∣
∣
∣
x=0

.

Substituting in equation (I.12) and solving gives

θ(0) =

√
√
√
√ 9

140
ν

ue
due

dx
+ 1

2
d2ue

dx2

∣
∣
∣
∣
∣
x=0

, (I.13)

or if ue = 0, taking the first order Taylor expansion for ue near x = 0

θ(0) =

√
√
√
√0.075

ν
due

dx

∣
∣
∣
∣
∣
x=0

. (I.14)

of course the above is only valid if
∣
∣
∣
due

dx

∣
∣
∣ > 0

∨
∣
∣
∣
d2ue

dx2

∣
∣
∣ > 0. In case ue|x→0 = Constant it is

assumed that θ(0) = 0. Using for instance the Falkner-Skan solutions relations can be
found for h, θ and δ.

Unsteady Thwaites

An unsteady method was found in a paper by He and Denton[62] using Thwaites’ in-
tegral, the unsteady Von Kármán equation and the unsteady Thwaites parameter they

arrive at

∂(θ2u6
e)

∂x
=

[

0.45 − 2θ

νue

(

ue
∂δ∗

∂t
+ θ

∂ue
∂t

)]

νu5
e.

They use the correlations based on the steady Thwaites’ parameter i.e., quasi-unsteadiness

is assumed which automatically limits the method to low reduced frequencies. Unsteady
Thwaites’ will not be considered beyond this point simply because of the inherent quasi-
unsteadiness.

I.1.3 Von Kármán Equation and a Higher Order Polynomial Velocity Profile

Libby notes that a 6th order profile is comparable in accuracy to a two parameter method
of the same order, this makes the 6th order profile attractive for use with the integral
boundary layer method. Moreoever the polynomial order can be extended easily if the

number of boundary conditions is increased since there are in principle infinitely many
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boundary conditions for the boundary layer profile, see appendix D. Using two condi-

tions at the wall and four at the edge gives (see appendix D.1.2)

f(η) =

(
1

5
Λ + 2

)

η +

(

−1

2
Λ

)

η2 + (Λ − 5) η4

+ (−Λ + 6) η5 +

(

−2 +
3

10
Λ

)

η6. (I.15)

The sixth order profile using one condition at the wall and five at the edge is given by
(see appendix D.1.1)

f(η) =

(
1

10
Λ+

)

η +

(

−1

2
Λ

)

η2 + (−10 + Λ) η3

+ (−Λ + 15) η4 +

(
1

2
Λ − 9

)

η5 +

(

2 − 1

10
Λ

)

η6. (I.16)

The latter profile is basically an extension of the boundary conditions used for the origi-
nal Pohlhausen method, where the number of edge conditions is simply increased, this
profile will be denoted as the Pohlhausen type. The former profile will be denoted as

the alternative type. Implementation with the Von Kármán equation is of course iden-
tical to the Pohlhausen profile. Besides the polynomial velocity profile there are also
exponential profiles, for instance due to Timman which is discussed in the next section.

I.1.4 Von Kármán Equation and Timman Velocity Profile

The steady Von Kármán equation is combined with the velocity profile by Timman (see
i.e. [113]). The Timman profile meets infinitely many boundary conditions at the edge

and four boundary conditions at the wall. The Timman profile is written as

u

ue
= 1 −

∫ ∞

η

exp (−η2)
(

a+ cη2
)

dη − exp (−η2)
(

b+ dη2
)

,

a =
4

3
√
π

(1 − b),

c =
4

3
√
π

(1 − b),

b =

{

−Λ, θ2

ν
due

dx
< 0,

− 1
2
Λ, θ2

ν
due

dx
≥ 0,

d =

{

− 1
2
Λ, θ2

ν
due

dx
< 0,

0, θ2

ν
due

dx
≥ 0.

The integral can be solved

∫ ∞

η

exp (−η2)
(

a+ cη2
)

dη =

−exp (−η2)

[
a

2
π1/2erf(η) exp (η2) − c

2
η +

c

4
π1/2erf(η) exp (η2) − a

2
π1/2 exp (η2) − c

4
π1/2 exp (η2)

]

.

The integral variables cannot be solved for analytically because of the error function.
Either the function is integrated numerically or the error function is approximated. For

the error function an 11th order polynomial fit is used. Now the solution procedure is
similar to the Von Kármán -Pohlhausen method. If the amount of integral parameters is
increased more integral equations are needed to provide a closed system, a well known

two parameter method is due to Wieghardt which is discussed in the next section.
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I.1.5 Von Kármán Equation, Energy Equation and Wieghardt Velocity Profile

Using three conditions at the wall, namely f(0), f
′′

(0) and f
′′′

(0) and eight conditions
at the edge Wieghardt derived a two-parameter method. The velocity profile due to

Wieghardt is written as

u

ue
= f1(η) + af2(η) + bf3(η),

f1 = 1 − (1 − η)8(1 + 8η + 36η2 + 120η3),

f2 = (1 − η)8η(1 + 8η + 36η2),

f3 = −(1 − η)8η2(1 + 8η),

a =
δue
2ν

Cf , b =
1

2
Λ.

(I.17)

The integral equations are written as

dθ

dx
=
Cf
2

− (2 +H)
θ

ue

due
dx

,

dδk

dx
= CD − 3δk

due
dx

.

Since all integral variables can be written as functions of Cf and δ, two first order

ordinary differential equations emerge. The implementation of the Wieghardt profile
is rather laborious due to the extremely elaborate expressions which makes it dif-
ficult to debug. The Wieghardt method is initialised in the same way as the Von

Kármán - Pohlhausen method. The Wieghardt method requires the parameters to be
solved through an iteration process, whereby through the application of two integral
equations a single equation emerges from which one parameter is solved iteratively. The

parameter b is chosen as preset using the old value for δ, once parameter a is found ap-
proximately the flux dδ

dx
can be calculated. For the iteration process a Newton-Rhapson

iteration step is chosen for it’s efficiency given an accurate guess, which in this case

follows directly from the old value for the friction coefficient Cf . The solution was found
to be very sensitive to changes in the convergence requirement and the number of iter-
ation steps.

Comparing the values for the parameters following from the Wieghardt solution with the
values following from the Falkner-Skan solution the following modification was added

due
dx

> 0,

{

a = 5
3
a

b = 3
2
b

,
due
dx

< 0

{

a = 3
5
a

b = 2
3
b

.

The original Wieghardt method defines the parameters as follows

a =
δ

θ
t, b =

1

2

(
δ

θ

)2

λ,

T = Cf
νue
2
θ, λ =

θ2

ν

due
dx

.

Multiplying the dimensional energy equation by 2u3
eδ
k the momentum thickness θ is

found by integrating

λ =
4

K2u6
e

due
dx

∫ x

0

u5
eKLdx,

where

K =
δk

θ
, L =

θD

µu2
e

.

Now the momentum integral can be written as

T = λ(H − 1) + 2
L

K
− λ

ue
dK
dx

due

dx
K
. (I.18)
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Since δ
θ
, L, H and K can be expressed in a and b and since a and b are functions of the

parameters T and λ a closed system of equations emerges.

I.1.6 Von Kármán Equation, Energy Equation and laminar Drela Closure

Drela[35] defined the following shape factors

H =
δ

θ
, H∗ =

δk

θ
, J =

δ∗∗

θ
,

where

δ∗∗ =

∫ ∞

0

(

1 − ρ

ρe

)
u

ue
dy.

Since for the present case the density ρ is considered constant δ∗∗ = J = 0. Using these

shape factors Drela rewrote the momentum and energy integral to

dθ

dx
=
Cf
2

− (H + 2)
θ

ue

due
dx

,

dH∗

dx
=

1

θ
CD − H∗

θ

Cf
2

− (1 −H)
H∗

ue

due
dx

.

Now in case of incompressibility Drela assumes H∗, Cf and CD are dependent on H and

Reθ. Using Falkner-Skan profiles Drela determines the following relations for H∗, Cf
and CD in case of a laminar boundary layer flow.

H∗ =

{

1.515 + 0.076 (H−4)2

H
,H < 4,

1.515 + 0.040 (H−4)2

H
,H > 4,

Cf =
2

Reθ







−0.067 + 0.01977 (7.4−H)2

H−1
,H < 7.4,

−0.067 + 0.022
(

1 − 1.4
H−6

)2

,H > 7.4,

CD =
H∗

Reθ

{

0.207 + 0.00205 (4 −H)5.5 ,H < 4,

0.207 − 0.003 (H − 4)2 .H > 4.

If the above is substituted in the differential equations a set of ordinary differential
equations is attained which can be solved numerically.

The energy integral can be written as

dH

dx
=

1

κH(H + 4)

[
1

H∗θ
CD − 1

θ

Cf
2

− (1 −H)
1

ue

due
dx

]

,

H < 4, κ = 0.076,

H > 4, κ = 0.040.

