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IX

Summary

The shape of objects or of regions of interest plays a fundamental
role in digital image analysis. Over the past few decades many ap-
proaches to the characterization of shape and shape similarity have
appeared in the literature. An important class of shape analysis tech-
niques is based on the representation of the outer boundaries of objects.
This class of techniques is studied in detail in this thesis.

Various methods for representing the outer boundaries of two-di-
mensional objects have been proposed. The main goal of this thesis is
to provide a unified theoretical basis for shape similarity analysis on the
basis of parametric contour representations. Unified in the sense that
various contour representations, some of which have been considered
previously in the literature, are presented and their relationships de-
rived. Thereby the theoretical framework, into which these contour
representations fit, is made clear.

Measures of dissimilarity, based on parametric contour representa-
tions, are defined. Apart from establishing relations between the con-
tour representations themselves, we also attempt to establish relations
between the measures of dissimilarity. Furthermore, the possibilities
for contour representation normalization are evaluated and the trade-
off between optimization and normalization, necessary to achieve the
desired invariance properties in the proposed dissimalirity measures, is
discussed.

We relate the concept of symmetry in plane figures with that of
similarity under symmetry transformations. This enables us to define
measures for the quantification of symmetry. or for the lack of sym-
metry (for which we use the term dissymmetry), in a plane figure on
the basis of previously defined dissimilarity measures.

Since the Fourier coefficients of parametric contour representations
have been given much attention in the literature, we formulate,
throughout this thesis, the Fourier coefficient-based counterparts of the
dissimilarity and dissymmetry measures. Where possible we relate both
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tvpes of measures. Some considerations are given for the practical im-
plementation of the proposed techniques. A short survev of the con-
tents of the individual chapters is given below.,

In Chapter 1 we give a short survey of approaches to shape analysis
in the context of two-dimensional image analysis and outline the ap-
proach that is followed in this thesis.

Chapter 2 introduces the parametric contour representations that we
consider and establishes their relations. It also defines the concept of
similarity, which is subsequently reformulated as a relation that exists
between the contour representations of a pair of similar objects. Finally
it discusses two types of plane symmetry: mirror-symmetry and rota-
tional symmetry. The conditions that a contour representation must
satisfy, in order to represent a contour that has these types of symmetry.,
are formulated.

Chapter 3 follows the same lines as Chapter 2. but in terms of the
Fourier coefficients of the contour representations. It also discusses the
consequences of normalized arc length parametrization on Fourier
series expansions of contour representations and gives bounds on trun-
cation errors of finite Fourier series expansions.

In Chapter 4 the measures for dissimilarity and dissymmetry are de-
fined and their theoretical properties evaluated. Relations between
these measures are formulated. These relations will be helpful in solving
the design problem, i.e. out of a multitude of possibilities. which con-
tour representation and which measure, or combination of measures,
should be selected in a given application. To this end also a number of
experiments is performed and evaluated. Furthermore. the trade-off
between optimization and normalization. necessary to achieve the de-
sired invariance of the proposed measures for contour position. orien-
tation and size and for the position of the parametric starting point, is
discussed in this chapter.

In Chapter 5 a discussion of the results. obtained in the previous
chapters, is presented. a number of open problems are indicated and
some suggestions for further research are given.

Finally, this thesis contains three appendices. Appendix A deals with
some mathematical concepts and properties relevant to the contents.
In Appendix B a computationally efficient method for the computation
of the moments of polygonal regions is described and evaluated. Ap-
pendix C discusses the estimation of contour representations through
piccewise polynomial approximation.
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Glossary of special symbols and notations*

Symbol

A

AC

a.e.
a,|n]
b,[n]
BY
CREC(-,~)
€L
e.C
c

c*
CBV
C(p.q)

C,
C

&

Description

arca of the region enclosed by a contour

space of absolutely continuous functions

almost everywhere

real part of ¢,[n]

imaginary part of ¢,[n]

space of functions of bounded variation

Cophenetic correlation coefficient

truncation error bound for chains

space of continuous functions

space of k times continuously differentiable functions
space of infinitely-differentiable functions

space of continuous functions of bounded variation
matrix of data independent coefficients ¢(y, 0: p, ¢)
cophenetic matrix resulting from Single Linkage Cluster-
ing on D

cophenetic matrix resulting from Complete Linkage
Clustering on D

cophenetic matrix resulting from Average Linkage Clus-
tering (UPGMA) on D

* This glossary lists the major special symbols and notations used in this thesis. Some symbols
and notations. that are used only locally and explained there, have been left out of this list.
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C
c(y. 01 p. q)

¢ ln]
¢

D<)

D

D.

(D)
D(p. q)

.

d
d(a. 3. p.q)

d(f,. f2)
dP(fy. f)
d"[fi. £i]
d"|fy. f2]
e f )
d"(fy. o)

d"(fy. f3)

SYMBOLS AND NOTATIONS

the set of complex numbers

data independent coefficient in the computation of the
moment m,, of an N-sided polygon

p-th coefficient of the polynomial (1)
space of sequences that converge to zero

dissimilarity coefficient. generated by a pair of dissimilar-
ity matrices

matrix of dissimilarity coefficients D(-. -)

dissimilarity matrix

dissimilarity matrix average

matrix of data independent coefficients d(a. f: p. q)
translation operator that displaces a contour over ¢
metric

data independent coefficient in the computation of the
moment m,, of an N-sided polygon

dissimilarity measure of index p based on the contour

representation f

mirror-dissimilarity measure of index p based on the con-
tour representation f

discrete dissimilarity measure of index p hased on the
discrete contour representation f[ |

discrete mirror-dissimilarity measure of index p based on
the discrete contour representation f[ |

dissimilarity measure of index p based on the Fourier
representation f

mirror-dissimilarity measure of index p based on the
Fourier representation f

discrete dissimilarity measure of index p based on the
truncated Fourier representation f[ |




SYMBOLS AND NOTATIONS X1

d”(fy, )
di"(fy, f2)
dP(fi. )
d:"( 1. fo]
d"(fi. 1)
dy)(z), z,)
d"(f; m)
a1 m)
d"(f; m)
d“”’[j“: m|
dP(f, n, m)
d(F: n. m)
d'"(f; n)
d” V[ f; n]
d?-9(f; n)

dv-(f; n]

discrete mirror-dissimilarity measure of index p based on
the truncated Fourier representation f[ |

normalized dissimilarity measure of index p based on the
contour representation f

normalized mirror-dissimilarity measure of index p based
on the contour representation f

normalized discrete dissimilarity measure of index p
based on the discrete contour representation f[ |
normalized discrete mirror-dissimilarity measure of index
p based on the discrete contour representation f] |

dissimilarity measure based on the Fourier representa-
tion Z, as defined by Persoon and Fu

measure of dissymmetry m of index p based on the con-
tour representation f

discrete measure of dissymmetry m of index p based on
the discrete contour-representation f| |

measure of dissymmetry m of index p based on the
Fourier representation f

discrete measure of dissymmetry m of index p based on
the truncated Fourier representation f[ |

m-th component of dissymmetry n of index p based on
the contour representation f

m-th component of dissymmetry n of index p based on
the Fourier representation f

measure of dissymmetry n of index pair (p. ¢) based on
the contour representation f

discrete measure of dissymmetry n of index pair (p. g)
based on the discrete contour representation f| |
measure of dissymmetry n of index pair (p. ¢) based on
the Fourier representation f

discrete measure of dissymmetry n of index pair (p. q)
based on the truncated Fourier representation f[ |



X1V

B
E."(f)

E.(f)
ess sup

()::P}(f)

e,(f)
i

]
il
(f)
1A
£l
GCD

g

H{(r)
H,,(m}

hy[n]

h (. f)

SYMBOLS AND NOTATIONS

Young's modulus

infimum of the L”-norm of the approximation error of a
function fover all trigonometric polynomials T, of degree
at most n

(%)
2w
essential supremum

infimum of the L”-norm of the approximation error of a
function fover all trigonometric polynomials t, of degree
at most n, free of a constant term

& L)

generic symbol for any of the contour representations z,
z. Z, y and K (as indicated the context)

sequence of Fourier coefficients generated by f

translation- and scale-normalized version of contour rep-
resentation f

discrete version of contour representation f
truncated version of Fourier representation I
contour average of the function f

norm on L/(27)

norm on ("(Z)

greatest common divisor

generic symbol for any of the real-valued contour rep-
resentations i and K (as indicated in the context)

Heaviside unit step function
frequency response of i,[n]

coefficients of a polynomial FIR filter for the computa-
tion of the p-th coefficient ¢,[n]

cyclic convolution function based on contour representa-
tions of type f
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h. [t f] discrete cyclic convolution function based on discrete
contour representations of type f[ |

Im imaginary part of a complex number

/ moment of inertia

inf infimum

K curvature function

K,[n] approximated curvature function sample

Kooy maximum curvature of a curve or contour

k curvature vector function

LCM least common multiple

L perimeter of a contour

LneC) truncation error bound for piecewise smooth contours

L.(0%) truncation error bound for regular contours

Li:l-) truncation error bound for weakly regular contours

L2, L” Lebesgue spaces

lim limit

O sequence spaces

M, mirror-reflection operator that performs the mirror-re-
flection of a contour about the x-axis

max maximum

min minimum

M, moment of order (p + g)

m (element of) mirror-symmetry

N the set of natural numbers: {1, 2. 3, ...}

n (element of) n-fold rotational symmetry

n-m (elements of) n-fold compositional symmetry

n(r) unit normal function



XVI

f,!'

Suf
Sn(7.0:p.q)

SYMBOLS AND NOTATIONS

Landau order symbol *big oh’

Landau order symbol ‘little oh’

partition

trigonometric polynomial of degree at most n

center of curvature vector at z(r)

set of all partions of the interval [a. b|

trigonometric polynomial of degree at most n. free of a
constant term

unit tangent vector function

real part of a complex number

polar representation of a contour

signed polar representation of a contour

correlation coefficient of a pair of dissimilarity matrices
matrix of correlation coefficients R( -, -)

the set of real numbers

the set of positive real numbers: {x: x € B and x > 0}

the cartesian product of R and R: R° = R x R =
{(x.y): xe Rand y € R}

rotation operator that rotates a contour over an angle «
in counterclockwise direction

radial distance function

signed radial distance function

partial Fourier sum of degree n

data dependent coefficient in the computation of the mo-
ment m,, of an N-sided polygon

scaling operator that scales a contour by a factor

sign function




SYMBOLS AND NOTATIONS XVII

sup
v
§

T\(a.Bip.q)

g

supremum
arc length parameter

ds/de

data dependent coefficient in the computation of the mo-
ment m,, of an N-sided polygon

set of all trigonometric polynomials of degree at most n

parametric shift operator that causes a forward shift of
the parameter of a contour representation over 7

normalized arc length parameter
limy | (1 — 0)

set of all trigonometric polynomials of degree at most n,
free of a constant term

clastic energy or bending energy per unit length

total bending energy, necessary to deform one thin elastic
beam into another

parameter of an analytic form of a position function
unit x-vector

unit y-vector

truncation error bound based on total variation
total variation of f

x-component of the position function z
y-component of the position function z

the set of integers: {..., —1,0, 1, ...}

position function

tangent function

acceleration function
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z,[n]
z,[n]

z,ln]

?‘1

I-;'I\\ 3

~N NN

SYMBOLS AND NOTATIONS

approximated position function sample
approximated tangent function sample
approximated acceleration function sample
position vector function

tangent vector function

acceleration vector function

rotation angle

rotation normalization parameter

scaling coefficient

scale normalization parameter

class of simple closed curves

class of piecewise regular simple closed curves
class of piecewise smooth simple closed curves
class of piecewise weakly regular simple closed curves
class of regular simple closed curves

class of smooth simple closed curves

class of weakly regular simple closed curves
contour

difference operator

second order difference operator

Dirac delta function

displacement of a contour in the plane: reference position
with respect to a contour

translation normalization parameter based on the con-
tour average

translation normalization parameter based on the region-
al average over the area enclosed by a contour
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n(k)
0

¢
aln]
Ar(X. ¥)
Wy

Paln]

w

argument of the Fourier coefficient Z(k)
tangent angle function

de/de

approximated tangent angle function sample

space of functions that satisfy a uniform Lipschitz condi-
tion

Lipschitz constant

n-th Lebesgue constant
normalization parameter for
central moment of order (p + ¢)
angle of revolution

accumulated angle of revolution
polynomial centered at z{n|
radius of curvature

cyclic correlation function based on contour representa-
tions of type f

discrete cyclic correlation function based on discrete con-
tour representations of type f[ |

forward shift of a contour representation parameter
starting point normalization parameter

cumulative angular function

approximated cumulative angular function sample
characteristic function of a region R = R?

periodic cumulative angular function

approximated periodic cumulative angular function sam-
ple
normalized frequency parameter

magnitude
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(R[5}

in

SYMBOLS AND NOTATIONS

norm
gradient operator
(cyclic) convolution
for all

is an element of
union

intersection

is a proper subset of

is a subset of




Chapter 1
Introduction

1.1 Shape analysis: a classical problem in the analysis of image data

This thesis is devoted to digital shape analysis, and in particular to
its quantitative aspects. Our visual system uses shape as an important
feature to recognize and order the things in the world that surrounds
us. Therefore it is not surprising that, in the attempts to equip machines
with recognition capabilities, shape analysis has always been an impor-
tant topic. This statement appears to be true not only when it concerns
a rather simple task of printed character recognition, where shape ana-
lysis can be one of the final steps in the recognition process, but also
in complex, wide-ranging computer vision tasks in an artificial intelli-
gence context, where shape analysis in general provides only an inter-
mediate result.

Our visual system is remarkably capable of associating and recogniz-
ing shapes. Probably in part as a result of the ease with which we
recognize shapes, we have not developed a rich vocabulary for describ-
ing shape, let alone ways of quantifying shape or differences between
shapes. The latter is also caused by the fact that our visual system is
very bad at assessing population variance. Our descriptions of shape
are usually of a qualitative nature. In fact, the development of quanti-
tative methods for shape analysis and comparison, that do not yield
results that are in conflict with our perception, is hampered by our own
limited abilities to quantify shape and shape differences.

According to The Shorter Oxford English Dictionary [1975], shape
stands for ‘external form’ or ‘contour’ or, more precisely, ‘that quality
of a material object or geometrical figure which depends on constant
relations of position and proportionate position among all the points
composing its outline or external surface.’ In this thesis we will deal
only with planar shapes, since images in digital image analysis usually
portray two-dimensional projections of three-dimensional scenes. We
will not study external surfaces that determine the shape of three-di-
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mensional objects. despite of the growing interest in three-dimensional
shape analysis and representations in areas such as computer vision
(Ballard and Brown [1982], Horn [1986]) and computer graphics (New-
man and Sproull [1979]. Foley and Van Dam [1982]).

In many applications, such as for example character recognition,
computer analysis of microscopic slides and many industrial inspection
tasks. two-dimensional shape analysis turns out to be adequate. Fur-
thermore, the complexity of three-dimensional shape analysis often still
does not allow its application in practice. As mentioned ecarlier, we
usually have only two-dimensional information at our disposal. Some-
times, if the shape analysis problem concerns only a limited set of
known objects, a “dictionary’ of two-dimensional perspective projec-
tions is used to match or interpolate the shapes to be analyzed (Richard
and Hemami [1974], Wallace and Wintz [1980]. Wallace and Mitchell
[1980]. Sarvarayudu [1982]).

In stereology, many problems are of an inherently three-dimensional
naturc, whereas the information available is two-dimensional, ¢.g. thin
slices of material. Three-dimensional information is extrapolated from
the results of two-dimensional image and shape analysis. using tech-
niques from integral geometry and statistics (DeHoff and Rhines
[1968]. Weibel [1979]. Weibel [1980]. Serra [1982]).

Following the verbal formulation of the concept of shape just given,
we will not consider the internal structure of an object, such as its
brightness, colour, texture, etc.. to be part of its shape. In studying the
shape of an object. we will merely deal with its geometrical properties.
Furthermore. we will assume that shape is invariant under the following
transformations:

e (ranslation
e scaling
e rotation.

These transformations, the equiform transformations or similarity
transformations. form a group: the equiform group. As a result we may
form equivalence classes of shapes that can be mapped onto one
another by the similarity transformations. Equivalent shapes are called
similar. Note that, if we were interested in the stronger property of
congruence among shapes, we would have to discard the property of
invariance under scaling.
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The importance of shape as a tool for analysis, ordering and classifi-
cation has led to the study of shape in many, diverse fields of science
and has resulted in an abundant literature on this topic. This abundance
causes a useful review, that would do justice to the many approaches
and contributions, to be outside the scope of this thesis, even when
such a review would be restricted to the context of pattern classification
and digital image analysis. Therefore we will mention only some impor-
tant or interesting texts, along with some historical remarks, that will
provide access to the enormous amount of literature available. We will
also list some major distinctions in approaches to shape analysis by
computer and outline the approach that we will use.

An early study of shape in the context of biology and evolution is
that of Thompson (Thompson [1942], Thompson [1961]). This impor-
tant work remains a source of inspiration to this day. See for example
Bookstein [1978], which also contains many references to the work of
followers of Thompson.

Understandably, shape and especially shape perception constitute a
popular topic in the psychology literature. Some early reports on the
quantitative study of shape, in the context of psychology, can be found
in Attneave [1954], Attneave and Arpoult [1956] and Hake [1957].
Visual perception of shape is dealt with in books by Zusne [19701,
Cornsweet [1970] and Rock [1973]. Concerning the mathematical mod-
elling of visual perception we mention Zeeman [1962], Moore [1971]
and Moore, Seidl and Parker [1975]. A coding-type theory of visual
perception is proposed in Leeuwenberg [1968].

Shape is used as a tool for the seriation of objects in archeology and
in the history of art (cf. e.g. Clarke [1968], Plomp [1979]), and for
grouping objects or designs in anthropology.

In particle analysis shape is used as a parameter to determine physical
properties of particles (cf. €.g. Schwarcz and Shane [1969], Ehrlich and
Weinberg [1970]. Beddow [1980], Beddow and Meloy [1980], Beddow
[1984a], Beddow [1984b]).

In the context of providing machines with recognition capabilities,
Minsky and Papert’s book [1969] is a classic text, emphasizing concepts
from topology and computational geometry. Texts of a more general
nature, that pay considerable attention to shape analysis and represen-
tation by computer, are Duda and Hart [1973], Gonzalez and Wintz
[1977], Ballard and Brown [1982] and Levine [1985]. Pavlidis [19774]
is almost entirely devoted to shape analysis, while Pavlidis [1982] deals
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for the larger part with shape representation. The latter book em-
phasizes the interrelations between image processing, pattern recogni-
tion and computer graphics. We note that shape is a common issue in
the processing. recognition and generation of pictorial data. We also
note the importance of the computer graphics literature as a source of
information about the representation and processing of shape informa-
tion. In this context we already mentioned Newman and Sproull [1979]
and Foley and Van Dam [1982]. Also the work of Hou [1983]. which
deals with digital document processing, is a valuable reference in this
respect.

With the practice of stereology in mind, Serra [1982] presents an
in-depth study of the effects of digitization and operators and the size
of these operators upon the topological and geometrical properties of
objects in the images under study. In this respect we also mention
Ahuja and Schachter [1983].

In many applications. such as cell analysis. chromosome analysis and
particle analysis. the shape of the objects of interest changes with the
resolution at which they are observed and. consequently. can only be
defined by convention. A detailed exposé of such phenomena and their
mathematical modelling is given by Mandelbrot (Mandelbrot [1977].
Mandelbrot [1982a]). The mathematical models proposed by Mandel-
brot have been applied, for example. in computer graphics (e.g. Car-
penter [1980], Fournier. Fussel and Carpenter [1982]. Mandelbrot
[1982b], Kajiya [1983]. Pentland [1983]). The consequences of the de-
pendence of shape on resolution for digital shape analysis largely re-
main to be studied.

Pavlidis has published two survey papers on shape analysis by com-
puter: Pavlidis [1978] reviews digital shape analysis in general. while
Pavlidis [1980a] is devoted to contour-oriented approaches to digital
shape analysis. The latter paper is commented upon in Wallace [1981].
A supplementary review of digital shape analysis literature can be found
in Sarvarayudu [1982]. Though completeness may not be expected from
these surveys. they provide for a distinction between a number of shape
analysis techniques and for access to the literature. A most useful entry
into the literature on digital shape analysis is provided by the extensive
bibliographies on picture processing by Rosenfeld., published annually
since 1972 in the journal Computer Graphics and Image Processing. In
1980 this journal had its name changed to Computer Vision, Graphics
and Image Processing.
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We now present some criteria to distinguish methods of digital shape
analysis that will enable us to classify the approach that will be used in
this thesis.

One criterion to distinguish shape analysis techniques is the subdivi-
sion into information-preserving and information-nonpreserving tech-
niques, depending upon whether a shape can be reconstructed with a
controllable level of precision from the representation, used in its ana-
lysis, or not.

A second criterion to distinguish shape analysis techniques is the
subdivision into region-oriented and contour-oriented techniques, also
referred to as internal and external techniques, respectively (Pavlidis
[1980a]).

A third criterion is the discrimination between techniques that map
the pictorial data. containing the shape information, into a set of num-
bers and those that map these data into another picture. This distinction
between scalar transform techniques and space domain techniques in
Pavlidis [1978] is rather subtle and with some shape analysis techniques
it can hardly be made. Virtually all shape analysis techniques, at some
stage in the analysis, transform the pictorial information into a set of
numbers or symbols to represent the shape information.

The distinction between shape analysis techniques that are concerned
with local shape properties and those that perform global shape analysis
constitutes a fourth discriminatory criterion.

Further we mention as a fifth criterion for discrimination, the distinc-
tion between techniques that use a deterministic approach to shape
analysis and those that use statistical techniques, based on a stochastic
model.

We note that tools from many different mathematical disciplines have
been used in various approaches to digital shape analysis: elements
from set theory, algebra, topology. mathematical analysis, differential
geometry, integral geometry. probability theory. graph theory, formal
languages and automata theory, etc. can all be found in the literature
on shape analysis.

1.2 Scope of this thesis and an outline of its contents

Our starting point for digital shape analysis will be the segmented
image, in which the individual connected components have been iden-
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tified and labelled (cf. Gonzalez and Wintz [1977]. Pavlidis [1982]. Da-
nielsson [1982]). These components will be the subject of shape analy-
sis. As we do not consider the internal structure of these components
in the original picture to be part of their shape. this is a reasonable
starting point. In this thesis we will concentrate for the major part on
information-preserving, contour-oriented. global. deterministic tech-
niques. The techniques that we will study can also clearly be classified
as scalar transform techniques. as defined by Pavlidis [1978].

A number of reasons why contour-oriented shape analysis technigues
are popular can be given. Shape information is contained in the con-
tours of objects (Attneave [1954], Attneave and Arnoult [1956]). This
point of view is confirmed by observations that edge detection consti-
tutes an important aspect of shape recognition by the human visual
system (Zusne [1970], Shapley and Tolhurst [1973]. Marr [1976]. Marr
and Hildreth [1980]. Marr [1982]) and by psychovisual experiments
studying eye movements (Zusne [1970]. Noton and Stark [1971a]. No-
ton and Stark [1971b]).

Information-preserving contour representations allow for a recon-
struction of the segmented image, I additional processing has been
performed on the contours in the segmented image or on their represen-
tations, then a good approximation of the segmented image can still be
obtained. By means of contour representation we obtain in general a
considerable data reduction, compared with the segmented picture,
without loss of information. Furthermore. shape analysis techniques.
that are based on parametric contour representations, are intimately
related with well-founded mathematical disciplines such as mathemati-
cal analysis and differential geometry. At the application level, methods
from numerical analysis and digital signal processing can be readily
applied.

Region-oriented shape analysis techniques. on the other hand. are
often very time-consuming. With some region-based techniques. such
as template matching. invariance for orientation and for scaling is hard
to accomplish.

Shape analysis techniques that give rise to graph-like structures as a
means of representation (e.g. Fischler and Elschlager [1973]. Pavlidis
[1977a]. Shapiro [1980], Shapiro and Haralick [1981]. Bunke and Aller-
mann [1983]), usually lead to computationally intensive matching prob-
lems. such as (sub)graph isomorphism problems. See for example Read
and Corneil [1977] and McGregor [1979] for a discussion of (sub)graph
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isomorphism problems. Noise and distortion usually are problems that
are difficult to deal with in structural shape analysis techniques. The
same holds for syntactic shape analysis techniques, which are discussed,
for example. in Fu [1974], Fu [1977] and You and Fu [1979]. Though
a number of parsing techniques have been developed for syntactic shape
analysis. both in structural and in syntactic shape analysis, the inference
problem remains largely unsolved.

With contour-oriented shape analysis techniques, noise in contour
representations can be reduced, using techniques from numerical ana-
lysis or digital signal processing or by means of techniques that have
been developed especially for contour-oriented digital shape analysis
(cf. Bowie and Young [1977a], Van Otterloo [1978]).

The methods that we will describe for shape analysis provide mea-
sures for the geometrical aspects of symmetry in objects and similarity
between objects. We will pot deal with any field of application in par-
ticular. In image analysis applications, where the geometrical aspects
of similarity between objects is of importance, the methods described
here can prove to be useful. This does not mean that we claim that the
methods described in this thesis can be usefully applied in every appli-
cation: different applications will require different approaches, thereby
ruling out the thought of a uniquely optimal approach. The results of
our symmetry analysis methods can be used as properties of the shapes
under study. The results of our similarity analysis methods can be
applied in shape clustering algorithms, in order to determine shape
classes. They can also serve as intermediate results in structural shape
analysis methods and in complex computer vision tasks, or they can be
used directly for shape classification.

Global shape analysis techniques sometimes pose problems in the
case of heavily distorted shapes. For example, due to bad signal-to-
noise ratio conditions in the original picture and/or due to imperfections
resulting from the segmentation procedure, parts of objects in the orig-
inal picture may have been assigned to other connected components in
the segmented image. Overlapping objects constitute another problem
that is usually not yet taken care of at the segmentation stage of the
analysis. In such cases it may be desirable to incorporate a feedback
from the shape analysis stage to the segmentation stage. A number of
methods have been developed for the detection and handling of over-
lapping objects (cf. e.g. Arcelli and Levialdi [1973], Eccles, McQueen
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and Rosen [1977]. Sychra et al. [1978]. Dessimoz et al. [1979]. Lester
et al. [1978]. Bengtsson et al. [1981]. Kailay. Sadananda and Das
[1981]. Bhanu and Faugeras [1981]. Turney. Mudge and Volz [1984]).
In such cases. where the segmented picture contains deficient shapes.,
the possibility to perform similarity analysis on partial shapes. or. equi-
valently. on contour segments that represent incomplete shapes. may
be required. Similarity measurement methods based on coefficients
generated by global transformations are obviously of an inherently
global nature: local shape properties cannot be taken into account with
these methods. Similarity measurement methods based on the Fourier
coefficients or on the Walsh coefficients of parametric contour rep-
resentations. which are among the most popular of all contour-oriented
shape analysis techniques. belong to this class. However. the parametric
contour representations themselves can be linked directly. and thus
locally. with the contours in the space domain. Therefore. similarity
measurement methods based on parametric contour representations
themselves can almost immediately be used for the analysis of similarity
between shape segments. In this thesis we will formulate shape similar-
ity measurement only for closed contours. but the generalization of
such a measurement to shape segments is simple and straightforward.

Region-oriented shape analysis techniques distinguish themselves
from contour-oriented techniques in that the former techniques can
deal directly with topologically nonsimple components. i.e. components
with holes. In such cases. contour-oriented techniques will have to deal
with the outer boundaries of the components and of the holes sepa-
rately. At a higher hierarchical level in the analysis the results of the
analysis of the individual boundaries of the components must be linked
with information about the relative positions. sizes and orientations of
these boundaries. At these higher levels in image analysis labelled
graphs are useful to represent the information extracted from the
image. despite the computational complexity when it comes to matching
graph structures (Read and Corneil [1977]).

The main goal of this thesis is to provide a unified theoretical basis for
shape similarity analysis on the basis of parametric contour representa-
tions. Unified in the sense that various contour representations. some of
which have been considered previously in the literature, will be presented
and their relationships derived. Thereby the theoretical framework, into
which these contour representations fit. will be made clear.
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Apart from establishing relations between the contour representa-
tions themselves, we will also attempt to establish relations between the
measures of dissimilarity that are based on these contour representa-
tions. Further. the trade-off between optimization and normalization,
necessary in order to achieve the desired invariance properties in the
proposed dissimilarity measures, will be evaluated.

We will relate the concept of symmetry in plane figures with that of
similarity under symmetry transformations. This enables us to define
measures for the quantification of symmetry. or for the lack of sym-
metry (for which we will use the term dissymmetry). in a plane figure
on the basis of previously defined dissimilarity measures.

Since the Fourier coefficients of parametric contour representations
have been given so much attention in the literature, we will, throughout
this thesis, formulate the Fourier coefficient-based counterparts of the
dissimilarity and dissymmetry measures. Where possible we will relate
both types of measures. Some considerations will be given for the prac-
tical implementation of the proposed techniques. A short survey of the
contents of the individual chapters is given below.

Chapter 2 introduces the parametric contour representations that we
will consider and establishes their relations. It also defines the concept
of similarity, which is subsequently reformulated as a relation that exists
between the contour representations of a pair of similar objects. Finally
it discusses two types of plane symmetry: mirror-symmetry and rota-
tional symmetry. The conditions that a contour representation must
satisfy, in order to represent a contour that has these types of symmetry,
are formulated.

Chapter 3 follows the same lines as Chapter 2, but in terms of the
Fourier coefficients of the contour representations. It also discusses the
consequences of normalized arc length parametrization on Fourier
series expansions of contour representations and gives bounds on trun-
cation errors of finite Fourier series expansions.

In Chapter 4 the measures for dissimilarity and dissymmetry are de-
fined and their theoretical properties evaluated. Relations between
these measures are formulated. These relations will be helpful in solving
the design problem, i.e. out of a multitude of possibilities, which con-
tour representation and which measure, or combination of measures,
should be selected in a given application. To this end also a number of
experiments is performed and evaluated. Furthermore, the trade-off
between optimization and normalization, necessary in order to achieve
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the desired invariance for translation. rotation, scaling and parametric
starting point in the proposed measures, is evaluated in this chapter.

In Chapter 5 a discussion of the results, obtained in the previous
chapters, is presented, a number of open problems are indicated and
some suggestions for further rescarch are given.

Finally. this thesis contains three appendices. Appendix A deals with
some mathematical concepts and properties relevant to the contents.
In Appendix B a computationally efficient method for the computation
of the moments of polygonal regions is described and evaluated. Ap-
pendix C discusses the estimation of contour representations through
piccewise polynomial approximation.
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Chapter 2

Parametric contour representation,
similarity and symmetry

2.1 Parametric contour representation

In Section 1.2 we gave a short survey of two-dimensional shape anal-
ysis techniques and provided a number of references to the literature
on this subject. Following the arguments we put forth in that section,
we restrict our attention to techniques that make use of the shape
information contained in the outer boundaries of objects/regions in
two-dimensional images.

The class of curves, that represent object contours or outlines. is
formed by the class of simple closed curves in the plane. It is the pur-
pose of this section and Section 2.2 to present mathematical tools for
the representation of such curves. We are particularly interested in
representations that are information-preserving, i.e. representations
that allow for an exact reconstruction of a shape. Special attention will
be given to the mathematical relations that exist between these repre-
sentations.

For digital shape analysis it is important to have a proper model for
the smoothness of the contours to be analyzed. Therefore, in this sec-
tion and in Chapter 3 we will define a number of smoothness classes of
contours.

We consider the shape of an object/region to be invariant for transia-
tion, rotation and scaling. Operators, that produce these operations,
will be introduced in Section 2.2. The effects of these operators upon
various contour representations will also be described.

In Section 2.3 we will define the concepts of geometric similarity and
geometric mirror-similarity. Subsequently these concepts will be formu-
lated as relations between pairs of contour representations.

The concepts of geometric mirror-symmetry, n-fold geometric rota-
tional symmetry and n-fold geometric compositional symmetry will be
defined in Section 2.4. These concepts will then be formulated as special
properties of contour representations.
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In Section 2.5 we will review the results of this chapter.

The most direct and flexible description of a curve y in the plane is
a parametric representation

x=x(r), y=y), tela. bl {241

where x(¢) and y(t) are real-valued continuous functions of the real
parameter (. Since both x(1) and v(r) belong to the set of real numbers
R. a point on the curve is represented as an element of B X R or,
cquivalently, of R°, The values of the parameter ¢ serve to distinguish
different points on the curve y. i.e. for each value of 1 € [a. b] there
exists one and only one point (x(¢). v(z)) on y. In this way y is defined
as the image of a continuous mapping of the interval [«. b] onto the
curve in the plane. The points on the curve are ordered according to
increasing values of 1.

In view of the parametric representation of a curve. as defined in Eq.
2.1.1. a curve can be represented in an illustrative way by a vector
function in R*;

z(t) = x(Hu, + v(Du,. 1€ |a.b]. {202
where (= (] B (2.1.3a)
u = (0. 1) (2.1.3b)

is a pair of orthogonal unit vectors that spans B*. We will call z = z(r)
the position vector function of a curve y. With this representation v is
the locus of the endpoints of the vectors z(r) as the parameter ¢ traces
out the interval [a. b].

In many situations it is convenient to identify each point (x(1). v(1))
e R with z(1) = x(t) + iv(t) € C. the set of complex numbers (Yaglom
[1968]). In that case a curve y is represented in the complex plane by
the equation

z=2z(t) = x(1) + iy(t). 1€ [a,b]. (2.1.4)

We call z = z(1) the position function of a curve .
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It will depend upon the particular situation whether we represent y
by a real-valued two-dimensional vector function or by a complex-
valued function. A vector formulation gives good insight into the nature
of some other contour representations, that will be defined in the next
section, while the formulation of some of these contour representations
as complex-valued functions provides more analytical convenience. Sca-
lar contour representations are of course formulated as real-valued
functions.

The continuity of the mapping from the r-interval onto y guarantees
that points that are ‘close’ in the t-interval are also ‘close’ on y. As we
remarked before, the points on y are ordered because the values of the
parameter 7 are ordered in the interval (a, 6. This enables us to define
a sense on y, thus making y an oriented curve. It is customary to define
the positive sense on the curve in the direction of increasing 1.

The parametrization of a curve y can be accomplished in many ways.
Any monotonic continuous function 7 = y(1), t € [a. b], defines a
parameter t such that x and y are continuous functions of 7 and that
different values of 7 correspond to different points on y. If 7 is a
monotonic increasing function of ¢, then 7 € [y(a), x(b)] and the sense
on y will be preserved. If, however, 7 is a monotonic decreasing func-
tion of ¢, then 7 € [¢(b). y(a)] and the sense on y will be reversed. The
change in parameter is reversible iff (if and only if) y(1) is either strictly
increasing or strictly decreasing (Ahlfors [1953]).

A curve y is said to be a simple curve or a Jordan curve if it does not
intersect itself:

2) = 2(6) iff =10, t,ne|a b (2.1.5)

A curve y is closed if the initial point @ and the terminal point b of the
parameter interval are mapped onto the same point of y:

z(a) = z(b). (2.1.6)

Definition 2.1. Simple closed curve.

A curve y is a simple closed curve iff there exists a continuous mapping
z of the parameter interval [a, b] onto y that satisfies both Eq. 2.1.5
and Eq. 2.1.6. O
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The class of simple closed curves will be indicated by I'. Usually the
sense or positive orientation of a curve y € I'is chosen to be coun-
terclockwise, i.e. if we travel along the curve in the direction of increas-
ing t, then the interior of y. i.e. the region bounded by y. will be on the
left of y.

Within I' we can discriminate several subclasses of simple closed
curves, First we define the class I, of smooth simple closed curves.

Definition 2.2. Smooth simple closed curve.
A curve y is a smooth simple closed curve iff:

* rel (2.1.7a)
e Zexists and is absolutely continuous everywhere in the

interval [a. b]. i.e. z € ACla. b] (cf. Appendix A). (2.1.7b)
e : +# () everywhere in the interval [a. b]. (2.1.7c)
e :z(a) = z(b). (2.1.7d)
Remark.

Instead of the requirement in Eq. 2.1.7b. mere continuity of = in the
interval [a. b] is sufficient in the usual definition of a smooth simple
closed curve. We require z of a smooth simple closed curve to be abso-
lutely continuous to ensure that the curve can be reconstructed from
the second derivative of its position function z, as we will show in the
next section.

&

In the above.

_dz(r)

z=z(1) v

(2.1.8)

denotes differentiation of the curve representation z with respect to its
parameter . If no confusion can arise we will in general delete the
parameter. By Eq. 2.1.7¢ it is guaranteed that the mapping from the
t-interval into the plane is locally topological. i.e. the mapping sets up
a point-to-point correspondence that is continuous in both directions.
For simple closed curves that satisfy the condition in Eq. 2.1.7¢ the
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mapping is even globally topological: the curve is the topological equiv-
alent of the interval [a, b] (Stoker [1969]). An even more restricted
class of curves is the class I, of regular simple closed curves.

Definition 2.3. Regular simple closed curve.
A curve y is a regular simple closed curve iff:

e yel, (2.1.9a)

® 7 exists and is continuous everywhere in

the interval [a, b], (2.1.9b)

®  Z(a) = Zb). (2.1.9¢)
O

In Definition 2.3 Z = #(t) stands for the second derivative of z with

respect to its parameter (. The boundary conditions, as expressed by
Egs. 2.1.7d and 2.1.9¢, are enforced in order to ensure that the proper-
ties of y will not depend upon a particular choice on the curve of an
image z(a) of the initial point of the parameter interval, a. In mechan-
ical engineering and in computer graphics, where the modelling of
curves by splines is rather popular, regular curves are frequently en-
countered since cubic splines belong to this class (De Boor [1978]).

The class I, of piecewise smooth simple closed curves consists of
curves that satisfy Eqs. 2.1.7a, ¢ and that satisfy Eq. 2.1.7b, except for
a finite number of points in [¢, b]. In an analogous way the class I, of
piecewise regular closed curves is defined. The class of simple closed
polygons is an important subset of I',., since it provides for a mathemat-
ically tractable approximation to curves encountered in practice. We
remark that our notion of a piecewise smooth simple closed curve is
more restrictive than the usual concept of a simple closed contour in
the mathematical literature (cf. e.g. Ahlfors [1953], Churchill, Brown
and Verhey [1974]). We will use the term contour to indicate the outer
boundary of a two-dimensional object and assume that its mathematical
properties correspond to those of piecewise smooth simple closed
curves. The results we derive, however, are often valid for a wider class
of simple closed curves.

From the definitions in the foregoing the following inclusion relations
follow immediately:
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s

Lhellch,cl (2.1.10)
and

el eyl (2.1.11)

The arc length of a curve y, parametrized by 1 on the interval [a. b].
is defined as the integral

b h
s(a, b) = J |2|dt = J [ + 3 "dr. (2.1.12)

The class of curves for which this integral exists forms the class of
rectifiable curves (Courant and John [1965]). The class I, is a subset
of the class of rectifiable curves: the arc length or perimeter of a curve
y € I is the sum of the arc lengths of the smooth arcs of y. The arc
length of a curve is independent of a particular parameter representa-
tion of that curve. Further, the arc length of a curve is invariant under
a rigid motion of the curve in the plane (Stoker [196Y]). By a rigid
motion in the plane we mean a combination of a rotation and a transla-
tion.
By applying the fundamental theorem of calculus to

!

Sla, )= J’ I.i':{r) + j':[r]] dr (2.1.13)
U

we obtain an expression for the element of arc length ds:

ds = [¥(1) + ¥°(1)] du. (2.1.14)

If we interpret the parameter 1 as time, then
. ds - 2 pAT -
§= ” = [.t‘"(!} + _\"{r)] ) (2:1.15)

expresses the speed of motion along the curve. From Eq. 2.1.15 we
see that the condition in Eq. 2.1.7¢ simply states that the speed of
motion along the curve as a function of the parameter ¢ shall nowhere
be equal to zero. If the arc length s is used to parametrize a curve. then
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Eq. 2.1.15 becomes:
§=[#s) + )] =1 (2.1.16)

everywhere along the curve. Due to the invariance properties of arc
length, which we have just mentioned, it constitutes the natural
parameter of a curve.

In practice we want to define interpretable measures for similarity or
dissimilarity between shapes for which the computational efforts of
matching pairs of shapes, by means of their parametric representations,
can be kept within acceptable limits. Therefore we consider it appropri-
ate, though not in all situations ideal. to require that the speed of
motion along a curve, Eq. 2.1.15, is constant, i.e. that § is independent
of .

Almost all of the parametric representations for simple closed curves,
that will be introduced in this and the next section, are periodic func-
tions. In view of the Fourier expansion of such representations, it is
convenient to choose for the fundamental parameter interval [a. b] an
interval of length 27. If the parametric representation of a curve is
essentially periodic. then the representation is defined, for any real
value of the parameter, as the periodic extension of the representation
on [0, 2z]. For example, z(t) = z(t + k-2x) for any value of ¢ €
[0, 27] and for any k € Z. where Z indicates the set of integer numbers,
cf. Figure 2.1.

\ t=k.2T keZ

Figure 2.1. A contour represented by the position function z = z(r) = x(1) + iv(r). Note that the
contour has counterclockwise positive sense and that z(r) has a fundamental parameter interval
of length 2.
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Given the requirements of a constant speed parametrization and
choosing an arbitrary parameter interval of length 2z, we find for the
speed of motion along a rectifiable curve:

e b
$= oo {&d.d.17a)
where!'!
L= J [ ¥ (1) + 37 ()] "dr. (2.1.17b)

For simple closed curves. L is the perimeter of the curve. For a curve
with a constant speed parametrization. there exists a linear relation
between arc length s and parameter 1. The parameter 7 is in fact a
normalized arc length parameter. With respect to the analysis of the
shape of object contours y we assume that such contours meet the
following conditions:

® ve ‘r[‘i\' [2]!8:[)

e a parametric representation of y satisfies the condition
of a constant speed parametrization, (2.1.18b)

e a parametric representation is 2x-periodic or,
if arc length is used as a parameter. L-periodic. (2.1.18¢)

The position function z has frequently been used for shape representa-
tion, most times in the context of the Fourier expansion of z. One of
the earliest references is Granlund [1972], who used z to represent
character outlines. To give some impression of the application of the
position function in shape analysis and representation we further men-
tion Richard and Hemami [1974] and Wallace and Wintz [1980]
(airplane silhouettes), Young, Walker and Bowie [1974]. Sychra et al.
[1976]. Chen and Shi [1980] and Proffitt [1982] (cell boundaries). Tai.
Li and Chiang [1982] (particle analysis) and Giardina and Kuhl [1977].
Burkhardt [1979], Kuhl and Giardina [1982]. and Crimmins [1982] (gen-
eral shape analysis applications).

[1] Throughout this thesis we use the notation J to indicate integration over a compact intervil
of length 2.
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As we remarked earlier, z is the direct representation of a planar
curve. This means in image analysis that z can be measured directly in
the image plane and in computer graphics that the curve can be gener-
ated directly from z. Therefore z is also frequently encountered in
studies on contour estimation and approximation. The position function
z can also be used as a basis for the computation of shape features, as
will become clear in Chapters 3 and 4 and in Appendix B.

We continue this discussion of parametric contour representation for
shape analysis purposes with representations that specify the distance
between the contour and an appropriate reference position for the con-
tour, £. For example, £ can be the centroid of the region enclosed by
the contour or it can be the contour average of z. A discussion on
appropriate translation normalization parameters will be presented in
Section 4.3.

g

Rl

a
200,
R(E)
100
0 J — ,
0 go 12[ b g 37 2r
b ==k

Figure 2.2. A contour (a) and its polar representation R(E) with respect to the reference position
Z (b). Note the multiple-valuedness of R(E).
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In the following we discuss a number of contour representations that
have in common that they specify the distance between the contour and
a reference position in the plane. We will show that these contour
representations have undesirable properties or that theyv do not provide
any advantage over the position function z.

The polar representation of a contour, R(&). is likely to be one of
the carliest propositions for shape representation. According to Rosen-
feld it was already proposed for that purpose in the 1950s (Barrow and
Popplestone [1971]). R(&) specifies the distance between the contour
and reference position ¢ as a function of the angle of revolution &. See
Figure 2.2 for an illustration of R(&).

Though R(&) constitutes an information-preserving contour represen-
tation it has the serious drawback that, for non-holomorphic shapes. it
is not a single-valued representation. This is illustrated in Figure 2.2.
Despite this fact. R(E) has been used frequently to represent the shape
of fine particles (e.g. Schwarcz and Shane [1969]. Ehrlich and Weinberg
[1970]. Beddow and Philip [1975], Meloy [1977a]. Meloy [1977b] and
Beddow et al. [1977]. Luerkens. Beddow and Vetter [1982a]). R(&) has
also been used for chromosome analysis (Rutovitz [1970]) and in the
context of robot vision (Kammenos [1978]). Recently. some proposi-
tions have been published to transform R(&) into a single-valued rep-
resentation (Gotoh [1979]. Luerkens. Beddow and Vetter [1982b]). We
will return to the latter propositions shortly.

Another contour representation that specifies the distance between
the contour and a reference position ¢ is the radial distance function r.
which is closely related to z and defined as:

r(t) = |z() — &], 1€ [0, 2q]. (2.1.19)

See Figure 2.3 for an illustration of r.

Though the radial distance function r was already proposed for shape
representation by Searle [1970]. not many references reporting its use
for that purpose can be found. The real-valued radial distance function
ris a single-valued function of the parameter . as opposed to the polar
representation R(&). However, r is not an information-preserving con-
tour representation, a property that R(&) possesses. Since phase infor-
mation is not present in r, a contour cannot be reconstructed from it.
The most important drawback of » with respect to shape representation
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200
rit)

T rity)

1001

0 to % x __..??_! 2

b —t

Figure 2.3. A contour (&) and its radial distance function r with respect to the reference position £

is the fact that there exist contours with different shapes that have
identical radial distance functions. An example of such an ambiguity is
shown in Figure 2.4.

This ambiguity makes r a less suitable candidate for shape represen-
tation. Freeman [1978a] proposes to avoid such ambiguities by provid-
ing the radial distance function with a sign. The signed radial distance
function r' has negative sign if the angle of revolution & changes in
clockwise direction upon tracing the contour in counterclockwise direc-
tion and positive sign otherwise. Formally ' is defined as

r'(1) = sgn (&(1)) - (1), (2.1.20)
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where the sign function sgn (-) is defined as

+1, x=0, (2.1.21a)
sgn (x) =
=15 r<i). (2.1.21b)

If the parameter ¢ is a constant speed parameter. i.e. Eq. 2.1.17a is
satisfied, then it can be shown that r'(¢) is a contour representation that
preserves shape information.

Theorem 2.1.

Let r'(r), 0 = t = 27, be the signed radial distance function of an
arbitrary contour, where ¢ is a constant speed parameter. Then the
position function of that contour can be reconstructed from (1) up to
a rigid motion in the plane.

e L
/ /
tz=k 2w keZ t=k 27, keZ
a b
81
rit}
A
|
4
/
0
0 = .4 3 2r
2 2
c —

Figure 2.4. (a) and (b) display two contours of different shape which have identcal radial distance
functions r(r). shown in (¢).
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Proof

We denote the angle of revolution, as a function of the normalized arc
length parameter ¢, as &(1). Then we can write, cf. Eq. 2.1.19,

2(0) = & = |2(t) - Ll

= r(t)e*"). (2.1.22)

Taking derivatives with respect to ¢ on both sides yields

1) = H)e " + ir(t)e - Ep). (2.1.23)

Employing the constant speed property of 1. Egs. 2.1.15 and 2.1.17a,
we find

. o .7 Y =2 ( L \°
1) - 2(0) = #3(0) + (&) = (27{‘] . (2.1.24)

From this equation we can solve &(1):

5

—————
Eny==+r- \f(;;r] — (). (2.1.25)

Eq. 2.1.25 shows that when r(r) = 0, which happens when the contour
passes through the reference position ¢, é:'(!) is undefined. Further we
remark that, due to the continuity of z(¢) and to the constant speed
property of ¢, the absolute maximum of F(t) is (L127)*.

From Eq. 2.1.20 it follows immediately that

re) = [r'(D)]. (2.1.26)

It follows from Eqs. 2.1.25 and 2.1.26 that, given r'(1), we can find &Q).
Assuming an initial angle of revolution £(0). we can find &(r) through
integration, i.e.

I

E(t) = E(0) + J E(1)dr. (21.27)

If we choose a reference position £ in the plane, Eq. 2.1.22 shows that
we obtain z(t) from r(t), &(1) and &. This completes the proof of the
theorem. O
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Despite its preservation of shape information. #'(1) has an undesirable
property in relation to shape representation. We illustrate this in Figure
2.5

.
4
q \t-k 2. keZ
20,
rft)
10
0
b o _‘_?JE, T 3Ix 2r
2
. L—J
c Ntk 2m keZ
20+
rft)
10 !
i 54
e il !
0 | x 3 2
7 7 5
! —»t
-10
d -2

Figure 2.5. {a) and (¢} display two suther similar contours which huve considerably different
signed radial distance functions r'(r), shown in (b) and (d). respectively.
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Figure 2.5 shows that two rather similar contours can have consider-
ably different signed radial distance functions. This fact makes it un-
likely that useful similarity measures can be formulated on the basis of
the signed radial distance function »'(1).

We now return to the propositions by Gotoh [1979] and by Luerkens,
Beddow and Vetter [1982b] to transform the polar representation R(&)
into a single-valued representation.

The representation proposed by Gotoh [1979] is in fact similar to the
function '(1). Gotoh proposes a signed polar representation R'(&'),
where &’ is the accumulated angle of revolution as the contour is traced.
As a result R'(&") does not have a fixed period. The sign of R'(§') is
also determined by _é(f). Formally R'(&'") is defined as:

R'(&'(1)) = sgn (&) - R(&(1)). (2.1.28)

where

§'(n) = J &(r)dr. (2.1.29)

It is easily verified that R'(&'(1)) can be obtained from r'(¢) by a parame-
ter transformation and vice versa. R'(&") is a shape information-preserv-
ing contour representation, but it has the same undesirable property as
we observed in r'(r), which makes it less suited for shape representa-
tion.

Finally, Luerkens. Beddow and Vetter [1982b] proposed to use the
pair (r(2), (1)) for shape representation, instead of the multiple-valued
polar representation R(&). Indeed, the pair (r(1), i—'(.’)) constitutes a
shape information-preserving contour representation, as can be verified
from Eqgs. 2.1.22 and 2.1.27. Further, it does not suffer from the disad-
vantages that we observed in r'(r) and R'(&"). This shows that, in com-
bination with appropriate additional information, the radial distance
function r() can be useful for shape representation. However, the ad-
vantages of such a representation over the position function z are not
clear. Therefore we will not consider shape representations based on
the distance between the contour and an appropriate reference position
¢ any further.
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2.2 Tangent, normal and curvature

In this section we introduce representations for the shape of a con-
tour, based on the derivatives of the position function z or. equiva-
lently, on the derivatives of the position vector function z. It will be
shown that these representations are information-preserving, i.¢. that
they allow full reconstruction of the shape of the contour, though infor-
mation about the position and/or the orientation of the contour may be
lost. However, absolute position and orientation are frequently unim-
portant features for the shape analysis problem. If necessary. such fea-
tures can be estimated from the position function of a contour. We will
use vector- and complex-valued representations alternatingly.

The tangent vector function z of a contour y. with position vector
function z, is defined as:

z(1)

. d
= dr

= (x(¢). (1)) = x(O)u, + y(0)u,. (2.2.1)

The corresponding complex-valued rangent function z is defined as:

dz(r)

by x(t) + iy(0). (2.2.2)

(1) =

Combining Eq. 2.1.15 and Eq. 2.2.1. we observe that
| z(1)| = 3(). (2.2.3)

i.e. if we interpret  as time, then the length of z expresses the speed
of motion along the curve. Using the arc length s as a parameter. we
found in Eq. 2.1.16 that the speed of motion, and thus the length of
the tangent vector, is always one. The unit tangent vector function p(s)
and the tangent vector function z(r) are related as:

p(s) = z(s) = 2(1) j: (2.2.4)

using the chain rule of differentiation with 1 = (s).
If the parameter ¢ is a constant speed parameter, or, equivalently. a
normalized arc length parameter (cf. Eq. 2.1.17a). then p(s) and z(t)
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are related as:
pls) = 2; 2(1). (2.2.5)

The tangent angle function 6 of a contour gives, for each value of the
parameter. the angle of inclination of the tangent vector z with the
positive x-axis, as illustrated in Figure 2.6.

x(t)

T x(t/

-
- =

Figure 2.6. lllustration of the tangent vector z(r) and the tangent angle 8(r) at the position vector
z(1) on the contour.

Clearly. the tangent angle 6(1) is the argument of the tangent vector
z(1) and can be found from Eq. 2.2.1 as

H(1) = arctan (‘:22) (2.2.6)

and can be solved, without ambiguity, from the signs of x(¢) and y(t)
or. equivalently, from the direction cosines of the tangent vector z():

cos By = < A (2.2.72)
[¥(0) + ()]

= 20 (2.2.7b)
[(r) + 3%(0)]"
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Combining Egs. 2.1.15. 2.2.1 and 2.1.7a,b we can rewrite z as:

z(t) = d: . [cos O(t)u, + sin H(f)u\] (2.2.8)

or similarly, by combining Eqs. 2.1.15, 2.2.2 and 2.1.7a.b. we find for
z the expression

. Is e
1) = tl: et (2.2.9)

These two equations again show clearly that z. or z. expresses the
velocity along the curve. Interpreting the parameter ¢ again as time, the
second derivative of the position (vector) function expresses the accel-
eration along the contour. For this reason we call

T (2.2.10)

(1) = .

the acceleration vector function and

- dz(r)

(1) = = k(1) + 1y¥(¢) (2:2-1%)

di
the acceleration function. These functions express the rate of change of
the velocity along the curve as a function of r. When the arc length s is
used as the parameter. the second derivative of z with respect to arc
length is called. for reasons that will soon become clear, the curvature
vector function k(s):

e A (2.2.12)
ds
The relation between k(s) and Z(r) can be found through the chain rule
of differentiation:
dr

Ly e e 2213
k(.s)—z(r}(ds] HED) | 2.2.13)

with 1 = 1(s). In Section 2.1, we discussed the conditions for the inver-
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tibility of the functional relationship between the parameters s and t,
which we assume to be valid. This means that we may write

(o) = (@) @214

and (cf. Abramowitz and Stegun [1972], p. 11)

4% B d% (ds')""
ds’ dr? .

- 2.2.15
dr i)

With these two relations and the definition of the unit tangent vector
function p(s) in Eq. 2.2.4, we can rewrite Eq. 2.2.13 as

ds\’ Hoc e
#1) = [d:) k(s) + dr;p(.s'}. (2.2.16)

To explain the meaning of this equation we reformulate Eq. 2.1.16 as

|2(s) |2 = 2(s) - 2(s) = 1 (2.2.17)
and differentiate to obtain

z(s) - Z(s) = p(s) - k(s) = 0. (2.2.18)

Interpreting this result in the context of Eq. 2.2.16 we find that. at any
point along the contour, Z(¢) can be decomposed into two components
that are perpendicular to each other: a tangential component of length
d’s/dt” and a normal component. If we use arc length as a parameter
in Eq. 2.2.8 we obtain an expression for p(s), cf. Eq. 2.2.4. We substi-
tute this expression into Eq. 2.2.12 to obtain:

k(s) = i_ [cos B(s)u, + sin O(s)u,]

dé(s)
ds

[—sin 6(s)u, + cos O(s)u,| -

de(s)

=B ds

(2.2.19)
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In Eq. 2.2.19 n(s) is a unit vector perpendicular to p(s). If the sense of
n(s) is kept the same everywhere along the curve, then it may be chosen
arbitrarily. Usually n(s) is obtained by a rotation of p(s) over +a/2
radians. which can also be observed by comparing Egs. 2.2.8 and
2.2.19. At any point afong a contour y. with position vector function
z(1) and arbitrary parameter t, the pair of orthogonal unit vectors p(r)
and n(1) can be expressed in terms of the tangent angle function 6(1) as

p(t) = cos B(1)u, + sin B(t)u,. (2.2.20a)
n(r) = — sin OB(t)u, + cos O(1)u,. (2.2.20b)

under the condition that #(z) is defined in that point. The pair of vectors
(p. n) is usually called the moving frame of a contour (see Figure 2.7).

pit)
-

' —
N

Figure 2.7. Ilustration of the moving frume along a curve. This figure shows the moving window
formed by the pair of orthogonal unit vectors [ p, n} at position z(r)

If 1 is the normalized arc length parameter, then the tangential com-
ponent in Eq. 2.2.16 is zero everywhere along the contour and Z(r) can
be expressed as

RN e
#)=,.) . a6 (2.2.21)

The curvature K at any point along the contour is defined as the rate
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of change in tangent direction of a contour, as a function of arc length.
In Section 2.1 we remarked that, because of its invariance properties,
arc length is the natural parameter of a curve. With this in mind we
observe from the definition of curvature that curvature is also an in-
variant property of a contour, since it is, similar to arc length, invariant
under a rigid motion of the curve and under a change in the choice of
a parameter. Commonly, the curvature function K is expressed in for-
mula as

dé(s) _ ]

2:9.29
ds ( )

K(s) = s
hY
With this definition of the curvature function K we can rewrite the last
expression in Eq. 2.2.19 to obtain:

k(s) = K(s)n(s). (2.2.25)

This expression explains why k is called the curvature vector function.
Substitution of this expression for k into Eq. 2.2.16 yields

q

1) = (3':)-1{'(5)11(5) + j" p(s). (2.2.24)

When 1 is the normalized arc length parameter this expression reduces
to, cf. Eq. 2.2.21,

(1) = (,)L__'r)—[((s)n(s). (2.2.25)

—

Furthermore. by substitution of Eqs. 2.1.15 and 2.2.6 into Eq. 2.2.2 we
derive the following expression for the curvature along a contour, with
arbitrary parameter f, as

x(Di(1) — &(0)y(2)

K(t) = e
[¥(0) + (0]

(2.2.26)

Using this expression for the curvature function K, it is straightforward
to find the influence of scaling upon K. We denote a pure scaling of a
contour y by a positive real factor 3 as fy. The position functions of
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y and y are related as

Fyz(1) = B - z(1). (2-2.27)

From the definitions of the tangent function 2. Eq. 2.2.2, and the accel-

eration function Z. Eq. 2.2.11. we see that scale information is pre-
served in these representations. Therefore f;z and f;Z are related to 2
and Zz, respectively, in the same way as /2 is related to z. Eq. 2.2.27:

Fux(1) = B - 20), (2.2.28a)
$5(1) = B - £1). (2.2.28b)

With the aid of Eq. 2.2.26 the curvature function ¥,K of the scaled
contour fyy can be written as:
(Lox())(F5(0) — (F2(0))(F,3(0))
[(#x)) + (F30)]
1 x(0)y(r) — x()v(r)
B [£(0) + 33(n]"

:J‘-;K(!) -

= {I} K{(r). (2.2.29)
This derivation shows that a scaling of contour by a factor f € R” [eads
to a scaling of the curvature function by a factor 1/4.

The definition of the curvature function in Eq. 2.2.22 still merits
some discussion. From the definition of 6(r) in Eqs. 2.2.6 and 2.2.7a,
b. it can be seen that the tangent angle function can only assume values
in a range of length 27, usually in the interval [~z. =] or [0, 2a].
Therefore 6(t) in general contains discontinuities of size 2x. The
cumulative angular function ¢(r). defined by Zahn and Roskies [1972]
as the net amount of angular bend between the starting position z(())
and position z(t) on the curve, does not suffer from this problem. The
functions ¢(f) and 6(t) are related as

6(r) = [g() + 6(0)] mod 2. (2.2.30)

See Figure 2.8 for an illustration.



TANGENT, NORMAL AND CURVATURE 39

p{’o)

T z(t,

/~ 6/0) 8(ty)
7]

g x r 3 2r
b g 2 7
— f
2r
wpit)
T
X
5
v{ﬂg}\ -
e "
0 o x g 3x 2x
P 2
c — !

Figure 2.8. [llustration of the tangent angle function #(1) (b) and the cumulative angular function
@(t) (c) of a contour (a).
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From the definition of ¢(1) also follows ¢(0) = 0. For smooth simple
closed curves y. i.e. y € I.. ¢(r) is a continuous function. In relation to
shape representation and analysis ¢ (¢) has one serious drawback: unlike
&t} (1) is not a periodic function. For simple closed curves ¢ has the
property

@t + 27) = (1) + 2. 2.2.31)
In order to be able to perform Fourier analysis. Zahn and Roskies
[1972) introduced a 27-periodic variant of the cumulative angular func-
tion. Using the normalized arc length parameter ¢, the periodic cumula-
tive angular function y(t) is defined as
y(r) = ¢(t) — t. RAPA
When Egs. 2.2.31 and 2.2.32 are combined the periodicity of ' follows:
w(t + 2x) = (1) (2.2.33)
for all values of 1.

The curvature function K. defined earlier in Eq. 2.2.22. can now be
redefined as

re S (2.2.34)
ds s
The inverse relationship also exists between K and ¢, i.e.
gls) = [ K(o)do. VseR. (2.2.33)
]

where o also denotes arc length. Note that a similar inverse relationship
between K and @ in general does not exist.

