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Summary 

The shape of objects or of regions of interest plays a fundamental 
role in digital image analysis. Over the past few decades many ap
proaches to the characterization of shape and shape similarity have 
appeared in the literature. An important class of shape analysis tech
niques is based on the representation of the outer boundaries of objects. 
This class of techniques is studied in detail in this thesis. 

Various methods for representing the outer boundaries of two-di
mensional objects have been proposed. The main goal of this thesis is 
to provide a unified theoretical basis for shape similarity analysis on the 
basis of parametric contour representations. Unified in the sense that 
various contour representations, some of which have been considered 
previously in the literature, are presented and their relationships de
rived. Thereby the theoretical framework, into which these contour 
representations fit, is made clear. 

Measures of dissimilarity, based on parametric contour representa
tions. are defined. Apart from establishing relations between the con
tour representations themselves, we also attempt to establish relations 
between the measures of dissimilarity. Furthermore, the possibilities 
for contour representation normalization are evaluated and the trade
off between optimization and normalization, necessary to achieve the 
desired invariancc properties in the proposed dissimalirity measures, is 
discussed. 

We relate the concept of symmetry in plane figures with that of 
similarity under symmetry transformations. This enables us to define 
measures for the quantification of symmetry, or for the lack of sym
metry (for which we use the term dissymmetry), in a plane figure on 
the basis of previously defined dissimilarity measures. 

Since the Fourier coefficients of parametric contour representations 
have been given much attention in the literature, we formulate. 
throughout this thesis, the Fourier coefficient-based counterparts of the 
dissimilarity and dissymmetry measures. Where possible we relate both 
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types of measures. Some considerations are given for the practical im
plementation of the proposed techniques. A short survey of the con
tents of the individual chapters is given below. 

In Chapter I we give a short survey of approaches to shape analysis 
in the context of two-dimensional image analysis and outline the ap
proach that is followed in this thesis. 

Chapter 2 introduces the parametric contour representations that we 
consider and establishes their relations. It also defines the concept of 
similarity, which is subsequently reformulated as a relation that exists 
between the contour representations of a pair of similar objects. Finally 
it discusses two types of plane symmetry: mirror-symmetry and rota
tional symmetry. The conditions that a contour representation must 
satisfy, in order to represent a contour that has these types of symmetry. 
are formulated. 

Chapter 3 follows the same lines as Chapter 2. but in terms of the 
Fourier coefficients of the contour representations. It also discusses the 
consequences of normalized arc length parametrization on Fourier 
series expansions of contour representations and gives bounds on trun
cation errors of finite Fourier series expansions. 

In Chapter 4 the measures for dissimilarity and dissymmetry are de
fined and their theoretical properties evaluated. Relations between 
these measures are formulated. These relations will be helpful in solving 
the design problem, i.e. out of a multitude of possibilities, which con
tour representation and which measure, or combination of measures. 
should be selected in a given application. To this end also a number of 
experiments is performed and evaluated. Furthermore, the trade-off 
between optimization and normalization, necessary to achieve the de
sired invariance of the proposed measures for contour position, orien
tation and size and for the position of the parametric starting point, is 
discussed in this chapter. 

In Chapter 5 a discussion of the results, obtained in the previous 
chapters, is presented, a number of open problems are indicated and 
some suggestions for further research are given. 

Finally, this thesis contains three appendices. Appendix A deals with 
some mathematical concepts and properties relevant to the contents. 
In Appendix B a computational!) efficient method for the computation 
of the moments of polygonal regions is described and evaluated. Ap
pendix C discusses the estimation of contour representations through 
piecewise polynomial approximation. 
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Glossary of special symbols and notations1 

Symbol 

A 

AC 

a.e. 

ap[n) 

bP[n] 

BV 

CPCC(-, • 

C( •) 

c c" 
CA 

C ' 

CBV 

C(p. q) 

c, 

Description 

area of the region enclosed by a contour 

space of absolutely continuous functions 

almost everywhere 

real part of cp\n\ 

imaginary part of cp[n] 

space of functions of bounded variation 

) Cophenetic correlation coefficient 

truncation error bound for chains 

space of continuous functions 

space of k times continuously different ia te functions 

space of infinitely-differentiable functions 

space of continuous functions of bounded variation 

matrix of data independent coefficients c(y, d: p, q) 

cophenetic matrix resulting from Single Linkage Cluster-

Ci cophenetic matrix resulting from Complete Linkage 
Clustering on D 

CT, cophenetic matrix resulting from Average Linkage Clus
tering ( U P G M A ) on D 

' This glossary lists the major special symbols and notations used in this thesis. Some symbols 
and notations, that are used only locally and explained there, have been left out of this list. 
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C the set of complex numbers 
({;'. (): p. q) data independent coefficient in the computation of the 

moment mpq of an TV-sided polygon 

cp[n] p-th coefficient of the polynomial .T„(I) 

Co space of sequences that converge to zero 

D( -. ■) dissimilarity coefficient, generated by a pair of dissimilar

ity matrices 

D matrix of dissimilarity coefficients D( ■. •) 

D, dissimilarity matrix 

(D.) dissimilarity matrix average 

D(p. q) matrix of data independent coefficients d(<i. fi; p. q) 

■j translation operator that displaces a contour over 'C 

(I metric 

(/('/.. ji: p. q) data independent coefficient in the computation oi the 
moment mpil of an A'-sided polygon 

'/ ' '"('i- /:) dissimilarity measure of index p based on the contour 
representation ƒ 

(/''''(ƒ,./:) mirror-dissimilarity measure of index/; based on the con
tour representation / 

<''"l/i-./:l discrete dissimilarity measure of index /; based on the 
discrete contour representation /[ 

</''''[/i- /:] discrete mirror-dissimilarity measure of index /; based on 
the discrete contour representation ƒ[ | 

d'r)(J\. J:) dissimilarity measure of index p based on the Fourier 
representation / 

(l{l''(f\-f:) mirror-dissimilarity measure of index p based on the 
Fourier representation ƒ 

d''"'|/'|../;) discrete dissimilarity measure of index p based on the 
truncated Fourier representation /'[ 
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^[fufz] discrete mirror-dissimilarity measure of index p based on 
the truncated Fourier representation ƒ( 

di''\)\, f2) normalized dissimilarity measure of index /; based on the 
contour representation ƒ 

(il'''(f\. ƒ>) normalized mirror-dissimilarity measure of index p based 
on the contour representation ƒ 

dlp)[f\,f2] normalized discrete dissimilarity measure of index p 
based on the discrete contour representation ƒ[ ] 

dlp)[fi,f2] normalized discrete mirror-dissimilarity measure of index 
p based on the discrete contour representation ƒ[ ] 

d'f^{it, z2) dissimilarity measure based on the Fourier representa
tion 2, as defined by Persoon and Fu 

dip\f; m) measure of dissymmetry m of index p based on the con
tour representation ƒ 

d{p)\j\ m\ discrete measure of dissymmetry m of index p based on 
the discrete contour-representation ƒ[ 

d{'"(f; m) measure of dissymmetry m of index /; based on the 
Fourier representation ƒ 

d1''^/; m] discrete measure of dissymmetry m of index /; based on 
the truncated Fourier representation j'\ 

d{,'\j\ n. in) m-th component of dissymmetry n of index /; based on 
the contour representation ƒ 

d(,'\f\ n. m) m-\h component of dissymmetry n of index /; based on 
the Fourier representation ƒ 

dip'"(f; n) measure of dissymmetry n of index pair (/;. q) based on 
the contour representation ƒ 

d1''^/; n] discrete measure of dissymmetry « of index pair (p. q) 
based on the discrete contour representation /[ ] 

d{''-'"(/; n) measure of dissymmetry n of index pair (p. q) based on 
the Fourier representation ƒ 

d1''''''[ƒ; n\ discrete measure of dissymmetry n of index pair (p. q) 
based on the truncated Fourier representation f[ 
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E Young's modulus 

£,(/"(/) infimuni of the IZ-norm of the approximation error of a 
function/over all trigonometric polynomials T„ of degree 
at most ;; 

Fjj) E:;V) 

ess sup essential supremum 

(','/''(ƒ) infimuni of the L;'-norm of the approximation error of a 
function /Over all trigonometric polynomials t„ of degree 
at most n. free of a constant term 

e„{f) el,"(f) 
f generic symbol for any of the contour representations z, 

'z. z. '/• and K (as indicated the context) 

/ sequence of Fourier coefficients generated In ' 

f" translation- and scale-normalized version of contour rep

resentation ƒ 

ƒ[ discrete version o\ contour representation / 

ƒ[ truncated version of Fourier representation / 

(ƒ) contour average of the function ƒ 

11/11,, norm on L''(2.T) 

||ƒ||,, norm on V'CZ) 

GCD greatest common divisor 

g generic symbol for any of the real-valued contour rep

resentations //• and K (as indicated in the context) 

H(t) Heaviside unit step function 

Hr{(D) frequency response of hp[n] 
/;,,[/;| coefficients of a polynomial FIR filter for the computa

tion of the p-th coefficient cr[n j 

h..(T-1) cyclic convolution function based on contour representa
tions of type / 
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AI..[T; ƒ] discrete cyclic convolution function based on discrete 
contour representations of type ƒ[ ] 

Im imaginary part of a complex number 

/ moment of inertia 

inf infimum 

K curvature function 

Ka[n] approximated curvature function sample 

Km M maximum curva tu re of a curve or con tour 

k curvature vector function 

LCM least common multiple 

L perimeter of a contour 

Lp„(-) truncation error bound for piecewise smooth contours 

L,( ■) truncation error bound for regular contours 

Lwr(") truncation error bound for weakly regular contours 

V, V Lebesgue spaces 

lim limit 

C', i' sequence spaces 

II, mirror-reflection operator that performs the mirror-re
flection of a contour about the .v-axis 

max maximum 

min minimum 

mpq moment of order (p + q) 

m (clement of) mirror-symmetry 

IN the set of natural numbers: {1,2. 3, ...} 

n (element of) n-fold rotational symmetry 

n-m (elements of) «-fold compositional symmetry 

n(t) unit normal function 
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() Landau order symbol big oh" 

o Landau order symbol "little oh' 

P partition 

P„ t r igonometric polynomial of degree at most n 

Pit) center of curvature vector at z(/) 

.'/■[«. /)| set of all partions of the interval [a, h\ ', 

/;„ trigonometric polynomial of degree at most «, free of a 
constant term 

p(t) unit tangent vector function 

Re real part of a complex number 

R{c) polar representation of a contour 

fi'(c') signed polar representation of a contour 

R( ■. ■) correlation coefficient of a pair of dissimilarity matrices 

R matrix of correlation coefficients R{ ■. ■) 

R the set of real numbers 

R' the set of positive real numbers: {.v: x e R and x > (l| 

R : the cartesian product of R and R: R : = R x R = 
{(.v. y): .v e R and v 6 R} 

/',, rotation operator that rotates a contour over an angle a 
in counterclockwise direction 

;• radial distance function 

/■' signed radial distance function 

S„f partial Fourier sum of degree /; 

Ss(y. ()\[). q) data dependent coefficient in the computation of the mo
ment inpq of an /V-sided polygon 

9 scaling operator that scales a contour by a factor ji 

sgn sign function 
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sup 

s 

s 

supremum 

arc length parameter 

dsldt 

Ts((i.ft\p.q) data dependent coefficient in the computation of the mo
ment ntpq of an N-sidcd polygon 

T„ set of all trigonometric polynomials of degree at most n 

2Tr parametric shift operator that causes a forward shift of 
the parameter of a contour representation over r 

/ normalized arc length parameter 

i' Limdio(/ + <3) 

r limdi0(l-ó) 
1„ set of all trigonometric polynomials of degree at most n, 

free of a constant term 

U elastic energy or bending energy per unit length 

£/,„, total bending energy, necessary to deform one thin elastic-
beam into another 

u parameter of an analytic form of a position function 

«, unit .r-vector 

Uy unit >-vcctor 

V ( ) truncation error bound based on total variation 

Var( / ) total variation of/ 

x .v-component of the position function z 

y ^'-component of the position function z 

Z the set of integers: {..., - 1 , 0 , 1. ...} 

2 position function 

z tangent function 

2 acceleration function 
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approximated position function sample 

approximated tangent function sample 

approximated acceleration function sample 

position vector function 

tangent vector function 

acceleration vector function 

rotation angle 

rotation normalization parameter 

scaling coefficient 

scale normalization parameter 

class of simple closed curves 

class of pieecwisc regular simple closed curves 

class of piecewise smooth simple closed curves 

class of piecewise weakly regular simple closed curves 

class of regular simple closed curves 

class of smooth simple closed curves 

class of weakly regular simple closed curves 

contour 

difference operator 

second order difference operator 

Dirac delta function 

displacement of a contour in the plane: reference position 
with respect Jo a contour 

translation normalization parameter based on the con
tour average 

translation normalization parameter based on the region
al average over the area enclosed by a contour 
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t](k) argument of the Fourier coefficient z(k) 

0 tangent angle function 

6 dO/dr 

0,\n\ approximated tangent angle function sample 

A space of functions that satisfy a uniform Lipschitz condi
tion 

/. Lipschitz constant 

Xn n-lh Lebesgue constant 

A(V') normalizat ion pa ramete r for i/' 

/.(,„! central moment of order (p + q) 

£ angle of revolution 

£' accumulated angle of revolution 

7t„{t) polynomial centered at z[n\ 

g(t) radius of curvature 

Q.XT:>f) cyclic correlation function based on contour representa
tions of type ƒ 

Q..\T'< f] discrete cyclic correlation function based on discrete con
tour representations of type /1 | 

r forward shift of a contour representation parameter 

r* starting point normalization parameter 

(( cumulative angular function 

q\n\ approximated cumulative angular function sample 

XR(X, y) characterist ic function of a region R cz R : 

ip periodic cumulative angular function 

ip,,[n\ approximated periodic cumulat ive angular function sam
ple 

cu normalized frequency pa ramete r 

| • | magni tude 



XX SYMBOLS AND NOTATIONS 

II" 
V. 
* 

V 

e 

u , 

n . 

<= 
c 

1 

u 
n 

norm 

gradient operator 

(cyclic) convolution 

for all 

is an element of 

union 

intersection 

i-> a proper subset of 

is a subset of 
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Chapter 1 

Introduction 

1.1 Shape analysis: a classical problem in the analysis of image data 

This thesis is devoted to digital shape analysis, and in particular to 
its quantitative aspects. Our visual system uses shape as an important 
feature to recognize and order the things in the world that surrounds 
us. Therefore it is not surprising that, in the attempts to equip machines 
with recognition capabilities, shape analysis has always been an impor
tant topic. This statement appears to be true not only when it concerns 
a rather simple task of printed character recognition, where shape ana
lysis can be one of the final steps in the recognition process, but also 
in complex, wide-ranging computer vision tasks in an artificial intelli
gence context, where shape analysis in general provides only an inter
mediate result. 

Our visual system is remarkably capable of associating and recogniz
ing shapes. Probably in part as a result of the ease with which we 
recognize shapes, we have not developed a rich vocabulary for describ
ing shape, let alone ways of quantifying shape or differences between 
shapes. The latter is also caused by the fact that our visual system is 
very bad at assessing population variance. Our descriptions of shape 
are usually of a qualitative nature. In fact, the development of quanti
tative methods for shape analysis and comparison, that do not yield 
results that are in conflict with our perception, is hampered by our own 
limited abilities to quantify shape and shape differences. 

According to The Shorter Oxford English Dictionary [1975]. shape 
stands for "external form' or "contour' or, more precisely, 'that quality 
of a material object or geometrical figure which depends on constant 
relations of position and proportionate position among all the points 
composing its outline or external surface.' In this thesis we will deal 
only with planar shapes, since images in digital image analysis usually 
portray two-dimensional projections of three-dimensional scenes. We 
will not study external surfaces that determine the shape of three-di-
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mensional objects, despite of the growing interest in three-dimensional 
shape analysis and representations in areas such as computer vision 
(Ballard and Brown [1982], Horn [1986]) and computer graphics (New
man and Sproull [1979]. Foley and Van Dam [1982]). 

In many applications, such as for example character recognition. 
computer analysis of microscopic slides and many industrial inspection 
tasks, two-dimensional shape analysis turns out to be adequate. Fur
thermore, the complexity of three-dimensional shape analysis often still 
does not allow its application in practice. As mentioned earlier, we 
usually have only two-dimensional information at our disposal. Some
times. if the shape analysis problem concerns only a limited set of 
known objects, a 'dictionary' of two-dimensional perspective projec
tions is used to match or interpolate the shapes to be analyzed (Richard 
and Hcmami [1974]. Wallace and Wintz [1980]. Wallace and Mitchell 
[1980). Sarvarayudu [1982]). 

In stereology. many problems are of an inherently three-dimensional 
nature, whereas the information available is two-dimensional, e.g. thin 
slices of material. Three-dimensional information is extrapolated from 
the results of two-dimensional image and shape analysis, using tech
niques from integral geometry and statistics (DeHoff and Rhines 
[1968]. Weibel [1979]. Weibel [1980]. Serra [1982]). 

Following the verbal formulation of the concept of shape just given. 
we will not consider the internal structure of an object, such as its 
brightness, colour, texture, etc.. to be part of its shape. In studying the 
shape of an object, we will merely deal with its geometrical properties. 
Furthermore, we will assume that shape is invariant under the following 
transformations: 

• translation 

• scaling 

• rotation. 

These transformations, the equiform transformations or similarity 
transformations, form a group: the equiform group. As a result we may 
form equivalence classes of shapes that can be mapped onto one 
another by the similarity transformations. Equivalent shapes are called 
similar. Note that, if we were interested in the stronger property of 
congruence among shapes, we would have to discard the property of 
invariance under scaling. 
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The importance of shape as a tool for analysis, ordering and classifi
cation has led to the study of shape in many, diverse fields of science 
and has resulted in an abundant literature on this topic. This abundance 
causes a useful review, that would do justice to the many approaches 
and contributions, to be outside the scope of this thesis, even when 
such a review would be restricted to the context of pattern classification 
and digital image analysis. Therefore we will mention only some impor
tant or interesting texts, along with some historical remarks, that will 
provide access to the enormous amount of literature available. We will 
also list some major distinctions in approaches to shape analysis by 
computer and outline the approach that we will use. 

An early study of shape in the context of biology and evolution is 
that of Thompson (Thompson [1942], Thompson [1961]). This impor
tant work remains a source of inspiration to this day. See for example 
Bookstein [1978], which also contains many references to the work of 
followers of Thompson. 

Understandably, shape and especially shape perception constitute a 
popular topic in the psychology literature. Some early reports on the 
quantitative study of shape, in the context of psychology, can be found 
in Attneave [1954], Attneave and Arnoult [1956] and Hake [1957]. 
Visual perception of shape is dealt with in books by Zusne [1970], 
Cornsweet [1970] and Rock [1973]. Concerning the mathematical mod
elling of visual perception we mention Zeeman [1962], Moore [1971] 
and Moore. Seidl and Parker [1975]. A coding-type theory of visual 
perception is proposed in Leeuwenberg [1968]. 

Shape is used as a tool for the seriation of objects in archeology and 
in the history of art (cf. e.g. Clarke [1968], Plomp [1979]), and for 
grouping objects or designs in anthropology. 

In particle analysis shape is used as a parameter to determine physical 
properties of particles (cf. e.g. Schwarcz and Shane [1969], Ehrlich and 
Weinbcrg [1970], Beddow [1980], Beddow and Meloy [1980], Beddow 
[1984a], Beddow [1984b]). 

In the context of providing machines with recognition capabilities, 
Minsky and Papert's book [1969] is a classic text, emphasizing concepts 
from topology and computational geometry. Texts of a more general 
nature, that pay considerable attention to shape analysis and represen
tation by computer, are Duda and Hart [1973], Gonzalez and Wintz 
[1977], Ballard and Brown [1982] and Levine [1985]. Pavlidis [1977a] 
is almost entirely devoted to shape analysis, while Pavlidis [1982] deals 
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for the larger part with shape representation. The latter hook em
phasizes the interrelations between image processing, pattern recogni
tion and computer graphics. We note that shape is a common issue in 
the processing, recognition and generation of pictorial data. We also 
note the importance of the computer graphics literature as a source of 
information about the representation and processing of shape informa
tion. In this context we already mentioned Newman and Sproull [1979] 
and Foley and Van Dam [1982]. Also the work of Hou [1983], which 
deals with digital document processing, is a valuable reference in this 
respect. 

With the practice of stereology in mind. Serra [19.S2] presents an 
in-depth study of the effects of digitization and operators and the size 
of these operators upon the topological and geometrical properties of 
objects in the images under study. In this respect we also mention 
Ahuja and Schuchter [1983]. 

In many applications, such as cell analysis, chromosome analysis and 
particle analysis, the shape of the objects of interest changes with the 
resolution at which they are observed and. consequently, can only be 
defined by convention. A detailed exposé of such phenomena and their 
mathematical modelling is given by Mandelbrot (Mandelbrot [1977]. 
Mandelbrot 11982a]). The mathematical models proposed by Mandel
brot have been applied, for example, in computer graphics (e.g. Car
penter [1980], Fournicr. Fussel and Carpenter [1982]. Mandelbrot 
[1982b]. Kajiya [1983], Pentland [1983]). The consequences of the de
pendence of shape on resolution for digital shape analysis largely re
main lo be studied. 