To initiate the solution the method of Thwaites can be used to retrieve θ in combination

with Falkner-Skan derived relations to obtain δ∗ and Cf , see section I.1.2. The benefit of
this method is that in case of transition to turbulence the closure relations are changed
and not the solution method. Also the dependency on δ is removed, this might benefit

the availability of closure models since empirical data for δ is dependent on the definition
of the boundary layer thickness. Also the system of equations is less likely to behave
erratic since the shape factors vary mildly compared to the integral variables.

I.1.7 Von Kármán Equation and Head’s entrainment Equation

The method due to Head makes use of the entrainment equation together with the Von
Kármán equation. Using closure relations for Cf and H1 the two differential equations

can be solved for the two primary variables θ and H. The differential equations are
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1

2
Cf =

dθ

dx
+

θ

ue
(2 +H)

due
dx

,

1

ue

dueθH1

dx
= 0.0306(H1 − 3)−0.6169.

For closure of the friction coefficient Cf will be approximated using the correlation from
White and for H1 the relations from Cebeci and Bradshaw will be used (see [154])

Cf =
0.3 exp (−1.33H)

(log10 Reθ)
1.74+0.31H

,

H1 =

{

0.8234(H − 1.1)−1.287 + 3.3, H < 1.6,
0.5501(H − 0.6778)−3.064 + 3.3, H ≥ 1.6.

Using the closure relation from Cebeci and Bradshaw and applying the product rule the
entrainment equation can be written as

dH

dx
=

1

γθ

[

0.0306 (H1 − 3)−0.6169 −H1
dθ

dx
− θH1

ue

due
dx

]

,

γ =

{

−1.0597(H − 1.1)−2.287 H < 1.6,
−1.6855(H − 0.6778)−4.064 H ≥ 1.6.

Alternatively, Cf can be closed with the Cf relation described in the previous section.

The differential equations can now be solved numerically using the method of Thwaites
for the initialisation. Benefit of using Head’s entrainment method is the relative straight-
forward extension to unsteady flow and the fact that in theory it is able to describe lam-

inar as well as turbulent boundary layer flow. A laminar closure relation was found in
Coenen[26] (in reference to Cousteix)

H1

H10
+ a

H10

H1
= b

(
1

H
+

H

4.029232

)

+ c,

where H10 = 12.37 and

H10 ≤ 4.02923: a = 1.2706, b = −1.5022, c = 3.1924,

H10 > 4.02923: a = 0.33044, b = 0.31993, c = 1.03094.

This can be solved for H > 2, below which the solution is complex valued, the solution
has two roots for each range, the actual closure for H1 is comprised of the smallest root

value λ− of the lower range and the largest root value λ+ of the upper range, see figure
(I.1). The minimum value for H1 occurs at H = H10. The above relationship is combined
with the closure relations by Drela for the laminar case and does not lead to meaningful

results which may be due to the relation for F (H) which is still based on the turbulent
BL.

I.2 Steady Test Cases

Before the unsteady methods are treated some basic steady test cases are performed
with the methods described in section (I.1).

I.3 Basic Test cases using Falkner-Skan

To test the methods, a solution will be obtained for an external velocity distribution
which is described by

ue = xm.
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Figure I.1: H1 versus H for the laminar boundary layer

For comparison a relative error will be calculated for x = L, this error is defined as

ǫvalue = 100
valueref − valueapprox

valueref
.

For the unsteady case the average error over time will be plotted for x = L. The external
parameters used for the test cases can be found in table I.1. Note that the amount of
steps is fixed at 500. All test cases will be initialised using a flat plate boundary layer

description symbol value units

viscosity µ 1.5e−5 N s
m2

density ρ 1.2 kg
m3

profile length L 1 m

end time T 1 s

distance x 0 < x < L m

time t 0 < t < T s

number of spatial integration steps N 500 -

number of temporal integration steps M 50 -

Table I.1: Parameters used for the test cases

flow with the integral variables set to zero, subsequently two steps are computed using

a flat plate solution, a refinement of the initialisation will take place in section I.3.3.

I.3.1 m = 0, Blasius Solution

The boundary layer flow over a flat plate can be described by the Blasius solution if the

external velocity is constant, the Blasius solution is a similarity solution which directly
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follows from the more generic Falkner-Skan relations (see equation (C.1)) by taking

m = 0. The Blasius solution is described by

f
′′′

+
1

2
ff

′′

= 0,

η =

√
ue
νx
y, f(η) =

ψ(x, y)√
ueνx

,

boundary conditions :f(0) = 0 , f
′

(0) = 0 , f
′

(∞) = 1.

(I.19)

The boundary condition f
′

(∞) = 1 has to be replaced by a boundary condition f
′′

(0) = B
to be able to integrate the ODE. If the boundary condition is found the ODE can be

integrated. The correct value for f
′′

(0) is found by integrating the ODE with some

assumed value for f
′′

(0) and by using the fact that (see appendix(F))

f
′′

(0)
[
f ′(∞)

] 3
2

= B.

The approximate value for f
′′

(0) is found through

f
′′

(0) =




f

′′

(0)
[
f ′(∞)

] 3
2





iter

.

It follows that f
′′

(0) = 0.332057, see i.e. White[154]. Now that the ODE is fully described
the boundary layer (integral) variables can be found:

δ

x
=

5√
Rex

,
δ∗

x
=

1.7208√
Rex

,
θ

x
=

0.664√
Rex

,

H = 2.592, Cf =
0.664√
Rex

,

(I.20)

Also important is the stability of the Blasius flow, from White[154, table 5-1]

Reδ∗,crit = 520, Reθ,crit = 201.

Note that the initial solution used for the numerical procedure can be written as

δ

x
= 2

√

315

37

√
ν

uex
≈ 5.84√

Rex
, (I.21)

which is already close to the Blasius solution. If for the Von Kármán -Pohlhausen
method a flat plate flow is assumed with constant external velocity the following results

are obtained through equation I.3

δ

x
= 2

√
315
37√
Rex

,
δ∗

x
=

3

5

√
315
37√
Rex

,
θ

x
== 2

√
37
315√
Rex

,

H = 2.5541 , Cf = 2

√
37
315√
Rex

,

The differences can thus be found immediately by comparing the factors, this gives

ǫδ = −16.7%, ǫδ∗ = −1.7%, ǫθ = −3.2%, Cf = −3.3%.

The results are tabulated in table I.2. Most notable are the relatively large errors for the
boundary layer thickness δ and the fact that this error increased for polynomial order.
The boundary layer thickness is an arbitrary variable since the criterion for the thick-

ness is met assymptotically with increasing height above the profile. In other words,
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profile ǫδ(%) ǫ∗δ (%) ǫθ(%) ǫCf
(%)

Pohlhausen[4th order profile] -16.7 -1.7 -3.2 -3.3

Alternative[4th order profile] 13.6 -0.37 6.2 7.00

Pohlhausen[6th order profile] -64.5 -2.4 -9.4 -10.0

Alternative[6th order profile] -20.9 -0.36 0.5 0.34

Pohlhausen[9th order profile] -136.6 -3.1 -14.2 -14.6

Alternative[9th order profile] -73.1 -0.60 -4.1 -4.4

Timman(η = 2ηoriginal] 42.3(52.8) -4.0(-0.58) 18.6(-0.08) 19.9(2.1)

Thwaites n/a -1.1 -1.8 1.1

Drela [two parameter] n/a 0.58 0.65 -0.32

Wieghardt [two parameter] -26.4 7.2 18.9 19.3

Table I.2: Results for the Blasius flat plate solution.

if say the velocity distribution of the Falkner-Skan solution is taken for some velocity
profile xn and the boundary layer thickness is set as the height for which u

ue
≤ 0.99, the

value of δapprox for the approximate solution will differ from the Falkner-Skan solution
largely due to the fact that δapprox is taken at u

ue
= 1.0, i.e. the approximate method tries

to solve for the exact boundary layer height whilst the reference method assumes some

realistic criterium. Therefore, the boundary layer thickness is not a proper comparator
for the different methods.

The Pohlhausen profile of the 4th order fits the Blasius profile more closely than

the higher order profiles, this is reflected in lower accuracies for the higher order
Pohlhausen profiles. In general the polynomial profiles become flatter near η = 1 for
increasing polynomial order. This can be explained by the fact that in this case an in-

crease in polynomial order means that more boundary conditions at the edge are used
for the determination of the polynomial coefficients. These boundary conditions state
that fn(1) = 0, now if more derivatives for a given point are set to zero the more closely
the expression surrounding that point will match a constant value (1 in this case), the

solution will basically flatten near the edge, see appendix(D). Heuristically, the amount
of boundary conditions at the edge should be of the same order as the amount of bound-
ary conditions at the wall. The two parameter method by Drela performs well as does

the altered Timman profile. Surprisingly the Wieghardt profile is least accurate which
should not be the case, however as was noted the Wieghardt profile is extremely labo-
rious to debug and will therefore be kept as is. It is suspected that computer accuracy

comes into play for the iterations due to the large numerical factors in the product terms
combined with 5th order powers. To consider the convergence more directly some error
norm is defined. Defining the relative error norm L2 for the displacement thickness as

L2δ∗ =

√
∑

(δref − δ∗)2
∑
δ2ref

.

