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Mechanisms and Dynamics of Mineral Dissolution: A New
Kinetic Monte Carlo Model

Pablo Martin, Hegoi Manzano,* and Jorge S. Dolado*

Mineral dissolution is a fundamental process in geochemistry and materials
science. It is controlled by the complex interplay of atomic level mechanisms
like adatoms and terraces removal, pit opening, and spontaneous vacancy
creation that can be gradually activated at different energies. Though the
development of a comprehensive atomistic model is key to go deeper into the
understanding of this phenomenon, existing models have failed to reproduce
the abrupt dependence of the dissolution rate with the Gibbs free energy
(𝚫G). Herein, a new atomistic kinetic Monte Carlo (KMC) model is presented,
which, invoking the microscopic reversibility of chemical reactions, captures
the experimentally observed sigmoid dependence of the dissolution rate and
provides new insights on the concomitant dissolution mechanisms. As a
salient result, the model predicts the possible existence of unreported
close-to-equilibrium dissolution modes where spontaneous vacancies
creation and pit opening can occur before adatom and terrace removal.

1. Introduction

Mineral dissolution has high relevance in countless important
geophysical phenomena like soil formation,[1,2] water and petrol
reservoir stability,[3,4] or carbon sequestration,[5–8] among oth-
ers. To describe these phenomena is crucial to completely un-
derstand dissolution process, yet it presents some unanswered
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issues. The dissolution of a solid material
is a complex process which is simultane-
ously affected by the solid surface topol-
ogy (exposed surface, nature of the atomic
bonds, presence of impurities, defects, etc.)
and the nature of the surrounding solu-
tion. Indeed, the driving force of dissolu-
tion is controlled by the Gibbs free en-
ergy (ΔG), which is closely related to the
ion activity in the solvent.[9–16] From ex-
periments, a sigmoidal shape dependence
between dissolution rate and ΔG is gen-
erally obtained (see Figure 1c).[10,12–15,17,18]

Different regions in the sigmoidal func-
tion seem to be governed by different dis-
solution mechanisms depending on the
mineral cohesive energy and ΔG. These
mechanisms can be observed experimen-
tally when vertical scanning interferome-
try and atomic force or scanning electron

microscopy are used to follow the surface topography during
dissolution.[9,10,15,19,20] In a typical curve like the one portrayed in
Figure 1c, three mechanisms with different dissolution rates can
be distinguished:

– Mechanism I. At low negative ΔG adatoms and terraces dis-
solve leading to a flat surface. The dissolution rate is very low
due to the close position to equilibrium state.

– Mechanism II. As ΔG decreases, vacancies and dislocations
of the system become dissolution cores leading to pit opening
and step retreat.

– Mechanism III. As ΔG becomes even lower, any surface atom
can become a dissolution core. However, this only occurs in
minerals with low cohesive energy.

The three dissolutionmechanisms are supposed to be additive
and must coexist, that is, it is not possible to have mechanism II
without mechanism I, or mechanism III without II and I, and
they take place simultaneously. The value of ΔG where the on-
set of dissolution rate takes place due to mechanism II is called
critical ΔG (ΔGcrit).
Computational methods have played an important role in the

last thirty years to give basic atomic level explanation to disso-
lution. In 1986 Lasaga and Blum studied the etch pits forma-
tion due to dislocations using a Monte Carlo (MC) method.[21]

This implied the beginning of the so called flickering-bondmodel
development where the dissolution rate is defined by the ele-
mentary bond-forming bond-breaking reactions.[19,22] About 10
years later,[23] the generalized use of kinetic Monte Carlo (KMC)
method involved a great progress due to its faster computing
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Figure 1. Schematic representation of mineral dissolution processes. a) Representation of a Kossel’s surface with different topographic defects. Dotted
lines represent an infinite hole. b) Potential energy curve in a typical dissolution process. Solid lines represent the fundamental frequency for the
potential wells. c) Dissolution pathways versus ΔG of a mineral. The onset in dissolution rate due to mechanism II is given at ΔGcrit. d) The three
generic dissolution mechanisms.[17] NnK coordination number for a kink atom, NnSA for a step adatom, NnA for an adatom, NnD for an atom close to a
dislocation or step atom, and NnS for a surface atom.

