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With the increasing stock of ageing infrastructure and resource constraints in Singapore, related risks and carbon 
emissions can be mitigated through long-term resilience planning, automated building inspection, and effective 
maintenance. Sustainable actions are needed to maintain Singapore’s ageing infrastructure. Hence, a state-of-
the-art control and management system is required in the form of smart city digital tools. We introduce an 
Urban Digital Twin (UDT)—GHG App for decision-makers in Singapore’s operational building greenhouse gas 
(GHG) emission mitigation and decarbonisation initiatives. Based on multiple-criteria decision analysis (MCDA), 
a Potential for Intervention (PFI) map was created to rejuvenate the building system. Decision-makers can use 
this map to prioritise the rejuvenation of low-carbon building systems in the built environment. A heat map of 
the PFI results highlights which buildings need urgent rejuvenation based on critical parameters. The GHG App 
utilises this method to generate maps and enables users to modify parameter weights based on their priorities, 
automatically updating the map. Users can plan an intervention for buildings with higher PFI values once 
the map is generated. The GHG App provides interactive data visualisation of 119,872 features representing 
Singapore’s built environment, including the context size of 6,785 existing residential buildings modelled and 
used to demonstrate the analysis results. Our research findings can contribute to the development of standards 
for accounting for operational GHG emissions, setting emission limits, and planning decarbonisation in the built 
environment sector.
1. Introduction

Data-driven applications that can assist in the effective management 
of cities are being developed as a result of innovative city initiatives 
across the world. Smart cities have humans, technology, and institutions 
as their three elements, with the environment, energy, transportation, 
safety, healthcare, and education being fundamental disciplines. City 
sustainability, infrastructure, quality of life, and service to the inhabi-
tants are enhanced by smart city initiatives [1,2]. Creating a city-scale 
digital twin would allow all disciplines mentioned above to be inte-
grated and improve system operability on digital platforms [3,4]. An 
Urban Digital Twin (UDT) consists of a city 3D model with a combi-
nation of physical assets, multimodal sensor data and a bi-directional 
automated dataflow. Furthermore, UDTs provide planning and deci-
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sion support to cities in terms of infrastructure, administration, citizen 
engagement, and economic development. Numerous digital twin im-
plementations have reflected upon the built environment with varied 
use cases [5,6]. Energy industries are still experimenting with digital 
twin technologies [7,8], but they provide several opportunities to stim-
ulate the energy transition and achieve sustainable energy development 
goals [9]. Ghenai et al. [9] highlight that digital twins can simulate and 
analyse energy components and systems, as well as diagnose problems 
at a low cost, thereby accelerating innovation, building consensus, and 
reducing costs.

Most importantly, there is a need for methodologies that can help 
develop datasets to deliver UDT platforms for decision-making [10]. 
More use cases, along with its bottom-up methodologies, have to be 
tested to develop UDTs for comprehensive decision-making. To address 
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this need, our research introduces a dashboard—GHG App (https://
ghg .app .frs .ethz .ch/)—with the building operational energy use and 
GHG emissions dataset for the city of Singapore.

With the increasing stock of ageing infrastructure and resource con-
straints in Singapore, related risks and carbon emissions can be miti-
gated with long-term resilience planning, automated building inspection 
works, and effective maintenance. Sustainable actions are needed to en-
hance Singapore’s ageing infrastructure maintenance. Existing building 
renovation strategies must include decisions that align with the national 
greenhouse gas emission targets while considering the building’s opera-
tional and embodied emissions [11,12]. Consequently, a state-of-the-art 
control and management system is required in the form of smart city 
digital tools that can facilitate policy instruments [13,14].

Singapore’s housing system consists of public and private markets, 
with the Housing Development Board (HDB) managing the public mar-
ket [15,16]. Since 1960, HDB has built more than 1.2 million dwelling 
units in Singapore, and as of 31 March 2023, there are 1.1 million 
dwelling units under its management, with 77% of the resident pop-
ulation living in HDB flats [17]. Existing public housing buildings and 
towns are upgraded to enhance the living environment in and around 
residents’ homes. Older flats commonly experience wear and tear, which 
is addressed by Home Improvement Programmes (HIPs). Direct lift ac-
cess is offered to residents as part of the Lift Upgrading Programme 
(LUP). Over 500,000 households have benefited from the LUP since its 
launch in 2001. Additionally, the Neighbourhood Renewal Programme 
(NRP) continues to improve residents’ immediate living environment. 
We use the term “rejuvenation” for buildings in this article for the rea-
son that it encompasses both the actions of renovation and retrofitting of 
building systems to efficiently sustain buildings. In particular, we use the 
term rejuvenation because it is used in policies to represent programmes 
such as HIP, LUP, NRP etc. that help keep livability and vibrancy in pub-
lic housing in Singapore [18].

Carbon dioxide (CO2), primarily released when fossil fuels are 
burned to produce energy for the industry, construction, residential, and 
transportation sectors, is the most significant greenhouse gas (GHG) re-
leased in Singapore [19]. Singapore’s GHG emissions for 2021 totalled 
53.6 MtCO2e (million tonnes of carbon dioxide equivalent). In Novem-
ber 2022, Singapore set a new target of limiting GHG emissions in 2030 
to 60 MtCO2e, down from 65 MtCO2e in the previous submission of 
Nationally Determined Contribution (NDC) [20]. However, the Climate 
Action Tracker (CAT) continues to project Singapore’s overall CAT rat-
ing as “critically insufficient” and far higher than 1.5 °C levels [21].

Singapore’s hot and humid tropical climate leads to the majority of 
electricity use, fulfilling the great demand for cooling in commercial 
and residential sectors [22]. Singapore’s total electricity use increased 
by 10%, from 49.6 TWh in 2017 to 54.9 TWh in 2022 [23]. In the power 
sector, natural gas replaced oil as the primary fuel after the early 2000s. 
In 2021, the share of the energy input in electricity from natural gas 
increased to 94.9% from 66% in 2005 [24]. Solar, biomass and mu-
nicipal waste (referred to as other energy products) account for 2.9%. 
Petroleum-based products, mainly diesel and fuel oil, make up the re-
maining 1.0%, with coal making up 1.2% of the total. Solar energy is 
seen as an economical alternative energy option in comparison to elec-
tricity produced from fossil fuels. By 2030, Singapore aims to deploy 
2 GWp (gigawatt-peak) of solar with the help of government initia-
tives and policies. However, the integration of a large deployment of 
solar PV into the smart infrastructure of the city energy systems, such 
as microgrids, district cooling systems and storage batteries, increases 
the complexity of operability, data processing, and optimisation.

In this article, we describe the UDT use case for estimating and mit-
igating greenhouse gas emissions in ageing residential buildings. In the 
following Section, we elaborate on the progress of UDTs that are dedi-
cated to optimising the built environment and energy sector and decar-
bonising cities through relevant works in literature. Further explanation 
is provided as to how the proposed dashboard is unique in comparison 
2

to the existing examples found in the literature. Subsequently, we study 
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the applicability of Multiple-Criteria Decision Analysis (MCDA) in City 
Planning, Environmental Science, and Sustainable Energy.

The methodology of our research is explained in four parts in Sec-
tion 3. In Section 3.1, we demonstrate the conceptual architecture and 
user experience of UDT development that supports decision-makers and 
stakeholders. In Section 3.2, we present the use case that we developed 
based on the dashboard and elaborate on the method specific to estimat-
ing operational GHG emissions of buildings based on openly available 
energy use data. In Section 3.3, we introduce a method for simulat-
ing energy demand in case of missing energy use data and generate 
alternative scenario outputs using a forecasting method. In Section 3.4, 
we propose a Potential For Intervention (PFI) Map using MCDA with 
a future scenario (for the sample year 2040) of public housing to pri-
oritise low-carbon building systems rejuvenation. Additionally, details 
are provided about the parameters included for creating a PFI map, the 
normalisation step of parameters of varying scales using the sigmoid 
function, the aggregation of normalised values, and the classification. 
Finally in Section 4, we discuss the results of GHG estimation and PFI 
along with parameters of varied user priority or input weights (see Ta-
ble 6), followed by the conclusion (Section 5).