The L2 convergence behavior suggests that the Von Kármán - Pohlhausen method
reaches the model accuracy quite quickly. To a lesser degree this also applies to the

alternative profile and the method by Drela, Timman shows linear convergence for a
grid resolution of up to 5000 elements (see figure I.3).
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Figure I.2: Blasius solution, (left) Pohlhausen velocity profiles, (right) Alternative velocity profiles,
(bottom) Wieghardt velocity profile.

I.3.2 m 6= 0, Similarity Solutions

The solution for ue = xm follows from the Falkner-Skan equation (C.1), the problem

represents a decelerating flow for m < 0 and an accelerating flow for m > 0. The values
for m are chosen as

Slowly retarded flow: m = −0.09043, β = −0.19884

Mildly accelerating flow: m = 0.25, β = 0.4

Linearly accelerating flow: m = 1, β = 1

Exponentially accelerating flow 1: m = 3, β = 1.5

Exponentially accelerating flow 2: m = 5, β =
5

3

Before the Falkner-Skan equation can be integrated some value for C in f
′′

(0) = C

has to be found for which f
′

(∞) → 1. Following White[154] the solution is assumed

to behave asymptotically for η = 10. Using the shooting method in combination with

guessed values for η99, f
′′

(0) can be found recursively. This will be especially useful for

finding shape factor relations for a large range of external velocity distributions. The
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Figure I.3: L2 error norm for δ∗ versus number of steps in x-direction.

following values for f
′′

(0) are found assuming f
′

(∞) = 1 is 99% accurate.

Slowly retarded flow: f
′′

w = 0, η99% = 4.79

mildly accelerating flow: f
′′

w = 0.855, η99% = 2.79

Linearly accelerating flow: f
′′

w = 1.23259, η99% = 2.37

Exponentially accelerating flow 1: f
′′

w = 1.47724, η99% = 2.13

Exponentially accelerating flow 2: f
′′

w = 1.55035, η99% = 2.06

Using df(x)y = f(x)dy the integral variables and the friction coefficient can be retrieved
with

δ∗ =

√

2

m+ 1

νx

ue

∫ η99%

0

(

1 − f
′
)

dη,

θ =

√

2

m+ 1

νx

ue

∫ η99%

0

f
′
(

1 − f
′2
)

dη,

Cf =

√

2(m+ 1)ν

uex
f

′′

w .

Given η99%, δ follows from

δ =
η99%

√
m+1

2
ue(x)
νx

.

The accelerating flow starts with significant wiggles indicating instability, this is most
likely caused by the initial values of ue and due

dx
. The term in 1

ue

due

dx
will be very large for

very small ue, since the external flow has a power-law distribution

1

ue

due
dx

∣
∣
∣
∣
x→0

= m
xm−1

xm

∣
∣
∣
∣
∣
x→0

= m
1

x

∣
∣
∣
∣
x→0

→ ∞,

this can be relieved by choosing the appropriate initial profile or alternatively, the di-

mensional Von Kármán equation is used. The initial wiggle for the accelerating flow is
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compared for m = 1 using Timman and a 4th order Pohlhausen profile, it can be seen

that Timman recovers much more quickly than the 4th order Pohlhausen profile, (see
figure I.4). The magnitude of the wiggle is much larger for the Timman profile and when
the polynomial order is increased the Pohlhausen profile was much improved with a

decreasing amplitude and recovery distance for higher polynomial order. Over time the
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Figure I.4: Comparison δ∗ convergence for m = 1, (left) Pohlhausen 4th order, (right) Timman.

difference between the exact Falkner-Skan solution and the numerical solution levels
out for the accelerating flow, also the approximate solution was fairly insensitive to dif-

ferent assumed initial profiles. Furthermore, notwithstanding the initial wiggles, there
was convergence for a low number of grid points. For the decelerating flow the solution
is very instable, requiring a much finer grid for a grid-independent solution, also it is

more sensitive to the initial conditions. In refining the grid the Wieghardt profile exhib-
ited anomalous behavior, with spurious wiggles depending on the grid resolution and
number of iterations. As can be seen in figure I.5, the convergence for the retarded flow
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Figure I.5: Comparison ǫδ∗ convergence for m = −0.09043,(left) Pohlhausen 4th order,(right) Drela.

case is slow but there are no instabilities, this was seen for all polynomial orders (4,6,9)
both for the Pohlhausen profile and the alternative profile, the method using Drela’s

closure did not show convergence for m = −0.09043, for m = −0.08 however Drela does
show convergence similar to the convergence seen with the Pohlhausen profile.

The L2 error norm is approximately constant (see figure I.6) , which can mean for exam-
ple that the truncation error is dominating. The slightly increasing error norms can be

explained by an approximation which starts near the exact solution and drifts off to it’s
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Figure I.6: L2 error norm for δ∗ versus number of steps in x-direction, (left) Pohlhausen 4th order,
(right) Drela.

final incorrect value. The latter is the case for m = 0, the final more converged approxi-
mation is less accurate than the solution for a less converged approximation, see figure
I.7. It could already be seen from figures I.4 and I.5 that the solution does converge for
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Figure I.7: ǫδ∗ convergence for m = 0 using the Pohlhausen guessed velocity profile

m > 1. Taking a closer look at the solution it seems that the initial wiggle, going from
initial solution to the approximate solution, dominates the error norm (see figure I.8), it

stays exactly the same in magnitude for exactly the same points, hence the dominating
error term and thus grossly the total error stays constant. This sensitivity to the initial
solution can be decreased by applying two different grid resolutions at the start of the

solution, taking a resolution two times the intended solution will suffice to remove the
wiggle. The wiggle is absent for m = 0, this is expected since the initial solution for
the guessed velocity profiles is based on the flat plate solution. The magnitude of the
wiggle deteriorates with increasing value for m, also for higher polynomial orders the

magnitude decreases.

Using the Von Kármán equation in combination with a Pohlhausen velocity profile, the

accelerating flow cases give very good results for θ, δ∗ and Cf , however the decelerating
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Figure I.8: Initial ǫδ∗ wiggle for m = 3, pohlhausen 4th order method for two numbers of grid points
N .

flow cases are very instable and produce much poorer results. The alternative velocity
profiles give somewhat better results for the decelerating flow cases compared to the

Pohlhausen profiles, however for accelerating flow cases the alternative velocity profiles
fail completely. The failure of the alternative profile could not be attributed to the shape
of the profile, in fact it matched quite well with the Falkner-Skan profile (see figure(I.10)),

instead it was suspected that a non-zero value at the wall for the third derivative may

cause instabilities. It was found that f
′′′

= 1
2
Λ stabilized the solution for −0.09043 <

m < 5, this altered alternative procedure is plotted in figure (I.9) and is also indicated in

the results table (see appendix (G)). The Timman velocity profile does not seem to have
much merit in the given cases, notable was the relatively constant error for different
values for m. It was noted that the velocity profile as described by Timman did not

reach u
ue

= 1 until about η ≈ 2, subsequently upon increasing the integration interval to
η = 2 for the integral variables the results for Timman improved substantially. The two
parameter method due to Drela is clearly the best overall with a fairly constant error,
which was to be expected since the closure relations used are based on Falkner-Skan

profiles. It is assumed that in general laminar boundary layers will adhere closely to
Falkner-Skan solutions given the same shape factor H, see i.e. Drela[35].
It must be noted that the relative errors reached a quasi-constant value for all steady

cases except for the retarded flow case. The Wieghardt profile matches the velocity
profile quite closely. The Timman profile fails for the retarded flow case m = −0.090431,
yet for less retarded flows m = −0.025, m = −0.05, m = −0.08 the agreement is excellent,

see table(I.3). This in itself is not unphysical since the steady boundary layer should
separate for m = −0.09043, indeed the solution deteriorates towards the separation value
for m. Overall large differences were observed for the boundary layer thickness δ, which

m ǫδ(%) ǫδ∗ (%) ǫθ(%) ǫCf
(%)

-0.025 65.1 2.6 5.7 0.82
-0.05 53.9 -2.6 -1.7 5.3
-0.08 47.9 -25.3 -14.4 61.8

Table I.3: Timman profile with η = 2ηoriginal, retarded flows

1The velocity profile for Timman at m = −0.09043 is produced using the Falkner-Skan value for Λ
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Figure I.9: ǫδ∗ and ǫCf
comparison of relative errors for number of grid points N = 500.

was explained earlier. Note that the integral variables can be written as

δ∗ = δ

∫ 1

0

(

(1 − u

ue

)

dη, θ = δ

∫ 1

0

u

ue

(

1 − u

ue

)

dη,

δk = δ

∫ 1

0

u

ue

(

1 −
(
u

ue

)2
)

dη, δk+ = δ

∫ 1

0

u

ue

(

1 −
(
u

ue

)3
)

dη.

If shape factors are used as primary variables δ does not influence the behaviour of the
differential equation and thus it is likely to be more accurate. Finally it is noted that the

Von Kármán equation in combination with a guessed velocity profile may have a non-
unique solution; in testing the code solutions were obtained which were the negated
value of the correct approximation indicating the existence of at least two solutions.

