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Abstract

Active movement-assistive devices aim to increase the quality of life for patients with neuromusculoskeletal
disorders. This technology requires interaction between the user and the device through a control interface that
detects the user’s movement intention. Researchers have explored a wide variety of invasive and non-invasive
control interfaces. To summarize the wide spectrum of strategies, this paper presents a comprehensive review
focused on non-invasive control interfaces used to operate active movement-assistive devices. A novel systematic
classification method is proposed to categorize the control interfaces based on: (I) the source of the physiological
signal, (II) the physiological phenomena responsible for generating the signal, and (III) the sensors used to
measure the physiological signal. The proposed classification method can successfully categorize all the existing
control interfaces providing a comprehensive overview of the state of the art. Each sensing modality is briefly
described in the body of the paper following the same structure used in the classification method. Furthermore,
we discuss several design considerations, challenges, and future directions of non-invasive control interfaces for
active movement-assistive devices.

Keywords: Non-invasive control interface, Active movement-assistive devices, Motion intention detection,
Biomechatronics, Human movement control system
Introduction
The ability to move in a controlled and stable manner is
an essential trait for the human body. The Human
Movement Control System (HMCS) can be modeled as
in Figure 1A. The HMCS consists of a mechanical struc-
ture, the plant, which represents the skeleton and pas-
sive tissues, the actuators, which represent the muscles,
and a controller, which represents the central nervous
system and receives sensory feedback from the physio-
logical sensors [1,2]. Movement impairments, due to
disease or trauma, can occur at various levels of the
HMCS, affecting one or several components of the
system: blindness affects the “sensors,” while muscular
dystrophy affects the “actuators.”
Advances in neuroscience, engineering, and computer

science have led to an acceleration in the development of
biomechatronic systems, capable of actively assisting the
impaired motor functions of patients affected by
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neuromusculoskeletal disorders [2,4,5]. Assistive devices
have been classified by the International Organization for
Standardization (ISO) in the standard ISO 9999:2011 ac-
cording to their main function. Artificial Movement Con-
trol Systems (AMCSs) function in parallel to the impaired
HMCS and can be modeled with the same components as
the HMCS: a plant representing the mechanical structure
and passive elements, such as springs or dampers, and an
artificial controller that receives the data measured from
the sensors and generates control signals to operate the
actuators (Figure 1B).
Three kinds of interactions between the HMCS and the

AMCS can be distinguished [2]: (I) detection of the move-
ment intention of the user; (II) provision of feedback to
the user regarding the state of the AMCS, the HMCS or
the environment; and (III) exchange of mechanical power
between both plants. Note that providing feedback to the
user is especially relevant when the human sensory system
is disturbed.
Several physiological phenomena occur in every sub-

system of the HMCS. Some of these phenomena can be
measured and associated to the motion intention of the
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Figure 1 Schematic block diagram of the Human Movement Control System (A) in parallel with the Artificial Movement Control
System (B). Three kinds of interactions between the HMCS and AMCS can be distinguished: (I) detection of the motion intention of the user;
(II) provision of feedback to the user regarding the state of the AMCS, the HMCS or the environment; and (III) exchange of mechanical power
between plants. Both the human and the artificial systems are depicted as dynamic systems in which both the human muscles and artificial
actuators generate forces to transfer power and hence move the combined plant composed of the mechanical structure of the assistive device,
the human musculoskeletal system and the environment (depicted as “external load”). Note that the interaction between the actuators and the plant
is pictured with a bond graph that represents the energy exchange between them (i.e., movement and force in this particular case). The power
1-junction states a common velocity of all components. The reader is referred to [3] for further information on bond graphs. Modified from [1].
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user and therefore can be exploited for the effective con-
trol of an AMCS. Neural signals from the central nervous
system, neural activation of the muscles, muscle contrac-
tion forces and small movements and forces of the human
plant are some examples of signals that are implicitly
related to the motion intention. Motion intention can also
be derived from explicit commands of the user, for
example by pressing command switches, through speech,
or through head, tongue or eye movements. Explicit com-
mands are generated by Parallel Systems, which are de-
fined as systems that function in parallel to the supported
system (see Figure 1A).
Researchers have explored a wide variety of invasive

and non-invasive methods to derive the user’s movement
intention. However, a comprehensive overview of these
methods is not available, which hampers efficient and
well-founded selection of a suitable control interface for
a given application. To illustrate the wide spectrum of
strategies, this paper presents a comprehensive review of
non-invasive sensing modalities for motion intention de-
tection in active movement-assistive devices. The strat-
egies are classified in a systematic way that provides a
clear overview of the state of the art and a framework in
which new sensing modalities can be included. This re-
view is limited to non-invasive interfaces (specifically
meaning that the sensors are not implanted in the
human body) as these are easier to use with a wide var-
iety of patients [6-8].
The paper is structured as follows. Review section intro-

duces the classification method used to categorize the con-
trol interfaces, briefly describes each of the interfaces and
discusses several design considerations. Finally, Conclusions
section presents our conclusions and future directions.
Review
Classification method
The inventory of control interfaces for motion intention
detection resulting from the literature search was strati-
fied through a four-level classification (see Table 1 and
Figure 2). The first level was defined according to the
subsystems of the HMCS (controller, actuators, plant
and parallel systems), and the second level was defined
according to the physiological phenomena that occur in
every subsystem. The set of signals that can be measured
for every physiological phenomenon defines the third
level of classification, and the sensors used to measure
these signals define the fourth level. For each sensor/
signal, its transduction principle, interface with the body,
area of application, and key references were indicated.
Note that the inventory of control interfaces using Paral-
lel Systems is illustrative and not complete and has been



Table 1 Stratified inventory of non-invasive control interfaces used for motion intention detection in active movement-assistive devices

Human
system

Physiological phenomena Signal Sensor Transduction
principle

Interface with body Application Key
reference

Controller Brain activity

Electric current
EEG Electrode - Skin contact C/P/O/E [9-14]

MEG MEG machine Induction No contact C/O [15,16]

Hemodynamics

fMRI MRI machine Induction No contact C/E [17,18]

NIRS Spectrometer Photoelectric Near-infrared
illumination of

the brain

C/E [19,20]

Actuators

Muscle
activation

Electric current EMG Electrode -
Skin contact O/P/E [21-24]

Targeted muscle reinnervation* P [25-27]

Muscle
contraction

Vibration MMG
Microphone Induction

Piezoelectric
Skin contact P [28-31]

Accelerometer Piezoelectric Skin contact P [30-32]

Dimensional change

MK

Hall-effect sensor Induction Magnet on the skin P [33,34]

Pneumatic sensor Resistive Capacitive Skin contact P [35,36]

Encoder Photoelectric Skin contact O [37]