2. Related works

2.1. Urban Digital Twins (UDT)

Instances of UDTs dedicated to facility management, retrofitting, 
or operational optimisation [25–29] are frequently surfacing in smart 
city initiatives. In literature, however, a limited number of UDTs are 
dedicated to decarbonising cities and providing support to related exist-
ing policy instruments in cities [14,30,31]. Paiho et al. [31] highlight 
that there is a need for definite use cases with specific combinations of 
technology and policy aspects implemented in the built environment. 
Based on their study of Finland, they claim that the current EU policy 
mix [32–34] sets no clear goals for the digital transition and does not 
aim directly at influencing end users’ conservation and efficiency be-
haviours. To promote green and digital transition in EU member states, 
it is necessary to assess whether digital transition aims and targets are 
compatible with existing and potential technological imbalances. A dis-
crepancy in regulation and control instruments is widespread in various 
countries and towards their climate action [35–37].

The GHG App shares similar features as example projects from the 
literature, including Urban Strategy [38], TEDA [39], Cambridge [40], 
Digital Urban European Twins (DUET) [41], and the City of Zurich [42]. 
All the aforementioned examples address issues related to urban de-
velopment (for instance, air and noise pollution, health, climate, emer-
gency, operation, and management) with suitable applications and pro-
vide insights into alternative scenarios which can help stakeholders 
make better decisions to address the respective urban issues. How-
ever, the UDTs found in the literature vary in terms of the applications 
provided and the stakeholders for whom they are developed. The fol-
lowing are various applications provided by examples from literature: 
environmental pollution and emissions from transport by Urban Strat-
egy [38]; emergency and crisis prediction by the spatial and temporal 
data platform for urban virtual simulation - TEDA (Tianjin Economic-
Technological Development Area) New District, China [39]; building 
operation and maintenance application by the digital twin demonstra-
tor for West Cambridge campus, UK [40]; air quality and noise emission 
application by the Digital Urban European Twins (DUET) project, Eu-
rope [41]; and density effects on urban climate and mobility study for 
the City of Zurich [42].

The example UDTs are based on disparate 3D data formats and 
frameworks, providing applications with varied levels of access to the 
public. For instance, both DUET [41] and Urban Strategy [38] provide 
environmental pollution-based applications within their UDTs, how-
ever, exclusively the DUET project provides open access to its dataset 

and application. The West Cambridge campus UDT [40] is developed 
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for facility managers for building operation and maintenance. Both the 
TEDA New District [39] and Zurich city UDTs [42] are developed mainly 
for city planners as stakeholders. The DUET [41] and Urban Strat-
egy [38] applications extensively target professionals and researchers 
both in academia and industry.

In comparison, the proposed GHG App is expected to support vari-
ous stakeholders in facility management, city planning, policymaking, 
sustainable design and development, energy efficiency, etc., particularly 
those who are interested in decarbonising initiatives for cities and miti-
gation concerning climate change. A limited number of applications are 
dedicated to decarbonisation, accounting for operational GHG emissions 
and improving the energy efficiency of buildings, while being openly ac-
cessible to the public. For instance, Urban Strategy [38] is dedicated to 
decarbonisation through environmental analyses to mitigate transport-
based pollution and emissions, however, the application and dataset 
developed are not fully open to public access. To improve maintenance 
procedures and energy efficiency and turn port areas into ZEDs (Zero 
Energy Districts), the digital twin of the Port of Anzio in Italy [43]
provides open-source tools for renewable energy management systems. 
Their project is dedicated to the decarbonisation of port areas in Italy. 
Hence, it is linked to transport and does not extend its services beyond 
the port.

Huang et al. [8] propose a Cloud-based Integrated Energy Plan-
ning Studio (CloudIEPS), a conceptual digital twin-based energy internet 
planning platform. The authors demonstrate CloudIEPS with a case anal-
ysis for an optimised operation of energy internet for a future smart 
city in China. The demonstration provides an optimised solution that re-
duces one-time investment costs compared to the original scheme. Since 
CloudIEPS is a conceptual DT framework that deals with the specific use 
case of operation optimisation of integrated energy systems, it cannot 
be compared with the GHG App.

Urban building energy modelling (UBEM) tools such as City Energy 
Analyst (CEA) [44], CityBES [45], and UBEM.io [46] are dedicated to 
the decarbonisation of cities and are similar to the proposed GHG App 
for this objective. They help users such as urban design teams and mu-
nicipal governments to create scenarios for future mitigation of GHG 
emissions in buildings. CityBES and UBEM.io are free web services that 
rely on big urban data sets in geospatial formats such as GIS and are 
combined with building energy models based on the same principles 
as those used to design or renovate high-performance green buildings. 
Similarly, CEA uses GIS datasets and includes building energy models 
to assess building energy performance in a desktop application.

City Building Energy Saver (CityBES) allows users to quickly set up 
and run UBEM to support city-scale building energy efficiency analysis. 
Chen et al. [45] presented CityBES with case studies in six cities in the 
United States that analysed energy use and cost saving of five individual 
energy conservation measures (ECMs) and measure packages for office 
and retail buildings. CityBES employs the Commercial Building Energy 
Saver (CBES) toolkit [47,48], which builds on energy simulation tools 
OpenStudio [49] and EnergyPlus [50] to deliver energy retrofit analyses 
of individual commercial buildings (offices and retail) in U.S. cities.

UBEM.io automates the stock-level generation and analysis of 
UBEMs for carbon reduction studies. UBEM.io takes an archetype ap-
proach to automatically assign simulation templates to buildings in the 
same categories with similar physical and mechanical representations. 
UBEM.io has a modular framework with an urban model generator mod-
ule to help users generate building geometry using GIS files (user input) 
and uses a library with a pre-built building template for buildings in the 
United States and Irish building stocks. Then the model visualiser mod-
ule compares multiple scenarios for carbon reduction. Ang et al. [46]
presented UBEM.io and its framework tested for the City of Evanston, 
IL (USA), and conducted a workshop with representatives from eight 
municipalities worldwide.

Both CityBES and UBEM.io are built on the prerequisite dataset from 
city municipal records to generate energy models. On the other hand, 
3

the GHG App is built bottom-up with no conditional dataset required 
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from users. The GHG App offers a comparison of individual buildings on 
a city scale and leads decision-makers to buildings that need urgent ren-
ovation. The GHG App is designed to help existing renovation policies 
and programmes and guide future renovation work. CityBES is limited 
to U.S. cities and commercial buildings. The GHG App offers analyses for 
all building typologies in Singapore, however, at present most datasets 
are available for residential and commercial buildings. We rely on the 
City Energy Analyst (CEA) to simulate the unavailable energy dataset 
and try to bridge this gap. The CEA tool was selected as it is also a 
bottom-up tool for physics-based urban building energy simulation at 
low computational expense. The tool has been well-tested in the Sin-
gapore context, including, among others, residential [51], commercial 
[52], university [53], and mixed-use districts [54,55], as well as urban-
scale simulations [56]. In the GHG App framework, this UBEM is used 
to provide a simple estimate for buildings for which there is no other in-
formation. However, the GHG App framework and methodology for PFI 
analysis can in principle be applied and tested for other countries.

Deng et al. [57] systematically review the literature on the co-
benefits of GHG mitigation as a result of documenting 1554 academic 
research articles and classifying the co-benefits into the types and sec-
tors they belong to. The research finds that few papers study co-benefits 
in the building sector, and suggests that there is a need for research 
on GHG mitigation in the built environment. Our research [53,58–61]
and the development of the tool dedicated to the estimation of GHG 
emissions try to fill the aforementioned research gap. The proposed use 
case represents a wide range of domains, including City Planning as a 
subset of Smart City initiatives and Planning Support Systems (PSS); Cli-
mate and Energy with its GHG mitigation policies; and Cyber-Physical 
Systems (CPS) with the Urban Digital Twin concept evolved from the 
conventional Digital Twin concept. The GHG App is distinctly unique 
as a tool in terms of its goal towards helping policy instruments for de-
carbonising cities, estimating operational GHG emissions of buildings, 
demonstrating what-if scenarios towards low-carbon building system re-
juvenation in residential buildings and delivering open access to the 
created 3D integrated city energy dataset and application—GHG App

(https://ghg .app .frs .ethz .ch/).