This resulted from using inappropriate initial solutions which gave negative values for
the integral variables, this is not expected to give problems if appropriate initial solutions
are used.

I.3.3 Initial Conditions Revisited

As can be seen in the plots of the previous section, and as could be expected, for the
similarity solutions the flat-plate initial solution is not appropriate. The subsequent
wiggles are a consequence of a mismatch between the two connecting solutions, this is

especially the case when the initial solution does not represent the actual flow problem.
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Figure I.10: (top left) Alternative profile, m = −.09043, (top right) Pohlhausen, m = −.09043, (bottom
left) Alternative profile, m = 5, (bottom right) Pohlhausen profile, m = 5.

It was also noted in the previous section that a negative valued initial solution may
cause the subsequent solution to be negative valued.

Looking at the problem at hand a specific treatment of the initial condition can be
chosen. For the assumed velocity profile methods a flat plate boundary layer flow with
constant velocity was used as the initial BL solution. The present case is meant as a

benchmark for a solver that is to be used for the simulation of flow over wind turbine
blades. This allows for the assumption that the initial boundary layer flow starts from
some forward stagnation point.

A first approach comes from the method of Thwaites; using Thwaites’ integral (see equa-

tion (I.8)) with

(

θ2
u6

e

ν

)

0

= 0 for a stagnation flow in combination with Drela’s closure for

δ ( see equation (E.50)) the first steps can be resolved. For the initial value of θ equation

(I.14) may be used, which is equivalent to a relation from Rosenhead([113, p.297,300])
which he suggested for the Von Kármán method

θ =

√

0.077ν
due

dx

,

which is similar to equation (I.14). The above relations are meant to keep the methods
consistent for ue is zero and this only works if due

dx
6= 0. To avoid the use of a series

solution equation (I.12) can be integrated directly to obtain an estimate for θ(0), in case
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Figure I.11: (left) Wieghardt profile, m = −.09043, (right) Wieghardt profile, m = 5.

the external velocity is analytical prescribed some multiple point integration scheme
might be used to increase the accuracy of the guess

θ(0) =

√
√
√
√ 0.45ν

u6
e (∆x)

∆x

m

(

u5
e(0) + u5

e

(
∆x

m

)

+ · · · + u5
e

(
(m− 1)∆x

m

)

+ u5
e(∆x)

)

, (I.22)

, in case of a numerical prescribed external velocity a simple two point integration can
be used

θ(0) =

√

0.45ν

u6
e (∆x)

∆x

2

(
u5
e(0) + u5

e(∆x)
)
, (I.23)

if more accuracy is needed, a higher order extrapolation scheme might be considered or
a higher grid resolution near the stagnation point. Another approach can be constructed

with the equivalent Falkner-Skan solution; A Falkner-Skan solution is used where the
power m for x = 0 is dependent on the external velocity distribution, this Falkner-Skan
solution is used for the first steps of the solution procedure. It was suggested in section

(I.1.1) to use an estimate for the equivalent m given by the limit value

m(0) =

(
x

ue

∂ue
∂x

)

x→0

. (I.24)

This will produce an indeterminate value for ue(0) = 0 and l’Hôpital will not resolve the

problem for higher order power law distributions, to generalize the approximation it is
suggested to approximate m(0) using the values at x = ∆x

m(0) ≈
(

∆x

ue

∂ue
∂x

)

x=∆x

, (I.25)

in case of a numerically prescribed external velocity, as it would be in an actual viscid-

inviscid method, then m(0) can be found by

m(0) ≈
(

∆x

ue

∆ue
∆x

)

x=∆x

. (I.26)

The Falkner-Skan solution for the above arbitrary value for m can be found by inter-

polating earlier found values for f
′′

0 and m (see figure (3.3)). The Falkner-Skan solution

is very sensitive to the initial value for f
′′

, as the solution for larger values for η varies

strongly for different values f
′′

0 , this has a negative effect on the quality of the initial

solution. The sensitivity can be compensated by using a less strict criterium for the
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boundary layer thickness; instead of the ηe = 99% used for the main boundary layer

calculation it is proposed to use ηe = 95%, this avoids the large variance for higher η and
it will not introduce a large error in the integral variables since u ≈ ue near the boundary
layer edge. Alternatively the shooting method might be employed using a guessed value

for η99%. Alternatively the guessed value for m can be directly coupled to a value for the
shape factor H.

The above approach can be used for methods using a guessed velocity profile and meth-

ods using empirical closure relations. if the equivalent Falkner-Skan power m(0) is
smaller than 1, δ, δ∗ and θ are set to zero and Cf follows from the equivalent Falkner-
Skan solution for at x = F∆x. For m(0) ≤ 1 all the integral variables follow from the

equivalent Falkner-Skan solution at x = F∆x. The Falkner-Skan values are taken at
x = F∆x since the solution is singular for x = 0, here F is some factor 〈0, 1], this done
to extract the initialisation as close to the stagnation point as possible.

In his PhD-thesis Nishida defines (in reference to White) an attachment line (in span-
wise direction) to initiate the boundary layer solution. The values of the momentum

thickness and the displacement thickness are taken at a certain arc length from the
stagnation point using a stagnation Falkner-Skan solution. The arc length represents
the attachment region in which the stagnated flow transitions to an attached boundary

layer flow, here it is assumed by default that the transition takes place in maximally
one distance step ∆x. Following Nishida and Milewski the values for the momentum
thickness and the displacement thickness are given by

Nishida : H = 2.21, θ = 0.29234

√

∆x

Re∞u∆x
, δ∗ = 0.64791

√

∆x

Re∞u∆x
, (I.27)

Milewski: H = 2.35, θ = 0.38574

√

∆x

Re∞u∆x
, δ∗ = 0.90649

√

∆x

Re∞u∆x
. (I.28)

The following approach is suggested for the steady IBL equations;

1. Guess momentum thickness through direct integration or use the suggested value

by Nishida or Milewski

2. Apply the closure relations for the method of Thwaites to extract the remaining

integral variables

3. Apply the method of Thwaites for the first steps

For the purpose of demonstration only 2 stagnation flows will be considered m = 1 and

m = 3, where ∂ue

∂x
6= 0 and ∂ue

∂x
= 0 respectively. It should be noted that the initial

value for the error in the following figures starts at x = ∆x since the Falkner-Skan so-
lution is not a number for x = 0. For m = 1 and m = 3 the stagnation values for the

momentum thickness are approximately equal for Nishida(equation (I.27)) and direct
integration (equation (I.23)) , for this reason one stagnation value approach will be used
for the plots. For m = 1 starting from the initial value the approximate solution for the

power law distribution is within % 10 after only two steps in x-direction, increasing the
number of steps in x-direction compresses the region in which the initialisation error
dominates but this has no notable effect on the error magnitude (see figure I.12). The

parameter L indicates the number of steps that the method Thwaites is used after the
initialisation, adding one more step using Thwaites brings the initial solution closer to
the approximate solution. For m = 3 two important observations were made, a mini-

mum of four steps was required using the method of Thwaites, secondly a minimum of
4-point integration was needed to attain a stable solution for the method of Thwaites.
Various integration accuracies were tested, the lowest being 4-point integration and the

highest being 14-point integration, the number of integration points for the method of
Thwaites is indicated by the parameter K.

The dependency of the solution quality on the initial resolution indicates the need for
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Figure I.12: Initial error using Von Kármán - Pohlhausen method for power law flow with m = 1,
direct integration stagnation values.
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Figure I.13: Initial error using Von Kármán - Pohlhausen method for power law flow with m = 3,
direct integration stagnation values.

a non-uniform grid and in fact an adaptive grid since the solution near the forward

stagnation point will change for each timestep. It is observed by Myring[100] that the
unsteady boundary layer equations are very sensitive to initial irregularities if the in-
tegration is done in upstream direction and subsequently he recommends to integrate

in the downstream direction. This relates to the direction in which the information is
transported, and it was already seen that a backward differencing method is required
for characteristics which travel in positive direction.
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The above initialisation pertains the laminar boundary layer flow, however it has be-

come clear from the text that a turbulent initial boundary layer is possible in wind
turbine flow which requires specific initial values, one such initialisation was found in
Coenen[26] and is given by

θ =
0.005
5
√
Re

, H = 1.35. (I.29)
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I.3.4 Separating Flows

A direct way to determine the robustness of the integral boundary layer formulation is
to consider limit cases which lead to an unstable solution and which have physical sig-
nificance. The occurrence of separation is such a case and many separation cases exist

for which there is an exact (theoretical) solution, this allows an important benchmark
since the prediction of separation is important for the size of the wake which in turn is
the largest contributor to the total pressure drag of any profile or indeed an entire wind

turbine. Several velocity distribution will be considered, the focus is on the prediction of
the separation location. The exact separation values are taken from White[154, tab.4-5],
the criterion used to establish separation is