For a variety of reasons, the curvature function. with arc length as a
parameter. is very important in the study of shape. One is that this
function completely determines a contour up to a rigid motion in the
plane (Stoker [1969], Guggenheimer [1963]): the curvature function is
the natural or intrinsic equation of a curve The sign of K determines



TANGENT, NORMAL AND CURVATURE 41

the convex and concave parts of the curve: for K > 0 the curve is
convex, for K < 0 the curve is concave and for K = 0 the curve is said
to have a point of inflection.

The radius of curvature g at position z(¢) on a curve is defined as

|

K(1)° (2.2.36)

o(t) =

Figure 2.9 illustrates the concept of the radius of curvature o(t). The
endpoint of the vector P(z) in this figure is called the centre of curvature
and the circle, defined by the equation

[z(1) — P(t)] - [2(1) — P(1)] — 0*(r) = 0. (2.2.37)

is called the osculating circle to the curve at z(r).
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Figure 2.9. This figure illustrates the concepts of radius of curvature o(r). center of curvature P(1)
and osculating circle along a curve. The moving window {p(1). n(7)} and the curvature vector
function k() at position z(r) are also shown.

So far, in this section little has been said about the properties con-
cerning the preservation of shape information by the contour represen-
tations that we introduced. In Stoker [1969] a theorem, stating the
unique reconstructability of a regular curve, up to a rigid motion in the
plane, from its continuous curvature function, with arc length as a
parameter, is presented. Zahn and Roskies [1972] contains a similar
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theorem for the tangent angle function f(s). and a corollary that follows
from it for the cumulative angular function ¢(s). We now restate the
theorem in Stoker [1969] in an slightly generalized form and describe
its proof. The shape information-preserving properties of the other con-
tour representations, introduced in this section. follow from this
theorem as corollaries.

Theorem 2.2. (cf. e.g. Stoker [1969].)

Let K(s). a < s < b, be integrable on [a. b], i.e. K € L'[a.b] (cf.
Appendix A). Then there exists one and only one smooth curve. up to
a rigid motion, for which K(s) is the curvature function and s the arc
length.

Proof

Without loss of generality, we may assume that @ < 0 < b. In view of
Eqs. 2.2.30 and 2.2.34 it is natural to define

g(s) = J K(o)do, Vs e |a. b].

where we use ¢(0) = 0. Assuming a tangent angle #(0) at s = 0 we find
the tangent angle function 6(s) by Eq. 2.2.30. Once f(s) has been
determined. the unit tangent vector function p(s) = z(s) is also known
through Eq. 2.2.8.

Assuming a position vector z(0) at s = (. we obtain the position
vector function z(s) from z(s) by the integral

v

z(s) = z(0) + J z(o)do. VYsela.b]. (2.2.38)

It is now to be shown that z(s). as defined in Eq. 2.2.38. is a smooth
curve for which s is the arc length and K(s) is the curvature. From the
relation between K and ¢ and from K e L'[a.b] it follows that ¢ €
ACJa, b] (cf. Riesz and Sz.-Nagy [1955]. pp. 50-52, Janssen and Van
der Steen [1984], pp. 165-170). Through Egs. 2.2.30 and 2.2.8 and
Definition A.10 it is straightforward to show that then also ze
AC[a, b]. With this result and Eqs. 2.2.1. 2.2.2, 2.2.17 and 2.2.38 it
follows that the function z(s) represents a smooth curve (cf. Egs.
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2.1.7a-2.1.7¢). From Eqgs. 2.2.12, 2.2.19 and 2.2.22 it follows that K(s)
is the curvature function of the curve represented by z(s) in Eq. 2.2.38.
Finally it is readily seen that any pair of curves y, and y,, represented
by z(s) and z(s) respectively, that have the same arc length s and
curvature K(s), differ at most by a rigid motion, as follows. By a rigid
motion, i.e. by an appropriate translation followed by a rotation, the
two curves can be brought together such that z,(0) = z(0) and z/(0) =
z,(0). Given the equality of the curvature functions of both curves, it
follows from Eq. 2.2.35 that ¢,(s) = ¢.(s), Vs € [a. b]. Further, from
z/(0) = 2,(0) and Egs. 2.2.9 and 2.2.30 we find that 8,(s) = 6,(s), Vs
€ [a. b]. Hence we find from Eq. 2.2.9 that z(s) = z(s). Vs € [a. b]
and with the equality z(0) = 2(0) we can finally state

(s

z(s) = z(0)+ | z(o)do

I

[

= z(0) + | z(o)do

41

= 2(s), Vs € [a, b], (2.2.39)

which completes the proof of the theorem.
O

From this theorem it is clear that the two invariants K and s form a
complete set of invariants for a plane curve, since they determine it
uniquely up to rigid motions. Note that the theorem excludes piccewise
smooth curves. This is caused by the fact that curvature is not defined
at corners in the curve. If we want curvature also to be meaningful as
a representation for piecewise smooth curves, we will have to revert to
generalized functions, as we will see later.

Corollary 2.1.

Let k(s). @ < s < b, be an arbitrary two-dimensional vector function,
bounded and continuous in its component functions, except possibly in
a finite number of points. Then there exists one and only one smooth
curve, up to a rigid motion. for which k(s) is the curvature vector
function and s the arc length. O
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For the representations of a curve at the level of the first derivative
of the position vector function 2(s). i.e. z. 6. ¢ and . the correspond-
ing theorems not only hold for smooth curves. but also for piecewise
smooth curves. The definition of a piecewise smooth curve in Section
2.1 assures that these representations are bounded and that they are
continuous, except possibly in a finite number of points. Therefore
these representations are integrable functions. We now formulate the
following corollaries.

Corollary 2.2.

Let p(s), a < s < b, be an arbitrary two-dimensional unit vector func-
tion, i.e. ]p(s}[ = 1. Let p(s) be piecewise absolutely continuous in its
component functions. Then there exists one and only one piccewise
smooth curve, up to a translation, for which p(s) is the unit tangent
vector function and s the arc length.

a

Corollary 2.3.

Let 6(s). a = s = b, be an arbitrary piecewise absolutely continuous
function. defined on a range of length 27. Then there exists one and
only one piecewise smooth curve. up to a translation. for which 6(s) is
the tangent angle function and s is the arc length.

U
As mentioned earlier. the latter corollary has also been formulated
by Zahn and Roskies [1972].

Corollary 2.4.
Let f(s), @ < s < b, be an arbitrary piecewise absolutely continuous
function, with f(0) = 0. Then there exists one and only one curve for
which f(s) is the cumulative angular function ¢(s) and s the arc length.
And there exists one and only one curve for which f(s) is the periodic
cumulative angular function y(s) and s is the arc length.
O
Corollary 2.4 has also been stated by Zahn and Roskies [1972] in a
slightly different form. The nroofs of the Corollaries 2.1-2.4 are similar

to the proof of Theorem 2.2 and. for the main part. they can be derived
from it.
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Two remarks are still in order. First we note that both Theorem 2.2
and Corollaries 2.1-2.4 have been formulated for curve representations
with arc length as a parameter. If the curve representations are
parametrized by an arbitrary parameter ¢, such that the functional re-
lationship 1 = x(s) between arc length s and the arbitrary parameter ¢
is fully known and this relationship is invertible, then the corresponding
curve representation with s as a parameter can always be found. There-
fore Theorem 2.2 and Corollaries 2.1-2.4 also hold for curve represen-
tations with an arbitrary parameter ¢, provided that this parameter satis-
fies the conditions just mentioned. In the sequel we will use the nor-
malized arc length parameter, introduced in Section 2.1.

Secondly, we note that in Theorem 2.2 and Corollaries 2.1-2.4
neither closure conditions nor simplicity conditions are enforced on the
curves. They hold for arbitrary, not necessarily simple or closed. curves.
If we require the curves to be simple and/or closed, then this leads to
additional constraints on the individual curve representations.

We conclude from the foregoing that we have introduced in this and
in the previous section a number of curve representations that contain,
under the condition that the relation between parameter and arc length
is known, complete shape information. This fact makes these curve
representations candidates for use in shape analysis and classification.
The curve representations that we refer to are:

z - position function

z —tangent function

z —acceleration function

f —tangent angle function

¢ —cumulative angular function

ip — periodic cumulative angular function
K —curvature function.

Earlier in this section we already defined the scaling operator ¥, by
which a contour y is scaled by a factor # € R". The following operators
are also important in the analysis of the shape of plane curves, rep-
resented by a parametric function:

% — translation (or displacement) over L € C
9k, — rotation over o. € R
J, — backword shift of the representation function parameter over 7 € K

M, — mirror reflection about the x-axis.
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Table 2.1.

of the contour representations.

CHAPTER 2

Representations of the (mirror-)similarity operators in the function spaces

Contour Operator

repre-

sentation b s R, S I,

= pzir) z(+L | e“z(t) L=t} F{ Gt o)

: B3(1) 2(1) ¢ Hr) Ht—1) —{(~1)

z P (1) ¢"3(1) Ht—1) 2H—1)

b (1) (1) (o) + a} |6(r—1) {=0(=1) + 7}
mod 27 mod 27

4 @) ql1) ¢l glt—r)—=9(-0 | —¢=0

Y ip(r) () () Pe—=1) —wi=1) | =w(=t

K BK() | K(n) Kir) K(r—1) K(—1)

Table 2.2 Variance (®) or invariance (2) of the contour representations for the (mir-
ror-)similarity operators.

Contour Operator
representation

4y Sl A, i i,
z " . . . .
z a ®) . . .
Z . O @ . .
7l O ®) . » .
§ O 0 O . .
y 6] (@] (@] . .
K . c o . .
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We will call the operators 93, %.. R, and 7, collectively similarity
operators or equiform operators, since they do not affect the shape of
a contour, as defined earlier. For the same reason J, is called a mirror-
similarity operator.

The representations of these (mirror-)similarity operators in each of
the function spaces, defined by the aforementioned contour representa-
tions, are listed in Table 2.1. The operator representations can be de-
rived from the definitions of the contour representations in a
straightforward manner. For the scaling operator ¥; we already listed
some of its representations in Egs. 2.2.28a.b and 2.2.29. Note in Table
2.1 that, in order to maintain the convention that the positive sense of
a contour is counterclockwise, the parameter ¢ is inverted upon applica-
tion of the mirror-reflection operator .,.

From Table 2.1 we immediately find the variance or invariance of
the individual contour representations for the (mirror-)similarity
operators. A survey of these properties can be found in Table 2.2. The
properties in the Tables 2.1 and 2.2 are important for the determination
of the conditions that are satisfied by the representations of similar or
mirror-similar contour pairs. We will return to this topic in Section 2.3.

Simple closed polygons constitute an important class of piecewise
smooth simple closed curves for shape representation. approximation
and analysis purposes. In the following we introduce notations for sim-
ple closed polygons and derive expressions for the representation of
such contours. First an expression for the position function z of a poly-
gon will be derived in this illustration, and subsequently expressions for
the representations z, Z, 6, ¢, y and K.

A simple closed polygon with N vertices is completely specified by
the ordered set of its complex-valued vertices

{2(t)} = {x(0,) + i¥()}, n=0,...,N—1. (2.2.40)

The periodicity of the position function of the polygon is expressed for
the vertices by the equation

(1) = 2(ty+pn), Vp € Z. (2.2.41)
We define first and second order discrete differences as

AZ(I,,) = Z(IH+ l) = Z(f”) (2242)
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and Acz(t,) = Azt,) — Az(t,-,)
= 2(t,+ 1) — 22(t,) + 2(t,,-) (2.2.43)
and normalized first and second order discrete differences as

Az(r,)

Azt () =
i |Az(1,)|

(2.2.44)

and
A% (L) = AZ* ) — A2 ). (2.2.45)

For notational convenience we defined the second order discrete differ-
ences as central differences. Without loss of generality we can make
the starting point of the parametric representations to coincide with the
vertex z(f), i.e. 1, = 0. We choose 1 to be a constant speed parameter.
Then for polyvgons the relation between arc length s and 7 is

§= 2‘{.‘7 I, (2.2.46)

where L is the perimeter of the polygon. The arc length s, at the vertex
z(r,) is given by the equations

" I
Z | A:{f”,}|. n=1, (2.2.47a)
m =1l
5, =<0, =1, (2.2.47b)
—]
- Y | Az, n<-| (2.2.47¢)

and the perimeter can be expressed as L = sy. From Eqgs. 2.2.46 and
2.2.47a-c we find the equation

1
to
=
o0
S

|A2(f”)| =S+l T8 T P “il +1 "NJ- (
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The terminology that we introduced for simple closed polygons is illus-
trated in Figure 2.10.

—_—
~

(ty)=z(0)
/4:{:,)/:5;,:,:/\ G
Z”z)

~Az(t, )
Z”,.-f}

Figure 2.10. A simple closed polygon with N = 16 vertices. Normalized discrete differences are
indicated as vectors.,

Based on Eqs. 2.2.40-2.2.48 we find for the position function z be-
tween the vertices z(t,) and z(t, , ;) the expression

z(1) = Az*(1,) ,)I; (t—¢.)—2(L,), LISt (2.249)

Through differentiation of z we obtain an expression for the tangent
function z between the verticles z(¢,) and z(z,, ,):

L
() =A2() 5 0 <<ty (2.2.50)

Note that the tangent function of a polygon is formally undefined at
the vertices, though we may decide to use left or right limits at the
vertices.
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The acceleration function Z can only be defined as a distribution and
not as an ordinary function. We will not go into the details of the
distribution-theoretical aspects (cf. Lighthill [1962], Zemanian [1965]).
but use distributions as if they were ordinary functions.

The Dirac delta functional o(t) is defined as the generalized function
that satisfies

J finyo(ndr = f(0) (2.2.51)

for all continuous functions f(7). It can be identified with the derivative
of the Heaviside unit step function H(1), i.c.

dH(r) -
i) = 2.2.52
o(¢) dr ( 3Z)
where H(r) is defined as
(0, 1<),
H(t) = (2.2.53)
] =0

The tangent function can now be rewritten as a combination of func-
tions H(t),

. s : -
)= ) AZ'(1) = [H(t— ) — Hit—t,.)]. (22.54)
P(z e

which can be further simplified to

: L . \
W=, ;.ZZ[A:“") — Az (1, )| H(t - 1,)

12
[§9]
n
Ln
~—

L %
= o MZZA-:-(JI,)HU*Q,). 2.2,

We can find an expression for 2 through generalized differentiation of
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zin Eq. 2.2.55,

- Y. A%z*(1,)0(t — t,). (2.2.56)

i) = %
J pt.

Due to its periodicity, 2(f) can be expressed as a periodic distribution,

N—-1
()= 2 Y A ()00t — 1), (2.2.57)

2_7{ n=I{l
where 0d,,(r) is defined as

0:.(t) = ). O(t — 27q). (2.2.58)
q € Z

It is straightforward to show that Z specifies the polygon up to a rigid
motion in the plane. By integration of both sides of Eq. 2.2.56 and by
inversion of integration and summation we obtain through Eq. 2.2.52
the expression for z in Eq. 2.2.55. Assuming an initial direction Az*(1,)
we can derive the expression for z in Eq. 2.2.50. Further, assuming an
initial position z(fy) on the polygon, each point on it can be recon-
structed by integration of both sides of Eq. 2.2.50.

The derivation of the tangent angle function 6 of a simple closed
polygon is as follows. We observe that the normalized discrete differ-
ences z%(t,) can be decomposed as

AZH(t)) = Bx*(1,) + iAY* (1), ko)
where
Art(r) = ) = X(0) (2.2.60a)
|Az(1,)]
and
Ay*(,) = Ylne1) = (&), (2.2.60b)

|Az(1,)]

Through Eq. 2.2.6, which defines #, and Eq. 2.2.50 we find an expres-
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sion for the tangent angle function of a simple closed polygon.

AY*(1,)

A(r) = arctan ( Art(t))” ) ATy e (2.2.61)

We can solve 6(1). without ambiguity from the signs of Ax"(r) and
Ay*(t) or, equivalently. from the direction cosines of the tangent func-
tion z(1):

cos B(r) = Ax*(1,) (2.2.62a)
and

sin O(1) = Av*(t,). A o) B (2.2.62b)

In order to measure the amount of angular change at vertex =(1,) we
define the discrete tangent angle difference

Ab(1,) = 6(1,) — 6(1,,). (2.2.63)
Recalling that the tangent angle function # assumes values in a range

of length 27, we obtain the amount of angular change Ag¢(t,) at vertex
z(t,) by a mapping of Af(t,).

AO(1,) +21. —2a<A6(1,) < -7. (2.2.64a)
Ag(t,) = 4 A6(1,) . —a<AH(1,)<7. (2.2.64b)
Ab(t,) — 27, T<AO(,) <27, (2.2.64c)

See Figure 2.11 for an illustration of Ag¢(r,). The angular change A¢(1,)
takes on values in the range (—, 7). where positive values are obtained
at convex angles and negative values at concave angles. Note that the
values =27, —ax, 7 and 27 are not included in the ranges in Egs.
2.2.64a-c, since the simplicity of the polvgon excludes these values. The
cumulative angular function ¢ of an arbitrary simple closed polygon
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can now be expressed as

Y Ag(t,), n=1, (2.2.65a)
m=1
(1) = J 0. n=10, (2.2.65b)
1)
- Z Ao, #n==l, L=1<f.i. (2.2.65c¢)
m=n+l

The periodic cumulative angular function y of a simpie closed polygon
is found by applying its definition, in Eq. 2.2.32. to the results in Egs.
2.2.65a-c.

To provide insight into the derivation of an expression for the curva-
ture of a simple closed polygon, as a distribution, we rewrite Eqgs.
2.2.65a-c as a combination of Heaviside unit step functions,

o) = ), Ag()H(t=1,) = ), Ag(t,). (2.2.66)

peZ p=

We can find an expression for the curvature K of a simple closed poly-
gon, using the definition of K in Eq. 2.2.34, through generalized dif-
ferentiation of ¢ (1) in Eq. 2.2.66, giving

K(t)= ) Ag(t,)0(1 - g,)dl (2.2.67)

pe & (.]5

Since the parameter ( has been defined in Eq. 2.2.46 as a normalized
arc length parameter, Eq. 2.2.67 can be rewritten as

ni Y Aq(t,)o(t — 1,). (2.2.68)
L peé

K(t) =
Finally, due to its periodicity, K(¢) can be expressed as a periodic dis-
tribution.,

N=1

2; .
K=" T Apt)osli—1,). (2.2.69)

a=1
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We now show that a polygon is completely specified, up to a rigid
motion in the plane, by the expression that we found for K(r). We first
note that for a simple closed polygon with N vertices

N=1]
) Ag(t,) = 2. (2.2.70)

n=1

Using this equation and at least one period of K(r), we can find the
perimeter L. Through Eq. 2.2.34 and Eq. 2.2.46 we find ¢ (1) from K(1):

: Fai ok
J” K(71) e dr

Il

g(1)

Il

L !
= { K(r)dr. (2.2.71)
T Ji

In Eq. 2.2.71 we have employed the convention y(0) = (. For poly-
gons, ¢(r) is undefined for r = (0 and the convention becomes ¢ (1) = 0.
0 =1 <t <t. Rewriting Eq. 2.2.71 as

¢(1) = ’I:r |7J' _ K(r]dr—J K(r)dr}. (2.2.72)

we can find the expression in Eq. 2.2.66 through substitution of Eq.
2.2.68 into Eq. 2.2.72, the inversion of summation and integration and
finally the application of Eq. 2.2.52. The expressions in Egs. 2.2.65a-c
are equivalent to the one in Eq. 2.2.66. From Eqs. 2.2.65a-¢ we can
find the individual angular changes Ag¢(s,) at the vertices in a
straightforward manner. Since the relation between arc length and the
parameter ¢ is known and the values of 1, in at least one period are
known, the lengths of the sides of the polygon are known. If we use
this information and define an initial orientation 6(1). 0 = 1, < 1 < 1,,
and an initial position z(1,), we can reconstruct the polygon from Ag¢(1,).
This shows that the polygon can be reconstructed up to a rigid motion
from K(1).
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Through this derivation we have shown that it is possible to find
information-preserving expressions for 2, Z, 6. ¢, y and K of a polygon.
If we combine this result with the information-preserving properties of
the same representations for smooth curves (cf. Theorem 2.1 and
Corollaries 2.1-2.4), we may conclude that we can find information-pre-
serving expressions for z, Z, 6, ¢, y and K of any piecewise smooth
curve with a finite number of corners.

Applications of polygonal curves occur frequently in the literature,
e.g. in connection with contour coding (Freeman [1961a]. Freeman
[1970]. Saghri and Freeman [1981]), polygonal contour approximation
(Montanpari [1970], Ramer [1972], Pavlidis and Horowitz [1974].
McClure and Vitale [1975], Ellis and Eden [1976], Pavlidis [1977b].
Williams [1981]). shape property measurement (Freeman [1961b],
Zahn and Roskies [1972], Wilson and Farrior [1976], Persoon and Fu
[1977], Kuhl and Giardina [1982], Sarvarayudu and Sethi [1983]) and
shape classification (Pavlidis and Ali [1975], Davis [1977a]. Davis
[1979]. Kashyap and Oommen [1982]).

Reports in the literature on the use of z for shape representation
have already been reviewed in Section 2.1. Concerning the use of the
remaining representations an account of the literature now follows,

The contour representations z and € have rarely been used explicitly
for shape representation. The tangent function z appears naturally in
the derivation of the curvature function (Young, Walker and Bowie
[1974]. Bennett and MacDonald [1975], Groen [1977], Van Otterloo
[1978]) or is used as an-intermediate representation for the derivation
of 6 (Ozaki et al. [1982]). However, z is not identified in these refer-
ences as a shape information-preserving, and therefore potentially use-
ful, contour representation. We already saw in Eqgs. 2.2.30 and 2.2.32
that the tangent angle function 6, the cumulative angular function ¢
and the periodic cumulative angular function y are closely related. The
earliest report that we found on the use of these functions for shape
representation is Cosgriff [1960]. Having no access top this report, it
remains uncfear whether Cosgrif suggested the use of ¢ or of y. Brill
[1968] and Zahn and Roskies [1972], who use y for shape representa-
tion, make conflicting statements on this issue. As a result of the prob-
lem of discontinuities of size 2x in 6, that are not shape-related (see
Figure 2.8), @ is not a popular shape representation, aithough Perkins
[1978] reports on its use in the context of shape matching in an industrial
vision system. This problem is overcome by both ¢ and y, where y has
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the advantage over ¢ of being a periodic function. Usually not g itself
but its Fourier coefficients (Brill [1968]. Barrow and Popplestone
[1971]. Zahn and Roskies [1972], Fong. Beddow and Vetter [1979].
Beddow [1980], Strackee and Nagelkerke [1983]) or its Walsh coeffi-
cients (Dinstein and Silberberg [1980]. Sethi and Sarvarayudu [1980].
Sarvarayudu [1982]. Sarvarayudu and Sethi [1983]) are used for shape
representation. Martin and Aggarwal [1979] discuss the use of y for
curve segmentation.

Another approach to overcome the discontinuity problems in # is its
mapping into a slope density function, i.e. a distribution of the occur-
rence of each value of # along the contour (Sklansky and Davison
{1971]. Sklansky and Nahin {1972]. Nahin {1974]. Ozaki et al. [1982}).
The slope density function is not an information-preserving shape rep-
resentation. Related to this method is the Hough transform technique.
which computes the frequency of occurrence of (r, #)-pairs along the
contour (Hough [1962]. Sklansky [1978]. Shapiro [1978]. Ballard [1981].
Davis [1982]).

The chain code, that was introduced and later generalized by
Freeman, to represent contours (Freeman [1961a]. Freeman [1978b]).
constitutes in fact a sampled, quantized and coded approximation of 6.

Just as the tangent function Z. the acceleration function Z has only
been mentioned in connection with the derivation of the formula for
the curvature function K from the position function z (Young. Walker
and Bowie [1974]. Groen [1977]. Van Otterloo [1978], Anderson and
Bezdek [1984]). We have found no reference to its explicit use for
shape representation.

The concept of curvature plays an important role in many approaches
to shape analysis (Pavlidis [1977a]). The observation of the importance
of curvature for human shape perception dates back to the work of
Attneave (Attneave [1954]. Attneave and Arnoult [1956]). Especially
the perceptually dominant role of points of high absolute curvature has
become apparent from these studies (see also Zusne [1970]). From a
mathematical point of view, evidence for the importance of curvature
extrema has been obtained by McClure. McClure [1975] showed that
in piecewise linear spline approximation with free knots, using a
minimum integral square error criterion. the distribution of the knots
follows the curvature of the curve (see also Pavlidis [1978]).

In the foregoing we saw that curvature is. apart from scaling. a
mathematical shape invariant. This fact has given curvature the status
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of intrinsic equation of a curve (cf. e.g. Duda and Hart [1973]). In view
of these facts it is not surprising that applications of curvature can
already be found in the early pattern recognition literature (e.g. Cos-
griff {1960], Ledley [1964], Zahn [1966]).

In practice it is hard to obtain a reliable estimate of the curvature
function K of a curve since it involves second derivatives of the position
function z (cf. Eq. 2.2.26). Many authors have dealt with this estimation
problem, (e.g. Ledley [1964], Young, Walker and Bowie [1974], Ben-
nett and MacDonald [1975], Bowie and Young [1977a], Van Otterloo
[1978). Wallace. Mitchell and Fukunaga [1981], Kasvand and Otsu
[1982], Smeulders [1983], Anderson and Bezdek [1984]). To obtain
curvature estimates that are less sensitive to noise. a variant of the
curvature function has been defined, which essentially consists of a
mapping of the angle between a leading and a trailing vector on the
curve to a measure of curvature (cf. Figure 2.11). In the latter tech-

trailing vector

Figure 2.11. Example of a leading and a trailing vector on a curve. at position z(r). spanning cqual
arc length. The angle Ag(r) is used to obtain & measure of curvature at z(r).

niques the perceptually significant concept of a corner plays an impor-
tant role. Details of such methods can be found in Rosenfeld and
Johnston [1973], Freeman and Davis [1977]. Freeman [1979] and
Pineda and Horaud [1983]. Examples of the many applications of con-
tour curvature in image analysis and shape analysis, with some refer-
ences, are the following:

e corner detection and critical point detection (Rosenfeld and
Johnston [1973], Freeman and Davis [1977], Sankar and Sharma [1978],
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Kitchen and Rosenfeld [1982]. Pineda and Horaud [1983]. Hung and
Kasvand [1983], Anderson and Bezdek [1984]).

e curve partitioning (Ledley [1964]. Ledley [1972], Bowie and Young
[1977b]. Davis [1977a], Davis and Rosenfeld [1977]. Perkins [1978].
Freeman [1978a]. Nevins [1979]. Rutkowski, Peleg and Rosenfeld
[1981]. Fischler and Bolles [1983]).

e polygonal contour approximation (Shirai [1973]. Davis [1977a].
Davis and Rosenfeld [1977]).

e segmentation of overlapping objects (Eccles. McQueen and Rosen
[1977]. Dessimoz [1978]. Dessimoz [1980]. Bengtsson et al. [1981].
Kailay, Sadananda and Das [1981], Smeulders [1983]. Segen [1984]).

® shape matching (Freeman [1979], Davis [1979]. Wallace. Mitchell
and Fukunaga [1981], Grogan and Mitchell [1983]).

Closely related to curvature is the concept of bending energy. The
bending energy in a thin elastic beam is proportional to the integrated
squared curvature along the beam (cf. Landau and Lifschitz [1970]).
Freeman and Glass [1969] used this property to compute a minimum
energy curve in a tolerance region. Young, Walker and Bowie [1974]
proposed bending energy as a shape feature. while Chang [1976] and
Perking [1978] used bending energy to match arces of curves.

Further discussions about the role of curvature in shape analysis can
be found in Pavlidis [1977a] and Pavlidis [1978].

2.3 Geometric similarity and geometric mirror-similarity

In Section 1.1 we already indicated that we consider the internal
structure of an object. such as its brightness. colour, texture, etc.. not
to be part of its shape. We also mentioned that we consider the shape
of an object to be invariant under translation, scaling and rotation. If
we use parametric contour representations to render the shape of an
object, the choice of a particular parameter f and a starting point 1 = (
on the contour is regarded not to affect the shape. We recall here our
assumptions concerning the choice of a parameter ¢, expressed in Egs.
2.1.18b. ¢, namely that the parameter is either the arc length or the
normalized arc length. In the latter case the period of the periodic
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contour representations is normalized to 2. For these reasons we have
called the operators %, ¥, %R, and 7, that perform a translation, a
scaling, a rotation and a shift of the parametric starting point, respecti-
vely, collectively similarity operators or equiform operators. Conse-
quently, also the order of application of the similarity operators does
not affect the shape of an object.

It will be clear from the foregoing that in this thesis we are concerned
with the geometrical aspects of shape. We emphasize that information
about the absolute position, size and orientation of an object may con-
tain valuable information in many applications. For example, in optical
character recognition, information about character orientation is need-
ed to be able to discriminate between numerals of the class *6" and
numerals of the class ‘9°. If our objective is to estimate the motion of
an object in a sequence of images, information about its position, size
and orientation is indispensable (Richard and Hemami [1974], Wallace
and Mitchell [1980]). It will become clear later on that, in many cases,
such information can be obtained directly from the parametric contour
representation of the object or from a similarity measurement. In view
of the invariance properties of shape. we will require similarity mea-
surement itself to be invariant for position, size, orientation and posi-
tion of the parametric starting point. The formulation of similarity mea-
sures that satisfy these requirements is the subject of Chapter 4.

Before we proceed with a formal definition of geometric similarity,
it is important to note that the shape of an object may vary with the
level of magnification and resolution at which it is observed. There are
numerous examples to illustrate this statement: coastlines (Mandelbrot
[1967]), cell boundaries, snowflakes, fine particles, etc.; all will change
in perceived geometrical shape when observed with a finer resolution.
A detailed discussion of the mathematical modelling of such
phenomena is given by Mandelbrot (Mandelbrot [1977], Mandelbrot
[1982a]). Applications of such models can be found, for example, in
computer graphics, where they are used for the computer rendering of
curves and surfaces at variable levels of resolution (Carpenter [1980],
Fournier, Fussel and Carpenter [1982], Mandelbrot [1982b], Kajiya
[1983], Pentland [1983]). Though there exist some references in the
literature on particle analysis (e.g. Kaye [1978]. Flook [1978]), the con-
sequences of the dependence of shape on resolution for digital shape
analysis largely remain to be studied.
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We now give a formal definition of geometric similarity.

Definition 2.4.  Geometric similarity.

A contour y; is said to be geometrically similar to a contour y, iff 3,
can be mapped into y, by a sequence of translation, scaling and rotation
operations.

An example of a pair of geometrically similar contours is given in
Figure 2.12. Geometric similarity, as defined here. is an equivalence
relation, i.e. it is reflexive. symmetric and transitive. Therefore it may
be used to partition the set I into equivalence classes of geometrically
similar contours (Richard and Hemami [1974]).

Figure 2.12. Example of a pair of geometrically similar contours.

In the remainder of this chapter we will use f as a generic symbol for
any of the parametric contour representations z, 2, 2. 6, ¢. y and K.
Since these contour representations preserve shape information, we
can collectively formulate the conditions that must be satisfied by the
representations of a pair of contours in order to render geometrically
similar contours,

Theorem 2.3.
Two contours y, and y,, with contour representations f; and f> respec-
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tively, are geometrically similar iff there exist scalars £ € C, f € R,
a, T € R such that

fo = TR, (2.3.1)
Proof

In Section 2.2 we have shown that the contour representations z, z, Z,
0, ¢, y and K are information-preserving, i.e. given a particular con-
tour representation from any of these types, there is one and only one
contour, possibly up to a rigid motion in the plane, that is described by
this representation.

On the other hand, using the formulas in Section 2.2 the contour
representations z, Z, 6, ¢, y and K can be determined uniquely from
a contour representation z, being the direct representation of contour
y. Here we assume z to possess sufficient differentiability properties.

Thus there exists a one-to-one correspondence, possibly up to a rigid
motion, between a contour y and each of its contour representations z.
z, Z, 0, ¢, yp and K. From this, from Definition 2.4 and from the
invariance of the shape of a contour under a starting point shift in its
parametric representation it follows immediately that y, and y, are
geometrically similar if Eq. 2.3.1 is satisfied.

If no scalars , 3, « and 7 can be found for which Eq. 2.3.1 is satisfied
then it also follows from the one-to-one correspondence between a
contour and its contour representations and from Definition 2.4 that y,
and y, cannot be geometrically similar.

O

A survey of the formulation of this condition for geometric similarity,
in terms of the individual contour representations, can be found in
Table 2.3. To derive these formulations we have used the representa-
tions of the similarity operators in the function spaces of the individual
contour representations, given in Table 2.1, and the variance or in-
variance properties of the individual contour representations for the
similarity operators, given in Table 2.2.

Another important concept in shape analysis, which is closely related
to similarity, is that of mirror-similarity. In two-dimensional shape ana-
lysis the planar shapes have usually been obtained as a result of a
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Table 2.3, Necessary and sufficient conditions that the individual contour representa-
tions must satisfy, for some £ € C. # € B™, «. v € B and V¢ & [0. 22]. mn order 10
render a pair of geometrically similar contours.

SR ; Condition for geometric similarity
representation 2 2
z () = pe {z(t— 1) + &)

z o(r) = pe"z)(t— 1)

s () = fe"E(r—1)

0 Os(t) = {0,(1— 1) + e} mod 27

i g =g r—1) — ¢y(—7)

i yalr) = yult—1) — yy(=T1)

K Kin)=p"K\(t—1)

projection of a three-dimensional structure onto the plane of analysis.
In many applications, the relative position and orientation of the ob-
jects with respect to the plane of projection or, equivalently. the point
of observation with respect to the objects. may vary. For example. thin
industrial parts may land on a conveyor belt with either one or the
other side up (Dessimoz [1980]). The same holds for biological cells
that have been prepared on a glass plate for microscopic analysis. In
airplane recognition, an airplane may have any position and orientation
with respect to the point of observation (Richard and Hemami [1974].
Wallace and Wintz [1980]). In order to be able to determine the orien-
tation of an object with respect to the point of observation or to reduce
the size of a library of plane projections of three-dimensional proto-
types we need the concept of geometric mirror-similarity.

Definition 2.5. Geometric mirror-similarity.

A contour y, is said to be geometrically mirror-similar to a contour y,
iff v, becomes geometrically similar to 3, upon a mirror-reflection of y,
with respect to an arbitrary axis in the plane. O
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An example of two geometrically mirror-similar contours is given in
Figure 2.13. Geometric mirror-similarity is a symmetric binary relation
between contours. It is not an equivalence relation in itself. Equiva-
lence classes of geometrically similar contours, of which the elements
are also geometrically mirror-similar, consist of geometrically mirror-
symmetric contours. The concept of geometric mirror-symmetry will be
defined in the next section. Contours that are geometrically mirror-
similar but not geometrically similar are called enantiomorphic versions
of the same shape (Weyl [1952]. Shubnikov and Koptsik [1974]). i.e.
there exists a ‘left” and a ‘right” version of that shape.

Figure 2.13. Example of a pair of geometrically mirror-similar contours.

We now formulate for the parametric contour representations, collec-
tively indicated by the symbol f, the conditions that must be satisfied
by the representations of a pair of contours in order to render geomet-
rically mirror-similar contours. Without loss of generality, we choose
the x-axis as the arbitrary axis, mentioned in Definition 2.5, about
which mirror-reflection takes place. The reason for this choice is the
analytical convenience it provides.

Theorem 2.4.
Two contours y, and y,, with contour representations f; and f; respec-
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tively. are geometrically mirror-similar iff there exist scalars C e C.
p e R, a, r € R such that

fr = M T RS, (2.3.2)

The proof of Theorem 2.4 is similar to that of Theorem 2.5.

Remark.

The order of the operators % -, ;. #,. J, and .M, is immaterial for
establishing the validity of Eqs. 2.3.1 or 2.3.2. However. the values of
C. B. a and 7. for which this validity is established. are dependent upon
the order of the (mirror-)similarity operators in these equations (cf.
Table 2.1).

Ll

Remark.

For the contour representations z. Z. #, ¢. y and K. the validity of Egs.
2.3.1 or 2.3.2 almost everywhere (denoted as a.c., cf. Definition A.3)
is alrcady a sufficient condition for gecometric (mirror-)similarity.

Table 2.4. Necessary and sufficient conditions that the individual contour representa-
tions must satisfy. for some £ e C. f e R™. . 7 € B and V¢ € [0, 27|, in order to
render a pair of geometrically mirror-similar contours.

Contour Condition for geometric mirror-similari
representation R R EEEINE HEOE BURIATEY
) =pe " {Z(—1+1) + T}
K : <
z i) =—pe " zl{—t+71)
L) =pPe " E(—1+71)
f Ox1) = {—6,(—1+ 1)+ 7 — a} mod 27
¢ @A) = —g =t + 1) + ¢4,(7)
y ya(t) = —y(—t + 1) + yn(1)
K Kyt) = 'Ki(—t+ 1)
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In this section. and in Section 2.4 on symmetry, the distinction be-
tween pointwise equality and equality a.e. for the contour representa-
tions is handled loosely or ignored altogether.

In Chapter 4. discussing the measurement of similarity and sym-
metry, it will become clear that, as a result of the mathematical form
of dissimilarity and dissymmetry measures, there is no need here for a
distinction between pointwise equality and equality a.e.

O

A survey of the formulations of this condition for geometric mirror-
similarity, in terms of the individual contour representations, can be
found in Table 2.4.

2.4 Symmetry in plane objects

Symmetry is an important feature that an object or a set of objects
may exhibit. In the world that surrounds us we encounter various types
of symmetry, each type with a different reason for occurring. This is
one of the reasons why symmetry theory has found widespread applica-
tion in various fields of science. To quote Weyl [1952]: ‘Symmetry, as
wide or as narrow as you may define its meaning, is one idea by which
man through the ages has tried to comprehend and create order, beauty
and perfection’. Because we find it aesthetically pleasing, symmetry is
found in many works of art. A striking example of fascination by sym-
metry in graphic arts is found in the work of Escher (Escher et al.
[1972]). A nice introduction to symmetry theory is given by Weyl
[1952], while Shubnikov and Koptsik [1974] give a comprehensive de-
scription of this field. Both works give many examples of symmetry in
diverse fields of art and science. Hargittai [1986] constitutes a recent
survey of the widespread use of symmetry.

Animals, living on the surface of the earth, almost always consist of
two mirror-equal halves, arranged relative to one another as an object
and its mirror-image. Sece Figure 2.14 for an illustration of this
phenomenon. The imaginary plane that divides such creatures into two
mirror-parts is called the symmetry plane and is denoted by the symbol
m. The reason for the occurrence of this type of symmetry in animals
is probably the fact that for animals the directions forward and back-
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ward and up and down are essentially different. while movements to
left and right are executed with the same frequency.

Many man-made objects also contain a symmetry plane m. This can
have functional reasons. for instance in cars, bicycles. airplanes.
armchairs. or it can have aesthetic reasons. for instance in ornaments.
works of art, tools, musical instruments.

Associated with the concept of symmetry is an imaging operation. by
means of which the figure can be made to coincide with itself. For a
figure that contains a symmetry plane m the imaging operation consists
of a reflection of the figure in the symmetry plane. assuming that the
plane reflects on both sides. We observe that the symmetry plane m
occupies a specific position in a figure. as opposed to the arbitrary

Figure 2.14. A butterfly of the species Troides helena (ef. D Abrera [[975]). with an imaginary
symmetry plane m. Note that the symmetry plane m does not only apply 1o the shape of the
butterfly but also to its color,

position of the mirror to perform the mirror-reflection operation in the
definition of mirror-similarity. Definition 2.5. Any operation of making
objects to coincide with themselves is called a svmmetry operation or
symmetry transformation. Auxiliary geometric elements. such as points.
lines or planes, by means of which symmetry operations are effected
are called symmerry elements. Strictly speaking a symmetry element is
the locus of points that remain in place when a specific symmetry oper-

—



SYMMETRY IN PLANE OBJECTS 67

ation is performed. Every figure that possesses at least one nontrivial
symmetry element is symmetric by definition. If a figure contains a
symmetry plane m, then we say that this figure has symmetry m or that
it is mirror-symmetric.

Another well-known symmetry element is a symmetry axis, i.e. a line
such that, when a figure is rotated about it, the figure comes into coin-
cidence with itself several times. The number of coincidences in a com-
plete rotation over an angle 27 is called the order of the axis and is
indicated by the symbol n. So n serves two purposes: to indicate the
type of symmetry and to specify the order of this symmetry. The
elementary angle of rotation is the smallest angle for which the figure

Figure 2.15. Ornament that occurs in Asmat woodcarving (cf. Gerbrands [1967]). The ornament
has twofold rotational symmetry, i.e. n = 2.

comes into coincidence with itself and is 27/n for a figure with a sym-
metry axis of order n. Symmetry axes can be of any order, from
1 to oo. Infinitely many symmetry axes of order 1 are trivially present
in any figure. We will not treat a symmetry axis of order 1 as a genuine
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symmetry element. A figure with a symmetry axis of order oo can be
made to coincide with itself for any angle of rotation. since the elemen-
tary angle of rotation is infinitely small.

If we study symmetry in the two-dimensional plane then a mirror-
symmetry plane becomes a mirror-symmetry line and an axis of rota-
tional symmetry becomes a point of rotational symmetry.

Of all simple closed contours. that bound simply-connected two-di-
mensional figures. only a circle has a symmetry point of order oo If a
figure contains a symmetry axis or point of order a. then we say that
this tigure has symmetry n or that it has n-fold rotational symmerry. See
Figure 2.15 for an example of a figure with symmetry n = 2.

In the living world. species with symmetry n but without mirror-sym-
metry are not frequently encountered. In man-made objects. however,
symmetry n without mirror-symmetry is rather common. especially in
technological objects such as machine parts. rotating about a specific
axis. or the vanes of a windmill. Many ornaments also have this type
of symmetry.

Figures can have a symmetry plane m combined with a rotation axis
of order n that lies in m. Such figures are said to have symmetry n'm.
where the dot indicates that a lies in m. It is easily verified that a figure
with symmetry n-m has n distinct symmetry planes, all coinciding at the
symmetry axis of order n. However. the axis of order n and one sym-
metry plane m can be considered as generating symmetry elements. the
other n—1 symmetry planes as arising from these generating elements.
See Figure 2.16 for an example of a figure with symmetry n'm = 5-m.

Symmetries of the types 2:m. 3-m. 4-m and 6:m are widespread in
the plant and animal world. Symmetry of the type 5-m is often encoun-
tered in the fruits of plants. for instance in apples. and sometimes in
animals, for instance in various starfish (Shubnikov and Koptsik
[1974]). In man-made objects symmetry of the type n-m is also common.
for example in vases. lamps, tables, rotating machine parts. ornaments.

The complete set of all symmetry elements in a figure determines its
symmetry class. The complete set of symmetry operations that is pro-
vided by the symmetry class of a figure is called the symmeiry group of
that figure.

In Chapter 1 we already mentioned that we are concerned in this
thesis with the geometrical aspects of shape. As a consequence we
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restrict ourselves to the geometrical aspects of symmetry and refrain
from considering the physical aspects of symmetry such as colour and
internal structure. Furthermore, we only pay attention to the types of
symmetry that may occur in a single object. We do not study, for
instance, the types of symmetry that may occur in unbounded structures
such as bands or network patterns.

Figure 2.16. A picture of a flower of Sedum acre. This flower has symmetry n-m = 5-m.

In Section 1.1 we remarked that the plane figures that we study are
usually the result of a projection of three-dimensional objects onto the
two-dimensional plane of analysis. If a three-dimensional object has
symmetry m. n or pm, then we can only observe this symmetry in a
two-dimensional projection if the plane of projection is perpendicular
to the symmetry elements in the three-dimensional object. As we re-
marked earlier, in two dimensions the mirror-symmetry element is a
line m and the element of n-fold rotational symmetry is a point of order
n. The study of the geometrical aspects of symmetry in single plane
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figures can be restricted to the symmetry classes m. n and n'm. In
Section 1.2 we argued that the study of the shape of simply-connected
plane figures can be performed through the analysis of their contours.
Therefore we now present definitions of geometric symmetry of the
types m. n and n-m in the plane in terms of the contours of simply-con-
nected two-dimensional figures.

Definition 2.6. Geometric symmetry m Or geometric mirror-synimelry.
A contour y is said to have geometric Symmetry m or geome(ric nirror-
symmetry iff there exists a line m in the plane such that. when v is
mirror-reflected about m. it coincides with itself.

!_,

By necessity, the symmetry line m of a geometrically mirror-sym-
metric contour y has two intersections with y and passes through the
centroid of the interior of y. In the literature on shape analysis. symme-
try m is also called axial symmetry (Zahn and Roskies [1972]) and
lateral symmetry (Davis [1977b]. Chaudhuri and Dutta Majumder
[1980]) or bilateral symmetry (Wallace and Wintz [1980]). Recalling
the concept of enantiomorphism, introduced in Section 2.3. it is easy
to verify that a necessary and sufficient condition for the existence of
enantiomorphic versions, or a ‘left” and a ‘right” version. of a two-di-
mensional shape is that it has no symmetry line m. Thus we observe
that the set of equivalence classes of similar shapes is divided into
mirror-symmetric classes and pairs of enantiomorphic classes.

Definition 2.7. Geometric symmetry n or n-fold geometric rotational
symmeltry.

A contour y is said to have geometric symmetry n or n-fold geometric
rotational symmetry iff there exists a point of order n in the plane such
that. when y is rotated about this point. it coincides with itself after
each rotation over an angle 2/n.

By necessity, the symmetry point of order # of an n-fold geometrical-
ly rotationally symmetric contour y coincides with the centroid of the
interior of y. In the literature on shape analysis symmetry n is also
called rotational symmetry of degree n (Granlund [1972]) and n-fold
axial symmetry (Santisteban. Garcia and Carrascosa [1981]).
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Definition 2.8. Geometric symmetry n'm or n-fold geometric compos-
itional symmerry.

A contour y is said to have geometric symmetry n'm or n-fold geometric
compositional symmetry iff  has both symmetry n and symmetry m.

O

We call this type of symmetry n-fold compositional symmetry because
it is composed of n-fold rotational symmetry and mirror-symmetry. As
we remarked earlier, the dot in n'm indicates that the symmetry cle-
ment n is coincident with the symmetry element m. In a two-dimen-
sional figure. that has both symmetry n and symmetry m., it is obviously
guaranteed that the symmetry point n lies on the symmetry line m.

Based on the Definitions 2.6 and 2.7 we now formulate the conditions
that must be satisfied by the parametric contour representations z, z.
Z, 0, ¢, y and K, indicated by the generic symbol f, of a contour y in
order that y has geometric symmetry m or geometric symmetry n, re-
spectively.

Theorem 2.5.

A contour y, with contour representation f, has geometric symmetry m
or geometric mirror-symmetry iff there exist scalars L € C, a, 7 € R
such that

Def = MIRDS. (2.4.1)
Proof

It is easily verified that a contour y has geometric symmetry m iff y is
geometrically mirror-similar with itself (cf. Definitions 2.6 and 2.7). As
a result of this equivalence the validity of this theorem follows im-
mediately from Theorem 2.4. We remark that no scaling of the contour
is performed if we wish to establish the mirror-similarity of the contour
with itself.

O

A survey of the formulations of this condition for geometric sym-
metry m, in terms of the individual contour representations, can be
found in Table 2.5.
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Table 2.5, Necessary and sufficient conditions that the individual contour representa-
tions must satisfy, for some £ € C. a. 7 € B and Vr € [0. 27]. in order to render a
contour with symmetry m.

Contour R A :
representation Condition for geometric symmetry m
z 2+ E=e"{3(~1t+1) + T}

z H)=—-e"HA—t+71)

Z & )=e"EH—-t+71)

f Hley={—B(—1+7)+7— ) med 2z
i gy = —q(=1+ 1) + ¢(7)

iy Yty =—y(=r+ 1)+ (1)

K K()=K(—t+1)

The values of the scalars C. a and r, for which the representation
f of a geometrically mirror-symmetric contour satisfies Eq. 2.4.1. can
be interpreted as follows. The translation operator 7 - assures that the
symmetry line m passes through the origin. This is the reason why the
translation operator &/ . appears on both sides of Eq. 2.4.1. which how-
ever does not lead to a loss in generality. In practice, —C usually corre-
sponds to the position of the centroid of the interior of y, which coin-
cides with the symmetry line m of a geometrically mirror-symmetric
contour. The angle between the symmetry line m and the positive x-axis
equals —a/2 or —a/2+ 7. If the starting point on the contour is
parametrically shifted over —7/2, or —1/2 = 7. then it coincides with the
symmetry line m.

Theorem 2.6.

A contour y, with contour representation f. has geometric symmetry »
or n-fold geometric rotational symmetry iff there exists a scalar
¢ € C such that

& :f = 'a-l.T-n'y{l?m"j :f (242)
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Proof

The translation operator %; on both sides of Eq. 2.4.2 allows for the
determination of the point in the plane about which the contour must
be rotated.

If @ contour, that has r-fold geometric rotational symmetry, is rotated
about this point over 2a/n. then it comes into coincidence with itself
(cf. Definition 2.7), which can be considered as similarity with itself
upon this rotation. Since the corresponding contour representations are
parametrized by a normalized arc length parameter, with a fundamental
parameter interval of length 27, the rotation %,,, must be compensated
by a a starting point shift J,,, in these contour representations, thus
leading to Eq. 2.4.2.

Because of the one-to-one relation between a contour and the con-
tour representation f, possibly up to a rigid motion in the plane (cf. the
proof of Theorem 2.3), Eq. 2.4.2 will be valid iff f represents a contour
that has geometric rotational symmetry n.

£

A survey of the formulations of this condition for geometric sym-
metry n, in terms of the individual contour representations, can be
found in Table 2.6.

The translation operator %; in Eq. 2.4.2 causes the centroid of the
interior of the n-fold geometrically rotationally symmetric contour to
coincide with the origin. So if £ is the complex value for which Eq. 2.4.2
is satisfied, then —C corresponds with the position of the centroid. As
a result of the application of %, subsequent rotations are about the
centroid. This is again the reason why. similar to Eq. 2.4.1, the transla-
tion operator £, appears on both sides of Eq. 2.4.2. It is easily verified
that if Eq. 2.4.2 is valid, then also

(j.:j = 9’?”[:.‘7;""Iiw‘!!lll‘ﬂﬂ}iﬁtj.’ Vm € Z. (243)

holds. Note in Table 2.6 that we used the property of the cumulative
angular function ¢ of a contour with geometric symmetry n that

w2
") =m :. Vme Z. (2.4.4)
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Table 2.6. Necessary and sufficient conditions that the individual contour representa-
tions must satisfy. for some £ and Vr € [0. 27], in order to render a contour with
symmetry .

Conthur P Condition for gcometric symmetry n
representation - -
[ It o

z A tec=e ¥ :[.’_";,.'*“

5y ,

¥ L R &
% = Yl o
3 H)y=e "z{r < ]
. y I:_'r _‘T.
b4 ztty=e fzlii— =
=51 )
. A 5
0 0(r) = {H(:— A “‘7? mod 27
n n
2at) o 2 27 27
= —_ - — = —_ +

¥ (1) r,c(t =% ¢ | "] ¢l n] -

f >

. 21

iy Nty=uy\r—-
J () ![_ - l

f o ]
K Kin=k{r- =7}

Bl 1 ’

Theorem 2.7.

A contour y, with contour representation f. has geometric symmetry

n-m or n-fold geometric compositional symmetry iff there exist sca-

lars £ € C. a. v € R such that both Eq. 2.4.1 and Eq. 2.4.2 are satisfied.
O

The validity of Theorem 2.7 follows immediately from Definition 2.8
and Theorems 2.5 and 2.6.

2.5 Concluding remarks

In Sections 2.1 and 2.2 we introduced a number of parametric con-
tour representations that preserve shape information. These are
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C N
|

position function

z - tangent function

acceleration function

f - tangent angle function

@ — cumulative angular function

i — periodic cumulative angular function
K — curvature function.

ta:
I

The relations between these representations have been described.
We have introduced the symbol f to collectively indicate the aforemen-
tioned contour representations. For simple closed contours all these
representations, except for ¢, are periodic if we move continuously
along the contour. We have decided to use the normalized arc length
parameter ¢ in the parametric contour representations, normalizing
their period to 2.

We have also introduced the similarity operators or equiform
operators ;. “%., %, and 7, to perform scaling, translation, rotation
and parametric starting point shift on contours, respectively, and the
mirror-similarity operator AL, to perform a mirror-reflection about the
X-axis.

In Section 2.1 we argued why we consider contour representations
that specify, in some way or another, the distance between a contour
and a contour-dependent reference position, not suitable for shape
analysis purposes.

In Section 2.3 we have expressed what we consider to be the shape
of a two-dimensional object. Based on this we have defined geometric
similarity and geometric mirror-similarity between contours. In Tables
2.3 and 2.4 we have listed the necessary and sufficient conditions that
the individual contour representations must satisfy in order to render
pairs of geometrically similar and geometrically mirror-similar con-
tours. We identified geometric similarity as an equivalence relation that
generates equivalence classes of geometrically similar contours. These
equivalence classes are divided by the concepts of geometric mirror-
similarity and geometric mirror-symmetry into mirror-symmetric classes
and pairs of enantiomorphic classes.

In Section 2.4 we defined the types of geometric symmetry that may
occur in single two-dimensional shapes. These are:
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® geomelric symmetry m or gcomeltric mirror-svmmetry,
e geometric symmetry n or n-fold geometric rotational symmetry,

® geometric symmetry n-m of n-fold geometric compositional sym-
metry. being the combination of symmetry n and symmetry m.

In Tables 2.5 and 2.6 we have listed the necessary and sufficient
conditions that the individual contour representations must satisfy in
order to render a contour with symmetry m and symmetry n. respec-
tively,

As formulated in Sections 2.3 and 2.4, geometric similarity. gcomet-
ric mirror-similarity and the three types of geometric symmetry are
mathematical abstractions. For various reasons they are not likely to
occur in practice. In order to have the disposal of means to establish
the extent of similarity or mirror-similarity that exists between shapes,
we will have to define appropriate measures. Likewise we will have to
determine appropriate measures to establish the extent with which a
particular type of symmetry is present in a shape. The conditions for
geometric similarity, geometric mirror-similarity and the three types of
geometric symmetry, in terms of the contour representations. will serve
to set boundary conditions for such measures. These topies will be dealt
with in Chapter 4.
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Chapter 3

Fourier series expansions of parametric
contour representations and their relation
to similarity and symmetry

3.1 Applications of Fourier series in the context of shape analysis -
a review

In the previous chapter we have introduced a number of periodic
contour representations that preserve shape information. In the litera-
ture on shape analysis, not the periodic contour representations them-
selves, but the Fourier coefficients generated by such contour represen-
tations have been given most attention. Fourier coefficients have been
proposed to serve various purposes in shape analysis procedures.

Granlund [1972], Zahn and Roskies [1972] and Tai, Li and Chiang
[1982] use a limited set of combinations of Fourier coefficients directly
in a multidimensional feature space to enable shape clustering and clas-
sification. The features are defined such that they are invariant for
similarity transformations of contours.

Many authors use a sequence of Fourier coefficients as a representa-
tion of an object contour and define a metric on pairs of sequences of
Fourier coefficients as a measure of dissimilarity between contours. To
ensure that such a dissimilarity measure is invariant for similarity trans-
formations of contours. some authors propose a combined normaliza-
tion/optimization procedure (e.g. Richard and Hemami [1974], Persoon
and Fu [1977]. Kuhl and Giardina [1982], Watson and Shapiro [1982]).
Others first perform a normalization of the Fourier coefficients to ob-
tain a dissimilarity measure that is invariant for similarity transforma-
tions. These normalization procedures are directly based on the Fourier
coefficients themselves (e.g. Persoon and Fu [1977], Burkhardt [1979],
Wallace and Mitchell [1979]. Wallace and Wintz [1980], Wallace [1981],
Proffitt [1982]). A detailed discussion of contour normalization meth-
ods, including the ones just mentioned. will be given in Section 4.3,

For the interpolation between shapes, schemes have been proposed
that interpolate between the Fourier coefficients of the position func-
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tions of given shapes (¢.g. Bertrand, Queval and Maitre [1982]). Wal-
lace and Mitchell [1980] use an interpolation procedure based on the
Fourier coefficients of airplane silhouette representations to obtain
greater accuracy in airplane orientation measurement.

Fourier coefficients have also been proposed to detect symmetry in
objects (e.g. Granlund [1972]. Zahn and Roskies [1972]. Burkhardt
[1979]. Wallace and Wintz [1980]. Crimmins [1982]. Mitchell and Gro-
gan [1984]).

In biology and in particle science. frequently not absolute shape. but
those shape characteristics from which conclusions concerning biologi-
cal and physical properties can be derived, are important. Many prop-
ositions for such shape characteristics have been formulated in terms
of Fourier coefficients of periodic contour representations. We refer to
Young., Walker and Bowie [1974]. Sychra et al. [1976]. Chen and Shi
[1980] and Nguyen. Poulsen and Louis [1983] for Fourier-based shape
characteristics in cell analysis. and to Schwarcz and Shane [1969],
Ehrlich and Weinberg [1970]. Beddow et al. [1977]. Meloy [1977a].
Meloy [1977b]. Beddow and Mcloy [1980]. Luerkens. Beddow and Vet-
ter [1982a] and Luerkens. Beddow and Vetter [1982b] for the definition
of such characteristics in the context of particle analysis.

The accuracy with which a finite Fourier series approximates a par-
ticular periodic function constitutes an important subject in the theory
of Fourier series. In the context of contour representation, the accuracy
of approximation of finite Fourier series has been given comparatively
little attention (e.g. Giardina and Kuhl [1977]. Kuhl and Giardina
[1982] and Etesami and Uicker [1985]). Some new results on this sub-
ject are presented in Dekking and Van Otterloo [1986] and in Section
3.4,

Closely related to the accuracy of approximation by finite Fourier
series is the subject of the rate of decay of the Fourier coefficients. In
Young, Walker and Bowie [1974] the finiteness of the bending energy
in a curve is related to the rate of decay of the Fourier coefficients
generated by the position function of such a curve. Some comments on
this paper relating to this topic can be found in Section 3.2. The charac-
terization of the behavior of Fourier coefficients and of the convergence
properties of Fourier series for various classes of functions plays a cen-
tral role in the theory of Fourier series (e.g. Titchmarsh [1939]. Zyg-
mund [1959a]. Zygmund [1959b]. Lighthill [1962]. Katznelson [1968].
Edwards [1979]. Edwards [1982]). In the following three sections we
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discuss some aspects of Fourier series theory in relation to contour
representation.

In Section 3.2 we analyze the convergence propertics of the Fourier
series and the Fourier coefficients of the contour representations intro-
duced in Chapter 2. To facilitate this discussion we introduce two new
smoothness classes of contours. We show that the sequences of Fourier
coefficients, generated by the representations of contours that belong
to these smoothness classes. preserve shape information.

In Section 3.3 we study the consequences of (normalized) arc length
parametrization upon Fourier series expansions of contour representa-
tions. We show that the condition of (normalized) arc length paramet-
rization causes the Fourier sequences, generated by the contour rep-
resentations z, z and Z of all contours, except for the circle, to contain
an infinite number of nonzero coefficients. However, in practice we can
only work with finite sequences.

Therefore, in Section 3.4 we derive upperbounds for the truncation
errors resulting from finite Fourier series expansions.

In Section 3.5 we formulate conditions for geometric similarity and
for geometric mirror-similarity in terms of pairs of sequences of Fourier
coefficients.

Section 3.6 describes conditions for geometric symmetry m and for
geometric symmetry n in terms of sequences of Fourier coefficients.

Finally. Section 3.7 contains a review of this chapter and some con-
cluding remarks. In this section we also discuss Walsh sequency expan-
sions. which have been proposed as alternative transform domain rep-
resentations of contours.

3.2 Fourier series theory in relation to parametric contour
representation

In the following we discuss some elements of Fourier series theory
in fairly global terms and relate these to the representation of object
contours. We analyze the refation between smoothness classes of con-
tours and function class membership of the corresponding contour rep-
resentations. Based on these results we establish the convergence prop-
erties of the Fourier series and Fourier coefficients generated by these
contour representations. We first define some essential concepts.
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Definition 3.1.  Fourier series.
Let f denote a Lebesgue-integrable. complex-valued function of period
2. The exponential Fourier series, generated by f. is given by

iy~ Y fikye™. (32.1)
ke Z

where the complex Fourier coefficients f(k) are given by the formula

- | : -
ftk) = 21 flrye ™due. (3.2.2)

{
—

The notation *~" in Eq. 3.2.1 means that the Fourier series on the
righthand side is generated by f. This formulation of Fourier series does
not make any presupposition about the convergence of the series.

Definition 3.2. Partial Fourier sum of degree n.
The partial Fourier sum of degree n of a 2x-periodic. Lebesgue-inte-
grable function fis defined as

23
3
(%)
S

{-"'JIHH = Z I{—‘{k}ctﬁn’. (
[k| =

=n

where f(k) is the Fourier coefficient with index k generated by f. as
defined by Eq. 3.2.2.
0

The theory of Fourier series has established various types of conver-
gence of Fourier series to the functions that generate them. and various
ways in which a Fourier series can represent a function. The tvpe of
convergence and the way of representation depends upon the function
class to which a function belongs. Also the way of summing the Fourier
series influences the convergence properties.

The function classes referred to are, for example, characterized by
the integrability or differentiability properties of its members. or by the
important property of bounded variation.