SMG Ultrasound scanner Piezoelectric Skin contact P [38-40]

Electric impedance Electrode - Electric current to skin P [41]

Radial force and
stiffness

MT/MK
Force-sensitive resistor Resistive Skin contact O/P [42-44]

Piezoelectric transducer Piezoelectric Skin contact O/P [45]

Force Deformation Strain gauges Resistive Tunnel muscle cineplasty* P [46]

Hemodynamics NIRS Spectrometer Photoelectric Near-infrared illumination of the muscle P [47-50]

Plant

Movement

Body segment
movement

Body segment
movement

IMU Piezoelectric Skin contact P/O [51,52]

Camera Photoelectric No contact E [53]

Relative joint
movement

Joint rotations Goniometer

Potentiometer Resistive Skin contact P/O [54-57]

Bending sensor Resistive Skin contact P/O [58]

Encoder Photoelectric Skin contact/No contact P/O [59]

Force/Pressure Deformation
Force/Torque sensor

(strain gauges)
Resistive No contact P/O/E [60-62]

Pressure sensor
(force-sensitive resistor)

Resistive Skin contact P/O/E [56,63-66]
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Table 1 Stratified inventory of non-invasive control interfaces used for motion intention detection in active movement-assistive devices (Continued)

Parallel
systems

Eye movement
Corneal reflection Video camera Photoelectric Near-infrared illumination of the cornea P/E [67]

EOG Electrode - Skin contact P/E [68,69]

Head movement Inclination

Accelerometer Piezoelectric Skin contact E [70-72]

Video camera Photoelectric No contact E [73]

Ultrasonic sensor Piezoelectric Skin contact E [74]

Tongue movement Contact with palate/
Movement

Induction coil Induction Ferromagnetic material at
the tip of the tongue

E/C [75-77]

Speech Sound Microphone Induction
Piezoelectric

No contact P/E [78-80]

Hand movement Angle Joystick (potentiometers) Resistive Skin contact O/E [81-83]

C: communication; P: prosthesis; O: orthosis; E: external devices; (*) indicates one-time invasive method.
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Figure 2 Classification Method. Example of the classification method illustrated with a schematic block diagram. See Table 1 for a full overview.
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added as an additional subsystem of the HMCS in the
first level of the classification.

Interfacing with the controller: brain computer interfaces
Current noninvasive brain-computer interfaces (BCIs)
derive the user’s movement intention from electrical and
hemodynamic signals from the brain.

Electrical brain activity
Electroencephalography (EEG) and magnetoencephalog-
raphy (MEG) are well-established non-invasive methods
that measure the average dendritic currents of a large
proportion of cells from the scalp [84]. Several brain sig-
nals have been used for BCIs, including slow cortical po-
tentials, low-frequency changes in filed potentials (such
as P300) and α and β rhythms. Furthermore, BCIs can
exploit signals related to external sensory stimulation
such as auditory or visual stimuli (i.e., evoked poten-
tials), or voluntary mental activity, such as imagining a
movement. Even though MEG provides a higher signal
quality than EEG and does not require the attachment
of scalp electrodes, the latter is portable (i.e. does not re-
quire a shielded room) and less expensive. Consequently,
EEG-based BCIs are currently commercially available
(e.g., by intendiX®, g.tec medical engineering GmbH,
Schiedlberg, Austria) for personal use to operate spelling
and domestic devices.
While most current research on EEG- and MEG-based

BCIs focus on providing basic communication control to
people suffering from severe motor impairments [9,15],
researchers have also been exploring their capabilities for
providing control of orthotic [12,13,16,85-87] (see Figure 3
and Additional file 1), prosthetic [10], and external
movement-assistive devices [8,11,88]. The main drawbacks
of current EEG-based BCIs include the long training
periods to learn to modulate specific brain potentials, the
need to attach multiple electrodes to the scalp –both a time
and cosmetic issue– the low information-transmission rate
due to the filtering properties of the skull, low spatial reso-
lution and high variability of the brain signals due to
changes in background activity (e.g., motor, sensory, and
cognitive activity) and learning processes [89,90]. All these
factors limit the applicability of BCIs as control interfaces
of active movement-assistive devices. Today, BCI research
is focused on the development of practical systems and
their evaluation outside of the laboratory environment by
end-users [14,91,92].

Brain hemodynamics
Beyond electric activity, hemodynamic signals from the
brain are also used in BCIs. These signals are measured
with functional magnetic resonance imaging (fMRI) or
near infrared spectroscopy (NIRS). Both methods rely
on the measurement of the task-induced blood oxygen
level-dependent (BOLD) response, which was proven to
be strongly correlated to the electrical brain activity [93].
Most studies using fMRI- and NIRS-based BCIs focused
on their application to neurofeedback [94-96], and only
a few studies have aimed to develop interfaces for com-
munication [17,97,98], cursor control [99], environmen-
tal control [19,100], and external robotic arm control
[18,20]. As for EEG, NIRS is also portable and both less
expensive and less cumbersome than fMRI. Further-
more, in contrast to fMRI, when using NIRS, subjects
can be examined in a sitting or standing position with-
out movement constraints. However, the depth of brain
tissue that can be measured using NIRS is 10 to 30 mm,
which limits the measurements to cortical regions [93].
While these functional imaging methods are promising for
non-invasive recording of activity across the entire brain
(or cortical regions in the case of NIRS) at high spatial re-
solution [93], they suffer from a very poor information
transfer rate [101,102] that limits their functionality. NIRS-
based BCIs are still in the early phases of research and
development, and therefore their future potential value as
control interfaces remains uncertain [103].

Interfacing with the actuators: muscle activation interfaces
The recording of the electrical signals from muscle
activation is known as electromyography (EMG). From a



Figure 3 EEG-based interface. An EEG-based BCI used for the control
of the Mindwalker lower-extremity exoskeleton [12,87]. In this setup
the BCI is controlled using Steady State Visually Evoked Potentials
(SSVEP). The glasses that the user is wearing stimulate the retina with
several flashing lights at different frequencies, and depending on which
flashing light the users looks at, the brain will generate electrical activity
at the same (or a multiple) frequency as the visual stimulus. With this
method, different control states are assigned to the electrical brain
signals with specific frequencies. Additional file 1 shows this EEG-based
BCI controlling the Mindwalker lower-extremity exoskeleton. Figure
courtesy of Mindwalker project.

