
1

CONSTRUCTION OF RESPONSIVE

WEB SERVICE FOR SMOOTH

RENDERING OF LARGE SSC

DATASET
AND THE CORRESPONDING PREPROCESSOR FOR

SOURCE DATA

Yueqian Xu

Mentor #1: Martijn Meijers

Mentor #2: Peter van Oosterom

Mentor #3: Timothy Kol (Computer Graphics)

Introduction

• Space Scale Cube (SSC) model: vario-scale geographical data
structure. Non-redundant geometric data for different level of details.

• Viewport acts as a camera; only chunks intersecting with viewport will

be transferred to GPU.

• Develop a web service to reveal geometry change against massive
user actions with large dataset.

Problem statement:

• Web service pursues fluent performance and fast responsiveness

• Large datasets: 9km x 9km dataset > 40 MB (one chunk)

• Limited bandwidth  Long data transmission time

• Poor decoding capability (parse text based data) of Javascript

(a) Concept of smart data fetching, anti-reloading, and reusing memory slots

Ultimate goal:
Implement a web-based service along with its preprocessor that:
• Performs well with large datasets;
• Enables fast and smart data transmissions;
• Eliminates decoding time through direct GPU uploads;
• Minimizes the number of HTTP requests by reusing memory slots.

Research questions

What is the architecture of web service? What are the possible data

format and serialization method?

Preprocessing:

• Is binary format a possible arrangement? How should the text-

based source files be formatted?

• What is the size change after octree dividing (different

thresholds & allocation of triangles)?

Prototype development:

• How should the octree structure be reflected in Javascript?

• How to define a viewport bounding box and update it

regarding user actions?

• What is the dynamic and light schema that prevents

repeated loading and allows reuse of memory against heavy

user actions?

Related works – WebGL rendering

(a) WebGL coordinate system

(b): Near z plane

GL Shader Language
• Vertex shader (manipulate vertex

position)
• Fragment shader (assign color)
• Call drawArray

WebGL coordinate system
• Coordinates in all three axes go

from -1.0 to +1.0
• Z for depth testing

Near Z plane

• Everything above it will be cut away

• Move near z plane from the top
downwards, map scale changes are
revealed.

Related works – Main memory vs. GPU memory

• Upload data to GPU memory from outside.

• Rendering is fast after data transmission.

• Data transfer is relatively slow.

OBJ file content
Color information

OBJ File

v 93851.3255 463551.399 378

v 93848.358512 463548.100973 378

v 93853.1826667 463553.491 378

…

g 1001706 13000 437 506

f 114803 114802 114801

f 114801 114804 114803

….

g 1001704 12400 435 452

Color information

Class id 13000

Red Value 255

Green Value 255

Blue Value 255

Source data

Dataset Number of triangles Scope (minx, minY, maxX, maxY) (RD)

Smooth sample 136 (-0.993582, 0, 0, 1)

Leiden 10,125 (93500, 463500, 94100, 464100)

9x9 3090.8k (182000, 308000, 191000, 317000)

Three experimental datasets

OBJ File

v x coordinate y coordinate z coordinate

g Object id Class id Lifespan min Lifespan max

f Vertex index 1 Vertex index 2 Vertex index 3

OBJ file data type

Data preprocessing concept

Dividing methods: Octree

• Order

• Node id = binary file name

• Threshold: <500KB & max 4 levels

Node content:

Allocation of triangles
• If a triangle intersects with more than one chunk BBox, it will be added

into all chunks it is intersecting with  cause redundancy

• Avoid missing geometry at chunk boundaries.

6 disjoint cases

Preprocessing results

(a) A slice of the binary file and the size in byte

(b) Comparison of chunk size of 9x9 dataset

Binary formatted source data:
• One triangle  72 bytes

File size:

Prototype framework

Client side

Node structure at client side

(c) A parent node automatically generated during preprocessing

(b) Pseudo code to construct tree at client side

(a) Node content and data type

Intersection testing function

Function is called after

each user action

Modified LoadChunk function

Compared with old

schema, the modified one:

• takes longer to finish

loading a chunk;

• stores chunk data

directly in GPU memory;

• ArrayBuffer objects

cause no main memory

usage.

Modified RenderChunk function

Compared with old schema, the

modified one:

• doesn’t communicate with

outside;

• hence, the rendering is fast and

light;

• causes only GPU memory usage.