To facilitate the interpretation of the discussion that follows. a
number of definitions and properties from mathematical analysis have
been incorporated in Appendix A.
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We shall analyze the convergence properties of the Fourier series
and the Fourier coefficients of the contour representations z, z, Z, ¥
and K of contours belonging to the classes I',, I',.. I and I'.. To enable
this we will first establish to which function class the contour represen-
tations of contours from various classes belong. In the discussion about
the convergence properties of Fourier series and Fourier coefficients,
we shall make frequent use of the inclusion relations that were estab-
lished for the contour classes in Egs. 2.1.10 and 2.1.11. Mathematically.
the class I, poses very few restrictions on Z and K (cf. Definition 2.2).
which prevents us from deriving some useful properties. On the other
hand, the class I is too restrictive from an application’s point of view
(cf. Definition 2.3). Therefore we will define in this section the class
I, of weakly regular simple closed curves. In analogy with the classes
I, and I, (cf. Section 2.1) we will also define the class I, of piecewise
weakly regular simple closed curves.

In the following we shall show that the position function z of any
simple closed contour y € I, will always satisfy a Lipschitz condition.
i.e. z € A (cf. Appendix A).

Lemma 3.1.
If y € I, then z € A with Lipschitz constant L/2x.

Proof

If y € I,.. then it consists of a finite number of smooth contour segments
(cf. Section 2.1). Along each smooth segment the position function z
is continuously differentiable (cf. Definition 2.2). Consequently, each
smooth segment of y is rectifiable. Since the number of smooth seg-
ments is finite, y itself is rectifiable and thus (normalized) arc length
can be used as a parameter for z (cf. Kreyszig [1968]. pp. 28-30).

To see that z € A, with Lipschitz constant L/2:r, we note that Vo > 0
et: Eq. 2.1:13);

[z(t + O) — z(t)| <s(1,t+9)

1+ L
= J' |2(7)|dr = 6 s (3.2.4)

since z is parametrized according to normalized arc length. O
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Lemma 3.1 is also valid for contours belonging to the classes I, I
and I since these contour classes are contained in I, (cf. Eqs. 2.1.10
and 2.1.11).

Proposition 3.1. (Cf. Apostol [1974]. p. 139.)
If a function f. defined on |a. b]. belongs to A (with Lipschitz constant
4), then f e AC (cf. Appendix A).

Proof

This is true because for any ¢ > (). taking 0 = ¢/A. we find for every n

disjoint open subintervals (ay, b)) of [a. bl 0 = 1.2, ..., such that
2. _ ((by — ay) is less than O, that
Z [f(by) — flay)| < 2 Z by — | <id=e, (3.2.5)

k=1 k=1

and hence f € AC.

From Lemma 3.1 and Proposition 3.1 we may conclude that. if y € T,
then z € AC.

I

We now define the classes I, and I, of weakly regular and piece-
wise weakly regular simple closed curves.

Definition 3.3.  Weakly regular simple closed curve.
A curve y, parametrized on [0, 2x]. is a weakly regular simple closed
curve iff:

[ ] yie r\_ (?2{1‘”
e = exists and is continuous along y except in a finite
number of points: at the latter points left and right

limits of Z exist. (3.2.6b)

o F0)= #2m). (3.2.6¢)

O

At those points ¢ where Z does not exist we can define for example
(1) = %{L-:’{.") + Z(7)}. With this convention. Definition 3.3 implies
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that |2(7)| is bounded by some positive value |2, < % if y € I,;. From
Eq. 2.2.25 it then follows that the absolute curvature function |K(r)] is
also bounded by K,,,, = (2n/L)* |3,,,s < =. Note that I, c I, c I,
(cf. Definitions 2.2 and 2.3).

Definition 3.4. Piecewise weakly regular simple closed curve.
A curve y, parametrized on [0, 2], is a piecewise weakly regular simple
closed curve iff:

L] Y € ‘rps- {32?3)
e at those points. where z does not exist, left and right
limits of z exist, (3.2.7b)
e cverywhere, where y is smooth, Z exists and is continu-
ous except in a finite number of points; at the latter
points left and right limits of Z exist, (3:2.3¢)
e #0) = #2n). (3.2.7d)
[

Note that I',, ¢ L, < I, (cf. Eq. 2.1.11).

Another way to characterize the class I, is to say that the curves
in this class are weakly regular, except in a finite number of points. At
those points where a curve is not weakly regular, Eq. 3.2.7b applies.

In the following we first analyze to which function classes the rep-
resentations of contours of the class I, belong. We first show that
ze Aand y € A il y € I,. and then that Z € L™ and K € L™, On the
basis of these results we draw conclusions about the convergence prop-
erties of the corresponding Fourier series and Fourier coefficients.

Lemma 3.2,
If y € I, then z € A with Lipschitz constant (L/27)*K .-
Proof

The truth of this lemma can be verified as follows. If ¥ € I,,, then:
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|z(r + 0) — z(1)|

L 17+ 0 It |
= 2__1\‘:(” }_cﬂn!
B L g Bt + o) — 6(1)
=gl 2

14
< .~ |6(t+0) — 6(n)]

2o

F3 R i
= f.ﬂ dr |

27 iJ: (7) lr|

3

<0 o Ko (3.2.8)

for all ¢ € [0, 2x — 8] and for all small & > 0.

Lemma 3.3.
If y € I, then i € A with Lipschitz constant (L/271) K, + |.

Proof
We recall from Eq. 2.2.32 that
p(t +0) — (1) = ¢lt + 6) — ¢(1) — 6.

To see that the statement in this lemma is true we note thatif v € I,,.
then (cf. Egs. 2.2.34 and 2.2.35):

Lyt + 0) — y(1)]
1+0 y | f L
= g(r)dr+ 0| <o = Ko + 1 (3.2.9)

for all £ € [0, 27 — 0] and all small 6 > 0. O
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From Definition 3.3 it follows immediately that Z € L™ if y € I,,. This
in turn means that the Riemann-Lebesgue lemma applies to 2(k):
Jim (k) =0, (3.2.10)

i.e. 2(k) = o(1) as |k| — = (cf. Edwards [1979], pp. 32 and 36).

From z € A it follows that Z is integrable, i.e. z € L'. We then find
the relation (cf. Edwards [1979], p. 32):

5(k) = 2]7 J z(f)e *dy

. 1 -1kt 2n I L ~— ikt
= — e ™| "+ S L Ho)eMdt

1 -
= (). 3.2
i z(k) (3.2.11)
By applying Eq. 3.2.12 twice we obtain the relation

(k)= — : 2(k). (3.2.12)

From Egs. 3.2.10 and 3.2.12 we conclude that (k) = o(k ) as
|k|— = ify e I,,. Hence we find that 2(k) = o(|k| ") as |k| - = ify € I,
As z € AC, S,z converges uniformly to z (cf. Appendix A).

Along the same lines analogous results can be derived for i and K
if y € I,,. From Definition 3.3 it follows immediately that K € L™ if
y € I,,. The Riemann-Lebesgue lemma then yields

“\_llim’ K(k) =0, (3.2.13)

i.e. K(k) = o(1) as |k| - =.
Wherever i exists the relation between 3 and K is defined as (cf.
Egs. 2.2.32 and 2.2.34):

. L
b=, K@O-1. (3.2.14)
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From this equation we derive (cf. Eq. 3.2.11):

—_
2
-2
o
n

—

- e
yY(k) = ik K(k). VkezZ-{0}.

From Egs. 3.2.13 and 3.2.15 we find that (k) = o(|k| ') as |k| — =
if y € I',,. Since y € AC if y € I, S,y converges uniformly to y (cf.
Appendix A).

If y € I,,. we already found that Z € L™ and K € L™ and that E(kl =
o(1) and K(k) = o(1) as |k| — =. It was shown by Hunt [1967].
elaborating on the results of Carleson [1966]. that!"!

Iin? S =1x). ae. (3.2.16)

n— %

if f € L7, for any index p > 1. Thus, if y € I,. then

lirq (3,2)(t) = Z(1), a.e. (3.2.17)
and
lim (S,K)(1) = K(1). a.e. (3.2.18)

If a contour belongs to I, then obviously the same properties are
valid for the representations of this contour and its Fourier expansions
that are valid when a contour belongs to I',. Though z € C and K € C
if y € I,. it is not necessarily true that Z € BV and K € BV. Therefore
stronger convergence properties for é(k) and K(k] are generally not
valid if y € I.,.

Mere continuity of a function is not a particularly strong property in
relation to the convergence of the Fourier series that it generates. This
is illustrated by the fact that the Fourier series of a continuous function
can diverge on an uncountable set (cf. Edwards [1979]. pp. 162-164).
On the other hand, Eqgs. 3.2.17 and 3.2.18 are clearly valid if y € I.

We now pay some attention to contours with finite bending energy.
Young, Walker and Bowie [1974] considered a contour as a thin flexible
rod and related the finiteness of the bending energy in this rod to the
rate of convergence of 2(k) as |k| — =. Finiteness of bending energy
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is considered to characterize the smoothness of contours. We will show
that if a contour y € I, then y has finite bending energy. Through an
example we will show that the converse is not necessarily true. Through
this example it will also become clear that finiteness of bending energy
is not a sufficient criterion to judge the smoothness of a curve.

Finiteness of bending energy is equivalent to square integrability of
the curvature function, i.e. K € L% In the aforementioned paper it was
shown that

Y, Klak)) < =, (3.2.19)

ke

i.e. {k’2(k)} € €3(2) (cf. Appendix A), if K e L. Hence {k*2(k)} €
¢)(2), i.e. {k*2(k)} = o(1) as |k| — =. Thus we find that the rate of
convergence of (k) is at least o(k?) as |k| — < if the bending energy
in the contour is finite. (This result corrects a minor error in the conclu-
sion drawn by Young, Walker and Bowie [1974].)

We now verify that the bending energy in a contour y is finite if y €
I',,. We already remarked that finiteness of bending energy is equiva-
lent to K € L*. If y € I,,, then K € L*. Observing that L < L? (cf.
Appendix A) and combining this with the facts just mentioned, we can
immediately conclude that y € I, indeed implies finiteness of bending
energy in y. Incidentally this observation also implies that I, is a
proper subset of the class of contours with finite bending energy. Fur-
thermore we remark that the previously obtained result, i.e. 2(k) =
o(k?) as |k| — = if y € I,. is in accordance with the rate of decay of
2(k) just found if the bending energy in the contour is finite.

An example of a curve with finite bending energy which does not
belong to I, is the following. Consider the tangent angle function

-
o(r) = ; -~ (;) e, o0<a<l, (3.2.20)

in the interval —7/2 < t < 7/2. In this interval @ is continuous. This
function does not define a closed contour. but this fact is immaterial
for this discussion. The derivative of 6 is given by

f | —e
(1) = -u(g) sgn (1) [¢“ ", (3.2.21)
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which does not exist at 1 = 0 since 0 < a < 1. If ¢ represents the arc
length along the curve, then @ expresses its curvature K (cf. Eq. Z.2.22).
The curves, defined by 6 and # = K in Egs. 3.2.20 and 3.2.21. are not
weakly regular since lim, - , K(1) = = and him, Lo K(r) = —=.

In order for K to belong to Lf[—7/2, 2/2] we find from Eq. 3.2.21
the requirement that « > (p — 1)/p. Thus K € L[—a/2, 72] if 1~ <
a<

5 : :
&itl ael \
Ty i
o é
0 (]
X . 1 x x X x 0 P x
2 & [3 o 2 z Z 2
a a=49 =i a= 51 =
/| (3). y (%),
r .
210}« z(0)w
5], «(F),
o — ¥ 0 —- X
b a=49 | = 51

Figure 3.1. In (a) the tangent function #(1) = /2 — (/2)" "|¢}* is shown for e = 49 and « = 51.
In (b) the associated position functions (1), reconstructed according to Eq. 3.2.22_ are displayed.
Note that z(r) does not have finite bending energy for a = 49, whereas for ¢ = 51 it does.

This example also shows that finiteness of the bending energy is not
a sufficient criterion to determine the smoothness of a curve. In Figure
3.1a we have shown 6(¢) in the interval —a/2 <t < a/2 for « = .51 and
a = .49. Figure 3.1b displays the reconstructed position functions

!
(1) = [ e'!idr (3:2.22)

for these values of a. Despite the continuity of # we can see an irregu-
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larity in the reconstructed curves at + = (. Therefore it seems that
membership of the class I, is a better criterion for a curve to be
smooth.

We now turn to an analysis of the function class membership of
representations of contours that belong to I,,,. We show that z € BY
and y € BV if y € I, and that Z and K constitute distributions of
order (. Subsequently we consider the convergence properties of the
corresponding Fourier series and Fourier coefficients.

In the following lemma we use the fact that, if f € A in a certain
interval, then f € AC (cf. Proposition 3.1) and certainly f € BV in that
interval (cf. Appendix A or Apostol [1974], pp. 137-139).

Lemma 3.4.
If y € I, then z € BV and y € BV.

Proof

From Lemmas 3.2 and 3.3 and the statement above it follows im-
mediately that z € BV and y € BV if y € L. If y € I, then the
number of points where z does not exist is finite (cf. Definition 3.4). If
z does not exist at a certain point 1, then the contribution to the total
variation at f is upperbounded by

|2 = 20)] =

eltlr) —_ it < L, (3.2.23)
1

Likewise the contribution at ¢ to the total variation in  is upper-
bounded by z. Since both the number of such contributions and the
contributions themselves are finite, the total variations of z and ¥ re-
main finite if y € I,,,.

O

Since z may contain jump discontinuities if y € I, we assume ? to
represent the distributional derivative of z (cf. Edwards [1982], p. 63).
Likewise, if y € I,,,. then y may contain jump discontinuities. There-
fore K is linearly related to the distributional derivative of y (cf. Eq.
3.2.14). Then, as a result of Lemma 3.4, Z and K constitute distributions
of order 0 or Radon measures (cf. Edwards [1982], p. 72).
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We are now in a position to make some statements about the behav-
ior of the Fourier series and the Fourier coefficients of the contour
representations z, Z, y and K if y € I,,,.

We just found that z € BV if y € I',,,. By Edwards [1979]. pp. 33-34.
we then find that

: | .
|kz(k)| < - Var (2), VkeZ. (3.2.24)

where Var (2) denotes the total variation of z in a fundamental parame-
ter interval of length 27 (cf. Appendix A). Thus Eq. 3.2.24 yields
z(k) = O(|k|™") as |k| — =.

Combining Egs. 3.2.11 and 3.2.24 we find that if y € I',,. then

k*5(k)| < ’I Var (2). Vk e Z. (3:2.25)
praey 4

Thus 2(k) = O(k™*) as |k| — =. so that the Fourier series of z
converges absolutely and uniformly to z.

In Eq. 3.2.24 we already observed that k) = O(lk|™") as |k| — =
if y € I, Since z € BV it follows from the Dirichlet-Jordan test (cf.
Appendix A or Zygmund [1959a]. p. 57) that (5,2)(1) converges to
%lfz{r') — 2(t7)}, Vi € [0, 2z]. Consequently. (S,2) converges to = at
every point of continuity of z. At every point where = has a jump
discontinuity. (5,z) exhibits the well-known Gibbs phenomenon. The
Gibbs phenomenon is a feature of the nonuniformity of the con-
vergence of the sequence (S,2) in the neighborhood of a point of discon-
tinuity. See Hewitt and Hewitt [1979] for a detailed account of this
phenomenon.

Along the same lines we can perform the analysis for ¢ if y € I,,.
leading to analogous results.

We have established above that Z constitutes a distribution of order
0if y € I, As aresult the Fourier coefficients of z and £ are related
as 2(k) = ikz(k).Vk € Z (cf. Edwards [1982]. p. 72). Since 2(k) = O(|k| ")
as | k| — = if y € I,. we then find that 3(k)=O(1)as k| > = ifye foc
The Fourier series S,z converge distributionally to Z (cf. Edwards
[1979]. pp. 8-9).

Similarly. if y € I, we find that K(k) = (E:rikf!.):j-(k)'. YkeZ —{0}.
and, since (k) = O(|k|™") as |k| — =. this yields K(k) = O(1) as
[k| — . The Fourier series §,K converge distributionally to K.
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Table 3.1. Contour representations and corresponding Fourier coefficients of an arbi-
trary closed N-sided polygon, specified by the ordered set of vertices {z(t,): n = 0, ...
N — 1}. The notations were introduced in Section 2.2,

Contour representation

Fourier cocfficients

=

==L

L
An = aziy) | ir=1n) + ).

=l

I _
()= _ 2 a0+ 1))

L N =
i(k) = - - A ye M. k0
(27k) ”gn )

L .
z(t) = Az%(r,) : H0)y=0
27
e o< A
; if Pl
A== eu APz*(r)e %, k#0
(27)k ,,gn )
i e, .
i) = z..‘ Y AZ(1,)0x,(t—1,) 0)=0
- L N=1
k)= . A2z¥(1,)e o, k#0
(27)” rrgn

W 1 N
Y Ag(t,) —t, PO =a— Y 1,A¢,)
=] n= | ! =1
i) = < = n=10,
L‘_- I N=1
- L Aglt,,) —t. k)= — - Z Ag(r,)e k#10
=gl LK =1
n<-—|
St
oy it ; 2
K(r) = Ag(t,)0:.(r — 1, K(0) =
= L 7(1,)0: ) =
1 Mol
K(k) = ; Y Ag()e k +# 0
= a=1
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If y € I,, we cannot improve on the results obtained above when
y € I, This is caused by the potential jump discontinuities in z and
y if y € I, while Z and K also constitute distributions of order () in
this case.

As an illustrative example we have listed in Table 3.1 the expressions
for the various contour representations of an arbitrary closed N-sided
polygon. These expressions were previously derived in Section 2.2.
Next to these contour representations we have listed in Table 3.1 the
expressions for their Fourier coefficients. Note that polygons belong to

I

pre
In Figures 3.2b-f the magnitudes are shown of the first 125 Fourier
coefficients generated by the contour representations z. Z. Z. 4 and K

of the polygon in Figure 3.2a.
We have now completed an investigation of the convergence proper-
ties of the Fourier series and the Fourier coefficients generated by the

. 10"
Zlk)
3 10°

ﬂ\“ Wu] fiiy

25 50 ?5 ?00 125

-125 -100 -75 -
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Figure 3.2. In (a) a polygon of 16 vertices is shown and in (b), (c), (d), (¢) and (f) the magnitudes
are displayed of the first 125 Fourier coefficients of the representations z, z, z, y and K of the
polygon. Note the rates of convergence of the Fourier coefficients in (b)-(f) and compare them
with the formulas for 2(k), z(k). Z(k). y(k) and K(k), given in Table 3.1.
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contour representations z. 2, £, i and K of contours belonging to the
contour classes I'.. I',.. I'. I, FF,M. and I... In Section 2.2 we have
shown that these contour representations all preserve the shape infor-
mation of the contours from these classes. The convergence properties
that we found for the Fourier series of these contour representations
are sufficient to ensure. in view of the uniqueness theorems for Fourier
series (cf. Edwards [1979]. pp. 40-41. Edwards [1982]. pp. 69-70). that
there exists a one-to-one correspondence. in the sense of these con-
vergence properties. between a contour representation and the limit of
its Fourier series expansion. Therefore we draw the conclusion that the
Fourier series, generated by the aforementioned contour represen-
tations, also preserve shape information. For this reason we call f =
(f(k)), . 2. the sequence of Fourier coefficients generated by a contour
representation f of a contour . a Fourier representation of . The
shape information-preserving properties of Fourier representations will
allow us. in Sections 3.5 and 3.6. to formulate necessary and sufficient
conditions on sequences of Fourier coefficients. such that a pair of
contours is (mirror-)similar or such that a contour has certain symmetry
properties.

3.3 Consequences of normalized arc length parametrization upon the
Fourier series of contour representations

In the previous section we have paid attention to the convergence
properties of Fourier series of periodic contour representations and to
the rate at which the corresponding Fourier coefficients approach to
zero. An interesting question. with which we shall be concerned in this
section. is whether a periodic contour representation. with a normalized
arc length parameter, can be expanded into a Fourier series that has a
finite number of nonzero coefficients. If this were true. then it would
be theoretically possible, according to the Shannon sampling theorem
(Shannon [1949], Jerri [1977]). to reconstruct the contour representa-
tion from a finite number of samples, If M were the largest absolute
index of the nonzero Fourier coefficients, then 2M equidistant samples
of the contour representation in one complete period would be needed
to allow for an exact reconstruction of the representation.

We first investigate the question just raised for the position function
z. For the main theorem we need the following lemma. the validity of
which is obvious from the unicity of Fourier representations.
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Lemma 3.5.

LetM, Ne 2, M < N. Then

implies

Theorem 3.1.

With the exception of a circle, no piecewise differentiable position func-
tion z, with (normalized) arc length parameter, of a simple closed con-
tour y can be expanded into a Fourier series with a finite number of
nonzero Fourier coefficients.

Proof
Let M, N e Z. M < N. be two finite integers. We assume that the

position function z, with normalized arc length parameter ¢. of a simple
closed contour y can be represented by the finite Fourier series

2T = 2(k)e™. (

k=M

L
(5
s

Our task is now to show that y can only be a circle.
The tangent function z is given by

N

M= ) z(k)e™, (3.3.4)

k=M

where (cf. Eq. 3.2.15)

(k) = ik3(k), M<k<AN. (3.3.

(9%}
[ #5}
tn
—
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The requirement that ¢ is a normalized arc length parameter amounts
Lo

N

5 < l‘ 5 =
120l = | ). k)e™| = S (3.3.6)
, ]

k=3

where L is the perimeter of . This requirement can be rewritten as

oL r g T ™ e
Il‘(f}|':( Z :[k}c"“)( Z (e ”‘] = ] (3.3.7)
k=M = ' =T
Rewriting the product of sums in Eq. 3.3.7 vields
Y VI
Z ag(n)e" =10, (3.3.8)
" I\ i
where
N—=M—n =
E AN—m)zIN—-m—n). O<nsN-M.
m=1l
(3.3.9a)
L ]: =iyt 2
=< — - 2(N — ] n =1, (3.3.9b
o) (2.1 mZ“ ‘ ( m)‘ )
v —in —
Z AIN—-—m+nz(N—-m). —=(N-M)ysn<),
1173 1]

(3.3.9¢)

From Lemma 3.5 it follows that the condition in Eq. 3.3.8 can only
be satisfied if

a(n) = . —(N—M)ysn=s=N— M. (3.3.10)
We now assume., without loss of generality. that 3(N) # 0. Since for
any contour 2(0) =0, this assumption implies N # 0. Through Egs.

3.3.9a and 3.3.10 we find

(N — M) = SNEM) = 0. (3.3.112)
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which implies, with 2(N) # 0,
(M) = 0. (3.3.11b)

With this result we continue:
o(N—M—1) = N)HM + 1) + 5N — 1)3(M)

= ZN)A(M + 1) =0, (3.3.12a)
which implies
XM+ 1) = 0. (3.3.12b)
We continue this process till o(1):

Ni=pmpr—1 -
o(1) = Z zZ(N—m)z(N—m— 1), (3.3.13a)

m=0
which implies
2N -1)=0. (3.3.13b)
Thus we have found from Eq. 3.3.6 that
wn)=0, M<n<N-l. (3.3.14)

Through Egs. 3.3.5 and 3.3.14 and the fact that N # 0, the finite
Fourier series expansion of z in Eq. 3.3.3 now reduces to

z(1) = 2(0) + Z(N)je™. (3.3.15)
We recall from Section 2.1 two conditions that z must satisfy:

o simplicity (cf. Eq. 2.1.5).

e counterclockwise tracing as f increases.

These conditions are satisfied in Eq. 3.3.15iff N = 1.



108 CHAPTER 3

Thus we find

z(t) = 20) + 2(1)e", (3.3.16)

which is the equation of a circle with center at 2(0) and with radius of
size |2(1)].
The proof of this theorem is now complete.

[t is clear from the foregoing that the condition of a (normalized) arc
length parametrization plays a crucial role in the proof of Theorem 3.1.

If we discard the condition of (normalized) arc length parametriza-
tion for z. then a finite Fourier series can indeed represent a simple
contour. which will always be closed. The closure of the contour is a
result of the periodicity of the complex exponentials that constitute the
basis functions for the Fourier series. Figure 3.3a shows an example of
such a representation. The speed along the contour. as a function of
the parameter (. is also shown (Figure 3.3b).

y
¢

d
20
[zt0]
10
GO T T 3r 2T
b 2 o

—

Figure 3.3. (a) shows an example of @ position function with a finite number of nonzero Fourier
coefficients: z(r) = ¢" + (.2¢™, The speed of motion along the contour: |2(r)] = [1.64 +
1.6 cos (31)] . 1s shown in (b). Clearly |2(r)]| varies with 1.
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The following corollaries are an immediate result of Theorem 3.1
and its proof.

Corollary 3.1.
If the position function z(f) of an arbitrary simple closed contour is
expanded into a finite Fourier series, then the parameter ¢ in the finite
expansion is not a (normalized) arc length parameter, unless the con-
tour is a circle.

O

Corollary 3.2.

If the parameter ¢ of a position function z(f) of an arbitrary simple
closed contour is a (normalized) arc length parameter, then z(f) cannot
be reconstructed exactly from a finite number of samples of z in a single
period. unless the contour is a circle.

O

If a contour is a circle. then, according to Shannon’s sampling
theorem (cf. Shannon [1949]. Jerri [1977]), two equidistant samples of
z in a single period are sufficient to allow for an exact reconstruction
of z(1).

The facts, stated in Theorem 3.1 and in Corollary 3.1, have been
observed previously by Persoon and Fu [1977], but no complete proof
was given. There are a number of examples in the literature where
these facts have been overlooked. For example, a direct consequence
of Theorem 3.1 is that the ‘complete set of Fourier descriptors’ to
characterize the shape of a simple closed contour, as described by Crim-
mins [1982], contains infinitely many elements, unless the contour is a
circle.

The contents of Corollaries 3.1 and 3.2 have important consequences
in practice since truncation of a Fourier series expansion of z leads in
general to the loss of the linear relation between ¢ and arc length and
to an inexact representation of z. In the next section we derive upper-
bounds for the truncation errors resulting from finite Fourier series
expansions.

Another corollary to Theorem 3.1, which has implications in practice,
is the following.

Corollary 3.3.
If r is the (normalized) arc length parameter of the position function z
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of an arbitrary simple closed contour, then it is not possible to compute
the Fourier coefficients Z(k) of z(r) exactly from a finite number of
samples of z in a single period (through a discrete Fourier transform.
cf. e.g. Oppenheim and Schafer [1975]). unless the contour is a circle.

O

In signal theory. the phenomenon that causes errors to occur in
Fourier transforms and Fourier coefficients. when computed from
fewer samples than the Nyquist criterion prescribes. is generally known
as aliasing (cf. e.g. Oppenheim and Shafer [1975]. Hamming [1977]).

The question whether the tangent function 2 or the acceleration func-
tion # of a simple closed contour, with a (normalized) arc length
parameter, can be expanded into a finite Fourier series can now be
answered in a straightforward manner. Since 2(k) = ik3(k) and (k) =
—k*2(k) (cf. Section 3.2). analogues to Theorem 3.1 and Corollaries
3.1-3.3 can be formulated for z and Z.

For the periodic cumulative angular function y* and for the curvature
function K the situation is different. There exist simple closed contours.
with a normalized arc length parameter. for which y* and K can be
expanded into a finite Fourier series. An example of such a contour is
given by Zahn and Roskies [1972]:

() =3¢ + e = 3 cos (31). (3.3.17)

Choosing the perimeter of the contour to be 27, i.e. t corresponds
to arc length. we find through Egs. 2.2.32 and 2.2.34 for K the expres-
sion

K(@t)=1— vie "+ HieV = 1 — 5 sin (31). (3.3.18)

A reconstruction of the contour, having Egs. 3.3.17 and 3.3.18 as
periodic cumulative angular function and as curvature function. respec-
tively. is shown in Figure 3.4.

In contrast with the finite or infinite Fourier series expansions of the
contour representations z. z and Z. those of 4 and K in general do not
correspond to a closed contour. Special conditions must be satisfied by
the Fourier coefficients (k) in order to correspond to a closed contour.
In Zahn and Roskies [1972] some sufficient conditions are presented
for the (potentially finite) Fourier series expansion to represent a closed
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contour. However. the necessity of these conditions is not shown. Using
the relation K(k) = (2a/L)iky(k). Yk # 0, corresponding sufficient
conditions for closure can be derived for K(k).

Figure 3.4. The contour that has the representations i and K as given in Eqs. 3.3.17 and 3.3.18,
respectively.

In view of the foregoing, it is clear that the reconstruction of a con-
tour from a truncated Fourier series expansion of i or K does in general
not lead to a closed contour. Strackee and Nagelkerke [1983] presented
an approximation technique to ensure the closure of contours recon-
structed from a finite Fourier series expansion of . In the context of
reconstructing a contour from a finite Walsh sequency expansion of i
{cf. Section 3.7}, another method to obtain a closed contour is described
by Sarvarayudu and Sethi [1983]. Their method can also be applied to
the reconstruction of closed contours from finite Fourier series expan-
sions of y or K.

3.4 Upperbounds on the truncation errors in finite Fourier series
expansions of contour representations

In the previous section we found that the Fourier series of the contour
representations z, z and Z, with (normalized) arc length parameter,
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contain an infinite number of nonzero Fourier cocfficients. unless the
contour is a circle. Apart from the fact that. as a result of a truncation
of the Fourier series expansion. the linear relation between the parame-
ter and arc length is lost (Corollary 3.2). the truncated Fourier series
will always exhibit a truncation error with respect to the contour repre-
sentation (again with the exception of a circle). In this section we derive
various upperbounds for the truncation errors caused by finite Fourier
series expansions. We derive upperbounds for representations of con-
tours that belong to a number of smoothness classes and provide an
experimental comparison of the performance of some of these upper-
bounds. Sharp upperbounds may be helpful in deciding whether it is
useful. in terms of data reduction. to work with Fourier representations
if we wish to maintain a certain approximation accuracy.

We indicate the set of all trigonometric polynomials of degree at
most n as T, (cf. Appendix A). It is a well-known fact (cf. ¢.g. Edwards
11979], p. 131) that. of all trigonometric polynomials in T,. the finite
Fourier series expansion of degree n of a periodic function vields the
minimum truncation error in mean square sense. In some applications
however, the Chebychev norm or sup-norm (cf. Appendix A) may pro-
vide a more appropriate error criterion to judge the truncation error.
The finite Fourier series expansion of degree n of a periodic function
does in general not minimize this error criterion over T,

We define for p = 1. 2. ... and for p = =:

ExP) = mt {llf— Py

2B, eT). (3.4.1)

The optimality of the partial Fourier sum of degree n. S, f. in mean
square sense. leads to

EZf) = If = S.f

. (3.4.2)

From the definition of E.”'(f) and through Holder's inequality (cf.
e.g. Appendix A or Hardy. Littdewoad and Pélya [1952]) we find the
inequality

E\P(f) = EWf). ifp>q. (3.4.3)
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From Egs. 3.4.1-3.4.3 we derive the following chain of inequalities:

”f_ S”f”x = Ef[:-”{f) = E’{*J_!(f} = ”j— Snf L {344)

From now on we denote E\7(f) simply as E,(f).

In the remainder of this section we derive some upperbounds on
I[f = S,fll. for the contour representations z, z and y for various
contour classes. Part of this discussion can also be found in Dekking
and Van Otterloo [1986].

First we define a subset of the class of simple closed polygons, the
simple closed chains.

Definition 3.5. Simple closed chain.
A simple closed polygon with N sides of equal length is a simple closed
chain, where successive chain links may be colfinear.

O

Please note that the fact that successive chain links may be collinear
constitutes a slight broadening of the traditional concept of a polygon.

Theorem 3.2. Bound V(z) (Giardina and Kuhl [1977]).
[fy € I, then

Var (2)

z— ; o = 3 :
lz=Sall< T (3.4
O
For an arbitrary N-sided polygon y. Var (2) is given by
N=1 - o
=01 fJ.;]_'t} {r_ff—l
If y is a chain, then Eq. 3.4.5 becomes:
VL
lz= Szl < ° (3.4.7)

5
5/ )
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Theorem 3.3. Bound C(z) (Dekking and Van Otterloo [1986]).
Let ¥ be a chain with N links. Put n = Ng + s, with ¢ and 5 non-
negative integers and 0 < s < N. Then

&' (3] + [2(=r)])
=1 (g + RN+ N

|z—= S,z <

N () + =)
r=s=1 (Ng + r)y ‘

+ (3.4.8)

where the second summation is absent if s = N — 1.
Proof

Since y is a chain with N links. we derive from Table 3.1 for all integers
p the relations

(PN + r)’3(pN + r) = r’3(r). ¥r#0 (3.4.9)
and 2pN) = 0. (3.4.10)
Hence
lz=Suzll= < Y |ak)|
|&] = n
N=1
= Z] (|12(Ng + )| + |2(=Ng — r)|)

= N
+ Z Z (|2(Np + r)| +

¥—Np=-r))
p=q+1 r=1
_ ' (A + 12=n))
r=s+1 (Ng + ry
.\Z—l [ ~(| . ]
- r=(|2(r)| + |2(=r) :
ri=1 |)] P -.Zf 1 (.\rp i3 P']:

(3.4.11)
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Since the function (Nx + r)~% is convex. we have

Y - sJ . (3.4.12)
p=qg+1 (Np =y ?’)‘ g+ (NX o !‘)“
The integral equals:
J e | (3.4.13)
g+t (Nx 4+ 1) N-(g + 'h) + Nr

Combining Eqs. 3.4.12 and 3.4.13 and substituting the result into Eq.
3.4.11 yields Eq. 3.4.8, as we required,

O

In practical situations bound C(z) (Eq. 3.4.8) is cheaply computed if
the 2N Fourier coefficients, that are needed, are already known. In that
case the complexity of computation of bound C(z) is comparable to that
of bound V(z).

The asymptotic behavior of bound V(z) is O(n™') as n — =. We
recall from Section 3.2 that, if y € I,,,. then Z(k) = O(k?) as |k| — 2.
Then some simple calculations reveal that bound C(z) is also O(n ") as
n — . This shows that the asymptotic behavior of V(z) and C(z), in
terms of their rate of decay, is equivalent.

In Dekking and Van Otterloo [1986] it was already shown that the
claim of Giardina and Kuhl [1977], that bound V(z) is asymptotically
the best possible for a square, is not correct.

Experiments have revealed that, the more significant detail is present
in a chain, the poorer bound V(z) performs. Bound C(z) performs from
three times (for chains with little significant detail) to over ten times
(for chains with much significant detail) better than bound V(z) (cf.
Figures 3.5, 3.6!" and 3.7).

[1] Note the open curve in Figure 3.6. Curves need not necessarily be closed in order to allow
Fourier analysis of their representations. For that purpose the curve is parametrized such that (1)
= 2(27 — 1), where 1 is still a normalized arc length parameter. and such that the parametric
starting point 1 = 0 coincides with one of the two endpoints of the curve. In that case the total
arc length traversed in one period is twice the length of the curve. For obvious reasons, such a
parametrization is called a retracing.
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Bound V(z) performs poorly with complicated contours and bound
C(z) has the drawbacks that its computational complexity increases
with the complexity of contours and that it applies only to chains. How-
ever. a cheaply computed and reasonably sharp bound. that applies to
any y € I, can be derived. First we define the Lebesgue constants.

107

10'

10°

10
Losfz)
viz)

10°°
Clz)

=) f[z -S”z//w
10
10 4 e s e S o
10° 10' 10° 10°
b —e N

Figure 3.5, (a) shows a chain of 24 links of length 1. The truncation error ||z — 5,2|| . as a function
of n. the number of Fourier coefficients used in the finite Fourier series approximation. is displaved
in (b). In (b) we also show a comparison of the performance of the error bounds Viz). C(z) and
L (z) for this chain.
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Definition 3.6. Lebesgue constant 4,
The n-th Lebesgue constant 2, is defined as

- "
3, = 1 J |sin (n + L)f|d{
¥ ]

sin '/t G il
O
a
10*
10°
10°
10'
viz)
10°
Loslz)
Clz)
107"
llz-Sazll
107
10° 10' 10° 10°
b — N

Figure 3.6. In (b) similar curves as in Figure 3.5 are displayed for the chain of 160 links of length
1 in (a).
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rem 3.4. Bound L. (z).

If y € I, then for all integers n = 1

- e )
|z = S,z]|- =< (4 ; (3.4.15)
4(n + 1)
where L is the perimeter of y.
a
0° 4
10° 4
FO? a- .
10
Viz)
10° 4
107
3 Losl2)
N “CIZJ
107¢
2= Snz
=3
10 +— vy T ———re v v
10° 10! 102 10°

b

— N

Figure 3.7, In (b) similar curves as in Figure 3.5 are displayed for the chain of 726 links of length

W = 08

in {a).
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Proof

From Lemma 3.1 in Section 3.2 we know that z € A, with Lipschitz
constant A = L2x, if y € L.

A classical result of Lebesgue [1910], p. 201, gives the asymptotically
best bound on |[f — S,fll« for functions f € A. As Lebesgue’s paper
does not pay attention to the best possible constant, we refer to Cheney
[1966], p. 147, where it is shown that for integers n = 1:

”f 0 Snf”'-ﬂ = (in + I)Eum (3416)

(Compare this expression with Eq. 3.4.4.)
Jackson's Theorem II (Cheney [1966], pp. 132-144) says that if f €
A, with Lipschitz constant 4, then

7T/

EAf) = 2(n+1)°

(3.4.17)

and the constant 7/2(n + 1) is the best constant possible.
Substituting 2 = L/2z and applying Eqs. 3.4.16 and 3.4.17 to z yields
Eq. 3.4.15.

O
Remark.
The paper by Etesami and Uicker [1985] claims the bound:
L
- 82 S : 5.4,
te=Swelle = 22 iy (3.4.18)
which is not correct (cf. Eq. 3.4.15).
O
It is well-known (cf. e.g. Zygmund [1959a]) that:
4
A= logn asn— o, (3.4.19)
2

In the Figures 3.4, 3.5 and 3.6 we have employed Fejér’s expression
(cf. e.g. Lebesgue [1910], p. 197):



120 CHAPTER 3

: I 2 « 1

Tk
- ; 3.4.20
R Tk ) ( )

Hl’](
i

for the computation of the bound L, (z). In these three examples we
see that the cheaply computed bound L (z) performs reasonably well
in comparison with bound V(z).

Through Egs. 3.4.15 and 3.4.19 we immediately see that the asymp-
totic behavior of bound L (2) is O(n! log n) as n — =. Though this
is worse than the asymptotic behavior of both bound V(z) and bound
C(z). in many situations bound L, (z) is still sharper than bound V(z)
for practical values of n.

If y € I, we cannot improve on Theorem 3.4. However. sharper
upperbounds can be derived for ||z — §,z||.. as the contours considered
satisfy more severe smoothness conditions. This is a direct consequence
of the faster rates of decay of the |2(k)| for smoother contours. which
in turn lead to sharper bounds in the Jackson Theorems (cf. Cheney
[1966]. pp. 139-149). This will soon become clear in a theorem that
specifies an upperbound for ||z — S,z||. if y € I,.

The set of all trigonometric polynomials of degree at most n. free of
a constant term. t,, have been defined in Appendix A as:

t,= ip: palt) = Z aie™. a, € C}. (3.4 21)
kl=n
& =1

Furthermore we define:
e'(f) = inf {[|f = pull ;: pnet,) (3.4.22)

(compare this expression with Eq. 3.4.1). In analogy with E,(f) we de-
note e\”'(f) as e,(f).

In the proof of the next theorem we need a variant of Jackson's
Theorem II (Cheney [1966], p. 143, and Eq. 3.4.17) such that it can be
applied to functions that are free of a constant term. We formulate this
variant in the following lemma.

Lemma 3.6. Upperbound on e,(f).
If f € A, with Lipschitz constant 4. is free of a constant term. then
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A

NS 5o+ 1)

(3.4.23)

and the constant 7/2(n + 1) is the best constant possible.

Proof
We follow the proof of Jackson’s Theorem II (Cheney [1966], pp. 143-

144).
Fixing 0 > 0, define the auxiliary function

1 140
= ' 3
Dy(1) 2% J:—a flr)dr. (3.4.24)
Since f € A we obtain
|®,(1)] = 710 [flt+08)—flt—9) <4 (3.4.25)

Consequently, by Jackson’s Theorem I (Cheney [1966], p. 142) it
follows that

e (Py) < (3.4.26)

2(n +1)” bl < n+1)

if we show that @, is free of a constant term. This is proved as follows:

1 2 ] 2n t+0 .
o L Dy()dr = A J:I J;—d flr)dr de

2r [0
= J j flo + ndodt. (3.4.27)
0 —f

4716

Through Fubini's theorem (cf. e.g. Royden [1963], pp. 233-234) we
may invert the order of integration in Eq. 3.4.27. This and the periodic-
ity of f lead to:
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e [ oy
] .
2: L ol = 470 |, _[” fle + o)dedo
| [0 2
T 410 ), ,[. flr)dirdo
= 1 [:.—: j“}dr [ﬂ ) .’H}
27 k) ' 3.4.2

Since fis free of a constant term, Eq. 3.4.28 immediately shows that
@, is also free of a constant term. Thus we have shown the validity of
Eq. 3.4.26. Furthermore:

R i _
[Dy(1) = flr)] < 2 [ 5 |fir) — flo)|dr

- t=n 5
A A
< - = . 3.4.2¢

29 _(, ) It —t|dr 2.‘) (3.4.29)

Let p;; denote the trigonometric polynomial. free of a constant term,
that optimally approximates @,. Then, with Egs. 3.4.26 and 3.4.29,

e, f) < |f = pill -

<||f— @yl + |[®s— pill-
A Th

= s 3.43
?.( 2(n+1) (2:5-0)

Since this inequality holds for any 0 = 0, it also holds for 6 = 0 giving:

by

eUYS 504 1y

(3.4.31)

For the proof that the constant r/2(n + 1) is the best constant possi-
ble, we refer again to Cheney [1966], pp. 142-144, The proof of this
lemma is now complete. O
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We are now in a position to specify an upperbound for ||z — S,z
iisse s

Theorem 3.5. Bound L, /(2).
If y € I, then for all integers n = 1:

(A'ﬂ + l}

HZ“S,,ZH; < 3
16(n + 1)-

L Ko (3.4.32)

where L denotes the perimeter of y.
Proof
First we note a property of E,(f) (cf. Eq. 3.4.1):
Bl = Poi= Bl YE, e, (3.4.33)

Since y € I, we have z € C' (cf. Appendix A). With these two prop-
erties we find from Cheney [1966]. p. 146, the inequality:

g

E (2)< ’
D= s 1)

(2). (3.4.34)

Next we derive an upperbound for ¢,(z). According to Lemma 3.2.
z € Aif y € I, with Lipschitz constant 2 = (L/27)°K .., where L
denotes the perimeter of y. It is well-known that Z is free of a constant
term. As a result of these observations, Lemma 3.6 applies to z, which
yields (cf. Eq. 3.4.23):

. L:K", X o
2(2) < s 3.4.3:
€(2) 8a(n +1) ( %)
Combining Eqs. 3.4.34 and 3.4.35 leads to
LK
E.(2)= Ll (3.4.36)

T 16+ 1)

With the substitution of this result into Eq. 3.4.16 the proof of this
theorem is complete. O
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If v € I, we can improve slightly on the results in Theorem 3.5,
obtained for y € I,,. Furthermore, the upperbound on ||z — §,z]|. can
be obtained in a much simpler way. as we will see in the following
thecorem.

Theorem 3.6. Bound L.(z).
If
e vel,

o |K(1)| € Kpax < =. Vi€ [0, 24],

then for all integers n = 3:

Ayt 1)

I|z— S,z -
Sa(n+ 1)

"‘<“ {'EKDI:A' {3'4‘3?1

where L denotes the perimeter of y.
Proof

Jackson’s Theorem IV (Cheney [1966], pp. 145-146) states that for
n > k:

:
= . (3.4.38)

= 1
EN=T |
if the 2x-periodic function f € C*, and that the coefficient /2 is the
best coefficient possible. independent of f. k and n.
If y € I,. then z € C°, Thus Eq. 3.4.38 yields:

i | = =
E(2)<] (” 3 ]) 2. (3.4.39)

We recall from Eq. 2.2.25 that

<

5(1) = ( L_{)hm:)nm.

where n(t) is the complex-valued function that corresponds to the unit
normal n(r) at z(r) and K(1) is the curvature at z(¢). From this equation
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we derive:

[|f||,,:(;]znxnxs;(_;]:K,,,i,x. (3.4.40)

Since z € C* the second step in Eq. 3.4.40 constitutes an equality in
this case. '

Combining Eqs. 3.4.16, 3.4.39 and 3.4.40 immediately leads to the
required result.

O

Through Eqgs. 3.4.19. 3.4.32 and 3.4.37 we immediately can see that
the asymptotic behavior of both bound L, (z) and bound L.(z) is
O(n*logn) as n — =. We recall from Section 3.2 that we found for
both y € I, and y € T, that (k) = O(k™?) as [k| — =.

In Section 3.2 we showed in the Lemmas 3.2 and 3.3 that both z and
y satisty a Lipschitz condition if y € I,. These facts can be used to
derive upperbounds on ||z — $,z||. and on |y — S,y |-

Theorem 3.7. Bound L..(z).
If y € I, then for all integers n = 1:

(4, + 1)

FAR 3.4.
Ra(n+ 1) Bk ot L)

Proof

In Lemma 3.2 it was shown that, if y € I,,. then z € A, with Lipschitz
constant 4 = (L27)K,.. Consequently, Jackson’s Theorem II,
Eq. 3.4.17, applies to z. Through substitution of the value of 4 into this
equation and through Eq. 3.4.16. the required result is obtained im-
mediately.

|
Theorem 3.8. Bound L, ().
If y € T,,. then for all integers n = 1:
i, + 1
|| fn‘h = S"f}‘.-'” o = (/” ) (LKmux i 2-1?) (3442)

4(n+1)
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Proof

In Lemma 3.3 it was shown that. if y € I,,. then ¥ € A. with Lipschitz
constant 4 = (LK, /27) + 1. Consequentially, Jackson’s Theorem II.
Eq. 3.4.17, applies to y and through a substitution of the value of #
into this equation and through Eq. 3.4.16. the required result is ob-
tained immediately.

—

If y € F,. then both z and i belong to C'. This enables us to derive
upperbounds L.(2) and L,(y) on ||z = S,z||. and ||y — S, 1| ... respec-
tively. through Jackson’s Theorem I (Cheney [1966]. pp. 142-143).
However, these bounds are not sharper than the bounds L, (%) and
L..(y) (cf. Theorems 3.7 and 3.8).

Through Eq. 3.4.19 and Eqgs. 3.4.41 and 3.4.42 we observe that the
asymptotic behavior of both bound L (z) and bound L, .(y) is
O(n 'log n) as n — =. We recall from Section 3.2 that (k) = o(|k]™")
and (k) = O(|k|™") as |[k| —» = if y € I,

Similar to the upperbounds on the finite Fourier series truncation
error. no improvements on the rates of decay of Fourier coefficients
were found if y € I,

The truncation error bounds, derived in this section for various con-
tour classes and for various representations of these contours. enable
us to determine the number of Fourier coefficients needed to guarantee
a certain approximation accuracy of a Fourier representation. Thus we
are also able to decide whether it is useful at all to use a Fourier
representation instead of the corresponding contour representation. We
found that especially for contours with much significant detail this may
not be the case (cf. also Dekking and Van Otterloo [1986]).

3.5 Geometric similarity and geometric mirror-similarity in terms of
Fourier representations of contours

When no confusion can arise, we use f in the following paragraphs
again as a generic symbol to indicate any of the 2x-periodic contour
representations z, z, Z, y and K.

In Definition 2.4 we have given a formal definition of similarity be-
tween contours. In Eq. 2.3.1 we have translated this concept into a
necessary and sufficient condition on representations of pairs of con-
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tours that preserve shape information. We did the same for geometric
mirror-similarity, in Definition 2.5 and in Eq. 2.3.2, respectively.

In Section 3.2 we have examined the characteristics of the con-
vergence of the Fourier series and the Fourier coefficients of the
periodic contour representations z. z. Z, y and K for contours from the
contour classes I'.. I, I, I, I, and I}, .. This examination has shown
that Fourier series, generated by these periodic contour representa-
tions. preserve shape information. Thereby we established that the se-
quence of Fourier coefficients f= (f(k)),‘.r_z. generated by the shape
information-preserving periodic contour representation f, also consti-
tutes a shape information-preserving contour representation. This al-
lows us to formulate necessary and sufficient conditions for geometric
similarity and for geometric mirror-similarity in terms of the sequences
of Fourier coefficients, generated by the representations of a pair of
contours. This in analogy with such conditions on the representations
of the pair of contours themselves.

Theorem 3.9.

Two contours y, and y,, with Fourier representations f’, and j« respec-
tively, are geometrically similar iff there exist scalars € C. f e R,
a, T € R such that

f: = TRy f,, (3.5.1)
where 7, %,. 4, and %. are similarity operators which are defined in
Table 3
Proof

In Section 2.2 we have shown that there exists a one-to-one correspon-
dence. in the sense of the relevant convergence properties. between a
contour representation and its Fourier series expansion. This means
that Eq.2.3.1 can be obtained from Eq.3.5.1, and therefore
Theorem 2.4 applies, thus showing the validity of this theorem.

]
In Table 3.2 also the mirror-similarity operator AL, is defined. These

(mirror-)similarity operators constitute analoga to the corresponding
operators that were previously defined in Table 2.1. In Table 2.1 the
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Table 3.2. Representations of the (mirror-)similarity operators in the sequence spaces
of the Fourier representations.

Fourier Operator
representations
7 i ;. 7, I
0)+ ¢ =
z k) 2 (R) | e (k) 2(k)
Hh), k#10
Bik) | k) ¢Hk) | e MK (k)
5 Bik) | k) ¢ik) | e *rik) (k)
() = p(=1) 5.
y (k) (k) yi(k) . — (k)
e "yk). k=0
K ARk | Rik) Kiky | e ™ Rk) Kik)

mirror-similarity operators operate on parametric contour representa-
tions whereas here they operate on the Fourier sequences. generated
by these contour representations. The transformation of operators is
obtained through straightforward calculation, using the expressions in
Table 2.1 and the definition of Fourier coefficients (cf. Eq.322).

Remark.

Though the (mirror-)similarity operators, when applied to Fourier rep-
resentations, are formally different from the corresponding operators,
that are applied to contour representations., we have chosen not to
express these differences by differences in notation. since both the
meaning of these operators and the domain on which they operate is
always clear.

O

Using Table 3.2 we can derive a formulation of the condition for
geometric similarity in Eq. 3.5.1 for each of the individual Fourier
representations. A survey of these conditions is presented in Table 3.3.

The formulation of the conditions on # in Table 3.3 still requires
some explanation since no condition on 1(0) is mentioned. From Table
2.3 and from the definition of Fourier coefficients in Eq. 3.2.2 we
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Table 3.3. Necessary and sufficient conditions that the Fourier coefficients of the
individual contour representations must satisfy, forsome L e C.f e R™, &, v € R and
Yk e Z (unless stated otherwise), in order to render a pair of geometrically similar
contours,

Lounicr o Condition for geometric similarity
ruprcscnt;zlmm

) 5(0) = e {£,(0) + ¢}

: 5(k) = pef* 4z k), k+0
(k) = Be' A0 (k)

£(k) = Bel A0z (k)

y ypalk) = e My(k).  k#0

K Ki(k) =B 'e ™K (k)

obtain the condition on 1(0) for geometric similarity of a pair of con-
tours as

P2(0) = 4(0) = yy(—=7). (3.5.2)

It can be shown, however, that the conditions stated in Table 3.3 are
sufficient and that Eq. 3.5.2 follows from these conditions. The reason
for this is the fact that the property

p(0)= ) Pk)=0 (3.5.3)
keZ
reduces the number of degrees of freedom in the Fourier representation
i by one.

Next we formulate the condition on pairs of Fourier representations
for geometric mirror-similarity.
Theorem 3.10.
Two contours y; and y,, with Fourier representations f; and f, respec-
tively, are geometrically mirror-similar iff there exist scalars £ € C,
p € R", a. v € R such that
f = WIS f;. (3.5.4)
O
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The proof of this theorem is similar to that of Theorem 3.9.

A survey of the formulations of this condition for geometric mirror-
similarity. in terms of the individual Fourier representations. can be
found in Table 3.4.

From Table 2.4 and from the definition of Fourier coefficients in
Eq. 3.2.2 we obtain the condition on i(0) for geometric mirror-similar-
ity of a pair of contours as

ia(0) = —,(0) + (). (3.5.5)

However. it can be shown along the same lines as we did for the
corresponding condition on y(0) for geometrically similar contours.
Eq. 3.5.2. that the condition in Eq. 3.5.5 is automatically satisfied if
the conditions in Table 3.4 are satisfied.

Table 3.4, Necessary and sufficient conditions that the Fourier coefficients of the
individual contour representations must satisfy, forsome Ce C.fe R™. a. t € R and
Yk £ Z {unless stated otherwise), in order 1o render a pair of geometnically mirror-simi-
lar contours.

Fourier

. Condition for gecometric mirror-similarity
representations <

2(0) = ge “{Z(0) + E}

S(k) = e NEMK),  k#0

L(k) = —fle "4 (k)

E E(k) = e 403 (k)

% (k) = =€ (k). k#0
K K(k) = g~ 'e% K (k)

3.6 Symmetry in terms of Fourier representations of contours

In Definitions 2.6 and 2.7 we have formally defined geometric sym-
metry m and geometric symmetry n, respectively. The argumentation
in Section 3.2 concerning the shape information-preserving properties
of a Fourier rcpresemminnf. generated by a shape information-preserv-
ing periodic contour representation f. enables us to formulate necessary
and sufficient conditions on f such that this sequence of Fourier coef-




SYMMETRY IN TERMS OF FOURIER REPRESENTATIONS 131

ficients represents a contour that has geometric symmetry m or geo-
metric symmetry n. Such conditions for geometric symmetry in terms
of f constitute the Fourier analoga of the corresponding conditions in
terms of the contour representation f itself, which were formulated in
Egs. 2.4.1 and 2.4.2. '

Theorem 3.11.
A contour y, with Fourier representation f has geometric symmetry m.
or geometric mirror-symmetry, iff there exist scalars € C and «, 7 €
R such that
Bf = MT RGBS (3.6.1)
a

The proof of this theorem is similar to that of Theorem 3.9.

A survey of the formulations of this condition for geometric sym-
metry m, in terms of the individual Fourier representations, can be
found in Table 3.5. These formulations merit a closer examination.

First we consider the conditions on Z in order to represent a contour
that has geometric symmetry m. A suitable { € C always exists. This
can be seen by choosing for example { = —2(0).

Another way of formulating the condition on Z, in order to represent
a contour y with symmetry m, is the following: a contour y, with Fourier
representation Z, has geometric symmetry m iff there exist constants
a., t € R such that TR 2(k) is real-valued, Yk € Z — {0}. This formu-
lation corresponds exactly to the necessary and sufficient conditions on
z for geometric symmetry m in Wallace and Wintz [1980].

Along the same lines we derive from Table 3.5 similar necessary and
sufficient conditions for geometric symmetry m in terms of the remain-
ing Fourier representations:

o JR,z(k) is imaginary,
o T (k) is real-valued,
® J.R,(k) is imaginary,
e I 9,K(k) is real-valued.

for some a, 7 € R and Yk € Z — {0}.

From Table 2.5 and from the definition of Fourier coefficients in Eq.
3.2.2 we also obtain a condition on (0) for a contour with geometric
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symmetry m:
P(0) = —y(0) + y(7). (3.6.2)

which results from the special property of y that J,(0) = 0. indepen-
dent of the value of r (cf. Table 2.1). However, it can be shown. along
the same lines as we did for a similar condition on 3(0) for geometri-
cally similar contours in Eq. 3.5.2. that the condition in Eq. 3.6.2 is
automatically satisfied if the conditions in Table 3.5 are satisfied.

Table 3.5. Necessary and sufficient conditions that the Fourier cocfficients of the
individual representations must satisfy. for some £ € C. a. 7 € R and VA € Z (unless
stated otherwise). in order to render a contour with symmetry m.

Foucs S Condition for gecometric symmetry m

representations :
HO)+ E=c " {20) + T}

) (k)= e " HIEK), k#10

2 3k) = —e (k)

5k) = e~ A13(k)

W k) = —C“";,'T‘U\'). k#0

K R(k) = ¢ K(k)

We now turn to a discussion of geometric symmetry n or n~fold rota-
tional symmetry.

Theorem 3.12.
A contour y, with Fourier representation f, has geometric symmetry n
or n-fold rotational symmetry. iff there exists a scalar £ € C such that
Shf = Ty Ry Gpf. (3.6.3)
O

The proof of this theorem is similar to that of Theorem 3.9.
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A survey of the formulations of this condition for geometric sym-
metry n. in terms of the individual Fourier representations, can be
found in Table 3.6.

Table 3.6. Necessary and sufficient conditions that the Fourier coefficients of the
individual contour representations must satisfy. for some £ € € and Vk € Z (unless
stated otherwise), in order to render a contour with symmetry n.

Fourier

; Condition for geometric symmetry n
representation

2(0) = -¢

k) =0, Vk: k% 1modn

z Hk)=0, Vk: k#1modn

i-."{k) =), Yk: k# 1 modn

bigs

) p(k)=0. VYk: k#0modn

K Kky=0. V¥k: k#0modn

Granlund [1972] was the first to mention conditions for geometric
symmetry n in terms of Z, while Zahn and Roskies [1972] were the first
to mention such conditions on ¢, be it in a slightly different form.
Crimmins [1982] finds Granlund’s proof of the validity of the conditions
for geometric symmetry n not logically conclusive. He shows that, for
a contour that has geometric symmetry n. there exists a k; such that,
Vk € Z — {0}, 2(k) # 0 implies k = k, mod n. To this observation he
adds the conjecture that &, = 1 if 2(1) # 0. In Dekking and Van
Otterloo [1986] a short proof is given for the statement that a contour
has geometric symmetry n iff, Vk € Z — {0}, 2(k) # 0 implies k =
I mod n, thereby confirming the correctness of Granlund’s conclusions.
On the other hand we emphasize here that the validity of the conditions
for geometric symmetry n is subject to two conventions, which we intro-
duced in Section 2.1, that both need to be satisfied:

* simplicity of contours,

® counterclockwise positive sense of the parametrization.
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3.7 Concluding remarks

In Section 3.1 we reviewed the literature on the application of Fourier
series theory to shape analysis.

In Section 3.2 we analyzed the convergence properties of Fourier
series and Fourier coefficients. generated by the parametric contour
representations z, z., Z, y and K for contours belonging to the contour
classes I, I, I, I} I, and I It was established that the sequence
of Fourier coefficients. gencrated by any of these contour representa-
tions, preserves shape information. We also found that the type and
rate of convergence of the Fourier series heavily depends upon the
smoothness properties of a contour. and thereby upon the differentia-
bility properties of its representations. These results may provide
guidelines in practice to determine whether it is appropriate to use a
particular Fourier representation or not.

In Section 3.3 we have shown that. as a result of (normalized) arc
length parametrization, with the exception of a circle. no position func-
tion z can be expanded into a Fourier series with a finite number of
nonzero Fourier coefficients. Consequently. the same holds for z and
for zZ. Through an example we have shown that in some cases y' and K
may be expanded into a finite Fourier series. without affecting the
linear relation between the parameter and arc length.

In practice we always use a finite number of Fourier coefficients. In
Section 3.4 we have derived. for various contour representations and
for various contour classes. upperbounds on the truncation error that
is caused by a finite Fourier series expansion.

Conditions for geometric similarity and for geometric mirror-similar-
ity. in terms of pairs of Fourier representations. have been presented
in Section 3.5. In Chapter 4 these conditions will provide boundary
conditions for similarity measures based on Fourier representations.

Similarly, the conditions for geometric symmetry m and for geometric
symmetry n. in terms of Fourier representations, which were formu-
lated in Section 3.6. will provide boundary conditions for svmmetry
measures on the basis of Fourier representations in Chapter 4.

Also the application of Fourier coefficients for contour representa-
tion normalization will be studied in Chapter 4.

Apart from Fourier expansions, also Walsh expansions of parametric
contour representations have been proposed for shape representation.
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Before we turn to Chapter 4, we discuss these expansions briefly.

Searle [1970] proposes the use of Walsh expansions of the radial
distance function for shape analysis purposes.

Shapiro [1976] compares, in the context of cell analysis, the per-
formance of various orthogonal expansions through the results of recon-
structing contours from a finite number of expansion coefficients. He
studies, amongst others, the performance of Walsh expansions of the
polar representation R(&). He found that, apart from potential prob-
lems of multiple-valuedness of R(&) (cf. Section 2.1), a reconstruction
from Walsh coefficients gives a reasonable approximation if a sufficient
number of coefficients is used. Shapiro also observes that, for a given
accuracy of approximation, more Walsh coefficients than Fourier coef-
ficients of R(&) are needed.

In the context of the discrimination of handwritten numerals, Dins-
tein and Silberberg [1980] propose the average Walsh power spectrum
of the periodic cumulative angular function vy, defined as the Walsh
expansion of the autocorrelation function of y, for shape representa-
tion. This representation clearly does not preserve all shape informa-
tion.