2.2. Multi-criteria decision analysis (MCDA)

MCDA is a set of mathematical tools and approaches designed to 
assist decision-makers and stakeholders in selecting the most appropri-
ate solution to a given problem, based on the values of stakeholders 
and decision-makers, as well as technical information [62–64]. MCDA 
facilitates decision-making as a whole, as they allow for transparent 
analysis of competing criteria and competing interests [65–67]. The 
usage of the MCDA method for decision-making is found in various do-
mains, including sustainable energy and environmental science [68,69]. 
MCDA helps to search for multiple preferences that a model can pro-
duce for conducting a “what-if” analysis. Numerous examples in the 
literature demonstrate the adoption of MCDA methods and tools in 
energy-efficient renovation and retrofitting building projects [70,71]. 
Documentation of existing building renovation projects using various 
MCDA methods and tools for decision-making is summarised in Table 1. 
The table covers three aspects of each of the renovation projects: (a) the 
MCDA method used, (b) the location of the project/case study, and (c) 
the goal of the project.

In recent years, the Ordinal Priority Approach (OPA) [72] has as-
sisted with group decision-making using preference relations. With OPA, 
experts, alternatives, and attributes can be weighed and ranked simul-
taneously using simple steps. OPA is the only MCDA method that al-
lows experts to include the attributes that they believe are relevant in 
decision-making and disregard the other unimportant attributes [72]. 
However, Weighted Sum Method (WSM) [73] is a widely used and sim-
ply implemented MCDA that may be carried out in a variety of domains, 
including building renovation [74,75]. WSM refers to decision-making 

processes and techniques in which each alternative must be given a score 
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Table 1

A comparison of various MCDA methods and tools used in existing residential 
building renovation and retrofitting in literature.

Ref. (a) MCDA method (b) Location (c) Goal of the project

[76] Classic Europe (Spain) Energy retrofit solution
[77] TOPSIS Europe (Germany) Renovation solution
[78] Hybrid (ANP) Asia (Taiwan) Revitalization and regeneration
[79] Fuzzy set Europe (Lithuania) Regeneration alternatives
[80] AHP Europe (UK) Green technology assessment
[81] S-AHP Asia (South Korea) Prioritising restoration
[82] TOPSIS+VIKOR Europe (Italy) Seismic Structural retrofitting
[83] PROMETHEE Europe (Italy) Energy retrofit solution
[84] AHP+VIKOR Asia (Philippines) Energy retrofit solution
[70] TOPSIS Europe (Spain) Renovation solution
[75] WSM Europe (Sweden) Renovation solution
[85] COPRAS Europe (Lithuania) Renovation solution
[86] Classic Europe (Spain) Energy retrofit solution
[87] PROMETHEE Africa (Algeria) Renovation solution
[88] ELECTRE-TRI Europe (France) Energy retrofit solution

based on a relevant criterion, with each criterion being weighed ac-
cording to its significance. WSM is typically used to aggregate attribute 
values and multiply them by the corresponding weights to get a value.

We use the MCDA approach for decision-makers to prioritise low-
carbon building system rejuvenation in Singapore public housing (see 
Section 3.4). We use a hybrid MCDA method by combining the OPA and 
WSM. In our proposed building rejuvenation process, experts determine 
parameters (criteria) and preferences as per OPA. The experts assign 
weights to parameters, and the aggregate value is classified according 
to the ranking using WSM. Based on the ranks, buildings with higher 
values are considered to have more urgency to renovate. This approach 
highlights the inclusion of experts and stakeholders, to identify, select, 
and assign weights to the critical parameters in the decision-making 
process of building renovation.

3. Methodology

We propose a conceptual architecture to develop UDTs for the spe-
cific use case of estimating operational GHG emissions of buildings (Sec-
tion 3.1). We then present a use case for estimating building operational 
greenhouse gas (GHG) emissions of buildings in Singapore (Section 3.2), 
based on a developed UDT with an integrated 3D city energy dataset 
from open data sources representing the built environment and its en-
ergy use [60]. Given that historical electricity and cooling demand in 
Singapore are only available for a few building use types, this dataset is 
complemented by simulations using a country-scale building energy de-
mand model created on City Energy Analyst (CEA) [44] (Section 3.3). 
With the energy dataset and GHG emission estimate as a baseline, an 
analysis—Potential For Intervention (PFI)—is created to help decision-
makers prioritise low-carbon building system rejuvenation in Singapore 
public housing (Section 3.4).

3.1. Conceptual architecture and user-experience of Urban Digital Twin

The proposed conceptual architecture to develop UDTs for estimat-
ing the operational GHG emissions of buildings is shown in Fig. 1. 
The architecture is based on the findings of the literature review [58]
and hands-on development of pilot case studies for campus- and city-
scale [59,60]. Three structured layers in the proposed architecture il-
lustrate the data flow between physical and digital systems, namely 
physical, cyber, and cognitive. The physical layer of a smart city consists 
of many physical components, such as buildings, critical infrastructure, 
and Building Management Systems (BMS) with actuators and sensors. 
The physical layer also represents the four life cycle stages of energy use 
and emission, Product, Construction, Use, and End-of-life. This leads to 
a greenhouse gas (GHG) inventory that accounts for the release and us-
4

age of seven major GHGs: CO2, CH4, PFCs, HFCs, SF6, N2O, and NF3. 
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The focus of the research, however, is on the “use” stage of the life cy-
cle, which leads to operational GHG emissions due to energy use in the 
built environment.

The physical layer information is converted to 3D assets and trans-
mitted to the cyber layer. Within the cyber layer, assets are represented 
as geo-information models, complete with geometry, coordinates and 
metadata. Depending on the services required, geo-information mod-
els are supported by simulation systems (e.g., building energy demand 
modelling) and additional climate data. The data storage system sup-
ports the User-Experience (UX) platform for presenting processed data 
to clients. In the proposed architecture, the cognitive layer is made up 
of the UX platform and its interactive system that supports the user’s 
decision-making process. A feedback loop of interaction between the 
platform and the user is created by the user applying input scenarios 
and viewing the corresponding results in charts and decision metrics; 
this eventually forms the basis for the user’s decision-making processes.

Using the data collected (integrated 3D city dataset), operational 
GHG emissions of buildings are calculated using Equation (1) with an 
inventory of greenhouse gases. Further, operational GHG emissions spe-
cific to MEP equipment used in buildings are calculated using the “basic” 
methodology provided by Harnot and George [89]. The calculation re-
sult is cumulated for all the equipment used in a building. Starting from 
simple Air Handling Units (AHU) used in residential buildings towards 
complex MEP equipment used in other typologies (commercial, health-
care, university, etc.).

Simultaneously, the GHG App dashboard along with the UX is set up 
as a web browser application using Cesium Ion, an open cloud platform 
for hosting 3D geospatial data. Cesium Ion tiles massive high-resolution 
3D content using 3D Tiles format specification [90] for optimised and 
rapid streaming over the web. CesiumJS, an open-source JavaScript li-
brary is used to programme and customise the GHG App. Highcharts 
JS, a JavaScript charting library is used to display tailored interactive 
visualisations in the dashboard [91].

In the GHG App, all features collected with their information (inte-
grated 3D city dataset) are converted and set up to stream on the web us-
ing the framework that was tested during our pilot case study [59]. The 
framework utilises Quantum Geographic Information System (QGIS) 
software to combine a shapefile with building geometry and attributes 
related to all buildings available in various data formats. Then Feature 
Manipulation Engine (FME) software converts the combined shapefile 
to the required 3D Tiles format.

The GHG App provides two scenes in the dashboard: Scene 1 is ded-
icated to building operational GHG emissions and energy use data and 
Scene 2 is used for PFI analysis. In Scene 1, a query system with an 
input scroll bar of three categories (Planning Area, Built Year, and Build-
ing Typology) is created for quick access and navigation to the dataset 
within the dashboard. Charts are generated with alternative scenarios 
based on the output of GHG emissions calculation for every building 
when a user selects the building (using a mouse left-click) on the dash-
board (see Fig. 2). The forecasting results of the energy-use trends and 
corresponding GHG emissions of each building can be visualised for the 
years 2030 and 2040. In Scene 2, users can choose weights to prioritise 
various parameters influencing the generation of the PFI map.