λ =
θ2

ν

due
dx

= −0.09

The tested methods are reasonably close to the exact separation values, the Timman

velocity profile ↓ Exact Pohl. Alt. Drela Thwaites Timman
Separation point[m] →
1 − x 0.120 0.114 0.133 0.123 0.123 0.136
1 − x2 0.271 0.258 0.285 0.257 0.268 0.286
1 − x4 0.462 0.440 0.468 0.442 0.449 0.464
1 − x8 0.640 0.615 0.638 0.618 0.621 0.631
x− x3 0.655 0.642 0.662 0.636 0.648 0.657√

1 − x 0.218 0.207 0.239 0.202 0.221 0.243
(1 − x)2 0.0637 0.0602 0.0709 0.0584 0.0652 0.0728
(1 + x)−1 0.151 0.1436 0.1733 0.1384 0.158 0.181
(1 + x)−2 0.0713 0.0675 0.0807 0.0653 0.0739 0.0835
sin(x) 1.823 1.778 1.840 1.757 1.800 1.828
cos(x) 0.389 0.368 0.408 0.366 0.384 0.407
|average deviation| ... 4.46% 6.67% 2.98% 2.27% 8.06%

Table I.4: Comparison of separation values for a range of external velocity profiles, For Timman
λmin = −0.0832 was used

profile in combination with the Von Kármán equation resulted in a minimum for the pro-
file parameter λ near the exact separation value. It was observed that Timman resulted

in Cf = 0 very close to the exact separation values which is in accordance with the gen-
erally accepted idea that the wall friction Cf is zero at separation. A reversed result was
found for the closure of Drela with the Von Kármán equation and the energy equation,
although the accordance was good using the earlier defined separation criterion Drela

did not reach Cf = 0 near the separation point based on the separation criterion.

The integral variables increase exponentially surrounding the separation point for the
sin(x) velocity distribution (see figure I.14) a development which is much less pro-

nounced for the 1 − x velocity distribution(see figure I.15).
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Figure I.14: Comparison of δ∗ for different profiles with a sin(x) velocity distribution
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Figure I.15: Comparison of δ∗ for different profiles with a 1 − x velocity distribution

It is apparent that increasing the order of the polynomial velocity profile does not in-
crease the accuracy of the separation prediction (see figure (I.16)).



I.4. UNSTEADY TEST CASES 231

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

x/L

λ

λ

 

 

Pohlhausen 9th order

Pohlhausen 6th order

Pohlhausen 4th order

Figure I.16: Comparison of λ for different profiles with a cos(x) velocity distribution, here the exact
separation location is indicated by the red cross

I.4 Unsteady Test Cases

I.4.1 Actual Blade Profile with Unsteady Perturbations

As was mentioned the current treatise on the two dimensional integral boundary layer
equations is meant to assist in the selection of the closure models and the discretisation

methods to be used in a three dimensional unsteady integral boundary layer solver for
windturbine analysis. Henceforth the external velocity profile should be representative
of unsteady boundary layer flow over a typical profile section used in windturbines. It

makes sense to test the integral boundary layer solver seperately from the unsteady
potential flow solver. Given a known set of velocity distributions for e.g. various angles
of attack the behavior of the integral boundary layer equations can be tested with-

out coupling. For a typical profile consider the NACA 64(3)618, see figure (I.17). To
find the velocity distribution using a potential flow the program XFOIL is applied. The
unsteadiness is assumed to be caused by flutter and turbulence, the flutter induced

instantaneous unsteadiness will cause the external velocity distribution over the entire
profile to change more or less uniformly. Turbulence is assumed to behave like a small
periodic perturbation from the resulting velocity. The flutter induced velocity in the nor-

mal direction is of equal order as the flutter induced velocity in the tangential direction
but both induced velocities are about two orders of magnitude smaller than the free
stream velocity (see Lobitz[86]). The frequency of the flutter is assumed to be constant

at 0.7 Hz(see Lobitz[86]), whereas the perturbation due to turbulence is assumed to be
oscillating at a frequency two orders higher, 700 Hz. The assumed perturbation is now
represented using sines

ue,pert = βturb sin (1400πt) + βflut sin(1.4πt),

βturb ≪ βflut ≈
1

100
Vinf .

This perturbation is then added to the velocity profile for the inviscid potential flow over
the NACA 643618 profile (see figure I.18). The mean velocity profile is given by the
potential flow solution of the airfoil at various angles of attack. Now to simulate flutter

the angle of attack of the airfoil is changed over time, then using the potential flow
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Figure I.17: airfoil profile NACA 643618.
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Figure I.18: NACA 643618 Potential flow velocity distribution.

results for a set of angles the values for the specific angle of attack is retrieved through
interpolation. Now βflut follows from interpolation for a specific angle α = αmax sin 1.4πt.
For comparison the numerical reference solution will be used. Due to the external
turbulence the transition checks which employ the Falkner-Skan solution should be
to generous. The external turbulence is likely to shift the transition point upstream,

therefore a bypass transition model will be used for comparison.

I.4.2 Double Harmonic for the Finite Flat Plate

The oscillations considered so far assume that there is some velocity distribution over
the flat plate which is perturbed periodically independent of x, meaning the temporal
and spatial dependence of the external velocity are decoupled. A more realistic test

case involves harmonic behaviour of the external flow in both temporal and spatial
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dimension. The simplest form involves a mean velocity with harmonic fluctuations, i.e.

ue = ue,0
(
1 + Af(x, t)

)
,

where |A| ≪ 1 and f(x, t) is arbitrarily chosen as e.g.

f(x, t) = sin(2πω1ζ) ∗ cos(2πω2α). (I.30)

where α = x
L

is the relative distance with respect to the plate length and ζ = t
tend

is
the relative time with respect to the end time. Note that the velocity distribution in x-
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Figure I.19: Velocity distribution(equation(I.30)) with ω1 = 1, ω2 = 1, A = 0.5.

direction implies a non-flat plate geometry, however since the perturbation is assumed
to be very small with respect to the mean velocity this can still be considered a phys-
ically meaningful test case. This test case lacks a reference result, this may be found

by applying the field form of the boundary layer equations. Also, with respect to the
example form of the double harmonic , the frequencies of the space dependent part and
the time dependent part can be varied independently which allows for a good bench-

mark of the robustness of the IBL code. Since a flat plate geometry is still assumed no
coordinate transformation is necessary.

I.4.3 Literature on Unsteady Test Cases

Experimental data on unsteady flat plate flow is rather limited to oscillatory external

velocity inputs (see Cebeci[22, §9.10]) for both laminar and turbulent flow. There also
exist limit solutions of the BL equations for the case of the flat plate which allow for
direct integration, the most basic limit solution is the case of quasi-unsteadiness, this

is however directly reflected in the (adapted) Pohlhausen parameter and thus in the so-
lution and is therefore ignored as a trivial case. The impulsively started semi-infinite
flat plate was treated by Stokes(1856) and Rayleigh(1911). Later in the fifties and six-

ties work concentrated on oscillating free streams and oscillating flat plates. The limit
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solutions arose for small amplitude and/or for low and high frequency oscillations.

For the more challenging case of arbitrary external velocity there are series solutions for
the unsteady flat plate BL flow, these series solutions should hold for small times,see
i.e. Moore[96], Cousteix[28], Wirz[158]. Moore[96] gave a series solution for the flat plate

boundary layer flow with arbitrary time-dependent external velocity, Ostrach(1955) con-
tinued his work as did Kestin et al(1960) and Yang,King(1966) and Huang(1969), these
solutions are however limited to very short or very long times. The boundary layer so-
lutions using series solutions and asymptotic expansions are, for the present work, to

involved to use as a reference result. There are however analytical solutions possible in
the limit of certain solutions or for certain limit problems, i.e. for large time or for an
infinite flat plate.

The simplest unsteady case with the flat plate was analysed by Lord Rayleigh in 1911,
this problem involves an infinite flat plate which is moved instantaneously. The Rayleigh
problem has an analytical solution as does the case of the oscillating infinite flat plate

which is described by Stokes solution. The instantaneously moved semi-infinite flat
plate has been solved by for instance Hall [59].
Lighthill[84] gave a solution for a steady external flow with very high or very low fre-

quency disturbance, the results were confirmed by Lin [85] and Phillips[2]. Another
simplified model due to Rott and Rosenzweig [115] which also uses a two component
periodic external flow assumes there is a weak periodic perturbation, this model allows

for high and low frequencies.

I.4.4 Impulsively Started Infinite Flat Plate

The problem is defined as follows, a flat plate is moved such that it instantaneously

achieves a velocity uw which is subsequently constant in time, since it is infinitely long
there are no gradients in the direction of the plate. Also known as the first Stokes
problem, the first limit case that will be considered is the impulsively started infinite

flat plate in a fluid at rest. The flat plate is set into motion with velocity uw. Given the

∞∞

uw

y

Figure I.20: Infinite flat plate problem.

infinite length of the plate variation in x-direction can be ignored, the BL momentum

equation is now reduced to the simplest parabolic equation

∂u

∂t
= ν

∂2u

∂y2
, (I.31)

with boundary conditions

t ≤ 0, y ≥ 0, u = 0,

t > 0, y = 0, u = uw,

y → ∞, u = 0.

