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Pressure Output Feedback Control of Tollmien–Schlichting Waves 
in Falkner–Skan Boundary Layers

H.J. Tol∗ and M. Kotsonis† and C.C. de Visser‡

Delft University of Technology, 2629 HS Delft, The Netherlands

This paper investigates the use of point wall pressure measurements for output feedback

control of Tollmien-Schlichting waves in Falkner-Skan boundary layers. A new approach is

presented for input-output modeling of the linear dynamics of the fluid system and the integra-

tion with H 2/LQG reduced-order control design. The pressure output at the wall is related

with the global perturbation velocity field through the linearized pressure Poisson equation. A

Kalman filter is subsequently used to obtain time-resolved estimates of the velocity field using

pressure information at discrete points at the wall. The estimated field is in turn used to calcu-

late an optimal state feedback control to suppress the instabilities. The controller is designed

in both a feedforward, a feedback and a combined feedforward/feedback actuator/sensor con-

figuration. It is shown that combined feedforward/feedback control gives the best trade-off be-

tween robust performance and robust stability in the presence of uncertainties in the Reynolds

number and the pressure gradient. Robust performance in off-design conditions is enhanced

compared to feedforward control while robust stability is enhanced compared to feedback

control.

Nomenclature

A, B, C, D = full order /spatial continuous state-space operators

A, B, C, D = reduced order state-space matrices

E = perturbation energy

F = state feedback gain

f = body force vector

L = linearized Navier-Stokes operator

L = Kalman filter gain

l = control penalty

m = dimensionless constant characterizing the pressure gradient
∗Researcher, Faculty of Aerospace Engineering, h.j.tol@tudelft.nl
†Assistant Professor, Faculty of Aerospace Engineering, m.kotsonis@tudelft.nl
‡Assistant Professor, Faculty of Aerospace Engineering, c.c.devisser@tudelft.nl



p = fluctuating pressure

pf f = feedforward pressure measurement

pf b = feedback pressure measurement

Reδ = Reynolds number based on local δ∗

Re0 = Reynolds number based on inflow δ∗

r = order of the reduced order model

T = closed-loop transfer function

t = time

U∞ = dimensionless external free-stream velocity

u = fluctuating velocity vector

U = base flow vector

w = external disturbance

x = dimensionless spatial coordinate

z, q, pm = output signals

Z = boundary to domain lifting operator

δ∗ = displacement thickness, m

ξ = similarity variable

φ = control input

ν = kinematic viscosity, m2/s

η = temporal state defined at the boundary

γ = estimation penalty, relative magnitude of the sensor noise

ω = radial frequency

ωn = natural frequency

ζ = damping ratio

Γ = boundary

Subscripts

in, out, wall = inflow boundary, outflow boundary, rigid wall

h, c, d, = homogeneous, control, disturbance

m, ff, fb, = measured, feedforward, feedback

Superscripts

e = extended

∗ = dimensional variable
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I. Introduction

Advances in actuator and sensor technologies that can sense/manipulate fluid flows on very short time and length

scales have motivated the field of closed-loop flow control. In closed-loop control real-time sensor information

is used to devise controls that alter the flow towards a desired state. In practice, measurements are non-ideal (noisy)

and available only in a small portion of the system. Dynamic estimation strategies filter the available information

using the governing equations, to extract the signal and to reconstruct the state of the system. The estimated state can

subsequently be used within a state feedback control law. The combination of model-based estimation and control

has gained significant attention for flow control [1–3] and is commonly referred to as an output feedback controller or

a dynamic compensator [4–8]. In this study, pressure-based compensators are designed to suppress two-dimensional

Tollmien-Schlichting (TS) wavepackets in laminar Falkner-Skan flows. The compensator approach in this study can

be classified as a white box/gray box approach in which the model is a-priori based on the physics of the system,

in this case the linearized Navier-Stokes equations (LNSE). Such model-based techniques provide important insights

into the instability mechanisms that have to be addressed and potentially lead to the best possible performance with

stability guarantees. For a recent and extensive review on control of transition and turbulence, also including so-

called black-box and model-free approaches, the reader is referred to Brunton and Noack [9]. Three crucial aspects to

achieve practical implementation of compensators are the computational cost for real-time application, robustness to

model uncertainties and the integration of physically realizable actuators/sensors that are localized in space, which are

discussed next.

A. Model reduction and control of convective instabilities

To address the computational aspects and to account for localised actuators and sensors, reduced-order models

(ROM) have been extensively used in the design of compensators. Many techniques are available for model reduction

of fluid flows which commonly involve the projection of the high-order system on a lower dimensional subspace. We

refer to [10] for a recent review on model reduction methods for flow analysis and control. It is accepted that for control

design purposes, projection on controllable and observable subspaces, formed by so-called balanced modes, produces

the most reliable models with superior performance [10–13]. Balanced truncation [14] is widely used in control

theory to extract the most controllable and observable modes of the system. However, exact balanced truncation

is computationally intractable for high-order systems, e.g. if n > 105. For flow control purposes snapshot-based

(white box) balanced truncation [15] and input-output-based (black-box) truncation using the eigensystem realization

algorithm (ERA) [16, 17] are widely used. Both aim to construct approximate balanced reduced order models that

capture the input-output behavior of the system, similar to exact balanced truncation.

To account for spatially localized actuators/sensors in the control design, Bagheri et al. [7] were the first to rigor-

ously combine balanced model reduction withH2/LQG closed-loop control for convective instabilities in 2-D bound-
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ary layer flows. The control design considered the use of in-domain volume forcing actuation and in-domain velocity

measurements. This approach was extended in Bagheri et al. [18] to include wall shear measurement and wall actu-

ation by means of localized suction and blowing. A generalization of the work of Bagheri et al. [7] to 3-D flows is

presented in Semeraro et al. [19] and was applied by Semeraro et al. [20] in fully non-linear simulations to verify the

possibility of delaying transition to turbulence using velocity measurements and volume forcing actuation. Limitations

related to a more realistic set-up were addressed by Dadfar et al. [8, 21] for 2-D boundary layer flows. They integrated

experimentally identified models of plasma actuators and physical actuator constraints were taken into account in the

control design. Using plasma actuators and hot-wire velocity measurements Fabbiane et al. [22] demonstrated, for

the first time, suppression of disturbances in wind-tunnel experiments using 2-D model-based LQG compensators,

without any model fitting or system identification.

Fabbiane et al. [22] also stressed the robust performance issues of 2-D model-based LQG controllers in a feedfor-

ward actuator/sensor configuration in which the sensors are placed upstream of the actuators. Such a setup is commonly

recommended forH2/LQG optimal control of convective instabilities as reviewed by Sipp and Schmid [3], Schmid and

Sipp [23]. It guarantees robust stability in convective flows and the best nominal performance [3, 23, 24]. However, the

performance of feedforward control deteriorates quickly in off-design conditions as shown in Fabbiane et al. [22] and

feedforward control poses challenges in the presence of additional unmodeled dynamics and disturbances as argued

by Belson et al. [24]. Therefore, a feedback configuration in which the sensor senses the effect of the actuator may

be desirable in order to account for uncertainties. For example, Fabbiane et al. [22] experimentally applied adaptive

filtered-x-least-mean-squares control to improve the performance in off-design conditions for the freestream velocity

and Belson et al. [24] applied proportional-integral feedback control to recover the performance in the presence of

unmodeled disturbances.