3.2. Methodology for calculating operational GHG emissions of buildings

For the development of the use case of operational GHG emissions 
in buildings, the standard methodology for calculating operational GHG 
emissions from Mechanical, Electrical, and Plumbing (MEP) equipment 
used in buildings is studied as part of the research. Consequently, en-
ergy modelling results and the 3D dataset are combined to calculate 
the buildings’ operational GHG emissions (O𝑔) (kgCO2e/year, kg car-
bon dioxide equivalent per year) using a linear equation:

∑

𝑂𝑔 =𝐷𝑒𝑙 ⋅

𝑖

𝜀𝑒𝑙,𝑖 ⋅𝐺𝑊 𝑃𝑖 (1)
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Fig. 1. Conceptual architecture to develop UDTs for a specific use case for estimating buildings’ operational GHG emissions. Note: Internet of Things (IoT), VR-
Virtual Reality, BMS-Building Management System, AR-augmented reality. Yellow boxes indicate optional technologies specific to six use case groups [58]. (For 
interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. Dashboard Scene 1 of the GHG App showing operational GHG emissions for Singapore’s residential buildings in a heat map (red colour indicates high and 
dark blue low GHG emissions). The charts at the bottom indicate annual electricity use trends for an individual building. An inventory of the seven major building 
operational GHG emissions is shown at the top-left corner of the dashboard. Adjacently, building equipment-specific GHG emissions (air conditioning, refrigerator 
and water heating) in various residential unit types are shown. Meta-data with building information collected can be seen on the right.
where D𝑒𝑙 = electricity demand per year (kilowatt-hours per year); 𝜀𝑒𝑙,𝑖
= electricity grid emission factor for greenhouse gas i; GWP𝑖 = Global 
Warming Potential for each greenhouse gas i.

The emissions that result from the use of energy to operate me-
chanical, electrical, and plumbing systems, such as heating, cooling, 
5

lighting, ventilation, water supply, and wastewater, are accounted for. 
Singapore’s historical average electricity use is available for residential 
buildings as provided in the annual Singapore Energy Statistics (SES) re-
ports by the Energy Market Authority (EMA), along with a breakdown 
per planning area (there are a total of 55 planning areas) and dwelling 
type (public housing 1-room, 2-room, 3-room, 4-room, 5-room, and ex-

ecutive; landed properties; private apartments and condominiums) [23].
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In power generation, the electricity grid emission factor measures 
the amount of GHG emissions per unit of electricity generated. This 
factor may vary depending on the source and location of the energy 
supply and can be obtained from national governments or organisations 
such as the International Energy Agency (IEA). By calculating the Grid 
Emission Factor (GEF) for the Operating Margin (OM), we can deter-
mine the average amount of CO2 emitted by the grid-connected power 
units by each unit of net electricity generation in the system. In Singa-
pore, OM GEF includes electricity generation technologies from primary 
power producers (such as combined cycle power plants and waste-to-
energy plants) as well as auto producers (such as solar energy systems 
and embedded co-generation plants). A Build Margin (BM) emission fac-
tor measures the average of the generation-weighted emission factors 
across a sample group of power plants (m) that were constructed within 
the given year (y) [92]. As a result of the recent construction of new 
power plants, the BM emission factor in Singapore is lower than the OM 
emission factor. A slightly higher OM GEF was registered in Singapore 
in 2022, rising to 0.417 kg CO2/kWh from 0.409 kg CO2/kWh in 2021. 
Diesel consumption increased in 2022 as natural gas markets worldwide 
tightened, contributing to a higher OM GEF [24]. We refer to the lat-
est yearly publication of the SES report for BM GEF values (0.406 kg 
CO2/kWh) to calculate GHG emissions using the linear Equation (1).

Each major greenhouse gas [carbon dioxide (CO2), methane (CH4), 
perfluorocarbons (PFCs), hydrofluorocarbons (HFCs), sulfur hexafluo-
ride (SF6), nitrogen nitrous oxide (N2O), and nitrogen trifluoride (NF3)] 
has a Global Warming Potential (GWP) that compares how much each 
GHG contributes to global warming over a particular time frame (for 
example, over a 100-year timeframe). The Intergovernmental Panel on 
Climate Change (IPCC) reports GWP values for the most common GHGs 
(CO2, CH4, N2O) [93].

In Singapore, water heaters (11%), refrigerators/freezers (17%), and 
air conditioners (24%) account for about 52% of a household’s total elec-
tricity use, according to the weighted energy use profile for all housing 
types [94]. Therefore, MEP equipment has a major potential in reduc-
ing energy use and related GHG emissions. Accordingly, datasets related 
to MEP equipment used in buildings are required. Specifically, an Envi-
ronmental Product Declaration (EPD) or use-stage Life Cycle Assessment 
(LCA) for MEP equipment and a catalogue of MEP equipment currently 
used in every building in Singapore is required. Using the EPDs and 
MEP equipment catalogue, a breakdown of building operational GHG 
emissions from MEP equipment can be estimated [95,96]. However, the 
datasets mentioned above are not all fully available. There is a lack of 
a catalogue for MEP equipment used in all the buildings in Singapore, 
especially for older buildings. EPDs are rarely available for MEP equip-
ment that is installed locally. Further, information on electricity demand 
and cooling load is openly available for only a limited number of build-
ings in Singapore.

For the missing EPD and LCA for MEP equipment used locally, the 
EPD of MEP equipment globally available with comparable specifica-
tions is adopted. For instance, Midea published the world’s first EPD 
for split air conditioners using a representative model weighing 37 kg 
with a service life of 20 years and R32 for refrigerant usage involving 
electricity use and leakage [97]. The global warming potential (GWP) 
of the downstream process, which includes the use stage of the air con-
ditioning unit, is 0.0867 kg CO2e/kWh and a total GWP of 0.0936 kg 
CO2e/kWh as per the EPD document. Similarly, EPDs available for re-
frigerators and water heaters around the globe are used.

In case of a missing EPD, the “basic” calculation methodology ex-
plained in standard document TM65 [89] by the Chartered Institution of 
Building Services Engineers (CIBSE) is used to estimate GHG emissions 
for each MEP equipment. The GHG emissions (kg CO2eq/kWh) calcu-
lated per equipment are then applied to the entire building depending 
on the total number of MEP equipment used to find the total building op-
erational GHG emissions. For example, a typical 4-room public housing 
unit in Singapore may have one refrigerator, one or two water heaters 
6

depending on the number of bathrooms, and three to four air condition-
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ing units. Predicting the total number of equipment used within a typical 
residential unit is relatively easier than for complex typologies such as 
mixed-use, commercial, and industrial typologies. Hence, the study of 
MEP equipment-based emissions and the development of archetypes for 
various typologies beyond residential buildings are still in progress.

Historical electricity use and cooling load datasets for buildings in 
Singapore are further used to create future scenarios of high and low en-
ergy use (with a breakdown of energy use of air conditioners, refrigera-
tors/freezers, and water heaters) and to calculate respective operational 
GHG emissions in buildings. The missing energy-use data for buildings 
and forecasts are simulated in City Energy Analyst (CEA) [44], as ex-
plained in the following section.

The initial pilot case study and UDT development were for the Na-
tional University of Singapore university campus with 300 buildings 
with a COVID-19 scenario case study [59]. An integrated 3D city dataset 
can be accessed by users within the dashboard with visualisation and 
query options. Based on the pilot study, UX and cognitive dashboard de-
velopment were improved with data acquisition and updating from open 
access reliable data available on government websites. This process in-
volved modelling and data classification of 119k features representing 
the built environment of Singapore. As a tangible output, the research 
contributes towards creating a visualisation and query dashboard as a 
web browser application for stakeholders interested in the decarboni-
sation of cities through intuitive quantitative operative GHG emission. 
This idea can be extended and scaled up to show other cities in vari-
ous countries in the world as a database and be used as a tool to track 
GHG emission goals set by the United Nations Framework Convention 
on Climate Change (UNFCCC).