Lobo-Prat et al. Journal of NeuroEngineering and Rehabilitation 2014, 11:168 Page 6 of 22
http://www.jneuroengrehab.com/content/11/1/168
biomechatronic perspective, the muscle can be con-
ceived as a biological signal amplifier of the low-ampli-
tude electric potential from the motor neurons. The
large majority of active prostheses that exist today, in-
cluding commercially available devices, are controlled
using surface EMG signals [89,104].
Commercially available myoelectric upper-extremity

prostheses are generally operated using proportional or
on/off controls by measuring EMG from two independent
residual muscles, or by distinguishing different activation
levels of one residual muscle. Switching techniques such
as muscle co-contraction or the use of mechanical
switches or force-sensitive resistors are commonly imple-
mented for enabling the sequential operation of several
degrees of freedom (DOF) [89,104,105]. Lower-extremity
prostheses and upper- and lower-extremity orthoses are
commonly controlled estimating the joint angles or tor-
ques from EMG signals of muscles that mainly contribute
to the supported motion [21,22,106,107].
EMG-based control interfaces are widely used because

of its easy access and generation, and its direct correlation
to the movement intention. An EMG-based interface
presents several drawbacks: It requires significant signal
processing before it can be used as control signal due to
its broad bandwidth and low amplitude; many patients
have difficulties generating isolated and repeatable con-
tractions [89]; and finally, the filtering properties of the
limb tissue and the movement of the skin beneath the
electrode notably affect long-term recordings [108]. All
these factors make the control challenging for the user. To
overcome these limitations, researchers are developing
muscle synergy-based algorithms, motor neuron spike train
decomposition algorithms, and new surgical procedures.
The increasing number of DOF in active prosthetic

and orthotic devices to achieve higher functionality has
been pushing the scientific community to develop EMG-
based control interfaces capable of controlling multiple
DOF in an intuitive and natural way. The identification
of interactions between multiple muscles, commonly
known as muscle synergies, using pattern recognition or
regression algorithms is showing promising results to-
ward achieving natural multifunctional control of pros-
thetic and orthotic devices [109].
EMG pattern-recognition algorithms are based on the

assumption that humans can generate different yet
repeatable muscle-activation patterns that are associated
to specific movements, such as different grasping con-
figurations. During the training of the algorithm, each
programmed movement is linked to a stable muscle-
activation pattern that is described by a set of features.
These features should be repeatable across trials of the
same movement and discriminative between different
movements [110]. Once the training is completed, the
algorithm extracts features from windowed raw EMG
data and classifies them into the programmed move-
ments. Many different variations of each of these steps
have been investigated [111] trying to find a suitable tra-
deoff between speed and performance [112]. Pattern-
recognition algorithms recently became commercially
available (Coapt LLC., Chicago, USA). This technique
has the potential to eliminate the need for isolated
muscle activation and allow for the control of multiple
degrees of freedom [89]. However, an important limita-
tion of pattern-recognition algorithms is that they are
only capable of classifying movements in sequence and
not simultaneously and lack proportional controllability,
which limits user acceptance [110].
EMG regression algorithms, which are based on non-

negative matrix factorization, artificial neural networks,
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or linear regressions, present a functional improvement
since they allow for simultaneous and proportional con-
trol of multifunctional prostheses [105]. Regression algo-
rithms require a training data set for which a continuous
relationship between EMG signals and plant kinematics
or dynamics is known. Several studies have reported
proportional and simultaneous control of two or more
DOF in upper-extremity prosthetic [23,113,114] and
orthotic [24,115] devices. An additional movie file shows
an amputee operating an upper-extremity prosthesis
using both simultaneous and sequential EMG-based
control during functional tasks (see Additional file 2).
Targeted muscle reinnervation (TMR) is a surgical pro-

cedure developed by Kuiken et al. [25] that consists of
rerouting the nerves that originally innervated the am-
putated limb to residual chest or upper-arm muscles
(Figure 4). TMR is a one-time invasive method that allows
a more intuitive control of a larger number of DOF [116]
than standard EMG methods, since the prosthesis is con-
trolled by EMG signals from the residual muscles that are
Figure 4 EMG-based interface. An amputated patient using a Targeted M
active prosthetic arm [116]. With the TMR EMG-based interface, the patient
humeral rotation, elbow flexion, wrist rotation, wrist flexion, and hand open
prosthesis (right arm) controlled with TMR EMG-based interface was evalua
with 3 DOF (body-powered elbow and wrist rotation, and active terminal d
blocks, and D) clothespin relocation task. The participant could control up
of the timed tasks faster using the TMR EMG-based interface. Figure reused
activated by the nerves that previously controlled the am-
putated limb. Moreover, there is evidence that cutaneous
sensory feedback of the amputated hand can be regained
by reinnervating skin near or overlying the target muscles
with residual afferent nerve fibers of the amputated hand
[117]. TMR appears to be more suitable for high-level am-
putations [118] and current implementations still experi-
ence some difficulties separating the EMG signals from
the different chest muscles. Recent studies aim at com-
bining TMR with muscle synergies-based algorithms
[26,119], developing new targeted sensory reinnervation
techniques [120], applying TMR for the control of lower-
extremity prostheses [27,121,122], and implementing
intramuscular EMG electrodes [123].
Finally, a recent approach that may lead to a new

EMG-based control strategy is the use of high-density
electrode grids that can extract spike trains of motor
neurons and provide information on muscle-discharge
patterns. The decomposition of EMG signals into spike
trains of motor neurons can be used for proportional
uscle Reinnervation (TMR) EMG-based interface for the control of an
could control a 6 DOF prosthesis consisting of shoulder flexion,
ing/closing control. The movement performance of this 6 DOF
ted and compared to the commercially available prosthesis (left arm)
evice) during several timed tasks: A) cubbies, B) cups, C) Box and
to 4 DOF simultaneously, reach a larger workspace and perform some
with permission from Elsevier.
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control of assistive devices and has shown a higher
accuracy when estimating muscle force compared to
conventional surface EMG recordings [110].

Interfacing with the actuators: muscle-contraction interfaces
Several signals derived from the muscle-contraction phe-
nomena have been used to detect motion intention: muscle
vibration, dimensional change, radial muscle force and stiff-
ness, longitudinal muscle force and muscle hemodynamics.
The main advantage of muscle contraction-interfaces
(MCIs) is that they are free from electromagnetic noise and
may have a lower cost compared to EMG based interfaces.
MCIs have only been used for the control of prosthetic
devices.

Muscle vibration
The mechanical vibration that is generated when the mus-
cles contract can be measured with microphones [28,29],
accelerometers [32], or a combination of both [30,31].
This method is known as phonomyography (PMG), acous-
tic myography (AMG), or mechanomyography (MMG).
Orizio et al. reported a linear relationship between the

root-mean-square (RMS) values of MMG signals re-
corded from the biceps brachii and the force of the
contraction between 20 to 80 percent of the maximum
voluntary contraction [124], which makes MMG poten-
tially suitable for prostheses control. MMG offers several
advantages over conventional EMG, including robust-
ness to changes on skin impedance, less specific sensor
placement, and reduced sensor cost [28,30]. However,
microphones and especially accelerometers are highly
prone to limb-movement artifacts that compromises
signal detection and classification [29]. To overcome this
major problem, Silva and Chau [31] developed a coupled
microphone-accelerometer sensor (embedded in sili-
cone) that fuses data from both transducers to reduce
dynamic noise. In their design, the accelerometer is used
as a dynamic reference sensor to determine the source
of the measured vibration (muscle contraction or limb
movement). Recently, Posatskiy and Chau [125] devel-
oped a novel microphone with cylindrical and conical
acoustic chambers that improves the robustness to limb-
movement artifacts.