speed. For example, Liang et al. used KMC to consider explic-
itly the effects of structure and surface topography at the molecu-
lar scale in calcite,[24] and more recently, Kurganskaya and Luttge
have used KMC to study silicate[25] and carbonate[26] minerals dis-
solution with atomistic detail at far from equilibrium conditions.
Common KMC models based on transition state theory (TST)

consider that one atom, molecule or coarse-grained block is re-
moved from the system.[11] The rate of this dissolution event, rD,
depends on its dissolution reaction energy barrier ED.

rD =
kB ⋅ T
ℏ

⋅ exp
(
−
ED ⋅ Nn

kB ⋅ T

)
(1)

where kB is the Boltzmann constant, ℏ the Planck constant, T
the temperature, and Nn the number of first neighbors. kB ⋅
T∕ℏ is the commonly named fundamental frequency ff. De-
spite their simplicity, TST-based KMC models allow to study
minerals dissolution at far from equilibrium conditions. In
fact, they capture the inherent topographies associated with
the dissolution mechanisms,[25–28] permit the analysis of ef-
fects like dislocations,[27,28] grain sizes,[29] and particular mineral
structures,[25,26] etc., and even reproduce the experimentally ob-
served pulsating frequency at the nanoscale.[30]

It is generally accepted from the above mechanisms that
the origin of the sigmoidal behavior with ΔG arises from the
interplay between the mineral nanoscale topography and the ΔG
itself. Previous works have regarded the study of dissolution rate
dependence with ΔG by MC method by considering dissolution
and precipitation separately,[22,31,32] failing to reproduce the
dissolution mechanisms over the whole ΔG range. In this work
an extension to the model has been proposed based on TST
and microscopic reversibility (Equations (4) and (5)). The usual
mineral–water reaction equation proposed by Lasaga[21,22] is

complemented, considering dissolution and precipitation events
independently. For each event the rate depends on its specific
energy barriers of dissolution or precipitation and the vicinity of
the dissolved molecule.
For simplicity, the model has been applied to study the disso-

lution of a Kossel crystal. A Kossel crystal, or Terrace Ledge Kink
system (TLK), is a simple mineral structure consisting of a cu-
bic structure with six first neighbors[33] (see Figure 1a). Despite
the simplicity of this system, it ensures enough topographical de-
tails so as to reproduce the mechanisms attributed to the disso-
lution process.
The paper is organized as follows: First, the net dissolution rate

dependence with the main parameters of the model, that is, the
dissolution and precipitation energy barriers, has been explored.
As said before, the model is able to reproduce the sigmoid disso-
lution rate function with ΔG and the intrinsic mechanisms. Sec-
ond, these microscopic parameters have been related to macro-
scopic parameters, like the dissolution onset ΔGcrit, or the ef-
fective activation energy Ea, readily accessible by experimental
means. Finally, experimental data for several minerals have been
fitted, finding a reasonable good agreement in spite of the struc-
tural limits of using a simple Kossel crystal.

1.1. Model Description

As is mentioned above, mineral dissolution depends on the equi-
librium between the solid and the solution, represented by ΔG.
At a microscopic level, the net dissolution rate is the result of
the equilibrium between dissolution and precipitation. On the
one hand, dissolution is related to mineral cohesive energy. On
the other hand, precipitation varies with bothmineral nature and
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saturation grade of solvent. Dissolved atoms tends to stay close
to the mineral, which leads to a high supersaturation state close
to the surface, or what it is the same, to a low negative Gibbs
free energy (ΔG) between mineral and solvent. Under these con-
ditions, close to the surface there could be the possibility for an
already dissolved atom ormolecule to reform its bonds and come
back to the material.[21] In equilibrium, dissolution and precipita-
tion processes have the same probability, what is known asmicro-
scopic reversibility.[34] Bandstra and Brantley[35] used this idea to
develop a simple 2D Isingmodel to study dissolution dependence
with ΔG, achieving a good description. Following that idea, here
it is suggested to divide the net dissolution into two processes
described by the following equations:

rD = ff ⋅ exp
(
−
ED ⋅ Nn

kB ⋅ T

)
(2)

rP = ff ⋅ exp
(
−
EP ⋅ Nn − ΔG∗

kB ⋅ T

)
(3)