3.3. Simulating energy demand in case of missing energy use data and 
generating alternative scenario outputs using a forecasting method

In order to estimate the GHG emissions of buildings and typolo-
gies not included in the open dataset, a country-scale building en-
ergy demand model is created on the open-source tool City Energy 
Analyst (CEA) [44]. The model primarily comprises building geome-
tries, assigned typologies for each building, and construction standards. 
This model uses the building footprints, heights, and numbers of floors 
taken directly from the 3D city dataset and assigns building typologies 
and construction standards based on information available in Open-
StreetMap (OSM) [98] and the Singapore Master Plan 2019 Land Use 
layer available on Singapore’s open data portal [99].

In the first step, the building geometries obtained from the 3D city 
dataset are checked for feasibility and adjusted where necessary. Floor-
to-floor heights larger than 10 m or lower than 1 m are assumed to be 
due to errors in the data, and therefore for such buildings, the number of 
floors is adjusted based on an assumed typical floor-to-floor height. This 
typical building’s floor-to-floor height is assumed to be 4 m based on the 
median of all floor-to-floor heights between 1 and 10 m encountered in 
the original dataset. This value is also used to estimate the number of 
floors for buildings for which only the building height was available and 
could be calculated. Finally, CEA cannot process buildings with heights 
above ground less than 1 m, therefore as a simplifying assumption, all 
such buildings are assigned a minimum height of 3 m.

Each building is subsequently assigned one of the typologies avail-
able in CEA, as summarised in Table 2. Since OSM data is building-
specific while land use data corresponds to entire districts, buildings 
are first assigned their typology based on the category assigned in OSM, 
if any. Where buildings have no assigned category on OSM, or if these 
are not clear enough, they are assigned a typology based on the land 
use type for the area in which they are located. Given the limited num-
ber of typologies available in CEA, some of the typologies need to be 
simplified. For example, train stations are assigned the use type RETAIL

for simplicity. All unconditioned building use types are assigned the 
PARKING use type in order to ensure they are not assumed to be con-

ditioned by CEA. Most buildings are assumed to have a single-use type 
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Table 2

Building typologies and construction standards assigned for each building in the City Energy Analyst (CEA) model by OpenStreetMap (OSM) category and land use 
type. (∗) For all buildings with STANDARD3, if the OSM roof material was specified as “grass”, STANDARD5 was used instead.

CEA Typology OSM category Land use type CEA standard

MULTI_RES ‘residential’, ‘apartments’, ‘condominium’, ‘dormitory’ ‘Residential’ STANDARD1

MULTI_RES and OFFICE — ‘Commercial & residential’, ‘Residential/Institution’, ‘White’ STANDARD1

MULTI_RES and RETAIL — ‘Residential with commercial at 1st storey’ STANDARD1

SINGLE_RES ‘detached’, ‘house’, ‘semidetached_house’, ‘semi_detached’ — STANDARD2

OFFICE ‘office’, ‘civic’, ‘government’, ‘commercial’ ‘Business park’, ‘Civic & community institution’, ‘Commercial’, 
‘Commercial/Institution’

STANDARD3(∗)

RETAIL ‘retail’, ‘shop’, ‘train_station’, ‘yes;retail’ ‘Light Rapid Transit’, ‘Mass Rapid Transit’ STANDARD3(∗)

INDUSTRIAL ‘industrial’, ‘manufacture’ ‘Business 1’, ‘Business 2’ STANDARD3(∗)

GYM ‘sports_centre’, ‘sports_hall’, ‘swimming_pool_changing_room’, 
‘grandstand’, ‘stadium’

‘Sports & recreation’ STANDARD3(∗)

HOSPITAL ‘medical’, ‘hospital’ ‘Health & medical care’ STANDARD3(∗)

MUSEUM ‘museum’, ‘chapel’, ‘church’, ‘mosque’, ‘religious’, ‘shrine’, 
‘temple’

‘Place of worship’ STANDARD3(∗)

SCHOOL ‘school’, ‘kindergarten’, ‘CET_Campus_East’ — STANDARD3(∗)

UNIVERSITY ‘university’, ‘college’ ‘Educational institution’ STANDARD3(∗)

HOTEL ‘hotel’ — STANDARD3(∗)

FOODSTORE ‘supermarket’ — STANDARD3(∗)

PARKING ‘hall’, ‘multi-purpose_hall’, ‘bridge’, ‘parking’, ‘carport’, ‘IMM’, 
‘stable’, ‘roof’, ‘shed’, ‘hut’, ‘pavilion’, ‘gazebo’, ‘warehouse’, 
‘greenhouse’, ‘multi-purpose_stage’, ‘transportation’, ‘garage’, 
‘service’, ‘toilets’, ‘farm_auxiliary’, ‘hangar’, ‘Security_Post’, 
‘parlour’, ‘construction’, ‘fire_station’

‘Agriculture’, ‘Cemetery’, ‘Open space’, ‘Park’, ‘Port/Airport’, 
‘Reserve site’, ‘Road’, ‘Special use’, ‘Transport facilities’, 
‘Utility’, ‘Waterbody’

STANDARD3(∗)

Table 3

Building system operation parameters and internal gains by building typology according to the CEA database [44].

CEA Typology Setpoint 
temperature 
[◦C]

Ventilation 
rate
[l/s/p]

Occupant 
density 
[m2/p]

Occupant gains Electricity demand Hot water 
demand 
[l/d/p]

Sensible 
[W/p]

Latent 
[g/h/p]

Appliances 
[W/m2]

Lighting 
[W/m2]

Processes 
[W/m2]

MULTI_RES 28 10 35 70 80 2 5 0 40
SINGLE_RES 28 10 60 70 80 2 5 0 40
OFFICE 24 10 10 70 80 11 10 0 0
RETAIL 24 8 6 70 90 2 33.3 0 2
INDUSTRIAL 24 31 13 90 170 20 14.7 16.5 10
GYM 24 10 9 110 255 2 9.9 0 40
HOSPITAL 24 10 19 70 80 8 11 0 0
MUSEUM 24 10 10 70 80 7 10.8 0 0
SCHOOL 24 8 4 70 80 16 12 0 0
UNIVERSITY 24 10 19 70 80 16 12 0 0
HOTEL 24 10 23 70 80 4.3 3.1 0 40
FOODSTORE 24 10 0 70 80 5 9.3 0 2
PARKING – 0 0 0 0 0 5 0 0
for simplicity, except for buildings with no OSM category located in spe-
cific land use areas, such as “Commercial & residential” and “Residential 
with commercial at 1st storey”. Building heights, number of floors, and 
typologies occasionally need to be corrected manually where outliers 
or unclear category assignments in OSM are discovered. The building 
operation parameters (setpoints, internal gains, electricity demands) as-
sociated with each of the typologies used according to the CEA database 
are summarised in Table 3.

Finally, in order to assign construction materials and envelope prop-
erties, CEA requires a construction standard to be selected. The number 
of standards available is limited, as shown in Table 4. Again, for simplic-
ity and due to the limited amount of information available, each typol-
ogy presented in Table 2 is assigned a single CEA construction standard. 
Since STANDARD1 is intended to be typical for public housing, which 
is the predominant type of residential building in Singapore, all multi-
family residential buildings are assigned that standard. STANDARD2 is 
defined as being typical of private housing in Singapore, therefore all 
single-family units are assigned that standard. All other building use 
types are assigned one of the commercial construction standards in CEA. 
For buildings that are tagged in OSM as having green roofs, (i.e., roof 
material “grass”), STANDARD5 is chosen. For all other buildings STAN-
7

DARD3 is used.
The remaining inputs for the CEA model include typical inputs in 
building energy simulations, such as occupancy patterns, building op-
eration parameters, internal gains, and electricity demands. Since this 
information is typically not available at an urban scale, CEA includes 
an archetypes database to assign these parameters based on the build-
ing typology, and construction standard. Using the geometry, typology, 
and construction standards discussed above, along with the archetype 
database, a country-scale CEA model for Singapore is created.