Introducing the dimensionless variable η = y

2
√
νt

the heat equation can be rewritten as

f
′′

+ 2ηf
′

= 0,

f(0) = 1, f(∞) = 0,
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where f (η) = u
uw

.

The solution is now given by

f = 1 − erf(η),

error function: erf(η) =
2√
π

∫ η

0

e−η
2

dη.
(I.32)

As was said the boundary condition for the IBL relations assume the wall is fixed, the

solution can be altered easily to fit the case where the external flow velocity ue is set into
motion impulsively; this is equivalent to the case where the plate is moved impulsively
to the left with uw = −ue, then fixing the reference frame on the plate results in

f = 1 −
(
1 − erf(η)

)
= erf(η).

This result is used to initialise the flat plate simulation with the IBL equations, this
approach is naturally suited to handle the laminar BL. For the turbulent case

I.4.5 Oscillating Infinite Flat Plate

This step-solution can be extended to arbitrary uw(t); since boundary layer equation

(I.31) is linear the solutions for velocity steps ∆uw can be integrated through convolu-
tion to obtain a solution for uw(t). This will lead to Duhamel’s folding integral (see i.e.
Schlichting[118])

uD(y, t) =
y

2
√
πν

∫ t

−∞

uw(τ )

(t− τ )
3
2

e
− y2

4ν(t−τ) dτ. (I.33)

A specific solution is the second Stokes problem which deals with an oscillating infinite
flat plate, where the oscillation is defined as

uw(0, t) = u0 cos(ωt), (I.34)

with the solution
u

uw
=
e−η cos(ωt− η)

cos(ωt)
, (I.35)

where η =
√

ω
2ν
y.

It was already mentioned that this solution assumes the wall to move oscillatory whereas
in the present case the wall is considered static. As was said the solution can be adapted

in a straightforward manner to the boundary condition ue = |uw | by considering a ref-
erence frame fixed to a moving flat plate with velocity uw = −ue, the equivalent solution
is

u

ue
= 1 − e−η cos(ωt− η)

cos(ωt)
, (I.36)

and in general given Duhamel’s folding integral

u

ue
= 1 − uD(y, t)

ue
. (I.37)

I.4.6 Impulsively moved Semi-Infinite Flat Plate

For the semi-infinite flat plate the sudden change is convected through the flow until

the entire flow domain at the boundary is steady, i.e. the velocity distribution differs in
x-direction (see figure (I.21)). The final solution is readily available through the Blasius
equation. For small times the solution can be approximated by the Rayleigh solution at

the edge of the boundary layer, from Stewartson[126], Smith[124] :

ue t < x
u

ue
= erf

(
y

2
√
ν t

)

,

ue t > x
u

ue
= erf

(

y

2

√
ue
ν x

)

.
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Figure I.21: Impulsively started flow over a semi-infinite flat plate, see Riley[112].
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Figure I.22: Sketch of semi-infinite flat plate problem.

Stewartson gives the following approximation for the drag for ue t < x

τw
µ

=
ue√
πνB

, B = min

(

t,
x

ue

)

.

Using the momentum-integral Stewartson derived a solution for the wall shear force

which should agree well with both the Rayleigh method and the Blasius solution

uet ≤ 2.65x,

(

µ
∂u

∂y

)

0

= 0.534ρ ue

√
ν

t
,

uet ≥ 2.65x,

(

µ
∂u

∂y

)

0

= 0.328ρ ue

√
ue ν

x
.

If the disturbance at the leading edge does not influence the solution, the solution is
independent in chordwise direction, in case of an instantaneously moved flat plate this

results in a Rayleigh solution and in case of an oscillating profile the solution due to
Stokes can be applied. Extending this idea it should be possible to use Duhamel’s
folding integral for arbitrary velocity distributions (over time), the range over which this

solution can be considered is then (also see Yang[159])

∫ t

0

ue(t)dt ≤ x.

After approximately four seconds the steady state should be reached, in other words the

Blasius solution is attained, see e.g. Hall[59].

I.4.7 Oscillating Free Stream Velocity for the Semi-Infinite Flat plate

Instead of an oscillating infinite flat plate, now imagine that the free stream over the
semi-infinite flat plate is perturbed slightly and imagine that the perturbation can be

described by a periodic function. Consider for the free stream the following function
(see i.e. Schlichting[118], Lighthill[84])

ue = ue,0(x)
(

1 + ǫeiωt
)

,
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and for the response

u = u0 + ǫu1e
iωt, v = v0 + ǫv1e

iωt.

Figure I.23: Free stream with oscillation around the mean, see Riley[112].

The response evolves around the mean, for a constant mean velocity ue,0, u0 and v0 are
represented by the Blasius solution. Lighthill[84] substitutes the new variables in the
boundary layer equations and separates the real and complex solutions. Lighthill treats

the case for high and low frequency separately, high and low frequency are based on
the frequency ω0 which is defined as

ω0 =
3τ0

ρue,0δ∗0
.

The real valued solutions for u are approximated by

ω ≪ ω0, u = ue,0



1 − (1 − η)2
(

1 −
(

1 +
1

4
Λ

)

η −
(

3 − 1

2
Λ

)

η2

)

 ,

ω ≫ ω0, u = ue,0



1 − e−y
√

ω
2ν cos

(

y

√
ω0

2ν

)

 ,

where Λ = δ2

ν
due

dx
and η = y

δ
. For the skin friction coefficient Cebeci extracted the

following from Lighthill’s paper (see Cebeci[19] and Lighthill[84])

Cf =
1

2

√
Rex







0.332 + ǫ
(

0.498 cos(ωt) − 0.849ωx
ue

sin(ωt)
)

, λ(x) ≪ 1,

0.332 + ǫ
√

ωx
ue

cos(ωt+ 1
4
π), λ(x) ≫ 1,

where λ(x) = ωx
ue

is called the frequency parameter. If for the present case the Blasius
solution is assumed for the mean flow then

A = 0.15, τ0 = 2
µue,0
δ

, δ∗0 = 0.3δ.

According to Riley the solution for λ(x) ≫ 0 is a combination of the Blasius solution
for the outer layer (the Prandtl layer) and the Stokes solution near the wall (the Stokes

layer).

Simplifying a method due to Lin, Warsi[150] gives the solution for large values of the fre-

quency parameter λ with normal sized amplitudes. The input oscillation in x-direction
is

u
′

e = ue,0 sin (nt). (I.38)

The solution for ζ → ∞ is then given by

u
′

= ue,0

[

sin (nt) − e
− η

δ0 sin (nt− η

δ0
)

]

, (I.39)
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with for the boundary layer thickness

δ0 ∼
√

2ν

n
. (I.40)

The previous infinite cases are useful as theoretical reference results, however they will
not suffice as final test cases since their infinite nature prevents a numerical imple-
mentation. The cases considered are basically of semi-infinite nature since no wake

interaction will be incorporated, as has been said, it is assumed that no changes in the
solution are introduced through the right boundary.
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Additional Plots

J.1 Laminar Flat Plate
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Figure J.1: Result for the upwind schemes,RK = 2,CFL = 0.5 at t = 4.5(s)
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Figure J.2: Shape factor H converged solution for the first order upwind scheme, RK2 time inte-
gration, ∆x = 0.001 m
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Figure J.6: Shape factorH from transient solution for second order upwind with RK2 time
integration,CFL = 0.5

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

-0.2  0  0.2  0.4  0.6  0.8  1

δ* (m
)

x(Lm)

IBL t=0.5(s)
IBL t=1.0(s)
IBL t=1.5(s)
IBL t=2.0(s)
IBL t=2.5(s)
IBL t=3.5(s)
IBL t=4.0(s)

Blasius

Figure J.7: Displacement thickness δ∗ from transient solution for second order upwind with RK2
time integration,CFL = 0.5
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Figure J.8: Friction coefficient Cf from transient solution for second order upwind with RK2 time
integration,CFL = 0.5
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J.2 Turbulent Flat Plate
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Figure J.10: Turbulent flat plate, Re = 10e6, run with MacCormack scheme, ∆x = 0.01,CFL = 0.25
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J.3 Transition Flow over Flat Plate
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Figure J.11: Friction coefficien Cf for transition flow over flat plate without intermittency function,
Re = 6.25e6, run with first order upwind scheme, ∆x = 0.01,CFL = 0.25
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Figure J.13: Displacement thickness δ∗ for transition flow over flat plate without intermittency
function, Re = 6.25e6, run with QUICK scheme, ∆x = 0.01,CFL = 0.25
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Figure J.14: Displacement thickness δ∗ for transition flow over flat plate with and without smooth-
ing