B. Pressure-based estimation

Currently localized (white/gray) model-based compensators for transition delay have either used velocity measure-

ments or shear measurements for estimation of the perturbation field. Although, hot wire anemometry and hot film

sensors can be effective for closed-loop control [22, 25], they can become problematic in practice. Hot wires are intru-

sive and the wires can break easily. Wall shear stress sensors are placed on the wall, but generally have a low signal

to noise ratio, are not robust (temperature dependent, high mechanical stresses) and uncertainties are hard to quantify

[26]. Pressure measurements on the other hand generally have a high signal-to-noise ratio and can be extracted re-

motely from the surface, e.g. using microphones embedded within a small cavity. The cavity does result in a loss of

amplitude and phase and gives rise to Helmholtz resonances, which has to be accounted for.

Pressure measurements are commonly considered for control of global instabilities in free shear layer flows in-

volving flow-induced noise/vibrations and flow-structure interaction. We refer to Cattafesta et al. [27] for an extensive
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review on control of flow-induced cavity oscillations. Different variants (linear, quadratic, higher order) of static es-

timators, also known as stochastic estimation (SE) as originally introduced by Adrian [28], have been successfully

applied for control in cavity flows [29, 30] and axisymmetric jets [31]. We refer to Lasagna et al. [32] for a recent

overview of the SE technique, both for investigating the flow physics and the control applications. With SE the state

estimate is represented by a static function of the sensors and the state estimate depends only on the measurements

at the present time. This technique does not require a model, but requires a larger number of sensors, and is more

sensitive to noise than dynamic model-based observers, such as the Kalman filter [15, 27, 31, 33]. Owing to the need

for a ROM of the flow dynamics, preferably balanced, that relate the point pressure measurements with the model vari-

ables, dynamic state estimation is challenging. Models used for dynamic estimation/control which are based solely

on the physics of the system have been obtained through POD/Galerkin projection in Sinha et al. [31], Rowley and

Juttijudata [34], and balanced models from input-output data (black-box) using ERA have been obtained in Illingworth

et al. [35, 36] for feedback control of flow resonances.

C. Objective and outline of the present study

Pressure sensors provide significant advantages over velocity or shear stress sensors in experimental applications.

However, no attempt has yet been made to integrate point pressure measurements in the framework of (white/gray)

model-based output feedback control for convective instabilities in boundary layer flows, which is the objective of

the present study. To the best of our knowledge this is the first time that a localized pressure-based compensator

is derived directly from the governing equations which is used to control instabilities in boundary layer flows. In

addition, the control system is designed in both a feedforward, a feedback and a combined feedforward/feedback

actuator/sensor configuration. The performance of the three configurations is compared in both nominal and off-design

conditions. A feedback configuration was first considered in Belson et al. [24] who showed robustness to unmodeled

external disturbances using PI control. In the present study the robustness is evaluated in the presence of parametric

uncertainties in the Reynolds number and the pressure gradient.

The use of pressure measurements for dynamic flow estimation is not trivial. Firstly, for modeling of wall-bounded

shear flows, the pressure is commonly eliminated from the state equations (also in this study) by formulating the

linearized Navier-Stokes equations in a divergence free state-space, see e.g. Bagheri et al. [7, 18], Semeraro et al.

[19], Jones et al. [37] and we refer to Bewley et al. [38] for a general framework. Due to the fact that pressure is

eliminated from the model, estimation for correlating the model variables to the pressure measurements becomes

less trivial. Secondly the fluctuating pressure at a given point on the wall is related to the global velocity field (e.g.

through the pressure-Poisson equation). As a result unmodeled disturbances as well as dynamic uncertainties inherent

in any ROM, can result in high uncertainties in the modeled pressure output. This puts more stringent constraints on

accurately modeling of the input-output behavior.
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To address these challenges a new two-step approach is proposed for the input-output modeling of the linear dy-

namics, which is integrated with H2/LQG reduced-order controller design. The dynamic state equation, which is

required to design the state-feedback control law, is derived through a divergence-free projection of the linearized

Navier-Stokes equations. The pressure output equation, which is required to dynamically estimate the velocity field, is

subsequently derived through the linearized pressure-Poisson equation in a separate step, independently of the deriva-

tion of the state-equations. The controller is synthesized by making use of the framework recently presented in Tol

et al. [39], which combines direct state-space discretization of governing equations using multivariate splines [40] with

exact balanced truncation [14] to design low-order controllers. Tol et al. [39] also proposed a new physically motivated

inflow disturbance model which allows for robust estimation of the perturbations within the localized domain that en-

capsulates the actuators and sensors. In Tol et al. [39] flow perturbations in a channel flow are estimated/controlled

using wall shear measurements and localized suction and blowing at the wall in a feedforward configuration. They

showed robustness to both unmodeled disturbances and truncated dynamics resulting from the model reduction step.

In this work the framework from Tol et al. [39] is applied to Falkner-Skan flows and is extended by introducing point

wall pressure measurements for the flow estimation in a feedforward/feedback configuration.

The outline of this paper is as follows. In Sec. B the governing equations are presented. In Sec. III the equations

are written in state-space form and the finite-dimensional approximation is discussed. Section IV presents the inflow

disturbance model, which is linked to the relevant flow physics, and is of importance for the estimation problem. The

pressure is eliminated from the state equations by formulating the state equations in a divergence free basis. In Sec. V

a new pressure output equation is derived which relates the upstream disturbances and the velocity perturbation field

with the pressure at the measurement location at the wall. In Sec. VI the reduced order controller/estimator is designed

within an H2/LQG optimal control framework. The controllers are evaluated in Sec. VII followed by conclusions in

Sec. VIII.

II. Flow configuration

A. Overview set-up

2-D perturbations in an incompressible boundary layer flow over a flat plate are considered. The flow configuration,

including the inputs-outputs, used in this study is shown in Fig. 1. Boundary layers behave as noise amplifiers of

unknown upstream disturbances which trigger convective perturbations in a frequency broadband that amplify in both

space and time as they propagate downstream. Tol et al. [39] presented a new inflow perturbation modeling which

allows for efficient estimation and control of the perturbations within the localized control domain that encapsulates the

actuators and sensors. The controller is synthesized using a localized computational domain which naturally avoids

very large systems and allows a direct application of linear system theoretic tools for model reduction and control
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simulation domain
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disturbances
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−147 0 150 210

255230
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q

gc

pff pfb

x

y

δ∗0

wd

Fig. 1 Simulation domain, control domain and input-output configuration. Reference displacement thickness

δ∗
0

, inflow disturbance wd , feedforward sensor p f f , feedback sensor p f b , controlled output q and actuator

distribution gc .

design. A larger simulation domain is used in order to properly evaluate the controller in Sec. VII.