Pavlidis has published two survey papers on shape analysis by com
puter: Pavlidis [1978] reviews digital shape analysis in general, while 
Pavlidis [1980a] is devoted to contour-oriented approaches to digital 
shape analysis. The latter paper is commented upon in Wallace [1981]. 
A supplementary review of digital shape analysis literature can be found 
in Sarvarayudu 11982]. Though completeness may not be expected from 
these surveys, they provide for a distinction between a number of shape 
analysis techniques and for access to the literature. A most useful entry 
into the literature on digital shape analysis is provided by the extensive 
bibliographies on picture processing by Rosenfeld. published annually 
since 1972 in the journal Computer Graphics and Image Processing. In 
1980 this journal had its name changed to Computer Vision, Graphics 
and Image Processing. 
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We now present some criteria to distinguish methods of digital shape 
analysis that will enable us to classify the approach that will be used in 
this thesis. 

One criterion to distinguish shape analysis techniques is the subdivi
sion into information-preserving and information-nonpreserving tech
niques. depending upon whether a shape can be reconstructed with a 
controllable level of precision from the representation, used in its ana
lysis. or not. 

A second criterion to distinguish shape analysis techniques is the 
subdivision into region-oriented and contour-oriented techniques, also 
referred to as internal and external techniques, respectively (Pavlidis 
[1980a)). 

A third criterion is the discrimination between techniques that map 
the pictorial data, containing the shape information, into a set of num
bers and those that map these data into another picture. This distinction 
between scalar transform techniques and space domain techniques in 
Pavlidis [1978] is rather subtle and with some shape analysis techniques 
it can hardly be made. Virtually all shape analysis techniques, at some 
stage in the analysis, transform the pictorial information into a sel of 
numbers or symbols to represent the shape information. 

The distinction between shape analysis techniques that are concerned 
with local shape properties and those that perform global shape analysis 
constitutes a fourth discriminatory criterion. 

Further we mention as a fifth criterion for discrimination, the distinc
tion between techniques that use a deterministic approach to shape 
analysis and those that use statistical techniques, based on a stochastic 
model. 

We note that tools from many different mathematical disciplines have 
been used in various approaches to digital shape analysis: elements 
from set theory, algebra, topology, mathematical analysis, differential 
geometry, integral geometry, probability theory, graph theory, formal 
languages and automata theory, etc. can all be found in the literature 
on shape analysis. 

1.2 Scope of this thesis and an outline of its contents 

Our starting point for digital shape analysis will be the segmented 
image, in which the individual connected components have been iden-
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tified and labelled (cf. Gonzalez and Wintz [1977], Pavlidis [1982]. Da-
nielsson |19<S2]). These components will be the subject of shape analy
sis. As we do not consider the internal structure of these components 
in the original picture to be part of their shape, this is a reasonable 
starting point. In this thesis we will concentrate for the major part on 
information-preserving, contour-oriented, global, deterministic tech
niques. The techniques that we will study can also clearly be classified 
as scalar transform techniques, as defined by Pavlidis [1978]. 

A number of reasons why contour-oriented shape analysis techniques 
are popular can be given. Shape information is contained in the con
tours of objects (Attneavc [1954], Attneavc and Arnoult [1956]). This 
point of view is confirmed by observations that edge detection consti
tutes an important aspect of shape recognition by the human visual 
system (Zusne [1970]. Shapley and Tolhurst [1973], Marr [1976], Man 
and Hildreth [1980]. Marr [1982]) and by psychovisual experiments 
studying eye movements (Zusne [1970]. Noton and Stark [1971a], No-
ton and Stark [1971b]). 

Information-preserving contour representations allow for a recon
struction of the segmented image. If additional processing has been 
performed on the contours in the segmented image or on their represen
tations, then a good approximation of the segmented image can still be 
obtained. By means of contour representation we obtain in general a 
considerable data reduction, compared with the segmented picture. 
without loss of information. Furthermore, shape analysis techniques. 
that are based on parametric contour representations, are intimately 
related with well-founded mathematical disciplines such as mathemati
cal analysis and differential geometry. At the application level, methods 
from numerical analysis and digital signal processing can he readily 
applied. 

Region-oriented shape analysis techniques, on the other hand, are 
often very lime-consuming. With some region-based techniques, such 
as template matching, invariance for orientation and for scaling is hard 
to accomplish. 

Shape analysis techniques thai give rise to graph-like structures as a 
means of representation (e.g. Fischler and Elschlager [1973]. Pavlidis 
[1977a]. Shapiro [1980]. Shapiro and Haralick [1981], Bunke and Aller-
mann [1983]). usually lead to computationally intensive matching prob
lems. such as (sub)graph isomorphism problems. See for example Read 
and Corneil [1977] and McGregor [1979] for a discussion of (sub)graph 
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isomorphism problems. Noise and distortion usually are problems that 
are difficult to deal with in structural shape analysis techniques. The 
same holds for syntactic shape analysis techniques, which arc discussed. 
for example, in Fu [1974]. Fu [1977] and You and Fu [1979]. Though 
a number of parsing techniques have been developed for syntactic shape 
analysis, both in structural and in syntactic shape analysis, the inference 
problem remains largely unsolved. 

With contour-oriented shape analysis techniques, noise in contour 
representations can be reduced, using techniques from numerical ana
lysis or digital signal processing or by means of techniques that have 
been developed especially for contour-oriented digital shape analysis 
(cf. Bowie and Young [1977a]. Van Otterloo [1978]). 

The methods that we will describe for shape analysis provide mea
sures for the geometrical aspects of symmetry in objects and similarity 
between objects. We will not deal with any field of application in par
ticular. In image analysis applications, where the geometrical aspects 
of similarity between objects is of importance, the methods described 
here can prove to be useful. This does not mean that we claim that the 
methods described in this thesis can be usefully applied in every appli
cation: different applications will require different approaches, thereby 
ruling out the thought of a uniquely optimal approach. The results of 
our symmetry analysis methods can be used as properties of the shapes 
under study. The results of our similarity analysis methods can be 
applied in shape clustering algorithms, in order to determine shape-
classes. They can also serve as intermediate results in structural shape 
analysis methods and in complex computer vision tasks, or they can be 
used directly for shape classification. 

Global shape analysis techniques sometimes pose problems in the 
case of heavily distorted shapes. For example, due to bad signal-to-
noise ratio conditions in the original picture and/or due to imperfections 
resulting from the segmentation procedure, parts of objects in the orig
inal picture may have been assigned to other connected components in 
the segmented image. Overlapping objects constitute another problem 
that is usually not yet taken care of at the segmentation stage of the 
analysis. In such cases it may be desirable to incorporate a feedback 
from the shape analysis stage to the segmentation stage. A number of 
methods have been developed for the detection and handling of over
lapping objects (cf. e.g. Arcelli and Levialdi [1973], Eccles. McQueen 
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and Rosen [1977]. Sychra et al. ]197K]. Dessimoz et al. [1979]. Lester 
et al. [1978). Bengtsson et al. [1981], Kailav. Sadananda and Das 
[1981], Bhanu and Faugeras [1981], Turney, Mudge and Volz [1984]). 
In such cases, where the segmented picture contains deficient shapes. 
the possibility to perform similarity analysis on partial shapes, or. equi-
valently. on contour segments that represent incomplete shapes, may 
be required. Similarity measurement methods based on coefficients 
generated by global transformations are obviously of an inherently 
global nature: local shape properties cannot be taken into account with 
these methods. Similarity measurement methods based on the Fourier 
coefficients or on the Walsh coefficients oi parametric contour rep
resentations. which are among the most popular of all contour-oriented 
shape analysis techniques, belong to this class. However, the parametric 
contour representations themselves can be linked directly, and thus 
locally, with the contours in the space domain. Therefore, similarity 
measurement methods based on parametric contour representations 
themselves can almost immediately be used for the analysis of similarity 
between shape segments. In this thesis we will formulate shape similar
ity measurement only for closed contours, but the generalization of 
such a measurement to shape segments is simple and straightforward. 

Region-oriented shape analysis techniques distinguish themselves 
from contour-oriented techniques in that the former techniques can 
deal directly with topologically nonsimple components, i.e. components 
with holes. In such cases, contour-oriented techniques will have to deal 
with the outer boundaries of the components and of the holes sepa
rately. At a higher hierarchical level in the analysis the results of the 
analysis of the individual boundaries of the components must be linked 
with information about the relative positions, sizes and orientations of 
these boundaries. At these higher levels in image analysis labelled 
graphs are useful to represent the information extracted from the 
image, despite the computational complexity when it comes to matching 
graph structures (Read and Cornell |I977]). 

The main goal of this thesis is IO provide a unified theoretical basis for 
shape similarity analysis on the basis of parametric contour representa
tions. Unified in the sense that various contour representations, some of 
which have been considered previously in the literature, will be presented 
and their relationships derived. Thereby the theoretical framework, into 
which these contour representations fit. will be made clear. 
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Apart from establishing relations between the contour representa
tions themselves, we will also attempt to establish relations between the 
measures of dissimilarity that are based on these contour representa
tions. Further, the trade-off between optimization and normalization. 
necessary in order to achieve the desired invariance properties in the 
proposed dissimilarity measures, will be evaluated. 

We will relate the concept of symmetry in plane figures with that of 
similarity under symmetry transformations. This enables us to define 
measures for the quantification of symmetry, or for the lack of sym
metry (for which we will use the term dissymmetry), in a plane figure 
on the basis of previously defined dissimilarity measures. 

Since the Fourier coefficients of parametric contour representations 
have been given so much attention in the literature, we will, throughout 
this thesis, formulate the Fourier coefficient-based counterparts of the 
dissimilarity and dissymmetry measures. Where possible we will relate 
both types of measures. Some considerations will be given for the prac
tical implementation of the proposed techniques. A short survey of the 
contents of the individual chapters is given below. 

Chapter 2 introduces the parametric contour representations that we 
will consider and establishes their relations. It also defines the concept 
of similarity, which is subsequently reformulated as a relation that exists 
between the contour representations of a pair of similar objects. Finally 
it discusses two types of plane symmetry: mirror-symmetry and rota
tional symmetry. The conditions that a contour representation must 
satisfy, in order to represent a contour that has these types of symmetry, 
are formulated. 

Chapter 3 follows the same lines as Chapter 2, but in terms of the 
Fourier coefficients of the contour representations. It also discusses the 
consequences of normalized arc length parametrization on Fourier 
series expansions of contour representations and gives bounds on trun
cation errors of finite Fourier series expansions. 

In Chapter 4 the measures for dissimilarity and dissymmetry are de
fined and their theoretical properties evaluated. Relations between 
these measures are formulated. These relations will be helpful in solving 
the design problem, i.e. out of a multitude of possibilities, which con
tour representation and which measure, or combination of measures. 
should be selected in a given application. To this end also a number of 
experiments is performed and evaluated. Furthermore, the trade-off 
between optimization and normalization, necessary in order to achieve 
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the desired invariance for translation, rotation, scaling and parametric 
starting point in the proposed measures, is evaluated in this chapter. 

In Chapter 5 a discussion of the results, obtained in the previous 
chapters, is presented, a number of open problems are indicated and 
some suggestions for further research are given. 

Finally, this thesis contains three appendices. Appendix A deals with 
some mathematical concepts and properties relevant to the contents. 
In Appendix B a computationally efficient method for the computation 
of the moments of polygonal regions is described and evaluated. Ap
pendix C discusses the estimation of contour representations through 
piecewise polynomial approximation. 
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Chapter 2 

Parametric contour representation, 
similarity and symmetry 

2.1 Parametric contour representation 

In Section 1.2 we gave a short survey of two-dimensional shape anal
ysis techniques and provided a number of references to the literature 
on this subject. Following the arguments we put forth in that section. 
we restrict our attention to techniques that make use of the shape 
information contained in the outer boundaries of objects/regions in 
two-dimensional images. 

The class of curves, that represent object contours or outlines, is 
formed by the class of simple closed curves in the plane. It is the pur
pose of this section and Section 2.2 to present mathematical tools for 
the representation of such curves. We arc particularly interested in 
representations that are information-preserving, i.e. representations 
that allow for an exact reconstruction of a shape. Special attention will 
be given to the mathematical relations that exist between these repre
sentations. 

For digital shape analysis it is important to have a proper model for 
the smoothness of the contours to be analyzed. Therefore, in this sec
tion and in Chapter 3 we will define a number of smoothness classes of 
contours. 

We consider the shape of an object/region to be invariant for transla
tion. rotation and scaling. Operators, that produce these operations. 
will be introduced in Section 2.2. The effects of these operators upon 
various contour representations will also be described. 

In Section 2.3 we will define the concepts of geometric similarity and 
geometric mirror-similarity. Subsequently these concepts will be formu
lated as relations between pairs of contour representations. 

The concepts of geometric mirror-symmetry, n-fold geometric rota
tional symmetry and n-fold geometric compositional symmetry will be 
defined in Section 2.4. These concepts will then be formulated as special 
properties of contour representations. 



18 ( I I U 'THR 2 

In Section 2.5 we will review the results ol' this chapter. 

The most direct and flexible description of a curve y in the plane is 
a parametric representation 

.v = x(t), y = y(t), I € [a. b\. (2.1.1) 

where x{t) and y(t) are real-valued continuous functions of the real 
parameter /. Since both x(t) and y(t) belong to the set of real numbers 
R. a point on the curve is represented as an element of R x R or. 
cquivalently. of R : . The values ol' the parameter l serve to distinguish 
different points on the curve •/. i.e. for each value of t e [a. b\ there 
exists one and only one point (x(t). y(t)) on y. In this way y is defined 
as the image of a continuous mapping of the interval \ti. h\ onto the 
curve in the plane. The points on the curve are ordered according to 
increasing values of I. 

In view of the parametric representation of a curve, as defined in Eq. 
2.1.1. a curve can be represented in an illustrative way by a vector 
function in R :: 

/it) = V(/)M, + y ( 0 « r ' e [a, h\. (2.1.2) 

where ux = (1, 0). (2.1.3a) 

«, = (0.1) (2.1.3b) 

is a pair of orthogonal unit vectors that spans R :. We will call / = /(/) 
the position vector function of a curve y. With this representation y is 
the locus of the endpoints of the vectors z(t) as the parameter / traces 
out the interval [«. b\. 

In many situations it is convenient to identify each point (*(/). y(t)) 
e R : with z(t) = x(i) + iy(t) e C (lie set of complex numbers (Yaglom 
[1%S|). In that case a curve y is represented in the complex plane by 
the equation 

z = z(l) = x(l) + iy(/). / e [a. b). (2.1.4) 

We call z = z(l) the position function of a curve y. 
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It will depend upon the particular situation whether we represent 7 
by a real-valued two-dimensional vector function or by a complex-
valued function. A vector formulation gives good insight into the nature 
of some other contour representations, that will be defined in the next 
section, while the formulation of some of these contour representations 
as complex-valued functions provides more analytical convenience. Sca
lar contour representations are of course formulated as real-valued 
functions. 

The continuity of the mapping from the /-interval onto y guarantees 
that points that arc 'close' in the /-interval are also "close' on y. As we 
remarked before, the points on 7 are ordered because the values of the 
parameter / arc ordered in the interval [a, b\. This enables us to define 
a sense on 7. thus making 7 an oriented curve. It is customary to define 
the positive sense on the curve in the direction of increasing /. 

The paramctrization of a curve 7 can be accomplished in many ways. 
Any monotonie continuous function r = %(t), l e [a, b], defines a 
parameter r such that x and v are continuous functions of r and that 
different values of r correspond to different points on 7. If r is a 
monotonie increasing function of /, then r e \'/.{u). y_(b)\ and the sense 
on 7 will be preserved. If. however, r is a monotonie decreasing func
tion of/, then r e \y(b). y(ci)\ and the sense on 7 will be reversed. The 
change in parameter is reversible iff (if and only if) y\t) is either strictly 
increasing or strictly decreasing (Ahlfors [1953]). 

A curve 7 is said to be a simple curve or a Jordan curve if it docs not 
intersect itself: 

z(/,) = z(t2) iff /, = /,. r,,/2 e [a, b). (2.1.5) 

A curve 7 is closed if the initial point a and the terminal point b of the 
parameter interval are mapped onto the same point of 7: 

z(a) = z(b). (2.1.6) 

Deli nil ion 2.1. Simple closed curve. 
A curve 7 is a simple closed curve iff there exists a continuous mapping 
z of the parameter interval \a, b\ onto 7 that satisfies both Eq. 2.1.5 
and Eq. 2.1.6. D 
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The class of simple closed curves will be indicated by T. Usually the 
sense or positive orientation of a curve y e T is chosen to be coun
terclockwise, i.e. if we travel along the curve in the direction o\ increas
ing I. then the interior of y, i.e. the region bounded by •/. will be on the 
left of y. 

Within r we can discriminate several subclasses of simple closed 
curves. First we define the class ƒ', of smooth simple closed curves. 

Definition 2.2. Smooth simple closed curve. 
A curve y is a smooth simple closed curve iff: 

• y e T. (2.1.7a) 

• z exists and is absolutely continuous everywhere in the 
interval [a, b], i.e. 'z e \C\ti. />] (cf. Appendix A). (2.1.7b) 

• z # 0 everywhere in the interval [a. b\. (2.1.7c) 

• z(a) = z(b). (2.1.7d) 

D 
Remark. 
Instead of the requirement in Eq. 2.1.7b. mere continuity of 'z in the 
interval [a. b\ is sufficient in the usual definition of a smooth simple 
closed curve. We require i: o\' a smooth simple closed curve to be abso
lutely continuous to ensure that the curve can be reconstructed from 
the second derivative of its position function z. as we will show in the 
next section. 

D 
In the above. 

denotes differentiation of the curve representation z with respect to its 
parameter t. If no confusion can arise we will in general delete the 
parameter. By Eq. 2.1.7c it is guaranteed that the mapping from the 
/-interval into the plane is locally topological. i.e. the mapping sets up 
a point-to-point correspondence that is continuous in both directions. 
For simple closed curves that satisfy the condition in Eq. 2.1.7c the 

file:///C/ti
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mapping is even globally topological: the curve is the topological equiv
alent of the interval [a. b] (Stoker [1969]). An even more restricted 
class of curves is the class Tr of regular simple closed curves. 

Definition 2.3. Regular simple closed curve. 
A curve y is a regular simple closed curve iff: 

• yers, (2.1.9a) 

• 2 exists and is continuous everywhere in 
the interval [a, b], (2.1.9b) 

• z(a) = z(b). (2.1.9c) 

D 
In Definition 2.3 z = z(t) stands for the second derivative of z with 

respect to its parameter /. The boundary conditions, as expressed by 
Eqs. 2.1.7d and 2.1.9c, are enforced in order to ensure that the proper
ties of / will not depend upon a particular choice on the curve of an 
image z(a) of the initial point of the parameter interval, a. In mechan
ical engineering and in computer graphics, where the modelling of 
curves by splines is rather popular, regular curves are frequently en
countered since cubic splines belong to this class (De Boor [1978]). 

The class rps of piecewise smooth simple closed curves consists of 
curves that satisfy Eqs. 2.1.7a. c and that satisfy Eq. 2.1.7b, except for 
a finite number of points in [a, b). In an analogous way the class Tpi of 
piecewise regular closed curves is defined. The class of simple closed 
polygons is an important subset of fpr. since it provides for a mathemat
ically tractable approximation to curves encountered in practice. We 
remark that our notion of a piecewise smooth simple closed curve is 
more restrictive than the usual concept of a simple closed contour in 
the mathematical literature (cf. e.g. Ahlfors [1953]. Churchill, Brown 
and Verhey [1974]). We will use the term contour to indicate the outer 
boundary of a two-dimensional object and assume that its mathematical 
properties correspond to those of piecewise smooth simple closed 
curves. The results we derive, however, are often valid for a wider class 
of simple closed curves. 

From the definitions in the foregoing the following inclusion relations 
follow immediately: 
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r r C r , c r n , c=r (2.1.10) 
and 

rr c rpr c r,» c r. (2.1.1 n 

The rt/r feng/A of a curve 7. parametrized by / on the interval [a. b\. 
is defined as the integral 

s(a.b)= \ï\dl= I [ r + r | d r (2.1.12) 
hi i,i 

The class of curves for which this integral exists forms the class of 
reclifiable curves (Courant and John [1965]). The class fj„ is a subset 
of the class of reclifiable curves: the arc length or perimeter of a curve 
7 e rp s is the sum of the arc lengths of the smooth arcs of 7. The arc-
length of a curve is independent of a particular parameter representa
tion of that curve. Further, the arc length of a curve is invariant under 
a rigid motion of the curve in the plane (Stoker [1969]). By a rigid 
motion in the plane we mean a combination of a rotation and a transla
tion. 