J.4 Unsteady Laminar flow over Flate Plate

J.5 Unsteady Turbulent flow over Flate Plate

J.6 Impulsively Moved Cylinder
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Figure J.15: Oscillating flate plate, displacement thickness δ∗ at center of plate, run with QUICK
scheme, RK4 time integration, ∆x = 0.00025,CFL = 0.5, δ100%
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Figure J.16: Oscillating flate plate, momentum thickness θ at center of plate, run with QUICK
scheme, RK4 time integration, ∆x = 0.00025,CFL = 0.5, δ100%
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Figure J.17: Oscillating flate plate, momentum thickness θ at center of plate, run with QUICK
scheme, RK4 time integration, ∆x = 0.00025,CFL = 0.5, δ100%
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Figure J.18: Momentum thickness θ over ≈ 10 periods for the low frequency case with equilibrium
closure
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Figure J.19: Momentum thickness θ over ≈ 10 periods for the low frequency case(left) with non-
equilibrium closure
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scheme, ∆x = 0.002,CFL = 0.25
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Figure J.21: Wall shear stress Cτ obtained with QUICK scheme for ue = sin(x), RK2 time in-
tegration, Matsushita closure, Thwaites as left BC, with grid refinement near the left boundary,
∆x = 0.001, CFL = 0.5
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Figure J.22: Momentum thickness θ obtained with QUICK scheme for ue = sin(x), RK2 time
integration, Matsushita closure, Thwaites as left BC, with grid refinement near the left boundary,
∆x = 0.001, CFL = 0.5
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Figure J.23: Displacement thickness δ∗ obtained with QUICK scheme for ue = sin(x), RK2 time
integration, Matsushita closure, Thwaites as left BC, with grid refinement near the left boundary,
∆x = 0.001, CFL = 0.5
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Figure J.24: Zero friction point obtained with QUICK scheme for ue = sin(x), RK2 time integration,
Matsushita closure, Thwaites as left BC, with grid refinement near the left boundary, ∆x = 0.001,
CFL = 0.5
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Matsushita closure, Thwaites as left BC, with grid refinement near the left boundary, ∆x = 0.01,
CFL = 1.75
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Figure J.29: Mesh for CFX simulation of impulsively moved cylinder



Appendix K

Reynolds Averaged Boundary Layer Equations

The ostensibly chaotic process of turbulence (see figure (K.1)) can be described in detail
through the unsteady NS equations, however this requires the resolution of all turbu-
lence scales which becomes too expensive for large Reynolds numbers. For this reason

turbulence models have been developed which are intended to capture dominating be-
havior of turbulence through simplified models.

Figure K.1: Turbulent boundary layer.

The start of turbulence modeling is the assumption that the flow velocities can be divided
into a mean part and a fluctuating part, i.e.

u = u+ u
′

, v = v + v
′

, p = p+ p
′

,

where1

u = lim
N→∞

1

N

N∑

i=0

ui,

where N denoted the number of samples, i.e. the value at some point over the profile is
sampled N times. This is usually called the Reynolds decomposition.

1Applicable to all variables with the bar
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The following rules, called the Reynolds conditions, apply

f + g = f + g,

αf = αf,

∂f

∂s
=
∂f

∂s
,

fg = fg.

From this several relations can be derived (see i.e. Davidson[33])

u = u, fg = fg.

The basic statistical characteristic of the fluctuating part is that it has a symmetric
probability distribution (a Gaussian distribution is commonly used), i.e. u′ = 0.

Applying the Reynolds decomposition to (2.19) gives 2

∂
(

u+ u
′
)

∂t
+
∂
(

u+ u
′
)2

∂x
+
∂
(

v + v
′
) (

u+ u
′
)

∂y
=
∂ue
∂t

+ ue
∂ue
∂x

+ ν
∂2
(

u+ u
′
)

∂y2
. (K.1)

Averaging equation (K.1), applying the Reynolds conditions and derived rules and omit-
ting bars for the mean terms results in

∂u

∂t
+

�
��∂u
′

∂t
+
∂u2

∂x
+
∂u′2

∂x
+

�
�

�
2
∂uu′

∂x
+
∂uv

∂y
+
�

��∂u′v

∂y
+
�

��∂v′u

∂y
+
∂u′v′

∂y
=
∂ue
∂t

+ue
∂ue
∂x

+ν
∂2u

∂y2
+

�
�

�
ν
∂2u′

∂y2

For the boundary layer it is assumed that the fluctuating terms have the same order of
magnitude (see i.e. Cebeci [22]) :

u′2 ≈ v′2 ≈ u′v′ . (K.2)

Non-dimensionalising the fluctuation terms it then follows that

∂u′2

∂x
≈ δ

L

∂u′v′

∂y
,

and can therefore be neglected. The Reynolds Averaged Boundary Layer equation is now

written as
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=
∂ue
∂t

+ ue
due
dx

+
∂

∂y

(

ν
∂u

∂y
− u′v′

)

, (K.3)

where −u′v′ is the Reynolds Stress.

Except for the Reynolds stress equation set (K.3) is equal to the boundary layer equa-
tions derived earlier.

K.0.1 Turbulence Closure for Field Equations

The Reynolds stress is an extra term, thus a closure model is required to close the

system of equations, which is now comprised of the turbulent momentum equation(K.3)
and the continuity equation. In general there are multiple equation models, mixing
length models and eddy viscosity models

eddy-viscosity model: − u′v′ = ε
∂u

∂y
,

mixing-length model: − u′v′ = l2
∣
∣
∣
∣

∂u

∂y

∣
∣
∣
∣

∂u

∂y
.

2Since ue is prescribed it will not be divided into a mean and a fluctuating part.
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Chakka and Schobeiri[119] add the intermittency factor to the eddy viscosity to account

for the fact that transition has not fully occurred

ε = γl2
∣
∣
∣
∣

∂u

∂y

∣
∣
∣
∣
,

the intermittency is made time-dependent through a Strouhal-number for the unsteady
disturbance (in their case wake-influence). The two equations models basically use two
parameters which are described separately by a differential equations, i.e. the κ − ω or

κ− ǫ method. There are also the Reynolds stress models which employ five differential
equations to describe the so-called Reynolds transport; the production and destruction
of Reynolds stress due to convection, diffusion and external sources. For the purpose

of the present research it suffices to use a so-called zero-equation model where the
Reynolds stress is closed with an algebraic relation for either the eddy viscosity or the
mixing length. The turbulence closure models presented below are devised specifically

for the boundary layer.

The turbulence models presented below assume that the turbulent boundary layer ve-

locity profile has two distinct regions, the inner region (close to the wall) and the outer
region, the inner region is about 10−20% of the entire boundary layer thickness[22], see
figure(3.7). The eddy viscosity due to Spalding(1961) and Kleinstein(1967) is described
as follows for the wall region (see Holt [66])

ε = µ0.04432
(

e0.4u
+

− 1 − 0.4u+ − 0.08u+2
)

,

where

Law of the wall :u+ =
u

uτ
,

Friction velocity :uτ =

√
τw
ρ
.

For the outer boundary layer the Clauser(1956) model can be used (see Holt[66])

ε = µ0.00168Reδ∗ ,

where

Reδ∗ =
ueδ

∗

ν
.

to apply this, starting from y = 0 check whether the outer and inner model match, if so,

the outer model should be used.

Cebeci and Smith[24] used a solution by Van Driest(1956) for the sublayer (also see

Veldman[145])

l = κy

(

1 − e
−y+

A+

)

,

where y+ = yuτ

ν
and A+ = 26, κ is called the Von Kármán constant which will be set at

κ = 0.41 (see i.e. White[154]). For the outer layer the solution the eddy viscosity is given

by the Clauser model. Cebeci[19] improved the above method for boundary layer flow
with fluctuating external velocity, for the inner layer the eddy viscosity is formulated as

ε =

[

0.4y
(

1 − e−
y
A

)]2
∂u

∂y
,

where

A =
26νu−1

τ
√

1 − 11.8(p+
t + p+

x )
,

uτ =

√
τw
ρ
, p+

t =
ν

u3
τ

∂ue
∂t

, p+
x =

νue
u3
τ

∂ue
∂x

.
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For the outer layer Cebeci gives

ε = α

∫ ∞

0

(ue − u) dy,

where

α = 0.0168
1.55

1 + Π
,

Π = 0.55

[

1 − e−0.243z
1
2
1 −0.293z1

]

,

z1 =
Rθ
425

− 1.

Again the inner layer formulation is used starting from y = 0 until it matches with the

outer layer formulation.

Michel(1968) used for the mixing-length model over the entire layer (see Schlichting[118])

l = λδ tanh

(
κy

λδ

)

,

where λ = 0.085.

For non-equilibrium flows it is advised to use at least one differential equation to de-
scribed the turbulent boundary layer, see i.e. Schlichting[118].
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Reference Solution of the BL Equations

The numerical solution of the field form of the BL equations is used for two purposes,
firstly the computing time and effort required to resolve the boundary layer flow can be

compared to the integral boundary layer method and secondly the flexibility of the field
form can be used to give reference results. Not done for this thesis but important from
the viewpoint of a future application of the IBLT is the incorporation of rotational effects

and the gravitational acceleration. A direct way to start the analysis into the effects of
these added terms is to apply the Field BL equations augmented with the added terms,
this has been done by for instance Dumitrescu and Cardos[43]. A reference code for the

incompressible unsteady boundary layer equations is given by Cebeci and Cousteix[22],
this code will be used as a theoretical reference. The following discussion may likely
not result in an actual implementation due to time constraints however it is relevant to

consider the numerical implementation of the field method compared to the implemen-
tation of the integral method.