For the control design external disturbance sources, modeled through wd (t), are assumed to enter the control do-

main through the inflow. The chosen control objective is to suppress the effect of inflow disturbances wd (t) on the

wall shear stress fluctuations defined by the controlled output q(t). The control actuation is achieved by localized wall-

normal suction and blowing at the wall characterized by the distribution gc (x) and pressure sensors are used to extract

the measurement information at the wall. Three actuator/sensor configurations are considered, which are a feedfor-

ward configuration, a feedback configuration and a combined feedforward/feedback configuration. In the feedforward

actuator/sensor configuration the sensor is placed upstream of the actuator to detect the upcoming perturbations. Due

to the convective nature of the flow, this setup dynamically corresponds to disturbance feedforward control. In the

feedback configuration the sensor is placed downstream of the actuator such that the effect of the actuator is fed back

to the controller. The feedback sensor is placed close to the actuator (x f b = 255) in order to have sufficient observ-

ability of the TS waves in the actuator domain and to limit the effect of time delays [24]. All three configurations are

a special case of output feedback control within the optimal control framework formalized by Doyle et al. [41]. In

Sec. B the flow domain and the governing equations are presented. The inputs and outputs will be discussed in the

next sections.

B. Governing equations

The dynamics of the perturbations are obtained by linearizing the Navier-Stokes equations around the steady

boundary layer. The boundary layer is approximated by a profile from the family of Falkner-Skan similarity solutions.

It is assumed that the outer free-stream velocity is given by U∗
∞ = U∗

0 (x∗/x∗0 )m with x∗0 a fixed physical position

from the virtual leading edge of the plate and U∗
0 the free-stream velocity at that position. The asterisk (*) is used

to denote a dimensional variable. The parameter m characterizes the pressure gradient, both favorable (m > 0) and

adverse pressure gradients (m < 0) can be accounted for. The boundary layer displacement thickness δ∗0 and the free-
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Fig. 2 Falkner-Skan boundary layer (m = −0.02, Re0 = 500) used for the linearization. (a) streamwise

componentU . (b) wall-normal componentV .

stream velocity U∗
0 at x∗ = x∗0 are chosen as reference variables to non-dimensionalize the flow with corresponding

Reynolds number Re = Re0 =
U ∗

0 δ
∗
0

ν
where ν is the kinematic viscosity. For the nominal simulation case and control

design case we select Re = 500, m = −0.02 which corresponds to a distance of x∗0 = 147δ∗0 from the virtual

leading edge. The computational domain is also scaled with δ∗0 and the non-dimensional coordinates are defined as

x = (x∗ − x∗0 )/δ∗0 , y = y
∗/δ∗0 . For flow simulations the domain xsim ∈ [0, 400], ysim ∈ [0, 25] is considered. The

controller is synthesized using localized computations within the domain xc ∈ [150, 310], yc ∈ [0, 25]. Based on the

following similarity variable ξ (x∗) = y
∗
√

U∗
∞/νx

∗, the boundary layer in these domains is obtained by solving the

Falkner-Skan equation

f ′′′ +
m + 1

2
f f ′′ + m(1 − f ′2) = 0, f (0) = f ′(0) = 0, f ′(∞) = 1. (1)

The solutions for f (ξ) and f ′(ξ) are combined into the non-dimensional velocity profiles

U (x) =
U∗

U∗
0

=U∞ f ′(ξ), (2)

V (x) =
V ∗

U∗
0

=
1

2̺

√

U∞

(x + x0)x0

(

(1 − m)ξ f ′(ξ) − (1 + m) f (ξ)
)

, (3)

with ξ (x) = ̺
√

U∞
x0

x+x0
y, ̺ =

∫ ∞

0 (1 − f ′)dξ and U∞ = U∗
∞/U

∗
0 = (x/x0 + 1)m . The displacement thickness for

this boundary layer is given by δ∗ =
∫ ∞

0 (1 − U∗/U∗
∞) dy∗ =

√

νx∗/U∗
∞̺, and the local Reynolds number Reδ at a

particular x station can subsequently be computed using

Reδ = Re

√
(

1 +
̺2x

Re

)

U∞ . (4)

Figure 2 shows the boundary layer in Eqs. (2) and (3) along with the local Reynolds numbers [Eq. (4)]. Small
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perturbations to the boundary layer are governed by the linearized Navier-Stokes equations (LNSE). LetU (x)+u(x, t)

be the perturbed velocity field. The linearized non-dimensional equations, including the boundary conditions used in

this study, are given by

∂u

∂t
= − (U · ∇) u − (u · ∇)U +

1
Re
∆u

︸                                     ︷︷                                     ︸

Lu

−∇p + f , (5a)

0 = ∇ · u, (5b)

u |Γwall
= uc , (5c)

u |Γin = ud , (5d)

u |Γf s = 0, (5e)

0 = −np|Γout +
1

Re
(n · ∇) u |Γout , (5f)

where L is the linearized Navier-Stokes operator, u(x, t) = [u(x, t), v(x, t)] and p(x, t) denote the velocity and

pressure perturbation field and f (x, t) is body force field per unit mass. In-domain body forces are typically used for

applying control. In this study only wall-actuation is considered, which is modeled through the boundary condition.

Without loss of generality the body force will be set to zero in the remainder of the paper. The system is closed by

the boundary conditions in Eqs. (5c)-(5f). Dirichtlet boundary conditions are prescribed on ΓD = Γwall ∪ Γin ∪ Γf s

where Γwall is the rigid wall boundary, Γin is the inflow boundary and Γf s is the external freestream boundary. uc

is the prescribed velocity input profile at the wall Γwall which is used to model the wall-actuation (see next section).

ud is the inflow disturbance velocity used to account for unknown external disturbances in the control design. The

inflow boundary condition is only imposed in the control model and is discussed in detail in Sec. IV as it is an

integral part of the control design. An unperturbed flow is assumed at the computational inflow of the simulation

domain (u(0, y) = 0)). For both cases it is assumed that the perturbations vanish at the upper freestream boundary Γf s

(u(x,25) = 0). At the outflow boundary Γout a standard Robin boundary condition [Eq. (5d)] is prescribed, which

has proven to be well suited for uni-directional outflows [42]. The outflow condition is implicitly satisfied by the

variational formulation used to discretize the LNSE and does not need to be explicitly taken into account.