By applying the fundamental theorem of calculus to 

s(a, <)= [ . r(r) + y : ( r ) l dr (2.I.13) 

Ju 

we obtain an expression for the element of arc length d.v: 

As = \x:{t) + r(t)\ d/. (2.1.14) 

II we interpret the parameter / as time, then 

d.v 1 . ^ . . , 1 

,= ^ =[r(t)+y\t)f (2.1.15) 
expresses the speed of motion along the curve. From Eq. 2.1.15 we 
see that the condition in Eq. 2.1.7c simply states that the speed of 
motion along the curve as a function of the parameter / shall nowhere 
be equal to zero. If the arc length j is used to parametrize a curve, then 
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Eq. 2.1.15 becomes: 

s = [x2(s) + y2(s)f = 1 (2.1.16) 

everywhere along the curve. Due to the invariance properties of art-
length. which we have just mentioned, it constitutes the natural 
parameter of a curve. 

In practice we want to define interpretablc measures for similarity or 
dissimilarity between shapes for which the computational efforts of 
matching pairs of shapes, by means of their parametric representations, 
can be kept within acceptable limits. Therefore we consider it appropri
ate, though not in all situations ideal, to require that the speed of 
motion along a curve. Eq. 2.1.15. is constant, i.e. that s is independent 
of/. 

Almost all of the parametric representations for simple closed curves, 
that will be introduced in this and the next section, are periodic func
tions. In view of the Fourier expansion of such representations, it is 
convenient to choose for the fundamental parameter interval [a. b] an 
interval of length 2.T. If the parametric representation of a curve is 
essentially periodic, then the representation is defined, for any real 
value of the parameter, as the periodic extension of the representation 
on [0. 2.T|. For example, z(t) = z(l + k ■ 2.7) for any value of / e 
[0, 2-T] and for any k e Z. where Z indicates the set of integer numbers. 
cf. Figure 2.1. 

t=k.2w .keZ 

Figure 2.1. A contour represented by the position function ; = ;(/) = v(/) + i.v(/). Note that the 
contour has counterclockwise positive sense and thai :(l) has a fundamental parameter interval 
of length I T . 
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Given the requirements of a constant speed parametrization and 
choosing an arbitrary parameter interval of length I T . we find for the 
speed of motion along a reetifiable curve: 

5 = l: . (2.1.17a) 
2.7 

where'1' 

L=\ | . r ( / ) + r ( / ) ] d / . (2.1.17b) 

For simple closed curves. L is the perimeter of the curve. For a curve 
with a constant speed parametrization. there exists a linear relation 
between arc length s and parameter /. The parameter / is in fact a 
normalized air length parameter. With respect to the analysis of the 
shape of object contours y we assume that such contours meet the 
following conditions: 

• y e r p s , (2.1.18a) 

• a parametric representation of y satisfies the condition 
of a constant speed parametrization. (2.l.lSb) 

• a parametric representation is 2.7-periodic or. 
if arc length is used as a parameter, /.-periodic. (2.1.18c) 

The position function z has frequently been used for shape representa
tion. most times in the context of the Fourier expansion of z. One of 
the earliest references is Granlund [1972]. who used z to represent 
character outlines. To give some impression of the application of the 
position function in shape analysis and representation we further men
tion Richard and Hemami [1974] and Wallace and Wintz [1980] 
(airplane silhouettes). Young. Walker and Bowie [1974]. Sychra et al. 
[1976]. Chen and Shi [19X0] and Proffitt [ 19S2] (cell boundaries). Tai. 
Li and Chiang [1982] (particle analysis) and Giardina and Kuhl [1977], 
Burkhardt [1979]. Kuhl and Giardina [ 19X2]. and Crimmins [1982] (gen
eral shape analysis applications). 

| l | Throughoul this IIIOMS we use the notaiion J . i" indicate integration ovci .i compact interval 
ci length I T . 
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As we remarked earlier, z is the direct representation of a planar 
curve. This means in image analysis that z can be measured directly in 
the image plane and in computer graphics that the curve can be gener
ated directly from z. Therefore z is also frequently encountered in 
studies on contour estimation and approximation. The position function 
z can also be used as a basis for the computation of shape features, as 
will become clear in Chapters 3 and 4 and in Appendix B. 

We continue this discussion of parametric contour representation for 
shape analysis purposes with representations that specify the distance 
between the contour and an appropriate reference position for the con
tour, £. For example. £ can be the centroid of the region enclosed by 
the contour or it can be the contour average of z. A discussion on 
appropriate translation normalization parameters will be presented in 
Section 4.3. 

*flo>;-~. 

Figure 2.2. A contour (a) and its polar representation /<(£) with respect In the reference position 
'C (b). Note the multiple-valucdncss of /?(£). 
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In the following we discuss a number of contour representations that 
have in common that they specify the distance between the contour and 
a reference position in the plane. We will show that these contour 
representations have undesirable properties or that they do not provide-
any advantage over the position function r. 

The polar representation of a contour. /?(£). is likely to be one of 
the earliest propositions for shape representation. According to Rosen-
feld it was already proposed for that purpose in the 1950s (Barrou and 
Popplestone [1971]). R(£) specifies the distance between the contour 
and reference position C as a function of the angle of revolution c. See 
Figure 2.2 for an illustration of /?(£). 

Though R(£) constitutes an information-preserving contour represen
tation it has the serious drawback that, for non-holomorphic shapes, it 
is not a single-valued representation. This is illustrated in Figure 2.2. 
Despite this fact. /?(£) has been used frequently to represent the shape 
of fine particles (e.g. Schwarcz and Shane [1969]. Ehrlich and Weinberg 
[1970], Beddow and Philip [1975], Meloy [1977a]. Meloy 11977b] and 
Beddovv et al. [ 1977], Luerkens. Beddow and Vetter [ 1982a]). R(^) has 
also been used for chromosome analysis (Rutovitz ]197()|) and in the 
context of robot vision (Kammenos (I97S|). Recently, some proposi
tions have been published to transform ƒ?(£) into a single-valued rep
resentation (Gotoh [1979], Luerkens. Beddow and Vetter [ 19N2b[). We 
will return to the latter propositions shortly. 

Another contour representation that specifies the distance between 
the contour and a reference position 'C, is the radial distance function r. 
which is closely related to z and defined as: 

rit) = \z(t) - c|. t e [0. 2.T]. (2.1.19) 

See Figure 2.3 for an illustration of ;■. 

Though the radial distance function / was already proposed for shape 
representation by Searle [1970]. not many references reporting its use 
for that purpose can be found. The real-valued radial distance function 
/• is a single-valued function of the parameter /. as opposed to the polar 
representation R(c). However, r is not an information-preserving con
tour representation, a property that R(c) possesses. Since phase infor
mation is not present in r, a contour cannot be reconstructed from it. 
The most important drawback of r with respect to shape representation 
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100 

Figure 2.3. A contour (a) and its radial distance function rwith respect to the reference position -

is the fact that there exist contours with different shapes that have 
identical radial distance functions. An example of such an ambiguity is 
shown in Figure 2.4. 

This ambiguity makes r a less suitable candidate for shape represen
tation. Freeman [1978a] proposes to avoid such ambiguities by provid
ing the radial distance function with a sign. The signed radial distance 
junction r' has negative sign if the angle of revolution £ changes in 
clockwise direction upon tracing the contour in counterclockwise direc
tion and positive sign otherwise. Formally r' is defined as 

r'(/) = sgn (£(/)) ■/■(,), (2.1.20) 
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where the sign function sgn(-) is defined as 

' + 1. ASH). 
sgn (A ) = \ 

- 1 . .v<(). 

(2.1.21a) 

(2.1.21b) 

If the parameter / is a constant speed parameter, i.e. Eq. 2.1.17a is 
satisfied, then it can be shown that r'(() is a contour representation that 
preserves shape information. 

Theorem 2.1. 
Let r'(i). 0 ^ / =ï 2.T. be the signed radial distance function of an 
arbitrary contour, where / is a constant speed parameter. Then the 
position function of that contour can be reconstructed from r'(t) up to 
a rigid motion in the plane. 

* • 

f=fc 2-K. 
/ 

t=k 2-K.keZ 

a 
rlt) 

t 

j r 
2 

M. 
2 

2-K 

Figure 2.4. (a) and ih) display two contours <>i different shape which have identical radial distance 
functions r(/). shown in (c). 
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Proof 
We denote the angle of revolution, as a function of the normalized arc 
length parameter t. as £(/)• Then we can write, cf. Eq. 2.1.19. 

z(t) - % = \z(i) - £|e*<'> 

= r(t)em. (2.1.22) 

Taking derivatives with respect to / on both sides yields 

z(t) = r(t)c'lU) + \r(t)em ■ kit)- (2.1.23) 

Employing the constant speed property of /. Eqs. 2.1.15 and 2.1.17a, 
we find 

z(t) •!(/) = r\t) + r\t)k\t) = (2^)". (2.1.24) 

From this equation we can solve £(/): 

| ( 0 = ± r-\l) ■ y ( £ ) " - r\l). (2.1.25) 

Eq. 2.1.25 shows that when /(/) = 0, which happens when the contour 
passes through the reference position 'C,. g(i) is undefined. Further we 
remark that, due to the continuity of z(t) and to the constant speed 
property of /. the absolute maximum of r (/) is (IJlx)2. 

From Eq. 2.1.20 it follows immediately that 

K0 = k'(f)|. (2.1.26) 

It follows from Eqs. 2.1.25 and 2.1.26 that, given / '(/), we can find j-(f). 
Assuming an initial angle of revolution £(0), we can find £(/) through 
integration, i.e. 

|(0 = c(0) + c(r)dr. (2.1.27) 

If we choose a reference position 'C in the plane. Eq. 2.1.22 shows that 
we obtain z(i) from r(t), £(0 and £. This completes the proof of the 
theorem. □ 
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Despite its preservation of shape information. r'(t) has an undesirable 
property in relation to shape representation. We illustrate this in Figure 
2.5. 

I = k 2-K.keZ 

20 

r-tt) 

\ 

10 

0 
b o 2 

3x 
2 2x 

\ , , t = k 2it.kiZ 

2K 

-20 
Figure 2.5. (a) and (c) displa) two rathei similar contours which have considerably different 
signed radial distance functions r'(f). shown in (hi and (di. respectively 
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Figure 2.5 shows that two rather similar contours can have consider
ably different signed radial distance functions. This fact makes it un
likely that useful similarity measures can be formulated on the basis of 
the signed radial distance function r'(t). 

We now return to the propositions by Gotoh (1979] and by Luerkcns, 
Beddow and Vetter 11982b] to transform the polar representation R(£) 
into a single-valued representation. 

The representation proposed by Gotoh [1979| is in fact similar to the 
function r'(t). Gotoh proposes a signed polar representation /?'(£')• 
where £' is the accumulated angle of revolution as the contour is traced. 
As a result /?'(£') does not have a fixed period. The sign of /?'(£') is 
also determined by £(/). Formally /?'(£') is defined as: 

/?'(£'(')) = sgn(|(0) • «(SCO). (2-1-28) 

where 

! ' ( ' ) = 
f i 

£(r)dr. (2.1.29) 

It is easily verified that /?'(£'(')) can be obtained from /•'(/) by a parame
ter transformation and vice versa. /?'(£') is a shape information-preserv
ing contour representation, but it has the same undesirable property as 
we observed in r'(t), which makes it less suited for shape representa
tion. 

Finally. Luerkcns. Beddow and Vetter [1982b] proposed to use the 
pair (/(/). c(/)) for shape representation, instead of the multiple-valued 
polar representation R(£). Indeed, the pair (r(t), £(/)) constitutes a 
shape information-preserving contour representation, as can be verified 
from Eqs. 2.1.22 and 2.1.27. Further, it does not suffer from the disad
vantages that we observed in r'{t) and /?'(£')• This shows that, in com
bination with appropriate additional information, the radial distance 
function r(t) can be useful for shape representation. However, the ad
vantages of such a representation over the position function z are not 
clear. Therefore we will not consider shape representations based on 
the distance between the contour and an appropriate reference position 
'C anv further. 
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2.2 Tangent, normal and curvature 

In this section we introduce representations for the shape of a con
tour. based on the derivatives of the position function z or. equiva
lent^-, on the derivatives of the position vector function /.. It will he 
shown that these representations are information-preserving, i.e. that 
they allow full reconstruction of the shape of the contour, though infor
mation about the position and/or the orientation of the contour may be 
lost. However, absolute position and orientation are frequently unim
portant features lor the shape analysis problem. If necessary, such fea
tures can be estimated from the position function of a contour. We will 
use vector- and complex-valued representations alternatingly. 

The tangent vector function z of a contour -/. with position vector 
function z. is defined as: 

i(t) = ÓZ^] = (xUlyiD) =x(Dul +y(t)u... (2.2.1) 

The corresponding complex-valued tangent function ': is defined as: 

'z(t)= d J f ) =.v(/) + iy(/). (2.2.2) 

Combining Eq. 2.1.15 and Eq. 2.2.1. we observe that 

\z{t)\=s(t). (2.2.3) 

i.e. if we interpret / as time, then the length of z expresses the speed 
of motion along the curve. Using the arc length s as a parameter, we 
found in Eq. 2.1.16 that the speed of motion, and thus the length of 
the tangent vector, is always one. The unit tangent vector function p(s) 
and the tangent vector function z(t) are related as: 

p(s) = z(s) = z(t) * , (2.2.4) 

using the chain rule of differentiation with / = t(s). 
If the parameter / is a constant speed parameter, or, equivalently. a 

normalized arc length parameter (cf. Eq. 2.1.17a), then p(s) and z(t) 
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are related as: 

p(s)= -x(t). (2.2.5) 

The tangent angle function 6 of a contour gives, for each value of the 
parameter, the angle of inclination of the tangent vector z with the 
positive jc-axis, as illustrated in Figure 2.6. 

at i 

Figure 2.6. Illustration of the tangent vector £(f) and the tangent angle l)(i) at the position vector 
/ ( / ) on the contour. 

Clearly, the tangent angle 0(t) is the argument of the tangent vector 
'z(t) and can be found from Eq. 2.2.1 as 

0(/) = arctan ( \ ( , ) (2.2.6) 

and can be solved, without ambiguity, from the signs of ,v(/) and y(t) 
or. equivalent!)', from the direction cosines of the tangent vector z(t): 

cos « , ) = 'X{t) , , 
[x\t) + y\l)]'k 

(2.2.7a) 

sin Ö(/) = -V(,) 

[;2(/) + r(0f 
(2.2.7b) 
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Combining Eqs. 2.1.15. 2.2.1 anil 2.1.7a,b we can rewrite / a s : 

/(/) = • [COS0(/)H, + smd(t)Uy] (2.2.8) 

or similarly, by combining Eqs. 2.1.15. 2.2.2 and 2.l.7a.b. we find for 
z the expression 

2(t) = ™e'9<". (2.2.9) 

These two equations again show clearly that :i. or ':. expresses the 
velocity along the curve. Interpreting the parameter / again as time, the 
second derivative of the position (vector) function expresses the accel
eration along the contour. For this reason we call 

m = df , = (*(o. m) = v(')«, + y(o«, <-•-"') 
d r 

the acceleration vector function and 
W)= , = .v(/) + iv(/) (2.2.11) 

at' 

the acceleration function. These functions express the rate of change of 
the velocity along the curve as a function of/. When the arc length s is 
used as the parameter, the second derivative of /. with respect to arc 
length is called, for reasons that will soon become clear, the curvature 
vector function k(s): 

* « = * < * ) = « £ > . (2.2.12) 

The relation between k(s) and /(/) can be found through the chain rule 
of differentiation: 

* W - * ) ( * ) 2 + i w £ . (2-2.13) 

with / = /(.v). In Section 2.1. we discussed the conditions for the inver-



TANGENT. NORMAL AND CURVATURE 35 

tibility of the functional relationship between the parameters s and /. 
which wc assume to be valid. This means that we may write 

and (cf. Abramowitz and Stegun [1972], p. 11) 

drt d2s(ds"-> (2.2.15) 
d.s: d r V d / / 

With these two relations and the definition of the unit tangent vector 
function p{s) in Eq. 2.2.4, we can rewrite Eq. 2.2.13 as 

zO)=(d
d])'Hs)+Ó

ó"2p(s). (2.2.16) 

To explain the meaning of this equation we reformulate Eq. 2.1.16 as 

\'z(s)\2 = i(s) • z(s) = 1 (2.2.17) 

and differentiate to obtain 

z(s) ■ z(s) = p(s) ■ k(s) = 0. (2.2.18) 

Interpreting this result in the context of Eq. 2.2.16 wc find that, at any 
point along the contour. z(t) can be decomposed into two components 
that arc perpendicular to each other: a tangential component of length 
d:.v/dr and a normal component. If we use arc length as a parameter 
in Eq. 2.2.8 wc obtain an expression forp(s), cf. Eq. 2.2.4. We substi
tute this expression into Eq. 2.2.12 to obtain: 

k(s) = |cos 9(s)ux + sin 0(.v)«v] 

= [-sin 6(s)u, + cos 0(.y)«J • - ^ 

= n(.s)Ó^\ (2.2.19) 
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In Eq. 2.2.19 n(s) is a unit vector perpendicular top(s). If the sense o\ 
n(s) is kept the same everywhere along the curve, then it may be chosen 
arbitrarily. Usually n(s) is obtained by a rotation of pis) over +.T/2 
radians, which can also be observed by comparing Eqs. 2.2.cS and 
2.2.19. At any point along a contour •/. with position vector function 
/(/) and arbitrary parameter /. the pair of orthogonal unit vectors pil) 
and nil) can be expressed in terms of the tangent angle function D{i) as 

pit) - cos0(/)«, + sin d(t)Uy, 

nil) = - sin H(t)u, + cos #(/)«,. 

(2.2.20a) 

(2.2.20b) 

under the condition that fill) is defined in that point. The pair of vectors 
lp. n) is usually called the moving frame of a contour (see Figure 2.7). 

y 

t 

1 0 

pit) 

nttkl \ 

" 

Figure 2.7. Illustration ol the moving frame along ;i curve This figure shows the moving window 
formed by the pair ol orthogonal unil vectors !/>, n\ at position /in 

II' t is the normalized arc length parameter, then the tangential com
ponent in Eq. 2.2.16 is zero everywhere along the contour and z(/) can 
be expressed as 

£)'T*>- (2.2.21! 

The curvature K at any point along the contour is defined as the rate 
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v 

of change in tangent direction of a contour, as a function of arc length. 
In Section 2.1 we remarked that, because of its invariancc properties, 
arc length is the natural parameter of a curve. With this in mind we 
observe from the definition of curvature that curvature is also an in-
ariant property of a contour, since it is, similar to arc length, invariant 

under a rigid motion of the curve and under a change in the choice of 
a parameter. Commonly, the curvature function K is expressed in for
mula as 

K M - * ? " - ? . (2.2.22, 
as s 

With this definition of the curvature function K we can rewrite the last 
expression in Eq. 2.2.19 to obtain: 

k(s) = K(s)a(s). (2.2.23) 

This expression explains why k is called the curvature vector function. 
Substitution of this expression for k into Eq. 2.2.16 yields 

m=[l)~K{s)n(s)+ p(s). (2.2.24) 
dr 

When / is the normalized arc length parameter this expression reduces 
to. cf. Eq. 2.2.21. 

zU) = (^)~K(s)n(s). (2.2.25) 

Furthermore, by substitution of Eqs. 2.1.15 and 2.2.6 into Eq. 2.2.2 wc 
derive the following expression for the curvature along a contour, with 
arbitrary parameter /. as 

H'YyO) ~ xU)y(t) 
[JcHo + r(')\ m=^>^> y:>. (2.2.26) 

Using this expression for the curvature function K, it is straightforward 
to find the influence of scaling upon K. We denote a pure scaling of a 
contour y by a positive real factor ft as if«y. The position functions of 



38 CHAPTER : 

Y and .'/// are related as 

■ i.:U) = li- --(/)■ (2.2.27) 

From the definitions of the tangent function z, Eq. 2.2.2. and the accel
eration function 2. Eq. 2.2.11. we see that scale information is pre
served in these representations. Therefore -I.,': and .7 tz are related to 2 
and 2. respectively, in the same way as -h,z is related to 2. Eq. 2.2.27: 

•7,2(0 = ji- 'z(t). (2.2.28a) 

%z\t) = fi . z{t). (2.2.28b) 

With the aid of Eq. 2.2.26 the curvature function .'ƒ.,# of the scaled 
contour 'l,-/ can be written as: 

( 7 > ( 0 ) ( 7 ; v ( 0 ) ^ 7 , , v ( 0 ) ( 7 ; y ( o ) 

[P>(Or + (V(')):] 
I x(t)y(t) - x(t)y(0 
ft' \k\t) + y:(o] 

* £(/) . (2-2.29) 

This derivation shows that a scaling of contour by a factor/i e R* leads 
to a scaling of the curvature function by a factor lift. 

The definition of the curvature function in Eq. 2.2.22 still merits 
some discussion. From the definition of H(t) in Eqs. 2.2.6 and 2.2.7a. 
b, it can be seen that the tangent angle function can only assume values 
in a range of length 2.7. usually in the interval [-.7. 7t] or [0, 2.7]. 
Therefore B(t) in general contains discontinuities of size 2.7. The 
cumulative angular function q(t). defined by Zahn and Roskies [1972] 
as the net amount of angular bend between the starting position 2(d) 
and position z(l) on the curve, does not suffer from this problem. The 
functions tp(t) and 0(f) are related as 

0(0 = [c((t) + 0(0)] mod 27. (2.2.30) 

See Figure 2.8 for an illustration. 