Sethi and Sarvarayudu [1980] expand y itself into a Walsh sequence.
They used the magnitudes of the Walsh coefficients for the classification
of handwritten numerals. A slightly lower crror rate in the classification
was achieved with the magnitudes of Walsh coefficients than with the
same number of magnitudes of Fourier cocfficients. Unlike the mag-
nitudes of Fourier coefficients. the magnitudes of Walsh coefficients
are sensitive to the location of the parametric starting point on the
contour. Therefore they proposed two starting point normalization
methods. In Sarvarayudu [1982] and in Sarvarayudu and Sethi [1983]
this work is extended further. Geometrical properties are linked with
propertics of Walsh coefficients of 1. Their methods are somewhat
biased towards dealing with polygonal contours. This can be explained
from the fact that a finite Walsh sequency expansion consists of a linear
combination of step functions and the periodic cumulative angular func-
tion y of a polygon is a step function. A method for the reconstruction
and closing of a contour from a finite number of Walsh coefficients of
i is also presented. Finally they report on experiments with the classifi-
cation of hand-printed numerals and characters using a two-stage clas-
sifier. The first stage uses the magnitudes of Walsh coefficients of y as
features, while the second stage uses their phases as features. However,
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the classification results they obtained with Walsh coefficients are no
better than those known for classifiers based on Fourier expansions.
Summarizing this exposé on Walsh coefficients. we observe from the
literature that Walsh coefficients have a computational advantage over
Fourier coefficients. The power of Walsh coefficients to represent shape
information in few coefficients may vary somewhat with the particular
contour representation that generates them. but it seems in general to
be no better or worse than that of the Fourier coefficients generated
by that contour representation. Finite Walsh sequency expansions have
more problems with the approximation of a smooth contour represen-
tation than finite Fourier series expansions. Furthermore. both mag-
nitude and phase of Walsh coefficients are sensitive to the focation of
the parametric starting point. In conclusion we state that the advantages
of Walsh sequency expansions are overshadowed by their disadvan-
tages. Therefore we will not discuss the use of Walsh sequency expan-
sions of parametric contour representations any further in this thesis,

Both Fouricer series expansions and Walsh sequency expansions.
being global orthogonal transformations. suffer from the inherent draw-
back that they are unable to deal properly with local perturbations on
a contour. This problem limits their usefulness in applications where
such phenomena are likely to occur. On the other hand. in inherently
global contour operations. such as for example contour normalization.
Fourier cocfficients scem to be particularly useful. as we will see in
Section 4.3. As for shape similarity measurement. our attention will be
somewhat biased towards the contour representations themselves.
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Chapter 4

Measurement of similarity,
mirror-similarity and symmetry

4.1 Introductory considerations

In Chapter 4 we present a detailed discussion on the measurement
of similarity, (mirror-)similarity and symmetry. based on the contour
representations and Fourier representations introduced in the previous
chapters.

This section gives some introductory considerations on similarity
measurement and dissimilarity measurement.

In Section 4.2 various measures of dissimilarity and mirror-dissimilar-
ity are defined and some of their properties are evaluated. For practical
purposes. sampled-data formulations of these measures are given as
well as an analysis of their computational complexity.

In Section 4.3 we study the trade-off between normalization of con-
tours and optimization in dissimilarity measurement. The fundamental
requirements that normalization procedures must satisfy are given in
cach case and a number of proposals for such procedures are made.

Section 4.4 contains a further theoretical analysis of the dissimilarity
measures, defined in Section 4.2. Through a number of experiments we
evaluate the relative behavior of the dissimilarity measures. By ana-
lyzing the experimental results of individual dissimilarity measures we
obtain insight into which aspects of geometric dissimilarity they mea-
sure.

In Section 4.5 we define measures for mirror-dissymmetry and for
n-fold rotational dissymmetry. The proposed measures for dissymmetry
are closely related to the (mirror-)dissimilarity measures, defined in
Section 4.2. A comparison with earlier proposals in the literature is also
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made. By an experiment we evaluate the performance of the dissymme-
try measures defined in this section.

Finally. in Section 4.6 we review the results of this chapter.

In Section 2.5 we remarked that the concepts of gecometric similarity
and geometric mirror-similarity are mathematical abstractions. In that
section we made the same remark concerning the three types of geomet-
ric symmetry, introduced in Section 2.4. In reality we will not encounter
pairs of objects that have geometrically similar or gecometrically mirror-
similar contours or objects that are geometrically symmetric. Also the
finite precision with which we can perform measurements would make
the establishment of such facts virtually impossible. Therefore there is
a need to dispose of quantitative methods by means of which the extent
of similarity and symmetry can be measured.

In everyday life we use subjective criteria in our assessment how
similar figures are and this assessment will in general have a rather
qualitative character. Our perception of a figure is not only determined
by its geometric properties but also by its semantic content. which in
turn is a result of our cultural and social background. This. and the
context in which figures appear. also influence our notion of similarity
between them. The parametric contour representations. introduced in
Chapter 2, only describe the geometry of a figure. Conscquently. if we
measure similarity on the basis of these representations. then such a
measurement can only express some geometric characteristics of simi-
larity between figures.

In @ number of pattern recognition and image analysis applications
it is feasible to perform clustering and classification solelv on the basis
of gecometric information. In many problems. however. geometric infor-
mation alone will not suffice. For example. the analysis of decorations
on objects of primitive art by computer. as studied in Van Otterloo
[1978]. is bound to be of little use from an anthropological point of view
if such an analysis is merely based on the geometric properties of these
decorations and if it refrains from considering their semantic connota-
tions. On the other hand. there is no reason to neglect the usefulness
of geometric information for such applications. Apart from semantic
and contextual information. geometric information plays an important
role in our perception of the world that surrounds us. If required by a
particular pattern recognition or image analysis application. the infor-
mation, obtained by measuring one or more geometric aspects of simi-
larity between figures, may be passed on to a higher level of processing



INTRODUCTORY CONSIDERATIONS 143

where it may be combined with topological, contextual, semantic and
other types of information.

The measurement of similarity between figures in a geometrical sense
is also by no means a trivial problem. Here too our notion of similarity
is affected by subjective considerations. Intuitively, if two figures are
approximately similar by subjective standards, a similarity measure
should give a high value and if two figures are very dissimilar according
to the same standards. a similarity measure should give a low value.
Many measures for geometrical similarity can be formulated which
satisfy the boundary conditions that geometrically similar figures give
the maximum value of the measure, while figures that are not geomet-
rically similar give a value below the maximum. We will soon see that
in our approach these boundary conditions influence to a large extent
the mathematical form of a similarity measure. However, even if a
similarity measure satisfies these conditions, then this guarantees in no
way that the measure has the aforementioned intuitive properties. It
remains a very difficult and open problem to determine which measures
are in reasonable correspondence with certain subjective notions of
shape similarity. Obviously there exists no unique ‘best’ or ‘optimal’
measure that will give satisfactory results in all circumstances. The
choice of a particular similarity measure will mainly be governed by
nature of the problem at hand, though also the robustness of a measure
for noise and distortion. its computational requirements and the compu-
tational means available will influence such a choice. The quality of a
similarity measure can be judged, for example, by the clustering or
classification results obtained. On the basis of such evaluations we can
get insight into how well a similarity measure performs with regard to
that particular problem. On the other hand, it is usually not possible
to make general statements about the quality of a similarity measure
on the basis of results in a particular application: a measure that per-
forms well in character recognition does not necessarily perform well
in industrial inspection.

Though in practice we usually group objects on the basis of our
subjective notions of similarity, in the context of pattern recognition
and image analysis we will use the concept of dissimilarity for that
purpose. Dissimilarity is usually measured by means of a distance mea-
sure (Sneath and Sokal [1973], Anderberg [1973]) and should, for ease
of interpretation, preferably satisfy the conditions of a metric. For the
properties of a metric, we refer to Appendix A.
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Similarity and dissimilarity are complementary concepts. i.c. given a
similarity measure we can always define a dissimilarity measure as a
function of the similarity measure and vice versa (Spith [1980]).

[t may happen that we need a similarity measure instead of a dissimi-
larity measure. Spith [1980] defines the concept of a metric similarity
function and gives a number of examples of mappings of a metric dis-
similarity function into a metric similarity function and vice versa. Since
all such mappings set up a one-to-one correspondence between a metric
dissimilarity function and a metric similarity function. which is neces-
sary to preserve the metric properties after the mapping. the ordering
of pairs of elements by either the metric dissimilarity function or by the
metric similarity function is exactly reversed by the mapping. Therefore
the information provided by either of the measures is exactly the same.

It is understood that the dissimilarity measures. that will be defined
in Section 4.2, only pretend to measure geometric aspects of dissimilar-
ity. and thereby geometric aspects of similarity. Whenever possible. a
geometric or physical interpretation of the measures will be given. Such
interpretations are important in judging what aspects of dissimilarity
are measured and can be of help in predicting the usefulness of 4 mea-
sure in a given application. However. also the computational complex-
ity of a measure has a definite influence upon its usefulness in practice.
Therefore attention will be given to this aspect with the actual definition
of the dissimilarity measures.

We already mentioned that there does not exist a unique “best” or
‘optimal’ measure to quantify gecometric dissimilarity between contours.
Each dissimilarity measure will emphasize a different aspect of gecomet-
ric dissimilarity. Therefore we may consider cach dissimilarity mcasure
as a feature of dissimilarity and combine a number of dissimilarity mea-
sures into a new one that possibly reflects the dissimilarity between
contours more appropriately in a given application. Some possibilities
to combine metrics to form a new metric will now be reviewed (cf.
Anderberg [1973]. Spith [1980]):

e metrics are closed under addition. i.¢ given two metrics d, and d»
then

d=d, + d- (4.1.1)

is also a metric.
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e metrics are closed under scaling by a real-valued positive constant,
i.e. given a metric d, and a constant § € R" then

d = pd, (4.1.2)

is also a metric.

e ifd, isa metricand y € R", then

d= - f'd[ (4.1.3)

is also a metric.

The operations in Egs. 4.1.1-4.1.3 may of course be combined. For
example, if {d,:; n =1, ..., N} is a set of metrics, then Vj,, 7, € R”

& fd
= L 4.1.4
o :J'Z:I }’u + du ( )

is also a metric.

The possibilities just mentioned to map metrics into new metrics are
certainly not the only possibilities. We refer to Anderberg [1973] and
Spith [1980] for further information. We still note that metrics are not
closed under multiplication, i.e. the product of two metrics is not neces-
sarily a metric. This is because the triangle inequality, Eq. A.2. may
not be satisfied by the product.

4.2 Measures of dissimilarity and mirror-dissimilarity

In Section 2.5 we marked a number of information-preserving con-
tour representations as candidates for use in the analysis of similarity
and symmetry of contours of two-dimensional objects. In Section 2.3
the conditions that these contour representations must satisfy in order
to render geometrically similar or geometrically mirror-similar contours
have been formulated.

In Section 3.2 we verified that the sequences of Fourier coefficients
generated by the information-preserving contour representations also
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preserve shape information, for which reason we called them Fourier
representations. In the previous section we mentioned the need for
dissimilarity measures and mirror-dissimilarity. measures in pattern
recognition and image analysis applications. In this section we define
measures of dissimilarity and mirror-dissimilarity. based on the contour
representations and the Fourier representations, defined in the Chap-
ters 2 and 3 respectively. We show that the dissimilarity measures are
metrics on equivalence classes of geometrically similar contours.

The (mirror-)dissimilarity measures contain an index p. by which we
can control whether local or global differences in the contour represen-
tations or the Fourier representations are emphasized. The index value
p = 2 conslitutes a special case, because it leads to a greater mathemat-
ical tractability of the (mirror-)dissimilarity measures. We will find that
for p = 2, a (mirror-)dissimilarity measure based on a contour represen-
tation is equivalent to the measure based on the corresponding Fourier
representation.

In practice dissimilarity measurement is performed on the basis of a
finite number of contour representation samples or a finite number of
Fourier coefficients. Therctfore we also present sampled-data formula-
tions of the (mirror-)dissimilarity measures and analyze their computa-
tional complexity. For p = 2 we will find that a substantial reduction in
computational complexity can be achieved.

4.2.1 Measures of dissimilarity and mirror-dissimilarity based on
parametric Contour representations

Since we consider the shape of an object not to depend upon its
position, size and orientation. or upon the choice of a starting point of
a parametric representation of its contour. we require (mirror-)dissimi-
larity measures to be invariant for the application of equiform transfor-
mations on the contours involved. In general this invariance can be
achieved in two ways:

e normalization of the position, size. orientation and parametric star-
ting point of a contour such that we obtain for cach equivalence class
of geometrically similar contours a unique normalized representant.

® pairwise optimization of the position. size. orientation and paramet-
ric starting point of the contours. so as to vield a minimal dissimilarity
value.
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Combinations of these two methods are also possible. For the time
being we normalize the position and size of the contours and we op-
timize their orientation and their parametric starting point in the (mir-
ror-)dissimilarity measures. At first we exclude the periodic cumulative
angular function y from the discussion and deal with it separately later
in this section.

We denote an appropriate translation normalization parameter by C*,
¢* € C, and an appropriate scale normalization parameter by [,
f* € R'. (What we mean by ‘appropriate’ translation and scale normal-
ization parameters will be discussed in detail in Section 4.3.) Then the
relation between a contour representation f, where f stands for any of
the representations z, z, 7 and K. and its translation- and scale-nor-
malized version f* is given by

f* = 93 %f. (4.2.1)

For a survey of the formulation of the effects of translation and
scaling upon the individual contour representations we refer to Table
2.1. We present a detailed discussion on optimization versus normaliza-
tion in Section 4.3. In that section we will also indicate appropriate
translation and scale normalization parameters.

In Appendix A the Lebesgue spaces L7(27), 1 < p < =, are defined,
as well as the usual norm ||.||, on L”(2x). It is mentioned there that if
fi. fr e L"(27). 1 < p < o, then ||f, = fil|, defines a metric on L”(27),
the Minkowski-metrics or L”-metrics (cf. Appendix A). The family of
dissimilarity measures that we now define is directly based upon the
L/-metrics.

Definition 4.1.  Dissimilarity measure of index p.

Let fact as a generic symbol for any of the contour representations z,
z. 2 and K. Then a measure of dissimilarity of index p between a pair
of contours y, and y,, with contour representations f; and f, respec-
tively, fi. f> € L(27), is defined as

dP(fi.f) = min|lf = TRS3ll,. 1<psce.  (422)

O

We now consider the periodic cumulative angular function 3 in some
detail. Since 3 is invariant for translation. scaling and rotation of a
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becomes:

min ||y — Tyl

We require of dissimilarity measures that they are invariant for shifts
in the starting points of the contours involved. In particular. if Eq. 4.2.3
would be a valid dissimilarity measure in this respect. then it is required
that

mT'mn Ty = Teyal|, = mrin]] Y= Jynll,.  VoeR. (4.2.39)
Unfortunately, Eq. 4.2.4 is in general not satisfied. The reason for

this is the effect of a starting point shift upon y (cf. Table 2.1):

'

Ty = w(t — 1) — y(—71). (:4.2.5)
The formula in Eq. 4.2.3 does not even define a symmetrical mea-
sure, as we will show in the following example.

Example 4.1.

Consider two contours y; and y» as displayed in Figures 4. la and 4.2a.
respectively. In the contour y; the straight line segments have the same
length as the circular arcs. The representation y, of 3 is displaved in
Figure 4.1b and ¢ of - in Figure 4.2b. Note that - is identically zero
because y, is a circle.

We are interested in the behavior of min, || 7,y — 7,4
tion of o. Since i is identically zero we find

s asa func-

min || 7,y — Ty

Iy = I Ty |l e (4.2.6)

To illustrate the effect of a starting shift upon g (cf. Eq. 4.2.5) we
have displayed y{(1) = Ty (1) and yi(r) = J,y(0) in Figure 4.3
(compare with Figure 4.1).
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Figure 4.1. Contour 7 is shown in (a). consisting of four circular arcs and four straight line
segments, The length of each straight line segment is the same as that of each circular are. The
periodic cumulative angular function yy of 3y is displayed in (b).
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Figure 4.2. Contour y-. displayed 1n (a). 1s a circle, Its periodic cumulative angular function i,
shown in (b). is identically zero.
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Through straightforward integration we find for || 7,y || ,:

[ 4 T 7 et
{:r{pﬂ-l} {(H +k4_0}

for k I s0< +k I (4.2.7a)

[Fotnll, = 3

by
3 g) [*
+ ( +k - —-g )
8 ]
o T / T i
f +k <0< : 2
or g 1 U 4 + k 4 14.2.7b)

for all k € Z.

These expressions show that min, || 7,y — J,.y1||, is not independent
of the starting point shift 7, in 4. A graph of || 7,y . as a function
of o. is displayed in Figure 4.4 for p = 1. p = 2. p = 5 and. in the limit.
for p = .

We will also show through this example that min, ||y, — J,4, is
not a symmetric measure. i.c. in general

min [y, — Tyl # min|lys — T, (4.2.8)
This can be seen as follows.

We found the results of the lefthand side of Eq. 4.2.8, as a function
of the starting point shift in 4, in Eq. 4.2.7a. b. For the righthand side
of Eq. 4.2.8 we find

\ 4 - = e \E
m}"”‘i':‘-h‘f‘:”;J: min [y ], = o 1(8] ; (4.2.9)
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forr = k-a/4. k € Z. So only for starting point shifts of k-7/4, k € Z,
min, ||y, = T ||, and min, [y, — Ty, ||, yield the same result in this
example.

O
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Figure 4.3. Periodic cumulative angular functions of contour y, in Figure 4. 1a after starting point
shifts. In (a) i = 0,040 18 shown and in (b) ) = 9, .,.
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Figure 4.4. Graph of [|.7,y, |-J, as a function of the starting point shift o for various values of the
index p.
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One way to cure the problems described in the foregoing example is
to propose the formula

min || Ty, — Ty, (4.2.10)
a.T

as a dissimilarity measure on the basis of 3. Though this formula would
vield a valid dissimilarity measure, it has the drawback that it leads to
a considerably increased computational cffort.

Another way to get rid of the peculiar starting point dependence of
y' is to base a dissimilarity measure on a normalized periodic cumulative
angular function ™ that preserves the information in i and that has
the property

Tp*(1) = p* — 1). (4.2.11)
One way to find such a function 3 ° is as follows. Let

() = y(r) + 2y). (4.2.12)
where Z(y) is a, not yet specificd, real-valued and single-valued func-
tion of 4. Since y(0) = 0 it is clear that y(¢) can alwavs be obtained
from (1) as

y(e) = g () — y7(0). (4.2.13)

which shows that y* preserves the information in .
From Eq. 4.2.12 we derive the equations

p¥t— 1) = plt — 1) + 2() (4.2.14)

and
Ty=() = Typ(t) + ATy). (4.2.15)
Through substitution of Eqs. 4.2.14 and 4.2.15 into the required
property. expressed in Eq. 4.2.11, we find with the aid of Eq. 4.2.5 that

the function A{y') must satisfy

MT ) = Ay) + y(—1). (4.2.16)
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Many functions 4, that have this property, can be defined.

Definition 4.2.  Dissimilarity measure of index p on the basis of y".
A measure of dissimilarity of index p between a pair of contours y, and
75, with contour representations y, and i, respectively, y,, ¥, €
L7(27). is defined as

dP (g, ya) = mrin“ Pi - 5;#"?”;» l=p=<m, (4.2.17)
where y* is a normalized version of ., according to Egs. 4.2.12 and

4.2.16.
O

Note that the form of Eq. 4.2.17 conforms with the definition of the
dissimilarity measures in Eq. 4.2.2. since %,y* = yp* (cf. Table 2.1).

In order to give an example of a normalization of i we define the
contour average of a periodic contour representation.

Definition 4.3.  Conlour average,

Let f be a periodic contour representation or another contour-related
function, with a normalized arc length parameter (. The contour aver-
age (f) of fis defined as

(f) = 2'3 J f(ryde. (4.2.18)

O

We note from the definition of the complex Fourier coefficients in
Eq. 3.2.2 that

() = N0). (4.2.19)

We recall from Table 3.3 the sufficient conditions that the Fourier

coefficients of i must satisfy in order to render a pair of geometrically
similar contours:

Pn(k) = e k), VkeZ - {0},

for some fixed vafue of T € R.
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Using

q’{.’): Z f;’-[k}c“‘"

keZ

we find as a sufficient condition for gcometric similarity in terms of g

i

ya(t) — (ya) Yt — 1) — (yy)

= Fa (1) — (T a0, Vi e [0. 2]. (4.2.20)
for some fixed value of 1.
Compare the sufficient conditions in Eq. 4.2.20 with those in Table
2.3. From Eq. 4.2.20 we draw the conclusion that an appropriate choice
fl.‘ll‘ /-.f l;"] is

i) = —{y). (4.231)

It is casily verified that A(y') in Eq. 4.2.21 satisfies the condition in
Eq. 4.2.16. This choice results in {(y*) = 0 (cf. Eq. 4.2.12).

In the following theorem we show that the normalization of 4. as
defined in Eq. 4.2.21. is optimal if the index pinin d'”'(y,. i5) equals 2,

Theorem 4.1.  Optimal normalization in d'"'(y,. y-) for p = 2.

If p = 2 in the dissimilarity measure (). 5). defined in Eq. 4.2.17.
then the normalization of ¢ according to Eq. 4.2.21. i.c. by choosing
Aly) = —(y) in Eq. 4.2.12, is optimal.

Proof

Consider:

Ay ) = minlly ~ T3

2

; 1 3
min [3-7 J:: ‘q"{{r) = ot — r}['d: . (4.2.22
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Applying Eq. 4.2.12 to Eq. 4.2.22 and expanding the integrand yields

l a
[1 {‘i'l(f) — (= r)}-dr

[ Py s e :
d'(y 1) mfln|:2:r )

+ 2{Cyn) — (o) Ha(yy) — Apa) )

+ {A(y)) — ,z(qu)}ll : (4.2.23)

which can be rewritten as

: | T 2
d Ny, ) = min |:,)_{ L {p1(t) = ot — )} dt

d

+ {(y) + Ayy) — (pa) — )-(‘.(':)}2

—{{t) = (ff’:)}:] : (4.2.24)

Only the middle quadratic term in Eq. 4.2.24 depends upon the
choice of a normalization function A(y). It is clear from the expression
in Eq. 4.2.24 that APy, ps) s always minimized if we choose
Ay) = —(y).

O

A survey of the dissimilarity measures of index p, defined in Defini-
tions 4.1 and 4.2, in terms of the individual contour representations, is
given in Table 4.1.

Remark.

In the tables in this section, dealing with (mirror-)dissimilarity measures
for general values of the index p, the value p = = has been excluded,
though these measures are also defined for this value of p. The reason
for this exclusion is the fact that the formula for |- ||.. is somewhat
different from || -[|,. 1 < p < = (cf. Eqs. A.12 and A.13). However,
given the formula of a (mirror-)dissimilarity measure for 1 < p < w0,
the derivation of the formula for p = = is straightforward. O
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Table 4.1. Dissimilarity measures of index p. 1 < p < =_in terms of the individual
contour representations,

Cont i :
(["" nur} i Dissimilarity measures of index p
representation
E
2 d"'(zy. z2) = min ot I |25(0) = e“25(r — 1) | d.w
Z d?(zy. 5) = min 5 I |:';[IJ — "5 (r—1| dr‘
I ;
g d?(2). %) = min e l | &3¢0 — o280 = r|| dr‘
| :
' A7 yn) = minf 5 ' ., i) = st — 1| "dr I
T, T
K d"(K,.Ks) = min| | [Ki() = Kitr—n)|/dr
i o 2 .
|

An important property of the dissimilarity measures is established in
the following theorem.

Theorem 4.2.  Metric properties of dissumilarity measures.

The families of dissimilarity measures defined in Definitions.4.1 and
4.2 constitute metrics on the equivalence classes of representations of
geometrically similar contours.

Proof
Let f stand for any of the contour representations z. z. 2.y and K. If
fi. f> and f; are the representations of the arbitrary contours 3,. 7~ and

vi. with fi. f5. f; € L’(27). then we have to show (cf, Definition A.1):

(a) d”(f,. f») = 0 iff f, and f> belong to the same equivalence class of
1+ J2 J1 Ja g 9
representations of geometrically similar contours.

(b) d''(f,. f») < d"7'(fs. f;) + d7'(fs. f>). the triangle inequality.
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Ad (a) The families of dissimilarity measures d”'(f,, f>) are directly
based upon the necessary and sufficient conditions that f; and f; must
satisfy in order to render geometrically similar contours (cf. Eq. 2.3.1).
This ensures that, if d”)(f,, f-) = 0, then the conditions for geometric
similarity in Eq. 2.3.1 are satisfied almost everywhere for some « and
7. which allows us to conclude that y, and y, are indeed geometrically
similar. On the other hand, if y, and y, are geometrically similar we
find d''(f,, f;) = 0, whereas if y, and p, are not geometrically similar
we find d”(f,. f;) > 0. In this discussion we have assumed that the
normalized representation f* can always be determined uniquely from
f(cf. Egs. 4.2.1 and 4.2.12).

Ad (b) Through Eqgs. 4.2.2 and 4.2.17 we have
dP(f3, fi) = min \f3 ~ TR, (4.2.25)
Let «,; and 7,53 be the solutions of the minimizations over ¢ and 7 in
d'’(fs, f1)-
Similarly. let aay and 755 be the corresponding solutions in d'7'( f3. f5).
Then we obtain
d“”]['jj".’.]) 0y d””{,’}‘f;") = ”f;; - I':)}'r|1l'-l){"fl|:_’(!i! [|f’ + ||!‘; = "JTI';}:;R'H:'.I;E: ||j'1"
(4.2.26)

Since ||f; — f2l| .. with fi. f» € L”(27), constitutes a metric on L?(2x7)
(cf. Theorems A.l and A.2). the triangle inequality leads to

d?(f5, f) + dP(f, o) =

;_Tffl"'.)ﬂ"'fli,[‘T = I“Tr_\_x“ﬂunf:;i

P
= ||f41 = 'il T2 - r;:jI'J‘.ﬂ'!u::—n:njf’i:”f:
= d7(f,. f), (4.2.27)

which is the required inequality.

The properties (a) and (b) in this proof correspond to the require-
ments of a metric in Eqs. A.1 and A.2, respectively. Since these prop-
erties are sufficient for a metric (cf. Appendix A). the proof of the
theorem is now complete. U
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Along the same lines as we defined families of dissimilarity measures
in Definitions 4.1 and 4.2 we now define mirror-dissimilarity measures.
The mirror-dissimilarity measures are directly based on the necessary
and sufficient conditions on contour representations of geometrically
mirror-similar contours, as defined in Eq. 2.3.2.

Definition 4.4.  Mirror-dissimilarity measure of index p.

Let fact as a generic symbol for any of the contour representations z.
z, 2.y and K. Then a measure of mirror-dissimilarity of index p be-
tween a pair of contours y, and y». with contour representations f; and

f> respectively. fi. f> € L7(2:71). is defined as

d(fy f) = minlf7 = AT, f3

2 lsp=<=. (4.2.28)

It is casily verified that d"(f,. f>) is in fact a dissimilarity mcasure
between a contour and another contour. that is mirror-reflected about
the x-axis. i.e.

AV fi. f) = AWy A S, (4.2.29)

In analogy with the dissimilarity measures defined in Definitions 4.1
and 4.2, the families of mirror-dissimilarity measures 7' act as mea-
sures between equivalence classes of geometrically similar contours.,
i.e. apart from the type of contour representation and the value of the
index p. the value of d" will only depend upon the pair of equivalence
classes to which the contours belong and not upon the particular speci-
mens from these equivalence classes.

The families of mirror-dissimilarity measures d'' possess the property
of symmetry: d7(f. f2) = d"'(f. f). The property of reflexivity. i.c.
d”(f,, f;) = 0. is only satisfied by a special subset of contours. namely
contours that are mirror-symmetric. We will use this fact later in Section
4.5 to define families of measures of mirror-dissymmetry.

The triangle inequality does not hold for &' and is in fact meaningless
in this case. The same applies to the concept of a metricin relation to d''.

A survey of the mirror-dissimilarity measures of index p. defined in
Definition 4.4, in terms of the individual contour representations. is
given in Table 4.2.
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Table 4.2. Mirror-dissimilarity measures of index p. | < p < =, in terms of the
individual contour representations.

Contous ) Mirror-dissimilarity measures of index p
Representation
T "
z d'"(z,z;)= min 5 Zi(=e =1+ f)l"df}
z d"™z,z) = min o ]z'i’(r] +eMzi(—1+ T}l dr
e ;

S d"(z, %)= min| |£5() — e 25(=1 + ©)|"de

¥ I - lip
Y d?(yy. 5) = min 57 l |!,t"i[r] + (=t + r]lpdf}

ey -
K d"(K,, K;) = min I J |Ki(f) SRSt r)]#'d!

An important special case of the (mirror-)dissimilarity measures of
index p is formed by the measures of index p = 2. These are discussed
in the next subsection.

4.2.2 Measures of dissimilarity and mirror-dissimilarity of index p = 2

In this subsection a special case of the measures of dissimilarity and
mirror-dissimilarity of index p is discussed: the measures of index p = 2.
These measures are directly based upon the L’-metric or Euclidean
metric on L*(27). The main reasons for the importance of this case are
its greater mathematical tractability, leading to computationally effi-
cient implementations, and, as we will see later on, its isometric relation
with corresponding Fourier representation-based (mirror-)dissimilarity
measures. For p =2, the concepts of correlation and convolution ap-
pear in the expressions of the dissimilarity and mirror-dissimilarity mea-
sures.,
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Definition 4.5. Cyclic cross-correlation function.

Let fi and fy be a pair of complex-vaiued Zz-periodic functions.
with f,. f» € L*(27). Then the cross-correlation function between f, and
[ 1s defined as

: 1 oo
op(rif) = o J finfs(e — 7)de. (4.2.30)

O
Definition 4.6. Cyclic convolution function.
Let f, and f, be a pair of complex-valued 27-periodic functions,
with f,. f» € L*(27). Then the cyclic convolution function of f, and f is
defined as

- l sy
it f) = T file)fs(—¢ + r)dr. (4.2.31)

O

It is readily understood that. as a special case. the functions f, and f
in Definitions 4.5 and 4.6 may also be real-valued.

We will treat the (mirror-)dissimilarity measures based on complex-
valued contour representations and those based on real-valued contour
representations separately, because there is a slight difference in their

analysis.
Let fact as a generic symbol for any of the complex-valued contour
representations z. z and Z. Substitution of p=2 mto d7'(f,. f).

Eq. 4.2.2, and expanding the norm gives

2. f) = min|lf7 = Tk 13

; F 2
min| ,_ LT [_,.' 100 — 45t — T]l dr

; + ||[_ “: - n}‘_;;x{c"”g;;(r:_f""} + e* (T f* }}] E

[Ilrs

(4.2.32)

e

where [ in op(7: %) indicates that the translation- and scale-nor-
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malized versions of f; and f, are used in the cyclic cross-correlation
function (cf. Eq. 4.2.1). Analyzing the optimization over « and 7 in Eq.
4.2.32 we observe that

max[ max {e o1z /%) + €“galz; )} ] = 2 max|ora(r: /)]

(4.2.33)

where the solution for «, as a function of 7. is given by

[m {vs:(r:.f'*l}) . (4.2.34)

1 = arg 1027 fF) 7 = arctan

Through Eq. 4.2.33 we find for d)(f}. f>) the end result

.

d?(f. ) = [|1F3115 + |

f3 (4.2.35)

i — 2 max |Q[3(r:f*"JI]

Let g act as a generic symbol for any of the two real-valued contour
representations ' and K. Substitution of p =2 into the dissimilarity
measure of index p, Eqs. 4.2.2 and 4.2.17, and expanding the norm
gives

-

d?(g). g) = min gt - Th.g3

I

Il

|1 - o 2
min ' i LT|81'(’) —git—1)| d"]

"

; — 2 max Qi:(r;g*)]w. (4.2.36)

[||H'T||§ + ||g3

A survey of the results in Eqgs. 4.2.35 and 4.2.36 for the dissimilarity
measures of index p = 2, in terms of the individual contour representa-
tions, is given in Table 4.3.

Note that in the expressions for the dissimilarity measures of index
p = 2 on the basis of the real-valued contour representations i and K
an optimization over the cyclic correlation function appears, whereas
in the corresponding measures on the basis of the complex-valued con-
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tour representations z, z and 2 the optimization is over the modulus of
the cyclic correlation function.

Table 4.3.  Dissimilarity measures of index p =2 in terms of the individual contour
representations.

SoutoRr ; Dissimilarity measures of index p = 2
representation
2 d®)(z,, 22) = [ 2] i F ”:5 || =1 max |r_:t_.{r: 2 Ji]::
: a2z 20 = [l 115 + 11215 - 2 max |oyate: 3] ]
Z =12 5) = [||:, || + H_ || - 2 max [os(r: 2 1|] :
y d2 (g yrs) = [”:,-' || + || Y || = 2max o1y I].:
K d(K,. Ks) = [||A'-, 13+ || K25 — 2 max ootz K |] :
Table 4.4. Mirror-dissimilarity measures of index p =2 mn terms of the individual
contour representations.
. [
i ; Mirror-dissimilarity measures of index p = 2
representation :
z A = [H:] l\ + ”:H Y m_ux‘h,_-(r: 2 i|]-\:
; T G
z d-(z.5) = [H: IIZ + || 225 = 2 max |hystr: 2 I|]
| T
| z dPl(E . 2= I||.'"1||é+||Ef-||::—2m_;ix1hl_‘{r:: Jli] :
|
| i dPapy. s) = [”r“||+ ”:;";Hi+2m‘in Iyl oy }]I:
K dN(K,. K:) = [“I\ || + ||I\|| ~2max b1 K j]I:
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The analysis of the mirror-dissimilarity measures of index p =2
evolves along the same lines as that of the dissimilarity measures of
index p = 2. Instead of the cyclic correlation function the cyclic con-
volution function appears in the expressions for the mirror-dissimilarity
measures of index p = 2. A survey of these expressions, in terms of the
individual contour representations, is given in Table 4.4,

Note in Table 4.4 the somewhat differing expression for d(y,. )
which is a consequence of the expression for d"(yr,, -) in Table 4.2.

4.2.3 Measures of dissimilarity and mirror-dissimilarity based on
Fourier representations of contours

In analogy with the (mirror-)dissimilarity measures defined in Defini-
tions 4.1, 4.2 and 4.4, which are based on the information-preserving
contour representations introduced in Chapter 2, we can also define
such measures on the basis of the corresponding Fourier representa-
tions of contours. In Section 3.2 we have shown that these Fourier
representations are also information-preserving.

In Section 3.5 we have formulated the necessary and sufficient condi-
tions that Fourier representations must satisfy in order to render geo-
metrically (mirror-)similar contours. In analogy with (mirror-)dissimi-
larity measures based on parametric contour representations (cf. Sec-
tion 4.2.1). these conditions will form the basis for the definition of
(mirror-)dissimilarity measures based on Fourier representations of
contours.

We consider Fourier representations as elements in the sequence
space €(Z). 1 < p < %, In the definition of (mirror-)dissimilarity
measures based on Fourier representations we employ the fact that, if
fis fr € €(2), then ||f, — f> ,defines a metric on €(Z), where |||,
denotes the usual norm on €7(Z) (cf. Appendix A).

This section constitutes a direct parallel with the Sections 4.2.1 and
4.2.2. The required invariance of the (mirror-)dissimilarity measures
for the position, size and orientation of the contours and for the position
of the parametric starting point on the contours will be realized in the
same manner. Therefore. the conversion of the formulations and deri-
vations in the Sections 4.2.1 and 4.2.2 to Fourier analoga is straightfor-
ward, replacing contour representations by Fourier representations and
integrals by appropriate sums. For this reason we limit ourselves to the
major formulations and leave the details to the reader.
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Definition 4.7,  Dissimilarity measure of index p based on Fourier
representations.

Let j act as a generic symbol for any of the Fourier representations
g 2.5 y and K. Then a measure of dissimilarity of index p between a
pair of contours y, and y,. with Fourier representations ,"| and ;, respec-
tively. ft j e ("(Z).1s dl.hm,d as

i f2) = minllfi = Tk

155 I<p=<=. (4.2.37)

=5 |

Compare Definition 4.7 with Definition 4.1. In Eq. 4.2.37. f* stands
for the Fourier representation. generated by the nnrmd]md contour
representation 7, as defined in Egs. 4.2.1. 4.2.12 and 4.2.21. It is
casily verified that

f* = FuGf. (4.2.38)
when [ stands for z. z. Z or K. and that
=+ Aly) =y — y(0). (4.2.39)

A survey of the formulations of the effects of translation and scaling
upon the individual Fourier representations can be found in Table 3.2.
With the aid of this table it is straightforward to derive expressions for
f“"(f ,‘ ) in terms of the individual Fourier representations,

The dissimilarity measures d7'(f,. f») also POSSEss metric properties.

Theorem 4.3. Metric properties of dissimilarity measures based on
Fourier representations.

The families of dissimilarity measures. d'( f,. f-). defined in Definition
4.7. constitute metrics over the equivalence classes of Fourier represen-
tations of geometrically similar contours,

O

The proof of this theorem follows exactly the proof of Theorem 4.2.
replacing f € L”(27) by [ € ("(Z).
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Definition 4.8. Mirror-dissimilarity measure of index p based on
Fourier representations.

LLtj act as a gcmru. symbol for any of the Fourier representations
(. z, 2,1 and K. Then a measure of mirror-dissimilarity of index p
between a pair of contours y; and y,. with Fourier representations f
and {3 respectively, {, f’: e ('(Z), s defined as

d7(f,. f) = min|f — MTR,f3

I<p<w®.  (4.2.40)

g

Compare Definition 4.8 with Definition 4.4. An analogon to
Table 4.2 for d'7'(f,. f>) can be derived by using Table 3.2.

For index p = 2 the dissimilarity measures d?(f,, f») and d2(f,, f»)
are isometrics:

dil}(ﬁ‘ £) = d{:"{f]-jﬂ- Vfi. |- € L2 27). (4.2.41)

This fact is a direct consequence of Parseval's formula (cf. e.g. Ed-
wards [1979], pp. 131-132):

ICN I (e 3 o
ll3= . ) [Aolee= 3 ol =7l vre e,

(4.2.42)

For the same reason the mirror-dissimilarity measures of index
p = 2 satisfy

dNf. =% f), Vi.fhelX2n).  (4.2.43)

In practice the (mirror-)dissimilarity measures of index p = 2 can be
computed efficiently via the Fourier domain. One of the reasons for
this efficiency is the form that the cyclic cross-correlation function and
the cyclic convolution function take when they are expressed in the
Fourier coefficients of the corresponding contour representations:
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on(tif) = Y fik)f(k)er (4.2.44)
kel
and
ha(rif) = Y. fitk)fatk)e™. (4.2.45)
Pli L ] :i'_

Another reason that (mirror-)dissimilarity measures can be computed
efficiently for p = 2 is the existence of fast algorithms for the (approx-
imate) computation of Fourier coefficients. More attention will be given
to these issues in the next subsection.

4.2.4 Sampled-data formulations of measures of dissimilarity and
mirror-dissimilarity and analysis of computational complexity

In the previous sections we have defined measures of dissimilarity
and mirror-dissimilarity on the basis of various contour representations
and Fourier representations. In the formulation of the measures the
contour representations are functions of the continuous normalized arc
length parameter 1.

In practice the measures are computed on the basis of a finite number
of samples of the contour representations or on the basis of a finite
number of Fourier coefficients. In this section we present the discrete
formulations of the previously defined measures of dissimilarity and
mirror-dissimilarity in terms of sampled contour representations and
finite Fourier representations and analyze the computational complexi-
ties of the measures.

We assume that in practice we have N samples of a contour represen-
tation f. taken equidistantly in terms of arc length along the contour.
The problem of estimating these contour representation samples from
scgmented digital images will be dealt with in Section 4.4 and Appendix
&4

Since a 2-normalized arc length parametrization is used for the con-
tour representations the discrete contour sample f[n] can be related to
the contour representation as

2
f[n]zf(r+ n \) ne{0,...N—1}. (4.2.46)
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for some 7 € [0. 27/N). In practice we choose 7 = (), which corresponds
to the convention f[0] = f(0).

The periodicity of a contour representation fin terms of its N discrete
samples is expressed as

fln] = fln + N]. (4.2.47)

An estimate of ||f]| .. on the basis of discrete samples of f, is defined as

It 11l = [ = J.f’lnll"} (4.2.48)

=1l

Remark.
In a number of situations we denote the sampled version of a contour
representation f by f[ |.

In analogous situations we denote the truncated version of a Fourier
representation /by Al

O

In the dissimilarity measures of index p, d7(f,. f,). the orientation
of the contour y,, represented by f5. is optimized with respect to that
of contour y,. represented by f,. In practice this optimization is per-
formed over a finite number of orientations, say M. An estimate of
d"(fi. f>) based on N equidistant samples of both f, and f,, denoted as
dV[fy. f>]. is given by

dP(fi. ] = ']},_i‘? Hft[ | = Ty PRerainsmf 3 l”;v-
e M= 1y ge i, .. N=13} (4.2.49)
where the discrete starting point shift operator Jq) 18 defined as
Tifln] = fln — q]. (4.2.50)

Similarly, an estimate of the mirror-dissimilarity measure of index p
d( f1, f>). denoted as d™[ f,, f1], is given by
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dﬂm[fl "fll = mlF ”fI[ I — n‘:T[;,J]'yftl'r._\fl#r;_!r?[ | H.f"

LY

me il .. M—1% geif ....N= L} (4.2.51)

A survey of the expressions for d'7'[ f,. 3] and d""[ f,. f5] can be found
in Tables 4.5 and 4.6 respectively.

In the righthand columns of these tables the computational complex-
ity of the (mirror-)dissimilarity measures is listed. By the computational
complexity of the measures we mean the order of the number of arith-
metic operations that has to be performed in order 1o compute the
measure. We have assumed that the number of arithmetic operations.
necessary to compute |f|”. is not a function of p. The concept of com-
putational complexity that we use here corresponds with the time com-

Table 4.5. Dissimilarity measures of index p, | < p < = in terms of N equidistant
samples of the individual contour representations. The minimizations are over N
cquidistant starting point shifts and M cqually spaced orientations.

Contour Computa-
represen- Discrete dissimilarity meastres of index p tional
tation complexity
o et o
z[ ] d'"z;.z:] = min \. Y |ziln] = M3 0 — g O(M-N7)
g | N T
My «
i d"z. )= mint Y [En] e —gl|” | OOAY
[ [ |
| d'™%. %)= min = Y (Zin] = "M z5in — gif” ‘ M N
| S f 17
ol | @y ysl = min| Y il = vl - tm"] 0N
§ A= br
K[| d"K,. K] = min[ 5 Y |Kin) = Kin—q]|” O(N7)
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plexity for most traditional computing devices (Aho, Hopcroft and
Ullman [1974]). However, if we use multi-processor architectures for
the computation of the measures, then the specified order of complex-
ity, in terms of the number of arithmetic operations. may give an overly
pessimistic impression of the real time complexity involved.

In the previous section we have found that for index p = 2 the con-
cepts of correlation and convolution appear in the dissimilarity and
mirror-dissimilarity measures, respectively. The discrete cyclic cross-
correlation function 05[q: f], on the basis of N equidistant samples of
both f, and f; is defined as (cf. Definition 4.5)

onlg: fl = Z f,[n]f [n — q]. (4.2.52)

n=I

Table 4.6. Mirror-dissimilarity measures of index p. | < p < =, in terms of N equidis-
tant samples of the individual contour representations. The minimizations are over N
cquidistant starting point shifts and M equally spaced orientations.

Contour Computa-
repre- e I S tional
i Discrete dissimilarity measures of index p complexity
tation
B 1 V=7 ’ lip
:I | f!ulllzh ‘:.’I = min 7 Z :TI”I _ C-Jr37l.lrilrr33|_’.’ £ qll :| (M- N?)
A LN p=n
[ [ V! lip
:[ I fl"‘r'ili';‘ ‘::] = min = E J"::-I:In} - W27 My :.—l n- qll 0{',14. '.'\J':)
e LNy =
[ 1 =1 I
A1 | sl= min |#11n) — e ssi—n 4 q)|" | | OM-N?)
ma | | i)
N-1 ip
wl | dPy. ] = mmlr Z ):jv ‘n) + wil-n+ q]lI :l O(N?)
- n=10

Ve ] Iip
Kl | dP[K,. K] = mm[ Y | &iin) - K;[—Hq]]"] O(N?)
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Likewise the discrete cyclic convolution function hys|q: f] of f, and f,
is defined as (cf. Definition 4.6):

'

: Ll :
holgifl= Zj[[n]j;]—n +q). (4.2.

3)

As a result of the periodicity of f| | and fy| |. both o,
hislg: f] are periodic, with period N.

The derivation of the discrete (mirror-)dissimilarity measures of
index p =2 from those of general index p is along the same lines as
described in Section 4.2.2 for the continuous-parameter representa-
tions. A survey of the results is given in the Tables 4.7 and 4.8.

g: f] and

The computational complexity of the discrete (mirror-)dissimilarity
measures of index p = 2 is dominated by the computation of 0,5¢: f]
and hyslg: f]. Straightforward computation would lead to a computa-
tional complexity of O(N7) for all measures of index p = 2. However.
the following analysis shows that often more efficient implementations
are possible.

Table 4.7.  Dissimilarity measures of index p = 2 in terms of N equidistant samples of
the individual contour representations. The optimizations are over N equidistant start-
ing point shifts.

Contour Computa-
repre- Discrete dissimilirity measures of index p = 2 tional
sentation complexity

A1 [ d®zezl= [l 0+ = - 2max|oide: 1] [0rNI0e N

oclg:1|]7 oy ios v |

EN a2z s =z 0G0

s — 2 max
s A

i) 113 - 2max fota: =1(]' [orvioe: vy

A1 |ea.z=[ll=00E+

vl | dyryd = [lwil 15 + A orvioe )

|:_J-:] ]|| -2 max R

K[ ] "-"'\li'\'l-"\’:IZ[||K:| I+ 11&31 11— Zmaxo[q: K ]]I: O(Nlog: N)
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The discrete Fourier transform (DFT) of a periodic sequence f[n],
with period N, is defined as (cf. Oppenheim and Schafer [1975])

N-=1
j[kl = }l\{ Z f[”]c—lktl‘rh\']n (42548)

n=1A
and the inverse discrete Fourier transform (IDFT) as

J\; o

flnl= ¥ ikl (4.2.50b)

Note from Eq. 4.2.54a that f[k] is also a periodic sequence with
period N.
Through the cyclic correlation theorem (cf. Tretter [1976]) we can

express 05[q; f] as the IDFT of the sequence fi[k]f5[k]:
N=1_ — o
onlg: 1= X filk]flk]e* ™, (4.2.55)
K=0
Table 4.8. Mirror-dissimilarity measures of index p=2 in terms of N equidistant

samples of the individual contour representations. The optimizations are over N
equidistant starting point shifts.

Contour Computa-
repre- ; A e ; tional

: .p Discrete dissimilarity measures of index p = 2 S
sen- e complexity
tation

z] ] d[z,, 2] = [”zﬂ |”: + (23] ]”E -2 m‘?x|h,3[q:zx||]l-’: O(Nlog, N)

A1 | zl= [lz0E+ 00 -2 max|aelg: 1] | otviog M

1 |azl= [0+ 0 - 2maxlrele: 217 | ot iog M)

ol L | @yl = (st 3+ st 115+ 2 minaelg: 1] | oV Iog, M)
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Similarly, through the cyclic convolution theorem (cf. Tretter [1976])
hyslq: f] can be expressed as

N -1

hlg:fl = Z f;:|""']f:|k|°m:jmq- (4.2.56)
k=1

Compare Eqs. 4.2.55 and 4.2.56 with Eqs. 4.2.44 and 4.2.45.

With the specification of the computational complexities in the Ta-
bles 4.7 and 4.8 it has been assumed that the number of samples N has
been chosen such that Nis a power of 2. In that case 05[g: f] and /15[ g: f]
can be computed efficiently through Eqgs. 4.2.55 and 4.2.56. using the
Radix-2 Fast Fourier Transform (FFT) algorithm (Cooley and Tukey
[1965]). If N is not a power of 2. but another highly-composite number.
then the Mixed-Radix FFT algorithm can be applied (Singleton [1969]).
Number-theoretic transform methods (McClellan and Rader [1979].
Nussbaumer [1981]) or special-purpose hardware may lead to even
greater computational efficiency.

Another method to compute the Fourier coefficients is to determine
a polygonal approximation of the contour and to apply the formulas for
the Fourier coefficients of polygonal representations in Table 3.1. In
the latter case the number of arithmetic operations per Fourier coeffi-
cient is proportional to the number of vertices of the polygon. Effi-
ciency in computation is only achieved if the number of vertices in the
polvgonal approximation is relatively small and if the number of Fourier
coefficients can be kept limited.

In practice, the (mirror-)dissimilarity measures based on Fourier rep-
resentations, as defined in Section 4.2.3, are computed by means of
truncated or windowed Fourier representations. resulting in discrete
measures of dissimilarity d”[f,. /3] and mirror-dissimilarity d7'[f,. f3].

We consider truncated Fourier representations and assume that N
Fourier coefficients are used. with V even. Adaptations of formulas for
N odd are straightforward.

The coefficients in the Fourier representation f and those in the
truncated Fourier representation f| | are related as

. N N
: Il =5 sxs | =}, (4.2.57a)
flk1 = e

0. k otherwise, (4.2.57b)

where k € Z.
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In analogy with Eq. 4.2.48 we denote an estimate of ||f||,, on the basis
of N Fourier coefficients as ||f[ ]||, and define this estimate as

n

= | ] 25

2~ 1

If we perform in the discrete (mirror-)dissimilarity measures the op-
timization of contour orientation over M discrete orientations and the
optimization of parametric starting point over N discrete starting points,
then d”)[f,. f»] is given by

"1 f2) = min |1 1 = Ty @mmm30 11,

m e 40,..., M — 13, q € (0. N— 1} (4.2.59)

where the discrete starting point shift operator 7, is defined in the
Fourier domain as (cf. Table 3.2 and Eq. 4.2.50):

Ty flk] = e *CaNaf[k], (4.2.60)

Compare Eq. 4.2.59 with Eq. 4.2.49.
Similarly. the discrete mirror-dissimilarity measure d¥/[f,, f] is given
by

(?'m[j‘l '12] = min ”fﬂ ] £= "'”-.\{)]-[q|:jj?'(l-r-'.\f}mf%[ ] |l_:n

ny

me {0, .... M — 1}, g el N = 1} (4.2.61)

Compare Eq. 4.2.61 with Eq. 4.2.51.

It is straightforward to derive the expressions for d”[f,. f;] and
d"[f,. f>] for the individual truncated Fourier representations. Under
the conditions for orientation and starting point optimization indicated
in Egs. 4.2.59 and 4.2.61, the computational complexities of the (mirror-)
dissimilarity measures d”)[f,, f>] and d”)[f,, f5] are identical to the com-
putional complexities of the corresponding (mirror-)dissimilarity mea-
sures d)[ f,. f>] and d7[f,, f5], which are listed in Tables 4.5 and 4.6.

Due to the relations observed in Eqgs. 4.2.41 and 4.2.43 for index
p = 2. we will not treat this case separately for d?[f,. f»] and d®)[f,, f3],
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but merely refer to what has been said about d[f. f2] and d'[ f,. f3]
earlier in this section.

4.3 Normalization versus optimization in dissimilarity and mirror-
dissimilarity measures

In the previous section families of (mirror-)dissimilarity measures
have been defined, based on various periodic contour representations
or on the sequences of Fourier coefficients generated by these represen-
tations. Each of these measures satisfies the required property of in-
variance for equiform transformations. As a result we were able to
show in Theorem 4.2 that the dissimilarity measures constitute metrics
on the equivalence classes of representations of geometrically similar
contours.

The invariance of the (mirror-)dissimilarity measures for equiform
transformations was achicved through an appropriate normalization of
the contour representations for the position and the size of the contours
and through an optimization of the orientation and the parametric start-
ing point on one contour with respect to those of the other. What
constitutes “appropriate’ translation and scale normalization of contour
representations was left unspecified. This will be discussed in this sec-
tion.

In Tables 4.5-4.8 we saw that the optimization of the {mirror-)dissimi-
larity measures for orientation and starting point of the contours leads
to a considerable computational complexity of the (mirror-)dissimilarity
measures, which may be prohibitive for some applications. Therefore
we will also discuss methods to normalize the orientation and starting
point of a contour.

A general requirement that a normalization process must satisfy is
that it leads to a unique solution. If this were not the case a dissimilarity
measure could even give a nonzero value for geometrically similar con-
tours, just by choosing different solutions of the normalization process
in the contours. Consequentially. the metric properties of the dissimi-
larity measure would be lost. Unfortunately. the requirement that a
normalization process must have a unique solution does not lead to a
unique definition of such a process. as will become clear in the following
sections.
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In Sections 4.3.1-4.3,3 we will subsequently discuss the normalization
of contour position. of contour size and of contour orientation and
parametric starting point. In Section 4.3.4 the results of the previous
sections are reviewed and normalized dissimilarity measures are de-
fined. Also a combined optimization/normalization method of dissimi-
larity measurement is described and its computational complexity is
analyzed. The latter method may be very interesting in practice, since
it combines a low computational complexity with a limited risk of using
an incorrect normalization for dissimilarity measurement.

4.3.1 Normalization of contour position

From Table 2.2 we know that the position function z is the only
contour representation, introduced in Chapter 2, that is variant under
a translation of the contour it represents. For the other contour repre-
sentations. z, Z, 1 and K. the translation operator &: is equivalent to
the identity operator (cf. Table 2.1).

We denote a translation normalization parameter of a particular po-
sition function z as £*(z). The requirement that a normalization process
must have a unique solution means that {* must be a single-valued
function of z.

A proper translation normalization process has the property that a
position function z and the position function %.z. resulting from a trans-
lation of the contour over ¢ € C, lead to the same contour representa-

tion after translation normalization, i.c.
DerinZ2 = Der(Pez), VG € C, (4.3.1)
which leads to the requirement (cf. Table 2.1):
EH(@e2) = £(2) - L. (4.3.2)

In the literature we find two propositions for {*(z) that both satisfy
the requirements just mentioned.

Many authors (e.g. Granfund [1972], Richard and Hemami [1974],
Sychra et al. [1976], Persoon and Fu [1977], Burkhardt [1979], Wallace
and Wintz [1980], Wallace and Mitchell [1980], Chen and Shi [1980],
Kuhl and Giardina [1982], Proffitt [1982], Parui and Dutta Majumder
[1982], Nguyen, Poulsen and Louis [1983], Mitchell and Grogan [1984])
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use the average position along the contour to normalize its position,
i.e. they define

.3)

LF¥)

co (@) =— _}I J z(r)dr. (4.
27 Js,
Note that {i(z) = —(z) = —2(0) (cf. Egs. 4.2.18 and 3.2.2). In shape
analysis techniques based on the Fourier coefficients generated by z.
this translation normalization is usually implicit by not considering 2(0).
In the shape analysis literature. where the shape of a region is rep-
resented by the gravitational moments of that region. the translation
normalization of that region is also based on its moments.

Definition 4.9. Moment m,,,,.

The moment m,,, of a region R in the plane is defined as

my, = P(R) = ”.t“)"‘d.t dv. pa=0.1. .. (4.3.4)
R

The moment m,,, is said to be of order (p + q).

O

Please note that the definition of m,,, in Eq. 4.3.4 is a special case of
the general definition of two-dimensional moments of order (p + ¢)
which is given by (cf. e.g. Hu [1962]):

I J f(x. v)x"y?dx dy, p.g=0.1..... (+.3.5)

In Eq. 4.3.4 we have chosen f(x, v) to be the characteristic function
of the region R. i.e. flx. y) = | inside R and f(x. v) = 0 outside R (cf.
Appendix B). which suffices in the context of contour-oriented shape
analysis, where we do not consider the internal structure of an object
to be part of its shape.

Since dxdy is equivalent to the element of area dA. it is clear that
my, (i.e. p = 0, g = 0 in Eq. 4.3.4) represents the arca A of the
two-dimensional region R.
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Translation normalization based on moments is accomplished by
using the centroid (or center of gravity) of the region enclosed by the
contour, i.e. by defining

E8() = — - (myg + imot), (4.3.6)

(]

(cf. Hu [1962], Alt [1962]. Ehrlich and Weinberg [1970]. Nagy and
Tuong [1970], Casey [1970], Dudani. Breeding and McGhee [1977],
Wong and Hall [1978], Zvolanek [1981], Reeves and Rostampour
[1981]. Reeves and Wittner [1983]). Note that the centroid corresponds
to the regional average, i.e.

H zdA

i ) = : (4.3.7)
1)
dA

R

It is easily verified that both £} (z) and {7(z) satisfy the requirement
of uniqueness and Eq. 4.3.2.

In the literature the contour average (z) is frequently called the
centroid or the center of gravity. The following example shows that the
contour average and the center of gravity are in general not the same.

Example 4.2.
In this example we consider a simply-connected region, bounded by the
simple closed polygon specified in Figure 4.5.

We recall from Table 3.1 that the average position along a closed
polygon is given by

= _
(z)=20)= ., Y |Az(e)|{z(t, ) + 2(1)},  (4.3.8a)

n=\)

where L is the perimeter of the polygon:

L= NZHI |Az(1,)]. (4.3.8b)

n=1l)
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] o) = 0
| Hi) = 2=
L) = - 3
L) = 2—-35
| (1) = — 4
[ Hte) = 2=
-y - At = — 6i
X0 2itz) = 23—
ty— 4t ’ An) =10 -7
) = W+ T
A= 2+ 7T
21y, = t
2fna) = 2 + 50
() = 4
A= 2+ 3
t 2(r:) = 2
Q )= 24+ i

Figure 4.5. A region bounded by a simple closed polygon with 17 vertices. The comples-
valued vertices are listed on the right, The contour average (z) = 3(0) = =2 and the centroid
(a0 + 1o My, = =2 are not the same.

It is straightforward to derive the following expression for the cen-
troid of the region enclosed by a polygon:

(”3!” -+ i.f”]“)
)

N=1

6‘4‘ ”Z”[{?t“”)\“”) i ‘“”)‘(ln + ])

i ‘“ut [)\([”) ir "“H + I}" ("rn I)} { “n) by s ]J]’]
(4.3.9a)

where A is the area of the polygonal region given by

1%
=, Z X(1)¥(1, 1) = x ()Y (1)} (4.3.9b)

Substitution of the coordinates of the vertices of the polygon specified
in Figure 4.5 yields:
1

2(0) = (472 4+ 28VS +0-i) = 4.360 + 0-i
0= ¢0+28v5 ) = :
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and

1
+imy) = 144 + (i) = 5.¢ f
(my, + imyy,) ?56(4 0-i) = 5.481 + 0-i,

My

which clearly shows that the average position along a contour and the
centroid of the region, bounded by that contour, are in general not the
same.

O

In Section 2.4 we remarked that the symmetry point n of an n-fold
geometrically rotationally symmetric contour coincides with the cen-
troid of the region bounded by that contour. In the following theorem
we show that n-fold rotational symmetry, n = 2, is a sufficient condition
for the centroid and the average position along the contour to coincide.

Theorem 4.4.

If a contour is n-fold geometrically rotationally symmetric, n = 2. then
the average position along the contour and the centroid of the region,
bounded by that contour, coincide.

Proof

Assume that a contour y, with position function z, possesses n-fold
geometrical rotational symmetry. It follows from Table 2.6 and Eq.
2.4.3 that the following relation holds for z:
z2()+ &= ci’”'l”'"’{z(! — m(27/n)) + fc}. Vie R, Vme Z,
(4.3.10)
where —C € C is the symmetry point of order n. From Table 2.6 and
Eq. 2.4.3 it also follows that the tangent function z of y satisfies
z(t) = ™ @Mt — m(2nin)), Vie R, VYme Z.
(4.3.11)
In Eq. 4.3.7 we noted that the centroid of a region corresponds with

the regional average. A complex formulation of Green's theorem reads
(Spiegel [1964]):
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80(z.2) ,, i o
H A { 0(z, T)dz. (4.3.12)
) :

If we apply Eq. 4.3.12 both to the numerator and to the denominator
of the righthand side of Eq. 4.3.7 we obtain:

_11 jt’ z°dz [I‘ 22 (0)2(1)di

: (my + imy,) = : = ;
'”Iﬂ” l 2y =
5 fﬁ zdz J z(1)z(0)dr

Substitution of Eqs. 4.3.10 and 4.3.11 into the righthand side of
Eq. 4.3.13 and rearranging summations and integrations leads to

(4.3.13)

L
.

(HI“, + i”f”! )
My,

n—1 ((22/n) .
: {cm:t,_.?-'m:{” a4 (Cumln-m I ])‘:}—C—mu -fm_'.'_(”t]‘,
m =1 J0

2:1—]

(2/n) _
Z J {Clmﬂ.‘rm]:“} + (Cmrrf.'rm o l};}c—mulnn!;‘.(”d!
"

=1

[2:2/n) (21/m) i
: —2né U 2(0)2(0)dr + & J E(r)dr]

2 (21/n) 1 tl‘r-nl_
n” z2(t)z(r)dt + & [ .:.‘(!}d!l

J1) S}
= ~, (4.3.14)
where we have repeatedly used the property

]
Z eikm(2im) — () if k # 0 mod n. (4.3.

m=1

(Y]
ok
LN
—
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Thus we have shown in Eq. 4.3.14 that —¢ in Eq. 4.3.10 indeed
corresponds to the centroid of the region R.