III. State-space formulation

In order to apply linear control theoretic tools the flow equations must be formulated into the standard state-space

form. To generalize the modeling approach and control system design the equations are written as an abstract equation

in operator form [38, 43]. Explicit discrete expressions are obtained for all operators which are discussed afterwards.
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A. State equations

The pressure term, along with the divergence equation can be eliminated by the projection of the equations onto the

divergence free space [38]. This avoids dealing with a singular descriptor state-state system and allows straightforward

application of classical control theoretic tools [37]. Actuation [Eq. (5c)] and disturbance [Eq. (5d)] are both introduced

through the boundary which renders the system in-homogeneous. Both actuation and disturbance are mathematically

equivalent. By a standard lifting procedure [38, 44] the effect of the boundary condition can be represented by a volume

forcing in a modified state-space system with homogeneous boundary conditions. We also refer to [43, Section 3.3]

for more information about this formulation. The in-homogeneous boundary conditions can be lifted by setting

u = uh +Zcuc +Zdud , (6)

where uh is a solution of the homogeneous problem and Zc ,Zd ‘lift’ the boundary conditions to the interior of the

domain and must be defined such that (Zcuc ) |ΓD = uc and ∇ · (Zuc ) = 0 [38, 43]. Let X = {u ∈ L2(Ω)2 | ∇ · u = 0}

and let P be an orthogonal projector from L2(Ω)2 7→ X satisfying Pu = u and P (∇p) = 0. Applying the projection

P to Eq. (5a) and substituting the change of variables [Eq. (6)] gives the following homogeneous equation in operator

form

u̇h = Auh +AZcuc − Zc u̇c +AZdud − Zd u̇d , (7)

where A u = PLu, Au = A u for u ∈ D(A) and the domain D(A) includes homogeneous boundary conditions

D(A) = {u ∈ X | u |ΓD = 0}. The external input (disturbance and control) in Eq. (7) are actually the time derivative

of the prescribed velocity at the boundary. Actuation and disturbance are independent of each other and the spatio-

temporal boundary actuator/disturbance model can be described by










η̇c

η̇d










=










Ac 0

0 Ad



















ηc

ηd










+










Bc

0










φ +










0

Bd










wd ,










uc

ud










=










Cc 0

0 Cd



















ηc

ηd










,

(8)

with ηc (t), ηd (t) respectively the temporal state at the wall and inflow boundary, φ(t) the control input, wd (t) the

external disturbance input and uc (x, t), ud (x, t) respectively the output velocity at the wall and inflow boundary. The

inflow disturbance model (Ad ,Bd ,Cd ) is discussed in detail in the next section. To manipulate the flow, localized

unsteady blowing and suction is considered that influences the wall-normal component at the wall. It is assumed that
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the actuator dynamics are described by

η̇c = τ
−1 (

φ − ηc
)

= Acηc + Bcφ,

uc = gcηc = Ccηc ,

(9)

with ηc (t) the temporal actuator state that describes the amplitude of the blowing and suction. The temporal dynamics

are governed by a simple first order lag filter with τ the time constant. The time constant is set equal to the sampling

time of the simulations. In this case the filter corresponds to a stable approximation of a pure integrator commonly

used for boundary control [6, 45]. A localized spatial distribution is considered with gc (x) = [0, gcv ]T where gcv =

sin
(

2π(x − xg )/Lg

)

if xg ≤ x ≤ xg + Lg and gcv = 0 elsewhere. The spatial length is set to Lg = 20 starting

at xg = 230. The spatial length is chosen to be less than the spatial wave-length of the dominant TS-waves (see

next section) and allows for effective control over a broad frequency spectrum. Combining the boundary dynamics in

Eq. (8) with the dynamics in the interior of the domain in Eq. (7) and using u̇c = CcAcηc+CcBcφ it is straightforward

to express Eq. (7) in the (extended) state-space form

u̇e = Āue + B̄cφ + B̄dwd , (10)

ue =















uh

ηc

ηd















, Ā =















A AZcCc − ZcCcAc AZdCd − ZdCdAd

0 Ac 0

0 0 Ad















B̄c =















−ZcCcBc

Bc

0















, B̄d =















−ZdCdBd

0

Bd















,

where ue denotes an extended state. The output equation for the wall pressure measurements will be derived in Sec. V.

This equation is less trivial since the pressure is eliminated from the state equations.

B. finite-dimensional approximation

Equation (10) represents the continuous formulation of the system. For simulation and control design a finite-

dimensional approximation of Eq. (10) is required. The state-space modeling framework for parabolic PDEs from Tol

et al. [40] is used, which was extended to fluid flows in [39]. The method uses projection with multivariate B-splines

of arbitrary degree and smoothness defined on triangulations [46–48] to find matrix representations of all operators

in Eq. (10). It has the geometrical flexibility of the finite element method and the approximation power of spectral
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Fig. 3 Triangulations used for the (a) simulation model (1200 elements) and the (b) control model (340 ele-

ments).

methods. The pressure is eliminated from the equations by using a space of velocity fields which is divergence free and

a suitable choice of variational formulation [39]. By expanding the solution in the null basis of the discrete divergence

operator a minimal support basis is obtained for a divergence free spline space S ⊂ X. The system is projected

on this basis through the variational formulation to obtain the finite-dimensional system. The triangulations used to

construct the simulation model and the initial model that is used for model reduction and control design are shown

in Fig. 3. To derive the simulation model a structured triangulation consisting of 1200 elements is used. It is refined

near the wall using a hyperbolic stretching function to properly resolve the shear features. C0 continuous elements

and high degree, fifth order B-form polynomials are chosen which allow for better approximation properties [49]. The

simulation model has a total of 11501 states. The model order already includes a large initial reduction resulting

from the elimination of the divergence free constraint through the null basis expansion, which is equal to rank of the

discrete divergence operator. It is verified with a mesh convergence analysis that higher resolutions did not provide an

improved accuracy of the simulation results. To construct the initial model that is used for model reduction and control

design a lower order discretization is used. Again C0, d = 5 elements are chosen, but a coarser mesh consisting of

340 elements is used. The control model has 3231 states which allows efficient application of control theoretic tools

for model reduction and control design. In the next sections the notation (A,B,C,D) is used to denote the full-order

finite-dimensional system and the notation (A,B,C,D) is used to denote a reduced-order model.

IV. Inflow disturbance model

The state-space description [Eq. (10)] also includes a disturbance model, defined by (Ad ,Bd ,Cd ), to account for

external disturbances in the control design. The external disturbance sources are not precisely known in real envi-

ronments and modeling assumptions have to made for the design of the controller. In particular the performance of

state estimator relies on the model for the external disturbances as the estimation error is minimized in the presence of

these disturbances. In addition, when model reduction is used in the design of the controller, the spatio-temporal struc-

tures that are retained in the model and that can be estimated in the control (actuators/sensors) domain depend on the
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spatial-temporal structures that are excited by the external disturbances. For the control design external disturbances

are introduced through the inflow boundaryu |Γin = ud with ud the inflow perturbation velocity. In Tol et al. [39] a new

inflow disturbance model is proposed which allows for efficient estimation of the dominant flow perturbations within

the localized control region. This model is applied in this study for estimation of TS waves and is presented in this

section. It should be noted that this model is independent of the disturbance scenario used to evaluate the controller

in Sec. VII.

The inflow disturbance model is linked with the relevant flow physics through a classical local linear stability

analysis [50] of the TS waves which will be discussed first. Linear stability theory assumes a locally parallel flow in

which the individual perturbation modes (in the present case corresponding to TS waves) take the form

u = Real
[

ũei(αx−ωt )
]

, (11)

with ũ(y) = ũr (y)+ iũi (y) the complex eigenfunction of the mode, α = αr + iαi the complex wave-number andω the

real frequency of the mode. The modes are computed as solutions of the Orr-Sommerfeld (OS) equation using a local

parallel spatial stability analysis at the inflow of the control domain, that is at Re0 = 500 and x = 150 (Reδ = 706).