■l,;Ml) 
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V^etoj \ . sBlto) 

Figure 2.8. Illustration of Ihe tangent angle function 0{t) (h) and Ihe cumulative angular function 
(, In (c) Of a contour lal 



40 CHAPTER 2 

From the definition of <p(t) also follows y((>) = 0. For smooth simple 
closed curves •/. i.e. y e ƒ"„. </(/) is a continuous function. In relation to 
shape representation and analysis q {() has one serious drawback: unlike 
d(t), '/(i) is not a periodic function. For simple closed curves q has the 
property 

<p(t + 2*) = tp{t) + 2n. (2.2.31) 

In order to be able to perform Fourier analysis. Zahn and Roskic-. 
[ 1972] introduced a 2.T-periodic variant of the cumulative angular func
tion. Using the normalized arc length parameter /. the periodic cumula
tive angular function ■/'(') is defined as 

y(t) = <,{t) - t. (2.2.32) 

When Eqs. 2.2.31 and 2.2.32 are combined the periodicity of </ follows: 

ip(t + 2,-r) = y>(t) (2.2.33) 

for all values of l. 
The curvature function K. defined earlier in Eq. 2.2.22. can now be 

redefined as 

K=Ó</!S) = t . 2 .2 .34 , 
d.v s 

The inverse relationship also exists between K and q, i.e. 

<p(s) = K(o)do, V s e R . (2.2.35) 

where a also denotes arc length. Note that a similar inverse relationship 
between K and H in general does not exist. 

For a variety of reasons, the curvature function, with arc length as a 
parameter, is very important in the study of shape. One is that this 
function completely determines a contour up to a rigid motion in the 
plane (Stoker [1969]. Guggenheimer [1963]); the curvature function is 
the natural or intrinsic equation of a curve The sign of K determines 
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the convex and concave parts of the curve: for K > 0 the curve is 
convex, for K <() the curve is concave and for K = 0 the curve is said 
to have a point of inflection. 

The radius of curvature Q at position z(t) on a curve is defined as 

'M = 
1 

KUY 
(2.2.36) 

Figure 2.9 illustrates the concept of the radius of curvature g(t). The 
endpoint of the vector P(t) in this figure is called the centre of curvature 
and the circle, defined by the equation 

[z(Q - P(t)\ ■ \z(t) - P{t)\ - <r(t) = 0, (2.2.37) 

is called the osculating circle to the curve at z(l). 

Figure 2.9. This figure illustrates the concepts of radius ol curvature o(i)- center of curvature ffi) 
and osculating circle along a curve. The moving window IpU). n(')| and the curvature vector 
function *(/) a) position z(/) are also shown. 

So far. in this section little has been said about the properties con
cerning the preservation of shape information by the contour represen
tations that we introduced. In Stoker [1969] a theorem, stating the 
unique reconstructability of a regular curve, up to a rigid motion in the 
plane, from its continuous curvature function, with arc length as a 
parameter, is presented. Zahn and Roskies [1972] contains a similar 
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theorem for the tangent angle function (Us), and a corollary that follows 
from it for the cumulative angular function q(s). We now restate the 
theorem in Stoker [1969] in an slightly generalized form and describe 
its proof. The shape information-preserving properties of the other con
tour representations, introduced in this section, follow from this 
theorem as corollaries. 

Theorem 2.2. (ef. e.g. Stoker [1969].) 
Let K(.s). a =£ s s= /). be integrable on \a. />]. i.e. K e L'[«./>] (cf. 
Appendix A). Then there exists one and only one smooth curve, up to 
a rigid motion, for which K(s) is the curvature function and s the arc 
length. 

Proof 

Without loss of generality, we may assume that a ^ 0 ^ />. In view of 
Eqs. 2.2.30 and 2.2.34 it is natural to define 

<iU) = /C(«)da. V.v e [«./)]. 

where we use r/(0) = 0. Assuming a tangent angle «((I) at s = 0 we find 
the tangent angle function 9(s) by Eq. 2.2.30. Once 0(5) has been 
determined, the unit tangent vector function pis) = 'z(s) is also known 
through Eq. 2.2.N. 

Assuming a position vector z(0) at s - 0. we obtain the position 
vector function x(s) from z(s) by the integral 

/(.v) = /(())+ z(a)dff, V.v e [«./>!. (2.2.38) 
i i 

It is now to be shown that z(.v). as defined in Eq. 2.2.38. is a smooth 
curve for which .v is the arc length and K(s) is the curvature. From the 
relation between K and q, and from K e \J\a.b\ it follows that </ e 
\C\u.b\ (cf. Riesz and Sz.-Nagy [ 1955). pp. 50-52. Janssen and Van 
der Steen [19X4]. pp. 165-170). Through Eqs. 2.2.30 and 2.2.8 and 
Definition A. 10 it is straightforward to show that then also _e 
\C\u.b\. With this result and Eqs. 2.2.1. 2.2.2. 2.2.17 and 2.2.38 it 
follows that the function z(s) represents a smooth curve (cf. Eqs. 

file:///J/a.b/
file:///C/u.b/
file:///C/u.b/
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2.1.7a-2.1.7c). From Eqs. 2.2.12, 2.2.19 and 2.2.22 it follows that K(s) 
is the curvature function of the curve represented by z(s) in Eq. 2.2.38. 
Finally it is readily seen that any pair of curves y, and y2> represented 
by Z|(s) and z2(s) respectively, that have the same arc length s and 
curvature K(s). differ at most by a rigid motion, as follows. By a rigid 
motion, i.e. by an appropriate translation followed by a rotation, the 
two curves can be brought together such that z,(0) = z2(0) and z,(0) = 
jfe(0). Given the equality of the curvature functions of both curves, it 
follows from Eq. 2.2.35 that <f\(s) = (pi(s). Vs € [a. b\. Further, from 
z,(0) = z2(0) and Eqs. 2.2.9 and 2.2.30 wc find that 0,(5) = 0z(s). V.v 
e [a, b). Hence we find from Eq. 2.2.9 that Z\(s) = Zi(s), Vs e [a, b] 
and with the equality z,(0) = Zi(0) we can finally state 

z,(.s) = z,(0) + z,(cj)d<7 
Jo 

= z2(0) + z2(a)do 
)a 

= *&), V.s e[a.b], (2.2.39) 

which completes the proof of the theorem. 

D 
From this theorem it is clear that the two invariants K and s form a 

complete set of invariants for a plane curve, since they determine it 
uniquely up to rigid motions. Note that the theorem excludes piccewise 
smooth curves. This is caused by the fact that curvature is not defined 
at corners in the curve. If we want curvature also to be meaningful as 
a representation for piccewise smooth curves, we will have to revert to 
generalized functions, as we will see later. 

Corollary 2.1. 
Let k(s), a =£ s; =£ b, be an arbitrary two-dimensional vector function, 
bounded and continuous in its component functions, except possibly in 
a finite number of points. Then there exists one and only one smooth 
curve, up to a rigid motion, for which k{s) is the curvature vector 
function and s the arc length. D 
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For the representations of a curve at the level of the first derivative 
of the position vector function z(s). i.e. '/.. 0. <f and i/'. the correspond
ing theorems not only hold for smooth curves, but also for piecewise 
smooth curves. The definition of a piecewise smooth curve in Section 
2.1 assures that these representations are bounded and that they are 
continuous, except possibly in a finite number of points. Therefore 
these representations are inlegrable functions. We nou formulate the 
following corollaries. 

Corollary 2.2. 
Let p(s), a =S .v $ b, be an arbitrary two-dimensional unit vector func
tion. i.e. \p{s)\ = 1. Let/?(.v) be piecewise absolutely continuous in its 
component functions. Then there exists one and only one piecewise 
smooth curve, up to a translation, for which p{s) is the unit tangent 
vector function and s the arc length. 

D 
Corollary 2.3. 
Let 6(s), a ^ s € /;. be an arbitrary piecewise absolutely continuous 
function, defined on a range ol" length 2.7. Then there exists one and 
only one piecewise smooth curve, up to a translation, for which 0(s) is 
the tangent angle function and s is the arc length. 

D 
As mentioned earlier, the latter corollary has also been formulated 

by Zahn and Roskies [1972]. 

Corollary 2.4. 
Let f(s), a ^ s =£ b, be an arbitrary piecewise absolutely continuous 
function, with ƒ(()) = 0. Then there exists one and only one curve for 
which /(i) is the cumulative angular function </(\) and s the arc length. 
And there exists one and only one curve for which/(.v) is the periodic 
cumulative angular function y(s) and s is the arc length. 

D 
Corollary 2.4 has also been stated by Zahn and Roskies [1972] in a 

slightly different form. The proofs of the Corollaries 2.1-2.4 are similar 
to the proof of Theorem 2.2 and. for the main part, they can be derived 
from it. 
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Two remarks are still in order. First we note that both Theorem 2.2 
and Corollaries 2.1-2.4 have been formulated for curve representations 
with arc length as a parameter. If the curve representations are 
parametrized by an arbitrary parameter t. such that the functional re
lationship / = y(s) between arc length s and the arbitrary parameter I 
is fully known and this relationship is invertible. then the corresponding 
curve representation with s as a parameter can always be found. There
fore Theorem 2.2 and Corollaries 2.1-2.4 also hold for curve represen
tations with an arbitrary parameter /. provided that this parameter satis
fies the conditions just mentioned. In the sequel we will use the nor
malized arc length parameter, introduced in Section 2.1. 

Secondly, we note that in Theorem 2.2 and Corollaries 2.1-2.4 
neither closure conditions nor simplicity conditions are enforced on the 
curves. They hold for arbitrary, not necessarily simple or closed, curves. 
If we require the curves to be simple and/or closed, then this leads to 
additional constraints on the individual curve representations. 

We conclude from the foregoing that we have introduced in this and 
in the previous section a number of curve representations that contain. 
under the condition that the relation between parameter and arc length 
is known, complete shape information. This fact makes these curve 
representations candidates for use in shape analysis and classification. 
The curve representations that we refer to are: 
z -position function 
z -tangent function 
2 -acceleration function 
0 - tangent angle function 
<p - cumulative angular function 
if - periodic cumulative angular function 
K -curvature function. 

Earlier in this section we already defined the scaling operator 3k, by 
which a contour y is scaled by a factor/? e R \ The following operators 
are also important in the analysis of the shape of plane curves, rep
resented by a parametric function: 
2)£ - translation (or displacement) over £ e C 
(3i„ - rotation over a e R 
?), - backwordshift of the representation function parameter over r e R 
Mx -mirror reflection about the .v-axis. 
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Table 2.1. Representations of the (mirror-)similarity operators in the function spaces 
oi the contour representations. 

Contour 
repre
sentation 

z 

^ 

-

II 

1 

'/' 

K 

Operator 

■ ' . . 

/<-(') 

/!':(!) 

pm 
e(t) 

'/o 
','C> 

l'- 'K(i) 

-h 

-10 + £ 

m 
z(l) 

B(i) 

<lU) 

'/'(') 

K(l) 

A, 

c"'.-(0 

c"i(7) 

c"--(M 

{6(f) + «} 
mod 2.7 

-/(/) 

'/'(') 

K(t) 

'-

Zil-T) 

-•(/ - D 

;(/ - r) 

« ( / - r ) 

</( '- r) - q(-T) 

V'( / - r ) - v ( - r ) 

KU - r) 

I', 

z<-f) 

-H-i) 

ï(-t) 

', 0(-r) + .-r} 
mod 2.7 

- ' , ! - ' ) 

' , ' ( - ' ) 

A'(-/) 

Table 2.2 Variance (•) or invariancc ( C ) <>l the contour representations for the (mir
ror- (similarity operators. 

Contour 
representation 

r 

'~ 

-

0 

'I 

<r 

K 

<)perator 

'K; 
• 

• 

• 

O 

O 

o 
• 

I 

• 

O 

o 
("-) 

o 
o 

//. 

• 

• 

• 

• 

o 
o 

o 

•'T II, 
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We will call the operators 5fy, 2>?, %, and STr collectively similarity 
operators or equiform operators, since they do not affect the shape of 
a contour, as defined earlier. For the same reason i t , is called a mirror-
similarity operator. 

The representations of these (mirror-)similarity operators in each of 
the function spaces, defined by the aforementioned contour representa
tions. are listed in Table 2.1. The operator representations can be de
rived from the definitions of the contour representations in a 
straightforward manner. For the scaling operator 9« we already listed 
some of its representations in Eqs. 2.2.28a,b and 2.2.29. Note in Table 
2.1 that, in order to maintain the convention that the positive sense of 
a contour is counterclockwise, the parameter / is inverted upon applica
tion of the mirror-reflection operator II,. 

From Table 2.1 we immediately find the variance or invariants of 
the individual contour representations for the (mirror-)similarity 
operators. A survey of these properties can be found in Table 2.2. The 
properties in the Tables 2.1 and 2.2 are important for the determination 
of the conditions that are satisfied by the representations of similar or 
mirror-similar contour pairs. We will return to this topic in Section 2.3. 

Simple closed polygons constitute an important class of piecewise 
smooth simple closed curves for shape representation, approximation 
and analysis purposes. In the following we introduce notations for sim
ple closed polygons and derive expressions for the representation of 
such contours. First an expression for the position function z of a poly
gon will be derived in this illustration, and subsequently expressions for 
the representations z. z, 0. q>, ip and K. 

A simple closed polygon with A' vertices is completely specified by 
the ordered set of its complex-valued vertices 

{z(,„)} = {x(Q + iy(tn)}. n = 0 N - 1. (2.2.40) 

The periodicity of the position function of the polygon is expressed for 
the vertices by the equation 

z(0 = z(*fl+„w), fyeZ. (2.2.41) 

We define first and seeond order discrete differences as 

Az(/„) = z(/„+l) - z(t„) (2.2.42) 
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and A2z{t„) = Az{t„)-Az(t„_ 

= z(t„, t) - 2z(t„) + .-(/„ ,) (2.2.43) 

and normalized first and second order discrete differences .is 

Az*(Q = 
|AZ(/„) | 

(2.2.44) 

and 

A V ( f J = Az*(0 - Az*(V (2.2.45) 

For notational convenience we defined the second order discrete differ
ences as central differences. Without loss of generality we can make 
the starting point of the parametric representations to coincide with the 
vertex z(f„), i.e. lu = 0. We choose / to be a constant speed parameter. 
Then for polygons the relation between arc length v and t is 

L 
- V = 2 , ' - (2.2.46) 

where L is the perimeter of the polygon. The arc length s„ at the vertex 
z(/„) is given by the equations 

v., = < 

n- i I 
in = ii 
I |M*J|. 

0. 

«=* ! , 

// = 0, 

- I 
- ^ I AzOm)\, n^-\ 

(2.2.47a) 

(2.2.47b) 

(2.2.47c) 

and the perimeter can be expressed as L = .sv From Eqs. 2.2.46 and 
2.2.47a-c we find the equation 

|AZ(/„) | = . V „ . , -S„= (1,,.1-t,,). (2.2.48) 
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The terminology that we introduced for simple closed polygons is illus
trated in Figure 2.10. 

8 

y 

P 
6 

5 

C 

3 

2 

1 

0 
0 1 2 3 C 5 6 7 8 

Figure 2.10. A simple closed polygon with N = 16 vertices. Normalized discrete differences are 
indicated as vectors 

Based on Eqs. 2.2.40-2.2.48 we find for the position function z be
tween the vertices z(tn) and z(tll + \) the expression 

2(0 = A2*(/„) ^ (, - /„) - 2(/„). fn*£f =S/„+1. (2.2.49) 

Through differentiation of z we obtain an expression for the tangent 
function z between the verticles z(i„) and z(/„ + 1): 

2(0 = A2*(/„) ~ . / „ < / < / „ , , . (2.2.50) 

Note that the tangent function of a polygon is formally undefined at 
the vertices, though we may decide to use left or right limits at the 
vertices. 

j * 1 * *- 1 *■ 
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The acceleration function z can only be defined as a distribution and 
not as an ordinary function. We will not go into the details of the 
distribution-theoretical aspects (cf. Lightbill | I%2] . Zemanian [1965]), 
but use distributions as if they were ordinary functions. 

The Diruc delta functional <)(t) is defined as the generalized function 
that satisfies 

f(,)d(,)d,=f{U) (2.2.51) 

for all continuous functions ƒ(/). It can be identified with the derivative 
of the Heaviside unit step function H(t). i.e. 

Mi) = 
dlHi) 

d/ 
(2.2.52) 

where H(t) is defined as 

mo = 
0. / < ( ) . 

1. 12s 0. 
(2.2.53) 

The tangent function can now be rewritten as a combination of func
tions H(t). 

r i eZ - - 7 

which can be further simplified to 

L 
z{t) = £ [Az*(/,,) " Az"(f,,_ ,)]//(/ - tp) 2.7 pTz 

L 
2.T 

£ &2z*(tp)W -1„). .2.2.55) 
PeZ 

We can find an expression for z through generalized differentiation of 
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z i n E q . 2.2.55, 

*(<)= . L £ A2z*(/„)A(' - / , , ) • (2.2.56) 

Due to its periodicity, 'z(l) can be expressed as a periodic distribution, 

z(f)= | Ê A V ^ d ^ - O , (2.2.57) 
t-ji ,, = il 

where ó2.7(/) is defined as 

02,(0= T.Ö(<-2JTCI). (2.2.58) 
(/ e Z 

It is straightforward to show that z specifies the polygon up to a rigid 
motion in the plane. By integration of both sides of Eq. 2.2.56 and by 
inversion of integration and summation we obtain through Eq. 2.2.52 
the expression for z in Eq. 2.2.55. Assuming an initial direction Az*(/,)) 
we can derive the expression for z in Eq. 2.2.50. Further, assuming an 
initial position z(tlt) on the polygon, each point on it can be recon
structed by integration of both sides of Eq. 2.2.50. 

The derivation of the tangent angle function 0 of a simple closed 
polygon is as follows. We observe that the normalized discrete differ
ences z*(t„) can be decomposed as 

Az*(/„) = A**(/„) + iAv*(/„). (2.2.59) 

where 

A.v*(/„)= - ^ ' y i ) - * ( ' « ) (2.2.60a) 
|AzO„)| 

and 

A y * ( , „ )= y ^ - y ^ . (2.2.60b) 

|Az(r„)| 

Through Eq. 2.2.6. which defines 0, and Eq. 2.2.50 we find an expres-
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sion for the tangent angle function of a simple closed polygon. 

Ay*(/„) 
IAJC*(7)J' ' " < / < / " " - (2.2.61) 

We can solve (Hi), without ambiguity from the signs of A.v (t) and 
Av (/) or. equivalently, from the direction cosines of the tangent func
tion 'z(t): 

and 

cos Ö(/) = A.v (/„) 

sin 6(1) = &y*(t„), t„ < / < / „ . , . 

(2.2.62a) 

(2.2.62b) 

In order to measure the amount of angular change at vertex :{t„) we 
define the discrete tangent angle difference 

A0{i„) = Oil,,) ~ "(/„-,)■ (2.:.63) 

Recalling that the tangent angle function 0 assumes values in a range 
of length 2.T. we obtain the amount of angular change A<y (f„) at vertex 
z(/„) by a mapping of A0(/„). 

&<fUJ = i 

A0(/„) + 2.T. -2.7 < Aö(r„) < - .7 . (2.2.64a) 

A0(/„). - . T < A 0 ( / „ ) < . 7 . (2.2.64b) 

A0(/„) - 2.7. .T < A0(/„) < 2.T. (2.2.64c) 

See Figure 2.11 for an illustration of A</(/„). The angular change A </"(/„) 
takes on values in the range ( - . T . .T). where positive values are obtained 
at convex angles and negative values at concave angles. Note that the 
values -2.T. — 3t, n and 2.7 are not included in the ranges in Eqs. 
2.2.64a-c, since the simplicity of the polygon excludes these values. The 
cumulative angular function <{ of an arbitrary simple closed polygon 
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can now be expressed as 

n 

m= I 

rti)= ^ o. 

n ï s l . 

/i = 0, 

(2.2.65a) 

(2.2.65b) 

_w 

- £ AflKO. » < - l , /„< f < / „ . , - (2.2.65c) 
in = ii + 1 

The periodic cumulative angular function i/' <>f a simple closed polygon 
is found by applying its definition, in Eq. 2.2.32. to the results in Eqs. 
2.2.65a-c. 

To provide insight into the derivation of an expression for the curva
ture of a simple closed polygon, as a distribution, we rewrite Eqs. 
2.2.65a-c as a combination of Heaviside unit step functions. 

ii 

<p(t)= [ A d g W - ' , , ) - E A</(g. (2.2.66) 
;; 6 Z p — — * 

We can find an expression for the curvature K of a simple closed poly
gon. using the definition of K in Eq. 2.2.34, through generalized dif
ferentiation of r/(/) in Eq. 2.2.66, giving 

d/ K(i)= ZWfpWt-t,),. 
p e Z d.v 

(2.2.67) 

Since the parameter / has been defined in Eq. 2.2.46 as a normalized 
arc length parameter, Eq. 2.2.67 can be rewritten as 

Kd)= 2? £A9(g«Ki-g. 
L 

(2.2.68) 
peZ 

Finally, due to its periodicity, K(t) can be expressed as a periodic dis
tribution. 