Substitution of Eq. 4.3.10 into the equation of the average position
along the contour yields (cf. Eq. 4.2.18):

{z) = 2; J z(1)dt

1 = -1 l'{l‘r-'nl i -
£ Cm 2 Z(I 81 clm(._.*r.-n} s | ‘:- df
27 yi=o Jo { PR )_}
| n 2 ¢
27 n
=, (4.3.16)

where we have again applied Eq. 4.3.15. Combining Eqgs. 4.3.14 and
4.3.16 completes the proof of the theorem.

O
It can be shown that the translation normalization parameter
£4(z2) = —(z) = —2(0) minimizes d®(z,, z,) and d®(Z,, %,) over all

possible translation normalizations. The proof of this assertion follows
immediately from the equation of d'?(2,, 3,). (cf. Eq. 4.2.37):

d{:j(éh )= m|rn ”?l - 5}?}!'”2.:_5 B
i,

min [ |B1{2,(0) + &1} — €p3{2:(0) + &3} |’

E LA
] :

(4.3.17)

+ Y |Biak) — e T aptz(k)

keZ— (0]

and from the equality of d'*(2,, 2,) and d"”)(z,, z,) by Parseval’s formula
(Eq. 4.2.42). Along different lines the optimality of £7(z) as a transla-
tion normalization parameter in d"*)(z,, z,) has also been shown by Prof-
fitt [1982).
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4.3.2 Normalization of contour size

From Table 2.2 we know that of all contour representations that we
proposed for dissimilarity measurement, ¢ is the only scale invariant
representation. Therefore the scaling operator f; applied to i is equi-
valent to the identity operator (cf. Table 2.1). The contour representa-
tions z. z, Z and K are all variant under the scaling of a contour. There-
fore we have to specify scale normalization parameters in the (mirror-)
dissimilarity measures based on these contour representations. Let 7 -.f
denote any of these contour representations after translation normaliza-
tion and let g*(%-.f) denote a scale normalization parameter for s .f.
By defining 5* as a function of a translation-normalized contour repre-
sentation we ensure that ° will be translation invariant. The necessity
of this provision stems from the fact that the operators 7. and i, do
not commute when f corresponds to the position function z. In order
to ensure that the normalization process has a unique solution.  must
be a single-valued function of s ..f. We also require that 3 is a positive
function of 4. f since scaling is always performed by positive real-valued
coefficients.

A proper scale normalization process has the property that the con-
tour representations /- and f /s -.f, the latter resulting from scaling
[ by a factor # € R", lead to the same contour representation after
scale normalization. i.e.

:",f'l £ f:[’{f_‘f} = J,S'[ Vids n{:ir!rj_“f}- {'1'?' IS]
which leads, through the property ,, = ¥, ;. to the requirement
(cf. Table 2.1):

B Sef) = 7'+ BH(Df). (4.3.19)

Various propositions for scale normalization operators f ;.. that all
satisfy the aforementioned requirements, can be found in the literature.
These propositions occur mainly in relation with the translation-nor-
malized position function /.2 or with the corresponding Fourier rep-
resentation ..z,
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For example:

e B*= )

° ﬁ* o ”fJﬁ--_—-Z”;_[

o B* = |%2l7"

o B*=|51) + 3(—1)|"
o B*=|51) — &(~1)|"
o f* =%z’

¢ B* = |Dz|Z

§ Qe

o [* = A

(Granlund [1972], Wallace and Wintz
[1980], Mitchell, Reeves and Grogan
[1982]).

(Burkhardt [1979]).
(Chen and Shi [1982]).

(Sychra et al. [1976], Persoon and Fu
[1977]. Kuhl and Giardina [1982].
Nguyen, Poulsen and Louis [1983]).

(Tai, Li and Chiang [1976]).

(Richard and Hemami [1974], Burkhardt
[1979], Proffitt [1982]).

(Freeman [1978], Kuhl and Giardina
[1982])).

where L is the perimeter of the contour
(Crimmins [1982]).

where A is the area enclosed by the con-
tour (Hu [1962], Alt[1962]. Casey [1970].
Reeves and Rostampour [1981], Tang
[1982], Luerkens, Beddow and Vetter
[1982a]). Note that A = m,, the moment
of order (0, 0) (cf. Eq. 4.3.4), which ex-
plains why this normalization coefficient
is mainly proposed in shape analysis
methods based on moments.

Though this constitutes quite a substantial list of scale normalization
coefficients, many other coefficients, that all satisfy Eq. 4.3.19, can be
formulated. The list also reveals that little agreement exists in the liter-
ature concerning scale normalization.

Example 4.3.
To obtain an impression of the effect of some of the aforementioned
scale normalization coefficients, we have displayed in Figure 4.6 a 7-
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pointed star normalized by four different scale normalization coeffi-
cients. These scale normalizations were chosen such that. if they were
applied to a circle. they would all yield a circle of unit radius. In Figure
4.6a we notice that rather thin shapes. that enclose relatively little area.
virtually explode as a result of an area-based scale normalization. On
the other hand, contours with a relatively large perimeter. will shrink
to very small figures if we use a perimeter-based scale normalization
(Figure 4.6b). Furthermore. varying signal-to-noise ratio conditions
among contours may cause perimeter estimates to differ, even with
otherwise congruent contours. These circumstances will lead to un-
realistic values for d'”(z,, z,) and d'7'(z,. z,) if we use a perimeter-based
scale normalization for z, as proposed for example by Crimmins [1982].
The contour normalizations displayed in Figures 4.6¢ and 4.6d. based
on |2(1)| and ||%:z||> respectively, both normalize the 7-pointed star
1|
as a scale normalization coefficient is that for many simple closed con-

e
A

to a size comparable to that of the circle. The reason to propose

O

Figure 4.6. [lustration of the effect of various scale normalizations upon a 7-pomted star. In (a)
the area has been normalized 1o A = 7. in (b) the perimeter to L = 7. (¢) the Fourier coefficient
(1) to |2(1)] = 1 and in (d) the L-norm to || « .z[ls = L. For this 7-pointed star these normaliza-
tions lead to the values 2.083, 0.567. 1.643 and 1.536 for the radu of the arcumseribed circles in
the cases (a). (b). (¢) and (d), respecuvely, For a circle, each of the four normalizations would
vield a arele of radius 1. as displayed mn (¢).

b c
e
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tours 2(1) is the Fourier coefficient of largest magnitude. not counting
2(0). However, simple closed contours exist for which this is not true,
as we will show in the next example.

O

Example 4.4.
In this example we consider a thin, strip-like object that loops around
a center point (cf. Figure 4.7a). The magnitudes of the Fourier coeffi-

]

| H

Lol [
-8 -7 6§ -5 =4 -3 -2-1 0 1 2 3 4L 5 6

b — k

11
7 8

Figure 4.7. (a) shows a simple closed contour with position function z(1). In (b) the magnitudes
of the Fourier coefficients 2(k), k = —8. .... 8. generated by z(1), are displayed. Clearly not (1)
but z(3) has the largest magnitude for this contour.



186 CHAPTER 4

cients Z(k) of this object are displayed in Figure 4.7b. It is clear that
2(1) is not the Fourier coefficient of largest magnitude. but (3). If we
construct objects such as in Figure 4.7a with more loops, then it turns
out that there is a direct correspondence between the number of loops
and the index of the Fourier coefficient of largest magnitude.

O

Apart from satisfying the requirement in Eq. 4.3.19. a scale normali-
zation parameter should be relatively insensitive to noise. thus limiting
the noise sensitivity of the (mirror-)dissimilarity measures. It should
also render scale-normalized contour representations that are compar-
able, in terms of the (mirror-)dissimilarity measure emploved. for a
wide range of shapes. The example just given shows that shapes exist
for which |[2(1)|'. considered as a potential scale normalization
parameter for z, does not satisfy the condition that it has a relatively
low noise sensitivity. Experiments have shown that || ..z|| 2" is a better
candidate for a scale normalization of z. More generally. we may state
that ;. = ||%-.z||," is an appropriate scale normalization operator to
be used in d”'(z,, z,) and d7)(z,. z,). since, apart from satisfving Eq.
4.3.19. it normalizes the size of objects by means of the same criterion
that is also used to measure (mirror-)dissimilarity.

Continuing this argumentation. ;- = ||%.f||,' is an appropriate
scale normalization operator in d'7'(f,. f>) and d"(f,. f>). where f stands
for any of the contour representations z. z. Z and K. The effect of the
scale normalization operator f ;. = ||"f_.ftir',' is that it maps the contour
representation .. onto a unit sphere in the function space L"(27).
endowed with the metric induced by the norm ||-|| .. It is casily verified
that the scale normalization operator ;. = H’!J'H;' normalizes the
representations z, z. Z and K of a circle to the corresponding represen-
tations of a unit circle.

In the following we evaluate the ranges of the (mirror-)dissimilarity
measures proposed in Section 4.2. We also analyze the effect of scale
normalization upon these ranges.

The effect of the scale normalization operator f ;. = U-f| ,'.' upon
the range of the (mirror-)dissimilarity measures is easily established.
Expanding d'”(f,. f.). using Egs. 4.2.1 and 4.2.2 and applying Min-
kowski’s inequality, vields:
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d?(f. fo) = q}_irn ||9:'f‘.ﬁﬁc;f| = T RS D3

r
= ”fﬁ-!;f-j-j-: |fll ”,u + ”r _J;,(Kf,g",f:g ”,r:
=IllDeihill, + Sl Deshall,- (4.3.20)

With the proposed scale normalization operator #- = [|D.f]| !, we
find from Eq. 4.3.20 for the range of d7)(f,, f»):

0 < dP(f,, f) < 2. (4.3.21)

Eq. 4.3.20 is also valid for d”(yp,, ,) (cf. Eq. 4.2.17 and Table 2.1),
since 4. is the identity operator when applied to 3. However, for the
same reason Eq. 4.3.21 is not valid for d”)(y,. i5).

If f stands for any of the contour representations z, z or Z, we can
find a more restricted range for d”)(f,, f3).

From Eqs. 4.2.1 and 4.2.35 we find

d(f,, f3) = [Hfﬁ,;%;ﬁ >+ |72 i
— 2 max |01a(T; 'r"}'r(ﬂf-t'f)l]ln
<[#llaanli+ Blasnli]” @322

Applying $. = ||%..f||3" we find for the range of d*(f, f,):
0 < d9, £) < V2. (4.3.23)

The range of d'”(K,, K,) can be restricted even further. From Egs.
2.2.31 and 2.2.34 it is easily verified that the average curvature along
a simple closed curve equals

1 . o
LK) = = L K(t)dr = R (4.3.24)

where L is the perimeter of the curve and ¢ the normalized arc length
parameter. Consider g,»(7; K*) as a function of 7. Integration over 7
vields:
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[ [_,] [ KT(:)K?(f—r)d:]dr
Jaz L& Jag

= J Kﬂ:}“ K;(;-r;dr]d;
2T J2q J2x

(27)" i

j op(1: K¥)dr

<27 max 0,a(7: K7). (4.3.25)

where the last step follows from the fact that the maximum value of

012(7: K*) is always larger than its contour average. With 4. = || K|| 3!
we find from Eq. 4.3.25
o 27V

maxo,-(1; K*) = s > 4.3.26a
ax o ) L1 ( )

which gives through the substitution of ¥, = || K|[[3":

. 22P | K 13 Kl 5°
maxo(r: K*) = () LERILSIE =) (4.3.26b)
T L\L,

From Table 4.3 we find for /(K. K-). using Eq. 4.3.25:

d (K. K>) = [H-’f,;;KuHi + [| %K

» = 2 maxop(r: JIF,--K]]

. 2(2:)13,.;;5);:] '

<| sl + sl - 22
| ™

(4.3.27)

Substituting again f ;. = || K|| ;' we find for the range of d“'(K,. K-):

| G 3 K

(FE= (K| ]\_)‘:V LIL:

sl s =
} <N

(4.3.28)
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All results obtained in Egs. 4.3.20-4.3.28 are equally valid for the
corresponding mirror-dissimilarity measures.

If we use Fourier representations, instead of the contour representa-
tions themselves, to measure (mirror-)dissimilarity, then the require-
ment in Eq. 4.3.19 becomes

B (F@ef) = B - B¥(@ief), (4.3.29)

where f stands for any of the Fourier representations 2, 2. Z or K. On
the basis of the same argumentations as before we propose ;. =
I .r--j||_,, as a scale normalization operator in both d”(f;. f>) and
i””(j.. j) The effect of the scale normalization coefficient ;. =
|| j||l,, is that it maps the Fourier representation %..f onto a unit
sphere in the sequence space €7(Z). endowed with the metric induced
by |1, .

The proposed scale normalization operator ;. = ||%.f||"" nor-
malizes the Fourier representations 2, z. Z and K of a circle to the corre-
sponding Fourier representations of a unit circle.

For the range of the (mirror-)dissimilarity measures d”(f,. f») and
d7'(f,. f>) exactly the same results as obtained in Egs. 4.3.20-4.3.28 can
be derived.

Some remarks concerning the proposed scale normalization operators
are still in order.

We recall from Section 2.2 that |2(¢)| = L2z, ¥t € [0, 2a] if ¢ is the
normalized arc length parameter. As a result we find ||z, = L/2x,
Vp = 1. Thus we see that the scale normalization operator ¥ = || 2],
removes the effect of the noise-prone perimeter value from the (mirror-)
dissimilarity measurement based on z

In Proffitt [1982] it is stated that . = ||%:z|| 5" is an optimal choice
as a scale normalization operator in d*(z,, z,) or d®(,. %). in the
sense that the dissimilarity measure is minimized over all scale normali-
zation operators that are chosen indtpcndcntlv for each contour. How-
ever. if we use for example ¥ = a||%..z||;'. where 0 < a < 1, then
this will always yield a smaller value for the dissimilarity measure than
if we use Fj = [|@.z||3". Thus, we see that there does not exist an
optimal scale normalization operator.

In one instance in the literature (Persoon and Fu [1977]), it is pro-
posed to optimize the scale in one contour representation with respect
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to the other, instead of normalizing the scale in the individual contour
representations. They proposed as a dissimilarity measure

dol(2,, 2,) = min | 3 |2(k) = fe IRk | L (4.3.30)
sy
Note that C3(Z) = —2(0), which we found to be the optimal choice

(cf. Section 4.3.1). has been chosen for translation normalization. Per-
soon and Fu [1977] used numerical techniques 10 find solutions for g,
r and a in Eq. 4.3.30. However. it is straightforward to find analvtic
solutions. Using the same methods of analysis as in Eqgs. 4.2.32-4.2.35,
we find for a:

a = arg {o)(1: r.f;l':}}, (4.3.31)

where the appropriate value of 7 is found from:

-

13

[

dig (21, 2) = minf || % &[5 + 42|
I[)
= 23 max ‘{_‘),:[T: ’f;-:)|]l.'. (4.3.32)

The solution for  can be found by taking the partial derivative with
respect to f nf[d'i,',_'(é,. #)J°. and equating the result to zero. This vields

for f

max !9,3(?: “er2)
g = . ) (4.3.33)
|2 2|5

Substitution of this result into Eq. 4.3.32 leads to:

m;dx}g,g(r:’f_-jz]F N
!fli::él‘li

et 4 H [l RS ’QIE(T: :f,-s-'f;iz)iz].:'

(2 s 2 = Gl o :_
{1'1,!_(;4-2:) = || fin""“l

(4.3.34)
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where ¥;. = ||f;£;-:_é :_,I. 1.e. the scale normalization operator that we
proposed earlier in this section.

If we use the translation and scale normalization operators %, and
;- in the dissimilarity measure d'?(Z,, £,), we can derive the expression

(cf. Eq. 4.2.41, Table 4.3 and Eq. 4.2.1):

4?3, 2) = V2 [1 = max|on(r; % 9:2)|] . (4339

With the aforementioned choice for ;. it is straightforward to show
that

0 < |oyt; $5%r2)| < 1. (4.3.36)

Combining Eqs. 4.3.34-4.3.36 we can relate d?(z,, 2,) and d:,z;(z'l, %) by
the inequality

d2(3,,5) <

|5 d51051.%). (4.3.37)

Ghnits
Bt 31

Though di.l’(ﬁ, Z,) leads, through our analysis. to the same computa-
tional complexity as d®(2,. %,), it has some considerable drawbacks.
The dlsslmlldnl» mc‘tsurc a’;,I (z,, Z;) is not symmetric, i.e. in gen-
eral d PF (z, ) #F d‘.f (25, ;). Therefore it does not constitute a metric
over equivalence classes of g Ecnmu[rlcall\' similar contours. As a conse-
quence of the asymmetry of d,,] (Z). Z,) we have to take care that the
sizes of the templates of shape classes are optimized with respect to the
contour to be classified instead of the other way around, when this dis-
Slml]di’lt\ measure is used for shape classification. For shape clustering
a'],I (Z;, Z,) seems inappropriate, since it lacks metric propcrtlc

Concluding we can say that we have shown that dpp(zl- z,)and
d)(3,, 2,) have comparable properties in view of dissimilarity measure-
ment (cf. Eqs. 4.3.34, 4.3.35), but that d"”)(2,. 2,) is preferable since it
possesses metric properties (cf. Theorem 4.3).

4.3.3 Normalization of orientation and starting point
In our formulation of (mirror-)dissimilarity measures in Section 4.2

we optimized for both the orientation and the starting point of one
contour with respect to the other. As we can see in Tables 4.5-4.8, this
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accounts for most of the computational complexity of the (mirror-)dis-
similarity measures, especially in measures with index p # 2. The defi-
nition of effective means for normalization of orientation and starting
point in contours would greatly enhance the attractiveness of the pro-
posed dissimilarity measures from a computational point of view. Clear-
ly. a (mirror-)dissimilarity measure that is optimized for orientation and
starting point yields a smaller value than a measure where the contour
representations have been normalized with respect to these parameters.
However. if the normalization procedures produce unique solutions.
then a dissimilarity measure will still constitute a metric over the equiva-
lence classes of representations of geometrically similar contours. In the
latter case every equivalence class is represented by a unique normalized
contour representation and a dissimilarity measure is a metric in the
space of normalized contour representations.

If a normalization procedure does not always yield a unique solution.
then. in order to preserve the metric properties of a dissimilarity mea-
sure. we can optimize the measure over the often limited set of candidate
normalizations.

From Table 2.2 we know that all contour representations. on the basis
of which we defined (mirror-)dissimilarity measures in Section 4.2, are
variant under a shift of the parametric starting point and the representa-
tions z, z and Z are also variant under rotations of a contour.

Let fdenote any of the contour representations z. z. Z, y* and K. Since
the operators % and 4, do not commute when f stands for the position
function z, we perform the normalization of orientation and starting
point on % .f. The operators ;. #t, and 7, all commute. Therefore it is
not necessary for orientation and starting point normalization that scale
normalization has already taken place.

A proper orientation and starting point normalization process has the
property that the contour representations 7 .f and J.2,7 .f lead to the
same orientation- and starting point-normalized contour representation.
i.c.

'J)_r‘( .-;H'}ﬁu': e J’I{(J.':‘.!I] == .’],-! Te ity o -n"ﬁu't (P | r['i-r‘ﬁurj:'.!-L
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I T =T s nand R, R, =R, ., tothe requirements

T
5(Deef) = (TR Leof) + 1, (4.3.39)
independent of %, and
a*(Deof) = a* (TR Y-f) + «a, (4.3.40)

independent of 7.

The contour representations z, Z, y* and K all involve differentiation
(cf. Section 2.2) and are therefore more sensitive to noise than the pos-
ition function z of the object contour or the characteristic function
zr(x, y) of the object (cf. Appendix B). As a consequence, it is natural to
base orientation normalization either on features directly generated by z
or by xr(x, ¥) and to base starting point normalization on features gener-
ated by z. The orientation and/or starting point normalization parame-
ters thus obtained can then be used to normalize the contour representa-
tions z, z. Z, y* or K, as desired.

In the literature we find two main approaches towards orientation and/
or starting point normalization:

¢ Orientation normalization based on the gravitational moments m,,,
(cf. Definition 4.9) of the region that is occupied by the object.

¢ Orientation and starting point normalization based on the Fourier
coefficients Z(k) generated by the position function z.

In the following we will evaluate these two approaches.

The oldest technique for orientation normalization in pictorial pattern
recognition is based upon the moments m,, (Hu [1962], Alt [1962]),
which are features generated by the characteristic function yg(x, y) of the
object (cf. Definition 4.9).

In the orientation normalization technique based on moments. trans-
lation normalization of the object is achieved by the moment-based
translation normalization parameter C; (cf. Eq. 4.3.6). The orientation
normalization process uses the central moments u,,,(R) of the region R.

Definition 4.10.  Central moment .
The central moment w,,, of a region R in the plane is defined as
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7] 4
m my,

Hpy = ’”f)q(R} o= [( X 1“) (_\' = I ) dy dy.
L M,/ My,

I
paq=0.1 ... (4.3.41)

The central moment u«

1, 1s said to be of order (p + g).

B

Note that u,,(R) = m,, (4 R). Vp.g=0.1,....

The first step in the orientation normalization method based on mo-
ments is to determine an orientation « such that. after a rotation of
%R over —a, we obtain uy (A 4-R) = 0. i.¢.

o

Il

wn(R_4:R) ”{(’f_—;.r}cmr:+ (Yov)sina |

R

« { = (ox)sina + (Yy) cos afdedy

Il

—Sin & cos iy (R) + (cos™a —sin~a)u((R)

+ sin @ cos ¢ (R)

Il

0. (4.3.42)

Solving a from Eq. 4.3.42 gives:

2u(R)
an 2o = il . 4.3.43
tan 2et Tk (4.3.43)
from which we find
1 2u1(R) ' 7T
= _arcte : S Z.
o > iretan ,u;”{R} N ,u..;{R)) +n 5 ne
(4.3.44)

This result shows that the constraint in Eq. 4.3.42 yields four solutions
for a in a range of length 27. In order to obtain a unique solution for «.
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additional constraints are needed. Hu [1962] and Reeves and Rostam-
pour [1981] have proposed to choose that value of « from the solutions in
Eq. 4.3.44, such that

(R DR > (R, D R) (4.3.45a)
and
s R_ 2 R) > 0. (4.3.45b)
However. under rather general conditions it may happen that
ton(R_ D R) = un(R_, % R) (4.3.46a)
and/or
(R 2=R) =0 (4.3.46b)

(cf. Casey [1970], Nagy drld Tuong [1970]) or that these equations are
almost valid. In these cases even more constraints are needed to arrive
at a unique value for a. Another possible approach is to optimize (mir-
ror-)dissimilarity measures over the four solutions that we found for «
in Eq. 4.3.44.

In the special case of n-fold rotational symmetry, with n > 2, it is not
possible to use Eq. 4.3.42 as a constraint on «, since in that case
u(R_2-R) = 0, for any of the values of « in Eq. 4.3.44. Then mo-
ments of order (p + g) = n are required to define a useful constraint
on the orientation normalization parameter « (cf. Hu [1962]). In that
case « must be solved from constraints on u,,(h_, %R}, which is re-

P4
lated to pu,,(“::R) as

(R T R)

P q \
_1 q—m( )( q ] si ¢g+n—m say " +m
Z Z ) Al (sin &) (cos a)

2 }“p +q—n-—mn+ m(pf'\t;R)- (434?)
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The central moments u
mented image.

The concept of a parametric starting point on the contour of a region
in the plane does not naturally arise if we are dealing with its moments.
This explains why starting point normalization is not mentioned in the
pattern recognition literature on moments. However. if we apply orien-
tation normalization to the translation-normalized position function
.z itis very well possible to define constraints on the basis of this con-
tour representation to arrive at a starting point normalization. Examples
of such constraints are the following.

2g(“:R) can be computed directly from a seg-

d
¥
f
T 0 T3 T T=T"
—i-e
b

Figure 4.8. Translation and onentation normalization based on moments. The contour in (a) has
positon function z(r) and centroid —27 = (my, + 1wy, ::g"m‘.,. The contour. resulting from the
normalization, is displayed in (b) and has position function & . 4 -=(r). The set of parameter values
t. for which the x-axis in (b) intersects A, - 4 -2(¢). 1s T, = |12 1= 150 12 The set T, may be used for
starting point normalization. as described in the text
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Orientation normalization of %,z yields %'z, where —a” is a
unique solution for «. Next we determine the set 7|, of values 7 for
which %,,.%.z(t) lies on the x-axis, i.c. Im{®R,%:2(r)} = 0,and choose
* € T, such that

R Apez(r*)= max {R,Dez(7)}, (4.3.48)
rel,

cf. Figure 4.8.

Another possibility for starting point normalization in R,-%: 2 is to
use the phase of one of the Fourier coefficients generated by %, % z.
E.g., let the index k; be such that

|ReDe2(k)| = sup | RuBez (k). (4.3.49)
keZ— [0}

A reason to make this choice is the fact that the phase of the most
significant Fourier coefficient may be expected to be less sensitive to
noise.

We denote

n(k) = arg { R, 4(k)} (4.3.50a)
and
ndk) = arg {T, R D:2(k)}. (4.3.50b)
Then we have the relation (cf. Table 3.2):
n.(k) = k) — krt. (4:2:51)

If the constraint is that the starting point normalization parameter 7*
is chosen such that 7. ,-%.:2(k,) is a positive real value, we find for 7*:

e 3 27
= k) +m -, neZz. (4.3.52)
ki ki

Only for |k;| = 1 does Eq. 4.3.52 define a unique solution for 7*.
Otherwise additional constraints are needed to select a 7* from the |k, |
candidates defined by Eq. 4.3.52.
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The latter method for starting point normalization is quite similar to
the methods for orientation and starting point normalization based
entirely on the Fourier coefficients generated by 7.z, that we will
discuss next.

In methods for orientation and starting point normalization entirely
based on the Fourier coefficients generated by the position function z
it is natural to use Ci(z) = —2(0) (cf. Eq. 4.3.3) for translation normali-
zation. We observe from the literature that these methods have the
following characteristics in common:

e Sclect two indices k. k> € Z — [0}, k; # k..

e Determine an angle of rotation ¢ and a starting point shift 7° such
that -, 2(k;). i = 1. 2. both are positive real values.

® [f the latter constraints do not lead to a unigue solution for «* and
r*. then determine additional constraints to arrive at a unique pair of
solutions.

We will now derive the solutions for «™ and 77 from the phases of
the selected pair of Fourier coefficients Z2(k;) and 2(k») and determine
how the number of solutions depends upon the values of &, and k.. We
denote

n(k) = arg {7-3(k)} (4.3.53a)
and
Nealk) = arg {TR,0--5(k)}. (4.3.53b)

Then we have the relation (cf. Table 3.2):
Neak) = n(k) — kt + a. (4.3.54)
Note that 5(k) and 5, (k) can only be determined up to a multiple
of 2. With the aid of Eq. 4.3.54 the constraint that J..,.7 -2(k,).
i = 1. 2. are positive real values yields the equations

nlk;) — kr* + a* = n2m, meZ. i=1.2 (4.3.5))

from which 7* and «* can be solved:
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« _ ki) = nlks) 21
. kl_k: +”k|_k1.

(4.3.56a)

. _ kan(ky) = ky(ks) k27 _
a® = k — Ky +n o neZ. (4.3.56b)

s

The solutions for ™ and a” in Eqs. 4.3.56a and 4.3.56b need not
necessarily be in the range (0. 27). though we note that solutions 7*
mod 27 and «® mod 27 are equally valid. Keeping this in mind, it is
clear that in Eqgs. 4.3.56a and 4.3.56b we have obtained |k, — k»| pairs
of solutions for 7" and «” in ranges of length 2. Only in the case of
|k, — k5| = 1 do we obtain a unique solution for the orientation and
starting point normalization. In all other cases additional constraints
are needed to determine a unique pair 7° and «®. Another possibility
is to minimize (mirror-)dissimilarity measures over the |k, — k,| candi-
date normalizations.

The orientation and starting point normalization techniques based on
Fourier cocfficients that have been published so far differ in the selec-
tion of the indices k; and k, and in the definition of additional con-
straints, if any. to arrive at a unique solution for v and «*. These
techniques are reviewed in the following.

Persoon and Fu were the first to present such normalization tech-
niques (Persoon and Fu [1974] and Persoon and Fu [1977]). They
choose the indices k) = 1 and k; = —1 and determine 7 and a” such that
Jph D 2(k;), @ = 1. 2, become purely imaginary values, instead of
positive real values. Since they do not specify the signs of the imaginary
Fourier cocfficients after normalization, their normalization constraints
lead to the equation:

nk)—kz* +a*=" +nx, meZ. i=1,2. (4.3.57)
With k; = l and k, = —1, 7" and «* are solved from Eq. 4.3.57 as:

T*=;{?}(U—U(_')}+”:~ (4.3.58a)

. | 7
a* = — 2{_1}(]) + r;r{—l)} +(nxl) ;._ neZ. (4.3.58b)
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From these equations we see that the normalization procedure pro-
posed by Persoon and Fu yields eight distinct pairs of 77 and « ", instead
of two, as claimed by Wallace [1981]. Persoon and Fu do not give any
additional constraints to arrive at a unique solution for ™ and «~.

A problem with the choice of the index k; = =1 is that |/ 2(—1)]
can be zero or close to zero under fairly general conditions (see Figure
4.9). which causes 5(—1) either to be undetermined or most likely to
be corrupted by noise. In Section 3.6 we alrcady found that. if the
contour to be normalized has n-fold rotational symmetry. with n > 2.
this constitutes a sufficient condition such that |%4.3(=1)| = (.

a
107
/ﬂ;-z‘ﬂd/
c IOI'
107
107
10° [
10" n ‘
32  -24 16 -8 0 8 16 24 32
b o o

Figure 4.9. The contour in (a) has position function z(7). In (b) the magnitudes of the Fourier
coefficients /.. 3(k). k = =32, .... 32, generated by 7 .z(1). are displaved. Note that [ /..2(= 1)]
15 close to zero
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Kuhl and Giardina [1982] presented an orientation and starting point
normalization technique based on ‘elliptic Fourier features’. Some
straightforward analysis reveals that all their results can be expressed
in terms of the Fourier coefficients (k). In particular their orientation
and starting point normalization turn out to be virtually identical to the
one proposed by Persoon and Fu. Kuhl and Giardina also choose the
indices k; = 1 and k, = —1, but they determine 7* and a* such that
TR, D-2(k;), i = 1, 2 become positive real values, as we did earlier
(cf. Egs. 4.3.55, 4.3.56a,b), instead of purely imaginary values, as
Persoon and Fu did. From Eqs. 4.3.56a and 4.3.56b we observe that,
with |k, — k»| = 2, Kuhl and Giardina obtain two pairs of solutions for
7" and ¢ which are found by substitution of k; = 1 and k, = —1 into
these equations. In Figure 4.10 we have displayed an example of the
results of the orientation and starting point normalization according to
Kuhl and Giardina. They do not specify additional constraints to arrive
at a unique solution for 7* and a*.

In the orientation and starting point normalization procedure pro-
posed by Exel [1978] and Burkhardt [1979] k, is chosen such that

|%e:2(ky)| = sup |@:2(k)|. (4.3.59)
keZ

i.e. k; is the index of the most significant Fourier coefficient in the
sequence % Z. In their reports the authors argue that in most cases
ky = 1. In Example 4.3 we have shown circumstances for which this is
not true. For contours with a counterclockwise sense we conjecture
that k; > 0 in Eq. 4.3.59.

Exel and Burkhardt determine k, > k, such that k, — k;, is the order
of rotational symmetry of the contour. The authors state that, in order
to reduce the noise sensitivity of the normalization procedure, the most
significant Fourier coefficients must be chosen. However, the criterion
they use for the selection of &, is not always in accordance with this
statement since (k> — k;)-fold rotational symmetry does not guarantee
that % 2(k,) is significant, as shown for example in Figure 4.11. This
figure also shows that there is no clear reason to exclude the indices
k < k, for the selection of k,.

Once the indices &, and k> have been selected, Exel and Burkhardt
determine 7* and «* such that 7.9, .%.2(k,), for i = 1, 2, become
positive real values. Thus they obtain k, — k, pairs of solutions for r*
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3001
Y
t=0
200
100
0
0 100 200 300
a — X

Figure 4.10, Normalization of orientation and starting point of the contour i {(u) using the con-
straint that J.at 7 <2(k). £ = 1. 2, are positive real values, For &, = | and & = —1 (Kuhl ind
Giardina [1982]) this constraint yields two solutions, displayed in (b) and (¢). In this example (1)

and 3(— 1) are the two most significant Fourier coefficients: [2(1)] = TR 133 and [2(=1)] = 30663
In (b) and (¢) the position and orientation of the coordinate axes with respect o the contour and
the Jocarion of 1the starting puint on the contour after narmalization have been indicated

and a® (cf. Eqgs. 4.3.56a.b). No additional constraints are given to
obtain a unique pair of ™ and «” in case k. — k; > 1. However. if
the contour has (k. — k,)-fold rotational symmetry. then cach of the
k- — k; candidate normalizations will lead to the same normalized con-
tour representation. Since rotational svmmetry was indeed chosen as a
criterion for choosing k., ambiguity resolving criteria are not needed in
this procedure. In Section 4.5. where we will treat the subject of sym-
metry measurement in detail. we will return to Exel and Burkhardt's
proposal for symmetry measurement.

Finally. Wallace and Mitchell [1979] and Wallace and Wintz [1980]

that

|@e-2(ks)| = P, G:2(k)|.

keZ— {1 (4.3.60)
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100

— <

t=0

ﬂ |
-200 -100 0 100 200
—_ X
b -100
100+
Y
T \
-200 100 0 100 200
\ —_— X
t=0
c =100+

i.e. @-2(ks) is the most significant Fourier coefficient, not considering
k = 1. Note that %.:2(0) = 0 (cf. Eq. 4.3.2). Wallace et al. also deter-
mine 7% and «” such that 7.8, %::2(k,), i = 1. 2, become positive real
values, leading to |k, — k.| pairs of candidate solutions for 7* and «*
(cf. Eqgs. 4.3.56a.b). To arrive at a unique solution for * and o™ if
|k, — k| > 1. Wallace, Mitchell and Wintz present two methods.

The first method can be summarized as follows:

e Dectermine the set K of indices such that
Knl{0,k.k) =0 (4.3.61a)
and

keK iff GCD(|k — k|, |k»— k) =1, (4.3.61b)
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where GCD () stands for greatest common divisor.

e Sclect an index &5 € K such that

|:2(ks)| = sup |22 (k). (4.3.62)
ke K

e Choose that pair 7* and «* from the candidate normaliza-

tions for which

Re {7, R, D-3(ks)} (4.3.63)
is maximum,
a
10° :
/ﬂ -I’{k)/
L 10’
I
10" Nnn
| |
10% H . JJ
10”. AR J
5 32 -2 -16 -8 0 8 16 24 32
— &

Figure 4.11. In (a) we have a contour with 3-fold rotational symmetry. The position function of
this contour is 2(r). In (b) the magnitudes of the Fourier coefficients 7-2(k). k = =32, ., 32,
generated by U -z(r), are displayed. 7 -3(1) 15 the most significant Fourier coefficient. whereas
s-2(4) is relatively small. Also note that 4 -2(=2) is the second most significant Fourier coeffi-
cent.,




NORMALIZATION VERSUS OPTIMIZATION

205

The second ambiguity resolving criterion proposed by Wallace,
Mitchell and Wintz simply consists of selecting that pair 7* and ¢* from
the |k, — k| candidate normalizations for which

Table 4.9. Survey of orientation and starting point normalization techniques based on
Fourier coefficients 2(k), k € Z — {0},

References

Indices of U 2(k)

Constraints on
Ivﬂn(‘r-.’z‘{klj-
i=1,2

Remarks

Persoon and Fu k=1 imaginary vaiues | 8 pairs of solutions
[1974] forr” and a® in
Persoon and Fu ky=—1 Eqgs. 4.3.58a, b;
[1977]

no additional

ambiguity resolving

constraints
Kuhland Giardina | &, = | positive real values | 2 pairs of solutions
[1982] for™ and a” in

ky=—1 Eqs. 4.3.56a, b:

no additional
ambiquity resolving
constraints

Exel [1978]
Burkhardt [ 1979)

k, such that:

% 2(k))]

= sup |7 2(k)|:
keZ

k> such that:

k> >k and

ky — kyis the
order of rotational

positive real values

ks — k pairs of
solutions for 7°
and a” in

Eqs. 4.3.56a. b:

no additional
ambiguity resolving
constraints (not
needed, see text)

symmetry
Wallace and Mitchell| k, = 1; positive real values | |k, — 1] pairs of
[1979] solutions for 7*
Wallace and Wintz | &, such that: and «* in
[1980] |%e2(k,)| Eqs. 4.3.56a. b;
[1980] = sup |%: (k)]
keZ— (k) unique solution for

" and a* obtained
through additional
constraints




206 CHAPTER 4

Y Re {79, %-3k)) - |Re {T,. R, G-3(k)) (4.3.64)
kel

is maximum.

A survey of the characteristics of the orientation and starting point
normalization techniques based on the Fourier coefficients 2. as discus-
sed in the foregoing. is presented in Table 4.9,

We now propose a slightly modified technique for orientation and
starting point normalization:

e Select k; such that:

ezky)| = sup [42(k))| (4.3.65)
ke
and k> such that:
['T-;:(k:) = sup \’J,;(k) . (4.3.66)
ke — k)

i.e. k; and k> are the indices of the two most significant Fourier coeffi-
cients.

e Determine values of t° and «* such that 7,2 % -2(k). i = 1, 2,
become positive real values. There are |k, — k| candidate pairs of 7°
and «*, given by Eqs. 4.3.56a, b. If |k, — k;| = 1. then we have ob-
tained a unique solution for 7 and «*, else we perform the next step.

e Apply additional ambiguity resolving constraints to find a single
pair 7 and «* from the |k, — k| candidate pairs.

Concerning this normalization scheme we make the following re-
marks:

e The most significant pair of Fourier coefficients is chosen in order
to reduce the noise sensitivity of the method. It may happen that there
are other, almost as significant Fourier coefficients. In the latter case
it is advisable to consider also normalizations that use these Fourier
coefficients and 10 optimize (mirror-)dissimilarity measurement over
these normalizations, since the selection of a contour normalization,
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that is incomparable to that of another contour, will lead to a poor
(mirror-)dissimilarity measurement.

e If the third step in the proposed normalization procedure is neces-
sary in order to arrive at a unique solution for 7" and a*, either of the
two methods, defined by Wallace, Mitchell and Wintz (Eqs. 4.3.61a-
4.3.64), can be used. An alternative ambiguity resolving constraint that
we propose here is to select that pair % and «* from the |k, — k|
candidate pairs such that

Y Re{T, R, T-2(k)} (4.3.67)

keZ

is maximum. Experiments have shown that the second method to obtain
a unique solution for ™ and «* proposed by Wallace, Mitchell and
Wintz (Eq. 4.3.64) is more robust than the first method they proposed
(Egs. 4.3.61a-4.3.63). These experiments have also shown that the al-
ternative method we propose here in Eq. 4.3.67 has properties that are
comparable to the method in Eq. 4.3.64. However, our method re-
quires less computational effort than the second method of Wallace,
Mitchell and Wintz (compare Eq. 4.3.64 and Eq. 4.3.67).

® An alternative for the third step in our procedure simply consists of
minimizing (mirror-)dissimilarity measures over |k, — k| candidate
normalizations obtained in the second step.

4.3.4 Discussion of normalization versus optimization in dissimilarity
and mirror-dissimilarity measures

In the previous sections we have discussed methods for the normal-
ization of contour representations with respect to the contour position.
size, orientation and location of the parametric starting point. The nor-
malizations with respect to position and size are expected by the (mir-
ror-)dissimilarity measures, as defined in Section 4.2. The normaliza-
tions with respect to orientation and parametric starting point were
investigated in order to be able to modify the previously defined dissim-
ilarity measures to measures with comparable metric properties, but
with a much lower computational complexity. Assume that a unique
normalized version 7R, 5. %..f of a contour representation f has been
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obtained. where f stands for any of the contour representations z. 2. 7.

y* and K. Then a normalized dissimilarity measure of index p is defined
as follows.

Definition 4.11.  Normalized dissimilarity measure of index p.

Let f act as a generic symbol for any of the contour representations z.
z. 2.y and K. Then a normalized measure of dissimilarity of index p
between a pair of contours y; and y,. with contour representations f,

and f; respectively. f,, f> € L”(27). is defined as

AL ) = TP Sy Gcfy = TP S 915 l<ps<=,

e
P

{4.3.68)

where J.R, % fi. i = 1. 2. are the uniquely normalized versions of
Jiv
]

The discrete normalized dissimilarity measure of index p. dV'[ f,. f3].
based on N equidistant samples of both f; and f-. is defined similarly
(compare with Eq. 4.2.49). If we do not take the computational com-
plexitics of the normalization procedures into account. the computa-
tional complexity of d'[ f,. f3] is O(N) for any of the contour represen-
tations and for any value of the index p. This is considerably less than
the computational complexities of d”'[f,. f5]. mentioned in Table 4.5.
and also less than those of d7)[f,, f>]. mentioned in Table 4.7.

All methods proposed for translation and scale normalization. in the
Sections 4.3.1 and 4.3.2 respectively, lead to unique solutions. The
methods for orientation and starting point normalization, however. may
lead to multiple candidate solutions. In order to preserve the metric
properties of a dissimilarity measure. we must find a unique solution
from these candidates.

If we decide to minimize a dissimilarity measure over the candidate
normalizations of the contour representations. instead of obtaining a
unique normalization through an ambiguity resolving criterion, then
this has the following effect upon the computational complexity of the
dissimilarity measure.
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Consider for example the orientation and starting point normaliza-
tion based on Fourier coefficients. Let there be |k;, — k;»| candidate
normalizations for contour y, and |k, — k»,| for contour y,, where k;,
and k;», i = 1, 2, are the indices of Fourier coefficients Z;, selected for
the normalization of contour y,. Since

|(er7:ﬁ“;:‘jﬁ;r:'(/‘:;j‘l === ‘j'l':,l))?u;'(jﬂ; J"_-: 2

Sy By = T - P — eI Bes ol (4.3.69)

it is casily vcrificd, using Eqgs. 4.3.56a and 4.3.56b, that there exist
LCM (|ky, — kys|. |kay = ky|) distinet normalized pairs of contour rep-
resentations fm the contours y; and y,, where LCM ( ) stands for least
common multiple. As a consequence, the computational complexity of
d”[fi, f>], when optimized over the candidate normalizations, is
O(N - LCM ( kisl, |k — K2z )) This complexity can still be con-
siderably lower than the complexities reported in Tables 4.5 and 4.7 for
dP(fi, f2] and d[f,, f5] respectively. Optimizing dissimilarity measure-
ment over a limited set of contour normalizations may be an acceptable
compromise that offers a reduced computational complexity and that
limits the danger of arriving at inappropriate normalizations.

In the same way as we defined d'(f,, f>) in Eq. 4.3.68, a normalized
mirror-dissimilarity measure d'7'(f,, f>) can be defined (cf. Definition
4.4). The discrete normalized version d!”)[f,. f;] has the same proper-
ties with regard to computational complexity as d”[f;. f,]. Along the
same lines normalized (mirror-)dissimilarity measures d”(f,, f,) and
d””(f, f) based on the Fourier representation f(',-l contours, can be
defined. If N Fourier coefficients are used in the discrete normalized
(mirror-)dissimilarity measures a',i-”’[f,. f;] and k?;i-’”[j"], fz] then their
computational complexity is O(N), if we disregard the computational
complexity of the normalization procedure itself and that of the compu-
tation of the Fourier coefficients. Likewise, if we minimize d(fy. f)
and d”[f,, f>] over multiple candidate normalizations, generated by
Eqgs. 4.3.56a and 4.3.56b, then the computational complexity of these
measures is O(N - LCM (|ky, — kpl. [kay — k2])).

As we already observed, the normalization procedures for transla-
tion. size, orientation and starting point, discussed in the previous sec-
tions. can be distinguished into two main classes:
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e those based on the gravitational moments m
by the contour,

0q Of the region enclosed

e those based on the Fourier coefficients generated by the position
function z of the contour.

From a theoretical point of view normalization procedures based on
Fourier coefficients are somewhat better adapted to the mathematical
form of the (mirror-)dissimilarity measures defined in Section 4.2
(cf. for example Section 4.3.1 concerning the optimality of & = —2(0)
in d®(z,, z,)). However, there is no indication that normalization pro-
cedures based on moments m,,, perform less well than those based on
Fourier coefficients (apart from the absence of the concept of a starting
point on a contour in moment-based methods). Since the moments in
m,,, are defined in Definition 4.9 as region integrals. the insensitivity
for noise of the moment-based normalization methods may be expected
to be at least as good as that of methods based on Fourier coefficients
generated by the position function z.

A drawback, at first sight. of the normalization methods based on
moments is that the computation of moments of gravity requires inte-
gration over a region in the plane. or, in the context of the discrete
geometry of digital pictures. summation over a region. However.
through the application of Green’s theorem in the plane. by means of
which the surface integral becomes a contour integral. the computa-
tional complexity of moments can be highly reduced (cf. e.g. Tang
[1982], Cyganski and Orr [1985]). In Appendix B we show that. if the
contour can be approximated by a polygon with N vertices. 1, can be
computed exactly with a computational complexity of O(pgN). Re-
cently Bamich and Figueiredo [1986] published a similar result. by
means of which the computational complexity can even be reduced to
O(min(p, q) - N).

4.4 Theoretical and experimental evaluation of the behavior of
dissimilarity measures

In Section 4.4.1 we derive some further theoretical properties of the
dissimilarity measures defined in Section 4.2. In particular we establish
a number of mathematical relations between various dissimilarity mea-
sures. We also relate a special case of the dissimilarity measures. based
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on the curvature function K, to the bending energy necessary to deform
one contour, considered as a thin elastic beam, into an other contour.

In Section 4.4.2 we discuss some experimental results, obtained with
a number of dissimilarity measures. Such analyses are needed in order
to enable the choice of an appropriate dissimilarity measure, or of a
combination of dissimilarity measures, in a particular application. First
we evaluate through clustering techniques the relative behavior of the
dissimilarity measures used in the experiments. Thus we obtain insight
into which dissimilarity measures perform similarly and which perform
differently. Next we use clustering techniques to analyze the perfor-
mance of individual dissimilarity measures. We evaluate which aspects
of geometric dissimilarity are emphasized by a particular dissimilarity
measure.

Since each mirror-dissimilarity measure constitutes a special case of
a corresponding dissimilarity measure (cf. Eq. 4.2.29), we limit the
discussions to dissimilarity measures.

4.4.1 Further analysis of theoretical properties of dissimilarity measures

First we consider the effect of the index p upon the dissimilarity
measures based on contour representations. The lower the value of p
the more globally the differences between a pair of contour representa-
tions are measured. For p = 1 the average deviation between contour
representations is measured and for p = 2 the square root of the mean
square deviation (cf. Table 4.1). The larger the value of p the more
sensitive a dissimilarity measure becomes for local deviations between
contour representations. In the limit, for p = %, the measure expresses
the maximum deviation between a pair of contour representations.

It is a well-known fact from mathematical analysis (cf. e.g. Edwards
[1979], p. 28) that. if f € L”. then

WAl < Ifll,, 0<g<ps<-e. (4.4.1)

Since dissimilarity measures have been defined in Section 4.2 as the
norm of the difference of a pair of contour representations, we might
expect this inequality also to be valid for dissimilarity measures. How-
ever, in Section 4.3 we proposed ¥. = ||%.f]|,' as a scale normalization
operator for a contour representation f in d”)(f,, f,). when f stands for
any of the scale variant contour representations z, z, 7 and K.
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As a result, the inequality in Eq. 4.4.1 is only valid for a dissimilarity
measure based on f if ||%.f]|, is independent of p or if f is scale in-
variant. This is true for the tangent function Z, since ||z, = L/2x.
Vp = 1 (cf. Section 4.3). and for the scale invariant periodic cumulative
angular function y. Thus we obtain the inequalities

d9(z,, 7)< dP(z,. ). (4.4.2a)
d'V(py. ) < dP(yy. ), (4.4.2b)
forl sp<gqg< =.

For dissimilarity measures based on z, Z and K similar inequalities
are not valid.

The interpretation of dissimilarity measurement based on Fourier
representations of contours is different from that of the measurement
based on the contour representations themselves. Fourier coefficients
have been defined as contour averages (cf. Definition 3.1). Therefore
cach Fourier coefficient expresses a global feature of a contour: local
shape information is not present in Fourier representations. As a con-
sequence, in the dissimilarity measures based on Fourier representa-
tions. the deviation between an individual pair of Fourier coefficients
with corresponding indices still expresses a global difference between
the pair of contours under consideration. This constitutes a fundamen-
tal difference in the way dissimilarity measures based on contour rep-
resentations and those based on Fourier representations. operate.

However, the effect of varying the value of the index p in dissimilarity
measures based on Fourier representations is fairly similar to that in
dissimilarity measures based on contour representations. Also in the
former measures we observe that the lower the value of p the more
globally the differences between a pair of Fourier representations are
measured. For p = | the total deviation between a pair of Fourier rep-
resentations is measured and for p =2 the square root of the total
squared deviation. The larger the value of p the more sensitive a dis-
similarity measure becomes for deviations between individual Fourier
coefficients in a pair of Fourier representations. In the limit. for p =
=, the measure expresses the largest deviation between any individual
pair of corresponding Fourier coefficients.
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In analogy with Eq. 4.4.1, we have for norms of a sequence f the
inequality (cf. Edwards [1979], p. 29):

il=<lifl, <llfl, O<g<p<-e. (4.4.3)

In Section 4.3 we proposed ;. = ||’ff||;,1 as a scale normalization
operator for a Fourier representation f in d”(f,. f>), when f stands for
any of the scale variant Fourier representations 2, 7, 7and K.

Therefore the inequality in Eq. 4.4.3 applies again only to those
dissimilarity measures, based on Fourier representations, for which
I fb&-;-j‘]]f, is independent of the value of p or for which fis scale invariant.
It turns out that none of the scale variant Fourier representations satis-
fies this condition. Thus Eq. 4.4.3 applies only to d"”(y,, v,), which is
based on the scale invariant Fourier representation :

dP (i, ) < d90)y, Pa), forl=sp<g==®= (444

It is also possible to relate norms of periodic functions to norms of
Fourier series. In Eq. 4.2.42 we already noted Parseval’s identity:

WAl = IIfll,  Vfe L32n), (4.4.5)

which causes a dissimilarity measure d(f, f2), to be isometric with
d®(f,. f,) (cf. Eq. 4.2.41). For more general values of the index p.
inequalities exist, known as the Hausdorff-Young inequalities (cf. e.g.
Edwards [1982], pp. 153-157).

If f € L7(27), then

1Al < A, 1sp=<2 (4.4.6a)

and. if f € €/(Z). then
Al <7l 1sp=2, (4.4.6b)

where 1/p + 1/p' = 1.
Since we proposed in Section 4.3 ;- = ||%.f||,' as a scale normali-

zation operator for the scale variant contour representation f in
dV(f,, f,) and F. = ||Df|| ! for f in dV)(f,, f>), the validity of the in-
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equalities in Eqs. 4.4.6a and 4.4.6b does not extend to these dissimilar-
ity measures. For other choices of scale normalization operators the
inequalities in Egs. 4.4.6a and 4.4.6b may apply to dissimilarity mea-
sures. For dissimilarity measures based on the scale invariant contour
representation y and Fourier sepresentation 3 the following in-
equalities are valid:

If 4. ¥, € L”(27), then

d7Vapy, a) < dP(yy. ya). lsp=<?2 (4.4.7)
and. if ¥, y, € €"(Z). then
d7(yn, ya) < dV(y. §). l=p=<2. (4.4.8)

The analysis of the effects of varying the value of the index p in
dissimilarity measures just given and the inequalitics mentioned give
some insight into what is measured by a dissimilarity measure and can
be helpful to guide the choice for a particular dissimilarity measure in
a given application.

Another means of analyzing the relative behavior of dissimilarity
measures may be provided by inclusion relations that exist for L7-spaces
of functions and their derivatives (c¢f. Beckenbach and Bellman [1971],
Ch. 5). In some cases even explicit inequalities have been derived be-
tween the norm of a function and the norm of a derivative of that
function: e.g. Wirtinger’s inequality (cf. Hardy. Littlewood and Pélya
[1952]. Beckenbach and Bellman [1971]. pp. 177-178). relating || f
and ||f]|> of a zero-mean function f. and the Northcott-Bellman in-
equalities (cf. Beckenbach and Bellman [1971]. p. 182), relating [|f]|,
and [[f™]|, for p = = and for arbitrary values of p > (. where f*is
the k-th derivative of a zero-mean function f.

Since these inequalities relate only norms of functions with norms of
their derivatives we may only consider the representations z. Z and Z.
Unfortunately these inequalities do not directly apply to the dissimilar-
ity measures based on these representations as a result of the scale
normalization coefficients proposed in Section 4.3. For different choices
of scale normalization operators. that are not dependent upon the par-
ticular contour representation to be scale-normalized itself, these in-
equalities may be valid though.

o
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More powerful guidance for the choice of an appropriate dissimilarity
measure may be obtained through an interpretation of the role of each
of the contour representations in dissimilarity measurement. The gen-
eral properties of the dissimilarity measures based on contour represen-
tations are that they are functions of pointwise absolute differences
between contour representations. We have just seen above that the
value of the index p in these measures determines how locally or glo-
bally these absolute differences are expressed in the measure. The ab-
solute differences are measured after the appropriate translation and
scale normalizations and contour orientation and starting point optimi-
zation or normalization, if the contour representation is variant for
these parameters.

Dissimilarity measures d'/(z,. z,) are functions of pointwise distances
between a contour pair. As a consequence this dissimilarity measure
tends to operate rather coarsely. Relatively small protrusions or intru-
sions in contours, which may be very important for a proper distinction
between objects. will in general have little effect on the value of
d'"(z,. z,). Dissimilarity measures d"(Z,, z,) are functions of pointwise
absolute differences between complex tangents along a pair of contours.

y

11 [&31)-33(t-7)f

£(t) [\N
T it

8 (t-1)

8yt
-1 0 1

— X

Figure 4.12. Vector representation of the tangent functions of two contours as an illustration of
dissimilarity measurement by means of d'7'(z,. 2,). Apart from the value of the index p. the local
contribution to d''(Z;, z5) is determined by the length of the difference vector:

2 —z{r— r}’ - zlsm ( Bl ey — Ol — r}}) ,
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Representing the tangents as two-dimensional vectors is very illustrative
in this context (cf. Figure 4.12). The scale normalization proposed in
Scction 4.3 leads to [z*(1)| = 1. everywhere where (1) exists. for every
contour. Therefore d'”(z,, z,) is really a function of pointwise differ-
ences in tangent direction between a pair of contours (cf. Figure 4.12).

Dissimilarity measurement by d'7'(Z,. z;) is much less coarse than by
d"(z,. z,). Small protrusions or intrusions in a contour. for example.
can have a significant effect on the value of d)(z,. z,). especially for
larger values of p. On the one hand this reveals an increased noise
sensitivity of d”'(z,, z,) with respect to d”'(z,. z5). but on the other
hand it shows the sensitivity of d'"'(z,, z,) for fine shape detail.

Dissimilarity measures d''(z;. z.) are closely related to d7'(y ., y).
Through Eq. 2.2.32 and Eqs. 4.2.11. 4.2.12 and 4.2. 14 we can rewrite
d”' (. ). as defined in Eq. 4.2.17. as

P, 1) = mi
d” (. ) min At

.

[ Iq l["} =4 I',( :(f ! T) + f;..( ';'l) o f‘.{l}':} = TIIIL]."

(4.4.9)

For a given pair of contours y, and y». represented by y, and
respectively, A(y) and A(y) in Eq. 4.4.9 are constants. Furthermore,
the value of ¢ (1) — ¢-{r — 7) indicates the local difference in tangent
direction at ron y, and r — 7 on 5. If we apply Eq. 2.2.30 to Eq. 4.4.9
and compare the result with Figure 4.12. then the resemblance of
d'"(z,. z;) and d'"(y,, y,) becomes clear immediately.

We can derive an inequality between d'7'(z,. 2,) and d"'(ip,. y»). For
the proof of this inequality we need the following lemma.

Lemma 4.1,

< |t = 5] (4.4.10)

I
s“du
5

|c|r =9 |,.:n

Proof

— =0l

(]
cli’_ cu' e |l [ cmd“
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Theorem 4.5.
If y,, ¥, € L7(27), then

AP, 1) < dP(y,, o). (4.4.11)

Proof

Through Egs. 2.2.9, 2.2.30, 2.2.32 and Eq. 4.2.12 we can relate z*(¢)
and y*(r) as

(1) = |'Z*(t)|c:‘{r;»'m - Ay) + 1+ B0} (4.4.12)

where we proposed in Section 4.3 for z7(1):

z(1)

[E41P

(0 = Gpistlt) = Wtd3)

As a result of Eq. 2.2.5 and ||z||, = L2z, ¥p = 1 (cf. Section 4.3),
we obtain

|z%(] =1, Vit e [0, 2x]. (4.4.14)

The dissimilarity measure d7(z,.%,) has been defined as (cf.
Table 4.1):

d"(z1,2,)

nr‘flirn Hz’1 = Ilﬂuz‘; ”p

Hp
i e - Lo )
i [23 J;H fzi({) — et — r),’d!J ;

(,T

(4.4.15)

The substitution of Eqgs. 4.4.12 and 4.4.14 into Eq. 4.4.15 and the
application of Lemma 4.1, give:



218 CHAPTER 4

dt;:}(:_. :-,) = min I [cutr,-l'm Al) + 0+ H10))
A | 050 o

. c:-eclh-su )= Alya) + 1=+ i) 'f‘d;_] {

: | : -
= min [3.‘. [ Ir,-':;"{rj — Alyy) + 6,(0)

o.Tr

—a—yit—1) +Alys) + 17— H;(ll}l“dr} . (4.4.16)

Through the application of Minkowski's inequality (cf. Appendix A)
to the latter expression in Eq. 4.4.16. we obtain. for p > I:

2 1 :
min [2«7 LJ\U‘W) = 2(yp)) + 6,{0)

.7

~ @ — Yt — 1) + Aws) + T — H:un\"’ar]

! . ™k
< mrin[ L_{ f ly(r) = wis(e = ”‘fd’]

+ min \ =A(y) + A(ys) + 6,(0) — 6:(0) — a + r\ }

Sl e
= mrm ‘723 [,JUFT(” — st — T)‘fdf} i (4.4.17)

The transition from the second to the third expression in Eq. 4.4.17
can be made because for any value of 7 we can find a value for « such
that |— A(y,) + A(y) + 6,(0) — 65(0) — a + 7| = 0. The third expres-
sion in Eq. 4.4.17 equals d"'(y,. y) (cf. Table 4.1). By combining
Eqs. 4.4.16 and 4.4.17 the proof of this theorem is complete.

O

The proof of this thecorem clearly depends upon the fact that [5”(1][
is a contour independent constant. which is a result of the choice of the
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scale normalization operator ;. = || 2| ', that was proposed in Section
4.3. For other scale normalization operators this theorem may no longer
be valid.

The dissimilarity measures d'7)(2,, #,) and d'"(K,, K,) also show great
resemblance. This becomes clear if we rewrite d)(Z,, ). First we
examine the scale normalization operator ;.. proposed in Section
4.3, more closely by using the relation in Eq. 2.2.25:

o = £l
| i ko] o]
(27) I1K]|5". (4.4.18)

Next we rewrite d”'(Z), 7,), by using Eq. 2.2.25 and Eq. 4.4.18:

min | J |25(1) = €23 (;-r)\’d:]

dP)(3,, 3,)

T

I 1 -1 i6h(
= n:}tln 2-5 J:.*r “IKl”p Kl(")c 1R

|u

|| 5 Kot — T)e- ”\"d:} . (4.4.19)

From Table 4.1 it is immediately clear that d(K,, K5) is a function
of pointwise differences in curvature between a pair of contours. From
Eq. 4.4.19 we observe that d'”'(Z,, %,) is a function of pointwise differ-
ences both in curvature and in tangent direction between a pair of
contours. For the latter reason d(z,, z,) also exhibits some resem-
blance with d'7'(z,, z,).

For the dissimilarity measure d*/(K,, K,) we can also find a physical
interpretation from efasticity theory. in Section 3.2 we aiready men-
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tioned the concept of bending energy in relation with shape analysis.
Over a number of years clastic energy or bending energy has been
proposed by various authors as a feature to characterize the shape of a
curve or contour (e.g. Freeman and Glass [1969]. Young, Walker and
Bowie [1974]. Freeman [1979], Horn [1983]).

It is a well-known fact from elasticity theory (Den Hartog [1949].
Landau and Lifschitz [1970]) that the elastic energy or bending energy
per unit length U, stored in a thin elastic beam. is proportional to the
squared curvature of the beam:

U(s) = L E(s)I(s)K*(s). (4.4.20)
where:

s —arc length parameter.
E(s) — Young's modulus at s.
I(s) — moment of inertia at s.

If we assume the cross-section of the beam to be circular. with con-
stant diameter, then the moment of inertia is constant. i.c. I(s) = I.
For homogeneous isotropic media Young’s modulus is also a constant.,
i.e. E(s) = E. Further we assume the clastic beam to be very thin and
its elastic properties to be such that Hooke's Law. which is the basis
for Eq. 4.4.20, is valid over a wide range of curvatures. Then the aver-
age clastic energy per unit length (U ) is proportional to || K

El .
L

L L URRE I e 7o
" K(s)ds =, - K-(t)dt = lElll»‘\Hg.
(1] - i

i
fo=
(4.4.21)

where K(r) serves as a shorthand notation for K(s(1)).