Figure 4 shows the wavenumber (spatial eigenvalue) of the mode as function of the temporal frequency. Negative

values for αi characterize unstable modes. It can be observed that the modes are locally convectively unstable in a

broad frequency band (0.04 ≤ ω ≤ 0.113). To account for the dominant perturbation modes in a H2/LQG stochastic

control framework, the following dynamic disturbance model is proposed by Tol et al. [39]
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︸︷︷︸
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︸︷︷︸

Bd

wd , (12a)

ud =

[

ũr − 1
ωOS

ũi

]

︸               ︷︷               ︸

Cd










ηd

η̇d










, (12b)

with ηd = [ηd, η̇d] the temporal state, ud = u |Γin the perturbation velocity output at the inflow and wd the external

disturbance input assumed to be zero-mean Gaussian white noise with unit root-mean-square (rms) intensity

E {wd (t)} = 0, E {wd (t)wd (τ)} = δ(t − τ). (13)

The unity rms scaling will be discussed in more detail in Sec.VI. The disturbance model consist of a second-order

low pass filter [Eq. (12a)] that accounts for the temporal dynamics of the Orr-Sommerfeld eigenfunction calculated at
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Fig. 4 The most unstable wavenumber as function of temporal frequency at Re0 = 500, x = 150, m = −0.02.

(a) The imaginary part. Negative values characterize unstable modes (gray region). (b) The real part.

the most amplified frequency ωOS . For the nominal investigated conditions, the most amplified frequency is found

at ωOS = 0.078, see Fig. 4. The shape of the eigenfuction at this frequency is shown in Fig. 5. The low-pass

filter [Eq. (12a)] allows the magnitude frequency response shaping of ud at the computational inflow to physically

comply with the stability predictions. We choose ζ = 0.15 and ωn = 0.08 such the filter has a peak frequency

ωp =
√

1 − 2ζ2 = ωOS at the most amplified frequency and amplifies the magnitude of the disturbance wd at this

frequency with approximately a factor of 3.5. By increasing the magnitude of the temporal disturbance around this

frequency, the controller will be better able to target the most unstable frequencies that contribute to transition, while at

the same time achieving robustness at the higher and possibly unresolved frequencies. The temporal state is distributed

at the inflow boundary through the output equation in Eq. (12b) where ηd excites the real part of the eigenfunction and

η̇d excites the imaginary part of the eigenfunction. The imaginary part is scaled with the mode frequencyωOS = 0.078

to account for the 90o temporal phase difference of the imaginary and real part of the mode [39].

Although the spectrum of the Orr-Sommerfeld operator is continuous and unstable over a broad range of frequen-

cies, only the most unstable perturbation mode is included in the model for control design. This model can easily

be extended to include the excitation of Orr-Sommerfeld eigenfunctions calculated at different temporal frequencies.

However, it is shown in Tol et al. [39] that a single mode disturbance model is effective for estimation of perturbations

in a broad spatial and temporal bandwidth, which is also observed for the application case considered in this study.

This can be attributed to the fact that the eigenfunction is excited over all frequencies in case of stochastic excitation.

Also at other frequencies than the design frequency ωOS , the inflow perturbation will quickly develop spatially to

modal perturbations with different wavelengths and growth rates. The computational inflow is placed sufficiently far

from the sensor location such that the non-modal and possible non-physical spatial transient behavior near the inflow

does not contribute to the input-output behavior. The reader is referred to Tol et al. [39] for more information including

a detailed spatio-temporal frequency response (input-output) analysis of the disturbance model.
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Fig. 5 The Orr-Sommerfeld eigenfunction for u (a) and v (b) calculated at Re0 = 500, x = 150, ω = 0.078, m =

−0.02.

V. Pressure output equation

Information about the perturbations is extracted from wall pressure measurements. In this section the pressure

output equation is derived which relates the model variables, i.e. the upstream disturbances and the velocity pertur-

bation field, with the fluctuating pressure at the measurement location at the wall. The output equation is required to

estimate the velocity field using a Kalman filter. The pressure output equation is derived from the linearized pressure

Poisson equation (PPE). The PPE is commonly used to compute the pressure from the velocity field in the case when

the pressure is eliminated from the field equations. For example, in pseudo spectral codes for incompressible flows

such as SIMSON [51] that is commonly used for flow control. However, the application for dynamic flow estimation

has so far not been reported. By using the PPE the pressure at the wall can be computed from the global velocity

perturbation field. Taking the divergence of the linearized Navier-Stokes equations [Eq. (5a)] and exploiting Eq. (5b)

yields the linearized PPE

∆p = ∇ · (− (U · ∇) u − (u · ∇)U ) . (14)

At the boundary, the multiplication of Eq. (5a) with the wall outward normal n yields a Robin boundary condition

for p. This condition and Eq. (14) defines the pressure uniquely up to an arbitrary constant. This constant does not

affect the velocity field. To fix this constant it is assumed that the fluctuating pressure is zero at the top freestream

boundary. This boundary condition replaces the Robin boundary condition on the freestream boundary. This results

in the following boundary conditions for Eq. (14)

∂p

∂n
= n ·

(

− (U · ∇) u − (u · ∇)U +
1

Re
∆u − u̇

)

on ΓRobin = Γin ∪ Γwall ∪ Γout , (15)

p = 0 on Γf s . (16)
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To solve the pressure with the Robin and the Dirichlet boundary conditions the pressure is sought in

L2
0(Ω) =

{

p ∈ L2(Ω) |p = 0 on Γf s
}

. (17)

The pressure can subsequently be computed as a solution of a minimization problem [49], namely minimizing

J (p) =
1
2

∫

Ω

|∇p|2 dΩ +

∫

Ω

(∇ · (− (U · ∇) u − (u · ∇)U )) p dΩ

−

∫

ΓRobin

(

− (U · ∇) u − (u · ∇)U +
1

Re
∆u − u̇

)

· np dΓ
(18)

over L2
0(Ω). Equation (18) is discretized using a spline basis for L2

0(Ω) defined on the same mesh as shown in Fig. 3.

The pressure is subsequently computed by setting the gradient with respect to the pressure coefficients to zero. When

the solution is evaluated on the measurement locations at the wall results in an output equation of the form

pm = Cuu + Cu̇u̇ (19)

since Eq. (18) is linear in both u and u̇. Applying the linear change of variables from Eq. (6) for u and substituting the

state equations [Eq. (10)] for u̇e gives

pm =

[

Cu CuZcCc CuZdCd

]















uh

ηc

ηd















+

[

Cu̇ Cu̇ZcCc Cu̇ZdCd

]















u̇h

η̇c

η̇d















= C̄uu
e + C̄u̇u̇

e

=
(

C̄u + C̄u̇Ā
)

ue + C̄u̇B̄cφ + C̄u̇ B̄dwd

= C̄ue + D̄cφ + D̄dwd . (20)

The external disturbance wd and the control input φ affect the measured output instantly modeled by the feedthrough

terms D̄d and D̄c . Fig. 6 shows that value of the feedthrough terms evaluated at the wall. It can be observed that

the instantaneous effect of the external input (control and disturbance) is localized and is diffused in the domain. The

instantaneous effect of the inflow disturbance wd on the measured outputs at x = 210 and x = 255 is negligible.