Where Nn is the number of first neighbors, ED and EP are the
energy barriers for a dissolution and a precipitation event respec-
tively (see Figure 1), and ΔG∗ is the local Gibbs free energy.
With this model both dissolution and precipitation are taken

into account, and together they describe the net dissolution pro-
cess. Equation (4) is the classic KMC equation that has been
widely used in dissolution kinetics.[25–30] Dissolution is assumed
to be intrinsic for a mineral and its topography, via ED and Nn re-
spectively, and it does not depend on ΔG∗. Equation (5) accounts
for precipitation phenomenon, and takes into account the depen-
dence with the solute concentration by means of ΔG∗, and sim-
ilarly to the dissolution rate equation, the nature of the mineral
and topography is considered via EP and Nn.
Two aspects of the model must be remarked. First, when the

system is very far from equilibrium (ΔG∗ → −∞) the precipita-
tion rate becomes negligible and the proposed model is then re-
duced to the usual Arrhenius Equation (1). Second, if the net dis-
solution rate rD − rP is calculated and ED = EP and no Nn depen-
dence is considered, the general expression for the normal TST
is recovered (Equation (4)).

rD − rP = A ⋅
(
1 − exp

(
ΔG∗

kB ⋅ T

))
(4)

where A is a constant.
In Equation (3) the local ΔG∗ must be related to the macro-

scopic ΔG. For that, the kink site is taken as a reference for the
mineral dissolution[11,33,34] (see Figure 1a). It is a peculiar posi-
tion: independently of the mineral composition an atom in this
position has always half the number of bonds that in the bulk,
and therefore its energy is half. Indeed, it is observed experimen-
tally that the sublimation energy of a crystal corresponds to the
change of the internal energy when detaching a kink atom.[11,33,34]

With this site as reference, ΔG∗ and ΔG for a crystal are related
by the following expression if the activity is set to the unity (Equa-
tion (5))[33,35]:

ΔG = (ΔG∗ − b) ⋅ NnK (5)

where NnK is the coordination of a kink site; in a Kossel crystal
NnK = 3. The constant b can be determined by considering that
equilibrium is reached during dissolution when no kink atoms
can dissolve rD = rP, and hence the macroscopic ΔG = 0 (see
Equations (6) and (7)):

rD(Nn = NnK) = rP(Nn = NnK) → ΔG = 0 (6)

Expressing the result in kBT units, the constant b is:

b = NnK ⋅ (EP − ED) (7)

2. Experimental Section

The system under study consisted in a Kossel crystal with 240 ×
240 × 8 sites for a total of ≈460800 with periodic boundary con-
ditions. With a typical distance between atoms of 2.5 Å,[36] the
system had a size of ≈ 60 × 60 nm. Mineral topography and sur-
face are key factors in the dissolution mechanisms. To simulate
a mineral as real as possible all the different topographic defects
showed in Figure 1a were included. On the surface, a random
number of terraces, vacancies, and adatoms were represented.
The system had two initial dislocations. This equated, for the

system size, to a dislocation density of ≈ 5.5 ⋅ 1010 cm−2. This
value lies into the known dislocation density range for minerals:
106 − 1010 cm−2.[37] The disposition of the dislocations varies with
the crystallographic plane considered. In this paper the simplest
case was considered; the {100}, {010} and {001} planes with per-
pendicular dislocations as they could be appreciated in Figure 1a.
An on-lattice KMC home code was developed using C++11 lan-
guage. Only surface atoms were supposed to react since they
were in contact with the solvent; therefore there were no possible
events for a bulk atom.
A major problem in simulations close to equilibrium condi-

tions is that sites undergo dissolution and precipitation reactions
rapidly. These fast events happen continuously, inducing an ex-
ponential increase on the use of computing resources, blocking
the simulation. Therefore a methodology to advance in time is
necessary, skipping repetitive and computationally time consum-
ing steps. There are several algorithms to avoid such issues,[38–40]

yet a new one was used based on Poisson processes statistics, ex-
plained in detail in Supporting Information. Briefly, for an atom
attempting to dissolve, it is possible to do an estimation of the
probability for that atom to truly leave the mineral taking into ac-
count both dissolving and precipitation rates. System times are
then recalculated based on that probability and plenty of simu-
lation time is saved depending on ΔG value and mineral cohe-
sive energy. While far from equilibrium conditions this does not
make any difference, close to it, in a highly cohesivemineral, sim-
ulations are about 104 times faster.
The next step was to set the values of the model parameters.