We now consider two thin elastic beams of equal arc length, Landau
and Lifschitz [1970], pp. 78-82. derive that the total bending energy
U,,. necessary to deform one beam. with curvature function K. into
the other, with curvature function K. is
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L
U:.n(Ki- K:) == ;E]J'” {K|($) = K:(ﬁ']}zd.ﬁ'. (4422)

Thus the average bending energy per unit length (E) for a pair of
equal length curves is proportional to ||[K; — K;|5:

<U(K1~K2)>

. B[ > 1 ;
B J {K[(SJ - K:(-Y)} ds = 251 | K, — Kz“:-
]

2 L
(4.4.23)

If we use arc length as a scale normalization parameter for the curva-
ture function. i.c.

: L
iy = | K(0)| ™" = 5 (4.4.24)

thus normalizing curvature functions to those of contours with perime-
ter 27, then we find for (K|, K>):

d?(K,. K;) = min || K}

(4.4.25)

Comparing Eq. 4.4.23 and Eq. 4.4.25 we find that d?(K,. K>) is pro-
portional to the square root of the average bending energy per unit of
arc length, needed to deform the contour y§ with curvature function
K7 to the contour 3 with curvature function K3, with optimization of
the starting point of 3 with respect to that of yi:

: 2 \ 1 ) e ifa
d(K,, K;) = (Ef) © min (U(KT,F,K3%))
(4.4.26}
Apart from the theoretical analyses and interpretations of the behav-

ior of dissimilarity measures, a practical example may provide more
insight. Such an example will be described in the next section.
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4.4.2 Experimental analysis of the behavior of dissimilarity measures

Though the analysis of the theoretical properties of dissimilarity mea-
sures has shed some light on their relative behavior. further insight is
desirable. To this end we have performed an experiment. which is
described in the following.

In this experiment we use 18 different contours. {y,. .... y.}. These
contours have been depicted in Figure 4.13. The fact that these con-
tours, apart from y. the circle. all have 5-fold rotational symmetry
does not really constitute a limitation: in this example we have inter-
preted the performance of dissimilarity measures on the basis of '-th
of cach contour.

As for the smoothness of the contours in this example, there are two
distinct groups: the subset {y. ¥5, 3. V1. V5. Yo. Y1a- Vi) Of piecewise
regular contours and the subset {y,. 77. ¥5. Yi0: Y11+ Y12+ V13- Y15« Yioe 717}
of regular contours.

Though we have defined Z and K as distributions when they represent
contours that belong to I or to I, (cf. Section 2.2). these distributions
cannot be used in dissimifarity measures with index p > 1. Therefore
some smoothing is performed in the neighborhood of nonsmooth points
(*corners’) on contours. This smoothing is a natural phenomenon in the
process of estimating contour representations from a finite number of
contour samples.

The contours in this experiment are all known in analytic form: poly-
gons, hypocycloids, circle, epicycloids and limacons of Pascal (cf. ¢.g.
Wicleitner [1908]. Lawrence [1972]). The contour parameter in these
analytic expressions does not necessarily correspond to (normalized)
arc length. As a result, dissimilarity measurement on the basis of the
analytic expressions that describe these contours is not feasible in view
of the conventions introduced in Section 2.2. Therefore we perform
dissimilarity measurement on the basis of the discrete versions of the
dissimilarity measures, which were introduced in Section 4.2.4. To do
this we need N equidistant (in the sense of arc length) contour represen-
tation samples for every contour. In this experiment we used the fol-
lowing procedure to obtain these samples.

Step 1. Let u be the parameter of the analytic form of the position
function of a contour. In general. u is not a (normalized) arc
length parameter.
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Using the analytic form. compute M samples of the position
function, taken uniformly in the parameter u. We take M
substantially larger than N. In this experiment M = 4096 and
N = 512.

Step 2. We consider the M position function samples, resulting from
Step 1, as the vertices of a polygon. This polygon is resampled,
taking N equidistant samples along its perimeter. These sam-
ples are used as (approximately) equidistant position function
samples z[n].

Step 3. In order to estimate N equidistant samples of z, Z. ¢ or K we
determine at each position z[n] a polynomial fit, in least squares
sense. For each fit we use a window containing an odd number
of position function samples, with z[n] as the central sample.
The resulting polynomial is differentiated once or twice, as is
required for the contour representation to be estimated and is
evaluated at the central sample.

Details of this procedure and efficient implementations as FIR filters
are presented in Appendix C. Some resulting estimates of contour rep-
resentations have been depicted in Figures 4.14a-1,

Remarks.

For the contours ¥, ¥5. V3, V4. V5 and yy, the parameter u in the analytic
form of the position function can be related in a straightforward manner
to arc length. Therefore for these contours Step 1 of our procedure has
been discarded and the N equidistant position function samples {z{n]}
have been computed directly from the analytic form.

In this experiment we are interested in the behavior of the dissimilar-
ity measures as a function of the contour representation used and of
the value of the index p. We wish to minimize the effects of using
discrete dissimilarity measures based on a finite number of contour
representation samples. Therefore we have chosen N = 512, which may
be larger than what is necessary in most practical situations for a set of
contours such as {y,. ..., Yig}-

The piecewise polynomial fitting procedures. used for the estimation
of contour representations in this experiment, may not be optimal.
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Figure 4.13. The set of contours (7. ... 5} used in the dissimilarity measurement experiments
in this section.
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Many different options are available as estimation procedures. For
example. (differentiating) low-pass filters (¢f. McClellan. Parks and
Rabiner [1973], Rabiner. McClellan and Parks [1975]. Hamming
[1977]). (differentiating) Gaussian filters (c¢f. Marr and Hildreth [1980].
Hodson, Thayer and Franklin [1981]. Marr [1982]. Witkin [1983].
Asada and Brady [1986]. Babaud et al. |1986]. Mokhtarian and
Mackworth [1986]. Yuille and Poggio [1986]). approximating splines
(cf. De Boor [1978]. Faux and Pratt [1979]. Pavlidis [1982]).

The criterion for optimality of contour representation estimation in
the context of dissimilarity measurement is quite obvious: that estima-
tion procedure should be selected which may be expected to yield the
smallest distortion, in the sense of the dissimilarity measure used in the
estimate with respect to the original representation. An in-depth inves-
tigation of this important issue is outside the scope of this thesis.

O
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For each of the 5 contour representations of the 18 test figures we
have computed pairwise discrete dissimilarities [ | forp =1,2.3.5
and =. Thus we obtained 25 symmetric 18 X 18 matrices of dissimilarity
values. From these matrices we wish to learn two things:

1. What is the relative performance of the 25 dissimilarity measures?
Are there dissimilarity measures among these 25 that can be grouped

together because they give similar results?

2

. What is the performance of individual dissimilarity measures. Which

aspects of similarity or dissimilarity are emphasized or neglected by

a given measure?

We begin by considering the first question in more detail. In order
to compare the relative performance of the 25 dissimilarity measures
we compute for each pair of dissimilarity matrices D; and D, a dissimi-
larity matrix correlation coefficient R(D;, D;), which is defined as (cf.
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Figure 4.14. Results of contour representation estimation by means of piccewise polvnomial fit-
ting for the contour in (a), which corresponds 1o contour 3, n Figure 4.13. The order of the
polynomials in this experiment is 4 and the fitting window contains 11 position function samples.
In (b). (c). (d). (e) and (f) the resulting representations 2y, 2y, 5,y and Ky, of 3y, are displayed.
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Sneath and Sokal [1973], p. 138 and pp. 279-280. or Dubes and Jain
[1980], p. 159):

R(D,, D))
| b
= Z Z Dm,n)-D(m,n)— {D;){D;)
m=] n=1
a 1 r & 2 1 P P i
{ , L 2 Ditm.n) - <D,>3] { , . X Di(m,n)—(D;)?
--P'm=in=l Pbm:[n=l
(4.4.27)
where (D;) and (D,) are matrix averages:
LA
(DY = 52 Z D,(m.n). (4.4.28)

m=1 n=1]
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In our example the number of test figures P = 18. Since the dissimi-
larity matrices D, are symmetric and all elements on their main diagonal
are equal to zero. the summations in Eq. 4.4.28 can be reduced to

i m— |

-
(D) = ;1 Y. ) Dym.n). (4.4.29)

m=2 n=1

The indices i and j of the dissimilarity matrices D, and D, in
Eq. 4.4.27 are in the range {1. .... 25}. The correspondence between
these indices and the dissimilarity measures is indicated in Table 4. 10.

The computation of R(D,. D)) for each pair of dissimilarity matrices
yields a 25 X 25 matrix R of matrix correlation coefficients. Note from
Eq. 4.4.27 that R is also a symmetric matrix and that all elements on
its main diagonal are equal to one. Though in theory the entries
R(D.D)) in R are in the range [—1. 1|. we found in practice only
positive values, as might be expected when comparing dissimilarity ma-
trices generated through a single set of contours (the smallest entry we
found was R(D,, D,) = 0.055). Therefore the conversion

D(D.D) =1~ R(D, D) (4.4.30)

defines a dissimilarity coefficient (cf. Section 4.1 and Spith [1980]).
Thus we obtain a 25 x 25 matrix D of dissimilarity coefficients. resulting

Table 4.10. Correspondence between dissimilarity measures and the indexed dissimi-
larity matrices: e.g. dissimilarity matrix D, has been generated by d"'(z,. Z,).

Contour Index
representation
P:l ;;:2 p:_"\ P:S p==

4 D] [)_- D'l D.! D.

z D D- D. D, D,

# D, D, D, . D, D,

|
y D, D,- D, D,, | Dx
K I):| D_‘: .D'_". D:; D:-:
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from a pairwise comparison of the dissimilarity matrices D, i = 1, ...,
25, using Eqs. 4.4.27-4.4.30. The matrix D is symmetric and has zeroes
on its main diagonal. In order to determine similarities in the perfor-
mance of the 25 dissimilarity measures in this experiment we performed
cluster analysis on the matrix D.

We used three clustering methods that all belong to the family of
sequential, agglomerative, hierarchic. nonoverlapping clustering
methods (SAHN methods) (cf. Sneath and Sokal []9?3]. Anderberg
[1973], Dubes and Jain [1980], Spith [1980]):

1. Single Linkage Clustering,

. Complete Linkage Clustering,

LSS T oS

. Average Linkage Clustering (UPGMA: unweighted pair groups
using metric averages).

Since we lack the space to go into very much detail on these methods
we refer the reader to the literature just mentioned.

The main reason for using three different clustering methods was to
enable the detection of dependencies of clustering results upon the
particular method. In our experiments. however. the characteristics of
the results were quite similar. irrespective of the clustering method that

ras emploved.

The result of a clustering is a dendrogram or a phenogram (cf. Sneath
and Sokal [1973]), which is a graphical representation of the dissimilar-
ity values at which items to be clustered or clusters of such items are
merged into a new, larger cluster. A dendrogram reflects in what way
the clustering procedure has embedded transitivity between the items
to be clustered. In Figures 4.15a-¢ the dendrograms are shown that
result from applying the three clustering methods to the matrix D. The
correspondence between the dissimilarity matrices D, i = 1, ..., 25,
and the dissimilarity measures that generated these matrices can be
found in Table 4.10.

Before analyzing these dendrograms in detail we first investigate how
accurately these dendrograms reflect the mutual relations between the
performances of dissimilarity measures, as specified in the input matrix
D. To this end we generate for each dendrogram a cophenetic matrix
C, of dimensions 25 X 25. In the cophenetic matrix C; each entry
indicates at which dissimilarity value the corresponding pair of dissimi-
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larity measures were merged into a single cluster by the k-th clustering
method. Obviously the information contained in a dendrogram and
that in a cophenetic matrix is identical. In order to determine the cor-
respondence between D and C;. the cophenetic correlation coefficient
(CPCC) (cf. Sneath and Sokal [1973]. Dubes and Jain [1980]) is com-
puted. The CPCC has the same form as the dissimilarity matrix corre-
lation coefficient, as defined in Eq. 4.4.27. The results obtained in our
experiment were:

Il

CPCC(D. C))
CPCC (D, C,) = 905 (Complete Linkage).
CPEE (D )= 911 (Average Linkage).

887 (Single Linkage).

These values are sufficiently high in all three cases to be confident
that the cophenetic matrices €, and. equivalently. the corresponding
dendrograms properly reflect the mutual relations in the matrix D.

Analyzing the three dendrograms more closely. we observe that the
clustering structure in each case is virtually the same.

First we note that the dissimilarity measures based on z (D-Ds. cf.
Table 4.10) all cluster together at low dissimilarity values and that in
each of the three cases d'"'[z,,. z,] (Ds) is the last measure to join the
cluster. This means that the dissimilarity measures based on z. for va-
rying values of the index p. all measure similar aspects of geometric
dissimilarity: only the measure d'”'(z,,. z,| exhibits a slightly different
character.

The dendrograms in Figures 4. 15a-c¢ also show that. with the exception
of d|z,,. z,] and d"[y,,,. y,] (D}, and D+), the dissimilarity measures
based on z (D-Dy) and on i (Dy-D ) are merged into a single cluster
at low dissimilarity levels. Looking at this cluster in greater detail we
we note that d'"[z,,. 2, and d'V|y,,.. ] (D and Dy,) and d-[%,. 3]
and d"[y,,. y,] (D7 and D7) behave almost identically. In view of the
lower computational complexity of the dissimilarity measures based on
yr for arbitrary values of the index p (cf. Table 4.5). we draw the
conclusion that the contour representation i is to be preferred over =z
with the set of contours used in this experiment. Though the perfor-
mance of d'7[z,,, z,] and d'" [y, y,] (D}, and D~,) is similar, the be-
havior of these dissimilarity measures differs considerably from that of
the measures based on z (D-D:) and from that of the other measures
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Figure 4.15a. Dendrogram displaying the results of clustering on the matrix D of dissimilarity
coefficients, resulting from a pairwise comparison of the dissimilarity matrices Dy, k = 1, ..., 25,
by means of Eqs, 4.4.27-4.4.30. The dendrogram in this figure is the result of the Single Linkage
Clustering Scheme. The numbers on the left of the dendrogram mark the dissmilarity values at
which clusters merge.
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Figure 4.15b. Dendrogram that results from applving the Complete Linkage Clustering Scheme
1o I,
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Figure 4.15¢. Dendrogram that results from applying the Average Linkage Clustering Scheme
(UPGMA) to D.
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based on z (Dy-Dy) and i (Dy;-D,,) (with the exception of d”'[y,,,. y,]
(Dy) under the Complete Linkage Clustering Scheme. where this dis-
similarity measure is closer to d'*|z,,. z,] and d"'[y,.. y,]|. cf. Figure
4.15b). This is not surprising since both d'*'[z,. z,] and d " '[y,,.. v, ]
measure the maximum directional difference between a pair of con-
tours, minimized over orientation and/or starting point. which is a local
and noise-sensitive property. Though these measures are legitimate dis-
similarity measures. their usefulness in practical applications is doubt-
ful.

The dissimilarity measures based on Z (D, -D <) and K (D+-D>:) also
cluster together in a single cluster, though at much higher dissimilarity
values. The fact that the measures based on Z and K are merged into
a single cluster shows that they behave similarly, although this similarity
Is not as pronounced as with the measures based on z or with those
based on z and y. The large dispersion of this cluster is an indication
of the high noise sensitivity of dissimilarity measures based on £ and K.
Therefore we draw the conclusion that dissimilarity measures based on
these contour representations can only be useful if a number of condi-
tions is satisfied:

I. The curves under consideration must at least belong to the class I,
of weakly regular simple closed curves (cf. Definition 3.3). In the
present experiment this condition is clearly not met by the contours
Vis ooes V5. Yo. V1s and y5. which all belong to the class I

or Of piecewise
regular curves.

I

. The value of the index p must be kept sufficiently low.

3. An appropriate and noise-resistent method for estimating Z and K
from the (segmented) input picture must be used. As remarked ear-
lier, the polynomial filters (cf. Appendix C) used for that purpose in
this experiment may not be optimal in this respect.

If one has to make a choice between dissimilarity measures based on
z and those on K, then dissimilarity measures based on K are to be
preferred because they have a lower computational complexity (cf.
Table 4.5).

After the foregoing analysis of the relative performance of the dis-
similarity measures. we arive at the second question raised in this exper-
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Figure 4.16. Dendrogram resulting from UPGMA clustering on the matrix of dissimilarity coeffi-
cients D, generated by d'(z,,, z,), m.n = 1, ... I8, for the set of contours {y. ..., ¥}
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iment: what is the performance of individual dissimilarity measures and
what aspects of geometrical dissimilarity do they measure. Obviously
we lack the space for an exhaustive evaluation of the performance of
all 25 dissimilarity measures used in this experiment. Therefore we
present a more global evaluation. using one of the major observations
from the foregoing analysis of the relative performance of the dissimi-
larity measures. i.e. that the main distinction in behavior is not brought
about by a variation of the value of the index p. but mainly by the
contour representation used and. more in particular. by the order of
differentiation to which the contour representation belongs.

We evaluate the performance of individual dissimilarity measures
through clustering experiments on the 18 x 18 matrices of dissimilarity
coefficients D, i = 1. .... 25, generated by these dissimilarity measures
(cf. Table 4.10). For these experiments we have used again a clustering
technique from the family of SAHN methods: Average Linkage Clus-
tering (UPGMA). We have chosen a clustering technique from the
family of SAHN methods because these methods enable us to distin-
guish structures at multiple levels of clustering. a possibility that is
lacking in partitional (or non-hierarchic) clustering methods. From the
family of SAHN methods we have chosen UPGMA because it takes.
in many respects, a middle position between Single Linkage Clustering
and Complete Linkage Clustering. Thus we avoid the extreme proper-
ties of the latter two methods (cf. Anderberg [1973]. Sneath and Sokal
[1973]).

To analyze dissimilarity measures based on the position function z
we clustered on Dy, D; and D5, generated by d7'[z,,.2,] forp = 1.3
and =, respectively (cf. Table 4.10). Figure 4.16 shows the dendrogram
resulting from UPGMA clustering on D;. We observe in this figure two
major clusters of contours: (Y. Ye. ¥7. Yi0- Y11~ Y12+ Y13« Yis. Vis) and (.
Y3+ V1. Yss V8e Yoo Vi6)s PlUs an isolated pair of contours: (7,5, y5s) (cf.
Figure 4.13 for a display of the contours). The clustering resulting from
D is virtually identical to that of D;. For D, there are some differences
in the sense that y,, s and y, are merged into the first cluster instead
of the second. Evaluating the clusterings based on D;. D; and Dx
jointly, we find the clusters (¥, 7. 7i5)s (2. 73, %)+ (Vs 752 79 716)+ (Yoo
Y10- Y11 Y12+ Y13 Y1a) and the isolated pair (y,5. y,5). Analyzing this result
qualitatively we see in Figure 4.13 that contours of substantially differ-
ent smoothness properties are merged together into a single cluster
(e.g. ¥, y7 and y,5). For the set of contours {y,. .... y)x} used in this
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“igure 4.17. Dendrogrum resulting from UPGMA clustering on the matrix of dissimilarity coeffi-
cients D, generated by d''(z,., ). m.n = 1, ..., 18, for the set of contours {y. ..., ¥}
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Figure 4.18. Dendrogram resulting from UPGMA clustering on the matnx of dissimilarity coeffi-
cients Dy, generated by d""'(y,,. y, ). mon = 1, .. I8, for the set of contours {7, ... 714)
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experiment, the clustering on the basis of d)[z,,. z,], for varying values
of p. seems to generate a grouping of contours according to similar
concavity properties.

With dissimilarity measures based on the tangent function z we clus-
tered on Dy, Dy and D, generated by d"|z,,.z,] for p = 1, 3 and =,
respectively. Likewise, with dissimilarity measures based on the
periodic cumulative angular function i, we clustered on D4, D, and
D, generated by d'”[y,,, y,] for the same values of p. Figures 4.17
and 4.18 show the dendrograms resulting from clustering on D, and
D,,. These clustering results are clearly virtually identical, which con-
firms our previous observation concerning the similarity in performance
of dissimilarity measures based on z and y with the set of contours used
in this experiment. In Figures 4.17 and 4.18 we can identify two major
clusters, each consisting of two smaller clusters. The two clusters in the
first major cluster consist of (v, Y2, Y3, ¥7. ¥s» Yo Y15) and (Vs Yios Y11»
Y13, Y13+ Y1a). While the two clusters in the second major cluster consist
of (4. ¥s. 716) and (y7, Y18)-

Looking more globally at the clustering results for various values of
p we find that the dissimilarity measures based on z give rise to the
clusters (y1, Y2, ¥3, ¥7s ¥ Yo)s (Yas ¥5)s (V6 Y105 Vi1 ¥12)s (Y13, ¥14) @nd
(717. 71s). Comparing this result with the contours in Figure 4.13, we
observe that contours that are merged into a single cluster generally
have similar smoothness characteristics. These clustering results also
correspond fairly well with our subjective notion of shape similarity.

For the dissimilarity measures based on 3 similar results are found.

In order to evaluate the similarity in perfermance of dissimilarity
measures based on z and on ¥y further, we performed another experi-
ment with a different set of contours. Apart from a circle and a square
this set contained 6 contours of thin. strip-like objects. such as in Figure
4.7. The latter 6 contours had an increasing number of loops.

For contours with loops the contour representations z and  behave
differently. The reason for this difference is the fact that the phase of
z is restricted to a range of length 2. whereas in y the directional
changes along a contour are accumulated.

As a result the dissimilarity measures based on z and on o also
behave differently for contours with loops and for other strongly non-
holomorphic contours. In this additional experiment we frequently
found substantially higher values for d”'[y,,, y,] than for d)[z,,. z,].
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However, these differences in dissimilarity values did not lead to
substantial differences in clustering results. We performed both a Single
Linkage Clustering and a Complete Linkage Clustering on the dissimi-
larity matrices, generated for this set of contours by d7'[3,,. ] and
d“[y,,. y,]. The structure of the Single Linkage Clustering results was
identical for both dissimilarity measures. The structure of the Complete
Linkage Clustering results differed only for one contour. More differ-
ences occurred between the results of Single Linkage Clustering and
those of Complete Linkage Clustering on the same dissimilarity matrix.
These differences are the result of the difference in behavior of these
two clustering schemes (cf. Sneath and Sokal [1973]. Anderberg [1973].
Dubes and Jain [1980]. Spiith [1980]).

From this experiment. and from previously obtained evidence. we
draw the conclusion that, with contour clustering and classification.
d"(z,,. z,) and d"'(y,,, y,) have a similar performance. In view of its
lower computational complexity in practice for general values of the
index p (cf. Table 4.5). d"(y,,. y,) is to be preferred as a dissimilarity
measure to d?\(z,,. z,).

Finally. with dissimilarity measures based on Z we clustered on Dy,
and D .. generated by d7'[z,,. 2| for p = 1 and #. respectively. With
dissimilarity measures based on K we clustered on D5, and D, gener-
ated by d"[K,,, K,|. for the same values of p. Figures 4.19 and 4.20
show the dendrograms resulting from clustering on Dy, and D-,.

First we note a significantly increased dispersion in these clusterings:
clustering generally takes place at higher dissimilarity levels than in the
previous clusterings with dissimilarity measures based on z, . This is
remarkable since we found in Section 4.3.2 that d''(z,,. z,). d'7'(Z,.. Z,).
d"(%,.z,) and d"(K,, K,) are in the same range.

Sccondly we see in Figures 4.19 and 4.20 that there are many local
differences between these two clusterings. though at a more global
level the results are similar.

A global analysis of the results from clustering on D, and D
leads to four clusters of contours: (7). ¥1. 3. 74 ¥s- Vx- Yo)s (V6 715) (7124
V13- Y1a) and (¥4, ¥17). Analyzing the results from clustering on D, and
D-< jointly, we find only two clusters: (¥;. 72 ¥3. Y4» ¥s- Y7« ¥x- 79) and
Yits Y12 Y13 Y15 Yies Yi7)- In the clustering on Dss the circle. . behaves
as a complete outlier. which is understandable for the dissimilarity mea-
sure d'“X(K.,.. K,.)-
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Figure 4.19. Dendrogram resulting from UPGMA clustering on the matrix of dissimilarity coeffi-
cients Dy, generated by d'"(z,,. Z,), m.n = 1, ..., 18. for the set of contours {y, ... 75}
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Figure 4.20, Dendrogram resulting from U l’( MA clustermg on the matnx of dissimilarity un.th—
cients D+, generated by d" (K. f\ Jomn = 1., 18, for the set of contours {3,
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From the clustering results it appears that there are analogies in the
behavior of dissimilarity measures based on Z and those based on K. as
might be expected from the relation that exists between Z and K (cf.
Eq. 2.2.25). However, the analogies in behavior are far less pronounced
than those between dissimilarity measures based on z and on y. Though
there is no theoretical reason for this weaker analogy, there are some
practical reasons. Due to the high noise sensitivity of double differenti-
ation it is far more difficult to obtain a reliable estimate of the contour
representations Z and K than of the contour representations z and .
Also the class of curves for which Z and K can be usefully estimated in
practice is more restricted than that for which z and i can be estimated.

Contour representation estimation processes, as described for exam-
ple in Appendix C, necessarily exercise a smoothing operation on the
contour data. Thus we obtain also estimates for Z and K of the piecewise
regular contours y,, ¥2. V3, Ya» ¥s- Yo. Y1s and ¢ for which Z and K are
defined as distributions (cf. Section 2.2). Therefore the estimates ob-
tained have a limited reliability, which is a source for the large disper-
sion in the clustering results. Since 8 out of the 18 contours in this
experiment are piecewise regular, with unreliable estimates for Z and
K. it is hard to judge the clustering results properly.

Analyzing the clustering results qualitatively, we find that the con-
tours in the large cluster (¥, ¥, Y3» Y4. ¥ss Vs« Vo). resulting from cluster-
ing on Dy, and D, all have five pronounced convex corners. Each of
the other three clusters. (Y4, ¥15)s (712+ Y13s Y14) and (746, 747). indeed
contains contours that may be called similar from a subjective point of
view. The contours in each of the latter two clusters belong to the same
family of plane curves: epicycloids and limacons of Pascal. respectively.

The contours in the first cluster that we found from clustering on D,
and Das, (1. 2. V3. Vas ¥ss V7. V8. Wo), @ll have pronounced convex
corners. With the exception of y; and yg. these contours are not twice
differentiable. Most contours in the second cluster, (Y11, Y12: Y132 Viss
V16 V17). have more or less pronounced concavities (an exception is y;).
while all contours in this cluster are at least twice differentiable.

4.5 Measures of mirror-symmetry and of n-fold rotational symmetry

In Section 2.4 we formulated for each of the contour representations.
introduced in Sections 2.1 and 2.2, the conditions that these represen-
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tations must satisfy in order to represent a contour that possesses mir-
ror-symmetry (or symmetry m) or n-fold rotational symmetry (or sym-
metry n). Likewise. in Section 3.6 we formulated these conditions in
terms of the Fouricr coefficients generated by each of the aforemen-
tioned contour representations.

As we remarked in Section 2.5, symmetry in objects will only be
approximate in real life. Thus. if we want to establish quantitatively the
extent to which a certain type of symmetry is present in objects. we
need measures of mirror-symmetry and of n-fold rotational symmetry.
or. equivalently. measures of mirror-dissymmetry and of n-fold rotatio-
nal dissymmetry. The purpose of this section is to define such measures
and to investigate some of their theoretical properties. Since we con-
sider an object to be symmetric if it comes into coincidence with itself
upon a symmetry transformation, the concept of dissimilarity naturally
arises in dissymmetry measurement,

We will make use of the (mirror-)dissimilarity measures. defined in
Section 4.2, in order to define measures of mirror-dissymmetry and of
n-fold rotational dissymmetry.

In Section 4.5.1 we define measures of mirror-dissymmetry as special
cases of measures of mirror-dissimilarity. which were defined carlier in
Section 4.2.

In Section 4.5.2 we define measures of n-fold rotational dissymmetry
which are closely related to the previously defined dissimilarity mea-
sures. The measures of n-fold rotational dissymmetry. based on Fourier
representations. will be compared with existing proposals for such mea-
sures.

To obtain insight into the behavior and performance of the measures
of dissymmetry we also present and evaluate the results of an experi-
ment.

4.5.1 Measures of mirror-dissymmetry or dissymmetry m

There are various reasons why the quantitative assessment of the
degree of symmetry m has been given considerable attention in the
literature on digital shape analysis. even more than that of symmetry
n. Symmetry m plays an important role in human perception of shape
orientation (Rock [1973]). and can also be of significance in a theory
of shape understanding (Davis [1977b]). Furthermore. the detection of
symmetry m can be useful for the normalization of orientation and
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starting point of contours. It can also lead to a compaction of shape
description since we need to store only half of the contour representa-
tion of a mirror-symmetric object. The detection of symmetry m in
partially occluded shapes can give clues as to how shape completion
should be performed. In the latter case we are dealing with nonclosed
curves or contour segments. Though we study in this thesis only simple
closed contours. the (mirror-)dissimilarity measures based on contour
representations can be generalized to nonclosed curves or contour seg-
ments in a straightforward manner.

In the literature on shape analysis various propositions for the mea-
surement of symmetry m can be found.

Zahn and Roskies [1972] derive a property between the phases of the
Fourier coefficients generated by y when the contour is mirror-symmet-
ric. This property forms the basis for a measure of dissymmetry m,
where dissymmetry Is complementary to the concept of symmetry. Da-
vis [1977b] uses a hierarchical model of contour segments and angles
between these segments to represent shape. Local mirror-symmetries
are detected at a fow [evel in the hierarchical representation. Through
clustering of local symmetries and through the definition of relations
between the clusters, a global axis of symmetry is found.

Parui and Dutta Majumder [1983] also use a hierarchical shape repre-
sentation. similar to that of Davis (Davis [1977a], Davis [1977b]). At
each level in the hierarchy a shape is represented as a polygon. Their
method starts at a high, i.e. coarse, level in the hierarchy. At cach
hierarchical level the polygonal contour is mirror-reflected about var-
ious candidate axes of symmetry and an optimum axis of symmetry for
this hierarchical level is determined. Directional differences between
the sides of the polygon, when it is mirror-reflected about a candidate
axis, are used as a match criterion, and thereby as a measure of dissym-
metry m (cf. Figure 4.21). At the next lower level in the hierarchical
representation the result of the higher level is used as an initial estimate
for the location of an axis of symmetry.

Bolles [1979] uses a tree description to represent an object. The
nodes in such a tree correspond to various object features. This rep-
resentation is also determined after a mirror-reflection of the object
about an arbitrary axis. A measure of similarity between these two tree
representations, before and after mirror-reflection, is used as a measure
of symmetry m.
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Wechsler [1979] defines a piecewise linear axis of symmetry in a
binary object-background picture. Each segment of this axis is deter-
mined as a local optimum of mirror-symmetry in terms of a mismatch
criterion (see Figure 4.22). Wechsler's piecewise linear axis of sym-
metry is closely related to the symmetric axis of an object, as defined
by Blum [1973]. The piecewise lincar nature of the symmetry axis in
Wechsler's method constitutes a major difference from all other
methods for the measurement of symmetry m found in the literature.
These methods determine a single straight line as a global axis of sym-
metry.

Both Freeman [1979] and Chaudhuri and Dutta Majumder [1980]
use a contour representation that is closely related to the curvature
function K. They determine this representation also for a mirror-re-

Yaits)
a b

Figure 4.21. One stage in the determunation of the axis of symmetry according to Parui and Dutta
Majumder [1983]. At hierarchical stage r the polygon consists of V' vertices, At lower hierarchical
levels the polygon contains more vertices. The vertices at stage r are equidistant. when measured
along the polygon at the lowest hierarchical level (stage 1),

The polygon side formed by the vertces v) and v | has direction &}, expressed in units of 1/4.
At cach of N'/2 consecutive polygon vertices o a svmmetry axis is hypothesized. which devides
the polygon in two balves wath an equal number of vertices, and thus of equal length (1), This
hypothesized axis of symmetry aj. between the vertices ) and v/, (-, has direction d()).

Between cach pair of corresponding opposite sides with respect to o). with directions & ., and
o popeaocal axis of symmetry 18 determined in the direction of the bisecting hine a}(7) of these
two sides. as illustrated in (b), If the bisecting line «@/(j) has direction d}()). then the local contribu-
tion o the deviation from pure symmetry m 1s measured as [di(/) — dily)|. The wotal deviation
from pure symmetry m for the axis @ is the average over all N72 local deviations,
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Figure 4.22. Piccewise lincar axis of symmetry of a pair of objects according to a method proposed
by Wechsler [1979]. The x- and y-axis correspond to the principal axes of the objects (determined
through the method of moments as described in Section 4.3).

flected version of the same contour. A correlation-like measure be-
tween the two representations thus obtained serves as a measure of
symmetry m. Freeman {1979] proposes to normalize the starting point
of the contour representation, whereas Chaudhuri and Dutta Majum-
der [1980] determine an optimal starting point along the contour,
thereby varying the location of the axis of symmetry.

The measures of dissymmetry m that we propose in the following are
directly based upon the definition of symmetry m, which states that a
contour y is mirror-symmetric iff there exists a line m in the plane such
that when y is mirror-reflected about m, y coincides with itself (cf.
Definition 2.6). A natural measure of dissymmetry m. in view of this
definition, is obtained by performing an arbitrary mirror-reflection
upon the contour and by measuring the dissimilarity between the orig-
inal and the mirror-reflected contour. This approach is closely related
to those of Bolles [1979], Freeman [1979], Chaudhuri and Dutta
Majumder [1980] and Parui and Dutta Majumder [1983].

It follows from the foregoing that we can use the mirror-dissimilarity
measures, defined in Section 4.2 (Definitions 4.4 and 4.8), for the
measurement of dissymmetry m.
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Definition 4.12.  Measure of dissymmetry m of index p.

Let fact as a generic symbol for any of the contour representations z.
z, 2,y and K. Then a measure of dissymmetry m of index p for a
contour y, with contour representation f. f € L(27). is defined as (cf.
Definition 4.4):

dV(f:m) = d"(f.f). 1<p<= el

Through Eq. 4.2.29 d"'(f: m) can also be written as
- m) = d7KT M1, (4.5.2)

In view of this definition it follows immediately that the range of
values that d'7'(f: m) can assume is identical to the range of the mirror-
dissimilarity measures d"'( f,. f). which in turn is equivalent to that of
the dissimilarity measures d'”'(f,. f)) (cf. Eq. 4.5.2). The range of
d"(fi.f2) has been discussed in Section 4.3.2 and depends upon the
particular contour representation f and the contour size normalization
employed. Further theoretical properties of d”/(f: m) can be found
through the discussion on such properties for d'”'(f,, f>) in Section 4.4.1.

If j indicates the Fourier representation generated by f then. along
the same lines as we defined the mirror-dissimilarity measures based
on Fourier representations f of contours in Section 4.2 (Definition 4.8).
we can define a measure of dissymmetry m based on f.

Definition 4.13.  Measure of dissymmetry m of index p based on
Fourier representations.
Let f be the Fourier representation of a contour representation f. where
f acts as a generic symbol for any of the contour representations z. Z.
z, yr and K. Then a measure of dissymmetry m of index p for a contour
7. with Fourier representation f. [ € €/(2). is defined as (cf. Definition
4.8):

d”"l'j'“: m) = d”"(_f. ,l) l1<p= =, (4.5.3)

e )

A number of properties are required for a measure of dissymmetry
m. The measure must be invariant for the position. size and orientation
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of the contour and it must be invariant for the parametric starting point
on the contour. Furthermore, a measure of dissymmetry m shall assume
a value zero iff the contour is mirror-symmetric, and be greater than
zero otherwise. Since the measures of dissymmetry m defined above
are special cases of the mirror-dissimilarity measures, all properties
that apply to the mirror-dissimilarity measures are also valid for the
measures of dissymmetry m. In particular. all required invariance
properties are valid as a result of normalization of contour position and
size and of optimization over orientation and starting point in the mea-
sure. Furthermore, the measures of mirror-dissimilarity are positive
semi-definite, assuming the value zero only in the case of mirror-similar
contours. Thus, the validity of all properties that we required the mea-
sures of dissymmetry m to satisfy, immediately follows.

In analogy with the (mirror-)dissimilarity measures, the measures of
dissymmetry m are computed in practice from N equidistant samples
of a contour representation. The resulting discrete measures of dissym-
metry m are a special case of the discrete measures of mirror-dissimilar-
ity in Eq. 4.2.51, i.e.

dV|f; m) = a7 f, f). (4.5.4)

The computational complexities of the d'[ f; m]. for the individual
contour representations, are the same as mentioned for the correspond-
ing ;?””[fi. f3] in Table 4.6. For index p = 2 the computational com-
plexities of d“'[f; m] can be found in Table 4.8.

Similarly, the measures of dissymmetry m based on Fourier represen-
tations are computed in practice from finite Fourier representations,

1.e.

]

dV)[f; m] = dV[f. ). (4.5.5)
cf. Egs. 4.2.61 and 4.5.3. For general values of p and for p = 2 the
computational complexities of d”'(f; m]. for the individual Fourier rep-
resentations, are the same as mentioned in Section 4.2.4 for the corre-
sponding d”'[f. f]. A reduction in computational complexity can be
obtained by a normalization of the orientation and/or the parametric
starting point of the contour, using the methods discussed in Section
4.3.3.
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_Figu:_'e 4.23_|. The set of contours [y, ... 3} used in the dissymmetry measurement experiments
in this section.
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To obtain quantitative insight in the performance of d”'(f; m) for
various contour representations f, we performed an experiment. The
set of contours used in this experiment, {7, .... 2}, is displayed in
Figure 4.23. All these contours are 6-fold rotationally symmetric and,
apart from y., all contours are also mirror-symmetric, Concerning the
smoothness properties of these contours, there are two distinct groups:
the subset {y,, ¥, V1. Yo Yo, V12) of piecewise regular contours and the
set {¥s. ¥s, ¥7» ¥s» Yi0» Y1) Of regular contours.

We have performed dissymmetry measurement experiments based
on each of the five contour representations z, z, #, y and K. The
considerations and methods used for contour representation estimation
are exactly the same as in the dissimilarity measurement experiments
in Section 4.4.2. We refer the reader to this section and to Appendix
C. The number of contour representation samples used in the dissym-
metry measurement experiments is the same as in the dissimilarity mea-
surement experiment in Section 4.4.2: N = 512.

Since the effect of the index p on the behavior of dV)(f,. f,) has
already been investigated in detail in Section 4.4, we have limited the
dissymmetry measurement experiments to the case p = 2.

The values obtained for d”[f,; m|, n =1, .., 12 for the contour
representations z, z, Z, ¥ and K are listed in Table 4.11. In Figures
4.24a and 4.24b we show the axis of symmetry and the shifted starting
points found through d“[f,: m| for all five contour representations for
the contours y< and yq, respectively.

For the contour representations y and K we did not find an axis of
symmetry directly since no orientation information is present in these
representations. However, after finding an optimal starting point shift
7 in d7(y; m) or d”(K; m), we can substitute 7* in the translation-
normalized position function %-.z to find the angle between the axis of
symmetry and the positive x-axis as 1:’3[arg {%:2(0)} + arg {fﬂ';-.-:-z(r”’)}].
For d”(z; m), d"(z; m) and d7(3; m) this angle is given by «*/2,
where a is the optimal rotation angle found by the measure of dissym-
metry m.

From Table 4.11 we see that d?[f,: m] performs very well for the
position function z. The largest mirror-dissymmetry value we find for
a mirror-symmetric contour is d'[z;,; m| = 0.0051 for y,,, which may
be a result of contour sampling errors and round-off noise. Yet this
value is well over 50 times as small as d”[z3; m] for y;, the only contour
in our test set that lacks mirror-symmetry.
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In Table 4.11 we also see that for this set of contours the behavior
of d')[z,: m] and d?'[y,: m] is similar. which corresponds to our previ-
ous experience with dissimilarity measurement on the basis of = and
in Section 4.4.2. The ratio between the mirror-dissymmetry value found
for the non-mirror-symmetric contour y; and the largest value found
for a mirror-symmetric contour is over 40 for measurement based on 2
and just over 25 for measurement based on y. The decrease of this
ratio with respect to mirror-dissymmetry measurement based on z s
due to contour representation estimation errors in z and i, Yet the
results in Table 4.11 show that mirror-dissymmetry measurement can
be performed in a sufficiently reliable way on the basis of Z and .

Table 4.11.  Values of d)[f,: m]. n = 1. .... 12. for the contour representations z. =
Z.y and K of the set of contours {7, ... 35} . displaved in Figure 4.23.

Contour representation

Contour z 2 : i K

" (1.0000 (.0054 ().0652 (.0062 (1LU6TS
b (1.0003 (10122 0.0632 (.0132 0, 1109
oy (0.2972 0).7244 0.1941 ().94584 01,4958
i (10000 0.0022 0.0176 0.0025 0.0171
Vs 0.0005 0.0011 0.0081 (L0013 (.0088
0.0000 (.0007 0.0034 0.0006 0.0123
- 0.0000 0.0051 0.0261 0.0051 (1.0262
o 0,0000 (.0010 0.0023 0.00000 0.0018
0.0008 (L0113 0.0619 0.0277 (),4962
S 0.00010) 00,0045 (L0168 0.0046 11,0166
“ 0.0036 (1.0165 0.0654 0.0206 (1.1240
Vi 0.0051 0.0170 0.0641 0.0377 (2735
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This situation changes quite dramatically with measurements based
on Z and K. While the ratio of dissymmetry values for non-mirror-sym-
metric contours and mirror-symmetric contours is still almost 3 when
the measurement is based on Z, the ratio decreases to just below 1 when
based on K. This is mainly due to the unreliability of the contour rep-
resentation estimates of Z and K. We also see from Table 4.11 that most
problems occur for contours for which Z and K are defined as distribu-
tions, such as y,, y». ¥ and y,,. The results for contour y,. for which Z
and K are also defined as distributions, constitute an exception in posi-
tive sense. On the other hand, the results based on Z and K for y,,,
which is a regular contour but with very large negative curvatures, are
remarkably bad. Furthermore, also the value d'*[Ky: m] = 0.4962 (cf.
Figure 4.24b) can only be explained from estimation errors in K since
the starting point shift found is a correct candidate out of 6 other correct
candidates.

In general we observe from the results in Table 4.11 that, concerning
the smoothness of contours in relation to the contour representations
that can usefully be applied for dissymmetry measurement, the same
considerations hold as we found earlier in Section 4.4.2 for
(mirror-)dissimilarity measurement.

For an evaluation of the various aspects of mirror-dissymmetry mea-
sured by d"( f; m) for different contour representations and for differ-
ent values of p, we also refer to Section 4.4.

4.5.2 Measures of n-fold rotational dissymmetry or dissymmetry n

Rotational symmetry plays an essential role in many industrial parts
(Perkins [1978]. Bolles [1979]). It also constitutes an important feature
in many biological structures, such as enzymes, viruses, etc. (Santiste-
ban et al. [1980]. Santisteban, Garcia and Carrascosa [1981]). In Sec-
tion 4.3.3 we saw that the detection of the order of rotational symmetry
is necessary for a proper execution of procedures for orientation and
starting point normalization (Hu [1962], Burkhardt [1979], Wallace and
Wintz [1980]). If a contour has symmetry n. then it can be represented
compactly since we need to store only Ye-th part of the contour repre-
sentation of an n-fold rotationally symmetric object. Finally, the detec-
tion of symmetry » may also indicate how shape completion should be
performed in incomplete contours (e.g. with partially overlapping sha-
pes). However an adaptation of the measures of dissymmetry n, that
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are defined in this section, is necessary in that case in order to cope
with incomplete contours.

Since in practice symmetry is rarely perfect, we need measures that
enable us to establish the extent of n-fold rotational symmetry in an
object quantitatively. In the literature we find several propositions to
this end.

Zahn and Roskies [1972] observed that a contour has n-fold rota-
tional symmetry iff (k) = 0. Yk € Z such that k # 0 mod n (see also
Table 3.6 in Section 3.6). Based on this observation they proposed

2. ) k) (4.5.6)
kel

k#0modn

as a measure of dissymmetry n.

i
d'?tzs; mj =0,0005 a'?fze;mj = 00011 d'?tz..m) = 0.0081
a'lzs) =0.3333m a'(zs) =03333r a’ (zs) =-06660m
T (z5) =0.1602 7 T* (7] =01602m Tt (2] = 1.1602x
(= y T
—t=0 —t=0
a?ty,.ml =00013 ad'?Ik.. ml =00088
a T (ye) -0,1602 T* [Ks) =01602 7

Figure 4.24a. Results of the measurement of dissymmetry m for the contour 3« from Figure 4.23
for the contour representations 2. 2. 2. 4 and K,
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Burkhardt [1979] has a similar proposition for a measure of dissym-
metry n, based on the Fourier representation Z. Recall from Section
3.6 that a contour has n-fold rotational symmetry iff (k)= 0,
Yk € Z — {0} such that kK # | mod n. This property constitutes the
basis for Burkhardt's proposition

Y skl

-
v ¥ | modn
(4.5.7)
|2(k)|
ke — (0}

as a measure of dissymmetry n. The expression in the denominator of
Eq. 4.5.7 ensures the scale invariance of the measure, while the exclu-

s e T
\ \
—t=0 —t=0
d'?z,: mj = 0.0008 d?tz,:m) = 00115 d'?Iz,:m]1=00619
a*fzg) = 06663 a'fzy) =066737 a'lz,) =06706w
T*(z9) =0.4961m T'(z9) =04961T T'(2y) 204961
T -
by *
N
— t=0 — t=0
a1y, ;m] 00277 d'?Ke:m] = 0.4962
b T (yy)  =04961T Tt (Ky) =0.1641T

Figure 4.24b. Results of the measurement of dissymmetry m for the contour y, from Figure 4.23
for the contour representations z, 2, Z. y and K.
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sion of 2(0) from both the numerator and the denominator takes care
of the translation invariance.

By comparing Eq. 4.5.6 with Eq. 4.5.7, the conceptual similarity of
these two propositions as measures of dissymmetry n is obvious. Since
both measures sum over moduli of Fourier coefficients. invariance for
orientation and starting point is automatically obtained (cf. Table 3.2).

Another approach to the measurement of the extent of symmetry n
in an object has been given by Perkins [1978]. He represents a contour
as a set of connecting line segments and circular arcs. On top of this he
registers the positions of a set of equally spaced samples on the contour,
{z[n]} in our terminology, and the directions of lines perpendicular to
the contour in the sample positions. #[n] = /2 in our terminology.
where 6 is the tangent angle function (cf. Eq. 2.2.6). An illustration of
this representation is given in Figure 4.23. Rotational symmetry n is
measured by rotating the contour representation just described about
the center of gravity of object over angles m(2za/n) form = 1. ....n— 1.
After each rotation a measure of coincidence between the original and
the rotated representations is determined. Finally. the results of the
n — | measurements are combined to obtain a global impression of the
extent of symmetry n in the object.

it ot
rodhete gt
i S

a b

Figure 4.25. [llustration of contour representation according to Perkins [1978]. (a) displays the
result of fitting straight line segments and circular ares to mput contour data. leading to a represen-
tation of two closed contours by 27 stright line segments and arcular arcs. Each of these mwo
approximated contours is called a concurve (Perkins [1978]). Superimposed on the concurves is a
multi-sector representation (b). The multi-sector representation consists of @ set of approximately
cquidistant positions along the concurves, marked by an *+*" in (b). and by a set of perpendicular
dircctions at these positions, marked by a short dotted line. The two concurves are represented
by 37 and 4 mulusectors, respectively
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Bolles [1979] introduces a tree representation for objects and deter-
mines the presence of symmetry n in an object directly from its tree
representation. The nodes in this tree representation correspond to
various object features. First similar subpatterns are determined within
the object and subsequently it is tested whether these subpatterns are
arranged in an n-fold rotationally symmetric manner.

Before we actually present our propositions for measures of dissym-
metry n we first mention the requirements that such measures must
satisfy. Since a measure of dissymmetry n constitutes a shape property,
it must be invariant for the position, size and orientation of the object
and for the position of the parametric starting point on the contour (cf.
Section 1.1). We also require of a measure of dissymmetry n that it
assumes the value zero iff the object has n-fold rotational symmetry
and that its value is greater than zero otherwise.

The measures of dissymmetry a that we propose in the following are
directly based upon the definition of symmetry n, Definition 2.7, which
states that a contour y is n-fold rotationally symmetric iff there exists a
point of order n in the plane such that, when y is rotated about this
point, y coincides with itself after each rotation over an angle 2a/n. A
natural measure of dissymmetry n, in view of this definition, is obtained
by performing a rotation of the translation-normalized contour about
the origin over angles m(2a/n) for m = 1, ..., n— 1, and by measuring
the dissimilarity between the original and the rotated contour after
each rotation. The results of these n — 1 dissimilarity measurements are
subsequently averaged to obtain a global measure of dissymmetry n.
This approach is conceptually related to that of Perkins [1978], while
further analysis will reveal that the approaches of Zahn and Roskies
[1972] and Burkhardt [1979] belong to the same class.

We now formulate our proposition for a measure of dissymmetry n.
which is based on the property of contour representations of n-fold
rotationally symmetric contours, expressed in Eq. 2.4.3. We will do this
in two steps. First we define the m-th component of dissymmetry n and
subsequently we define a global measure of dissymmetry n by averaging
over the components of dissymmetry n.

Definition 4.14. m-th component of dissymmetry n of index p.
Let f act as a generic symbol for any of the contour representations z,
z, z,y and K. Then the m-th component of dissymmetry n for a contour
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v. with contour representation f. f € L”(2x), is defined as (¢f. Eq. 2.4.3):
d””{f; n. ”” o ”-"' - 'Iul].‘r m“ﬂmll‘: J'I'}.’r:E H;I'
meZ, lsp=<s=, (4.5.8)

where f* is related to fas given in Eq. 4.2.1 and Egs. 4.2.12 and 4.2.21.
O

If fstands for z, z. Z or K. then f7 is the translation- and scale-nor-
malized version of f. If f stands for y. then [~ is a normalization of f
to a version with contour average zero. Recall from Section 2.4 that
2a/n is the elementary angle of rotation of an n-fold rotationally sym-
metric object. The m-th component of dissymmetry n, d'7(f: n. m).
measures the dissimilarity between a contour and a version of that
contour. rotated over an angle m(2a/n). m € Z. We note the following
properties of d7'(f; n. m). From the properties of f* mentioned above
it follows that d”'(f: n. m) is invariant for the position and size of the
object. Tt is easily verified that dV'(f: n, m) is also invariant for the
orientation of the object and for the position of the parametric starting
point on its contour. If a contour possesses symmetry n. then it follows
from Eq. 2.4.3 that d”)(f; n. m) = 0. Ym € Z. We also note that
d'"'(f: n. m). considered as a function on Z. is periodic. with period n.
and that it is an even function, i.c.

d7(f.m. m) = d7(f; n. —m), Ym e Z. (4.5.9)

Furthermore, d”(f: n. m) = 0 if m = 0 mod n.

Since an n-fold rotationally symmetric contour comes into coinci-
dence with itself after a rotation over any multiple of 2/n. we measure
d”(f; n. m) over all multiples of 2:2/n in a range of length 27, i.c. for
m =1, ....n — 1. With these measurements we obtain a global measure
of dissymmetry n by averaging over the d7'(f: n. m).

Definition 4.15. Measure of dissvimmetry n of index pair (p. q).

Let fact as a generic symbol for any of the contour representations z.
z. Z, y and K. Then a measure of dissymmetry n of index pair (p. q)
for a contour y. with contour representation f. f € L7(2:7), is defined as
(cf. Eq. 2.4.3 and Decfinition 4.14):
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dr (1) =0, (4.5.10a)
d7-9(f; n)

1 "= Wy

= ZI {dP)(f;n, m)}"*l
!

_H—I m=

"Iir
i
!] : n=2:
;}

=1
¥ __ o 0 o3
Z ”f Jm!Emm"(iml.‘.:mrlf I

1
= it = |

(4.5.10b)

O

For n = 1 we have the trivial case of rotational symmetry. Therefore
we defined d 7(f; 1) = 0 in Eq. 4.5.10a.

In Eq. 4.5.10b we used the generalized mean for averaging over the
values d(f; n, m) (cf. Beckenbach and Bellman [1971], Abramowitz
and Stegun [1972]).

In the generalized mean the index ¢ can assume any real value. It is
casily verified that the generalized mean contains the arithmetic mean
(g = 1), the geometric mean (lim, ) and the harmonic mean (¢ = —1)
as special cases (cf. Beckenbach and Bellman [1971], pp. 3-19, Ab-
ramowitz and Stegun [1972], p. 10).

In the context of our application we have limited the range of ¢ (cf.
Eq. 4.5.10b). This is necessary since for ¢ <( we always obtain
d7P(f, n) = 0if d7(f; n, m) = 0 for some m # (0 mod n. This means
for example that if we are measuring 12-fold rotational dissymmetry
for a contour that has only 6-fold rotational symmetry, we still find
d79(f. 12) = 0 for g < 0. Clearly, for ¢ < () the measure of dissym-
metry n in Eq. 4.5.10b would not satisfy the requirement that it should
only assume the value zero if the contour possesses rotational symmetry
n.

The interpretation of varying the value of the index ¢ in d 9(f; n)
is as follows. For ¢ = 1, the arithmetic mean, we have a very global
averaging over the values d”'(f; n, m). The larger the value of the
index ¢, the more sensitive d”-9(f, n) becomes for the largest value
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among the values d'”'(f: n. m). The indices p and ¢ in d7 Y'(f: n) are
independent parameters that emphasize different aspects in the mea-
sure of dissymmetry n. Therefore the case p = ¢ has no special interpre-
tation, although it leads to some computational simplifications
(cf. Eq. 4.5.10b).

We now check whether 47 V(f; n) possesses the properties that we
require for a measure of dissymmetry n.

Since the values d''(f: n. m) are invariant for the position. size and
orientation of an object and for the position of the parametric starting
point on its contour, it follows from Definition 4.15 that the same
properties are valid for d' "'(f: n).

Eq. 4.5.10 shows that d" 9(f, n) = 0 iff d”(f: n. m) = 0 form =
I, ... n—1, n = 2. It follows from Egs. 2.4.2 and 2.4.3 and from
Definition 4.14 that d''(f: n.m) = 0 for m = 1. ..., n — 1 if the contour.
represented by [, is n-fold rotationally symmetric. If the contour is not
n-fold rotationally symmetric. then d'”'(f: n, m) > 0 at least for all m
that are prime to n. (A number « is called prime to a number b if
GCD (a. b) = 1., Shanks [1962].) Since 1 is prime to any n = 2. we find
that d”'(f; mn. 1) > 0 if the contour, represented by f. is not n-fold
rotationally symmetric.

From these observations we conclude that d7 9(f. n) = 0 iff the
contour, represented by f, is a-fold rotationally symmetric and that
d'"(f: m) > 0 if it is not n-fold rotationally symmetric. and therefore
that d'77)(f: n) possesses the properties that we require for a measure
of dissymmetry n.

The range of values that d7'( f: n) can assume is analyzed as follows.

Recall that d”'(f; n. m) = 0 for m = 0 mod n. Using f* = 4,5 ..f. Eq.
4.2.1. and applying Minkowski's inequality (cf. Appendix A) to Eq.
4.5.10b vields

d'P 9 f: m)

| Q= _ i
— { Z ”'r)(,f'rj.".f_ "er::r-ul‘)ﬂm{l.'t-rn'rj_:i'lf-;'_!Hp

"_i m= 1

o L
< [" = ] Z ”'rj,f'(j‘.l‘ : S 2' :.j;f' ill.("('_"f”ir)- n= 2-
m=1

(4.5.11)
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Since we proposed in Section 4.3.2 that ;- = ||%..f]| ,'. when fstands
for z, 2, Z or K, we find for the range of d7"“(f: n):

0<d”9f n) <2, n=2. (4.5.12)

The measure of dissymmetry n, d?(f; n). can be rewritten into a
form. that leads to a reduction in computational complexity by a factor
2, for n odd, and a factor of almost 2, for n even. Using the n-period-
icity and the evenness of the values d''(f: n. m), Eq. 4.5.9. we derive
for d7 9(f: n) the expressions:

[ p) (n—1)72 1%
[ Z {d7(fin.m)}! | | for m odd,
n—1 m=1 i
(4.5.13a)
29 Fn) = L=
L 1 Y Ad"(fn.m)}
B m= |
e gl .
+ e dP(fin. n/2) . for n even.
(4.5.13b)

In practice, a measure of dissymmetry n is computed from N equidis-
tant samples of the contour representation, resulting in a discrete mea-
sure of dissymmetry n, d'7-9[f; n]. It follows from Eq. 4.2.48 and Defin-
itions 4.14 and 4.15 that the computational complexity of
d7 V[ f; n] is O(nN) for each of the individual contour representations
indicated by f. Though. in practice. the expressions for d” (f: n) in
Eqs. 4.5.13a and 4.5.13b lead to a reduction of the number of compu-
tational operations, they do not affect the order of magnitude of the
number of these operations.

In the special case of p = 2 we can rewrite d”*9(f; n) into a form in
which the computational complexity is dominated by the computation
of the cyclic correlation function of f*. For appropriate values of N,
the number of contour representation samples. d* 9[f; n| can be com-
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Figure 4.26a. Results of the measurement of dissymmetry a. for n = 2. ., 16. for contour <
from Figure 423, The measure of dissvmmetry noused is d7 [ £ n|. wath (p. g) = (2. 2): [ stands
for the contour representations zs, <, %, < and K., respectively,

puted in O(N log, N + n) arithmetic operations. using the FFT al-
gorithm to compute the cyclic correlation function (cf. Section 4.2.4).
O(N log: N + n) is equivalent to O(N log, N). since for useful measure-
ments N has to be larger than n. Whether this method of computation
is more efficient than the direct computation of d'* 7[f; n]. with a
computational complexity of O(nN). merely depends upon the actual
values of n and N.




MEASURES OF SYMMETRY 263

e

08
d!‘?}}[wﬁ i ﬂf s
Y o5

0.4

0.2

=
2 3 4 5 6 2 8 9 ot 12 93 1 15 18

—» N

d??(K.n]
T 15 o = e

05

L 5 6 7 8 9 1011 1213 1% 1516
—» N

To test the performance of the measures of dissymmetry n proposed
in this section, we performed an experiment with the set of contours
{71+ «.s 712}. shown in Figure 4.23, which was also used in an experi-
ment with the measures of dissymmetry m. All contours in this set are
6-fold rotationally symmetric. In Figures 4.26a and 4.26b the results of
d?- V[ f; n|. with index pair (p. g) = (2, 2). are shown for the contours
vs and y, respectively. We performed the measurement for the orders
of rotational symmetry n = 2, ..., 16 and for the contour representations
z, z, z, ¥ and K. We observe some remarkable phenomena from this
experiment.
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Figure 4.26b. Results of the measurement of disssmmetry n. for n = 2. 16, for contour -,
from Figure 4.23. The measure of disssmmetry o used is d7 [ 2 n]. with (p. g) = (2. 2): f stunds

for the contour representations 2u. 2. 2. 40 and K. respeetively

First we note that a 6-fold rotationally symmetric contour has also
symmetry 2 and symmetry 3. In general., if a contour is n-fold rotation-
ally symmetric, then it has also rotational symmetry of all orders.,
greater than 1, that are divisors of n.

Next we observe from the results in Figures 4.26a and 4.26b that we
have obtained relatively low values for the measurement of dissym-
metry 12. This is caused by the 6-fold rotational symmetry of the con-
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tour and the fact that 12 is a multiple of 6. To see the effects of this
upon the measurement of dissymmetry 12 we analyze d' 9(f; 12):

d-9(f; 12)

”]l Z {dV(f;12, m)}"

m=1

{11 Z {d7(f: 12, ’?m}}f ” fZ {dP(f:12,2m — ]]}ﬂ'f,

m=1 m=|

(4.5.14)
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If ¥ € N is a common divisor of both # and m. then (cf. Eq. 4.5.8):

dP(fin.m) = (!“’"(f: e m]‘ (4.5.15)

v 4
Using this property, Eq. 4.5.14 can be rewritten as

d7-(f; 12)

= l]I Z {d7(f.6.m)}" + ll] Z {d'P(f:12.2m — l];l![
= | m=]

AN Y iz 2 ”}"”
m=1

(4.5.16)

For a 6-fold rotationally symmetric contour d'7 7'(f: 6) = 0 and Eq.
4.5.16 reduces to

lll Z {(1““'{‘,{';12.2.*11—]]}"r . (#£.5.17)
m=1

d™Y(fi12) =
which explains the relatively low value of d*'[f: 12] in Figures 4.26a
and 4.26b. where we used (p. g) = (2. 2).

In general. if a contour has rotational symmetry n. then this influ-
ences the measurement of dissymmetries for that contour of orders that
are multiples of n. However. we can limit this effect by increasing the
value of g. For example. the larger the value of g. the more the value of
d"( f, 12) will be influenced by the largest component of dissymmetry
12 among the values d”'(f; 12, 2m — 1). m = 1, ..., 6, and thus, the
smaller the influence of d'7“'(f: 6) = 0 (cf. Eq. 4.5.16).

In addition. we remark that the property mentioned in Eq. 4.5.15
can be used effectively to reduce the number of computations when
d'"- [ f. n] has to be computed for several values of n.