Muscle dimensional change
When the muscle contracts, dimensional changes also
occur: the muscle shortens and consequently its cross-
section area increases. The measurable signals resulting
from this phenomenon are known as myokinemetric
(MK) signals. MK signals have been measured with Hall-
effect sensors, tendon-activated pneumatic (TAP) foam
sensors, angular encoders, ultrasound scanners, and with
electrodes that detect changes in electrical impedance.
Evidence from [33,34] suggests that MK signals are
inherently low in noise and that their magnitude can be
directly used for control, avoiding any kind of signal
processing. The study by Kenny et al. [33] developed a
sensor that measured radial displacements of the muscle
bulge with a Hall-effect transducer. They found that the
MK signals of six upper-limb amputees could be gener-
ated with sufficient accuracy to perform a one-dimension
tracking task with a low tracking error, and therefore had
potential for the control of active upper-limb prostheses.
However, it was also found that the MK signals were
susceptible to socket slippage with time, as well as socket
re-donning. The study by Heath [34] improved the sensor
interface and proved the feasibility of using MK signals for
proportional position control of prosthetic fingers.
The TAP sensors developed by Abboudi et al. [35]

measured pressure differences at the skin surface gener-
ated by tendon displacements when finger flexor or
extensor muscles contracted. TAP sensors presented a
linear relation to finger force. Trials on three upper-limb
amputees showed that the TAP sensors could provide ef-
fective control of individual finger movement and grasp-
ing. Since the performance of the TAP control interface
is highly dependent upon accurate sensor placement and
specific movement resolution at each sensor location,
Curcie et al. [36] developed a pressure vector decoder
able to discriminate specific finger flexion commands
in real-time. This decoder decreased the dependence
on sensor location, offering a more robust and reliable
control of the TAP-based interface.
The study by Kim et al. [37] presents the development

of a sensor that can measure muscle circumference
changes using an angular encoder that was attached to
an elastic arm band with a wire. The authors developed
a calibration procedure and a biomechanical model to
estimate the elbow torques from the measurements of
the muscle circumference.
Recent studies propose the use of ultrasound scanners

[38-40,126] to measure changes in muscle thickness for
the control of prosthetic devices. This method is known as
sonomyography (SMG). SMG presents a linear relation-
ship between ultrasound image features of the human
forearm and the hand and wrist kinematic configurations
[38,127], suggesting that simple proportional control could
be implemented for the operation of active movement-
assistive devices. A recent study by González and Castellini
[40] shows that a linear relationship also exists between
specific image features and fingertip forces. Furthermore
the study by Shi et al. [126] shows that SMG can be imple-
mented in real-time using a two-dimensional logarithmic
search algorithm. While it has been demonstrated that
SMG could be potentially used for the control of active
prosthetic devices, the current system used for the SMG
measurements (i.e., standard ultrasound scanner) is not
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suitable for practical implementation because it is expen-
sive and cumbersome [39].
Another signal derived from dimensional changes of

the muscle was examined in the early 1970s by Kadefors
and Olsson [41]. The study investigated electrical imped-
ance as a measure of motion intent for the control of a
robotic hand. The electrical impedance measured on the
skin above a muscle varied when the dimensions of the
muscle changed due to its contraction (among other fac-
tors). A recent study by Silva et al. [128] shows evidence
that relates muscle activity and tissue resistivity changes
and suggests that this information could be used for the
control of assistive devices.

Radial muscle force and muscle stiffness
The stiffness of muscle tissue increases when it contracts.
The measured force signals resulting from this pheno-
menon are known as myotonic (MT) [34] or myokinetic
(MKT) [42] signals. These signals have been measured
using arrays of force-sensitive resistors (FSRs) [42] or strain
gauges [43,129]. A recent study by Castellini and Koiva [44]
used a tactile sensor placed between the arm and the table
to measure changes in pressure distribution at the ventral
side of the forearm while performing a variable force task
with the fingertip. The authors report that the fingertip
forces could be estimated with a high degree of accuracy
from the pressure distribution measured at the forearm.
Recently, a study by Han et al. [45] presented a novel

muscle stiffness sensor that could be worn over clothing,
based on the measurement of the muscle resonance fre-
quency. This sensor measured muscle stiffness by generat-
ing and sensing resonance vibrations using a piezoelectric
transducer: As the muscle became stiffer, the resonance
frequency became higher.
Muscle-stiffness-based interfaces are still in the early

phases of research and development, and therefore their
potential value as control interfaces for active movement-
assistive devices remains unclear. None of the afore-
mentioned studies reported results from experiments
implementing this sensing modality in an assistive device
and testing it with people with movement impairments.

Muscle force
Direct muscle force control by muscle tunnel cineplasty
(MTC; Figure 5) was first performed in the early 1900s,
becoming popular after World War II [46,130]. The major
advantage of this one-time invasive method is that is cap-
able of providing tactile and proprioceptive feedback from
the terminal device back to the user complying with the
concept of extended physiological proprioception (EPP)
[46,131]. However, such procedures lost favor in the 1970s
due to the advent of clinically available myoelectric pros-
theses, which do not require any surgery. Moreover, MTC
presented the disadvantage that patients sometimes lacked
sufficient muscle force to power their prosthesis [130].
While traditionally MTCs provided both the control and

the actuation of the prosthetic prehensor [132], Weir et al.
[46] proposed a hybrid method where the MTC provided
the control signal for the prosthetic prehensor, but the
grasping force was supplied by an external power source.
The authors of the study suggested that the implementa-
tion of multiple miniature forearm MTCs could be poten-
tially used as control signals for independent multi-finger
control. However, to the best of our knowledge, no further
advancements on this method have been made up to date.

Muscle hemodynamics
NIRS has also been used to measure optical changes due to
muscle contraction for the operation of active prostheses.
Several physiological phenomena have been reported as
responsible for the muscle optical changes, including blood
perfusion [47,133], muscle shortening [48], and muscle
fiber direction [49]. Numerous studies show that NIRS
signals are qualitatively similar to EMG signals in both
magnitude and duration for different levels of contraction
[47,48,50], with the particular difference that isometric and
isotonic contractions can be distinguished from NIRS sig-
nals [49]. Furthermore, Herrmann et al. [133] proposed to
combine EMG and NIRS signals to improve the pattern
classification algorithm for the control of a prosthetic hand.