The activation energy Ea for a dissolution process of a typicalmin-
eral lies in the range of 30 ≲ Ea ≲ 85 kJ mol−1.[28] Expressing this
in kBT units (kBT = 2.494 kJmol−1 at 300 K), 12 ≲ Ea ≲ 34. In the
model ED represents the bond breaking energy barrier, which in a
Kossel crystal with an average of three broken bonds during a dis-
solution event, should correspond to Ea∕3. Hence, simulations
with ED = 4.0, 7.0, 9.0, 12.0 kBT units were done. Several ΔG
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Figure 2. Dissolution rate versus Gibbs free energy (ΔG). a) Kossel crystal with different precipitation and dissolution energies. Points in red and blue
are represented in panels (b) and (c), respectively. b) Surfaces at a given time tf. c) Time evolution of the surface. The visual representation is done using
OVITO program.[42]

values covering the three mechanism zones were taken starting
fromΔG = 0 and with finer focus on theΔGcrit onset. For the en-
ergy barrier of precipitation events a value of EP = 1.0 kBT units
was taken. The fundamental frequency inminerals can range be-
tween ≈ 1011 and ≈ 1014 s−1.[33,41] A value of ff = 4 ⋅ 1013 s−1 at
T = 300 K was considered for this work. Herein, the presented
results are the average of 5 simulations for each condition unless
the contrary is specified.

3. Results

3.1. Dissolution Rate as a Function of 𝚫G

First, the effect of ED on the dissolution rate as a function of
ΔG is tested. Simulations with ED = 4.0, 7.0, 9.0, 12.0 kBT
units are shown in Figure 2a. It is remarkable that the curves

have the sigmoidal shape found experimentally. To the best
of our knowledge this is the first model that reproduces the
whole ΔG dependence and captures the inherent mechanism
and its topography. Close to ΔG = 0, in mechanism I region,
very low dissolution takes place since only adatoms and terraces
are dissolved. Then dissolution slowly increases until ΔG is
low enough to allow pit opening or mechanism II, leading to a
sharp onset. Finally a steady dissolution rate is obtained at very
low ΔG values when mechanism III governs dissolution if ED
is low enough. It is important to notice that the relationship
between ΔGcrit and ED matches what is seen in experiments; the
higher the ED, the lower the ΔGcrit. Another fact of agreement
with experiments is the maximum dissolution rate far from
equilibrium: the higher the ED, the lower negative rate.
In Figure 2a the cases ED = 7.0 kBT and EP = 7.0 kBT and

EP = 10.0 kBT are studied to show how EP affects mechanisms
and to underline that the TST curve can also be reproduced by the
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model. Two interesting phenomena should be emphasized. On
the one hand, mechanisms II and III can take place very close to
equilibrium conditions. On the other hand, if EP is significantly
higher than ED, spontaneous vacancies can be created and pit
opening is more favorable than adatom removal, provoking very
irregular patterns. To our knowledge, this dissolution mode has
not been proposed before and should deserve experimental vali-
dation. Though at present we cannot prove it, it seems plausible
that this dissolution mode might be involved in the X-ray driven
dissolution instabilities observed by Laanait et al. [43] in Calcite-
water interfaces.
In Figure 2b dissolution patterns are represented in the three

differentiated zones for the four cases in Figure 2a. First, at high
cohesive energies, ED = 12.0 kBT and ED = 9.0 kBT , two dissolu-
tion mechanisms are easily differentiated. Close to equilibrium
only terraces and adatoms are dissolved (mechanism I). Once
ΔGcrit is reached, dissolution is produced almost exclusively from
step retreat (mechanism II). Mechanism III does not exist in
these cases. Second, looking at minerals with low cohesive en-
ergies ED = 7.0 kBT and ED = 4.0 kBT , it can be seen that, like
in the previous case, at close to equilibrium conditions adatoms
and terraces are the only ones which are removed. Once ΔGcrit
is reached pits start to open. But shortly after ΔGcrit value, spon-
taneous opening of surface (mechanism III) happens, the more
the farther from equilibrium. At far from equilibrium conditions
differences in energy between more and less coordinated atoms
are not high enough to prevent them to dissolve closed to ran-
domness, so very irregular patterns are produced.
The difference between mechanisms becomes more evident

the lower the ED is. Therefore, for a better sighting, in Figure 2c
the dissolution pattern at three different times in the onset be-
tweenmechanism II andmechanism III for a ED = 4.0 kBT min-
eral is shown. In minerals with low cohesive energy, in addition
to the contribution to dissolution rate of the dislocation opening,
there is certain contribution from mechanism III.