Using the chain rules together with the continuity equation the turbulent BL equa-
tion(K.3) can rewritten as

∂u

∂t
+
∂u2

∂x
+
∂uv

∂y
=
∂ue
∂t

+ ue
∂ue
∂x

+
∂

∂y

(

ν
∂u

∂y
− u′v′

)

, (L.1)

here mass continuity is assumed implicitly, this is a second order partial differential
equation. Alternatively a coupled first order system can be produced by taking out the
bracketed term on the right-hand-side and by using the mass continuity explicitly

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=
∂ue
∂t

+ ue
∂ue
∂x

+
∂τ

∂y
,

∂u

∂x
+
∂v

∂y
= 0,

τ = ν
∂u

∂y
− u′v′ ,

(L.2)

Which can be written in matrix form

A
∂U

∂t
+B

∂U

∂x
+ C

∂U

∂y
= D,
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where

A =






1 0 0
0 0 0
0 0 0




 , B =






u 0 0
1 0 0
0 0 0




 , C =






v 0 1
0 1 0
ε 0 ν




 ,

D =






∂ue

∂t
+ ue

∂ue

∂x

0
τ




 , U =






u
v
τ




 , ε

∂u

∂y
= −u′v′

The above (ill-conditioned) formulation nicely illustrates the difference between the in-

tegral method, the latter has one coefficient matrix less but the coefficient matrices
themselves have more complicated coefficients.

L.1 Approach One, Dimensional Conservative Boundary Layer Equations

Integrating the BL equation L.1 over some control volume and applying the divergence

theorem
∫

Ω

∂(u− ue)

∂t
dΩ +

∫

δΩ

(

u2 − 1
2
u2
e

uv − ν ∂u
∂y

+ u′v′

)(

nx
ny

)

dΓ = 0

The most convenient turbulence model is the mixing length model due to Michel which
describes the entire boundary layer, since we assume the external flow to be time depen-
dent the suggested eddy viscosity due to Cebeci[19] is also considered.The eddy viscosity

models are given by

Michel : − u′v′ =

[

λδ tanh

(
κy

λδ

)]2 ∣
∣
∣
∣

∂u

∂y

∣
∣
∣
∣

∂u

∂y
,

Cebeci : − u′v′ =







κ2y2
(

1 − exp (−y+
A+ )

)2 ∣∣
∣
∂u
∂y

∣
∣
∣
∂u
∂y
, sub layer,

[

0.4y
(

1 − exp
(
− y
A

))
]2 (

∂u
∂y

)2

, inner layer,

α∂u
∂y

∫∞
0

(ue − u)dy, outer layer.

,

where the constants have been presented in section (2).

The transition check is the same as used for the integral equations. Once a transi-
tion point is detected the eddy viscosity is directly placed in the formulation. Given the
above formulation the discretisation follows from the definition of the control volume.

This is treated in the next section.

L.1.1 Discretisation

For the FVM formulation the differential equation should be integrated over some con-

trol volume. Typically if a finite difference method is employed the Keller Box scheme
is used, this can also be done for the FVM formulation, see figure (L.1) According to
Veldman the Keller box scheme is very sensitive for wiggles, this is due to the central

differences used in both x-direction and y-direction. This puts a more stringent require-
ment on the grid resolution, see stability analysis in appendix (??). Upwind differencing
is less stringent for the resolution and it facilitates the direction in which the signal

is transferred, however unlike central differencing there is artificial diffusion, mean-
ing that the numerical approximation introduces a second order differential term, see
Taylor-analysis in appendix (??). In the case of the BL equations artificial diffusion in

x-direction does not introduce a significant error source since ∂2u
∂x2 ∼ 0, therefore using

upwind differencing is more robust and it does not influence the accuracy if second
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Figure L.1: Keller box, scheme.

order upwinding is used. In y-direction central differencing may be used. Now there is

2nd order spatial accuracy. The control volume for this discretisation is given in figure
(L.2).
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Figure L.2: Control volume and required nodal points for the discretisation scheme
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Using a variable stepsize in y−direction the discretisation is written as
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The vertical velocity v is updated using the conservation of mass, i.e. ∂u
∂x

= − ∂v
∂y

.
The weighted averaged coefficient matrices will not be (skew-)symmetric and not (posi-

tive/negative)definite, this means that the coefficient matrix may become singular. Sim-
ply using the unweighted averages will preserve symmetry and definiteness while main-
taining second order accuracy (see Manteuffel and White[89]). The only adaptation of

the earlier defined generic discretisation is that ∆h+ = ∆h− = 1.
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L.1.2 Updating the Nodal Values

The time-flux is determined in the center of the cells. The nodal values for the new time
step need to be extracted which can be done in two ways

• time-flux in center points, update, then extrapolate new nodal values

• time-flux in center points, extrapolate flux to nodal points, update

The latter seems preferable since the first order equation will be more smooth than the
zeroeth order equation, therefore the interpolation will contain a smaller approximation

error. For the explicit time integration the solution procedure can be written as

[
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∂t
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.

Updating the values for v requires that first ∂u
∂x

is extracted for every point, then the
values for v can be found by integrating ∂v

∂y
in the y−direction. Likewise the integral

variables can be found by integration in y−direction according to the definitions of the
integral variables.

L.2 Approach B, Non-Dimensional Non-Conservative Boundary Layer Equa-

tions

The original Keller-box approach is described by the following steps[77] :

• the BL equations are reduced to a system of first order differential equations

• the differential equations are solved using central differences and two-point aver-
ages using the corner point value

• the resulting equations are linearised using Newton’s method

• the resulting block tridiagonal system is solved using the block elimination method

The non-dimensionalised BL equations are described in e.g. Krainer[77, p.25], Cebeci
and Cousteix[22], Sekar[120].

L.3 Boundary Conditions and Initial Conditions

The (dimensional) boundary conditions are given1 by (also see figure(L.3))

u = ue, v = 0, x = 0, y > 0, t ≥ 0,

u = v = 0, x < 0, y = 0, t ≥ 0,

u = ue, v = 0, x > 0, y 6= 0, t = 0,

u = 0.99ue, v ≈ 0, y → ∞, t ≥ 0.

As is done for the IBL equations, for the boundary at the far end of the plate backward

1the non-dimensional boundary conditions follow directly from the dimensional boundary conditions
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Ghost cells

Ghost cells
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flux

x

y

u = ue, v = 0

Figure L.3: Boundary conditions and initial conditions

differencing will be used, removing the need for a far-end boundary condition. This as-
sumes the information convects downstream only (or dominantly), which is done by for
instance Smith[124] who assumes that information convects downstream for the entire

profile. If first order upwinding is used for the first interior points at the left boundary,
no special treatment is required for the left boundary. If second order upwinding is
maintained ghostcells are required (see figure (L.3)).

The final boundary condition is formed by the definition of y → ∞ and it’s respective

value, this will be based initially on the result of an (equivalent) steady state integral
boundary layer solution. To prevent that during the execution of the unsteady problem
the boundary layer thickness grows outside the solution domain, the initial set bound-

ary layer height must be overestimated or the boundary layer height (i.e. the vertical
gridsize) must be variable.
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Roman Characters
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Cf friction coefficient [-]
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[-]



List of Figures

2.1 Flat plate boundary flow, nomenclature. . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Velocity distribution in the boundary layer, δ is the boundary layer thickness. 10

3.1 Laminar flow over a corner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Turbulent flow over a corner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Falkner-Skan starting values for different powers,(left) f
′′

0 −m,(right) η99% −m. 22

3.4 The critical Reynolds number Recrit as a function of the shape factor H, see

Bongers[14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 Values for the amplification factors in case of bypass turbulence . . . . . . . . 24

3.6 Turbulence intensity for off shore farm over long measurement period . . . . . 25

3.7 Sublayers in turbulent boundary layer,[24]. . . . . . . . . . . . . . . . . . . . . 28

3.8 Impression of slip velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.9 Closure relation for friction coefficient Cf , (left) for laminar boundary layer
based on equation (E.9), (right) for turbulent boundary layer based on equa-
tion (E.41) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.10 Closure relation for diffusion coefficient CD, (left) for laminar boundary layer
based on equation E.5, (right) for turbulent boundary layer based on equation
(E.44) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.11 Laminar separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.12 Turbulent separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.13 Boundary flow seperation according to the MRS-criterion . . . . . . . . . . . . 35

3.14 Coupling methods, see Veldman[145] . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 eigenvalues for Drela’s system, with laminar closure using ue = 100 . . . . . . 45

4.2 Contourplot of eigenvalue λ+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Contourplot of eigenvalue λ− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Contourplot of eigenvalue λ3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Comparison of eigenvalues for laminar and turbulent boundary layer flow, the
solid lines represent the turbulent eigenvalues for different values of Reθ . . . 48

4.6 Eigenvalues for unsteady Head’s entrainment and the Von Kármán equation
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