Interfacing with the plant: movement interfaces
The human body moves as a result of the interaction be-
tween the forces generated by the muscles and the config-
uration of the skeletal system. Measurements of relative
joint rotations and motion of body segments with respect
to a fixed reference have been used to detect motion
intention.

Body segment movement
Body segment motion has been measured with inertial
measurement units (IMUs) and camera-based systems.
In a study by Thomas and Simon [51] and in one by
Moreno et al. [52] IMUs were used to control an active
knee joint during walking. The study by Jiang et al. [53]
presented a hand-gesture recognition interface system
based on two Microsoft Kinect cameras (Microsoft;
Redmond, Washington) for the control of external ro-
botic arms. The interface was specifically developed for
individuals with upper-level spinal cord injuries (SCIs)
to perform a variety of simple object-retrieval tasks. One
camera was used to interpret the hand gestures and lo-
cate the operator’s face for object positioning. The other
camera was used to automatically recognize different
daily living objects for test subjects to select. A similar
interface was developed by Martin et al. [134] and used
several infrared sensors to measure hand movements to



Figure 5 Muscle-force-based interface. The prosthesis is controlled by pulling on cables that mechanically link the tendons attached to the
tunnel muscle cineplasty to a force transducer mounted to the thumb of the prosthetic hand. An artificial controller measures the tendon force
produced by the muscle to operate the opening and closing of the hand. A) schematic representation of the prosthesis and the control
interface, B) an early version of the prototype without a cosmetic hand glove, C) the final prototype of the prosthesis with a cosmetic hand
glove. Figure modified from [46].

Lobo-Prat et al. Journal of NeuroEngineering and Rehabilitation 2014, 11:168 Page 10 of 22
http://www.jneuroengrehab.com/content/11/1/168
control an active arm support for patients suffering from
muscular weakness.

Relative joint movement
Angular displacement between two adjacent body seg-
ments has been measured using electrogoniometers, that
are attached to two adjacent body segments and produce
an electrical signal proportional to the angle. Several
kinds of electrogoniometers have been used to measure
angular displacements. Early goniometers used simple
angular potentiometers. Doubler and Childress [54] and
Gibbons et al. [55] used these sensors to investigate the
EPP concept in the control of active upper-extremity pros-
theses. Recent studies also investigated the performance
of controlling prosthetic arms with the residual shoulder
motion measured with a two-DOF joystick [56,57] (see
Figure 6 and Additional file 3). Although potentiometers
can measure rotations about only one axis and the ac-
curacy of the measurements depends on their alignment
with the human joint, these sensors are still a common
component in active movement-assistive devices [135,136].
Another common solution for measuring angular displace-
ment to control active prosthetic and orthotic devices is
the use of angular encoders [59] or bending sensors
[58,137]. The control strategy developed by Wang et al.
[138] estimates the location of the body center of mass in
the sagittal and frontal plane using IMUs and angular en-
coders to measure the weight shift and trigger the stepping
movement of a lower-extremity exoskeleton.

Interfacing with the plant: force interfaces
The human plant can exert forces to the environment
that can provide information about the motion intention
of the user. Force-based interfaces have been imple-
mented using force-torque sensors [60-62] or simple
FSRs for the control of active upper-extremity orthoses
[63-66] and prostheses [56]. These kind of interfaces
generally implement control strategies where the output



Figure 6 Joint-rotation-based interface. 2 DOF joystick used for the control of a prosthetic arm (shoulder flexion-extension, shoulder internal-
external rotation) with the residual shoulder motion. A) Diagram of the control interface used to measure the residual shoulder motion,
B) close-up of the prototype, C) shoulder elevation produces shoulder flexion, D) shoulder depression produces shoulder extension, E) shoulder
protraction produces internal shoulder rotation, F) shoulder retraction produces external shoulder rotation. Additional file 3 shows an amputee
using this shoulder-joystick-based interface to control the shoulder motions of an active prosthesis. Figure modified from [56].
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motion is related to the input force [139]. An advantage
of force-based interfaces is that force sensors can be em-
bedded in the mechanical structure of the assistive de-
vice, avoiding any preparation for the placement of the
sensors on the user. Recently, Ragonesi et al. [140] re-
ported measurements of gravitational and joint stiffness
torques in patients with muscle weakness with the end
goal of obtaining a robust model that could be used for
the control of an active arm support. The authors found
that voluntary forces of individuals with muscular weak-
ness were very hard to measure since gravitational forces
were much larger. Subject-specific models were sug-
gested as a strategy to optimize the identification of vol-
untary forces. The study by Lobo-Prat et al. [62]
demonstrated that an adult man with Duchenne muscu-
lar dystrophy with no arm function left, could success-
fully control an active elbow orthosis using the low-
amplitude force (and EMG) signals that still remained
measurable (Figure 7). In the aforementioned study, the
gravitational and joint stiffness forces were measured
during a calibration procedure in which the orthosis to-
gether with the relaxed forearm of the participant slowly
moved across its range of motion. The gravitational and
joint stiffness forces measured during this calibration
procedure were subtracted from the actual measured
force to compensate them. Additional movie files show
an adult man with Duchenne muscular dystrophy with
no arm function left performing the calibration



Figure 7 Force-based interface. An adult man with Duchenne muscular dystrophy with no arm function left using a force-based interface to
operate an active elbow orthosis [62]. The force sensor measures the interaction force between the orthosis and the user, which is used as a
control input for an admittance controller. A critical aspect for the usability of this interface is the accurate identification of the gravitational and
joint stiffness forces (which are pose-dependent) required to distinguish the low-amplitude voluntary forces of the user. Additional file 4 shows
the force calibration procedure used to identify the gravitational and joint stiffness forces. Additional file 5 shows a man with Duchenne muscular
dystrophy performing a discrete tracking task using the force-based interface to control the active elbow orthosis. Figure courtesy of Flextension project.

Lobo-Prat et al. Journal of NeuroEngineering and Rehabilitation 2014, 11:168 Page 12 of 22
http://www.jneuroengrehab.com/content/11/1/168
procedure used to measure the gravitational and joint
stiffness forces (see Additional file 4), and using the
force-based control interface to perform a discrete
position-tracking task (see Additional file 5).
In patients with severe movement and force limita-

tions, it is very challenging to use movement- and force-
based interfaces. These type of control interfaces are
more often implemented in rehabilitation robots where
patients need training to regain mobility and strength
[107,141].