For generality and possible extensions to other disturbance models, Dd is not omitted in the control design in the

next section. The instantaneous effect of the control input on the measured outputs is not negligible, particularly for

the feedback sensor. However, the dynamic effect of the control input on the feedforward sensor is small due to the

convective nature of the flow, resulting in a transfer function characterized by a constant. To also account for sensor
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inaccuracies it is assumed that the measurement is corrupted by zero-mean Gaussian white noise wn which modifies

Eq. (20) to

pm = C̄u
e + D̄cφ + D̄dwd + γwn , (21)

where γp reflects the magnitude of the uncertainty which can be tuned to design the controller.

VI.H2/LQG reduced order control design

The reduced-order controller is designed within an H2/LQG optimal control framework [41, 52] to account for

the inflow disturbances and measurement noise. The controller is designed for the state-space system defined by the

state equation (10) and the output equation (21). In addition a controlled output q is defined which is used as control

objective to synthesize the controller. The complete input-output system can be formulated as

u̇e = Āue + B̄cφ + B̄dwd ,

q = C̄1u
e , (22)

pm = C̄2u
e + D̄cφ + D̄dwd + γwn ,

where pm is the measured pressure from the feedforward sensor, the feedback sensor or both sensors, depending on

the configuration. The controlled output is defined by

q = C̄1u =

∫

Γwall

h(x)τxy |Γwall
dx

=
1

Re

∫

Γwall

h(x)∂yu|Γwall
dx, (23)

where h(x) is chosen as a Gaussian distribution function h(x) = exp
[

−((x − xq )/rx )2
]

with xq = 280 the center

of the distribution and rx = 5 the radius. The wall shear stress fluctuations in Eq. (23) is found to be an effective

and robust performance indicator for the input-output configuration considered in this study. The controlled output
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is placed sufficiently far from the actuator (see also Fig. 1) such that the actuator has no direct influence on q and

minimization of q is achieved by minimizing the effect of the inflow perturbations alone. However, it is found that

there is not much sensitivity with respect to the choice of the position xq and the radius rx of the distribution, as long

as it is placed sufficiently far from the actuator.

H2 optimal control theory considers the frequency domain interpretation of the cost function (H2 closed-loop

system norm) while the LQG control theory considers the time-domain interpretation. Both theories are equivalent in

the sense that the H2 control problem can be formulated as an equivalent LQG control problem and vice-versa [52].

In this section, the time-domain LQG cost function, is considered. The control objective is to suppress the wall shear

stress fluctuations defined by q. The LQG cost function to design the controller is defined by

JLQG = E

{

lim
T→∞

1
T

∫ T

0
zT z dt

}

= E

{

lim
T→∞

1
T

∫ T

0
q2 + l2φ2 dt

}

, (24)

with z(t) = [q(t), lφ(t)]T the performance measure to be minimized. Equation (24) also includes a penalty on the

control input defined by the parameter l which determines the trade-off between a low controlled output power q2 and

a low control effort φ2 in the design of the controller. The reduced-order controller that minimizes Eq. (24) is derived

in two steps. First, a reduced-order model (ROM) is derived using balanced truncation [14]. Secondly, the ROM

is used to synthesize the controller and the truncated dynamics are taken into account in the control system design.

Balanced truncation extract the most controllable and observable modes of the system. It first involves a similarity

transformation of the form ue 7→ Sue , which balances the system matrices through Ā 7→ SĀS−1, B̄ 7→ SB̄ and

C̄ 7→ C̄S−1, D̄ 7→ D̄, such that each state has an equal measure for both controllability and observability. The reduced-

order model of order r described by the matrices A,B,C and D is obtained from the balanced matrices by retaining the

rows and columns corresponding to most controllable and observable states. Note that balanced truncation does not

depend on D̄ and that D̄ = D. Also note that balanced truncation does not eliminate physical variables, it only makes

a change of coordinates and represents the physical variables with a reduced-order representation. In other words the

reduced-order balanced variables can be related back to the physical variables through the inverse of the similarity

transformation ue = S−1
r ur , where S−1

r are the first r columns of the inverse of the similarity transformation used to

balance the system. This inverse transformation will be used to visualize the reduced-order state-estimates in Sec. VII.

The optimal controller based on the ROM combines a state estimator and a state feedback, and can be written as a

dynamic system in the form

˙̂ur = Aûr + Bcφ + L (pm − Dφ − Cûr ) ,

φ = −Fûr ,

(25)
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with ûr ∈ R
r the estimated state and where F, L are respectively the state feedback gain and the estimator (Kalman)

gain to be optimized. Note that the observation p̃m = pm − Dφ is used for output feedback rather than pm only,

such that the controller can be synthesized based on p̃m, which fits into the standard form required to synthesize

the controller [41]. Due to the well known separation property [52, pp. 388-390] of the optimal solution the state

feedback and the state estimator can be designed and synthesized independently. The state feedback gain is obtained

by minimizing Eq. (24) when noise is ignored. For the ROM this means to find F that minimizes

J = lim
T→∞

1
T

∫ T

0
uT
r CT

1 C1ur + l2φ2 dt (26)

subject to the closed-loop system dynamics u̇r = (A − BcF) ur . The Kalman gain L is subsequently obtained by

minimizing the covariance of the estimated state

E
{

(ur − ûr )T (ur − ûr )
}

= E
{

ũT
r ũr

}

(27)

subject to the error dynamics ˙̃ur = (A − LC) ũr + (Bd − LDw ) wd − Lγwn . Note that L is optimized to provide an

optimal estimate in the presence of external disturbances wd and wn . For the control design the external disturbances

are assumed to be Gaussian white noise with unit intensity. As a result the estimation problem is parameterized in

terms of γ which reflects the uncertainty in the measurement. It can be shown that with this parameterization γ also

reflects a rms value for the sensor noise relative to the state disturbances [53]. The optimal solutions for the control and

estimation problem can be obtained independently by solving the associated algebraic Riccati equations for Eqs. (26)

and (27) [52, ch.14, pp.375-377], which together form the compensator in Eq. (25). In the design of the compensator

the parameters l and γ can independently be adjusted to achieve the desired closed-loop performance. However,

no guarantees are available about the performance of the controller designed for the ROM on the original system.