Each run of the building energy demand model involves a yearly 
solar irradiation simulation followed by a building energy demand sim-
ulation [100]. At country-scale, these come at significant computational 
expense, and therefore two methods are pursued to make the simu-
lations feasible. First, in order to reduce the computational time and 
parallelise the simulations, the country-scale model is split into smaller 
projects based on the Singapore Master Plan 2019 Subzone Boundary 
[101]. Thus, instead of running all of the nearly 120,000 buildings all 
at once, the simulations are split into batches of less than 3,000 buildings 
per simulation. To further reduce computational time, the simulations 
are executed by onboarding a processor onto ASPIRE2A, an AMD (Ad-
vanced Micro Devices) based Cray EX supercomputer at the National 
Supercomputing Centre (NSCC), Singapore. The results from the energy 
modelling and 3D dataset are combined to calculate buildings’ opera-

tional GHG emissions using Equation (1).
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Table 4

Construction standards available in CEA [44] and their corresponding envelope properties and cooling system type.

CEA Standard Description Air tightness 
[ach]

U-values [W/m2⋅K] Window-to-wall 
ratio

Cooling 
system

Roof Wall Floor Window

STANDARD1 Residential, reduced conditioned areas 0.32 0.6 0.8 2.9 5.4 0.29 mini-split AC (6/15)
STANDARD2 Residential, increased conditioned areas 0.32 0.6 0.8 2.9 5.4 0.29 mini-split AC (6/15)
STANDARD3 Commercial (default) 0.22 0.6 3.2 2.9 2.2 0.59 central AC (6/15)
STANDARD4 Commercial (low window-to-wall ratio) 0.22 0.6 3.2 2.9 2.2 0.29 central AC (6/15)
STANDARD5 Commercial (green roofs) 0.22 0.15 3.2 2.9 2.2 0.59 central AC (6/15)
A forecasting method is proposed to estimate energy use and GHG 
emissions along with alternative scenarios for the years 2030 and 2040 
(leading to a net zero emissions target for 2050). For each future sce-
nario, a new energy demand simulation is run with updated weather 
files based on future weather projections using the Coupled Model Inter-
comparison Project Phase 6 (CMIP6) data. Following Mosteiro-Romero 
et al. [53], we use CMIP6 model AWI-CM-1-1-MR and scenario SSP585, 
which represents the high end of the range of future pathways. In addi-
tion to the effects of climate change, scenarios are defined to assess how 
future developments might support achieving future emission targets. 
These include varying building operation schedules and system param-
eters to assess the effect of various country-scale policies. These future 
scenarios can also be simulated using the country-scale building energy 
demand model.

3.4. Potential for intervention (PFI) analysis

The Potential for Intervention (PFI) map is created using the MCDA 
method. A PFI map aims to assist decision-makers in prioritising the 
rejuvenation of low-carbon building systems in Singapore’s public hous-
ing. For a future scenario in the year 2040, we generate the PFI map us-
ing MCDA for existing residential buildings to demonstrate the decision-
making scenarios associated with building system rejuvenation. Reju-
venation involves renovating or retrofitting, i.e., replacing old and in-
efficient building systems with more energy-efficient and low-carbon 
alternatives. The resulting PFI heat map shows the buildings that need 
urgent rejuvenation based on parameters that influence the decision.

The PFI map adopts the Ordinal Priority Approach (OPA) from 
MCDA for choosing influential parameters. Based on OPA, experts pro-
vided the parameters they deemed relevant to creating a multi-criteria 
decision analysis and a resulting PFI value for each residential build-
ing. Five parameters are selected based on the feedback received from 
experts who analyse future ageing infrastructure in Singapore. Subse-
quently, weights are assigned to each selected parameter based on their 
significance as decided by the expert user. The Weighted Sum Method 
(WSM) from MCDA is used to individually multiply parameters by the 
corresponding weights and aggregate five parameter values to get the 
PFI values for each building.

The parameters selected to create PFI values are: (1) Building age, 
(2) Greenhouse gas (GHG) emissions, (3) Replacement cycles for lifts, 
(4) Replacement cycles for lighting equipment, and (5) Building wall 
painting cycles. These parameters have varying scales and hence a nor-
malisation method of applying a notionally common scale to values 
measured on different scales using a function is required to aggregate 
parameters [102]. Logistic sigmoid functions are used to convert each 
parameter to a 0 to 1 value before aggregating, and the midpoint (0.5) 
for each parameter is the threshold beyond which there is a need for 
an intervention from the decision maker (see Fig. 3). For instance, the 
Building age parameter is assigned a threshold of 50 years, beyond 
which maintenance is required. Similarly, public housing has certain 
thresholds for replacement cycles of building equipment used (such 
as lifts and common area lighting). After the normalisation step, each 
parameter is aggregated based on WSM to find the Potential For Inter-
vention (higher PFI values indicate a higher potential for renovating 
8

the building). A ranking is determined by five categories (“Very High”, 
Fig. 3. Logistic sigmoid function graph for the five selected parameters showing 
the transformation of each parameter value (x-axis) into the range of 0-1 (y-
axis) using Equation (2). The dotted lines represent each individual parameter’s 
infliction point.

Table 5

Variables used in the sigmoid function (Equation (2)) 
for normalisation of five different parameters.

Parameters Pn a (mid-point) b

P1 Building Age 50 9
P2 GHG emissions intensity 12 1.5
P3 Lift replacement cycle 20 2
P4 Lighting replacement cycle 3 0.5
P5 Building painting cycle 5 0.9

“High”, “Moderate”, “Low”, “Very Low”) on an ordinal scale using quan-
tiles. The result of the aggregate potential for intervention with each 
parameter weighted equally (Case 1) is visualised in the dashboard as 
a PFI heat map (see Fig. 4). Additionally, the dashboard provides users 
with an option to change the weightage of the parameters based on their 
priority and, then, automatically updates the PFI map with the newly 
assigned weights. From the PFI heat map, users can examine buildings 
with higher PFI values and rankings to plan an intervention for building 
system renovation.

3.4.1. Parameters for the PFI analysis

The parameters that most influence the rejuvenation processes are 
considered for the PFI analysis. Experts establish these parameters based 
on their current work on rejuvenating public housing. The following 
are the PFI analysis parameters, their corresponding thresholds set by 
experts and respective logistic sigmoid functions used to normalise the 
parameter values based on the respective thresholds (mid-point-0.5). 
Equation (2) is used to normalise parameters Pn based on the variables 
a and b shown in Table 5.

𝑓 (𝑃𝑛) = 1

1 + exp
(
𝑎−𝑃𝑛
𝑏

) (2)

Building Age (P1):

The Voluntary Early Redevelopment Scheme (VERS) and Selective 
En bloc Redevelopment Scheme (SERS) both aim to renew Singapore’s 

older public housing estates. Both schemes aim to revitalise estates 
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Fig. 4. A sample (Case 1) heat map of Aggregate Potential for Intervention analysis results for the 2040 scenario for the residential building stock in Singapore. 
Purple-coloured buildings indicate very high PFI values and dark green buildings suggest low PFI values.
by taking back flats before their leases expire and redeveloping them. 
Precincts over the age of 70 will be offered the VERS voluntary scheme. 
In SERS, selective land with high redevelopment potential is utilised for 
redevelopment. The increasing stock of ageing infrastructure (above 50 
years old) and resource constraints in Singapore before 2040 raise con-
cerns. Hence, we set the Building Age parameter (P1) to the inflection 
point of 50 years old in 2040, beyond 50 years rejuvenation interven-
tions will be considered for the building. The Building Age parameter 
can further be considered to support existing public housing upgrading 
initiatives such as the Home Improvement Programme (HIP) [103]. Ac-
9

cordingly, the logistic sigmoid function (Equation (2)) transforms each 
building’s age (P1) into a value between 0 and 1. For instance, build-
ings that turn 50 years old in 2040 are assigned a 0.5 value, and the 
normalised value increases towards 1 with age (see P1 in Fig. 3).