Interfacing with parallel systems
Apart from deriving the motion intention from signals that
originate from the supported systems, several methods
have been proposed that exploit signals from parallel
systems such as the eyes, the mouth or the head to derive
the movement intention of the user. This section reviews
six groups of common interfaces that derive the intent of
the user through signals generated by parallel systems.

Eye interfaces
Eye tracking systems are a common method for the
control of spelling devices or computer cursors in patients
with severe movement impairments. Several eye-trackers
have been developed, including camera-based methods,
which measure changes in corneal reflection while infra-
red light is projected to the eye [142], and electrical-based
methods that measure the electrooculographic (EOG) po-
tential from surface electrodes.
Duvinage et al. [68] proposed an innovative system

based on EOG and a programmable central pattern ge-
nerator to control a lower-limb prosthesis. The control
method was composed of two steps: First, an EOG-based
eye-tracking system generated high-level control com-
mands (such as faster, slower, or stop), according to
specific eye movement sequences executed by the user;
and second, a pattern generator, following the high-level
commands derived from the user’s eye motion, provided
the low-level commands for the control of the actuators.
In the study by Chen and Newman [69], EOG was used

to control two-dimensional movements of an external ro-
botic arm that resembled the human arm configuration.
Eye movement patterns such us saccades, fixation, or
blinks were detected from the raw eye gaze movement
data by a pattern-recognition algorithm and converted
into control signals according to predefined protocols.
The authors suggested that one option to extend the
movement control to three-dimensional space was to
switch between predefined action planes in which the
EOG control would still be two-dimensional.
While eye movement interfaces proved to be very

accurate in two-dimensional space, three-dimensional
gaze-tracking is more challenging [143]. The three-
dimensional gaze-tracking problem consists of mapping
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pupil coordinates for left and right eye to a three-
dimensional point referenced to the user’s head coordi-
nated. A recent study by Abbott and Faisal [67] presents
an ultra-low-cost binocular three-dimensional gaze track-
ing system, which the authors plan to use to control
wheelchair navigation or end point control of robotic
arms.

Tongue interfaces
Tongue movement has been interfaced using electrical
switches [144], Hall-effect sensors [145], pressure sen-
sors [146], and by measuring changes in the inductance
of an air-cored induction coil, by moving a ferromag-
netic material attached to the tongue into the core of
the coil [75,77,147].
The tongue-movement-based control interface devel-

oped by the research group of Prof. M. Ghovanloo at the
GT-Bionics Lab (Georgia Institute of Technology, USA) is
a wireless, unobtrusive, and wearable assistive technology
that enables SCI patients to control computers and
powered wheelchairs [75,76] (see Figure 8 and Additional
file 6). This system has an inductive coil mounted at the
lateral part of the mouth and a ferromagnetic material at-
tached at the tip of the tongue. The users generate control
commands by moving the tongue to one of the user-
defined locations, such as touching a particular tooth with
the tongue’s tip. This control interface was tested in 13
high-level SCI patients during a navigation task with a
powered wheelchair. The study reported that the subjects
were able to perform the experimental task with 82 per-
cent accuracy [148].
Figure 8 Tongue-movement-based interfaces. The tongue-movement-b
mounted at the lateral parts of the mouth and a ferromagnetic material attac
moving the tongue to one of the user-defined locations. Tongue movement
generally have tongue control and they can move it very rapidly and accurat
a driving task with a wheelchair that is controlled with this tongue-movemen
The tongue interface developed by Struijk et al. [77]
integrated the induction coils under the palate, where
18 sensors allowed real-time proportional control of
both speed and direction similar to a conventional joy-
stick. The system’s functionality was demonstrated in a
pilot experiment with one healthy subject, where a typ-
ing rate of up to 70 characters per minute was obtained
with an error rate of 3 percent. Recently, two alterna-
tive sensor designs based on the previously described
system have been proposed in order to reduce the size
of the sensor pad and increase the comfort of the oral
interface [149].

Head interfaces
Head movements are generally measured using ac-
celerometers and used to control powered-wheelchairs
[70-72,150,151]. The direction of the head inclination
controls the wheelchair’s direction and the velocity of
the wheelchair is proportional to the inclination angle.
Artificial neural networks are usually implemented in
the control interface to detect with higher accuracy
the movement intention of the user [70]. However, all
the research studies found were tested with healthy
subjects, which does not provide reliable evidence of its
actual usability in patients with severe movement
impairments.
Alternative sensors include ultrasonic sensors [74] and

camera-based interfaces [64,73]. An important disadvan-
tage of camera-based interfaces is that their functionality
largely depends on the light conditions that result in the
need of repetitive calibrations during the day [152].
ased interface developed by [76]. This system has two inductive coils
hed at the tip of the tongue. The users generate control commands by
interfaces take advantage of the fact that highly paralyzed patients
ely within the oral space. Additional file 6 shows a SCI patient performing
t-based interface. Figure courtesy of Dr. Maysam Ghovanloo.
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Speech interfaces
In speech-based interfaces, the voice commands of the
user are recorded using conventional microphones and
translated into control signals through speech-recognition
algorithms. Generally, speech-recognition requires train-
ing, which consists of the recording of the voice com-
mands and their subsequent manual classification.
Fan and Li [78] developed a speech-based interface for

the control of an upper-extremity prosthesis that could
recognize 15 different voice commands with an accuracy
of 96 percent. Speech has been also used to control
powered wheelchairs [79] or external robotic arms [80].
The main drawback of speech-based interfaces is their
high sensitivity to ambient noise, which compromises
signal detection and classification. The recognition ac-
curacy of the speech-based interface developed by Lv
et al. [153] for the control of a robot was decreased by
30 percent when ambient noise was present.

Hand interfaces
Hand joysticks are generally implemented for the control
of powered wheelchairs [82] and external robotic arms
[83,154]. The study by Johnson et al. [81] controlled the
end-point position of a five-DOF upper-extremity orthosis
with a joystick operated with the contralateral hand.

Other interfaces with parallel systems
Some of the control interfaces described previously in sec-
tions Interfacing with the Plant and Interfacing with the
Actuators have also been used to measure signals from
parallel systems. For instance, EMG signals measured
from muscles of the upper-extremity have been used
to control electrically powered wheelchairs [155-157].
Another example are the force-based interfaces used to
control power-assisted wheelchairs [158] in which the
wheelchair detects and amplifies the force applied by the
user’s arm on the wheel.