Therefore the truncated dynamics are taken into account by evaluating the performance of the controller in combination

with the original system. Combining the compensator in Eq. (25) with the original system in Eq. (22) gives the

following closed-loop system from the external disturbances to the performance measure z(t) = [q(t), lφ(t)]T










u̇e

˙̂ur










=










Ā −B̄cF

LC̄ A − BcF − LC










︸                        ︷︷                        ︸

Acl










ue

ûr










+










B̄d 0

LD̄w Lγ










︸          ︷︷          ︸

Bcl










wd

wn










,

z =










C̄1 0

0 −lF










︸       ︷︷       ︸

Ccl










ue

ûr










. (28)
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TheH2 system norm of the following two closed-loop transfer functions

Tqw =

[

C̄1 0

]

(sI − Acl )−1 Bcl , (29)

Tφw =

[

0 −F

]

(sI − Acl )−1 Bcl (30)

will be used as performance metric to design the controller. ‖Tqw ‖2 is the H2 closed-loop system norm from the

external disturbances to the controlled output and is a measure for the control performance. ‖Tφw ‖2 is the closed-loop

system norm from the external disturbances to the control input and is a measure for the control effort. These norms

are related to the LQG cost function in Eq. (24) through

JLQG = ‖Tzw ‖
2
2 = ‖Tqw ‖

2
2 + l2‖Tφw ‖

2
2 , (31)

where Tzw = Ccl (sI − Acl )−1 Bcl . Based on a convergence analysis for the closed-loop system norms [Eq. (29)-

Eq. (30)], the order of the ROM and corresponding controller is chosen as r = 30. With this order the norms have

converged to the norms of the closed-loop system with the full-order controller and there is no loss in performance

due to the truncated dynamics. Figure 7 shows the contours of the H2 system norms and the relative energy norm

with both feedforward control (a) and feedback control (b) as function of the design parameters (γ, l) for the order
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r = 30 controller. Since no uncertainties are explicitly accounted for in the control design, the combined feedfor-

ward/feedback set-up results in the same contours as the feedforward controller, i.e. feedforward information alone

is sufficiently to reach its design performance. Due to the separation principle of the control design, the state feed-

back and state estimator can be tuned independently through l and γ. A low value for the control penalty l gives an

improved performance at the cost of a higher control effort (higher state feedback gain F). A low value for γ reflects

a low output uncertainty. This gives an improved estimator performance at the cost of a reduced robustness in case

of unmodeled measurement inaccuracies. Note that γ models a relative magnitude of the sensor noise, a convenient

means to account for inaccuracies in the control design. The true magnitude of the noise will be substantially different

for pressure sensors, which typically measure in Volts. Any sensor calibration, e.g. Volts to Pascal, will also change

the magnitude of the noise. Therefore no conclusions can be drawn regarding robustness to sensor inaccuracies based

on the magnitudes of γ in Fig. 7.

It can be observed that both feedback and feedforward control are able to achieve an energy reduction of two

orders of magnitude from a design perspective. However, feedback control has a reduced nominal performance for

a given l and γ and requires a higher control effort as compared to feedforward control. This can be attributed to

the fact that feedforward control is able to act earlier on the incoming perturbations. The benefit of feedback control

is that the controller senses the effectiveness of the control, possibly resulting in an improved performance in off-

design conditions. On the other hand, closed-loop instabilities may be an issue [24] andH2/LQG optimal controllers

have no guaranteed stability margins [54]. To investigate the effect of the controller tuning on both the closed-loop

performance and the closed-stability, two control design points are evaluated: an aggressive controller characterized

by (I) l = 0.025, γ = 0.04 and a more conservative controller characterized by (II) l = 0.05, γ = 0.2. In selecting the

more conservative controller, robustness to output uncertainties is given priority.

VII. Results

The selected controllers are evaluated using linear simulations of the closed-loop system. The model defining a

plate with a total length of Lsim = 400 as discussed in Sec. B is used for simulating the response of the closed-loop

system. All simulations are performed with a sampling time of ∆t = ∆t∗δ∗0/U
∗
0 = 0.2. The performance is studied for

exponentially growing perturbations introduced using optimal initial conditions. The initial condition is optimized to

provide the maximum energy growth

G(t) =
E(t)
E(0)

= max
u0

‖u‖2
L2

‖u0‖
2
L2

= max
‖u0 ‖

2
L2=1
‖u‖2

L2 (32)

at the given final time tmax = 700. At this final time the initial condition is spatially localized upstream of the control

region. The initiation of the perturbations is independent of the disturbance model used to design the controller. It
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Fig. 8 Uncontrolled and controlled energy for the optimal perturbation at Re = 500, m = −0.02. (a) feedfor-

ward control . (b) feedback control.

provides a good benchmark to evaluate the effectiveness of the proposed control design [18], because the controller

is not designed specifically for this perturbation scenario and it only has a limited window in time to counteract the

perturbations that are propagating through the control domain in the form of a localized wavepacket. In addition this

perturbation case allows the proper evaluation of the state estimator performance as the perturbations convect through

the localized control domain. For the design of the estimator the problem is scaled in terms of γ. The role of γ is

to account for uncertainties in the control design. First the nominal performance without uncertainties is evaluated in

Sec. A. The effect of uncertainties in the Reynolds number and the pressure gradient is discussed in Sec. B.

A. Nominal performance

First the nominal performance (Re0 = 500, m = −0.02) of the feedforward and feedback controllers is evaluated.

The two control design points characterized by (I) l = 0.025, γ = 0.04 and (II) l = 0.05, γ = 0.2 are considered,

see also Fig. 7. Since no dynamic uncertainties are present, the combined feedforward/feedback controller gives the

same performance as compared to the feedforward controller; feedforward control alone is sufficient to achieve its

design performance. The combined feedforward/feedback case is therefore only considered in the next section. Fig. 8

shows the perturbation energy growth as function of time with both feedforward control (a) and feedback control (b).

The input-output signals, which are the feedforward pressure measurement pf f (t), the feedback pressure measurement

pf b (t), the amplitude of the blowing and suction φ(t) and the controlled output q(t), for the conservative controller (II)

are shown in Fig. 9. The controlled output q(t) reflects the controller performance as it is used within the control

objective that is minimized by the controller. The spatio-temporal evolution of the perturbation and the performance

of the state-estimator for controller (II) is visualized in Fig. 10. It shows a contour plot of the uncontrolled, controlled

and estimated pressure at the wall pwall (x) for both the feedforward (a) and the feedback (b) control cases. The wall

pressure is computed from the perturbation velocity through the linearized pressure Poisson equation, see Sec. V.
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Fig. 9 Input-output signals for control of the optimal perturbation at Re = 500, m = −0.02. Conservative

controller (II) is considered.

The initial perturbation for the uncontrolled case leads to an energy amplification of G(tmax ) ≈ 3 × 102. After an

initial transient growth the perturbation quickly develops into an exponentially growing wavepacket that propagates

downstream. The energy of the uncontrolled wavepacket reaches a maximum at t = 700 after which it decays again

as the wavepacket leaves the computational domain xsim ∈ [0,400]. The performance of the feedforward and feed-

back controllers is according to their design: The feedforward controllers achieve an energy reduction of two orders

(control (I)) and three orders (control (II)) of magnitude. Controller (II) is more conservative as it takes higher output

uncertainties into account. The feedback controller has a reduced nominal performance as it measures the incoming

perturbations after it has convected passed the actuator. The unsteady actuator effect is clearly visible. The actuator

effect is spatially localized and the controller only has a limited window in time (200 < t < 600) to cancel the incom-

ing perturbations. After this control window the remaining perturbation has the opportunity to develop and to amplify

again, see also Fig. 10. The control input confirms the filtering and feedback of the measurement to minimize the

wall shear stress fluctuations defined by q. By minimizing q the amplitude of the perturbations is reduced in the entire

region downstream of the control domain.