3.2. Calculation of 𝚫Gcrit as a Function of ED and EP

Dislocations are key structural features for the mineral dissolu-
tion. It is validated in this work that in all studied cases disloca-
tions produce the onset in the dissolution rate at ΔGcrit.

[9,27,44,45]

Once the system is able to remove an atom close to dislocations,
that is, with four neighbors in a Kossel crystal, the dissolution
probability of the atoms in that layer increases due to the appear-
ance of three-coordinated kink site atoms. It is possible to an-
alytically relate the microscopic variables ED and EP used in this
model with the macroscopicΔGcrit by Equation (8) demonstrated
in Supporting Information:

ΔGcrit(kBT units) ≈
(
𝛼 − b − NnD ⋅ (ED − EP)

)
⋅ NnK (8)

whereNnD is the coordination number for an atom close to a dis-
location (see Figure 1a,d), NnD = 4 for a Kossel crystal. 𝛼 value
is determined in the supplementary information to report ΔGcrit
at its middle height value: 𝛼 = −2.3 ± 0.9 kBT . The accuracy of
Equation (8) is checked in Table 1. There is an excellent match
between the ΔGcrit value obtained from simulations and the one
calculated analytically when the transition between mechanism I

Table 1. Validation of Equation (8).ΔGcrit is obtained by applying the Equa-
tion (10), which is later explained, to Figure 2b. ED and EP are in kBT units.
Error in analyticalΔGcrit is ± 1.6 kcal mol−1 (see Figure S2, Supporting In-
formation).

ED EP Simulation
ΔGcrit[kcal mol−1]

Analytical
ΔGcrit [kcal mol−1]

12.0 1.0 −24 −23.8

9.0 1.0 −18 −18.4

7.0 1.0 −15 −14.9

7.0 7.0 −2 −4.1

7.0 10.0 −7 1.3

4.0 1.0 −13 −9.5

and II takes place at a negative ΔG. It must be noted that accord-
ing to expression 8, for a given mineral with a fix ED, ΔGcrit also
depends on EP. Therefore different dissolution mechanisms and
rates can be experimentally reported even with the same mineral
and ΔG. It is also interesting to point that the analytical expres-
sion allows to determine the theoreticalΔGcrit even in conditions
where EP is higher than ED and the onset is produced at posi-
tive ΔG. Indeed, this behavior has been observed by Juilland and
Galluci in alite.[10]

3.3. Relationship between ED and Ea

TST proposes dissolution as a set of elementary reactions that
can take place if the system is able to overcome an energy barrier
determined by an Arrhenius equation.[11]

R = A′ ⋅ exp
(
−

Ea
kB ⋅ T

)
(9)

Where A′ is a constant.
The activation energy in the Arrhenius equation is in fact an

apparent energy because it compiles the contribution frommany
terms and not just the energy barrier of the elementary reactions.
In this sense, the supplementary information includes a deeper
study concerning the fundamental frequency dependence with
temperature, which is closely related to the dissolution rate (see
Equation (1)).
In the idealized simulation model the activation energy Ea can

be written as Ea = NnK ⋅ ED because it is observed experimentally
that the sublimation energy of a crystal corresponds to the change
of internal energy when detaching a kink atom. Nevertheless,
as it is checked below, this relation is not true at the whole ΔG
range.[22] In the next step, the real link between macroscopic Ea
and microscopic ED is explored to compare with the experimen-
tal data.
Experimental studies usually report a single Ea, usually cor-

responding to far from equilibrium conditions in a grain shape
system. Nevertheless, in an infinite surface system Ea actually de-
pends on the dissolution mechanism. In the mechanism I zone,
dissolution is driven by removal of kink atoms in terraces. In
contrast, in mechanisms II/III zones dissolution is driven by
step retreat. Therefore, microscopically, it is expected that Ea m.I ≈

Adv. Theory Simul. 2019, 2, 1900114 © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1900114 (5 of 9)
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Figure 3. Natural logarithm of dissolution rate lnR versus 1000∕T. a) Kos-
sel crystal of ED = 7.0 kBT and EP = 1.0 kBT units. b) Same values for a
diamond-like mineral. Points in black represent far from equilibrium con-
ditions. Points in orange represent close to equilibrium conditions. Error
is smaller than the size of the points. Arrhenius fitting parameters are rep-
resented in Table 2.