Hybrid control interfaces
Each of the methods described in this review present
unique capabilities and limitations. A recent approach to
take advantage of this functional heterogeneity is the de-
velopment of hybrid control interfaces, which fuse data
from several sensors. The concept behind hybrid control
interfaces is to exploit the advantages and diminish
the limitations of each individual system by combining
them. Hybrid approaches can improve accuracy, reliabil-
ity, and robustness compared to individual use of control
interfaces [159]. Moreover, hybrid control interfaces
have the potential advantage of adapting better to the
needs and capabilities of the user since they can rely on
several information sources. For instance, if the user gets
fatigued and EMG signals present poor quality, the hybrid
system could adapt and give priority to other information
sources. EEG-EMG-based control interfaces are an
example of a hybrid system that has been extensively used
to operate active prostheses, orthoses, and robotic wheel-
chairs [159]. In active lower-extremity prostheses, hybrid
interfaces combine EMG and mechanical inputs to iden-
tify the phase of the gait cycle and actions like sitting or
standing [160-162]. Other examples include the combin-
ation of EMG with foot switches [163], IMUs [164] and
video cameras [165].
Evaluation of control interfaces
While there is a large variety of control interfaces, a small
number of studies have focused on their formal perform-
ance evaluation and comparison [166-173]. The perform-
ance of control interfaces is rarely evaluated consistently,
which prevents an objective evaluation and comparison.
The information provided in most cases is insufficient to
determine the advantages and limitations of a given con-
trol interface compared to the current state of the art. A
significant step toward the standardization of outcome
measures has been made by the American Academy of
Orthotics & Prosthetics, which provides comprehensive
recommendations for the evaluation of upper-limb pros-
theses [174].
A better understanding of the limitations and capabil-

ities of the different control interfaces, through objective
and quantitative evaluations during functional tasks, can
provide relevant information for the selection of the
most suited control interface for a specific application.
One-dimensional screen-based position-tracking task
experiments [166,173] have been used to evaluated the
performance of EMG-, force-, joystick- and wrist angle-
based control interfaces in terms of tracking error, infor-
mation transmission rate, human-operator bandwidth or
crossover frequency, and effort. Guo et al. [167] com-
pared SMG-, EMG-, force- and wrist angle-based inter-
faces during a series of screen-based discrete tracking
tasks with and without a simultaneous auditory attention
task. Even though these studies do not evaluate the
interface performance during functional tasks, they can
provide insight on their potential value as control inter-
faces for active movement-assistive devices. Other com-
mon evaluation methods are tests based on the Fitts’
Law paradigm in two- or three-dimensional space to
compare the performance of different control strategies
[168,172,175]. Recently, Simon et al. [176] developed
the Target Achievement Control test, a real-time virtual
test environment that closely resembles reality and
allows the evaluation of upper-extremity movement
control of multifunctional prostheses. The Target
Achievement Control test is being used by several re-
search groups to compare the performance of different
control algorithms [177,178].
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Physiological and artificial learning
A common issue in all of the interfacing modalities de-
scribed in this review is the fact that the user must learn
how to use the control interface. Artificial learning is an
alternative approach that aims at relieving the user from
the training period by rapidly identifying individualized
signal patterns that are associated to a specific intention.
Casadio et al. [179] developed a control interface for
highly paralyzed patients optimizing a subject-specific
mapping of residual voluntary movements with control
inputs for assistive devices. In practice, this approach is
translated into a mutual adaptation in which both user
and assistive device learn from each other [90]. Several
studies have shown that including artificial learning in
BCIs accelerates the adaptation process [11,180,181].
Artificial learning/intelligence has also been used for the
development of shared-controlled algorithms that aim to
combine the intelligence of the human and the assistive
device to reduce the concentration effort [90,182]. With
this approach, low-level functions are controlled by the
assistive device, and the role of the user is reduced to
only give high-level commands, supervise and fine tune
the functioning of the system.
In addition to artificial learning, researchers have also

been investigating the physiological learning capabilities
of the human-controller when subjects are asked to
interact with control interfaces that have intuitive and
non-intuitive mappings between EMG signals and cursor
or device movement. Radhakrishnan et al. [183] and
Pistohl et al. [184] found that subjects could learn non-
intuitive mappings with a final performance nearly equal
to the intuitive mappings using both virtual and real
prosthetic control environments. In addition, the recent
study by Antuvan et al. [185] extended the aforemen-
tioned studies investigating the influence of previously
learned mappings on new control tasks. They found that
learning curves transferred across subsequent trials have
the same mapping, independent of the tasks to be
executed, which suggests that maximal performance
may be achieved by learning a constant, arbitrary map-
ping rather than using the common approach of subject-
and task-specific mappings.

Design considerations
Intuitiveness
A control interface should be intuitive, enabling the user
to operate their active movement-assistive device sub-
consciously (i.e. the way healthy people control their
limbs) with a short training period and to think and do
other things while using the device. Control interfaces
may require proprioceptive feedback (i.e., EPP; [131]) in
cases where sensory feedback has been lost (such as in
amputees), to not only rely on visual feedback, which
requires considerable mental effort [186].
The reviewed literature shows that most control inter-
faces are tested in laboratory environments in which
users can concentrate on the experimental task with
minimal distractions. However, “real-world” users must
deal with much more complex situations, where mental
effort cannot be entirely (or even primarily) dedicated to
the control of the assistive device, as they have to inter-
act with other people and the environment. Therefore,
considering that many processes run simultaneously in
the brain, it is plausible to conjecture that noninvasive-
BCIs would require a considerable effort of concentra-
tion to generate those specific brain signals required for
the control of an active movement-assistive device. On
the other hand, peripheral signals such as force or EMG
are more closely linked to the control of movement.
Consequently, control interfaces using these signals
would appear to be more natural and intuitive for the
user than noninvasive-BCIs. Nevertheless, as previously
presented in section Physiological and Artificial Learning,
shared-control strategies can reduce the concentration
effort of BCIs.

Information source for the control interface
A second consideration in the design of a control inter-
face required to gain both user and clinical acceptance
of active movement-assistive devices, is that the control
interface should avoid the sacrifice of “useful” body func-
tions from parallel systems (e.g. eye, head or tongue
movement) for deriving the motion intention of the user.
Nevertheless, signals from parallel systems can be used
for “supplementary control,” such as tuning control
settings or switching on and off control modalities. Note
that supplementary control is used on an occasional
basis and therefore, does not require continuous atten-
tion of the user and never implies the sacrifice of the
parallel system functionality.

Response time
Another essential feature of the control interface that
has a determinative effect on the performance of the
assistive device is the response time or delay [187]. A
tradeoff between speed and accuracy exists regarding
the control delay. Large delays increase accuracy of the
motion intention detection, but at the same time, de-
creases responsiveness (and therefore performance) of
the active assistive device. Farrell and Weir [187] con-
cluded that controller delays should be kept around
100 and 175 ms for proper control of myoelectric
prostheses.

Robustness
The system should be robust to disturbances so that
variability of sensor placement during donning, slow sig-
nal changes due to variation of environmental conditions
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(e.g. temperature, humidity, or light), user fatigue or ex-
ternal forces with low (e.g., gravity) or high frequencies
(e.g. automobile vibrations), do not compromise its
performance. Several researchers have identified signal
stability and robustness as one of the most critical
requirements of control interfaces [89,110,188,189].