K(<)=2*'t Ay(/„)r>l7(<-'„). 
n = 0 

(2.2.69) 
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We now show that a polygon is completely specified, up to a rigid 
motion in the plane, by the expression that we found for Kit)- We first 
note that for a simple closed polygon with ,V vertices 

\ i 

Z 
„ = 11 

I A ' / ( 0 = 2.T. (2.2.70) 

Using this equation and at least one period of K(I). we can find the 
perimeter L. Through Eq. 2.2.34 and Eq. 2.2.46 we find </ (1) from K{t): 

</(') = 
fr d.v 

K(T) dr 
dr 

L 
K(T)<1T. (2.2.71) 

In Eq. 2.2.71 we have employed the convention !/•(()) = 0. For poly
gons. (/(/) is undefined for 1 = 0 and the convention becomes (/(/) = 0. 
0 = A, < t < f|. Rewriting Eq. 2.2.71 as 

m=L /C(r)dr K(T)6T (2.2.72) 

we can find the expression in Eq. 2.2.66 through substitution of Eq. 
2.2.68 into Eq. 2.2.72. the inversion of summation and integration and 
finally the application of Eq. 2.2.52. The expressions in Eqs. 2.2.65a-c 
are equivalent to the one in Eq. 2.2.66. From Eqs. 2.2.65a-c we can 
find the individual angular changes Ar/(/„) at the vertices in a 
straightforward manner. Since the relation between arc length and the 
parameter f is known and the values of /„ in at least one period are 
known, the lengths of the sides of the polygon are known. II we use 
this information and define an initial orientation H(t). () = / , , < / < / , , 
and an initial position z(lu). we can reconstruct the polygon from A</ (7„). 
This shows that the polygon can be reconstructed up to a rigid motion 
from Kit). 
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Through this derivation we have shown that it is possible to find 
information-preserving expressions for z, z, tt. ip, y and K of a polygon. 
If we combine this result with the information-preserving properties of 
the same representations for smooth curves (cf. Theorem 2.1 and 
Corollaries 2.1-2.4), we may conclude that we can find information-pre
serving expressions for z, z, 6, cp, </> and K of any piecewise smooth 
curve with a finite number of corners. 

Applications of polygonal curves occur frequently in the literature. 
e.g. in connection with contour coding (Freeman [1961a], Freeman 
[1970]. Saghri and Freeman [1981]), polygonal contour approximation 
(Montanari [1970], Ramer [1972], Pavlidis and Horowitz [1974]. 
McClure and Vitale [1975], Ellis and Eden [1976], Pavlidis [1977b], 
Williams [1981]). shape property measurement (Freeman 11961b]. 
Zahn and Roskics [1972], Wilson and Farrior [1976], Persoon and Fu 
[1977], Kuhl and Giardina [1982], Sarvarayudu and Sethi [1983]) and 
shape classification (Pavlidis and Ali [1975], Davis [1977a]. Davis 
[1979]. Kashyap and Oommen [1982]). 

Reports in the literature on the use of z for shape representation 
have already been reviewed in Section 2.1. Concerning the use of the 
remaining representations an account of the literature now follows. 

The contour representations z and B have rarely been used explicitly 
for shape representation. The tangent function z appears naturally in 
the derivation of the curvature function (Young. Walker and Bowie 
[1974]. Bennett and MacDonald [1975], Groen [1977]. Van Otterloo 
[1978]) or is used as an intermediate representation for the derivation 
of 6 (Ozaki et al. [1982]). However, z is not identified in these refer
ences as a shape information-preserving, and therefore potentially use
ful. contour representation. We already saw in Eqs. 2.2.30 and 2.2.32 
that the tangent angle function 0, the cumulative angular function </ 
and the periodic cumulative angular function i/> are closely related. The 
earliest report that we found on the use of these functions for shape 
representation is Cosgriff [I960]. Having no access top this report, it 
remains unclear whether Cosgrif suggested the use of 6 or of \p. Brill 
[1968] and Zahn and Roskies [1972], who use t/> for shape representa
tion, make conflicting statements on this issue. As a result of the prob
lem of discontinuities of size 2-T in 0. that are not shape-related (see 
Figure 2.8), 6 is not a popular shape representation, although Perkins 
[1978] reports on its use in the context of shape matching in an industrial 
vision system. This problem is overcome by both (p and y>. where if) has 
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the advantage over </ of being a periodic function. Usually not y itself 
but its Fourier coefficients (Brill [1968]. Barrow and Popplestone 
[1971]. Zahn and Roskies (1972). Fong, Beddow and Vetter [1979]. 
Beddow [1980], Strackee and Nagelkerke [1983]) or its Walsh coeffi
cients (Dinstein and Silberberg [1980], Sethi and Sarvarayudu [1980], 
Sarvarayudu [1982], Sarvarayudu and Sethi [1983]) are used for shape 
representation. Martin and Aggarwal [1979] discuss the use of y for 
curve segmentation. 

Another approach to overcome the discontinuity problems in 0 is its 
mapping into a slope density function, i.e. a distribution of the occur
rence of each value of H along the contour (Sklansky and Davison 
[1971]. Sklansky and Nahin [1972]. Nahin [1974|. Ozak'i et al. |1982|). 
The slope density function is not an information-preserving shape rep
resentation. Related to this method is the Hough transform technique. 
which computes the frequency of occurrence of (/•. ft)-pairs along the 
contour (Hough [1962]. Sklansky [ 1978]. Shapiro [1978], Ballard [1981]. 
Davis [1982]). 

The chain code, that was introduced and later generalized by 
Freeman, to represent contours (Freeman [1961a]. Freeman [1978b]). 
constitutes in fact a sampled, quantized and coded approximation of 6. 

Just as the tangent function ~. the acceleration function z has only 
been mentioned in connection with the derivation of the formula for 
the curvature function K from the position function z (Young. Walker 
and Bowie [1974]. Groen [1977]. Van Otterloo [1978]. Anderson and 
Bezdek [1984]). We have found no reference to its explicit use for 
shape representation. 

The concept of curvature plays an important role in many approaches 
to shape analysis (Pavlidis [ 1977a|). The observation of the importance 
of curvature for human shape perception dates back to the work of 
Attneave (Attneave [1954], Attneave and Arnoult [1956]). Especially 
the perceptually dominant role of points of high absolute curvature has 
become apparent from these studies (see also Zusne [1970]). From a 
mathematical point of view, evidence for the importance of curvature 
extrema has been obtained by McClure. McClure [1975] showed that 
in piecewisc linear spline approximation with free knots, using a 
minimum integral square error criterion, the distribution of the knots 
follows the curvature of the curve (see also Pavlidis [1978]). 

In the foregoing we saw that curvature is. apart from scaling, a 
mathematical shape invariant. This fact has given curvature the status 
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of intrinsic equation of a curve (cf. e.g. Duda and Hart [1973]). In view 
of these facts it is not surprising that applications of curvature can 
already be found in the early pattern recognition literature (e.g. Cos-
griff [1960], Ledley [1964], Zahn [1966]). 

In practice it is hard to obtain a reliable estimate of the curvature 
function K of a curve since it involves second derivatives of the position 
function z (cf. Eq. 2.2.26). Many authors have dealt with this estimation 
problem, (e.g. Ledley [1964], Young. Walker and Bowie [1974], Ben
nett and MacDonald [1975], Bowie and Young [1977a], Van Otterloo 
[1978], Wallace, Mitchell and Fukunaga [1981], Kasvand and Otsu 
[1982], Smeulders [1983], Anderson and Bezdek [1984]). To obtain 
curvature estimates that are less sensitive to noise, a variant of the 
curvature function has been defined, which essentially consists of a 
mapping of the angle between a leading and a trailing vector on the 
curve to a measure of curvature (cf. Figure 2.11). In the latter tech-

/ \ 
/ / 

liip(t) / 
zttli^-^leaaing vector 

It trailing vector 

Figure 2.11. hxample of a leading and a trailing vector on a curve, at position z(l). spanning equal 
arc length. The angle A</(0 is used to obtain a measure of curvature at z{t). 

niques the perceptually significant concept of a corner plays an impor
tant role. Details of such methods can be found in Rosenfeld and 
Johnston [1973], Freeman and Davis [1977], Freeman [1979] and 
Pineda and Horaud [1983]. Examples of the many applications of con
tour curvature in image analysis and shape analysis, with some refer
ences, are the following: 

• corner detection and critical point detection (Rosenfeld and 
Johnston [1973], Freeman and Davis [1977], Sankar and Sharma [1978], 
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Kitchen and Rosenfeld 119X2). Pineda and Horaud [1983]. Hung and 
Kasvand [1983). Anderson and Bezdek [1984]). 

• curve partitioning (Ledley [1964). Ledley [1972]. Bowie and Young 
[1977b]. Davis [1977a]. Davis and Rosenfeld [1977], Perkins [1978]. 
Freeman [1978a]. Nevins [1979]. Rutkowski. Peleg and Rosenfeld 
[1981], Fischler and Bolles [1983]), 

• polygonal contour approximation (Shirai [1973], Davis [1977a]. 
Davis and Rosenfeld [1977]). 

• segmentation of overlapping objects (Eccles. McQueen and Rosen 
[1977], Dessimoz [1978]. Dessimoz [1980]. Bengtsson et al. [1981], 
Kailay, Sadananda and Das [1981], Smeulders [1983]. Segen [1984]). 

• shape matching (Freeman [1979). Davis [1979]. Wallace. Mitchell 
and Fukunaga [1981). Grogan and Mitchell [1983]). 

Closely related to curvature is the concept of bending energy. The 
bending energy in a thin elastic beam is proportional to the integrated 
squared curvature along the beam (cf. Landau and Lifschitz [1970]). 
Freeman and Glass [1969] used this property to compute a minimum 
energy curve in a tolerance region. Young. Walker and Bowie [1974] 
proposed bending energy as a shape feature, while Chang [1976] and 
Perkins [1978] used bending energy to match arcs of curves. 

Further discussions about the role of curvature in shape analysis can 
be found in Pavlidis [1977a] and Pavlidis [1978). 

2.3 Geometric similarity and geometric mirror-similarity 

In Section 1.1 we already indicated that we consider the internal 
structure of an object, such as its brightness, colour, texture, etc.. not 
to be part of its shape. We also mentioned that we consider the shape 
of an object to be invariant under translation, scaling and rotation. If 
we use parametric contour representations to render the shape of an 
object, the choice of a particular parameter / and a starting point / = 0 
on the contour is regarded not to affect the shape. We recall here our 
assumptions concerning the choice of a parameter /. expressed in Eqs. 
2.1.18b. c, namely that the parameter is either the arc length or the 
normalized arc length. In the latter case the period of the periodic 
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contour representations is normalized to 2.7. For these reasons we have 
called the operators r/.u-, 5fy, 2ft„ and STr, that perform a translation, a 
scaling, a rotation and a shift of the parametric starting point, respecti
vely. collectively similarity operators or equiform operators. Conse
quently, also the order of application of the similarity operators does 
not affect the shape of an object. 

It will be clear from the foregoing that in this thesis we are concerned 
with the geometrical aspects of shape. We emphasize that information 
about the absolute position, size and orientation of an object may con
tain valuable information in many applications. For example, in optical 
character recognition, information about character orientation is need
ed to be able to discriminate between numerals of the class '6' and 
numerals of the class "9'. If our objective is to estimate the motion of 
an object in a sequence of images, information about its position, size 
and orientation is indispensable (Richard and Hemami [1974], Wallace 
and Mitchell [1980]). It will become clear later on that, in many cases. 
such information can be obtained directly from the parametric contour 
representation of the object or from a similarity measurement. In view 
of the invariance properties of shape, we will require similarity mea
surement itself to be invariant for position, size, orientation and posi
tion of the parametric starting point. The formulation of similarity mea
sures that satisfy these requirements is the subject of Chapter 4. 

Before we proceed with a formal definition of geometric similarity. 
it is important to note that the shape of an object may vary with the 
level of magnification and resolution at which it is observed. There are 
numerous examples to illustrate this statement: coastlines (Mandelbrot 
11967]), cell boundaries, snowflakes, fine particles, etc.; all will change 
in perceived geometrical shape when observed with a finer resolution. 
A detailed discussion of the mathematical modelling of such 
phenomena is given by Mandelbrot (Mandelbrot [1977]. Mandelbrot 
[1982a]). Applications of such models can be found, for example, in 
computer graphics, where they are used for the computer rendering of 
curves and surfaces at variable levels of resolution (Carpenter [1980], 
Fournier, Fussci and Carpenter [1982], Mandelbrot [1982b], Kajiya 
[1983], Pentland [1983]). Though there exist some references in the 
literature on particle analysis (e.g. Kaye [1978], Flook |1978]). the con
sequences of the dependence of shape on resolution for digital shape 
analysis largely remain to be studied. 
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We now give a formal definition of geometrie similarity. 

Definition 2.4. Geometric similarity. 
A contour yt is said to he geometrically similar to a contour ;': iff •/, 
can he mapped into y : by a sequence of translation, scaling and rotation 
operations. 

D 
An example of a pair of geometrically similar contours is given in 

Figure 2.12. Geometric similarity, as defined here, is an equivalence 
relation, i.e. it is reflexive, symmetric and transitive. Therefore it may 
be used to partition the set T|ls into equivalence classes of geometrically 
similar contours (Richard and Hemami [1974]). 

e 
Figure 2.12. Example of a p;iir of geometrically simitar contours. 

In the remainder of this chapter we will use ƒ as a generic symbol for 
any of the parametric contour representations z. 'z. z. 0. <p, v and K. 
Since these contour representations preserve shape information, we 
can collectively formulate the conditions that must be satisfied by the 
representations of a pair of contours in order to render geometrically 
similar contours. 

Theorem 2.3. 
Two contours yl and / : . with contour representations/, a n d / : respec-
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lively, arc geometrically similar iff there exist scalars ^ e C / i e E * , 
a, T e R such that 

j2 = %%^%d\. (2.3.1) 

Proof 

In Section 2.2 we have shown that the contour representations z, z, z, 
0. ([, »/> and K arc information-preserving, i.e. given a particular con
tour representation from any of these types, there is one and only one 
contour, possibly up to a rigid motion in the plane, that is described by 
this representation. 

On the other hand, using the formulas in Section 2.2 the contour 
representations z. z, 0, q>, if' and K can be determined uniquely from 
a contour representation z, being the direct representation of contour 
y. Here we assume z to possess sufficient differentiability properties. 

Thus there exists a one-to-one correspondence, possibly up to a rigid 
motion, between a contour y and each of its contour representations z, 
z, z, 0, q, i/' and K. From this, from Definition 2.4 and from the 
invariance of the shape of a contour under a starting point shift in its 
parametric representation it follows immediately that y] and y2 are 
geometrically similar if Eq. 2.3.1 is satisfied. 

If no scalars £, /?, a and r can be found for which Eq. 2.3.1 is satisfied 
then it also follows from the one-to-one correspondence between a 
contour and its contour representations and from Definition 2.4 that y, 
and y ; cannot be geometrically similar. 

D 

A survey of the formulation of this condition for geometric similarity, 
in terms of the individual contour representations, can be found in 
Table 2.3. To derive these formulations we have used the representa
tions of the similarity operators in the function spaces of the individual 
contour representations, given in Table 2.1, and the variance or in
variance properties of the individual contour representations for the 
similarity operators, given in Table 2.2. 

Another important concept in shape analysis, which is closely related 
to similarity, is that of mirror-similarity. In two-dimensional shape ana
lysis the planar shapes have usually been obtained as a result of a 
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Table 2.3. Necessary and sufficient conditions that the individual contour representa
tions nuisl satisfy, lor some % € C. ji € R ' . a. r € R and V/ e |0. 2.71. in order 10 
render a pair of geometrically similar contours. 

Contour 
representation 

-

z 

-

it 

'i 

V' 

K 

Condition lor geometric similarity 

r2(/)=y3e'"{21(/-r) - :) 

i . (M=/(e '"i ,(r- r) 

ï_.</) = / V " ; , ( f - r ) 

«:(') = {0,(i-T) + a} mod 2.7 

'/:(') = V i C - 0 - Vit - r ) 

' / ':( ')= V I ( ' - T ) - V ' I ( -T) 

AT,(/) = /3 ' lC,(f-r) 

projection of a three-dimensional structure onto the plane of analysis. 
In many applications, the relative position and orientation of the ob
jects with respect to the plane of projection or. equivalent^, the point 
of observation with respect to the objects, may vary. For example, thin 
industrial parts may land on a conveyor belt with either one or the 
other side up (Dessimoz [1980]). The same holds for biological cells 
that have been prepared on a glass plate for microscopic analysis. In 
airplane recognition, an airplane may have any position and orientation 
with respect to the point of observation (Richard and Hemami [1974|. 
Wallace and Wintz [1980]). In order to be able to determine the orien
tation of an object with respect to the point of observation or to reduce 
the size of a library of plane projections of three-dimensional proto
types we need the concept of geometric mirror-similarity. 

Definition 2.5. Geometric mirror-similarity. 
A contour y, is said to be geometrically mirror-similar to a contour y2 
iff Yi becomes geometrically similar to y: upon a mirror-reflection of;', 
with respect to an arbitrary axis in the plane. □ 
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An example of two geometrically mirror-similar contours is given in 
Figure 2.13. Geometric mirror-similarity is a symmetric binary relation 
between contours. It is not an equivalence relation in itself. Equiva
lence classes of geometrically similar contours, of which the elements 
are also geometrically mirror-similar, consist of geometrically mirror-
symmetric contours. The concept of geometric mirror-symmetry will be 
defined in the next section. Contours that are geometrically mirror-
similar but not geometrically similar are called enantiomorphic versions 
of the same shape (Weyl [1952], Shubnikov and Koptsik [1974]). i.e. 
there exists a "left* and a 'right' version of that shape. 

Kigiirt- 2.13. Example <>i .i pair o( geometrically mirror-similar contours. 

We now formulate for the parametric contour representations, collec
tively indicated by the symbol ƒ, the conditions that must be satisfied 
by the representations of a pair of contours in order to render geomet
rically mirror-similar contours. Without loss of generality, we choose 
the A:-axis as the arbitrary axis, mentioned in Definition 2.5, about 
which mirror-reflection takes place. The reason for this choice is the 
analytical convenience it provides. 

Theorem 2.4. 
Two contours yi and y2, with contour representations ƒ, and f2 respec-
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lively, are geometrically mirror-similar iff there exist scalars 'C e C. 
/3 e R ' . a. T 6 R such that 

ƒ, = &&&%&£. (13.2) 

D 

The proof of Theorem 2.4 is similar to that of Theorem 2.5. 

Remark. 
The order of the operators 'i:. ./-. ./i„. -7, and .((, is immaterial for 
establishing the validity of Eqs. 2.3.1 or 2.3.2. However, the values of 
'C. /i. a and r. for which this validity is established, arc dependent upon 
the order of the (mirror-)simil;irity operators in these equations (cf. 
Table 2.1). 

D 
Remark. 
For the contour representations r. ;. 6, </. '/' and K. the validity of Eqs. 
2.3.1 or 2.3.2 almost everywhere (denoted as a.e.. cf. Definition A.3) 
is already a sufficient condition for geometric (mirror-)similarii\. 

Table 2.4. Neccssar) and sufficient conditions that ihc individual contour representa
tions must satisfy, for some L" e C. /< e R'. «. r e R and Vf e |(l. IT], in order to 
render a pair of geometrically mirror-similar contours. 

Contour 
representation 

z 

K 
2 

Z 

o 

'{ 

V' 

K 

Condition lor geometric mirror-similarity 

: ; ( / ] = / i c l " ( : l ( - / + r | - -"I 

z;(/) = -lie " ' r , (- / + r) 

z2(0 = /Je- toF,(-/ + r) 

".") = {-",(-' + r) + .7 - a] mod I T 

<h(t)9 - ? , ( - ' + D + <f\{r) 

'/•:(')= - V i ( - ' + r) + V'i(r) 

A: :(0=/r :A',(-/ + r) 
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In this section, and in Section 2.4 on symmetry, the distinction be
tween pointwisc equality and equality a.e. for the contour representa
tions is handled loosely or ignored altogether. 

In Chapter 4. discussing the measurement of similarity and sym
metry. it will become clear that, as a result of the mathematical form 
of dissimilarity and dissymmetry measures, there is no need here for a 
distinction between pointwise equality and equality a.e. 

D 
A survey of the formulations of this condition for geometric mirror-

similarity, in terms of the individual contour representations, can be 
found in Table 2.4. 

2.4 Symmetry in plane objects 

Symmetry is an important feature that an object or a set of objects 
may exhibit. In the world that surrounds us we encounter various types 
of symmetry, each type with a different reason for occurring. This is 
one of the reasons why symmetry theory has found widespread applica
tion in various fields of science. To quote Weyl (1952): 'Symmetry, as 
wide or as narrow as you may define its meaning, is one idea by which 
man through the ages has tried to comprehend and create order, beauty 
and perfection'. Because we find it aesthetically pleasing, symmetry is 
found in many works of art. A striking example of fascination by sym
metry in graphic arts is found in the work of Escher (Escher et al. 
[1972]). A nice introduction to symmetry theory is given by Weyl 
[1952J, while Shubnikov and Koptsik [1974] give a comprehensive de
scription of this field. Both works give many examples of symmetry in 
diverse fields of art and science. Hargittai [1986] constitutes a recent 
survey of the widespread use of symmetry. 