GHG emissions intensity (P2):

To compare buildings, the intensity of GHG emissions should be con-
sidered. GHG emission intensity is calculated by dividing a building’s 
total GHG emissions in a year by its total gross floor area (GFA). This 
provides a better comparison between buildings, as otherwise, buildings 
with larger footprints would always have higher GHG values. Build-
ings can then be ranked based on emission intensity per square meter 

of building floor area (Section 4). However, there is no standard for 
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Table 6

Comparison of three cases with varied input parameter weights. 
The re-scaled weights for case 2 and 3 are shown in the brackets.

Parameters Case 1 Case 2 Case 3

P1 Building Age 1 2 (1.429) 1 (0.75)
P2 GHG emissions intensity 1 2 (1.429) 1 (0.75)
P3 Lift replacement cycle 1 1 (0.714) 2 (1.25)
P4 Lighting replacement cycle 1 1 (0.714) 2 (1.25)
P5 Building painting cycle 1 1 (0.714) 2 (1.25)

restricting operational GHG emissions in the region’s building sector. 
Therefore, we set an infliction point at 12 kgCO2e/m2.yr based on stud-
ies available on GHG emission intensity of high residential buildings in 
Asia [95,96]. Accordingly, the logistic sigmoid function (Equation (2)) 
transforms a building’s GHG emission intensity (P2) into a value be-
tween 0 and 1. For instance, Buildings with GHG emission intensity of 
12 kgCO2e/m2.yr are assigned a 0.5 value, and the normalised value in-
creases towards 1 with GHG emission intensity value (see P2 in Fig. 3).

Lift replacement cycle (P3):

The Housing Development Board (HDB) of Singapore implements the 
Lift Upgrading Programme (LUP) which tends to occur in a time frame of 
10–30 years for the building lift renovation cycle [104]. We do not have 
access to real lift age or replacement cycle information. Therefore, we 
have created simulated data by randomly assigning all public residential 
buildings a value between 1–30 years as the lift age. We aim to set the 
lift replacement cycle parameter at the inflection point of 20 years old 
by 2040. This means that beyond twenty years in 2040, the elevators 
in the building will require rejuvenation interventions. Accordingly, the 
logistic sigmoid function (Equation (2)) transforms the lift age (P3) into 
a value between 0 and 1. For instance, lifts that turn twenty years old 
are assigned a 0.5 value, and the normalised value increases towards 1 
with age (see P3 in Fig. 3).

Lighting replacement cycle (P4):

Public residential buildings in Singapore undergo regular main-
tenance by HDB along with the Town Council [105], which in-
cludes retrofitting common area lighting. The HDB Green Towns Pro-
gramme [106] has been looking for innovative ways to reduce electricity 
use in common areas of public housing estates. Smart lighting is one 
of the solutions implemented with motion sensors and analytic capa-
bilities. This technology reduces 60% of energy used for lighting by 
automatically adjusting LED lights’ brightness based on detected mo-
tion compared to conventional LED lighting. HDB works with Town 
Councils to install smart lighting in all common areas of buildings built 
before 2014 when their existing LED lights are due for replacement (3–5 
year cycle). We aim to set the lighting replacement cycle parameter at 
three years by 2040 so that common area lights will require rejuvena-
tion interventions beyond that time. Accordingly, the logistic sigmoid 
function (Equation (2)) transforms the age of the lighting fixtures in the 
common areas (P4) into a value between 0 and 1. For instance, lights 
that turn three years old are assigned a 0.5 value, and the normalised 
value increases towards 1 with age (see P4 in Fig. 3).

Building painting cycle (P5):

Regular maintenance by the public housing town council is con-
ducted with regular block-painting exercises at 5–7-year intervals. We 
do not have access to real building painting cycle information. There-
fore, we have created simulated data by randomly assigning all public 
residential buildings a value between 1–7 as their years since the last 
painting cycle. We aim to set the building painting cycle parameter at 
the inflection point of 5 years by 2040 so that rejuvenation interventions 
are required after that time for the building facade and common areas. 
The building painting cycle parameter can further be considered to sup-
port existing initiatives such as the periodic façade inspection by the 
Building and Construction Authority (BCA) of Singapore [107]. Accord-
ingly, the logistic sigmoid function (Equation (2)) transforms the time 
elapsed since a building was last painted (P5) into a value between 0 
10

and 1. For instance, buildings that have not been painted for five years 
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are assigned a 0.5 value, and the normalised value increases towards 1 
with age (see P5 in Fig. 3).

3.4.2. Varied input parameter weights in three cases

Three cases are introduced to demonstrate how varied user priority 
or input parameter weights (see Table 6) are aggregated, categorised us-
ing quantiles, ranked and visualised in the dashboard. In the dashboard, 
each parameter can be weighted between 0 and 5, with 5 being the high-
est priority. If a parameter is set to 0, that specific parameter will not 
be considered for the aggregate PFI value. Section 4 further analyses 
and compares the results of PFI analysis through three cases with var-
ied input weights (Table 6). In Case 1, all parameters are given equal 
weights, considering each parameter as important. Case 1 is set as the 
default input parameter weight in the dashboard. In Case 2, more im-
portance is placed on the Building age (P1) and GHG emissions intensity 
(P2) parameters, evaluating overall building performance by highlight-
ing ageing infrastructure and emissions. In Case 3, the lift replacement 
(P3), lighting replacement (P4) and building painting (P5) cycles are 
given more weight than the other two parameters, evaluating the over-
all building maintenance. Cases 2 and 3 carry more weight compared to 
the default Case 1. To facilitate comparison, all weights in cases 2 and 
3 are re-scaled to reach a maximum total parameter weight of 5.

4. Results and discussion

In this section, the outcomes of the estimation of total operational 
GHG emissions for buildings and the comparison with the intensity of 
operational GHG emissions are presented and analysed. Subsequently, 
PFI results for three different cases with varying parameter weights are 
generated. Then, buildings in each case are ranked into five categories 
based on quantiles. Parameter sensitivity is shown with PFI and indi-
vidual parameter values. We discuss our pilot studies, analyses, and the 
latest results that are demonstrated using an open-access web browser 
application dashboard—GHG App. The final part of our discussion fo-
cuses on our use case to renovate existing ageing residential buildings 
in Singapore using a low-carbon renovation concept, as well as how 
such tool demonstrations and assessments can help cities reduce carbon 
emissions and implement related policies.

4.1. Estimation of operational GHG emission results

Based on the average electricity use of units, the total building opera-
tional GHG emissions are estimated for the entire building. Additionally, 
MEP equipment-related (air conditioner, refrigerator and water heater) 
GHG emissions for a building are part of the dashboard. A comparison 
of total building operational GHG emissions and estimated GHG emis-
sion intensity along with building height is shown in Fig. 5. Dwelling 
types and built years of buildings are used to categorise the buildings 
and find any emissions patterns. Total GHG emissions have a direct cor-
relation with building height and electricity use. On the other hand, 
GHG emissions intensity does not increase with building volume and 
can, therefore, be compared from building to building.

The buildings with predominantly 4-room and 3-room dwelling 
types have higher GHG emissions per year in the sample (6785 build-
ings), as shown in Fig. 5(a). This is because they tend to have higher 
building electricity use, with a larger number of these apartments and a 
higher rate of air conditioning units within each apartment. 5-room or 
Executive types are the largest dwelling types with the highest electric-
ity use per apartment; however, they are not as densely stacked together 
compared to 4-room and 3-room dwelling types. Fig. 5(c) indicates that 
newer buildings built after 2010 tend to be taller and have predomi-
nantly 4-room, 3-room, and 5-room dwelling types.

4.2. PFI results

A histogram is shown for three different cases with varying param-

eter weights (see Fig. 6). Case 2 (initial weight 7) and Case 3 (initial 
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Fig. 5. Comparison of residential buildings’ total GHG emissions for the year 2022 (x-axis) and GHG emission intensity (x-axis) respectively with building height 
 (c,
(y-axis), with buildings categorised based on dwelling types (a, b) and built year

weight 8) have weights re-scaled to match Case 1 (weight 5). The re-
scaled weights for Case 2 and Case 3 are shown in brackets in Table 6. 
After rescaling, all cases have an added weight of 5 and hence can be 
compared. Ranks based on quantiles classify buildings into five cate-
gories. The probability distributions are divided into intervals of equal 
probability (20%) by cut points in the PFI range for each case. Ac-
cordingly, buildings with PFI values above quantile Q4 (i.e. 80%) are 
categorised as “Very High”, values between Q4 and Q3 (60%) as “High”, 
between Q3 and Q2 (40%) as “Moderate”, between Q2 and Q1 (20%) 
as “Low”, and below Q1 as “Very Low”.