A sccond important observation resulting from our experiments on
the measurement of rotational dissymmetry concerns the relation be-
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tween the order of rotational symmetry » and the number of contour
representation samples N. Though the contours in our experiment all
are 2-. 3- and 6-fold rotationally symmetric, we found for d* 2 f: 3]
and d*?[f, 6] always substantially higher values than for d*”[f: 2].
This is caused by the fact that neither 3 nor 6 are divisors of N = 512,
as opposed to 2. The values of d"*?)[z: 3], when expressed in units of
sample distance along the contour, are 0.333 for all 12 contours in
Figure 4.23. If the order of rotational dissymmetry to be measured is
not a divisor of the number of contour representation samples, then the
starting point shifts in the discrete measures of dissymmetry n, d'9[ f ],
have to be rounded to the nearest integer number of samples. In each
of the two starting point shifts in @'**{z; 3] this rounding is over ¥s-rd
of a sample distance, which explains our results and at the same time
confirms that the contours in this experiment may be considered as
polygons at the level of a single sample distance for N = 512.

If we wish to measure rotational dissymmetry of contours for a
number of orders n, then a rounding of starting point shifts is hard to
avoid, For example, for measurement of dissymmetry n of all orders
up to 16 we would need as many as 720720 contour representation
samples! In the special case of p = 2 the measure of dissymmetry
d” D[ f; n] can be computed via the Fourier domain (cf. Eqgs. 4.5.10b
and 4.2.42). where a starting point shift results in a phase shift in the
Fourier coefficients. In floating point arithmetic these phase shifts can
be executed with great precision. On the other hand, we found in our
experiment that, even if we disregard the effect of rounding starting
point shifts. the discriminative power of the measures of dissymmetry
n for the presence or absence of rotational symmetry remains sufficient.

As a figure of merit for the discriminative power of a measure of
dissymmetry n for a certain contour ¥ we can use the proportion

min d" P f; n]

{n:  does not have nj

max d”?[f;n]

{m:yhasn)

i.e. the proportion of the minimum value of dissymmetry, taken over
all orders of rotational symmetry that a contour does not have, and the
maximum value of dissymmetry, taken over all orders of rotational
symmetry that a contour does have. Since all contours in our experi-
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ment are 6-fold rotationally symmetric and d'=*'{ f: n] was measured for
all orders of rotational symmetry n up to 16. d=~'[ f: n] was minimized
in the numerator of this proportion over n = 4. 5.7, .... 16. and was
maximized in the denominator over n = 2. 3 and 6.

In Table 4.12 we have listed the minimum and the maximum values
of this figure of merit that we found in our experiment for the contour
representations z, z. Z, y» and K. From this table we observe that the
discriminative power of d*[zin]. d*7[z:n| and d*[y:n]. for
the set of contours in Figure 4.23, is similar. The performance of
d 7|z n] and especially of d'*'[K:n] is much worse. This is again
caused by the difficulty of obtaining a reliable estimate for Z or K if the
contours are not sufficiently smooth. Not surprisingly. the maximum
figures of merit for d*?[2:n] and d“7[K: n] oceur for the smoothest
regular contours in our test set (37 and y5. respectively).

We can use the proportion

max d'" [ f. n]
LAy does not hive n
min d"?|f: n]

v cdoes not have n

as a measure of the variability of d[f: n] for orders of rotational
symmetry that a contour y does not possess.

In this experiment, with index pair (p. g) = (2. 2). this variability is
relatively low in comparison with the figures of merit in Table 4.12.

Table 4.12. Maximum and minimum figures of merit of measures of disssmmetry n.
for n up to 16. found experimentally for the contours in Figure 4.23. The contours for
which the maxima and minima occurred are given in parentheses.

Measure of dissvsmmetry n | Minimum figure of merit Maximum figure of merit

d* Iz n) 15.57 (y:) 52.39 (v12)
d'="[z:n] 19.56 (3) 38.48 (34,
d=*z: n] 5.56 (5) 13.69 (;)
A"y n| 14,00 (+,) 5181 (+,)
A2 K n) 1.19 (342) 21.09 (5-)
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It ranges from 1.001 for d“*[K;n] (for y5 and y,) to 1.418 for
d*?[z; n| (for y,). The figures of merit for the measures of dissymmetry
n would improve substantially in this experiment (at least by one order
of magnitude) if we choose the number of contour representation sam-
ples to be a multiple of 6.

Based on the results just mentioned we may draw the conclusion that
we have derived a powerful family of measures of dissymmetry n. For
the contours in our test set the measures based on z, z and v all perform
very well. There seems to be no preference as to which of these contour
representations is most favorable. If we wish to measure dissymmetry
n on the basis of Z or K, then a contour must be sufficiently smooth.
Otherwise Z and K should not be used.

In practice. rotational symmetry will only be of interest up to a cer-
tain maximum order. All rotational symmetries of higher orders than
this maximum are taken to be o-fold. and the contour with this prop-
erty is considered to be a circle. This maximum order of rotational
symmetry of interest depends on the application at hand and on the
two-dimensional sampling resolution used. In an inspection system for

Figure 4.27. 30-fold rotational symmetry in the outer contour of the escapement wheel (a) of a
clock (dead beat escapement). The center of symmetry is formed by the center of the pivot of the
escapement wheel. Note that the internal contours of the escapement wheel have a 5-fold rotation-
ally symmetric arrangement (from: De Carle [1959], p. 111).
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industrial parts, Perkins [1978] considers rotational symmetries up to
the order 16. as we did in our experiment. However. situations exist
where considerably higher orders of rotational symmetry are of interest.
Consider for example the outer contour of the escapement wheel of a
clock in Figure 4.27, having 30-fold rotational symmetry on its outer
boundary. Note that the crossings in the escapement wheel only lead
to a 5-fold internal rotational symmetry.

Most propositions for the measurement of dissymmetry n in a contour
that can be found in the literature are on the basis of a Fourier represen-
tation of that contour. Therefore we will also define such measures and
discuss the relations of these measures with the propositions in the
literature. This can be done along the same lines as we defined dissimi-
larity measures based on the Fourier representations of contours in
Section 4.2.3,

Definition 4.16. m-th component of dissymmetry n of index p based
on Fourier representations.

Let f be the Fourier representation generated by a contour representa-
tion f. where f acts as a generic symbol for the contour representations
z. z. £, y and K. Then the m-th component of dissymmetry n for a
contour ». with Fourier representation f. f € €/(Z). is defined as (cf.
Eq. 3.6.3):

d”r}(ﬁ n,m)= ||f¢ S "]ml1_1.-.-1I'ﬁurllz-n?.fz“I" me Z. I < P =

where f* is related to fas given in Eqs. 4.2.38 and 4.2.39,

This definition is completely analogous to that of d7'(f: n. m) in
Definition 4.14. It is casily verified that all properties that we derived
for d'"( f: n. m) also hold for d””(j’: n.m). In analogy with the definition
of d79(f: n) in Definition 4.15. we obtain a measure of dissymmetry
n based on the Fourier representation f by averaging over the
d?(f: n. m).

Definition 4.17. Measure of dissvmmetry n of index pair (p, q) based
on Fourier representations.
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Let j be the Fourier representation generated by a contour representa-
tion f, where f acts as a generic symbol for the contour representations
z. z, 2,y and K. Then a measure of dissymmetry a of index pair (p, q)
for a contour y, with Fourier representation f, f € €(Z), is defined as
(cf. Eq. 3.6.3 and Definition 4.16):

dv9(f; 1) =0, (4.5.19a)

dfﬂ. ql(j'; n)

n—1 U
> {d")(f: n, m)}"']
m=1

|
n—1

1 n=1 2 e - . Wy
= = l ZI ||; = -'Jm{l:r.'uj'-ﬁml2,'!.*:1]] ‘. ”?:J s n= 2,
L l.” =

(4.5.19b)

forl <p,.q =< =.

O

The required invariance of d"""”(j': n) for the position, size and orien-
tation of an object and for the position of the parametric starting point on
its contour can be derived in the same way as we did for d”7(f; n).
Similarly it can be derived that a'”"‘”(_f;n) = () iff the contour, rep-
resented by f, is n-fold rotationally symmetric and that d?-9(f;n) > 0
otherwise, as required.

For the range of ' 9(f; n) we find, through Minkowski’s inequality
for sums (cf. Appendix A), results that are completely analogous to the
corresponding results for 7 9(f; n) in Egs. 4.5.11 and 4.5.12. Also for
the properties in Eqs. 4.5.13a-4.5.17 analoga in terms of f can be de-
rived. The effect of varying the value of the index g in d79(f; n) is
identical to its effect in d77(f; n).

We will now take a closer look at d" ’“(f'; n) and exhibit the resem-
blance of these measures to the propositions for a measure of dissym-
metry n by Zahn and Roskies [1972] in Eq. 4.5.6, and by Burkhardt
[1979] in Eq. 4.5.7.
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First, let f stand for any of the Fourier representations 2. = or 2. Then.
after substitution of the representations of the similarity operators
Tioam and R, -, (cf. Table 3.2). we obtain for d'7 (. n):

dl,r', 1;1(]; n ]

m- | . - i
= 1 Z | Z ‘If‘":(f\')—t_m ]N:‘lm”f"{"-"('(‘-)‘; ‘|, ‘I
A

ed

L S s - e )|

n—1 = W

(4.5.20)

Since

| —g k=il — ) for k = 1 mod n. (4.5.21)
we obtain for Eq. 4.5.20:
d'" '”(_f“: n)
— | _l- 1 :,:1 ;Zz (|] _ eritk=hmmmP ””‘li)
A= 1 modn

(4.5.22)

In this equation we sce that the summation over & in d" '“{_f: n)
involves only those Fourier coefficients that are zero-valued for an n-
fold rotationally symmetric contour (cf. Table 3.6). In this respect
d'(f: n) is similar to the propositions by Zahn and Roskies [1972] and
by Burkhardt [1979]. For the special case of index pair (p. ¢) = (2.2
it is straightforward to derive that d7 9'( f: n) reduces to:

d>D(fimy=| 2 % ool | . (4.5.23)
R

A= lmodn
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which confirms the similarity with the proposition in Eq. 4.5.7 even
more. Similarly. let £ stand for any of the Fourier representations ) or
K. Then, in analogy with the foregoing, we obtain for d"" ‘“(g; n):

W i',l:r.
l n—1

dlp.:f!(ﬁ; ") = = Z LZZ (l e C—r’&'{l‘ra‘u]ml.” y Ig%(k)l-”)
' E

m=1
k+imodn

(4.5.24)

which reduces, in the special case of index pair (p. q) = (2. 2), to:

2

*gmy=[2- Y |grwf| . (4.5.25)
kel
kFUmodn

If we compare Eq. 4.5.25 with Eq. 4.5.6 the resemblance between
d7-9(g; n) and the proposition for a measure of dissymmetry n by Zahn
and Roskies [1972] is obvious.

In practice, a measure of dissymmetry n, based on a Fourier rep-
resentation f, is computed from a finite set of N Fourier coefficients,
resulting in a discrete measure of dissymmetry n, d” 9[f; n]. It follows
from Egs. 4.5.22 and 4.5.24 that the computational complexity of
d’ '*”[j',' n| is O(nN), not taking the complexity of the computation of
the N Fourier coefficients into account. Thus, the order of the compu-
tational complexity of d” 9[f; n] is the same as that of d” 9[f; n].

In the special case of p = ¢ for the index pair (p, q), the computa-
tional complexity of d”""”]f: n| can be reduced to O(n* + N) (cf. Egs.
4.5.22 and 4.5.24), which will usually be smaller than O(aN).

Another special case constitutes p = 2. It follows from Eqs. 4.5.8
and 4.5.18 and from Parseval’s formula (cf. Eq. 4.2.42) that;

d?(f;n, m) = d?(f;n. m),  VfeL’(27).  (4.5.26)

With this result we may conclude from Definitions 4.15 and 4.17 that

A

dS0Ch m) = d%9Yfin), n=1,

l<g<®, Vfel’2n). (4.5.27)
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Therefore the computational complexity of d* “)[ f: n] is the same as
that of d* [ f; n].

In the special case of index pair (p. g) = (2. 2) we find from Egs.
4.5.23 and 4.5.25 that the computational complexity of d’:':'[_f': n| is
O(N). Note that the computation of the N Fourier coefficients may
dominate the complexity of the computation of ' '”[_f‘“: n|.

We remark that, in view of the properties of the Fourier representa-
tions of an n-fold rotationally symmetric contour.

N
b

(4.5.28)

-

Y, lrwl"| o 1=y

k# 1 modn

can be used as an alternative measure of dissymmetry n of index p
based on the Fourier representation f. where f stands for any of the

Fourier representations 2. z or 2.
Likewise,
el = ¢
Y. 1wl . l=sps=. (4.5.29)
Kez

k= 0modn

where ¢ stands for the Fourier representations i or K. constitutes such
an alternative measure. These alternative measures. on the other hand.
“annot be given a direct interpretation in terms of dissimilarity between
the original contour and the contour after a symmetry transformation,
as can be done for d7 ?( f: n). the measure of dissymmetry n proposed
in Definition 4.17.

4.5.3 Concluding remarks on symmetry measurement

In the previous two sections, we defined measures of dissymmetry m
and dissymmetry n. In Definition 2.8 we described symmetry nem or
n-fold compositional symmetry as the joint occurrence of symmetry n
and of symmetry m in a figure. A measure of dissymmetry n-m can be
obtained by combining the results of measuring dissymmetry 7 and
dissymmetry m in an appropriate way.

In this thesis we have discussed only those types of symmetry that
may occur in a single plane figure. and more specifically, that may
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occur in a plane simple closed curve. Symmetry was defined as the
property that a figure comes into coincidence with itself after a sym-
metry transformation. We based a quantitative evaluation of the extent
to which a certain type of symmetry is present in an object on the mea-
surement of the dissimilarity between the original object and the object
after the symmetry transformation. This provided us with the measures
of dissymmetry.

This principle of quantitative evaluation of symmetry can also be
applied to other types of plane symmetry, that involve more than one
contour. For example, mirror-symmetric and/or rotationally symmetric
arrangements of figures may occur in the plane (consider the arrange-
ment of the internal contours in the escapement wheel of a clock in
Figure 4.27). Also combinations of translational symmetry and/or mir-
ror-symmetry in bands and networks can be encountered. The latter
types of symmetry are frequently encountered in the creative arts and
in architecture. We refer to Shubnikov and Koptsik [1974] for a theoret-
ical account of such types of symmetries. This reference also contains
numerous examples. A rich source of examples of symmetry in arrange-
ments of figures is provided by the work of M.C. Escher (cf. MacGilla-
vry [1965], Escher et al. [1972]).

A quantitative evaluation of the extent to which a certain type of
symmetry is present in an arrangement of figures in the plane can be
achieved through a straightforward generalization of the principle of
symmetry measurement proposed in the previous sections. That is, we
perform the symmetry transformation upon the figures in the arrange-
ment and measure the dissimilarities between the figures in the original
arrangement and in the transformed arrangements. which should have
come into coincidence with each other if the given type of symmetry
were present in the arrangement of figures. If necessary, this process
is repeated for various realizations of the symmetry transformation. An
appropriate method of averaging over the dissimilarity measurements,
resulting from the individual symmetry transformations, will yield the
required measure of dissymmetry.

Through this discussion we have indicated that the general principle
of dissymmetry measurement, described in the previous sections, can
be extended to apply to a wider class of symmetries. As we have just
described the general ideas of these extensions, we will not elaborate
on this topic any further.
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4.6 Concluding remarks

In the previous sections of this chapter we have presented a detailed
study of (mirror-)dissimilarity and dissymmetry measurement. based
on parametric contour representations. After some introductory consid-
erations on dissimilarity measures in Section 4.1. families of (mirror-)
dissimilarity measures were introduced in Section 4.2. Our proposals
generalize a number of proposals in the literature. to which we referred
extensively.

An evaluation of the computational complexities of various forms of
the (mirror-)dissimilarity measures in Section 4.2.4 led to a study of
contour normalization methods in Section 4.3, Orientation and starting
point normalization techniques mainly aim at a reduction of computa-
tonal complexity. General rules for contour normalization methods
were formulated: uniqueness of the normalization result and idempo-
tentness of the method for already normalized objects/contours.
Though these rules constitute necessary constraints for useful normali-
zation mcthods, they unfortunately do not lead to unique methods.
Two major classes of normalization methods were identified; those
based on moments and those based on Fourier coefficients. It was
shown that. from a theoretical point of view. the methods based on
Fourier coefficients are better adapted to contour representations. De-
spite the fact that moments do not offer the possibility to normalize the
parametric starting on a contour. they seem to perform well for the
normalization of contour position and orientation. We made clear that
the inverse of the norm of the contour representation. on which the
(mirror-)dissimilarity measure is based. is an appropriate scale normali-
zation parameter.

In Scction 4.4 the properties of the families of (mirror-)dissimilarity
measures and the relations between them were studied. Also some
experimental evidence for their properties was obtained. Clustering
experiments on dissimilarity measures revealed that the order of dif-
ferentiation of a contour representation is a major distinguishing factor
for the behavior of these measures. It also became clear that great care
must be taken if one wishes to use the contour representations  or K
(second order differentiation) for dissimilarity measurement because of
the high noise sensitivity of these representations.

Finally in Section 4.5 we introduced methods to quantify the extent
of mirror- and rotational symmetry in plane objects. By using ‘coming
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into coincidence with itself upon a symmetry transformation’ as a defini-
tion of symmetry. the concept of (mirror-)dissimilarity naturally came
in. This enabled us to use the previously defined (mirror-)dissimilarity
measures as elements in newly defined families of dissymmetry mea-
sures. The effectiveness of these measures was demonstrated in an ex-
periment.

In conclusion we can state that this chapter has led to the formulation
of a theoretically consistent framework for dissimilarity measurement
between contours and for dissymmetry measurement in contours, which
can be tailored easily to specific applications.
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Chapter 5

Discussion

This discussion concentrates on the general characteristics of the ap-
proach to shape analysis in 2-D imagery that was presented in the
foregoing chapters. We will establish both the merits and the limitations
of the approach and indicate some routes to possible extensions to
overcome these limitations.

We will also mention some open problems that deserve attention,
both in the context of the approach presented here and in the context
of digital shape analysis in general.

5.1 General characteristics of the contour-oriented approach to digital
shape analysis: merits and limitations

Two main topics dealt with in this thesis are the quantification of
(mirror-)similarity between 2-D shapes and of symmetry in individual
2-D shapes. In order to do so we needed a representation for shapes.
The first step was to consider shape information to be concentrated in
the shape’s contour(s). Next we identified five information-preserving
contour representations, three of which are complex-valued, i.e. z, z
and Zz, and the other two are real-valued, i.e. y and K. In this context
information-preserving means that the contour can be reconstructed
exactly from the representation, possibly up to a translation, rotation
or a scale factor. In Section 2.1 we have shown that some other contour
representations that have been proposed in the literature, i.e. r(r), r'(r)
and R(&). have undesirable properties, for which reason we did not
take them into consideration any further.

The foundation for the definition of measures of (mirror-)similarity
was laid in Section 2.3 by defining shapes to be (mirror-)similar if they
can be mapped into each other by means of (mirror-)similarity transfor-
mations. In Section 4.2 we used norms on differences between contour
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representations as a measure of the extent to which the shapes failed
to come into coincidence with each other, thus defining (mirror-)dissi-
milarity measures. One of the merits of our way of formulating (mir-
ror-)dissimilarity measures is that it brings together a number of carlier
proposals in the literature under a general theoretical framework with
well-established roots in mathematical analysis. The generality of this
framework provides ample room for tuning (mirror-)dissimilarity mea-
surement to particular circumstances and applications.

In the (mirror-)dissimilarity measures defined in Section 4.2 we op-
timized the orientation and the parametric starting point of one contour
with respect to the other. This led to a considerable computational
complexity, especially for measures based on orientation variant con-
tour representations. By normalizing orientation and starting point the
computational complexity can be reduced to the order of the number
of contour representation samples. An in-depth discussion on this sub-
ject was presented in Section 4.3, where a general scheme for orienta-
tion and starting point normalization based on Fourier coefficients was
desceribed. Major dangers of normalization are that the solution is not
unique or that the solution found is close to other solutions (in terms
of satisfving the normalization criteria). In these cases additional con-
straints are necded and it may even be more desirable to optimize
orientation and starting point over a limited set of normalization candi-
dates. On the other hand. tremendous changes will occur in the years
to come in terms of the computational power available. Multiprocessor
architectures (cf. e.g. Uhr [1984]) will allow many operations to be
executed in parallel. This will call for a reassessment of the time com-
plexity of various computational tasks and may make an optimization
of orientation and starting point feasible in practical shape analysis.

For symmetry measurement we took a route that is completely
analogous to the one used for similarity measurement. Our definition
of symmetry emphasizes that symmetric shapes come into coincidence
with themselves upon the appropriate symmetry transformation, This
definition has put symmetry measurement in the same perspective as
similarity measurement. in fact. the measures of (mirror-)dissimilarity
formed the basis for measures of dissymmetry. introduced in Section
4.5. For each type of symmetry. the measures of dissymmetry express
the extent to which shapes fail to come into coincidence with themselves
upon the associated symmetry transformations. Thus we created a gen-
cral theoretical framework for the measurement of symmetry m and
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symmetry n that is quite similar to the theoretical framework for (mir-
ror-)similarity measurement. A major difference is that the concept of
a metric is meaningless in the context of symmetry measurement. Our
approach to symmetry measurement can be extended to other types of
plane symmetry in a straightforward manner.

Fourier representations pervade the literature on contour-oriented
shape analysis (usually under the heading: Fourier descriptors). Some
important observations concerning the usefulness of Fourier represen-
tations can be made on the basis of Chapters 3 and 4:

e Fourier coefficients can be useful for contour normalization (cf.
Section 4.3).

e Computational efficiency of dissimilarity and dissymmetry mea-
sures can be achieved through the Fourier domain, using FFT tech-
niques, if we choose the value of the index p = 2 (cf. Sections 4.2.4,
4.5.1 and 4.5.2).

e The Fourier representations of z(f), z(1) and 2(t), with (normalized)
arc length parameter £, contain an infinite number of nonzero clements
(cf. Section 3.3).

® For a given level of approximation precision finite Fourier represen-
tations are often not an appropriate means of data reduction in com-
parison with direct representation in the contour domain (cf. Section
3.4). (Data reduction has always been one of the main motivations for
using Fourier representations. )

e [Fach Fourier coefficient inherently contains global shape informa-
tion. Therefore shape analysis based on Fourier representations cannot
be adapted to local shape characteristics.

e Dissimilarity measures based on Fourier representations introduce
in general different geometries in the space of equivalence classes of
similar shapes in comparison to dissimilarity measures based on direct
contour representations. This may provide some justification for their
definition. However, the interpretation of dissimilarity measurement
based on Fourier representations is far more difficult, thus limiting the
usefulness of this measurement.
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From these observations we draw the conclusion that in a contour-
oriented approach to shape analysis dissimilarity measures are prefera-
bly defined on the basis of direct contour representations.

Except for some examples we have assumed throughout this thesis
that shape analysis is performed on 2-D contours, i.e. simple closed
curves in the plane, represented by a contour representation with a
normalized arc length parameter. This causes some limitations:

(a) no direct link to the 3-D world.
(b) shapes are assumed to be simply connected.
(¢) only the shape of simple closed curves can be analyzed.

(d) shapes are compared on the basis of normalized arc length paramet-
rizations.

In the following we discuss these limitations and indicate some routes
to overcome them.

Ad (a). We have assumed that shape analysis can usefully be per-
formed on 2-D contours. For relatively flat objects (e.g. biological cells.
some industrial parts) this is certainly true. For contours that are projec-
tions of 3-D objects onto the imaging plane. our approach has implicitly
assumed that we deal with perpendicular projections only. It is
straightforward to incorporate into our model the possibility that a
contour is the result of skewed projection (cf. ¢.g. Dirilten and Newman
[1977]. Kanade and Kender [1980]. Ballard and Brown [1982].
Cyganski, Orr and Pinjo [1983], Brady and Yuille [1984]. Cyganski and
Orr [1985], Faber and Stokely [1986]. Friedberg [1986]). This additional
freedom in the third dimension will of course increase the computa-
tional complexity of similarity and symmetry analysis.

Ad (b). Though our approach has assumed shapes to be topologically
simple. many interesting shapes do not have this property (cf. e.g.
Figures 4.25 and 4.27). To extend our approach to shapes that have
holes. and possibly even subshapes inside holes. etc.. we have to de-
compose such a topologically nonsimple shape into its constituent re-
gions or contours and represent the shape by a structural description
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(cf. e.g. Buneman [1970], Pavlidis [1977a]. Alexandridis and Klinger
[1978]. Milgram [1979], Duncan and Andriole [1986]).

An example of representing a composite shape by a tree structure is
shown in Figure 5.1. At the level of individual contours our contour-
oriented approach to shape analysis can be applied. The results of shape
analysis for individual regions or contours can be used at higher hierar-
chical levels (using a structural shape analysis approach) to analyze the
complex shape as a whole.

Ad (¢). In many image analysis applications a shape analysis scheme
based on simple closed curves may prove to be a serious limitation for
a number of reasons. Objects may for example be overlapping. In this
case an outer boundary will consist of segments of the boundaries of
the overlapping objects. A second reason is the fact that edge detection
and image segmentation procedures sometimes do not find complete
shape contours, but only parts of these contours. Furthermore. shape
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Figure 5.1. Example of a composite shape (a) represented by a tree structure (b). Each node in
the tree may have various descriptive attributes about the region it represents. Similarly the links
in the tree, that represent the adjacency relations between the regions. may have descriptive
attributes.
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analysis based on complete contours forces us to maintain a constant
contour sampling density everywhere along the contour that is in accor-
dance with the finest shape detail of interest.

In order to deal with these situations it is desirable to be able to
analyze the shape of curve segments. We can distinguish two situations:
one where one segment is completely matched with another segment
and one where a segment is matched to part of another segment.

In the former situation the extension of our method is obtained by
positioning the parametric starting point in endpoints of the curve seg-
ments. In dissimilarity measurement we need only to vary the paramet-
ric starting point over the two endpoints of one of the two curve seg-
ments. If the curve representations describe a curve segment from one
endpoint to the other, then these representations will. in general. not
be periodic. If desired (e.g. for Fourier analysis). the curve representa-
tions can be made periodic by making them describe a curve segment
from one endpoint to the other and back (cf. Impedovo. Marangelli
and Fanelli [1978], Dekking and Van Otterloo [1986] and Figure 3.6).
for which we coined the term retracing.

The latter situation. where a segment is matched to part of another
segment (cf. e.g. Turney, Mudge and Volz [1984]) is far more complex.
Not only do we have to choose an appropriate starting point on one
curve segment to match with one of the endpoints of an other segment.
but we also have to determine the appropriate scale of arc length in
one curve segment with respect to that in an other. thus increasing the
computational complexity. In the process of matching a curve segment
to part of an other curve segment Fourier representations cannot be of
much use since Fourier coefficients contain only global shape informa-
tion. as we pointed out carlier.

[n both cases the extensions we propose fit in the context of the
contour-oriented approach to shape analysis presented in this thesis.
Ad (d). The choice to use a (normalized) arc length parametrization for
contour representations was made on the basis of practical considera-
tions. In order to limit the number of degrees of freedom in contour-
oriented shape matching processes this is a natural choice that sets a
clear reference for such matching processes. Yet in some applications
more flexibility may be desired. For example. some parts of a contour
may contain more noise than other parts. In that case the contour is
traversed slower in the noisier parts. Clearly this will have disturbing
effects on contour-oriented similarity and symmetry measurement
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based on equidistant contour representation sampling, which assumes
equal noise characteristics everywhere along the contour. Similar con-
siderations apply if the amount of shape detail of interest varies along
the contour. In the case of varying noise characteristics, contour
smoothing/filtering, in conjunction with a contour resampling proce-
dure. may reduce the problems. In the case of varying shape detail
along the contour, different techniques are needed.

One method may be to segment the contour in parts with homoge-
neous characteristics in terms of some homogeneity criterion. This
would enable us to maintain the linear relation between the contour
segment parameter and arc length and the propositions for shape anal-
ysis of contour segments under ad (¢) would apply. The results of shape
analysis on individual contour segments may then be combined to ob-
tain a single result, using combinations of metrics as described in Sec-
tion 4.1 (c.g. Eq. 4.1.4), or using structural shape analysis techniques.
similar to those for topologically nonsimple shapes (as referred to under
ad (b)).

A second method to overcome problems in contour-oriented shape
analysis, caused by the (normalized) arc length parametrization of con-
tour representations, is to relax this parametrization convention. This
can be achieved by allowing the relation between the contour parameter
and arc length to become nonlinear in one of a pair of contour represen-
tations in a shape matching process. Such methods are well known in
1-D signal processing, especially in speech processing (cf. Sakoe and
Chiba [1978], Ney [1981]. Kuhn, Tomaschewski and Ney [1981], Ney
[1982]. Anderson and Gaby [1983]). In analogy with the term time
warping in 1-D signal processing, we may call this method arc length
warping in the context of contour-oriented shape analysis. For optical
character recognition similar methods have been proposed (Fujimoto
et al. [1976], Burr [1979]. O'Rourke and Washington [1985]). Recently,
Cheng and Fu [1987] proposed time warping for matching strings and
patterns. along with a VLSI architecture to implement this method.

Dissimilarity measures need to be modified somewhat, when using
arc length warping methods, in order to preserve the required proper-
ties of such measures (cf. Sections 4.1 and 4.2), which may be lost if
we do not control the increased flexibility in the shape matching pro-
cess. This control can be achieved for example by incorporating a
parameter in the dissimilarity measure that expresses the nonlinearity
of the relation between arc length and the contour parameter in the
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matched contour representation. Similar considerations apply to dis-
symmetry measures.

Another approach to cope with varying detail and noise in contours
is due to Zack [1982]. He separates a contour into two components: a
smooth contour with homogencous global characteristics. that can jus-
tifiably be parametrized by (normalized) arc length. and an additional
noise/detail component, that can be processed separately.

5.2 In search of accuracy

Important open problems still exist in the arca of the practical im-
plementation of digital image analysis techniques. For example. ques-
tions regarding the selection of a 2-D image sampling density and a
contour sampling density. that will give a specified measurement accu-
racy, remain largely unanswered.

The model that we commonly use for image analysis. and for shape
analysis in particular, is that of image regions (or objects and
background) that occupy mutually exclusive regions in the (bounded)
2-D image plane and whose union comprises the entire image plane.
Image functions that correspond to this image model with sharply
bounded regions are not bandlimited. Therefore neither bandwidth
(Shannon [1949], Jerri [1977]) nor the maximum absolute curvature
K ... Of the contours (Young. Walker and Bowie [1974]. Van Otterloo
and Gerbrands [1978]) can provide a useful criterion for a 2-D sampling
theorem aimed at information preservation. As a result, the 2-D sam-
pling process leads to an inevitable loss of information with respect to
our picture model (we are temporarily disregarding the bandlimiting
cffects of physical imaging devices upon the image function). In signal-
theoretic terms the finite sampling density causes aliasing while in
geometric terms it causes quantization. Some of the effects of finite 2-D
sampling are the following:

e [t leads to a tolerance region (or domain. cf. Freeman and Glass
[1969]) in the neighborhood of a boundary in segmented digital images.
All contours that fit in this tolerance region lead to the same boundary
in the segmented digital image. Thus we are confronted with a many-to-
one mapping of shapes.

e Since the position and orientation of model contours with respect
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to the 2-D sampling pattern is usually random. a single model contour
can lead to various contours in the segmented digital image that are in
general not geometrically similar. Thus we are also confronted with a
one-to-many mapping of shapes.

From these observations it is clear that, given a contour in a digital
image. there is uncertainty about the exact size and shape of the model
contour and about the exact position and orientation of the model
contour with respect to the 2-D sampling pattern.

Bribiesca and Guzman [1980] have proposed to avoid the many-to-
many mapping problem by first normalizing the position and orienta-
tion of the object to be digitized, thereby evidently creating a chicken-
and-egg problem in digital image analysis.

In Section 3.3 we have shown that the contour representations z, z
and Z, parametrized by (normalized) arc length, are not bandlimited.
Since, in practice, dissimilarity and dissymmetry measurement are
necessarily based on a finite number of contour representation samples
(cf. Section 4.2.4), the contour sampling process constitutes yet another
source of information loss.

As indicated above, also the bandlimiting effects of the imaging de-
vice upon the image function result in a loss of information. In fact,
from a theoretical point of view, each step in the image analysis system
produces a loss of information. Because of these information losses we
have to deal with approximations. which must be of sufficient accuracy
such that the entire measurement process can be performed with the
specified accuracy. The goal of the measurement process may, for
example. be dissimilarity or dissymmetry measurement, based on a
certain type of contour representation.

To enable an efficient design of an image analysis system (i.¢. avoid-
ing overkill at various stages) it is extremely important to specify in the
model of the scenes or objects to be analyzed what we consider to be
relevant shape detail and what not. It must also be specified to which
smoothness class we consider contours to belong and, if possible, what
we consider to be the relevant value of K, of these contours, etc. On
the other hand, to achieve the specified accuracy in the end result it
may be clear that not only the precision of each processing step must
be in accordance with the required accuracy of the end result, but that
this precision must also leave room for subsequent processing steps.
This observation explains why it is sensible in an image analysis system,
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where the emphasis is on measurement accuracy and not on picture
communication, to sample images more densely than necessary accord-
ing to Shannon’s sampling theorem (Shannon [1949]. Jerri [1977)).

The accuracy of a complete image analysis system is very difficult to
analyze (and even more difficult to predict). Most reports in the litera-
ture concentrate on the accuracy of part of the image analysis system.
This may still be an acceptable approach, as long as we keep in mind
that the overall system will put more severe conditions on accuracy
than may be apparent from an analysis of part of the system.

For an analysis of the achievable accuracy in dissimilarity and dissym-
metry measurement, as proposed in Chapter 4. a good starting point
might be to study the influence of the selection of:

® the 2-D image sampling density.
e the contour definition in digital pictures.
e the I-D contour sampling density,

e processing and estimation procedures for contour representations
and contour normalization parameters,

upon this accuracy. using geometrical figures of known shape.

The choice of an appropriate 2-D sampling density for shape analysis
purposes has been widely studied. The quantization of the gecometry of
the plane by the finite 2-D sampling density has given rise to the study
of digital topology and digital geometry. For these topics we refer to
Rosenfeld and Kak [1982]. Serra [1982] and Haas [1985]. who also
provide reference to the relevant literature.

Pavlidis used K., as one of the features in a 2-D sampling theorem
(cf. Pavlidis [1980b] or Pavlidis [1982]. pp. 130-142). The topological
structure of the image regions (i.e. objects, background. etc.) in the
model picture is preserved if the conditions in this theorem are satisfied.
Thus this theorem sets a minimum requirement on the 2-D sampling
density.

Freeman and Glass [1969] determine the curve of minimum bending
energy over all curves that lead to the same digital curve. The difference
in bending energy in the original curve and this minimum bending
energy curve is taken as a measure of degradation in shape detail as a
result of 2-D sampling. They also use the maximum curvature. that
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must be recoverable to a certain accuracy after 2-D sampling, as a
criterion for specifying significant detail. In Freeman [1978a] it is stated
that for a well-quantized curve variations in direction over minimally 5
or maximally 13 curve segments in the digital curve should not represent
significant shape detail. Wallace and Wintz [1980] also state that sig-
nificant contour variations must extend over many digital curve seg-
ments. though they do not specify over how many.

The influence of the choice of a 2-D sampling density upon the accu-
racy with which shape parameters can be estimated has been widely
studied (cf. e.g. Frolov and Maling [1969]. Lloyd [1976]. Kulpa [1977].

~Proffitt and Rosen [1979]. Ellis et al. [1979]. Rosen [1980]. Wechsler
[1981], Vossepoel and Smeulders {1982], Kulpa {1983], Ho {1983].
Dorst and Smeulders [1986], Veillon [1986]. Teh and Chin [1986]).
Despite all these studies a sound theoretical model for the relation
between the 2-D sampling density and the accuracy of parameter esti-
mation is still lacking. The literature on geometrical probability and
spatial statistics (cf. Solomon [1953], Matérn [1960], Kendall and
Moran [1963], Moran [1966], Moran [1969], Miles [1972], Little [1974],
Harding and Kendall [1974]. Bartlett [1975]. Santal6 [1976]. Baddeley
[1977]. Miles and Serra [1978]. Miles [1980], Ripley [1981], Baddeley
[1982]), on random set theory and integral geometry (cf. Matheron
[1975]. Serra [1982]) and on stereological methods (cf. Weibel [1979],
Weibel [1980]) may provide valuable sources of inspiration in this re-
spect. Rosenfeld [1984] has proposed to use 2-D fuzzy sets to take the
geometrical uncertainty, resulting from a finite 2-D sampling. into ac-
count. However, for an appropriate specification of such fuzzy sets we
need a probabilistic model.

For dissimilarity and dissymmetry measurement as proposed in this
thesis, accurate methods for contour representation estimation are at
least as important as those for shape parameter measurement, since
this accuracy sets the limits on the discriminative power of dissimilarity
and dissymmetry measures. For good performance it is essential that
we abandon the geometrically discrete pixel domain (Wallace and
Wintz [1980]. Wallace. Mitchell and Fukunaga [1981]), i.e. the digital
contour must be defined in € or in R* to enable an effective smoothing
of the geometric quantization effects of 2-D sampling.

Though there have been some reports on smoothing the digital con-
tour to estimate the position function z (cf. e.g. Dessimoz [1979], Wal-
lace and Wintz [1980]), most reports on smoothing the digital boundary
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are in conjunction with the estimation of the curvature function K (cf.
¢.g. Young. Walker and Bowice [1974]. Bennett and MacDonald [1975].
Van Otterloo [1978], Wallace. Mitchell and Fukunaga [1981]. Ander-
son and Bezdek [1984]. Asada and Brady [1986]. Mokhtarian and
Mackworth [1986]). This is not surprising in view of our experience of
the sensitivity of K for noise. for distortion and for the finite 1-D con-
tour sampling density. Virtually none of these reports deals with the
issue of estimation accuracy.

For appropriate contour representation estimation methods it is again
important that we specify the smoothness class. to which the contours.
in terms of our model. belong. There should be no discrepancy between
the smoothness class of the contours in our model and the tvpe of
contour representation used for dissimilarity or dissymmetry measure-
ment (e.g. in practice do not use the curvature function to represent
polygons. cf. Shirai [1973]). It may be expected that the higher the
derivative involved in the contour representations the more samples
will be needed for a reliable estimate.

[t should be noted that there are two aspects in contour representa-
tion estimation: not only the contour representation itself. but also the
relation between the contour representation and arc length is involved.
since we proposed to use a (normalized) arc length parameter for con-
tour representations. Therefore contour representation estimation pro-
cedures must take the arc length constraint into account. Dessimoz
(Dessimoz [1979]. Dessimoz [1980]) proposed an iterative procedure to
deal with both aspects. To obtain practical guidelines for contour rep-
resentation estimation, a comparative investigation of the performance
of various methods from digital signal processing and numerical analysis
(confer the suggestions given in Section 4.4 and the proposal in Appen-
dix C) is desirable. Adaptive estimation techniques (cf. e.g. Hodson.
Thayer and Franklin [1981]) may lead to an improved estimation accu-
racv. Such a comparative study should of course also involve the effects
of 2-D sampling, digital boundary definition, 1-D (re)sampling. etc..
and is preferably done on the basis of geometric figures with known
contour representations. The dissimilarity measures proposed in this
thesis will then constitute appropriate reference to judge the accuracy
of contour representation estimation,
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Appendix A

Some mathematical concepts
and properties

The purpose of this appendix is to introduce some of the mathemat-
ical concepts, notations and properties that have been used at various
places in this thesis. The treatment will be rather cursory. In many
cases theorems will be stated without proof. For an in-depth treatment
and more mathematical rigor we will refer to standard texts on
mathematical analysis. functional analysis and Fourier series theory.

To indicate the order of magnitude of functions, we use the Landau
order symbols (cf. Titchmarsh [1939], Zygmund [1959a]. Apostol
[1974]). Consider two functions f and g, defined on a set S, with g(x)
= 0 for all x € §. By

fix) = 0{g(x)}

we generally mean that there is a constant ¢ > 0 such that |f(x)| < cg(x)
for all x € S. In particular,

flx) = 0(1)

means that f(x) is a bounded function. By
flx) = ofg(x)}

as x — a we mean that f(x)/g(x) — () as x — a. In particular,
f(x) = o{1}

as x — () means that f{x) is a function which tends to zero as x — 0,
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In the following we introduce some concepts and properties of func-
tion spaces and sequence spaces. We start with some basic definitions
and properties, and relate these to the context of this thesis.

Definition A.1. Metric (Copson [1968]).

A metric on an abstract set A (whose elements a,. a». as. ... are called
points) is a function d: A X A— R such that for all. not necessarily
distinct @y, a», ay € A;

o dlay, az) =0 iff a; = as, (A.1)
o dlay. a) < d(as. a)) + d(as, a-). (A.2)
o dla,. a) = d(a». a)), (A.3)
o dlay. a;) >0 if a # a.. (A.4)

The pair (A, d) is called a metric space.

The properties of a metric specified in Egs. A.1-A.4 are the ones
that arc usually specified to define a metric. It can be shown (Copson
[1968]) that Eqs. A.1-A.2 specify the minimal conditions on a metric
and that the properties in Eqs. A.3-A.4 can be derived from them.

From Egs. A.3-A.4 we see that a metric d is a symmetric and non-
negative function.

In the context of this thesis the set A consists of all 2x-periodic
contour representations of a certain type (z, z, 2. y or K) or of all
Fourier representations of a certain type (3. . Z, yr or K). In the case
of 27-periodic contour representations we speak of A as a function
space. In the latter case we speak of A as a sequence space.

By equality between a pair of elements in a function space we mean
that this equality exists at least almost everywhere. To define the mean-
ing of "almost everywhere” we need the concept of a set of measure zero.

Definition A.2. Ser of measure zero (Apostol [1974]).
A set S of real numbers is said to have measure zero if, for every ¢ > 0,
there is a set of intervals (a,. by). kK = 1,2, .... such that:
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Sc U(a,\.. b,) and Z (b — a;) < e.
k k

O

Definition A.3. Almost everywhere (a.e.) (Zaanen [1953], Apostol
[1974]).

If a function f. defined on a set S, posseses a certain property at every
point of S, except at most at a subset of § of measure zero, then f is
said to satisfy this property almost everywhere on §.

O
For the next definition we use the concept of a linear space, defined

over a set of scalars 4 (e.g. R or C). For a definition of a linear space
we refer e.g. to Banach [1955]. Simmons [1963] or Wouk [1979].

Definition A.4. Norm (Wouk [1979]).
A norm on a linear space A is a function ||-||:A — {u: 0 < u < =},
such that for all a;, a; € A and a € s

o |la|l =0 iffa; =0, (A.5)
o |laa)]| = lal [lall. (A.6)
* flay + aff < flaff + flazff (A.7)

The pair (A, ||-||) is called a normed linear space.
O

The norm defines the notion of distance from an arbitrary element
in a space to the origin, that is, the notion of ‘size’ of an element.

Theorem A.l. Metric induced by the norm (Simmons [1963],
Lipschutz [1965]).

In a normed linear space (A, [[-]|) the norm of the difference between
pairs (a;, a;) € A X A defines a metric on A:

d(ay, a)) = ||a, ~ a||. (A.8)

This metric is called the induced metric on (A, ||-]]). O
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An important family of function spaces is characterized by the Lebes-
gue-integrability of its elements. Since the natural metric in these spaces
is defined as a norm and the norm is based on a Lebesgue integral.
these function spaces consist of equivalence classes of functions that are
equal almost everywhere (a.e.) (cf. Definition A.3).

Remark.

A proper introduction to Lebesgue’s theory of integration is beyond
the scope of this appendix. Through this theory. in which Lebesgue’s
famous theorem on dominated convergence constitutes an important
result, the notion of integrability was extended. thus yielding more
integrable functions. For more details we refer e.g. to Apostol [1974],
Riesz and Sz.-Nagy [1955] or to Janssen and Van der Steen [1984].

]

Definition A.5. Essential supremum (Zaanen [1953]. Wouk [1979].
Taylor and Lay [1980]).

The essential least upper bound or the essential supremum of a real-
or complex-valued function f. defined on a set S, is the smallest number
a = 0 such that [f(1)| < a a.e. on S. i.e.

esssup f=min {a:a=0and [f(1)| <a a.c.onS}. (A.9)
LY

If the context is clear. the subscript § can be discarded.

Remark.
As mentioned above. the contour representations discussed in this
thesis are 2z-periodic functions (cf. Chapter 2). Therefore the function
spaces. that will be defined in the following, all consist of 2z-periodic
functions.

O
Definition A.6. L’ spaces (Zaanen [1953], Wouk [1979], Taylor and
Lay [1980]).
For 1 = p < = we denote by L” = L"(27) the set of equivalence classes
of Lebesgue-integrable real- or complex-valued functions f such that
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|f|7 is integrable. i.e.

L lf(0)|"de < . (A.10)

In addition. L = L*(27) denotes the set of equivalence classes of
measurable real- or complex-valued functions, that are essentially
bounded. i.e.

ess sup |f] < . (A.11)
[

The L7 spaces are sometimes called Lebesgue (function) spaces
(Zaanen [1953], Taylor [1958]. Aubin [1979]).

Theorem A.2. Norm on L7 (Taylor and Lay [1980]).
A norm on L”(27) is defined by

. 1ip
: 1 )
I, = [%J \f(rJi*dr] . 1<sp<w, (A.12)
i 2w
Further. it can be shown that

71l = lim [If1l, = ess sup|f]. (A.13)

Thus the essential supremum defines a norm on L”.
O

It follows immediately that the properties of a norm in Egs. A.5 and
A.6 are satisfied by Egs. A.12 and A.13 (for the property in Eq. A.5
it is sufficient that equality to zero is satisfied almost everywhere). The
validity of property A.7 of a norm (triangle inequality) for Eqs. A.12
and A.13, follows from Minkowski's inequality, which in turn is a con-
sequence of Holder's inequality.

Theorem A.3. Holder's inequality (Hardy, Littlewood and Pdlya
[1952], Beckenbach and Bellman [1971]).
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fl<ps=,llp+1llg=1,fellandge Ll thenf-geL'and

i
= j |f(n)g(r)|dt

r |j' ] i
) ‘ [
= ).Vzl-TJ’_T ‘H”‘rd{‘} ‘727 J'l‘: |g(”‘!dr.‘i l

(A.14)

|

\ 21:7 le: fln)g(r)de

For p = ¢ = 2 in Eq. A.14 we obtain the (Buniakowski-)Schwarz
incquality.

Theorem A.4. Minkowski's inequality (Hardy. Littlewood and Pélva

[1952]. Beckenbach and Bellman [1971]).
Ifl<p<=.fel’andg e L. then

lip

e 8 lip
I - : )
< [l_rL \f(.')(fd;] B [21.7_;_7 \g(f}l’dr} C(ALS)

O

The norm ||f]|, constitutes the usual porm on L. The Lebesgue
spaces L” constitute Banach spaces, i.e. complete normed linear spaces
(Zaanen [1953]).

The L7 spaces are also metric spaces, with the metric induced by the
usual norm (¢f. Theorem A.1). These metrics are sometimes called
Minkowski metrics (Anderberg [1973]. Sneath and Sokal [1973]).

For p = 2 the norm and the metric are called Euclidean. For p = =
the norm is called the sup norm (Apostol [1974]) or the uniform norm
(Simmons [1963]), while in the context of approximation theory, it is
also called the Chebychev norm (Cheney [1966]). The metric induced
by ||| . is sometimes called the Chebychev metric (Anderberg [1973]).

The effect of varying the value of index p to distance measurement
in R” is shown in Figure A.1. A unit ball is the set of all points at unit
distance of a given point, e.g. the origin. For | < p < 2 the unit ball
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for a given value of p is a convex curve lying between the unit balls for
the L' and L? metrics, For 2 < p < « the unit ball for a given value of
p is a convex curve lying between the unit balls for the L* and the L*
metrics.

y
1
p=co
p=2|/
p=1
1 0 e

Figure A.1. Unit balls in R?, defined by the L* metrics forp = 1, p = 2 and p = .

Remark.

The spaces of contour representations, introduced in this thesis are not
linear. For the spaces formed by the contour representations z, z and
Z this has a number of reasons. The first reason is that the null element
is not really part of these spaces, since it represents a degenerate con-
tour: a single point. Secondly, these spaces of contour representations
are not closed under addition, unless we discard the requirement that
only simple closed contours are represented. Finally, if any of the con-
tour representations is multiplied by a negative real, then it represents
a contour with clockwise positive sense instead of counterclockwise
positive sense (cf. Section 2.1). For similar reasons, the spaces of con-
tour representations i and K are not linear.

The fact that the norm was defined in Definition A.4 as a function
on a linear space does not prevent us from using the norm and its
induced metric effectively to define the concepts of size/scale and dis-
tance/dissimilarity, respectively, in the spaces of contour representa-
tions. O
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We continue with the definitions of some further concepts concerning
function spaces.

Definition A.7. Total variation (Apostol [1974], Wouk [1979]).

Let f be a scalar function. defined on [a. b], and. for any n > 0. let
P={t ty sz} Witha=p, < < --- <, <t, = b, define a
partition of [a. b]. We denote the set of all partitions of [a, b] by [a, b].
Then the total variation of fis defined as

Var(f) = sup {i{j'{;k}—f(u MY (A.16)

Pedab) W=

O

Definition A.8. The space BV|a. b| of functions of bounded variation
on |a. b] (Apostol [1974]. Wouk [1979]).
Let f be a scalar function, defined on [a. b]. If there exists a positive
number M < =_ such that Var (f) < M. then fis said to be of bounded
variation on [a, b].

The set of all functions of bounded variation on [a, b] constitutes the
space BV|[a. b].

g

Definition A.9. The space CBV|a. b) of continuous functions of bound-
ed variation on [a. b} (Edwards [1979]).

The set of all functions that are both continuous and of bounded vari-
ation on [a. b] constitutes the space CBV(a, b].

Q—

Definition A.10. The space ACla. b} of absolutely continuous func-
tions on [a, b] (Riesz and Sz.-Nagy [1955]. Apostol [1974]).

A scalar function f, defined on [a. b] is said to be absolutely continuous
on [a, b] if for every ¢ > 0 there is a 0 > 0 such that

;\Z \fiby) — flay)| < e (A.17)
= |

for every n disjoint open subintervals (a,. by) of [a. b]. n = 1, 2,
5 s
the sum of whose lengths 2, | (b, — a;) is less than 0.
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The set of all absolutely continuous functions on [a, b] constitutes
the space AC[a, b].

O

Definition A.11. The space Ala, b] of functions that satisfy a uniform
Lipschitz condition on [a, b] (Apostol [1974]).

A scalar function f, defined on |a, b}, is said to satisfy a uniform
Lipschitz condition on [a, b] if there exists a positive number M < =
such that

lf(s) = fiy] < M|s — 4 (A.18)

for all s and ¢ in [a, b].

The greatest lower bound of all numbers M for which Eq. A.18 is
satisfied for all s and ¢ in [a, b] is called the Lipschitz constant of f,
which we indicate by the symbol 4.

The set of all functions on {a. b], that satisfy a uniform Lipschitz
condition on [a, b] constitutes the space Ala, b].

O

Definition A.12. The space C|a, b of k times continuously differentia-
ble functions on [a, b] (Dunford and Schwartz [1958]. Edwards [1979]).
A scalar function f, defined on [a, b], is said to be k times continuously
differentiable on [a, b] if the derivatives of f of all orders not greater
than k exist and are continuous at every point in [a, b].

The set of all k times continuously differentiable functions on [a, b]
constitutes the space CHa. b].

The space C*[a. b] of infinitely-differentiable functions on [a, b] is
defined as

Clo b= k=172 .} (A.19)

The space C'[a. b] of continuous functions on [a, b], will also be
denoted as Cla. b).

I

For the function spaces, defined in the foregoing, a number of inclu-
sion relations exist.
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Theorem A.S. [nclusion relations between function spaces (Apostol
[1974], Edwards [1979]).

The inclusion relations A.20-A.22 are valid for the function spaces just
defined:

el 'eCescC=sCelcllclr

(A.20)
where k € N u {0} and where = > p > g > (),
CcAcAC=(CBYcBY L (A.21)
and
CBV < C. (A.22
Proof

The validity of the left part of Eq. A.20, i.e. C* ' = C* for any integer
k = () is obvious (cf. Definition A.12).

Every continuous function on [a, b]. —% < a < b < =_ is bounded.
Thus C = L”. The right part of Eq. A.20,i.e. L” c LYfor = =p > ¢ > (.
is a consequence of the inequality

Wi, <M, 0<qg<p==, (A.23)

which in turn is a result of Holder’s inequality. Eq. A.14 (cf. Edwards
[1979], p. 28).

The validity of Eq. A.21 is verified from left to right. If f € C'[a. b].
then fis bounded on [a. b]. Considering the definition of the derivative
of a function and Eq. A.18. taking M = max, . |, ;,[_I}'U}|. it follows
immediately that f e C' implies f € A. That C' is properly contained in
A follows for example from f(1) = |1}, defined on an interval {a, b},
with 0 € [a. b]. This establishes C' = A.

In Proposition 3.1 we established that f € A implies f € AC. That A
is properly contained in AC follows for example from f(1) = |¢| ", de-
fined on an interval [a. b], with 0 € [a. b]. Clearly. if we set r = 0 and
let s approach to 0 in Eq. A.18 we see that f(r) = |t| " does not belong
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to A. On the other hand, |f()| = |sgn(9)[¢]”| is Riemann-integrable
and therefore f(1) is Lebesgue-integrable. This is a necessary and suffi-
cient condition for f(1), the indefinite integral of () up 1o an additive
constant, to belong to AC (cf. Riesz and Sz.-Nagy [1955], pp. 50-52).
Thus we may conclude that A =« AC.

For AC = CBYV we refer to Riesz and Sz.-Nagy [1955], pp. 50-52.

The validity of CBV < BV is trivial (cf. Definitions A.8 and A.9).
We observe from Definitions A.7 and A.8 that /€ BV[a. b] implies
that f is bounded everywhere on [a. b]. Thus from f € BV[a, b] it
follows that f € L[a, b]. If f € L"[a. b], then f may be unbounded on
a set of measure zero in [a, b] (cf. Definitions A.3-A.6). Thus BV is
properly contained in L", i.e. BY < L".

Finally we verify the validity of Eq. A.22. It is trivial that f € CBY
implies f € C. On the other hand, a continous function need not be of
bounded variation (cf. Apostol [1974], p. 129). Thus CBV is properly
contained in C. i.c. CBV = C.

O

Remark.

Though Theorem A.5 is valid for = > p > ¢ > () we consider only L”
spaces for p = 1 since for 0 < p < | the triangle inequality (property
A.7 of a norm) does not hold.

]

Remark.

In this thesis we replace the interval identifier [a, b], as used in Defi-
nitions A.6-A.12 and in Theorem A.5, by [27] to signify the length of
the fundamental parameter interval. since we deal only with 2z-periodic
contour representations. Often the context is clear which enables us to
discard the interval identifier altogether.

O
In the following we define some concepts concerning sequence spaces

over Z. In many respects these concepts constitute duals of their coun-
terparts in spaces of functions defined over a bounded closed interval.

Definition A.13. €” spaces (Simmons [1963], Wouk [1979]. Taylor and
Lay [1980]).
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For 1 = p < = we denote by (7 = {”(Z) the set of real- or complex-val-
ued sequences & = {.... &—1). &0), &(1), ...}, such that |[(n)|" is
summable. i.e.

Y |&m)]” < =. (A.24)
”"2

In addition, €* = €*(Z) denotes the set of bounded real- or complex-
valued sequences. i.e.

sup l&,| < =. (A.25)

ne &

| B
= |

Theorem A.6. Norm on " (Taylor and Lay [1980]).
A norm on £'(27) is defined by
Ve
I&ll, = | 2. |$tu)!"] . Isp<=. (A.26)
L ne?Z
Further it can be shown that
€]l = sup [&m)]. (A.27)
NE z
Thus the supremum of a sequence defines a norm on €7,
k=

The validity of the triangle inequality (property A.7 of a norm) fol-
lows from Minkowski's inequality for sums. which in turn is a conse-
quence of Haolder’s inequality for sums.

Theorem A.7. Holder's inequality for sums (Hardy. Littlewood and
Polya [1952], Beckenbach and Bellman [1971]).
flsp<s= llp+1llg=1.5E€ ¢ and y € €. then &-y € ¢ and

Z E(n)y(n)| = Z |&(n) ()|

ned

<

ned

lip[ 14
I;-‘full”] [ 3 [zfn}J"l (A
v ne& 4 E
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For p = ¢ = 2 in Eq. A.28 we obtain Cauchy’s inequality.

Theorem A.8. Minkowski's inequality for sums (Hardy, Littlewood
and Polya [1952], Beckenbach and Bellman [1971]).
I[fl<p=<x &€ and y e £, then

I/p
{ Y &) + x(n)H

neZ

lip
3 |x(n)|ﬂ ) (A.29)

- M E

lip
é[ Z |E(n)‘“.| r +

ne &

O

Compare Theorems A.7 and A.8 with Theorems A.3 and A.4, re-
spectively.

The norm | &||, constitutes the usual norm on ¢”. The sequence
spaces €” constitute Banach spaces (Zaanen [1953]. Taylor and Lay
[1980]). The € spaces are also metric spaces, with the metric induced
by the usual norm (cf. Theorem A.1). The names given to the usual
norm and metric on €”, both in general and in the special cases p = 2
and p = = are the same as those given to the usual norm and metric
on L.

Remark.

For the same reasons that the spaces of contour representations, intro-
duced in this thesis, are not linear, the spaces of Fourier representations
of contours are also not linear. Yet, the norm on € and its induced
metric properly define the concepts of size/scale and distance/dissimilar-
ity, respectively, in the spaces of Fourier representations.

We introduce some additional concepts and properties concerning

sequence spaces.

Definition A.14. ¢, spaces (Edwards [1979], Wouk [1979]).
By ¢, = ¢,(Z) we denote the set of all bounded real- or complex-valued
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sequences & = {..., &—1). &0). &(1). ...}. for which

lim &(n) = 0. (A.30)

|H’ A

In view of Eq. A.30. a sequence & € ¢ is called a null sequence.
O

. can be used to turn ¢, into a metric

The metric induced by |[[&
space (Wouk [1979]).
For the sequence spaces just defined the following relations exist.

Theorem A.9. [Inclusion relations between sequence spaces (Edwards
[1979]. Wouk [1979]).
For the sequence spaces defined above we have the inclusion relations:

(fies T e (A.31)
where 0 < g < p < =.
Proof
The validity of €/ < ¢ < €~ follows from the inequality
£l = &l = 1€ (A.32

for 0 < g < p < =. For a proof of Eq. A.32, which is sometimes called
Jensen's inequality, we refer to Hardy. Littlewood and Polya [1952] or
Beckenbach and Bellman [1971].

To see that £, ) < p < = is properly contained in ¢, consider for
example the sequence & = {&(n)},.2 = {(1 + [n])"'"},.2. which
belongs to ¢, but not to €7, 0 < p < =,

Finally, ¢, is a subset of £ by definition. That ¢, is a proper subset
of €7 is obvious from Definitions A.13 and A.14.

Remark.

For 0 < p < 1 the triangle inequality does not hold for the €” spaces
(in the same way as it does not hold for the L” spaces for these values
of p). Therefore we do not consider the €” spaces forO0 < p < 1. [J

]
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We conclude this appendix by giving some definitions and properties
of trigonometric series and Fourier series.

Definition A.15. The set of trigonometric polynomials of degree at
most n (cf. Zygmund [1959a], Cheney [1966]).
This set is defined as:

T = {f:f(:)= Yonet e =Rl (A.33)

“\'|f—_n

Note that T, = T, ., for all n = 0.

Definition A.16. The set of trigonometric polynomials of degree at
most n, free of a constant term (cf. Cheney [1966]).
This set is defined as:

t..={f:fm= Y e, c.-kec}. (A.34)

b<|kl=n

It is obvious that t, = T, for all n = 1.

The following theorem deals with pointwise convergence of Fourier
series.
Theorem A.10. Dirichlet-jordan test (cf. Zygmund [1959a]. Edwards
[1979]).
1. If f € L' is of bounded variation on some neighborhood of a point

t, then (cf. Definitions 3.1 and 3.2):

lim (S,f)(t) = { f(t + 0) + f(t — 0) } /2. (A.35)
2. More in particular, at every point of continuity of f we have:
lim (S,.£)(1) = f(0). (A.36)

3. If fis continuous at every point of a closed interval [a, b], then (S, f)
converges uniformly in [a. b]. O
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Theorem A.11. Riemann-Lebesgue lemma (cf. Zygmund [1939a].
Katznelson [1968], Edwards [1979]).
For any integrable f one has (cf. Definition 3.1):

Ilim_ ‘,"'(n) =1 (A.37)

From Theorem A.11 we see that [ € ¢, if fis integrable.
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Appendix B

A method for a fast and reliable
computation of moments m,, of regions
bounded by polygons

B.1 Introduction

Over many years after their introduction in the context of pattern
recognition and image analysis (Hu [1961]. Hu [1962]. Alt [1962]), mo-
ments have maintained a considerable popularity and a substantial body
of literature on this subject now exists.

Usually the two-dimensional moments m,, of order (p + ¢) are de-
fined as moments of the image function f(x, y) (cf. Eq. 4.3.5):

My =[ J flx, y)x"ydxdy. (B.1)

The moments m,, of f(x,y) are also called monomial moments
(Boyce and Hossack [1983]), since they are defined with respect to the
monomial x”y? (Teague [1980]), or geometric moments (Vijaya Kumar
and Rahenkamp [1986]).