Fig. 10 also visualizes the performance of the localized state-estimator. The location of the sensor (feedback or

feedforward) affects the observable region in which the perturbations is estimated. Note that the Kalman filter also

estimates upstream perturbations as these contribute to the input-output behavior. It estimates both the effect of the

control and the effect of upstream disturbances which are accounted for in the modeling and control design. The

feedback controller is able to estimate the perturbations in the actuator domain since the feedback sensor is placed

closely behind the actuator. The outflow boundary condition [Eq. (5f)] has an artificial effect on the state estimates
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Fig. 10 Uncontrolled, controlled and estimated wall pressure pwall (x) of conservative controller (II). (a) Feed-

forward control. (b) feedback control. Measurement sensor (▽), actuator (△) and controlled output (⊲).

near the outflow of the control domain x = 310. However, this does not affect the estimates in the actuator/sensor

region in which the perturbations are very well reconstructed. As a result the control is able to effectively dampen the

incoming perturbations.

B. Robustness

When applying the controller in a real application, modeling uncertainties are unavoidable and potentially deterio-

rate the nominal performance. Robustness is the ability of the controller to overcome differences/uncertainties between

the actual system and the model used for controller synthesis. The controller is designed in an optimal control frame-
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Fig. 11 Robustness analysis: effect of Reynolds number and pressure gradient on the control performance.

Feedback control (I) is unstable for Re = 700, 800.

work and uncertainties are not directly taken into account in the control design as would be the case for a robust

controller. However, the behavior of the controller can nonetheless be robust to deviations of the flow parameters,

which is investigated in this section. In Belson et al. [24] the robustness of feedforward control and feedback control

was evaluated in the presence of unmodeled disturbances. In this section also a combined feedforward/feedback con-

figuration is considered and the robustness is evaluated in the presence of parametric uncertainties in the Reynolds

number and the pressure gradient characterized by the parameter m. To also investigate the controller tuning on the

robustness, the design points (I) and (II) are considered for all three configurations. The performance of the (in total

six) controllers is evaluated by comparing the ratio between the rms of the controlled and uncontrolled performance

signal rms(qcon)/rms(qunc). The results are summarized in Fig. 11. In addition to support the interpretation of the

results, the response of the perturbation energy for the off-design case Re = 800, m = −0.02 is shown in Fig. 12. The

following observations can be made.

Feedforward control gives the best nominal performance. However, it is also the most sensitive to uncertainties

and a progressive loss of performance is observed for deviations from the nominal designed conditions Re = 500, m =

−0.02. This can be attributed to the different speed, spatial wavelength and growth of the wavepacket. This makes

the control out of phase with the perturbations. Nevertheless, the controller provides an amplitude reduction and

does not destabilize the flow in case of large uncertainties (robust stability is guaranteed). For example, for the case
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Fig. 12 Uncontrolled and controlled energy for the optimal perturbation at Re = 800, m = −0.02. (a) Con-

trol (I). (b) Control (II)

Re = 800, m = −0.04 the controller reduces the rms of q with 40%.

Feedback control has a reduced nominal performance, but it is better able to preserve this nominal performance

in off-design conditions. However, closed-loop instability is of concern. In case of small parameter variations the

aggressive feedback controller (I) gives the best performance, but it becomes unstable for Re = 700 and higher,

see also Fig. 12. Feedback controller (II) takes higher output uncertainties into account and results in stable closed-

loop control and a better performance at larger parameter uncertainties. In short, feedback control results in a better

performance in off-design conditions but requires a more careful tuning of the controller to maintain stability of the

closed-loop.

Combined feedforward/feedback gives the same nominal performance as feedforward control, but a better robust

performance in off-design conditions. Still a progressive loss is observed for deviations from the designed conditions.

This can be attributed to the fact that it initially acts on feedforward information. However, the loss in performance

is significantly less as compared to feedforward control only due to the action of the additional feedback. In addition

the stability is enhanced as compared to feedback control only. Also the aggressive controller (I) results in stable

closed-loop control in the presence of large parameter uncertainties. Overall it is found that feedforward/feedback

control gives the best trade-off between nominal performance, robust performance and robust stability.

VIII. Conclusion

In practical flow control applications, real-time measurements can only be obtained via sensors at discrete locations

at the wall. Especially pressure-based sensors are technically attractive by ensuring that the associated costs of active

flow control are positively balanced by net power savings. However, in past studies, implementation of pressure

sensing in control design has not been treated in a systematic way as part of the control design methodology. In

this paper the problem of point pressure output feedback control of 2-D boundary layer instabilities is addressed. A
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new approach is presented to design and synthesize reduced-order compensators for estimation and control directly

from the governing equations. The use of pressure measurements for dynamic flow estimation gives rise to additional

modeling difficulties and output uncertainties as the pressure at a single point is related to the global flow field. The

input-output behavior, which forms the basis for the estimation strategy, between the external flow perturbations and

the pressure at wall is obtained using a novel method based on the inversion of the linearized pressure Poisson equation.

This allows to relate the measured pressure at the wall with the global perturbation field. The results show that the

dynamic estimation strategy (Kalman filter) is capable of obtaining accurate time-resolved estimates of the convective

perturbation field in the localized control domain from pressure measurements at a single location at the wall.

The optimal LQG controller is designed in both a feedforward, a feedback and a combined feedforward/feedback

actuator/sensor configuration. A comparison study is performed for the three configurations on aspects of nominal per-

formance, robust performance and robust stability in the presence of parametric model uncertainties in the Reynolds

number and pressure gradient. This is the first time that the robustness of a combined feedforward/feedback configura-

tion is evaluated and it is shown that this configuration achieves the best trade-off between robust stability and robust

performance. While feedback control outperforms feedforward control in the presence of uncertainties, it requires

careful tuning of the controller to maintain stability of the closed-loop. Combined feedforward/feedback control en-

hances stability of the closed-loop compared to feedback control and it gives a better robust performance compared to

feedforward control in off-design conditions. It should be noted that uncertainties are not directly accounted for in the

control design and LQG control provides no guarantees on the stability of the closed-loop in the presence of uncertain-

ties. In this study the effect of uncertainties on the stability and performance is assessed from case to case. However,

the framework in this paper can also be used to synthesize robust controllers with a priory stability guarantees in

off-design conditions, e.g. usingH∞ and µ-synthesis techniques.

The next step is aimed at applying the controller in experiments. This work has addressed important issues related

to this next step, including modeling of the input-output dynamics and obtaining experimentally feasible low-order

controllers with sufficient robustness, and thus provides an important step forwards for transition delay in boundary

layer flows.
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