Animals, living on the surface of the earth, almost always consist of 
two mirror-equal halves, arranged relative to one another as an object 
and its mirror-image. See Figure 2.14 for an illustration of this 
phenomenon. The imaginary plane that divides such creatures into two 
mirror-parts is called the symmetry plane and is denoted by the symbol 
m. The reason for the occurrence of this type of symmetry in animals 
is probably the fact that for animals the directions forward and back-
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ward and up and down are essentially different, while movements to 
left and right are executed with the same frequency. 

Many man-made objects also contain a symmetry plane m. This can 
have functional reasons, for instance in cars, bicycles, airplanes. 
armchairs, or it can have aesthetic reasons, for instance in ornaments. 
works of art. tools, musical instruments. 

Associated with the concept of symmetry is an imaging operation, by 
means of which the figure can be made to coincide with itself. For a 
figure that contains a symmetry plane m the imaging operation consists 
of a reflection of the figure in the symmetry plane, assuming that the 
plane reflects on both sides. We observe that the symmetr) plane m 
occupies a specific position in a figure, as opposed to the arbitrary 

Huurt 2.14. A butterfly ol the species Troides Helena (cf. D'Abrera [1975]). vwth an imaginary 
symmetry plane m. Note that the symmetr) plane m docs not only apply to the shape ol the 
butterfly hut also to its color. 

position of the mirror to perform the mirror-reflection operation in the 
definition of mirror-similarity. Definition 2.5. Any operation of making 
objects to coincide with themselves is called a symmetry operation or 
symmetry transformation. Auxiliary geometric elements, such as points. 
lines or planes, by means of which symmetry operations are effected 
are called symmetry elements. Strictly speaking a symmetry element is 
the locus of points that remain in place when a specific symmetry oper-
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ation is performed. Every figure that possesses at least one nontrivial 
symmetry element is symmetric by definition. If a figure contains a 
symmetry plane m, then we say that this figure has symmetry m or that 
it is mirror-symmetric. 

Another well-known symmetry element is a symmetry axis, i.e. a line 
such that, when a figure is rotated about it, the figure comes into coin
cidence with itself several times. The number of coincidences in a com
plete rotation over an angle 2n is called the order of the axis and is 
indicated by the symbol n. So n serves two purposes: to indicate the 
type of symmetry and to specify the order of this symmetry. The 
elementary angle of rotation is the smallest angle for which the figure 

Figure 2.15. Ornamcnl lhal occurs in Asmal woodcarving (Cf. Gerbrands |1%7|). The ornament 
has twofold rotational symmciry. i.e. n = 2. 

comes into coincidence with itself and is 2jt/n for a figure with a sym
metry axis of order n. Symmetry axes can be of any order, from 
1 to oo. Infinitely many symmetry axes of order 1 are trivially present 
in any figure. We will not treat a symmetry axis of order 1 as a genuine 
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symmetry element. A figure with a symmetry axis of order oo can be 
made to coincide with itself for any angle of rotation, since the elemen
tary angle of rotation is infinitely small. 

If we study symmetry in the two-dimensional plane then a mirror-
symmetry plane becomes a mirror-symmetry line and an axis of rota
tional symmetry becomes a point of rotational symmetry. 

Ol all simple closed contours, that bound simply-connected two-di
mensional figures, only a circle has a symmetry point of order oo. If a 
figure contains a symmetry axis or point of order n. then we say that 
this figure has symmelry n or that it has n-fold rotational symmetry. See 
Figure 2.15 for an example of a figure with symmetry n = 2. 

In the living world, species with symmetry n but without mirror-sym
metry are not frequently encountered. In man-made objects, however. 
symmetry n without mirror-symmetry is rather common, especially in 
technological objects such as machine parts, rotating about a specific 
axis, or the vanes of a windmill. Many ornaments also have this type 
o I symmetry. 

Figures can have a symmetry plane m combined with a rotation axis 
of order n that lies in m. Such figures are said to have symmetry nm. 
where the dot indicates that n lies in m. It is easily verified that a figure 
with symmetry n-m has n distinct symmelry planes, all coinciding at the 
symmetry axis of order n. However, 'the axis of order n and one sym
metry plane m can be considered as generating symmetry elements, the 
other n—1 symmetry planes as arising from these generating elements. 
See Figure 2.16 for an example ol a figure with symmetry nm = 5-flI. 

Symmetries of the types 2-m. 3-m. 4-m and 6-/w are widespread in 
the plant and animal world. Symmetry of the type 5-m is often encoun
tered in the fruits of plants, for instance in apples, and sometimes in 
animals, for instance in various starfish (Shubnikov and Koptsik 
[ 1CJ74 j >. In man-made objects symmetry of the type nm is also common. 
lor example in vases, lamps, tables, rotating machine parts, ornaments. 

The complete set of all symmetry elements in a figure determines its 
symmetry class. The complete set of symmetry operations that is pro
vided by the symmetry class of a figure is called the symmetry group of 
that figure. 

In Chapter 1 we already mentioned that we are concerned in this 
thesis with the geometrical aspects of shape. As a consequence we 
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restrict ourselves to the geometrical aspects of symmetry and refrain 
from considering the physical aspects of symmetry such as colour and 
internal structure. Furthermore, we only pay attention to the types of 
symmetry that may occur in a single object. We do not study, for 
instance, the types of symmetry that may occur in unbounded structures 
such as bands or network patterns. 

Figure 2.16. A picture ol a Flower Of Sod urn acre. This Omver has symmetry nm - 5m. 

In Section 1.1 we remarked that the plane figures that we study are 
usually the result of a projection of three-dimensional objects onto the 
two-dimensional plane of analysis. If a three-dimensional object has 
symmetry m. n or n-m, then we can only observe this symmetry in a 
two-dimensional projection if the plane of projection is perpendicular 
to the symmetry elements in the three-dimensional object. As we re
marked earlier, in two dimensions the mirror-symmetry clement is a 
line m and the element of n-fold rotational symmetry is a point of order 
n. The study of the geometrical aspects of symmetry in single plane 
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figures can be restricted to the symmetry classes in. n and nin. In 
Section 1.2 we argued that the study of the shape of simply-connected 
plane figures can be performed through the analysis of their contours. 
Therefore we now present definitions oï geometric symmetry of the 
types m. n and n-m in the plane in terms of the contours of simply-con
nected two-dimensional figures. 

Definition 2.6. Geometric symmetry m or geometric mirror-symmetry. 
A contour y is said to have geometric symmetry m or geometric mirror-
symmetry iff there exists a line in in the plane such that, when y is 
mirror-reflected about in. it coincides with itself. 

G 
By necessity, the symmetry line in of a geometrically mirror-sym

metric contour y has two intersections with y and passes through the 
centroid of the interior of;'. In the literature on shape analysis, symme
try m is also called axial symmetry (Zahn and Roskies [ 1972J) and 
lateral symmetry (Davis [1977b|. ('haudhuri and Dutta Majumder 
[1980]) or bilateral symmetry (Wallace and Wintz [1980]). Recalling 
the concept of enanliomorphism. introduced in Section 2.3. it is easj 
to verify that a necessary and sufficient condition for the existence of 
enantiomorphie versions, or a •left' and a "right" version, of a two-di
mensional shape is that it has no symmetry line in. Thus we observe 
that the set of equivalence classes of similar shapes is divided into 
mirror-symmetric classes and pairs of enantiomorphie classes. 

Definition 2.7. Geometric symmetry n or n-fold geometric rotational 
symmetry. 
A contour y is said to have geometric symmetry n or n-fold geometric 
rotational symmetry iff there exists a point of order // in the plane such 
that, when y is rotated about this point, it coincides with itself alter 
each rotation over an angle 2.T/II. 

D 
By necessity, the symmetry point of order n of an n-fold geometrical

ly rotationallv svmmctric contour y coincides with the centroid of the 
interior of •/. In the literature on shape analysis symmetry « is also 
called rotational symmetry of degree n (Granlund [1972]) and n-fold 
axial symmetry (Santisteban. Garcia and Carrascosa [ls>cSl]). 
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Definition 2.8. Geometric symmetry nm or n-foldgeometric compos
itional symmetry. 
A contour y is said to have geometric symmetry n-m or «-fold geometric 
compositional symmetry iff y has both symmetry n and symmetry m. 

D 

We call this type of symmetry n-fold compositional symmetry because 
it is composed of n-fold rotational symmetry and mirror-symmetry. As 
we remarked earlier, the dot in nm indicates that the symmetry ele
ment n is coincident with the symmetry element m. In a two-dimen
sional figure, that has both symmetry n and symmetry m, it is obviously 
guaranteed that the symmetry point n lies on the symmetry line m. 

Based on the Definitions 2.6 and 2.7 we now formulate the conditions 
that must be satisfied by the parametric contour representations z. 'z. 
z, 0. c[, if and K, indicated by the generic symbol ƒ, of a contour y in 
order that y has geometric symmetry m or geometric symmetry n. re
spectively. 

Theorem 2.5. 
A contour y, with contour representation/, has geometric symmetry m 
or geometric mirror-symmetry iff there exist scalars £ e C, a, r e R 
such that 

'jJ=Mx?)T3l,&J. (2.4.1) 

Proof 

It is easily verified that a contour y has geometric symmetry m iff y is 
geometrically mirror-similar with itself (cf. Definitions 2.6 and 2.7). As 
a result of this equivalence the validity of this theorem follows im
mediately from Theorem 2.4. We remark that no scaling of the contour 
is performed if we wish to establish the mirror-similarity of the contour 
with itself. 

D 
A survey of the formulations of this condition for geometric sym

metry m, in terms of the individual contour representations, can be 
found in Table 2.5. 
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Table 2.5. Necessary and sufficient conditions thai the individual contour representa
tions must satisfy, for some 'C e C. it. r e R and Vr e [0. 2.-r). in order to render a 
contour with symmetry m. 

Contour 
representation 

2 

2 

e 

6 

'i 

V' 

K 

Condition for geometric symmetry m 

.-(0 + C = e - " ' { ; ( - f + r ) - :\ 

r(/) = - e ' " ; ( - / + r) 

7(0 = c ' 5i-f + r) 

0(t) = { -6{-l + r) + . T - a) mod 2.7 

'/(') = - ' / ( - ' + T) + <I(T) 

'/ '( ')= -i,i-' + r> + Vl') 

KU) = K(-I+T) 

The values of the scalars Z. <i and r. for which the representation 
ƒ of a geometrically mirror-symmetric contour satisfies Eq. 2.4.1. can 
be interpreted as follows. The translation operator 7 : assures that the 
symmetry line m passes through the origin. This is the reason why the 
translation operator rJc appears on both sides of Eq. 2.4.1. which how
ever does not lead to a loss in generality. In practice. — £ usually corre
sponds to the position of the centroid of the interior of -/. which coin
cides with the symmetry line m of a geometrically mirror-symmetric 
contour. The angle between the symmetry line m and the positive .v-axis 
equals —all or - a /2± .T . If the starting point on the contour is 
parametrically shifted over - r / 2 . or —r/2 ± .T. then it coincides with the 
symmetry line m. 

Theorem 2.6. 
A contour y. with contour representation ƒ. has geometric symmetry n 
or «-fold geometric rotational symmetry iff there exists a scalar 
'C e C such that 

'J-^n'hrrnjJ- (2.4.2) 
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Proof 

The translation operator 3)s on both sides of Eq. 2.4.2 allows for the 
determination of the point in the plane about which the contour must 
be rotated. 

If a contour, that has /i-fold geometric rotational symmetry, is rotated 
about this point over 2.T//I, then it comes into coincidence with itself 
(cf. Definition 2.7), which can be considered as similarity with itself 
upon this rotation. Since the corresponding contour representations are 
parametrized by a normalized arc length parameter, with a fundamental 
parameter interval of length Ire, the rotation '^;„ must be compensated 
by a a starting point shift ^iin in these contour representations, thus 
leading to Eq. 2.4.2. 

Because of the one-to-one relation between a contour and the con
tour representation/", possibly up to a rigid motion in the plane (cf. the 
proof of Theorem 2.3), Eq. 2.4.2 will be valid iff ƒ represents a contour 
that has geometric rotational symmetry n. 

0 
A survey of the formulations of this condition for geometric sym

metry n. in terms of the individual contour representations, can be 
found in Table 2.6. 

The translation operator 2 ; in Eq, 2.4.2 causes the centroid of the 
interior of the «-fold geometrically «nationally symmetric contour to 
coincide with the origin. So if £ is the complex value for which Eq. 2.4.2 
is satisfied, then — £ corresponds with the position of the centroid. As 
a result of the application of rJ■-. subsequent rotations are about the 
centroid. This is again the reason why. similar to Eq. 2.4.1, the transla
tion operator 'i- appears on both sides of Eq. 2.4.2. It is easily verified 
that if Eq. 2.4.2 is valid, then also 

'ij = ^n,2^-Kn:,^J- V»> e Z. (2.4.3) 

holds. Note in Table 2.6 that we used the property of the cumulative 
angular function q> of a contour with geometric symmetry n that 

in ) = m "T, V//i e Z. (2.4. 
n I n 
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Table 2.6. Necessary and sufficient conditions thai ihe individual contour representa
tions must satisfy, for some 'C, and Vf e [0. 2.T]. in order to render a contour with 
symmctn n. 

Contour 
representation 

* 

i 

2 

0 

'( 

V' 

K 

Condition for geometric symmem n 

,(„ + s = e '^j . - ( ( - - ; ) + . r ) 

%t)-e'i(t- Zl) 

z(t) = e ' z ( i - 2rr) 

0(1) = 1 hr\ " 'T! 
( n ' n \ 

*)-*(<-?)-*(-?)-*(*-?)♦? 
v m = y ( r - 2

n
T) 

K(I) = K(I- 1 T ) 

Theorem 2.7. 
A contour •/. with contour representation ƒ. has geometric symmetry 
n-m or n-fold geometric compositional symmetry iff there exist sca-
lars f e C a . r e F such that both Eq. 2.4.1 and Eq. 2.4.2 are satisfied. 

D 
The validity of Theorem 2.7 follows immediately from Definition 2.N 
and Theorems 2.5 and 2.6. 

2.5 Concluding remarks 

In Sections 2.1 and 2.2 we introduced a number of parametric con
tour representations that preserve shape information. These are 
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z - position function 
i: - tangent function 
z - acceleration function 
I) - tangent angle function 
<p - cumulative angular function 
i/' - periodic cumulative angular function 
K - curvature function. 

The relations between these representations have been described. 
We have introduced the symbol/to collectively indicate the aforemen
tioned contour representations. For simple closed contours all these 
representations, except for (f. are periodic if we move continuously 
along the contour. We have decided to use the normalized arc length 
parameter i in the parametric contour representations, normalizing 
their period to 7M. 

We have also introduced the similarity operators or cquiform 
operators '.),,. 7 . .-/(„ and .'7r. to perform scaling, translation, rotation 
and parametric starting point shift on contours, respectively, and the 
mirror-similarity operator .it, to perform a mirror-reflection about the 
jc-axis. 

In Section 2.1 we argued why we consider contour representations 
that specify, in some way or another, the distance between a contour 
and a contour-dependent reference position, not suitable for shape 
analysis purposes. 

In Section 2.3 we have expressed what we consider to be the shape 
of a two-dimensional object. Based on this we have defined geometric 
similarity and geometric mirror-similarity between contours. In Tables 
2.3 and 2.4 we have listed the necessary and sufficient conditions that 
the individual contour representations must satisfy in order to render 
pairs of geometrically similar and geometrically mirror-similar con
tours. We identified geometric similarity as an equivalence relation that 
generates equivalence classes of geometrically similar contours. These 
equivalence classes are divided by the concepts of geometric mirror-
similarity and geometric mirror-symmetry into mirror-symmetric classes 
and pairs of enantiomorphic classes. 

In Section 2.4 we defined the types of geometric symmetry that may 
occur in single two-dimensional shapes. These are: 
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• geometric symmetry m or geometric mirror-symmetry, 

• geometric symmetry n or n-fold geometric rotational symmetry. 

• geometric symmetry nm of «-fold geometric compositional sym
metry. being the combination of symmetry n and symmetry m. 

In Tables 2.5 and 2.6 we have listed the necessary and sufficient 
conditions that the individual contour representations must satisfy in 
order to render a contour with symmetry m and symmetry //. respec
tively. 

As formulated in Sections 2.3 and 2.4. geometric similarity, geomet
ric mirror-similarity and the three types ol geometric symmetry are 
mathematical abstractions. For various reasons they are not likely to 
occur in practice. In order to have the disposal of means to establish 
the extent of similarity or mirror-similarity that exists between shapes. 
we will have to define appropriate measures. Likewise we will base to 
determine appropriate measures to establish the extent with which a 
particular type of symmetry is present in a shape. The conditions for 
geometric similarity, geometric mirror-similarity and the three types of 
geometric symmetry, in terms of the contour representations, will serve 
to set boundary conditions for such measures. These topics will be dealt 
with in Chapter 4. 
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Chapter 3 

Fourier series expansions of parametric 
contour representations and their relation 

to similarity and symmetry 

3.1 Applications of Fourier series in the context of shape analysis -
a review 

In the previous chapter we have introduced a number of periodic-
contour representations that preserve shape information. In the litera
ture on shape analysis, not the periodic contour representations them
selves. but the Fourier coefficients generated by such contour represen
tations have been given most attention. Fourier coefficients have been 
proposed to serve various purposes in shape analysis procedures. 

Granlund [1972], Zahn and Roskies [1972] and Tai, Li and Chiang 
[1982] use a limited set of combinations of Fourier coefficients directly 
in a multidimensional feature space to enable shape clustering and clas
sification. The features arc defined such that they are invariant for 
similarity transformations of contours. 

Many authors use a sequence of Fourier coefficients as a representa
tion of an object contour and define a metric on pairs of sequences of 
Fourier coefficients as a measure of dissimilarity between contours. To 
ensure that such a dissimilarity measure is invariant for similarity trans
formations of contours, some authors propose a combined normaliza
tion/optimization procedure (e.g. Richard and Hemami [1974], Persoon 
and Fu [1977]. Kuhl and Giardina [1982], Watson and Shapiro [1982]). 
Others first perform a normalization of the Fourier coefficients to ob
tain a dissimilarity measure that is invariant for similarity transforma
tions. These normalization procedures are directly based on the Fourier 
coefficients themselves (e.g. Persoon and Fu [1977], Burkhardt [1979]. 
Wallace and Mitchell [1979], Wallace and Wintz [1980], Wallace [1981], 
Proffitt [1982]). A detailed discussion of contour normalization meth
ods, including the ones just mentioned, will be given in Section 4.3. 

For the interpolation between shapes, schemes have been proposed 
that interpolate between the Fourier coefficients of the position func-
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lions of given shapes (e.g. Bertrand. Queval and Maitre [1982]). Wal
lace and Mitchell [19N0| use an interpolation procedure based on the 
Fourier coefficients of airplane silhouette representations to obtain 
greater accuracy in airplane orientation measurement. 

Fourier coefficients have also been proposed to detect symmetry in 
objects (e.g. Granlund [1972], Zahn and Roskies [1972], Burkhardt 
[1979], Wallace and Wintz [1980], Crimmins [1982], Mitchell and Gro-
gan[1984]). 

In biology and in particle science, frequently not absolute shape, but 
those shape characteristics from which conclusions concerning biologi
cal and physical properties can be derived, are important. Many prop
ositions for such shape characteristics have been formulated in terms 
of Fourier coefficients of periodic contour representations. We refer to 
Young. Walker and Bowie [1974], Sychra et al. [1976], Chen and Shi 
|19N0| and Nguyen. Poulsen and Louis [1983] for Fourier-based shape 
characteristics in cell analysis, and to Schwarcz and Shane [1969], 
Ehrlich and Weinberg [1970]. Beddow et al. [1977]. Meloy [1977a], 
Meloy (1977b]. Beddow and Meloj [ 1980]. Luerkens. Beddow and Vet
ter [ l9X2a] and Luerkens. Beddow and Vetter 11982b] for the definition 
of such characteristics in the context of particle analysis. 

The accuracy with which a finite Fourier series approximates a par
ticular periodic function constitutes an important subject in the theory 
of Fourier series. In the context of contour representation, the accuracy 
of approximation of finite Fourier series has been given comparatively 
little attention (e.g. Giardina and Kuhl [1977]. Kuhl and Giardina 
11982] and Etesami and L'icker 11985]). Some new results on this sub
ject arc presented in Dekking and Van Otterloo [198<S| and in Section 
3.4. 

Closely related to the accuracy of approximation by finite Fourier 
series is the subject of the rate of decay of the Fourier coefficients. In 
Young. Walker and Bowie |I974| the finiteness of the bending energy 
in a curve is related to the rate of decay of the Fourier coefficients 
generated by the position function of such a curve. Some comments on 
this paper relating to this topic can be found in Section 3.2. The charac
terization of the behavior of Fourier coefficients and of the convergence 
properties of Fourier series for various classes of functions plays a cen
tral role in the theory of Fourier series (e.g. Titchmarsh [1939], Zyg-
mund [1959a], Zygmund [1959b], Lighthill [1962]. Katznelson [1968], 
Edwards [1979]. Edwards [1982]). In the following three sections we 
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discuss some aspects of Fourier series theory in relation to contour 
representation. 