Fig. 6 shows the PFI value quantiles for Case 2 are higher as com-
pared to Cases 1 and 3. Case 2 has two parameters (P1 and P2) that are 
assigned high priority (or weight), while Case 3 has three parameters 
(P3, P4 and P5) with higher priority, and Case 1 has equal parameter 
weights. Higher PFI value quantiles in Case 2 mean that there are a large 
number of buildings that are older (above 50 years) and have high GHG 
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emission intensity (above 12 kgCO2e/m2.yr).
 d).

In general, when users give various weights to each parameter, PFI 
and respective quantile values will shift. The parameter sensitivity is il-
lustrated with plots of the PFI and the individual parameter values (see 
Fig. 7). The GHG App computes quantiles for PFI values each time users 
change parameter weights and respectively ranks buildings (Very High 
to Very Low) based on the quantiles (see Fig. 8). In the PFI analysis, 
only the public areas of the residential buildings are considered for in-
tervention and the energy use of the apartments remains unchanged.

4.3. Discussion

With the methodology introduced in Section 3, we developed an 
integrated 3D dataset for Singapore with more than 119k features repre-
senting its buildings and infrastructure. The dataset is further classified 
based on planning area, building year and building typology. Moreover, 
such 3D datasets created particularly for energy systems can further 

be used to train machine learning models and study city energy use 
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Fig. 6. Graph showing PFI results (x-axis) of three sample cases with varied input parameter weights and frequency plotted on the y-axis. The quantiles—Q1, Q2, 
Q3, and Q4 are indicated in dotted red line for each sample case.
patterns. For instance, yearly building energy use intensities can help 
forecast energy demands for assessing net-zero energy goals for cities. 
Furthermore, as explained, additional datasets related to the mobil-
ity sector (car park occupancy in this case) can help define scenarios 
regarding future trends in electricity demand, assess the impact on ex-
isting infrastructure, and prepare for potential future shocks to further 
enhance its resilience. User Experience (UX) with real-time and histor-
ical data interaction is what sets UDTs apart from other visualisation 
platforms. Beyond visualisation, they offer the latest empirical data to 
support stakeholders in the decision-making process and generate what-
if scenarios for further analysis. The use case presented here provides 
scenarios that a user can explore and make decisions based on the dis-
played analysis results in the dashboard.

UDT use case classifications are siloed inside sectors. However, use 
cases found during the literature review demonstrated multi-scale and 
interdisciplinary approaches. Most UDTs are developed within organi-
sations and lack access towards further research and testing. Use cases 
are found to be often classified based on the technologies used, the level 
of detail of the model, their life cycle phases, and the sector to which 
they are confined. Use cases dedicated to GHG emission mitigation and 
related policy development or action are rare and need to be explored.

Operational GHG emissions of buildings are highly dependent on 
MEP equipment usage, especially in countries with tropical weather 
conditions such as Singapore. Life cycle assessment (LCA) of MEP equip-
ment is a dedicated method to calculate GHG emissions. Particularly, 
the use stage of the LCA method for MEP equipment gives an estimate 
of operational GHG emissions for buildings. A global initiative of the 
International Environmental Product Declarations (EPD) offers trans-
parent, precise, and comparable information about the environmental 
effects of goods and services throughout their entire life cycles. EPDs 
show how committed a manufacturer is to determining, reducing, and 
disclosing the environmental impact of its products and services. How-
ever, EPDs are not easily available for MEP equipment (for instance, 
split-type air conditioners). In the case of non-availability of EPDs, 
CIBSE TM65: [2021] provides two (“basic-level” and “mid-level”) cal-
culation methods for LCA of MEP equipment used in buildings. We use 
the “basic-level” calculation methodology for estimating the operational 
GHG emissions from the use stage (B1 to B7), as EPD is not accessible 
or not available for the majority of the MEP equipment used in historic 
buildings. Assuming more information on MEP equipment is publicly 
available in the future, the calculations will be updated from “basic” to 
“mid-level” or EPD.

Developing UDTs requires authoritative 3D datasets, which are not 
easily accessible in many countries, including Singapore. Although 
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bottom-up approaches can help, raw open data collected from non-
regulated sources requires further processing and validation. However, 
such data can still be useful for testing, research, and demonstration. 
By collecting and processing data from open-to-public sources, an inte-
grated city energy dataset can be created to build UDTs.

Two pilot case studies [59,60] have shown that UDTs can be created 
without an authoritative 3D dataset to start with. Furthermore, the liter-
ature review [58] revealed that synthetic and simulated data can replace 
authoritative 3D datasets. However, synthetic and simulated data are 
mainly used in scenario modelling, participatory planning, and policy 
development use cases. On the other hand, use cases such as operational 
optimisation, emergency planning, and district-/city-level forecasting 
rely on actual historical measured data. Evaluating the reliability of syn-
thetic or simulated data used is a challenging task and will be addressed 
in future research.

A typical approach used in developing organisational UDTs is the 
top-down approach, which starts with accessible, measured, and highly 
reliable data. However, there is a need for workflows that demonstrate 
a low-cost, sophisticated infrastructure and architecture built using an 
open data-based bottom-up approach. These approaches should repli-
cate the traditional cyber-physical system layers in their architecture 
while offering a clear distribution of components across the physical, 
digital, and cognitive layers. Our proposed conceptual architecture rep-
resents each component in the layers defined by traditional CPS ideas.

There are only a limited number of examples of how UDTs can be 
used for smart city energy management purposes. Therefore, there is a 
need for more demonstrations to be built in this area. On-demand ex-
traction of 3D city features in a web browser, using the 3D Tiles format 
and Cesium Ion, significantly enhances the performance of applications 
compared to explicit data formats, which can cause slow load times. By 
creating a robust user-experience dashboard that includes input scenar-
ios and visualisation tools to analyse energy-use data based on historical 
behavioural patterns, there is great potential for decision-makers to use 
UDTs to support decarbonisation initiatives in cities.

Our study documents MCDA methods used in decision-making re-
lated to building renovation in the literature and contributes a novel 
UDT approach combined with a hybrid MCDA method for renovation 
strategies to the discussion. Our study illustrates the benefit of UDTs as 
a decision-making tool to guide building renovation strategies aligned 
with ongoing efforts within IEA EBC Annex 89 [108].

5. Conclusion

The GHG App and PFI analysis can assist decision-makers in priori-
tising and planning the renovation of low-carbon building systems. The 

purpose of this research is to increase stakeholder awareness by provid-
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Fig. 7. PFI results for three sample weightage cases for each of the selected parameters: (a) P1 - Building Age in years, (b) P2 - GHG emission intensity in kg 
CO2/m2.yr, (c) P3 - Lift replacement cycle in years, (d) P4 - Lighting replacement cycle in years, and (e) P5 - Building painting cycle in years. The PFI values for 
buildings are indicated in a colour gradient—dark green (very low PFI value) to purple (very high) for each case. The quantiles—Q1 (20%), Q2 (40%), Q3 (60%), 
and Q4 (80%)—are indicated by the dotted red line based on the PFI value distribution in every case.
ing: (i) a theoretical investigation (methodology for estimating building 
operational GHG emissions, scenario simulation, and PFI analysis) and 
(ii) a practical tool (open access use case demonstration) so that more 
environmental considerations can be taken into account when building 
rejuvenation is done. The built environment sector does not currently 
have a cap on the amount of greenhouse gases it emits in many parts 
of the world. Our research can help establish standards for accounting 
for operational GHG emissions, setting emission limits, and assessing 
decarbonisation plans in the built environment sector.
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Fig. 8. Dashboard Scene 2 of GHG App showing PFI results in a heat map for sample case 1. The purple colour indicates buildings with very high PFI values and 
ranks, while dark green indicates very low-ranked buildings. Sliders at the bottom-left of the dashboard help users set each parameter weight, based on which PFI 
maps are automatically generated.
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