Coordination of the degrees of freedom
From a functional point of view, a control interface for ac-
tive movement-assistive devices should be able to coordin-
ate multiple DOF simultaneously in an effective way. The
importance and feasibility of simultaneous control has
been investigated using several control modalities such as
EEG- [190], EMG- [23,168] and head movement-based in-
terfaces [172]. Apart from functional advantages, coordi-
nated movements give a more natural appearance than if
every DOF is controlled separately. Nevertheless, the user
may also need to control an individual DOF when per-
forming a precision task such as unlocking a door or
clicking the buttons of a computer mouse.

Independence
Ideally, an active movement-assistive device should not
require assistance from other people (e.g., caretakers or
family) for the preparation of the equipment, such as in-
stalling the sensors in the correct location or calibrating
the system. Control interfaces that use implantable sen-
sors or sensors integrated in the artificial plant inher-
ently offer a clear advantage in this respect. Most of the
active prosthetic devices can be self-donned [104], and
recent studies focus on simplifying the training of con-
trol methods such as pattern recognition by developing
interfaces that guide the user during the training of the
algorithm [191].

Customization
Control interfaces for active movement-assistive devices
need to be customized to the characteristics of the
pathology, the available physiological signals, morph-
ology of the body, and the mechanical configuration of
the device. In this respect, the control interface (and
maybe the rest of the device) should be able to adapt to
the changing needs and capabilities of the user. Note
that changes can occur over the short term (during a
day) as well as over a longer term (years) periods. The
monitoring of specific biomechanical descriptors could
give an indication of the user’s changes and adapt the
assistive device to the new situation. Moreover clini-
cians could use this information to evaluate a disease’s
progression.

Conclusions
This paper presented a comprehensive review of the
existing non-invasive control interfaces used to operate
active movement-assistive devices. A novel systematic
classification method is presented to categorize the
inventory of existing control interfaces. This method is
based on classifying the control interfaces depending on
the source of the signal, that is, which subsystem of the
HMCS is the signal coming from, which physiological
phenomena is generating the signal and which sensors
have been used to measure the signal. We found that
the classification method could successfully categorize
all existing control interfaces providing a comprehensive
overview of the state of the art. The classification me-
thod also represents a framework in which new sensing
modalities can be included. Each method was shortly
described in the body of the paper following the same
structure as the classification method.
Current non-invasive BCIs appear to be limited in

speed, accuracy, and reliability for the control of active
movement-assistive devices. However, researchers are im-
proving their performance by implementing artificial
learning algorithms, shared-control strategies and combin-
ing BCI with other sensor modalities. Myoelectric-based
interfaces are nowadays the most common method for
operating active prosthetic and orthotic devices. Advanced
myoelectric-based techniques, such as TMR and muscle
synergy-based algorithms, are overcoming important func-
tional limitations of standard myoelectric control. Despite
the fact that muscle contraction-based interfaces are not
being implemented in today’s clinical practice, these in-
terfaces are showing significant advancements and in
the future may find their way to compete with the well-
established myoelectric control. Although movements and
forces are the natural way for the human to interact with
the environment, interfaces based on these phenomena
are very challenging to use in patients with severe move-
ment and force limitations. Movement- and force-based
control interfaces are more often implemented in rehabili-
tation robots where patients need to train to regain mobil-
ity and strength. Finally, control interfaces based on
signals from parallel systems are generally a suitable solu-
tion to derive the movement intention of highly paralyzed
patients. Recently, interfaces based on parallel systems
have also been implemented in hybrid sensor modalities to
expand the sources of information. In this respect, artificial
learning is a promising strategy to make use of these extra
sources of information and to give some degree of
autonomy and adaptability to the artificial controller.
In addition, a better understanding on how the human-
controller works and learns will have a great impact on
how control interfaces are designed.
Regarding the comparison and evaluation of the existing

control interfaces, we have found that while many dif-
ferent control interfaces have been developed, their re-
spective performance capabilities and limitations remain
unclear. There is a need for a basic consensus on the
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evaluation methodology to be able to compare control in-
terfaces and select the most suitable for a specific applica-
tion. An important step toward the standardization of
evaluation methods is specially being made in the field
of upper-extremity prostheses by the American Academy
of Orthotics & Prosthetics. Furthermore, it is clear that
most of the studies presenting novel control interfaces
lack tests outside the laboratory environment. In this
context, it is important for future studies to validate new
developments by conducting experiments with real end
users in an everyday life situation.
All the reviewed control interfaces (in combination

with the rest of the assistive system) are still far below
the performance of the human movement control sys-
tem, which inevitably hinders their user’s acceptance.
However, the high rate at which these technologies are
advancing is a clear indication that there is global inter-
est in developing natural and intuitive control interfaces
for active movement-assistive devices.

Consent
Written informed consent was obtained from the patient
for the publication of this report and any accompanying
images.

Additional files

Additional file 1: EEG-based interface. An EEG-based BCI used for the
control of the Mindwalker lower-extremity exoskeleton [12,87]. In this
setup the BCI is controlled using Steady State Visually Evoked Potentials
(note the flickering lights in the inside part of the glasses). Video courtesy
of Mindwalker project.

Additional file 2: Simultaneous and sequential EMG-based control.
An amputee controlling the elbow and hand movements of an
upper-extremity prosthesis with simultaneous and sequential EMG-based
control. Video reused from [178].

Additional file 3: Joint-rotation-based interface. An amputee
controlling shoulder flexion-extension and internal-external rotations of an
active upper-extremity prosthesis with a two-DOF joystick that measures
residual shoulder motion. Video reused from [56].

Additional file 4: Force calibration procedure. A critical aspect for
the usability of force-based interfaces in individuals with severe
muscular weakness is the accurate identification of the gravitational
and joint stiffness forces. This video shows the force calibration
procedure used to measure the pose-dependent gravitational and
joint stiffness forces of the participant. The absence of EMG activity
shows that the participant was relaxed during the measurement. Video
courtesy of Flextension project.

Additional file 5: Force-based interface. An adult man with Duchenne
muscular dystrophy with no arm function left using a force-based
interface to operate an active elbow orthosis and performing a discrete
position task. The plot in the bottom of the video shows the interaction
force between the participant and the orthosis used as a control input
for the admittance controller. The reader is referred to [62] for further
information on the design and control of this active elbow support.
Video courtesy of Flextension project.

Additional file 6: Tongue-movement-based interface. A men with
SCI performing a driving task with a wheelchair that is controlled with
the tongue-movement-based interface developed by [76]. Video courtesy
of Dr. Maysam Ghovanloo.
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