In Section 3.2 we analyze the convergence properties of the Fourier 
series and the Fourier coefficients of the contour representations intro
duced in Chapter 2. To facilitate this discussion we introduce two new 
smoothness classes of contours. We show that the sequences of Fourier 
coefficients, generated by the representations of contours that belong 
to these smoothness classes, preserve shape information. 

In Section 3.3 we study the consequences of (normalized) arc length 
paramctrization upon Fourier series expansions of contour representa
tions. We show that the condition of (normalized) arc length paramct
rization causes the Fourier sequences, generated by the contour rep
resentations z, z and z of all contours, except for the circle, to contain 
an infinite number of nonzero coefficients. However, in practice we can 
only work with finite sequences. 

Therefore, in Section 3.4 we derive upperbounds for the truncation 
errors resulting from finite Fourier series expansions. 

In Section 3.? we formulate conditions for geometric similarity and 
for geometric mirror-similarity in terms of pairs of sequences of Fourier 
coefficients. 

Section 3.6 describes conditions for geometric symmetry m and for 
geometric symmetry n in terms of sequences of Fourier coefficients. 

Finally. Section 3.7 contains a review of this chapter and some con
cluding remarks. In this section we also discuss Walsh sequency expan
sions. which have been proposed as alternative transform domain rep
resentations of contours. 

3.2 Fuurier series theory in relation to parametric contour 
representation 

In the following we discuss some elements of Fourier series theory 
in fairly global terms and relate these to the representation of object 
contours. We analyze the relation between smoothness classes of con
tours and function class membership of the corresponding contour rep
resentations. Based on these results we establish the convergence prop
erties of the Fourier series and Fourier coefficients generated by these 
contour representations. We first define some essential concepts. 
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Definition 3.1. Fourier scries. 
Let/denote a Lebesgue-integrable, complex-valued function of period 
2.7. The exponential Fourier series, generated by /'. is given by 

ƒ( / ) - I M)e'A'. (3.2.1) 
- . 

where the complex Fourier coefficients f(k) are given by the formula 

./(/)e ""dl. (3.2.2) 

D 
The notation "—' in Eq. 3.2.1 means that the Fourier series on the 

righthand side is generated by./'. This formulation of Fourier series does 
not make any presupposition about the convergence of the series. 

Definition 3.2. Partial Fourier sum of degree n. 
The partial Fourier sum of degree n oï a 2.7-periodic. Lebesgue-inte
grable function ƒ is defined as 

&„/)(')= I /(*)e i A ' . (3.2.3) 
4 ■ n 

where /'(A) is the Fourier coefficient with index k generated b\ /'. as 
defined by Eq. 3.2.2. 

D 
The theory of Fourier series has established various types of conver

gence of Fourier series to the functions that generate them, and various 
ways in which a Fourier series can represent a function. The type of 
convergence and the way of representation depends upon the function 
class to which a function belongs. Also the way of summing the Fourier 
series influences the convergence properties. 

The function classes referred to are. for example, characterized bv 
the integrability or differentiability properties of its members, or bv the 
important property of bounded variation. 

To facilitate the interpretation of the discussion that follows, a 
number of definitions and properties from mathematical analysis have 
been incorporated in Appendix A. 
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We shall analyze the convergence properties of the Fourier series 
and the Fourier coefficients of the contour representations z, z. z. tfi 
and K of contours belonging to the classes Tps, rpr. Ts and fr. To enable 
this we will first establish to which function class the contour represen
tations of contours from various classes belong. In the discussion about 
the convergence properties of Fourier series and Fourier coefficients. 
we shall make frequent use of the inclusion relations that were estab
lished for the contour classes in Eqs. 2.1.10 and 2.1.11. Mathematically. 
the class ƒ'_ poses very few restrictions on z and K (cf. Definition 2.2). 
which prevents us from deriving some useful properties. On the other 
hand, the class Tr is too restrictive from an application's point of view 
(cf. Definition 2.3). Therefore we will define in this section the class 
rm of weakly regular simple closed curves. In analogy with the classes 
/'p„ and rpi (cf. Section 2.1) we will also define the class JTpwr of piecewise 
weakly regular simple closed curves. 

In the following we shall show that the position function z of any 
simple closed contour y e Tps will always satisfy a Lipschitz condition. 
i.e. z e A (cf. Appendix A). 

Lemma 3.1. 
If •/ e rps. then z e A with Lipschitz constant Z./2.T. 

Proof 

If y e rpv. then it consists of a finite number of smooth contour segments 
(cf. Section 2.1). Along each smooth segment the position function z 
is continuously differentiable (cf. Definition 2.2). Consequently, each 
smooth segment of y is reclifiable. Since the number of smooth seg
ments is finite, y itself is rectifiablc and thus (normalized) arc length 
can be used as a parameter for z (cf. Kreyszig [1%8|. pp. 28-30). 

To see that z e A. with Lipschitz constant L/2.7. we note that Vo > 0 
(cf. Eq. 2.1.13): 

\z(t + d) - z(t)\ ^s(l.t + <)) 

n+6 . 
\Z(T)\ÓT = Ö . (3.2.4) 

Ji ^H 

since z is parametrized according to normalized arc length. D 
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Lemma 3.1 is also valid for contours belonging to the classes rpr, T, 
and r, since these contour classes arc contained in /",,, (cf. Eqs. 2.1.1(1 
and 2.1.11). 

Proposition 3.1. (Cf. Apostol 11974]. p. 139.) 
If a function ƒ. defined on \a. b\. belongs to A (with Lipschitz constant 
/.). then ƒ 6 AC (cf. Appendix A). 

Proof 

This is true because for any f > 0. taking d - ii/.. we find for ever) n 
disjoint open subintervals {ak. bk) of [a. b\. n = 1.2 such that 
2-1' = \(bk ~ ak) ' s ' c s s , n ; m °< t n a t 

t \f(h)-f(ak)\^l t \'h ~ «*I<AÓ = e, (3.2.5) 
k = i /, = i 

and hence ƒ e AC. 
D 

From Lemma 3.1 and Proposition 3.1 we may conclude that, if;' e ƒ',„. 
then r e AC. 

We now define the classes r„, and r,,vir of weakly regular and piece-
wise weakly regular simple closed curves. 

Definition 3.3. Weakly regular .simple closed curve. 
A curve y. parametrized on |(). 2.T]. is a weakly regular simple closed 
curve iff: 

• y e rs. (3.2.6a) 

• Jr exists and is continuous along y except in a finite 
number of points: at the latter points left and right 
limits of z exist. (3.2.6b) 

• z(0) = f(2.7). (3.2.6c) 

D 
At those points / where z does not exist we can define for example 

-'(/)= ?{z(i') + z(l)}. With this convention. Definition 3.3 implies 
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that \z(t)\ ' s bounded by some positive value \z\mm <<»if y € TWI. From 
Eq. 2.2.25 it then follows that the absolute curvature function \K(t)\ is 
also bounded by Km,n = (2JI/L)2 \Z\„VM < °°. Note that f, c: rw, c Ts 

(cf. Definitions 2.2 and 2.3). 

Definition 3.4. Piecewise weakly regular simple closed curve. 
A curve y. parametrized on |(). 2JT], is a piecewise weakly regular simple 
closed curve iff: 

• y € Tps. (3.2.7a) 

• at those points, where z does not exist, left and right 
limits of 2 exist, (3.2.7b) 

• everywhere, where y is smooth, z exists and is continu
ous except in a finite number of points: at the latter 
points left and right limits of z exist, (3.2.7c) 

• 2(0) = Z(2.T). (3.2.7d) 

D 

Note that r,,r c f*pwr c rps (cf. Eq. 2.1.11). 
Another way to characterize the class rpivI is to say that the curves 

in this class are weakly regular, except in a finite number of points. At 
those points where a curve is not weakly regular. Eq. 3.2.7b applies. 

In the following we first analyze to which function classes the rep
resentations of contours of the class rw belong. We first show that 
z e A and \p 6 A if y 6 Twl. and then that z e Lx and K e Lx. On the 
basis of these results we draw conclusions about the convergence prop
erties of the corresponding Fourier series and Fourier coefficients. 

Lemma 3.2. 
If y 6 r w , then 'z e A with Lipschitz constant (LI2x)2Km.n. 

Proof 

The truth of this lemma can be verified as follows. If y e Twr. then: 
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O + ó) - z(0| 

~ 2.T' 

L 
= 2.T 

L 
0 - , 

2 sin 
0(/ + ó) - 0(i) 

2 

|0(/ + Ó)-0(O| 

L 

in 

i ■ -

ft(r)dr 

s= f> 
L 

2.T 
A' (3.2.8) 

for all i e |(). 2.T - d\ and for all small <) > (I. 

Lemma 3.3. 
II" •/ e rwi. then v e A with Lipschitz constant (L/2x) Kmax + 1. 

Proof 

We recall from Eq. 2.2.32 that 

ipo + Ö) - '/•(/) = (pu + Ö) - <pO) - <y 

To see that the statement in this lemma is true we note that if y e /~ttr. 
then (cf. Eqs. 2.2.34 and 2.2.35): 

V' (/ + ó) - <rC)\ 

l + * 

(({T)ÓT + () * L *m« + i (3.2.9) 

for all / e |(). 2.T - <)] and all small ö > 0. D 
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From Definition 3.3 it follows immediately that z e Lx if y e Twr. This 
in turn means that the Riemann-Lebesgue lemma applies to z\k): 

lim z(*) = 0, (3.2.10) 
1*1-»* 

i.e. 1(A) = o(l) as |Ar| - * oo (cf. Edwards [1979], pp. 32 and 36). 
From z e Ai l follows that z is integrable. i.e. z e L1. We then find 

the relation (cf. Edwards [1979], p. 32): 

m = 

= 

= 

i 
2.7 

— 

1 
iA 

-
J2.T 

1 
2mk 

z(k). 

t)c" 

z(')c 

krdt 

-l*r|*« 
I I I + 1 

2.TiA- J ir(0e-'*'d/ 

(3.2.11) 

By applying Eq. 3.2.12 twice we obtain the relation 

z(k) = - iA®. (3.2.12) 
A" 

From Eqs. 3.2.10 and 3.2.12 we conclude that z(k) - o(k'2) as 
|A | -»°° i fyer w r . Hence we find that 'z(k) = 0( |A|~')as|A|-» =■= ifye Twr. 
As z e AC, S„z converges uniformly to z (cf. Appendix A). 

Along the same lines analogous results can be derived for t/; and K 
if y e r w . From Definition 3.3 it follows immediately that K e L ' if 
y e rwr . The Ricmann-Lebesgue lemma then yields 

lim £(k) = 0, (3.2.13) 
1*1 - « 

i.e. K(k) = o ( l ) as |A| -* «>. 
Wherever if> exists the relation between y> and K is defined as (cf. 

Eqs. 2.2.32 and 2.2.34): 

ip{t)= 9
L K ( ' ) - I - (3-2.14) 
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From this equation we derive (cl. Eq. 3.2.I I): 

'/•(*)= , ., K(k). V i e Z - j l l ) . (3.2.15) 
2.TIK 

From Eqs. 3.2.13 and 3.2.15 we find that \j>(k) = o(|A-|~') as |A'| -» * 
if 7 e r w . Since if) e AC if y e rwr, .S'„i/' converges uniformly to y (cf. 
Appendix A). 

If •/ e r w , we already found that : e L' and K e L" and that r(A) = 
o(l) and K(k) = o(\) as \k\ -» w. Ii was shown by Hunt |1%7J. 
elaborating on the results of Carleson [1966]. that'1' 

lira ($„ƒ)(*) =ƒ(*), a.e. (3.2.16) 

if ƒ e L''. for any index p > 1. Thus, if y e r„ r . then 

lim {S„z)(t) = z(t), a.e. (3.2.17) 

and 

lim (S„K)(t) = K(i). a.e. (3.2.IS) 

II' a contour belongs to ƒ",. then obviously the same properties are 
valid for the representations of this contour and its Fourier expansions 
that are valid when a contour belongs to /"„,. Though ; e C and K e C 
if 7 € /",. it is not necessarily true that c e BV and A.' e BV. Therefore 
stronger convergence properties for z(k) and K(k) are generally not 
valid if 7 e Tt. 

Mere continuity of a function is not a particularly strong property in 
relation to the convergence of the Fourier series that it generates. This 
is illustrated by the fact that the Fourier series of a continuous function 
can diverge on an uncountable set (cf. Edwards [1979]. pp. 162-164). 
On the other hand. Eqs. 3.2.17 and 3.2.18 are clearly valid if 7 e fr. 

We now pay some attention to contours with finite bending energy. 
Young. Walker and Bowie [ 1974] considered a contour as a thin flexible 
rod and related the finiteness of the bending energy in this rod to the 
rate of convergence of z[k) as |A| —» ~s-. Finiteness of bending energy 



FOURIER SERIES THEORY 97 

is considered to characterize the smoothness of contours. We will show 
that if a contour y e Tw then y has finite bending energy. Through an 
example we will show that the converse is not necessarily true. Through 
this example it will also become clear that finitcness of bending energy 
is not a sufficient criterion to judge the smoothness of a curve. 

Finitcness of bending energy is equivalent to square integrability of 
the curvature function, i.e. K e L2. In the aforementioned paper it was 
shown that 

£ *4|i(*)|2<=c. (3.2.19) 
keZ 

i.e. {k2z(k)} e £2(Z) (cf. Appendix A), if K e L2. Hence {k2z(k)} e 
c„(Z). i.e. {k2z(k)} = o(l) as \k\ -» =». Thus we find that the rate of 
convergence of z(k) is at least o(k~2) as \k\ —* «> if the bending energy 
in the contour is finite. (This result corrects a minor error in the conclu
sion drawn by Young, Walker and Bowie [1974].) 

We now verify that the bending energy in a contour y is finite if y e 
Twr. We already remarked that finitcness of bending energy is equiva
lent to K e L2. If y 6 r t t r. then ^ e L 1 . Observing that L" <= L2 (cf. 
Appendix A) and combining this with the facts just mentioned, we can 
immediately conclude that y e fwr indeed implies finitcness of bending 
energy in y. Incidentally this observation also implies that rwr is a 
proper subset of the class of contours with finite bending energy. Fur
thermore we remark that the previously obtained result, i.e. z(k) = 
o(k~2) as |A:| -* *> if y e Twr. is in accordance with the rate of decay of 
z(k) just found if the bending energy in the contour is finite. 

An example of a curve with finite bending energy which does not 
belong to TWI is the following. Consider the tangent angle function 

e(t)= 2 - (2) " l ' l " - < ) < " < ! • (3.2.20) 

in the interval - . T / 2 =ï / =£ Till. In this interval 6 is continuous. This 
function does not define a closed contour, but this fact is immaterial 
for this discussion. The derivative of 6 is given by 

0(0 = " « ( 2 ) ' "sgn (/) | / | " - ' , (3.2.21) 
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which does not exist at i = 0 since 0 < a < 1. If ( represents the arc 
length along the curve, then 6 expresses its curvature K (cf. Eq. 2.2.22). 
The curves, defined by 0 and 0 = K in Eqs. 3.2.20 and 3.2.21. are not 
weakly regular since lim, • (l K(i) = w and lim, , „ K(t) - —». 

In order for K to belong to L ; ' [ - . T / 2 , .-r/2] we find from Eq. 3.2.21 
the requirement that a > (p - [)fp. Thus K e L : [ - . T / 2 . .T/2| if '/: < 
a< 1. 

em 
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Figure 3.1. In (;i) the tangent function 0(0 = -7'- - l-7'-)1 "I'l" is shown for ii = .49 and a = .51. 
In lb) the associated position functions z[i). reconstructed according to Eq 3 2 22. are displayed 
Note that z(i) dots not have finite bending energy for a = .49. whereas for (i = .51 it does 

This example also shows that finiteness of the bending energy is not 
a sufficient criterion to determine the smoothness of a curve. In Figure 
3.1a we have shown 8(t) in the interval - . T / 2 =S / =£ nil for a = .51 and 
a = .49. Figure 3.1b displays the reconstructed position functions 

zU) = ■ " « " dr 
tii 

(3.2.22) 

for these values of a. Despite the continuity of 6 we can see an irregu-
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larity in the reconstructed curves at i = 0. Therefore it seems that 
membership of the class Twr is a better criterion for a curve to be 
smooth. 

We now turn to an analysis of the function class membership of 
representations of contours that belong to rpwr. We show that z e BV 
and i/' e BV if y e rpwr and that z and K constitute distributions of 
order 0. Subsequently we consider the convergence properties of the 
corresponding Fourier series and Fourier coefficients. 

In the following lemma we use the fact that, if ƒ e A in a certain 
interval, t h e n / € AC (cf. Proposition 3.1) and certainly ƒ e BV in that 
interval (cf. Appendix A or Apostol [1974], pp. 137-139). 

Lemma 3.4. 
If y e rpwr, then z e B V and y e BV. 

Proof 

From Lemmas 3.2 and 3.3 and the statement above it follows im
mediately that 'z e BV and y e BV if y e JTW. If y e /"pttr, then the 
number of points where z does not exist is finite (cf. Definition 3.4). If 
'z does not exist at a certain point /. then the contribution to the toial 
variation at / is upperbounded by 

\z(t+) - 2 ( r ) | = ^ |e i e ( '+>- ei0(' '| =£ L. (3.2.23) 
2.T .T 

Likewise the contribution at / to the total variation in i/> is upper-
bounded by .T. Since both the number of such contributions and the 
contributions themselves arc finite, the total variations of 'z and tp re
main finite if y e rpu,. 

D 
Since 'z may contain jump discontinuities if y e rpwr, we assume z to 

represent the distributional derivative of 'z (cf. Edwards [1982], p. 63). 
Likewise, if y e fj ra,. then tp may contain jump discontinuities. There
fore K is linearly related to the distributional derivative of \p (cf. Eq. 
3.2.14). Then, as a result of Lemma 3.4. zand Kconstitute distributions 
of order 0 or Radon measures (cf. Edwards [1982), p. 72). 
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We are now in a position to make some statements about the behav
ior of the Fourier series and the Fourier coefficients of the contour 
representations z. z. if) and K if y e rpwr. 

We just found that z e BV if y e rpttr. By Edwards (1979]. pp. 33-34. 
we then find that 

|*I(*)|=S ^ Var(r). V* 6 Z. (3.2.24) 

where Var (i) denotes the total variation of i: in a fundamental parame
ter interval of length 2.T (cf. Appendix A). Thus Eq. 3.2.24 yields 
z(k) = 0 ( | * | _ l ) as |*| -» x . 

Combining Eqs. 3.2.11 and 3.2.24 we find that if y e rpvw. then 

|*2f(*)|s£ ' Var(ir). VA:e Z. (3.2.25) 

Thus z(k) - 0(k'2) as |*| —» » , so that the Fourier series of z 
converges absolutely and uniformly to z. 

In Eq. 3.2.24 we already observed that z(*) = ()(\k\ ') as |* | -» x 
if 7 6 r |nw. Since 'z e BV it follows from the Dirichlet-Jordan test (cf. 
Appendix A or Zygmund [1959a], p. 57) that (S„z)(t) converges to 
z{Hr) - z{'~)}- V/ e [(I. 2.T|. Consequently. iS„'z) converges to 'z at 
every point of continuity of 'z. At every point where z has a jump 
discontinuity. {S„'z) exhibits the well-known Gibbs phenomenon. The 
Gibbs phenomenon is a feature of the nonuniformity of the con
vergence of the sequence (S„'z) in the neighborhood of a point of discon
tinuity- See Hewitt and Hewitt [1979] for a detailed account of this 
phenomenon. 

Along the same lines we can perform the analysis for y il y e f|nu. 
leading to analogous results. 

We have established above thai z constitutes a distribution of order 
0 if 7 e f|nvr. As a resull the Fourier coefficients of i: and ■ are related 
as 2(*)= i*i(*),V* 6 Z(cf. Edwards( I9S2|. p. 72). Since z(*)= 0(\k\~l) 
as |*| -»oo if 7 e rpttI. we then find that z(k) = ()(\) as |*| -» « if y e rm. 
The Fourier series S„z converge distributional!) to z (cf. Edwards 
[1979], pp. 8-9). 

Similarly, if y e rpw, we find that £(*) = (2m*/L)y>(*), V * e Z - { 0 } . 
and, since >/"'(*) = 6>(|A| ') as |A| -+ oo, this yields fc(k) = ()(\) as 
|* | —> x . The Fourier series S„K converge distributional!) to K. 
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Table 3.1. Contour representations and corresponding Fourier coefficients of an arbi
trary closed .Y-sided polygon, specified by the ordered set of vertices {z(t„): n = 0 
N — 11. The notations were introduced in Section 2.2. 

Contour representation 

z(/) = Az (/„) It - t„) + z{i„). 
2.7 

In « 1 « 1, 

i(/) = A; (/„) . 
2.7 

l„< l<',. 

z(i)= I A V C / J M ' - U 

V'C) = < 

l„ < 1 

I A'/ (/,„)-/. 
n & 1. 

- / . /; = 0. 
(1 

- Y. 'M'».) - '• 
/f =s - 1 . 