Table 2. Activation energy and fitting parameters. Reported values in Fig-
ure 3 for both, a Kossel crystal in mechanisms III and I, and a four co-
ordinated diamond like mineral at far from equilibrium (f.f.e) and close
to equilibrium conditions (c.e). The latter is studied in the supplementary
information.

Kossel crystal Diamond-like system

Mech. III / f.f.e lnA′ 20.98 ± 0.19 20.69 ± 0.05
Ea
ED

4.0 2.2

Ea 70.5 ± 0.6 kJ mol−1 38.0 ± 0.2 kJ mol−1

Mech. I / c.e lnA′ 17.15 ± 0.06 13.8 ± 0.3
Ea
ED

3.1 2.2

Ea 53.73 ± 0.17 kJ mol−1 38.3 ± 0.9 kJ mol−1

NnK ⋅ ED and Ea m.II/III ≈ NnD ⋅ ED, where NnK and NnD are 3 and
4 respectively for a Kossel crystal (see Figure 3a and Table 2).
In order to verify such relationship, Arrhenius equation has

been used to fit the natural logarithm of the dissolution rate lnR
as a function of the inverse of T for fixed ΔG conditions cor-
responding to mechanisms I and III. For that, values of 7 kBT
and 1 kBT units have been chosen for ED and EP respectively.
For the mechanism III, the Kossel crystal described before has
been used, and the dissolution rate at each T is taken as the
plateau value at far from equilibrium conditions. However, to
study mechanism I, a limiting value of the reaction rate R is not
reached. For this case, the beginning of the ΔGcrit onset repre-
sents a good reference point since no contributions from other
mechanisms are involved. In addition, the Kossel crystal topog-
raphy has been modify for a better quantification of the rate. As
only terraces dissolution is the governing mechanism, a surface
with a big terrace of eight sites high has been constructed without
any other surface defect.
As it can be seen in Figure 3a, there is good linear correlation

of dissolution rate logarithm with the inverse of temperature for
bothmechanisms, which indicates that the systems are following
an Arrhenius process as expected. An important consequence is
that the expected values of Ea as a function of ED are obtained
(Ea m.I = 3.1 ⋅ ED and Ea m.II/III = 4.0 ⋅ ED). Therefore, the macro-
scopic dissolution activation energy can be obtained directly from
the computed dissolution reaction energy in any ΔG conditions.

3.4. Comparison with Experimental Dissolution Rates

Next target is to apply the proposed model to describe the exper-
imentally reported dissolution for several minerals: albite,[12,27]

smectite,[13,27] alite,[17] labradorite,[18,27] and K-feldspar.[46] Table 3
contains the obtained values for the model parameters in Equa-
tions (2) and (3), their activation energies, and the ΔGcrit.
The initial values for the simulations have been set as fol-

lows. First the ΔGcrit value is obtained from the empirical Equa-
tion (10). Note that both this empirical equation and Equation (8)
report ΔGcrit at the middle height value. Second, a guess ED
value is chosen based on the dissolution rate limit value at far
from equilibrium conditions. Finally, EP is calculated from Equa-
tion (8). With these initial values simulations are run and the pa-
rameters are adjusted ad hoc to obtain the best possible fit accord-
ing to the regression coefficient between the simulation results
and an empirical fit for the experimental data.
The experimental and computed dissolution rates as a func-

tion of ΔG are shown in Figure 4. Besides, an empirical fitting
function that differs from the previously proposed in the state of
the art[12,34] is shown. The fitting function adds a logistic function
term[47] to the TST expression, and reads as in Equation (10):

R = A ⋅
(
1 − exp

(
ΔG
kB ⋅ T

))

+B ⋅
(
1 − 1

1 + exp(D ⋅ (−ΔG + ΔGcrit))