User actions

• Pan

• Zoom

• Manipulate vertex position

• New x coordinate =

 old coordinate - xoffst (dragged distance)

• Visual enlargement

 coordinate * zoom

• Near z plane position

 = 1/zoom

Update user action parameters

Manipulate vertex position

 Vertex shader

Offset_X & Offset_Y& Zoom

Every frame

Viewport bounding box

• Viewport BBox is defined by VP

centroid & radius

• It only relates to normalized

source data

• Radius = 0.5/zoom

• Centroid = (offset_X, offset_Y)

(a) Viewport Bounding Box

(b) Update viewport bounding box

Prototype performance

(a) Z value = 0.02998 (b) Z value = 0.02848 (zoom step = 0.95)

(c) Obvious gradual change (zoom step = 0.95)

• Reveal geometry change

Prototype performance

(a) Coordinates obtained by prototype (b) Online map for validation (Adapted from EPSG (2017))

• Accuracy

• No repetitive loading of chunks

No more than 8 ArrayBuffer objects;

hence, no repeated loading.

(c) ArrayBuffer objects of Leiden dataset

Time consumption – modified schema

(a) A typical workflow of intersection testing, loading, and rendering (load one chunk: 50ms)

(b) Time consumption for pure tree traversal and rendering (less than 10ms)

Modified schema Old schema

Function % of time Function % of time

Gecko 45.9 RenderChunk 80.1

Graphics 33.8 Graphics 9.1

RenderChunk 5.5 Gecko 3.4

Tools 3.6 loadChunk 0.4

loadChunk 2.3 Tools 0.2

(c) Most time-consuming calls during a complete performance recording

Time consumption – local server

(a) Javascript frame chart during 2581ms to 5632ms (Modified schema: low fps due to loading of chunks and data transmission to GPU)

(b) Time consumption for pure tree traversal and rendering (Modified schema: less than 10ms)

(c) Lags caused by data transmission result in low fps (old schema)

Unstable
and low fps

stable and
high fps

No lag caused by
transferring data
from main memory
to GPU memory

Time consumption – remote server

(a) Relative low fps due to delay of data transmission through network (modified program with network at 6MB/s)

(b) Relative higher (modified program with network at 9MB/s)

• Significantly affected by network condition;

especially when zooming out to the top of the

model.

Memory consumption

(a) General performance of three datasets at different states (old schema)

(b) Main memory use of the modified program at different stages

Main memory usage (old schema):

Main memory usage (Modified schema):

Unloading from GPU memory

(a) Unloading function

• Call unload function every 15

seconds

• Call LoadChunk function for
unloaded chunks if they are
once again required

• Increases CPU computation

GPU memory consumption – with unloading

169MB
Stage 1: GPU memory use at the
initial loading of the page

462MB
Stage 2: GPU memory use after

traversing through the dataset

130MB
Stage 3: GPU memory use after

unloading

Future work
• 475% volume up caused by the duplication due to the lifespan; is there a better

way to deal with it?

• The tree structure of the 9x9 dataset is 0.79MB; it could be > 6MB for a 20x20

dataset. Is it possible to split tree structure script into multiple scripts, load a

particular part only when it is requested?

• Geometry changes are subtle that are easily being skipped over with a large

zoom step. Is there a way to magnify the change either within source data or

during rendering? For example, generate an animation.

• Different unloading methods; e.g. based on distance or times of requests.

• Balance the use of main memory and GPU memory.

• After unloading, will be GPU memory be fragmented? Does that affect the

performance?

Prototype

Thank you for your attention

Questions

Supplementary slides

• Happens when the horizontal splitting plane intersects with the
lifespan of a triangle

Missing bottom

Chunk Size (without lifespan) (kb) Size (with lifespan) (kb) Size (one chunk) (kb)

00 104 103

 729

01 83 82

02 142 141

03 125 124

04 79 114 (44% up)

05 70 100 (42% up)

06 100 140 (40% up)

07 87 126 (45% up)

Total 790 (8% up) 930 (28% up)

Comparison of chunk size divided with/without lifespan (Leiden dataset)

Without lifespan With lifespan

Example of load-render workflow

Separate file for triangles intersecting with

multiple chunks  avoid redundancy

File size comparison

Memory consumption

Locality of reference

• Temporal locality

• Spatial locality

Garbage collection (GC)

• Automatic memory management system

for Javascript

• Non reachable objects

• Reachable objects