A major application of the moments m,, has been the definition of
moment invariants, a set of image features which are invariant under
certain image transformations such as translation, scaling, rotation and
contrast change (Hu [1962], Dudani, Breeding and McGhee [1977].
Wong and Hall [1978], Sadjadi and Hall [1978], Maitra [1979], Reddi
[1981]). In this approach the moment invariants constitute feature vec-
tors in a multidimensional feature space.

In another approach the low order moments are used to normalize
the image. in a way that is comparable to the moment-based object
normalization described in Section 4.3. Subsequently either higher
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order moments. computed from the normalized images. are used as
normalized features (Alt [1962]. Smith and Wright [1970]. Nill [1981].
Reeves and Rostampour [1981]). or the normalized images are used in
another way in image processing and analysis (Casey [1970]. Abu-Mos-
tafa and Psaltis [1985]). In the latter paper it is emphasized that. espe-
cially under noisy circumstances, the moments should be used only for
normalization but not for classification purposes.

Some papers discuss the usefulness of moments for data compression
(Teague [1980]. Nill [1981]. Boyce and Hossack [1983]).

In applications where the internal structure of objects is not impor-
tant, but merely their shape. not the image function f(x. v) is used in
the expression for m,, (Eq. B.l). but the characteristic function
7r(x. v) of an object that covers the region R < B (or R = €) (Apostol
[1974]):

1. if (v, v) € R. (B.2a)
r(x.y) =
(). otherwise, (B.2b)

In that case m,,, is sometimes called a silhouette moment of the object
(Dudani. Breeding and McGhee [1977]. Reeves and Rostampour
[1981]. Reeves and Wittner [1983]). Silhouette moments are used for
shape normalization (Casey [1970]. Reeves and Rostampour [1981].
Gilmore and Boyd [1981]. Reeves and Wittner [1983]. Cyganski and
Orr [1985]). for the computation of moment invariants (Reeves and
Rostampour [1981]. Gilmore and Boyd [1981]). or as features of the
shape or inertial propertics of objects (Wilson and Farrior [1976].
Reeves and Rostampour [1981]. Tang [1982], Miles and Tough [1983].
Ho [1983]).

The computation of moments involves integration over a two-dimen-
sional region. Especially in the case of silhouette moments it has been
observed (Wilson and Farrior [1976]. Tang [1982]. Miles and Tough
[1983]. Cyganski and Orr [1985]. Bamich and De Figueiredo [1986])
that the computational complexity of moments can be reduced substan-
tially through Green's thecorem (cf. Spiegel [1964], Kreysig [1972] or
Eq. 4.3.12):

J{ 3Q(x,y) 3 3gP(x.y)

= ] dxdy = ‘1€ P(x.v)dx + Q(x, v)dy. (B.3)
ox 3y ;

R
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where yy is the contour of the region R = R (or equivalently, R = C).
In the next section we develop, through Green's theorem, formulae
that enable the efficient computation of moments for a special class of
objects: objects bounded by a polygon.

B.2 Moments of objects hounded by a polygon

Usually in digital image analysis the double integral in m,,, (Eq. B.1)
is approximated by a double summation:

M=1 N-—I

Moy = DI i Y Lk (B.4)

i=0 j=0

where f[i, j] is the sampled image function, which has dimensions M
and N. and where i and j indicate the discrete pixel locations. The
discrete summation in Eq. B.4 is one of the sources of errors in m,,
and causes the moment invariants to be not completely invariant under
equiform transformations of the image (Abu-Mostafa and Psaltis
[1985], Teh and Chin [1986]). One way to reduce these errors is to
increase the sampling density.

For silhouette moments it is possible to obtain a better approximation
through Green’s theorem, which enables us to replace the double inte-
gral in Eq. B.1 by a contour integral. In a segmented digital picture we
can define the boundary of a region for example as a polygon (cf.
Figure B.1). Obviously we do not completely get rid of the geometric
discreteness of the segmented image, so it still pays to increase the
sampling density. However, the simple mathematical form of the region
contour (i.e. a polygon) enables us to obtain an analytic, and therefore
exact, expression for the silhouette moments m,, of the segmented
region.

In the context of data reduction in image analysis, polygonal approx-
imation is a popular technique (Montanari [1970], Ramer [1972], Pavli-
dis and Horowitz [1974]. McClure and Vitale [1975], Ellis and Eden
[1976]. Pavlidis [1977b]. Sklansky and Gonzalez [1979], Williams
[1981], Kurozumi and Davis [1982], Kashyap and Oommen [1983]).

The expression for polygonal silhouette moments, that will be de-
rived in the following. constitutes a particularly efficient and reliable

rq
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means for the computation of the silhouette moments of such polygonal
approximations.

Figure B.1. Picture of a circle, arbitrarily positioned on a Cartesian sampling lattice. The polvgon
represents the boundary of the sampled arcle (other polygonal boundary definitions are possible
though).

We start the derivation by substituting the characteristic function yg.
Eq. B.2. for the image function fin Eq. B.1:

my, =J J Zr(x o v)xvide dy = ( '.\"’_ﬂd.r dy. (B.5)

R

We apply Green’s theorem, Eq. B.3. to Eq. B.5. In Eq. B.3 we

choose:

P(x.y) =0. (B.6a)

xP + iy, (B.6b)

1
Q(.t._\]-—p+l

Thus we obtain:

o - I o 5 P ¥
my, = ” xytdredy = % p+1 xP T ydy, (B.7)

R L
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We now assume that yg is a polygon with N vertices:
{z,} = {x, + iv,}, n=0,...,N—-1, (B.8)
where the vertices have been ordered according to counterclockwise

traversal of the polygon y. The line segment between the vertices z,
and z, . | can be represented parametrically as:

Az,
z(s) = As s—5)+ 2z, (B.9)

where s is the parameter of arc length and where

ANz, = 2,4 I = Zns (B.10)
n=1 n=1
Y [Azl= ) As. n=l. (B.11a)
m=I m=1)
s,=+ 0, n—= (B.11b)
-1 =1
- Y |Az,|== ) As,, n<-1, (B.llc)
m=n m=n
and
A‘Yu = Sp+) T I T |AZ”|. (Blz)

Note in Eq. B.9 that z, = z(s,). Compare Eqs. B.8-B.12 with Egs.
2.2.40-2.2.49. We also note that

Az, = Ax, + iAy,, (B.13)
where
Ax, = X1 — X, (B.14a)

A,vu = Yo+l = Y- (B - ]4b)
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Substitution of the expressions in Egs. B.9-B.14b into Eq. B.7 viclds:

‘ N—1

S d (s
o= LT[ e 40

.v+[ =1 Js,

= JA“- ]A.t‘, }P* ! [&\, 'IFA\'
— I.Iu +',” _J'J'.‘r o ’l < A ]J
et ol Lis® TRl Lag®FH) a0

(B.15)

After application of the binomial theorem (cf. Riordan [1979]. p. 1)
to Eq. B.15. we obtain by integration

=t + 1 -
mM:p+l Z J” IZ (P )(A\ g ]

n=A\l a=1n °

a+ i+l

. [ Ji{ ( ;;) (A_\'”yj.'-':':. ,5} A'\_”( AI\. ) (s")"" Ads'
p=0 AP I

N=—1 . p] i

b p-:- | ,,Z:.. ,,Z.l ,;Z.l a +/]5+ 1 (P: I) (;‘;]

(B )™ T YAy, ) g (B.16)

Shifting the summation over f by 1. using the fact that

( n ): m (n+l)' (B.17)

m— n+1\ m

and inverting the order of summation gives:

m,, = I RS f (P"’l)(q"‘[)
P (p+Ig+ 1) = = ot p 7

N=1
Z (A\”)”\P + 1 _”{A‘,”)ﬁ g+ 1= j (B‘lx)

n =1l
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Eq. B.18 constitutes the first expression for m,, that allows its effi-
cient computation. The computational complexity is O(pgN). In Eq.
B.18 we can distinguish a data dependent part:

N—1
LaBipsg)= ), (A ® 1= 4(Ay Yyt t1=F,

n=1il

(B.19a)

and a data independent part, which consists of (p + 2)(g + 1) coeffi-
- cients:

5 - B (p+1)({g+1
dla,.B:p.q)= (p+1)(g + 1) r£+ﬂ( a })( I ]

a=0,..p+l, =1, ..,.q9+1,

e IR I i (B.19b)

For any moment m,,, the coefficients d(«. 3 p. q) can be precom-
puted and stored in memory.

We now develop Eq. B.18 further to obtain an expression for m,,
that involves only the coordinates of the vertices of y, and not the
differences Ax, and Ay,. Substituting Eqs. B.14a and B.14bin Eq. B.18
and again applying the binomial theorem (cf. Riordan [1979]. p. 1)
yvields:

1 5 S (p+|)(q+l)
m,, =
P o+ 1Ylg+1) <o =4 a+p\ @ B

N=1 " "
— ¥ 7 4 a—yl pt+tl—=a
i Z { Z (_l)u (v)"” B I“u ; }An
"

=0 Ly=10 b

f A
' { 2 (-IJ”"’(ﬂJ.vIL .}ﬂf"’]yﬁ"‘ =t
0 (B.20)

a=1
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If we invert the order of summation of « and y and of g and 0.
respectively and if we apply the transformations ¢’ = « — yand ' =
f — o. we obtain:

p+l g+
1

|
B i I =T
M (p+ g+ 1) :___Z” ,,Z ( ) ( o )

] i

m

prl=p g+l1-0

Y Y (=neer B0

(vi s et S

. (:p +“l,— ;*] (q +/:,-— r))

4 == g+tl=2a ~
Z"'H'l"!r -\uvl-\dr 2 {B"l}

where. by definition,

S HES L s (B.22)
a +p +y+0
Similar to Eq. B.18. we distinguish in Eq. B.21 a data dependent
part:

=]

Su(y.0:p.q) = Z e e I e (B.23a)

mn i}
n=1

and a data independent part. which consists of (p + 2)(¢ + 2) coeffi-
cients:

e = ] B 1N g1
= 05 25) (p+1}(q+1)( y ] ( 0 J
pEI=y wElL=
_angt e p’ + 0
”2“ j_,-.z__:,, b= a +p +y+0

_(p+lu;')(q+l—-d).

2
o g (B.23b)
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To reduce the expression for ¢(y, 0; p, q), we define the help function

& 2 m+ ¢, (a) (b)
h(cy, ¢csia,b) = =1 ,
K615 035, 6:0) ,,Zn ,,.Z;’n ) n+m+c¢ \n/ \m
(B.24)
fora, b, ¢, € N u {0}, ¢; € N. We also define the function
a, & m+c¢, (a\ (b
", —_ __I nt+m ( ) ( )’-Ff"'HI+|"]'
j{‘J HZU mzll ( ) n+m-+ Ca 1 1 :
(B.25)
Then we have the relation
e
h(cy, ¢y a,b) = f(1) = J f(x)dx. (B.26)
il
Differentiation of f(x) gives
Proy ol i( ] ”((J) 1 i ey m(b) m
f('i) - {'I" n=1 ) v x m={l ) m %
a a e b —1
— bx“ —1 n( ) M = m—l( )rm—r
. HZ:(I( ) N # ,,;er( ) m = 1/
= M1 —x)t P = bx(1 —x)4 P, (B.27)

By substituting this result into the integral in Eq. B.26. we obtain
through Gradshteyn and Ryzhik [1965], pp. 284, 938 and 950:

h(ci, c5a,b) =<¢ (ea—1)(a+ b)! — b GG+ 2 oLk

o S A SRR (g0 +ie)t

(a-}-b-i—('z—z]dl
(’3—1

- (a+b+c—1)a+b+c) i+ bl =ort (528
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The help function A occurs in the expression for ¢(y. 0: p. ¢) in
Eq. B.23b. which we now can write as:

| [p:l:l](q+l']

(¥ 959, q) = (p+1)g+1) o

oyt oipEl =g+ 1—=9). (B.29)
Substitution of Eq. B.28 into Eq. B.29 vields:
c(y. 01 p.q)
( P+q
T e

B | ('p+i)(q+l)
_{p-i—]}[q-i-l) v 0 (p+g+1)(p+qg+2)

. {r){p + g+t 2=y—0)—(yto)ig+ 1= r)}}

{ress N e e s

_[ ¥ ] ( 0 ) I 0 + |

- ( p+yq ] (p+rag+1)p+qg+2) (j+l_p+lf
¥ Ho—=1j

(i 20 B

_( ¥y )[f() ) 1 ) 2

- (p+q+2) (g 42 ==Y sr+q) q+l_p+] '
v+ 0

(B.30)
The derivation in Egs. B.26-B.28 is not valid for ¢, = (). which corre-
sponds to (y, 0) = (0. 0). Substituting these values into Eq. B.23b and

bearing Eq. B.22 in mind we find

(0. 0:p. q)

3 g ' \
1 IZ Z (— 1)+ p (p-ﬁ]){ql-;l)

:[p+i}(q+l),,_.. #= g +\ g /
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d
el

p+1 if ;
p+l o Bl a+1
(p+l)(q+l) 2 ( ),.,Z,,( g a’+ﬂ+l(ﬂ+l]

(p+ 1) ;Z (= ( jl] ;si.(_[)ﬂ U,Jr}H : (;’;) (B.31)

In analogy with Eqs. B.24-B.25 we define the help functions

b
B h= 3 (=1 (b]. (B.32)

=0 n-c\n

forbe N u {0}.c e N, and

1 l -
fi{-r) Zn{_ )” M= (}) S (833}

Then

hy(e: b) = f,(1) = f fi(x)dx. (B.34)

We derive

o= Y, N (A P G (B R KL

n=1

Through substitution of Eq. B.35 into Eq. B.34 and through Grad-
shteyn and Ryzhik [1965]. pp. 284, 938 and 950, we obtain

hy(c; b) = i -1y (h]zi(_bﬂ)_l. (B.36)

=) N G

forbe N u {0}.c e N.
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With this result we find for Eq. B.31

pel

/ _ ] e D+ 1 ) _
{[“‘““"“‘”_p+l Z (=13 [ 5 ]h,(a + 1:9)

o =1l

_ =1 &= p+1 (g+a' + 1"
_h+] Z(]}( )r.{+](u'+[ ]

¢ =1)

(B.37)

After some rearrangements in the binomial coefficients in Eq. B.37

we obtain

I p+qg+2y IS (p+qg+2)
(0,0;p.q) = — =)
Wstapiig) (p+ g + IJ( p+1 ) .,Z..{ Y (q+ I +u']
=1y (;J+¢;+2)"""i':{"l]” ('p-'.-q+1')
S (pH D@+ ptl w=q! \ @

5 (=) (;}+q+2)“
‘(p-i'l)(q-l-l} Jrim |

prg+2 ) { a
L oand f)+q+_ _ i ’p*!-q-i-._
| I VA S R S ]}

=1l

. =1y P+q+3]‘
“{p+l)(q+l} p+1

. {{I—l]'ﬂ"f"‘ ]}=!(1’+(I+l]}. (B."H]
q

where we used Gradshteyn and Ryzhik [1965], p. 3. in the last step of
this derivation. From Eq. B.38 we find the result:

. B.39
(p+Dp+qg+2) ( )

c(0.0:p.qg) = —




MOMENTS OF A POLYGON

e
‘d
ad

The derivation of ¢(y, 9: p, ¢) in Egs. B.24-B.30 is also not valid for
(y,0)=(p+ 1l.q + 1).i.e.a= b = 0in Eq. B.24. Substituting these
values in Eq. B.23b gives

1 q+1

ep+1,g+ i:P-q):{p+ Ig+1) ptg+2

I
T (p+Dptg+2)

(B.40)
So we find

cp+ 1,9+ 1;p, q) = —c(0,0; p, q). (B.41)

Analyzing the data dependent part Sy of m,, (Eq. B.23a) for (y. 0)
= (0, 0) gives

N=1

prlogt
Z Xy Y

n=I(

Sv(0,0;p, q)

== -1«:
¥ Z 1.'|'4| TR

n=Il

=Sup+ 1.9+ 1:p.q). (B.42)

where we have used the periodicity of the vertices of the polygon:
Xp+mN=Xns Yn+mn =V M€ {0, .... N— 1}, m € Z. Thus we find that
we can use for the data independent coefficients ¢(0. 0; p, ¢g) and
c(p+1,q+ 1;p.q)any number, as long as Eq. B.41 is satisfied, which
then leads to a cancellation of the contribution of Sy(0, 0; p, ) against
that of Sy(p + 1, g + 1; p, g). From a computational point of view it
may be convenient to set both ¢(0, 0: p.g) =0ande(p+ 1,9 + 1:p, q)
= ().

Egs. B.21-B.23b show that the computational complexity of m,,.
expressed in coordinates of the polygon vertices, is O(pgN). the same
as we found for the expression in Eq. B.18. The data independent
coefficients c(y, ; p. q) need only be computed once and can be stored
permanently.
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Recently, Bamieh and De Figueiredo [1986] also derived a formula
for the moments m,,, of regions bounded by polygons. Though they also
apply Green’s theorem for the conversion of the surface integral into a
contour integral, their derivation and the resulting formula are differ-
ent. The resulting formula leads to a computational complexity of
O(gN) instead of O(pgN) and can. by a minor adaptation. be further
reduced to O(min(p. q) - N). However. their method of computing m,,,
has some drawbacks. For each polygon side it has to be checked
whether Ax,= 0 (vertical side) or whether Ay, = 0 (horizontal side)
and. if so. the computation needs to be dddpu.d since otherwise this
would lead to a singularity. Moreover. if a polygon side is almost verti-
cal or almost horizontal. then this may lead to overflow problems in
the computation. These problems are absent in the formulas for m
that we derived in this appendix.

P

The results obtained so far in this section can be summarized as
follows. For p. ¢ = 0, 1, ... the moment m,, of a polygonal region is
given by:

Py

p+l g4+
Mpg = Z Z dla.p:p.q) T(a. Bip.q). (B.43)

a=1) =1

where d(a. B; p. q) and Ty(a. p: p. q) were defined: previously. in
Egs. B.19b and B.19a respectively. as

I p N g+ 1
KAy bnad) =

and

N =1

T(a.fip.q) = Z (Ar) il FE Ay Pyt T

n=1

Another expression for the moment m,,, of a polygonal region reads:

p+l g+

Npy = Z Z c(y.0:p.q)Sy(y.0:p.q). (B.44)
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where ¢(y. 0; p. q) was defined previously in Eq. B.30 as

(;}Jrl)(f[""l)
-y 0 1
.1‘): . —
c(y,0:p.q) (p+q+2) (p+q+2—y—=0)y+0)
v+ 0
{ o 7 ]
g+1 p+1)°
fory = 0, ...p + 1and & = 0, ..., ¢ + 1, with the exception of

(y.0) = (0,0)and (y. d) = (p + 1. ¢ + 1) for which we found

1

028 == N+ g+2)

and
cp+l.g+ 1l:p,.g)= :
! Ry (p+1)p+g+2)
in Eqgs. B.39 and B.40 respectively, and where Sy(y, 0: p, g) was defined
in Eq. (B.23a) as

Ji+! ] g+ 1-=98

S,\-(}’-diﬂ- (1") Z k ] " ,u + I"n

n=1

In Table B.1 we list the coefficients d(«, f5; p. q) in matrices D(p, q)
of size (p + 2)(q + 1) for moments of the orders (p + g) = 0, 1, 2 and
3. The first row in each matrix D is indexed as a = 0, while the first
column is indexed as f = 1 (cf. Eq. B.43). The column with index
B = 0 is lacking since the coefficients d(«, f; p, g¢) = 0 for f = 0 (cf.
Eq. B.19b).

In Table B.2 we do the same for the coefficients c(y. 0: p, g). which
are listed in matrices C(p. q) of size (p + 2)(q + 2). using similar inde-
xing conventions. The first row in each matrix C is indexed as y = 0,
while the first column is indexed as o = 0 (cf. Eq. B.44).

The matrices C{p. q) of coetlicients c(y. ¢: p. ¢) have a number of
special properties, which will be derived in the following.
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Table B.1. Matrices D{p. g) of data independent coeflicients die. i p . g (Eq. B.1Yb)
for moments of the orders (p + ¢) = 0. 1. 2 and 3.

Moment order | Matrices D(p. ¢) of coefficients d(a. jip. )
1 20
0 D(.0)= + i})
| 6 3 | :
I po.1H=%(; 3] D(1.0)=7 |3
32 i
(12 6
7 | ¥ .
2 Dm.:;=.¢;[1; I; ) DlI.l)=f'~_-(12 8
i t | _1 .,.
ez
DR.0) = 1 3[
!
=1 [ 30 30 10 |
120 30 20 3
3 D(0.3) = % (3, - 5o buY=k [ 30 30 15
= i L1015 6/
120 10, n:;
30 2
D(2.1) = %{;j? i DG.0)=% |10
2015 -
5 4 |

Theorem B.1.
The cocfficients ¢(y. 0: p. g) of the matrices C(p. g) have the following
antisymmetry property:

cp+l—y.qg+1—0:p.q9)=~c(7.9:p.9).

’

p=0 . ,p+tl, 0=0 ..g+1 (B.45)

Proof

By substituting p + | — y for y and ¢ + 1 — 0 for ¢ into Eq. B.30 we
find:

gdp+1—9y.g+1=09;p.q)
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Table B.2. Matrices C(p, ¢) of data independent coefficients e(y, 0: p. q) (Egs. B.30,
B.39 and B.40) for moments of the orders (p + ¢) =0, 1, 2 and 3.

Moment order | Matrices C( p, ¢) of coefficients d(y. d: p. )
0 C(0,0) = %(:: :]
; (-2 11 =R
I C0.1)= “(—1 3 1): c.o=¢[-11
. - =it Al
\ 3 2 1
=S T !
2 c0.2)= % : C(I,n:ﬁ(n 0 2)
’ (—1 -1 —1 3] B
i [
C(;.mz%(:: ;l
— il
. \ it N TR
3 Cm.;)=z‘n[j_: _: _i i) cu:)::',(—z-l 1 3)
: ' =fi=2'=3 h
r’~4 7‘ l'l _l I
L [=3 12 et
R 1)= —lh b C3.0)=%|-1 1
5 > i 1
(=15 =58 A -4 3
( p+1 ]( g+ 1 )
pEl—v\g+]l =0 ]

- ( Dag+2 ) (y+o0)p+qg+2—y—0)
p+qg+2—y—290

{q+l—é_p+l—y]

g+ 1 p+1
(p+l}(q+l)
AN 1 l o _ vy !
(p+q+2) (p+gq+2—y—0)y+9d) lg+1 p+1
y+0

—c(y, 0: p. q), (B.46)
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fory=0.....p+ 1land 0 =0, .... g + 1. with the exception of (y. 0)
= (0.0)and (y, ) = (p + 1, g + 1). For the latter two pairs of (y. )
the relation in Eq. B.45 was alrecady found in Eq. B.41.

O

Through this property the number of multiplications required to com-

pute a moment m,, can be reduced by a factor of two.

Corollary B.1.

ptl g=+1
Z Z c(y.-0:p.q)=0. (B.47)

il a=1
Proof
This corollary is a direct consequence of Theorem B.1:

pr+l g+1

Z Z c(y.0:p.q)

w=1l H=1)

p+l g+1

I
= Z Z {e(y.0:p.q) +c(p+1—v.q+1-0:p.q)}

-I-;II A =1

= (). (B.48)

g

Through the following properties the number of arithmetic opera-
tions may be reduced even more.

Theorem B.2.

(-{};_}x;p‘p] = (] “(:"(f?"‘ I ':B-l{)d}
and

gl <
{'(’0; L 4 5 l :p.q | =0, ifbothpandgodd. (B.49b)
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Proof

In Eq. B.49a we consider the coefficients ¢(y, 0: p, g) for which p = ¢
and y = 9. By applying these relations in Eq. B.30, the validity of
the property in Eq. B.4%a immediately becomes clear. The same is
found for Eq. B.49b through a substitution of ¥ = (p + 1)/2 and
o = (g + 1))2 into Eg. B.30.

[

From Eqs. B.4l, B.42 and B.44 we already concluded that
c(0,0: p,g)and c(p + 1, g + 1; p, q) can just as well both be set to
zero, thus leading to a further reduction of the number of arithmetic
operations.

The next two theorems deal with the properties of sums of coeffi-
cients ¢(y. 0: p, q) over rows and columns of C(p. g).

Theorem B.3.
The sum of coefficients c(y, 0: p. q) over a row in C(p, g) satisfies:

q+1

) cy.0:p.g)=0. O<y<p+l (B.50)

A=l
Proof

In order to show this property, we substitute the expression in Eq.
B.23b for ¢(y, o; p. g) in Eq. B.50:

l'{']-

Z c(y.0:p.q)

a=1l
(p+l)(q+i)
g A 1 R o T

& ,5Z|. (p+1)g+1)

Irj{l—‘f- ;'-il—d

Y Y (=peem  MmEO (P Sl r’)(q +1 —0)
n+m+y+0 2 =

n=>A m=1) \
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(p+l) S

Y gl =y
= =l
{}u it [){f{ e ]} n=1I { ] ( n )
o+ 1 g =D
q+1 m+ o0 g-Fi—0
_l " )
,,Z‘“ ( y ) ,,,Z“ (=1) n+m+y+o0 ( m )

(B.51)

In order to solve the last summation in Eq. B.51. we introduce the
help function

h

Bxy= )Y (="

m+ c, ( b ] e
m=1 m —+ (‘: I ¢

with b, ¢, e N u {0}, ¢; € N.
Analogous to the derivations in Eqs. B.24-B.2R and Eqs. B 32-B .36
we find
) m+c, (b
;‘r‘,’ﬁ:f :11 — _‘lm (
ks €23 0) = Ja(1) Z (1) m+ ¢ m)

r
y = i "5 +f =
= ehs e b> 0. (B.53a)
Ca Ca
= .
il bl (B.53b)

Withey, =0, ca=n+y+0and b = g + 1 — 0 we then obtain for
the last summation in Eq. B.51:

hi(d.n+y+0:9g+1—0)
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qg+1-=0

Y (1) m+ 0 (q+l—(5)
D n+m+y+0 m

it

-1
n+y (q+l+n+}’) . 0<odo<qg+1, (B.54a)

n+y+o\ nty+o

0 q+1

— y = afs &
_”+}’+f5 g+1l+n+y’ e=gt+1. (B.54b)

Note that Eq. B.54a is not valid for n + y + 6 = 0, since it is required
that ¢, # 0. Therefore we must verify Eq. B.50 separately for the case
v = (.

Substitution of the results in Eqgs. B.54a and B.54b into Eq. B.51
yields:

g+ 1

Zc‘(}!.f}:p.q)

0=

(p+l']

p+l—v

_ 7 _avs P L=Y
=i o ( ; )

{i((ﬁrl) —(n+7y) (c;+[+n+}f)']+ q+1 }
=N 0 Inty+d\ n+y+0d g+l+n+y)’

(B.55)

We now concentrate on the summation over 0 in Eq. B.55. Rearrang-
ing factorials in this expression gives

(q+l] n+y (q+l-i-n+;f)'l
O /nt+ty+d\ n+y+o
B (q+ 1 +n+;f)"’ (n+y— I +r))

5
n+y nhg—1 (B-36)
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With the aid of this result and the formula

i

A;,(”:k)=["?:rl)- (B.57)

{cf. Gradshteyn and Ryzhik [1965]. p. 3). we find for the expression in
braces in Eq. B.55:

i f

Z (‘!+i) ~ L) 'q+l+n+;f')
o=n\ O H+}f+(§- n+:'+(§

7 g+ 1

g+1l+nty

__(q+l+u+;ﬂ] ](q+.-r+;.!]+ g+ 1

n+y n+y gtk +En+y

Il

qg+1 w g+ 1
g+ lit+np+y ghil+tnt+y

= (). (B.38)

If we consider again Eq. B.35 it is immediately clear that with the
result in Eq. B.58 we have proven this theorem forO0 <y = p + 1. We
still have to verify the case y = 0.

Since we already verified Eq. B.50 for y = p + . the validity of Eq.
B.50 for y = 0 follows from Theorem B.1:

¢+ |

i
Z c(0.0:p.q)= — Z clp+ L g+1—0:p.q)

=1 =1

i+ 1

= Z c(pt1.0:p.q)

Al =1l

Il

(B.59)

where o' =g+ 1 = 0.
The proof of this theorem is now complete.
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A similar theorem is valid for the sum of coefficients c(y, d; p. q)
over a column in C(p, q).

Theorem B.4.
The sum of coefficients ¢(y. 0; p. g) over a column in C(p, g) satisfies:

pti
Z c(y.0:p,q)=0. 0<d<qg+1. (B.60)

=10

Proof

The proof of this theorem follows along similar lines as the proof of
Theorem B.3. We sketch the main steps. substituting in Eq. B.60 the
expression for ¢(y, 0: p, q) in Eq. B.23b:

ptl

Z c(y.0:p.q)

y=1
(p+ l)(q+ 1)
ptl \ }’ ; h

(p+1)(g+1)

=1

prl—y g+1-0 L m+ 0 (p+|—y)(q+l—r})
' Z Z (=1) n+m+y+o

n=1\ m =

n m

(q-i-l)
.0 aoel=4

= (q+l—é)
T(p+)g+1) =, (—1)"(m +0) e
P& (p+ 1
: Z( y )h1(!ﬂ+y+(§;p+l—-y)‘ (B.61)

/s

where the function &, was defined earlier in Eq. B.32. Note from Eq.
B.32 that Eq. B.61 is not valid for m + y + 0 = 0, and therefore not
for o = 0.
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Through Eqgs. B.36 and B.57 we obtain

(q-f- [']
e 0 el g+1-—-19
;; 6(02:) T(p+ g+ H,Zu (~1) ( m
e
o (1= 1y +1=9

2 (p+ I)g + 1)
= (), I<o<gq+1. (B.62)

which completes the proof of this theorem.
m
From Eq. B.62 we observe that the property of Theorem B.4 is not
valid for 6 = g + 1. since

p+h
|

<[ . = . .63
:‘Z”((,.q+],p.q} (22 g+ 1) (B.63)

For 0 = 0 the property is not valid either (cf. also Table B.2). This
follows immediately if we apply Theorem B. 1 to Eq. B.63. from which
we find the result

lf:*i

I
Z c(y.0:p.g)=—

. .64
eyl (p+1(g+1) (B.04)

References

Abu-Mostafa, Y.S. and D. Psaltis [1985]

‘Image Normalization by Complex Moments’. IEEE Trans. Patt. and Mach. Intell.
PAMI-T: 46-55.

Alt, F.L. [1962]

*Digital Pattern Recognition by Moments™. Journ. ACM 9: 240-258,

Apostol. T.M. [1974]

Mathematical Analysis. Second Edition, Reading, Mass,: Addison-Wesley.




REFERENCES 345

Bamieh, B. and R.J.P. de Figueiredo [1986]

‘A General Moment-Invariants/Attributed-Graph Method for Three-Dimensional Ob-
ject Recognition from a Single Image’. [EEE Journ. of Robot. and Autom. RA-2:
31-41,

Boyee, J.F. and W.J. Hossack [1983]
‘Moment Invariants for Pattern Recognition’, Patt. Recogn. Lett. 1: 451-456 and Patt.
Recogn. Lett. 2: 131 (Errata).

Casey, R.G. [1970]
‘Moment Normalization of Handprinted Characters’, IBM Journ. of Res. and Dev. 14:
548-557.

Cyganski, D. and J.A. Orr [1985]
*Applications of Tensor Theory to Object Recognition and Orientation Determination’,
IEEE Trans. Patt. Anal. and Mach. Intell. PAMI-T: 662-673.

Dudani, S.A.. K.J. Breeding and R.B. McGhee [1977]
‘Aircraft Identification by Moment Invariants’. IEEE Trans. Comp. C-26: 39-46.

Ellis, Jr.. J.R. and M. Eden [1976]
"On the Number of Sides Necessary for Polygonal Approximation of Black-and-White
Figures in a Plane’, Inform. and Contr. 30: 169-186.

Gilmore, 1.F. and W.W, Boyd [1981]
‘Building and Bridge Classification by Moment Invariants’. In: Processing of Images
and Data from Optical Sensors, W.H. Carter (Ed.). Proc. SPIE 292: 256-263.

Gradshteyn, 1.S. and 1.M. Ryzhik [1963]
Table of Integrals, Series. and Products. New York: Academic Press.

Ho. C.-S. [1983]
*Precision of Digital Vision Systems’. IEEE Trans. Patt. Anal. and Mach. Intell.
PAMI-5: 593-601.

Hu. M.K. [1961]
‘Pattern Recognition by Moment Invariants’. Proc. IRE 49: 1428,

Hu, M.K. [1962]
*Visual Pattern Recognition by Moment [nvariants’, IRE Trans. Inf. Th. IT-8: 179-187.

Kashyap. R.L. and B.J. Oommen [1983]
‘Scale Preserving Smoothing of Polygons’, IEEE Trans. Patt. Anal. and Mach. Intell.
PAMI-5: 667-671.

E. Kreysig [1972]
Advanced Engineering Mathematics. New York: John Wiley and Sons, Inc.

Kurozumi, Y. and W.A. Davis [1982]
‘Polygonal Approximation by the Minimax Method’, Comp. Graph. and Im. Proc. 19:
248-264,

McClure, D.E. and R.A. Vitale [1975]
‘Polygonal Approximation of Plane Convex Bodies', Journ. Math. Anal. and Appl. 51:
326-358.




346 APPENDIX B

Maitra. S. [1979]

‘Moment Invariants’. Proc. IEEE 67: 697-699.

Miles. R.G. and J.G. Tough [1983]

‘A Method for the Computation of Inertial Properties for General Areas’. Comp. Aid,
Des. 15: 196-200.

Montanari. U. [1970]

A Note on Minimal Length Polygonal Approximation to a Digitized Contour’. Comm,
ACM 13: 41-47,

Nill. N.B. [1981]

“Applications of Moments to Image Understanding’. In: Techniques and Applicarions
of Image Understanding. J.J. Pearson (Ed.). Proc. SPIE 281: 126-131.

Pavlidis. T. [1977b]

‘Polygonal Approximations by Newton's Method', [IEEE Trans. Comp. C-26: 800-807.
Pavlidis. T. and S.L. Horowitz [1974]

‘Segmentation of Plane Curves’. IEEE Trans. Comp. C-23: 86(0-87().

Ramer. U. [1972]

‘An lterative Procedure for the Polygonal Approximation of Plane Curves’. Comp.
Graph. and Im. Proc. 1: 244-256,

Reddi. S.S. [1981]

‘Radial and Angular Moment Invariants for lmage Identification’. [EEE Trans. Patt.
Anal. and Mach, Intell. PAMI-3: 240-242.

Reeves. AP, and A. Rostampour | 1981]

"Shape Analysis of Segmented Objects Using Moments'. Proc. IEEE Comp. Soc. Conf
on Patt. Recogn, and Image Proc.. Dallas. Tx.. 1981: 171-174.

Reeves, AP, and B.S. Wittner [1983]

“Shape Analysis of Three Dimensional Objects Using the Method of Moments’, Proc,
IEEE Comp. Soc. Conf. on Comp. Vision and Patt. Recogn.. Washington. D.C.. 1983:
20-26.

Riordan, 1. [1979]

Combinatorial Identities. Huntingdon. N.Y.: Robert E. Kricger Publishing Company.
Sadjadi. F.A. and E.L. Hall [1978]

“Numerical Computations of Moment Invanants for Scene Analysiv'. Proc. 1EEE
Comp. Soc. Conf. on Patt. Recogn. and Image Proc., Chicago. I11., 1978: I81-187.
Sklansky. J. and V. Gonzalez [1979]

"A Parallel Mechanism for Describing Silhouettes', Proc. IEEE Comp. Soc. Conf. on
Patt. Recogn. and Image Proc.. Chicago, [11., 1979: 604-609,

Smith. F.W. and M.H. Wright [1970]

“Automatic Ship Photo Interpretation by the Method of Moments™. IEEE Conf. Record
of the Symp. on Feat. Extract. and Select. in Patt. Recogn.. Argonne. 1l.. 1970:
145-154.

Spicgel. MLR. [1964]

Complex Variables with an Introduction to Conformal Mapping and lts Applications.
Schaum’s Outline Series, New York: McGraw-Hill Book Co., Inc.




REFERENCES 347

Tang, G.Y. |1982]

*A Discrete Version of Green's Theorem’, IEEE Trans. Patt. Apal. and Mach. Intell.
PAMI-4: 242-249,

Teague. M.R. [1980]

‘Image Analysis via the General Theory of Moments™, Journ. Opt. Soc. Am. 70: 920-
930.

Teh, C.-H. and R.T. Chin [1986]

‘On Digital Approximation of Moment Invariants’. Comp. Vis.. Graph. and Im. Proc.
33: 318-326.

Vijaya Kumar, B.V.K. and C.A. Rahenkamp [1986]

‘Calculation of Geometric Moments Using Fourier Plane Intensities’, Appl. Opt. 25:
997-1007.

Williams, C.M. [1981]

‘Bounded Straight-Line Approximation of Digitized Planar Curves and Lines’, Comp.
Graph. and Im. Proc. 16: 370-38],

Wilson, Jr.. H.B. and D.S. Farrior [1976]
‘Computation of Geometrical and Inertial Properties for General Areas and Volumes
of Revolution”. Comp. Aid. Des. 8: 257-263.

Wong. R.Y. and E.L. Hall [1978]
*Scene Matching with Invariant Moments’, Comp. Graph. and Im. Proc. 8: 16-24.



348



349

Appendix C

Estimation of contour representations
using polynomial filters

In Section 4.4 we described an experiment to obtain insight into the
characteristics of the dissimilarity measures, defined in Section 4.2. In
Section 4.5 similar experiments were described to evaluate the perform-
ance of the dissymmetry measures, introduced in that section.

In order to perform these experiments we had to estimate sets of
samples of the contour representations z, z, Z, y and K (cf. Chapter 2),
taken equidistantly along contours. The contour representations z, 2
i and K involve first and second order derivatives of the position func-
tion z. In the following we describe a method to obtain samples of these
representations, through differentiation of piecewise polynomial ap-
proximations to position function samples z[n]. For the polynomial ap-
proximation we use a least squares criterion. We show that this method
corresponds to applying a finite impulse response filter (FIR filter) with
fixed coefficients to the position function samples z[n], which leads to
efficient implementations. The coefficients of the FIR filter depend on
the order of the polynomials used in the fit, the order of the derivative
and the number of samples z[n] to which we fit the polynomial, but not
on the position along the contour.

The polynomial of order P that we fit to 2M + 1 position function
samples. centered at z[n], with 2M + 1 > P, is given by

P

()= ) clnl(t— 1), (i

p=1
where the coefficients ¢,[n] are complex valued:

olnl = ayln] + ib,{n]. (C.2)
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The method of least squares fit of z,(1) to 2M + 1 samples of the
position function z. centered at z[n]. requires that we minimize

\ f 1

[):[”I = Z Z[” + "”l e Z (},[”l(fn +m = "n)lﬂ.

m=-M p=1
(C.3)
with respect to the P + 1 coefficients ¢ [n].
The gradient operator with respect to ¢,[n] is defined as (cf. Spiegel
[1964]. p. 82):

- B (C.4)

ARES +3 i)
cpln] 3a,[n] b, [n] 3¢,[n]

Applying this gradient operator to D*[n] with respect to each of the
coefficients ¢,[n] and setting the results equal to zero yields the follow-
ing system of P + | lincar equations:

M
Z Zn+ml(t, , m—1,)
m=-=M
/i M
= Z { Beem 0¥ T t e lnls p=ViunP: (C5)
y=0tm=-M

We introduce the notation:

M
Srg(”l = Z ((:r mo fu}l!- (Cﬁl
\

m= =}

Writing Eq. C.5 in matrix/vector form gives
uln| = T[n]c|n]. (C7)

where u[n] is a vector with P + 1 elements:
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M
/ Z z[n + m| \
m=-M

M
u[”] = m —Z— .\IZ[” ! ”II{I“ o !“) ’ (C.Hﬂ}
M
Z EI” i ’”l("n tm "'u).‘
m=—-M

T[nlisa (P + 1) x (P + 1) matrix:

Soln]  Sia] ... Sln]
Tlﬁl = -S]IHI S:[H] S 5;- ;.|[HI : (th)
Selnl - Spaaln] .o Swla]

and c[n] is the vector of P + 1 coefficients ¢, [n] of the polynomial (1)

fef. Eq. C.1)
coln)
cln] = ailn] : (C.8¢)
cpln]
We denote the p-th column in the matrix T'[n] as the vector £,[n]:
S,[n]
Sp f-L[u| . (C.9)

t[n] =

S, . pln]
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Furthermore, the determinant of a matrix A is denoted as |A|. Then.
according to Cramer’s rule (cf. Apostol [1969]. Cohn [1974]). the solu-
tions of the coefficients ¢,[n] are given by

|U,[n]]

c,ln] == s P (C.10)

| T1n]|
where the matrix U,[n] is defined as
Uyn] = (t..[u] e R BN :,r[n|).
(E€11)

We note that in the matrix U,[n] only the p-th column. i.c. the vector
u[n|. depends upon the samples z[n].

We denote the cofactor of the element alg. p) at row g and column
p of matrix A as A_,. For ease of notation in the context of this appendix
we start counting rows and columns by index 0 instead of by index 1.

To separate the data independent elements from the data dependent
clements in Eq. C.10 we expand the determinant IL}.[H] by its p-th
column:

I i J 7] r .
{PI”] = Z Z :I n + ”II(!H = m = l'Ii.' ! ( E—"J,UI” I )g”s
\?'[”H q=10 l m=-M }

] r
I b
= Z zln + m| Z s — 2,) (U [0])
IT[”” m=-\ g=1
u |lf;,[n- m]|
- Z zln + m| ; p=0....P. (€.12)
m=—M IT[””
where the matrix V,[n, m] is given by
Viln.m| = (g[n] ... 0, [n] v[n.m] ¢, [n] ... t]«]).

(C.13a)
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with vector v[n, m|:

(!n tm {u)
v[n,m] = : . (C.13b)

;’
(!u +m .f”)

In our experiments, contours are parametrized according to nor-
malized arc length and the samples z[n] have been taken equidistantly
along the contour. Consequentially. in this case

Lysm — by = FRAL. (C.14)

If N is the number of samples taken along the contour, then Af = 2a/N.
So t,.,,— 1, is independent of n. Therefore also §,[n], T[n], and
V,[n. m| are independent of n and are denoted from now on as §,, T
and V,[m].

As a result we can now express the coefficients c,[n] as (cf. Eq. C.12):

L [V, [ml|
cpln] = :Z ”z[rr + m| !
M |V,[—m'H
= Y z2[n-m'] :
m=—M | Tl
= z[n] = h[n]. =0, ol (€.15)

where
| Vrl[ _‘"] |
| 7]

and where # denotes (cyclic) convolution (cf. e.g. Oppenheim, Willsky

hy[n] = n=-M, .. M, (C.16)
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and Young [1983]). From Eqgs. C.15 and C.16 we observe that ¢, jn].
the p-th coefficient of the polynomial (1) centered at z[n]. is the result
of a (cyclic) convolution of the position function samples and an FIR
filter /1,[n] with 2M + 1 coefficients, that are independent of the posi-
tion along the contour.

Another consequence of the equidistant sampling along the contour
(Eq. C.14) is that S, becomes (cf. Eq. C.6):

M =) for ¢ odd.
S,= (A Y m! (C.17)

m=-M > () for g even.

As a consequence of Eq. C.17 we obtain for the elements i(g. r) of
the matrix T (cf. Eq. C.8b):

Hg.r)=S,,,=0 for ¢ + r odd. (C.18)

[t is easily verified that. as a result of Eq. C.18. the cofactor T, of
the matrix T satisfies

7= for g + r odd. (C.19)

If we expand the determinant in the numerator of the expression for
h,|n] in Eq. C.16 by its p-th column, we obtain:

.fJ
hy[n] = Z (—nAn)( Vp[-””w'
qg=1
!)
= Y (—nA)IT,, p=0...P (C.20)
¢ =1
since (V[n]),, = T, forn=— M. ....M,q=0..... P(cf. Egs. C.8b,

C.13a, b).
From Eqs. C.19 and C.20 it now follows that

hyn] = h,[—n] for p even. (C.21a)
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since for p even the indices ¢ that lead to a contribution to h,[n] in Eq.
C.20 are also even. Likewise we find

hyln) = —=h,[—n] for p odd. (C.21b)

Thus for p even the coefficients 4,[n] define a symmetric FIR filter.
and for p odd they define an antisymmetric FIR filter.

While the coefficients hy[n] need to be computed only once, the
coefficients ¢,[n] of the polynomial (1) must be computed at each of
the N sample positions along the contour (cf. Egs. C.15 and C.16). The
complexity of the computation of each of the P coefficients c,[n] at all
N sample positions along the contour is O(N-M), when fitting to
2M + 1 position function samples. For sufficiently large M it may be
more efficient to compute the convolution sum in Eq. C.15 via multi-
plication in the Fourier domain using FFT methods (cf. Section 4.2).
In the latter case the computational complexity is O(Nlog, N), assum-
ing that N > 2M + | and that N is a power of 2 (cf. Section 4.2).

With the result in Eq. C.17 the polynomial x,(7). Eq. C.1. can be
computed cfficiently at each position z[#n] along the contour. In digital
image analysis. the position function samples z[n| are always corrupted
by distortion. caused by the discrete geometry of the two-dimensional
sampling pattern. Therefore we use the polynomial 7, (7) to smooth the
position function z at the n-th sampie point, i.e. at t = r,. Thus the
approximated position function sample z,[n] is given by (cf. Egs. C.1-
Gl

z,|n] = 7,(t,) = ciln] = ay[n] + iby[n]. (161 22)

In order to approximate the tangent function z at the n-th sample
point, we take the derivative of 7,(7) and evaluate the result at ¢ = 1,
This gives (cf. Eqs. C.1-C.2):

z|n] = 7,(t,) = ciln] = a)[n] + iby|n]. (C.23)
Likewise we find for the approximation of the acceleration function Z:

2[n] = (1) = 2¢5[n] = 2(ax[n] + iby[n]). (C.24)
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Thu'; we observe from Eqs. C.22-C.24 that in order to approximate
z, z or Z at the n-th sample position along the contour we only need to
compute ¢ [n], ¢|[n] or ¢s[n]. respectively. For the approximation of the
cumulative angular function ¢ we use Z[n]. Recalling that = [n]
x,[n] + iy,[n], the approximation for the tangent angle function # at

I 18 (c¢f. Eq. €.23):

""1[”]]

(C€.25)
u[n]

O.[n] = ;lrcl;m[ ] = arctan (

vln

where we can compute #[n] without ambiguity in a range of length 21
from the signs of a[n] and b [n]. From 6 [n] we compute ¢ [n]. using
the same formulas as for the polvgon in Section 2.2 (Eqgs. 2.2.63-

2.2.65¢). The periodic cumulative angular function 4 is computed from
¢.[n] by the formula (cf. Eq. 2.2.32):

7

21 .
ylnl =g n] —n A (C.26)

The curvature function K at the n-th contour sample position is ap-
proximated on the basis of Eq. 2.2.26. by using both Z [n] = t [n] +
iy,[n] and Z,[n] = ¥,[n) + iy ]n] (cf. Egs. C.23-C.24):

xfnly, [n] — X nlv |n]

K. [n] =
{(n])’ + Guln])’}

rq[u]!»[n] ~ n«[n|b|[n|
{(a)[n])” + (b\[n])"}

(C.27)

In order to obtain more insight into the behavior of the polvnomial
filters that we derived to estimate z [n]. z,[n] and Z [n] (cf. Egs. C.15.
C.16 and C.22-C.24). and into the influence of the order P of the
polynomial and the fitting width 2M + 1. it may be interesting to con-
sider their frequency responses.

The frequency response H,(w) of an FIR filter with impulse response
hylnl.n = =M, ..., M, is defined as (cf. Hamming [1977]. Oppenheim
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and Schafer [1975])

M
H, () = Z Ih,,[n]c' 2 (C.28)

n=-=\

For symmetric FIR filters, that occur for p even (cf. Eq. C.21a),
H,(w) is real-valued:

M

H,(w) = h,[0] + 2 Z hy[n] cos (nw). (C.29a)

n=1

while for antisymmetric FIR filters, that occur for p odd (cf. Eq.
C.21b), H,(w) is purely imaginary

M

H,(w) = 2i Z h,[n] sin (nw). (C.29b)

n=1

Consequentially, the transfer functions H(w) of the filters with im-
pulse response fig[n] are real-valued.

In Figure C.la we have displayed Re { Hy(w)} for FIR filters with
impulse response Ay[n] of fixed width M = 5 (i.c. fitting to 2M + 1 =
11 position function samples) and of varying order of the polynomials:
P =2 4and6.

In Figure C.1b we have done the same for FIR filters with impulse
response hy[n] of fixed order of the polynomials, i.e. P = 4, and of
varying width: M = 3, 5 and 7.

In Figure C.la we observe that the higher the order of the polyno-
mials that we fit, the higher the tangency of Re {Hy(w)} at @ = 0
(Hamming [1977]). As a consequence. the width of the passband in-
creases with increasing order of the polynomials.

In Figure C.1b we sce that the width of the passband decreases with
an increasing number of position function samples to which we fit the
polynomial.

Because of the antisymmetry of h;[n] the transfer functions H(w) are
purely imaginary. In Figure C.2a we have displayed Im {H,(w)} for
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Figure C.1. Display of the real-valued transfer function H(w) of the polynomial FIR filter with
impulse response fign]. which 1y used to compute the approximated position function z [n]

In (a) we have vaned the order of the polynomial: P = 2. 4 and 6. while keeping the width of
the impulse response constant (2M + | = 11). In (b) the number of contour samples to which we
fit the polynomials, and thus the width of the impulse response, has been varied (M = 3. 5. 7).
while the order of the polynomials has been kept constant.
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Figure C.2. Display of the purely imaginary transfer function H () of the polynomial FIR filter
with impulse response A, [n]. which is used to compute the approximated tangent function Z,(n].

In (a) and (b) of this figure the same parameter values have heen used as in {(a) and (b) of
Figure C. 1.
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Figure C.3, Display of the real-valued transter function Hite) of the polynomial FIR filter with
impulse response /5[], which is used 1o compute the approximated acceleration function =[]

In (a1) and (b) of this figure the same parameter values have been used as in (a) and (b) of
Figure C.1.
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filters with impulse response A,[n] of fixed width and of varying order
of the polynomials: P = 1, 3 and 5. In Figure C.2b we have done the
same for FIR filters with impulse response h[n] of fixed order of the
polynomials, i.e. P = 3, and of varying width: M = 3, 5 and 7.

The transfer functions H>(w) of the filters with impulse response
hy[n] are real-valued. In Figures C.3a and C.3b we have displayed
Re {H5(w)} for the same values of polynomial order P and width M as
in Figures C.la and C.1b, respectively. In Figures C.2a and C.3a we
observe that, similar to Re { H(w)} in Figure C.la, the width of the
passbands in H (w) and H,(w) increases with increasing order P of the
polynomials (for fixed width M).

In Figures C.2b and C.3b we see that, similar to Hy(w), an increase
of the number of position function samples to which we fit the polyno-
mial, i.e. 2M + 1, causes the width of the passband of H () and H,(w)
to decrease. Note that the transfer function of the ideal differentiating
filter is Hi(w) = iw. while that of the ideal double differentiating filter
is Ho(w) = —w*.

From Figures C.1a-C.3b we observe that the polynomial filters Ag[n].
hi[n] and hs|n]. considered as low-pass (differentiating) filters, may not
have the most desirable properties. However, we have to keep in mind
that these filters have not been designed specifically for frequency filter-
ing. The basic assumption that we make, when using polynomial filters.,
is that, at every sample position, the contour can be appropriately ap-
proximated over the fitting width by a polynomial of the order chosen.
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Samenvatting

De vorm van objecten of van interessegebieden speelt een fundamen-
tele rol bij digitale beeldanalyse. Gedurende de afgelopen decennia
zijn er in de literatuur vele benaderingen voor het karakteriseren van
vorm en gelijkvormigheid verschenen. Een belangrijke klasse van
vormanalysetechnieken is gebaseerd op het representeren van de bui-
tenrand van objecten. Deze klasse van techniecken wordt in dit proef-
schrift in detail bestudeerd.

Er zijn verschillende methoden voor het representeren van de buiten-
rand van tweedimensionale objecten voorgesteld. Het belangrijkste
doel van dit proefschrift is het geven van een uniforme theoretische
basis voor het analyseren van de gelijkvormigheid van vormen op basis
ran parametrische contour-representaties. Uniform in die zin dat ver-
schillende methoden voor het representeren van contouren, waarvan
een aantal eerder in de literatuur zijn voorgesteld, worden beschouwd
en dat de verbanden daartussen worden afgeleid. Daarmee wordt het
theoretische kader. waarin deze contour-representaties passen, duide-
lijk gemaakt.

Op basis van de parametrische contour-representaties worden maten
voor ongelijkvormigheid tussen contouren gedefinicerd. Afgezien van
het bepalen van de relaties tussen de contour-representaties zelf, probe-
ren we ook relaties tussen die maten voor ongelijkvormigheid te bepa-
len. Verder worden de mogelijkheden om contour-representaties te
normeren geévalueerd en wordt de afweging tussen optimalisatie en
normalisatie, noodzakelijk om de gewenste invariantie-eigenschappen
in de voorgestelde maten voor ongelijkvormigheid te bereiken, bespro-
ken.

We relateren het begrip symmetrie in vlakke figuren aan dat van
gelijkvormigheid als resultaat van symmetrietransformaties. Dit stelt
ons in staat om maten te definiéren, op basis van de eerder gedefinieer-
de maten voor ongelijkvormigheid, voor het kwantificeren van symme-
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trie in een vlakke figuur, of voor het afwezig zijn daarvan (waarvoor
we de term “dissymmetry’ zullen gebruiken).

Aangezien er in de literatuur zeer veel aandacht is geschonken aan
de Fourier-coéfficiénten van parametrische contour-representaties. for-
muleren wij in dit proefschrift telkens de equivalenten van de maten
voor ongelijkvormigheid en voor “dissymmetry” in termen van Fourier-
cocfficiénten. Waar dat mogelijk is leiden wij relaties tussen beide ty-
pen van maten af. Enige overwegingen met betrekKing tot de practische
implementatie van de voorgestelde technicken worden gegeven. Nu
volgt een kort overzicht van de inhoud van de individuele hoofdstuk-
ken.

In Hoofdstuk 1 wordt een kort overzicht gegeven van verschillende
benaderingen van het vormanalyseprobleem in de context van het ana-
lvseren van tweedimensionale beelden en wordt de benadering. die in
dit proefschrift gevolgd wordt. Kort uiteengezet.

In Hoofdstuk 2 worden de parametrische contour-representaties, die
wij beschouwen, geintroduceerd en worden de relaties daartussen afge-
leid. Tevens wordt het begrip gelijkvormigheid gedefinicerd. dat ver-
volgens wordt geformuleerd als een relatie tussen de contour-represen-
taties van een gelijkvormig paar van objecten. Tenslotte worden twee
typen van symmetrie in het vlak besproken: spiegelsymmetrie en rota-
tiesymmetrie. De condities, waaraan een contour-representatic moet
voldoen om een contour met een dergelijk type symmetrie weer te
geven. worden geformuleerd.

Hoofdstuk 3 volgt dezelfde lijn als Hoofdstuk 2. maar dan in termen
van de Fourier-coéfficiénten van de contour-representaties. Ook wor-
den de gevolgen van ecen genormeerde booglengte-parametrisatie op de
Fourier-reeksontwikkelingen van contour-representaties besproken en
worden er grenzen afgeleid voor de afbreckfouten in eindige Fourier-
recksontwikkelingen.

In Hoofdstuk 4 worden maten voor ongelijkvormigheid en voor “dis-
symmetry” gedefinieerd. De theoretische eigenschappen van die maten
worden geanalyseerd en hun onderlinge relaties afgeleid. Die relaties
kunnen van nut zijn bij het oplossen van het ontwerpprobleem. d.w.z.
welke contour-representatic en welke maat, of welke combinatie van
maten. moet er uit een groot aantal mogelijkheden gekozen worden in
cen bepaalde toepassing. Met betrekking tot het laatstgenoemde wor-
den ook cen aantal experimenten beschreven en geanalyseerd. Verder
wordt in dit hoofdstuk de afweging besproken tussen optimalisatie en

e
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normalisatiec van contour-representaties, noodzakelijk om in de voorge-
stelde maten de gewenste invariantie te bereiken voor translatie, rotatie
en schaling van contouren en voor de keuze van het parametrische
startpunt.

Hoofdstuk 5 bevat een discussie over de resultaten die in de voor-
gaande hoofdstukken verkregen zijn. Er worden een aantal open pro-
blemen aangeduid en er worden suggesties gedaan voor voortgezet on-
derzoek.

Tenslotte bevat dit proefschrift drie appendices. In Appendix A
wordt een aantal wiskundige begrippen en cigenschappen gepresen-
teerd die voor de inhoud van dit proefschrift van belang zijn. In Appen-
dix B wordt een efficiénte methode beschreven voor de berekening van
de traagheidsmomenten van gebieden in het vlak die begrensd worden
door een veelhoek. Appendix C behandelt de schatting van contour-re-
presentaties door middel van een stuksgewijze benadering van de con-
tour met polynomen.






10.

11.

Het passieve personeelsbeleid bij de Nederlandse univer-
sitaire instellingen vormt een bedreiging voor de arbeids-
motivatie bij die instellingen. Het is dan ook noodzakelijk
dat de kwaliteit van dat personeelsbeleid wordt verbeterd.

De intensieve veehouderij en andere hiermee verwante
bio-industriéle activiteiten dienen niet langer in de traditi-
onele landbouwgebieden uitgeoefend te worden, maar
verplaatst te worden naar daar toe aan te wijzen industrie-
terreinen, waarbij maximale aandacht besteed moet wor-
den aan een beperking van de belasting voor het milieu
die dergelijke bedrijven nu veroorzaken.

Het ten onrechte letterlijk interpreteren van de aandui-
ding ‘automatic’ op de deuren in de gangpaden van inter-
citytreinstellen van de Nederlandse Spoorwegen kan
pijnlijke gevolgen hebben.

‘No nonsense’ does not necessarily make sense.

Stellingen

behorende bij het proefschrift van
P.J. van Otterloo

Delft, 14 januari 1988.
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Voor het beoordelen van de gladheid van een kromme
vormt de maximale krommingsmodulus een beter ken-
merk dan de gemiddelde buigingsenergie.

Dit proefschrift, paragraaf 3.2.

De ontwikkeling van kwantitatieve methoden voor vorm-
analyse die aansluiten bij onze perceptie of intuitic, wordt
in hoge mate gehinderd., doordat wij slecht in staat zijn
vorm en vormverschillen te kwantificeren.

Indien bij het digitaliseren van tweedimensionale beelden
met een Cartesisch bemonsteringsraster de bemonster-
dichtheid zodanig wordt gekozen dat deze compatibel is
met deze beelden, volgens de door Pavlidis hiervoor
gegeven definitie, dan kan bij de segmentatie van deze
beelden in deelgebieden voor ieder gebied 4-connectivi-
teit gebruikt worden, aangezien bij compatibele be-
monstering de 4/8-connectiviteitsparadox niet kan op-
treden.

Th. Pavlidis, Algorithms for Graphics and
Image Processing, Berlin: Springer-Verlag,
1982, hoofdstuk 7.

Bij de afbeelding van op bemonstersnelheid werkende
digitale signaalbewerkingsalgoritmen op multiproces-
sorarchitecturen, moeten afzonderlijke signaalbewer-
kingsoperaties aan processingelementen worden toegewe-
zen en moeten deze operaties in klokcycli worden inge-
past. Voor een efficiént afbeeldingsproces is het
noodzakelijk dat er formalismen worden ontwikkeld vol-
gens welke die toewijzing en die inpassing van signaal-
bewerkingsoperaties automatisch kunnen plaatsvinden.

{7

Het meten van de mate van gelijkvormigheid van contou-
renparen kan vooraf gegaan worden door een nor-
meringsproces voor het normeren van de oriéntatie en het
parametrische startpunt van de contouren. Het verdient
dan aanbeveling om deze meting niet op uniek oriéntatie-
en startpuntgenormeerde contouren te baseren, maar om
deze te optimaliseren over een beperkt aantal combinaties
van oriéntatie en startpunt per contour, die met behulp
van dat normeringsproces verkregen kunnen worden.

Dit proefschrift, paragraaf 4.3.

De door Crimmins gedefinieerde volledige verzameling
van Fourier-descriptoren van de positiefunctie van een
enkelvoudig gesloten kromme, waarvan de parameter
lineair gerelateerd is aan de booglengte van die kromme,
bevat alleen voor de cirkel een eindig aantal van nul
verschillende elementen.

T.R. Crimmins [1982], ‘A Complete Set of Fou-
rier Descriptors for Two-Dimensional Shapes’,
IEEE Trans. on Syst., Man and Cybern.,
SMC-12, 848-855.

Dit proefschrift, paragraaf 3.3.

Elliptische Fourier-descriptoren zijn niets anders dan
meer van hetzelfde.

EP. Kuhl and C.R. Giardina [1982], ‘Elliptic
Fourier Features of a Closed Contour’, Compu-
ter Graphics and Image Processing, 18, 236-258.

C.-S. Lin and C.-L. Hwang [1987]. ‘New Forms
of Shape Invariants from Elliptic Fourier
Descriptors’, Pattern Recognition, 20, 535-545.