)
(10)

where A and B are the limiting dissolution rates corresponding
to close and far from equilibrium conditions respectively, and D
is a fitting parameter related to ED and topography.
From Figure 4 it can be first noticed that the sigmoidal shape

of the mineral dissolution rate as a function of ΔG can be re-
produced with the presented model. Furthermore, Equation (8)
provides a ΔGcrit in good agreement with the experimental and
computed values and helps to define the onset in cases in which
transition between mechanism I and II is not so clear, such as
the case of K-feldspar.
The dissolution and precipitation energies ED and EP, the ac-

tivation energies in mechanism I and II regions, and the ΔGcrit
obtained from the fitting are presented in Table 3, together with
experimental dissolution activation energies. All the obtained val-
ues are in reasonable orders of magnitude, yet the experimental
dissolution activation energies are consistently overestimated by
nearly a factor of 2 for all minerals. Clearly, using a Kossel crystal
with the same topography for all the studied minerals will neces-
sary lead to qualitative results. In addition, there is a dependency
of the dissolution rate with the dislocation density.[37,48–51] Such
dependency has been tested with the presented model and re-
veals that the dislocation density is in particular important for
high ED minerals at far from equilibrium conditions (see Sup-
porting Information). Other discrepancies in the values can arise
from considering a ΔG value independent of ion activities, the
unknown initial surface conditions, or the homogeneous funda-
mental frequency value chosen for the study.
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Table 3. Model parameters for minerals. Fitting values for Figure 4 of the corresponding activation energy in each mechanism and comparison with
bibliographic ones. ΔGcrit value obtained by Equation (10) and analytically by Equation (8). (*) This value is obtained experimentally in a plane with
dislocation opening.

Mineral T (K) ED(kBT) EP(kBT) Ea m.II/III (kJ mol−1) Ea m.I (kJ mol−1) Ea exp. (kJ mol−1) Simulation ΔGcrit (kcal mol−1) Analytical ΔGcrit (kcal mol−1)

Albite 357 11.14 10.00 132 99 69.8 [53] −8 −7.3 ± 1.9

71 ± 7 [54]

88.6 [55]

69 ± 5 [56]

Smectite 357 11.73 4.00 139 104 52 ± 4 [57] −23 −21.4 ± 1.9

Alite 300 7.47 4.95 75 56 49∗ [10] −11 −8.6 ± 1.6

Labradorite 300 11.40 8.8 114 85 45.2 [53] −9 −8.8 ± 1.6

Feldspar 423 9.95 10.3 139 104 38.0 [53] −6 −5 ± 2

Figure 4. Comparison of the experimental data with the proposed dissolution theory. a) Albite at pH 8.8 and 357 K.[12,27] b) Smectite at pH 3 and 357
K.[13,27] c) Alite at 300 K.[17] d) Labradorite at pH 3 and 300 K.[18,27] e) K-feldspar at pH 9 and 423 K.[46] Structural visualization is done using VESTA
program.[52]

4. Conclusions

In this work a new atomistic mineral dissolution model is pre-
sented. Based on a KMC protocol, the main novelty of the model
consists in taking into account the microscopic reversibility of
chemical reaction by adding a new precipitation term to the
usual TST dissolution equation. As a result, it is possible for the
first time to reproduce the experimentally observed sigmoidal
dependence of the dissolution rate over the whole ΔG range
by atomistic simulations. Indeed, as proof of concept, the two

main parameters of the model (the dissolution and precipitation
energies) have been calibrated to correctly fit the dissolution
rates of several representative minerals. Besides, and what is
most important, the model successfully captures the proposed
dissolution mechanisms and their activation. The three observed
dissolution mechanisms naturally emerge from the simulations
depending on dissolving energy ED and ΔG: initial irregularities
dissolution (mechanism I) at close to equilibrium conditions, pit
opening and step retreat (mechanism II) when ΔGcrit is reached,
and spontaneous vacancy opening (mechanism III) at far from

Adv. Theory Simul. 2019, 2, 1900114 © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1900114 (7 of 9)
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equilibrium conditions when the ED is low enough. The model
also confirms the generally accepted idea that the onset for the
dissolution rate increase is originated by the opening of pits,
which constantly supplies terraces for step retreat. Interestingly,
according to the simulations, when the dissolution and pre-
cipitation energies are sufficiently low and high respectively,
there can exist close-to-equilibrium dissolution modes where
spontaneous vacancies creation and pit opening can occur before
adatom and terrace removal. These dissolution modes have not
been previously reported, and should deserve due experimental
attention.
In summary, the present model sheds new light on the

subtle dissolution mechanisms, and can open the door to the
development of a comprehensive theoretical framework for
dissolution and other surface-related phenomena like etching
[58]. Future works will be focused on building realistic mineral
models beyond the current implementation based on simple
Kossel crystals.

Supporting Information
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