2.T V ' 
K(t)= £ A ' / c„ ) 'y / - / j 

*- rr-0 

Fourier coefficients 

1 *- J 

2(0) = X |A2(/„)|{4'„,,)+ ;('„)} 

L v ' 
*(*) = - , 1 AV(;„)e '"■. A *() 

(2.7AT „ „ 

.-(ill = 0 

i/. V' , 
z(*)= - , I AV(f„)e '"". A*(> 

I2.T) A „ = M 

m = o 

i(A) = , Y" A-V(/„)c-'*'». A*0 
(2-T): „fo 

1 ^ 
./■(O) = . T - £/„A«r(/J 

231 „ | 

*■■(*) = - £ A?(in)e '"'. A*<) 
2.TA „ „ 

2.7 

1 v ' 
Kik) = Y. Ay(f„)e '*'". A*(l 

' - a , ii 
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If Y e rp, we cannot improve on the results obtained above when 
Y e rpwr. This is caused by the potential jump discontinuities in i: and 
)/■ if y e rpi. while z and K also constitute distributions of order 0 in 
this case. 

As an illustrative example wc have listed in Table 3.1 the expressions 
for the various contour representations of an arbitrary closed .Y-sidcd 
polygon. These expressions were previously derived in Section 2.2. 
Next to these contour representations we have listed in Table 3.1 the 
expressions for their Fourier coefficients. Note that polveons belong to 

rpr . 
In Figures 3.2b-f the magnitudes are shown ot the first 125 Fourier 

coefficients generated by the contour representations z, ':. ~. tp and K 
of the polygon in Figure 3.2a. 

We have now completed an investigation of the convergence proper
ties of the Fourier series and the Fourier coefficients generated In the 

Iztkll 

-125 -100 -75 -50 75 100 125 
k 
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lltkll 

-125 -100 -75 -50 -25 75 100 125 
- * k 

UMI K 

10° 

10" 

10 

10' 

10' 

10 1 — 1 - 1 — « 

fW/fffi 

-125 -100 -75 -50 -25 25 50 75 100 125 

Figure 3.2. In (a) a polygon ol I'' Vertices is shown and in (b), (c). (d). (c) and (f) the magnitudes 
are displayed of the first 125 Fourier coefficients of the representations j . c. ; , if and K of the 
polygon. Note the rales ol convergence of the Fourier coefficients in (b)-(l) and compare them 
with the formulas tor :{k). :(k). ;{k). f(k) and K{k). given in Table 3.1. 
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contour representations z, ~. z, '/' and K of contours belonging to the 
contour classes T,. f i u . ƒ".,. rpr. rpWT, and rp.. In Section 2.2 we have 
shown that these contour representations all preserve the shape infor
mation of the contours f rom these classes. The convergence properties 
that we found for the Fourier series of these contour representations 
are sufficienl to ensure, in view of the uniqueness theorems for Fourier 
series (cf. Edwards [1979], pp. 40-41. Edwards [1982]. pp. 69-70). that 
there exists a one-to-one correspondence, in the sense of these con
vergence propert ies, between a contour representation and the l imit of 
its Fourier series expansion. Therefore we draw the conclusion that the 
Fourier series, generated by the aforementioned contour represen
tations. also preserve shape in format ion . For this reason we call / = 
( / W ) A , ' I Z' the sequence of Fourier coefficients generated b\ a contour 
representation ƒ of a contour y. a Fourier representation of y. The 
shape information-preserving propert ies of Fourier representations wi l l 
al low us. in Sections 3.5 and 3.6, to formulate neccssan and sufficient 
condit ions on sequences of Fourier coefficients, such that a pair of 
contours is (mir ror- (s imi lar or such that a contour has certain symmetry 
propert ies. 

3.3 Consequences of normalized arc length parametri/ation upon the 
Fourier series of contour representations 

In the previous section we have paid attent ion to the convergence 
properties of Fourier series of periodic contour representations and to 
the rate at which the corresponding Fourier coefficients approach to 
zero. A n interesting quest ion, w i th which we shall be concerned in this 
section, is whether a periodic contour representation, wi th a normalized 
arc length parameter, can be expanded in to a Four ier series that has a 
finite number of nonzero coefficients. II this were true, then it would 
be theoretically possible, according to the Shannon sampling theorem 
(Shannon [19-W]. Jerri [1977]). to reconstruct the contour representa
t ion f rom a finite number of samples. If M were the largest absolute 
index of the nonzero Fourier coefficients, then 2A/ equidistant samples 
of the contour representation in one complete period would be needed 
to allow for an exact reconstruction of the representation. 

We first investigate the question just raised for the posit ion function 
_. For the main theorem we need the fo l lowing lemma, the validity of 
which is obvious f rom the unic i ty o f Fourier representations. 
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Lemma 3.5. 

Let M, N eZ,M< N. Then 

,v 
I akeik' = 0 (3.3.1) 

k = M 

implies 

aM = ■•• = aN = 0. (3.3.2) 
D 

Theorem 3.1. 
With the exception of a circle, no piecewise differentiable position func
tion z. with (normalized) arc length parameter, of a simple closed con
tour y can be expanded into a Fourier series with a finite number of 
nonzero Fourier coefficients. 

Proof 

Let M. N e Z. M < N. be two finite integers. We assume that the 
position function z. with normalized arc length parameter /. of a simple 
closed contour y can be represented by the finite Fourier series 

z ( 0 = t i(k)êk>. (3.3.3) 
k = M 

Our task is now to show that y can only be a circle. 
The tangent function z is given by 

z(/)= t kWk', (3.3.4) 
k = M 

where (cf. Eq. 3.2.15) 

'z(k) = \kz(k). M^kzkN. (3.3.5) 
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The requirement that / is a normalized arc length parameter amounts 
to 

- ( / ) 
L 

= I kk*» - , v 
A - w J.T 

(3.3.6) 

where L is the perimeter of y. This requirement can be rewritten as 

z(f)F- I *(*)eiA' I !(/) 
* - u 

ie"* -
/- v 

M -
_ 7 

(3.3.7) 

Rewriting the product of sums in Eq. 3.3.7 yields 

\ \i 

where 

"in) = S 

Y. o(n)e"' = 0. 
n IA W) 

£ z(N- m)"z(N - m - n). ()</is£ .V - A/. 

(3.3.8) 

L \ : 

(3.3.9a) 

+ £ | r( .V-»i) | : . « = 0, (3.3.9b) 
\ \i 

in II 

£ z{N- m + n)z{N- m), -(N- M)=£n<0. 

(3.3.9c) 

From Lemma 3.5 it follows that the condition in Eq. 3.3.8 can onh 
be satisfied if 

o(n) = 0, - (V - M) « n =£ A' - W. (3,3.10) 

We now assume, without loss of generality, that ;(,V) # 0. Since for 
any contour z(0) = 0, this assumption implies .V ^ 0. Through Eqs, 
3.3.9a and 3.3.10 we find 

(j(.V - ,\/) - z{N)'z(M) = 0. (3.3.1 la) 
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which implies, with 'z(N) ^ 0, 

z(M) = 0. (3.3.11b) 

With this result we continue: 

o(N-M-\) = z(N)z(M +\) + k(N- l)£(M) 

= z(N)z(M + 1) = 0, (3.3.12a) 

which implies 

1(M + 1) = 0. (3.3.12b) 

We continue this process till a( l ) : 

N-m-\ 
o(\)= £ S ( N - m ) 2 ( J V - m - l ) , (3.3.13a) 

in = o 

which implies 

k(N - 1) = 0. (3.3.13b) 

Thus we have found from Eq. 3.3.6 that 

z(n) = i). M^n^N-l. (3.3.14) 
Through Eqs. 3.3.5 and 3.3.14 and the fact that N * 0, the finite 

Fourier series expansion of z in Eq. 3.3.3 now reduces to 

z(i) = 2(0) + i(;V)c|V'. (3.3.15) 

We recall from Section 2.1 two conditions that 2 must satisfy: 

• simplicity (cf. Eq. 2.1.5). 

• counterclockwise tracing as / increases. 

These conditions arc satisfied in Eq. 3.3.15 iff N = 1. 
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Thus we find 

.-(/) = z(0) + i(l)e", (3.3.16) 

which is the equation of a circle with center at 2(0) and with radius of 
size |i(l)|. 

The proof of this theorem is now complete. 
D 

It is clear from the foregoing that the condition of a (normalized) arc 
length parametrization plays a crucial role in the proof of Theorem 3.1. 

If we discard the condition of (normalized) arc length parametriza
tion for :. then a finite Fourier scries can indeed represent a simple 
contour, which will always he closed. The closure of the contour is a 
result of the periodicity of the complex exponentials that constitute the 
basis functions for the Fourier series. Figure 3.3a shows an example of 
such a representation. The speed along the contour, as a function of 
the parameter /. is also shown (Figure 3.3b). 

Figure 3.3. (a) shows ;m example of a position function with .1 finite number ol nonzero Fourier 
coefficients: :in = e" - 0.2e* I he speed ol motion along the contour: \Hi)\ = [1.64 -
1.6 cos (3/)] . is shown in (b). Clearl) |i(f) varies with /. 
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The following corollaries arc an immediate result of Theorem 3.1 
and its proof. 

Corollary 3.1. 
If the position function z(l) of an arbitrary simple closed contour is 
expanded into a finite Fourier series, then the parameter / in the finite 
expansion is not a (normalized) arc length parameter, unless the con
tour is a circle. 

Corollary 3.2. 
If the parameter / of a position function z(l) of an arbitrary simple 
closed contour is a (normalized) arc length parameter, then z(t) cannot 
be reconstructed exactly from a finite number of samples of zin a single 
period, unless the contour is a circle. 

D 
If a contour is a circle, then, according to Shannon's sampling 

theorem (cf. Shannon [1949]. Jerri [1977]). two equidistant samples of 
z in a single period are sufficient to allow for an exact reconstruction 
oiz(t). 

The facts, stated in Theorem 3.1 and in Corollary 3.1. have been 
observed previously by Persoon and Fu [1977], but no complete proof 
was given. There are a number of examples in the literature where 
these facts have been overlooked. For example, a direct consequence 
of Theorem 3.1 is that the 'complete set of Fourier descriptors* to 
characterize the shape of a simple closed contour, as described by Crim-
mins [1982]. contains infinitely many elements, unless the contour is a 
circle. 

The contents of Corollaries 3.1 and 3.2 have important consequences 
in practice since truncation of a Fourier scries expansion of z leads in 
general to the loss of the linear relation between / and arc length and 
to an inexact representation of z. In the next section we derive upper-
bounds for the truncation errors resulting from finite Fourier scries 
expansions. 

Another corollary to Theorem 3.1. which has implications in practice. 
is the following. 

Corollary 3.3. 
If / is the (normalized) arc length parameter of the position function z 
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of an arbitrary simple closed contour, then it is not possible to compute 
the Fourier coefficients z(k) of z[i) exactly from a finite number of 
samples of 2 in a single period (through a discrete Fourier transform. 
cf. e.g. Oppenheim and Schafer [ 1975]). unless the contour is a circle. 

D 

In signal theory, the phenomenon that causes errors to occur in 
Fourier transforms and Fourier coefficients, when computed from 
fewer samples than the Nyquist criterion prescribes, is generally known 
as aliasing (cf. e.g. Oppenheim and Shafer [1975]. Hamming [1977]). 

The question whether the tangent function r or the acceleration func
tion J: of a simple closed contour, with a (normalized) arc length 
parameter, can be expanded into a finite Fourier scries can now be 
answered in a straightforward manner. Since 'z(k) = \kz{k) and z(k) -
-k2z(k) (cf. Section 3.2). analogues to Theorem 3.1 and Corollaries 
3.1-3.3 can be formulated for 'z and z. 

For the periodic cumulative angular function y,i and for the curvature 
function K the situation is different. There exist simple closed contours. 
with a normalized arc length parameter. lor which ip and K can he 
expanded into a finite Fourier series. An example of such a contour is 
given by Zahn and Roskies | l l)72|: 

'!•(') =4e !" + 4e5" = §C0S(3/). (3.3.17) 

Choosing the perimeter of the contour to be 2.7. i.e. / corresponds 
to arc length, we find through Eqs. 2.2.32 and 2.2.34 for K the expres
sion 

K(i) = I - Tic ""' + - i e : " = l - f sin (3f). (3.3. IS) 

A reconstruction of the coniour. having Eqs. 3.3.17 and 3.3. IS as 
periodic cumulative angular function and as curvature function, respec
tively. is shown in Figure 3.4. 

In contrast with the finite or infinite Fourier series expansions of the 
contour representations r. f and z. those of '/• and K in general do not 
correspond 10 a closed contour. Special conditions must be satisfied by 
the Fourier coefficients \ji(k) in order 10 correspond to a closed contour. 
In Zahn and Roskies |1972| some sufficient conditions are presented 
for the (potentially finite) Fourier series expansion to represent a closed 
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contour. However, the necessity of these conditions is not shown. Using 
the relation K(k) = (2nlL)\k\jik). Vk # 0, corresponding sufficient 
conditions for closure can be derived for K(k). 

Figure 3.4. The contour that has the representations '/' and K as given in Eqs. 3.3.17 and 3.3.18, 
respectively 

In view of the foregoing, it is clear that the reconstruction of a con
tour from a truncated Fourier series expansion of i/> or K does in general 
not lead to a closed contour. Strackec and Nagelkcrke [1983] presented 
an approximation technique to ensure the closure of contours recon
structed from a finite Fourier series expansion of \p. In the context of 
reconstructing a contour from a finite Walsh sequency expansion of y> 
(cf. Section 3.7). another method to obtain a closed contour is described 
by Sarvarayudu and Sethi [1983]. Their method can also be applied to 
the reconstruction of closed contours from finite Fourier scries expan
sions of i/' "r K. 

3.4 Upperbounds on the truncation errors in finite Fourier series 
expansions of contour representations 

In the previous section we found that the Fourier series of the contour 
representations z, z and z, with (normalized) arc length parameter. 
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contain an infinite number of nonzero Fourier coefficients, unless the 
contour is a circle. Apart from the fact that, as a result of a truncation 
of the Fourier series expansion, the linear relation between the parame
ter and arc length is lost (Corollary 3.2). the truncated Fourier scries 
will always exhibit a truncation error with respect to the contour repre
sentation (again with the exception of a circle). In this section we derive 
various uppcrbounds for the truncation errors caused by finite Fourier 
series expansions. We derive uppcrbounds for representations of con
tours that belong to a number of smoothness classes and provide an 
experimental comparison of the performance of some o\ these upper-
bounds. Sharp uppcrbounds may be helpful in deciding whether it is 
useful, in terms of data reduction, to work with Fourier representations 
if we wish to maintain a certain approximation accuracy. 

We indicate the set of all trigonometric polynomials of degree at 
most // asT„ (cf. Appendix A). It is a well-known fact (cf. e.g. Edwards 
| |y7y|. p. 131) that, of all trigonometric polynomials in T„. the finite 
Fourier series expansion of degree n of a periodic function yields the 
minimum truncation error in mean square sense. In some applications 
however, the Chcbychcv norm or sup-norm (cf. Appendix A) may pro
vide a more appropriate error criterion to judge the truncation error. 
The finite Fourier series expansion of degree /; of a periodic function 
does in general not minimize this error criterion over T„. 

We define for p = 1.2.. . . and for p = » : 

4p )(/) = inf{ | | / -PX:/»„6T„}. (3.4.1, 

The optimalitv of the partial Fourier sum of degree n. S„f, in mean 
square sense. leads to 

E{„2){f) = \\f ~ S„f\\2. (3.4.2) 

From the definition of /•.",'/"(/) and through Holder's inequality (cf. 
e.g. Appendix A or Hardy. Littlewood and Polya [1952]) we find the 
inequality 

£:/"(/) & £«'"(ƒ). if p > q. (3.4.3) 
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From Eqs. 3.4.1-3.4.3 we derive the following chain of inequalities: 

| | / - SJ\\„. 5= E)r(f) > E<£\f) m | | / - S„f\\2. (3.4.4) 

From now on we denote £!,''(ƒ) simply as £„(ƒ). 

In the remainder of this section we derive some uppcrbounds on 
| | / — 5„/||x for the contour representations z, z and if> for various 
contour classes. Part of (his discussion can also be found in Dekking 
and Van Otterloo [1986]. 

First we define a subset of the class of simple closed polygons, the 
simple closed chains. 

Definition 3.5. Simple closed chain. 
A simple closed polygon with N sides of equal length is a simple closed 
chain, where successive chain links may be collinear. 

D 
Please note that the fact that successive chain links may be collinear 

constitutes a slight broadening of the traditional concept of a polygon. 

Theorem 3.2. Bound V(z) (Giardina and Kuhl [1977]). 
If 7 e rps, then 

\z-S„z\ 
Var(z) 

Tin 
(3.4.5) 

D 
For an arbitrary /V-sided polygon -/, Var (z) is given by 

A ' - l 

Var(z)= £ 
; = o i 

Z( / , , , ) - Z(t,) Zjtj) - Z ( / ; - l ) 

'i 'i+\-l, t,-tj-l 
(3.4.6) 

If y is a chain, then Eq. 3.4.5 becomes: 

llz-5„z|L NL 
In'n 

(3.4.7) 
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Theorem 3.3. Bound C(z) (Dekking and Van Otterloo [1986]). 
Let Y be a chain with A' links. Put n = Nq + s. with </ and s non-
negative integers and 0 =£ 5 < N. Then 

| , -5tf .« ^' ^«'JI + W-'W 
. = i (</ + V:).V- + /A' 

+ Y '^'iKlwl), (3.4.8) 
r = v -1 (Ac/ + r)" 

where the second summation is absent if 5 = A' - 1. 

Proof 

Since y is a chain with A' links, we derive from Table 3.1 for all integers 
/; the relations 

(/; V + rfz(pN + r) = r::(r). W * 0 (3.4.9) 

and z(pN) = <). (3.4.1(1) 

Hence 

| | 2 - 5 „ z | | , =S X I W I 
1*1 >« 

V - I 

I 
I 

- £ (U(-'V</ + r)| + | i ( -AV/ - r ) | ) 

v-l 
+ 1 1 (|i(A> + '-)| + | i ( - A > - r ) | ) 

p = if*I ' = I 

y ,--(|r(,-)| + |i(-,-)|) 
r-i+i [Nq + rf 

+ Ï' Hli(r)|+|i(-r)|)] f ' ,. 
r=i /> = </+< (A> + r)-

(3 .4 .11 ) 
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Since the function (Nx + r) 2 is convex, we have 

f l - s; l - dr. (3.4.12) 
,,=7+i (Np + r)2 V - (Nx + r)-

Thc integral equals: 

I 1 
- d r = - . (3.4.13) 

,+u (A/x + r)2 /V-(<y + '/2) + iVr 

Combining Eqs. 3.4.12 and 3.4.13 and substituting the result into Eq. 
3.4.11 yields Eq. 3.4.8, as we required. 

D 
In practical situations bound C(z) (Eq. 3.4.8) is cheaply computed if 

the 2/V Fourier coefficients, that are needed, are already known. In that 
case the complexity of computation of bound C(z) is comparable to that 
of bound V(z). 

The asymptotic behavior of bound V(z) is 0 (>r ' ) as // —> ^ . We 
recall from Section 3.2 that, if y e r p w , then z(k) = 0(k~2) as \k\ —> oo. 
Then some simple calculations reveal that bound C{z) is also 0(/i~') as 
n —> °°. This shows that the asymptotic behavior of V(z) and C(z), in 
terms of their rate of decay, is equivalent. 

In Dekking and Van Otterloo [1986] it was already shown that the 
claim of Giardina and Kuhl [1977J. that bound V(z) is asymptotically 
the best possible for a square, is not correct. 

Experiments have revealed that, the more significant detail is present 
in a chain, the poorer bound V(z) performs. Bound C(z) performs from 
three times (for chains with little significant detail) to over ten times 
(for chains with much significant detail) better than bound V(z) (cf. 
Figures 3.5, 3.6l'l and 3.7). 

| l | Note the <>['cn curve in Figure 3.6. Curves need nol necessarily be closed in order ID allow 
Fourier analysis of their representations. For that purpose the curve is paramelrized such thai z(i) 
= z(2.7 - / ) . where ' is siill a normalized arc length parameter, and such lhal ihe parametric 
starling poinl / = (I coincides with one of the two endpoinls of ihe curve. In that case the total 
arc length traversed in one period is twice the length of the curve. For obvious reasons, such a 
parametrization is called a retracing. 
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Bound V(z) performs poorly with complicated contours and bound 
C(z) has the drawbacks that its computational complexity increases 
with the complexity of contours and that it applies only to chains. How
ever. a cheaply computed and reasonably sharp bound, that applies to 
any y e r « , can be derived. First we define the Lebesgue constants. 

Hgur t 3.5. (a) shows a chain of 2A links ol length I. The truncation error | -" - .V,,r|i . as a function 
ni >i. the number of Fourier coefficients used in the finite Fourier series approximation, is displayed 
in (b). In (b) we also show a comparison ol the performance ol the error bounds \'(:i. C{z) and 
l.^Jz) for this chain. 
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Definition 3.6. Lebesgue constant Xn. 
The n-th Lebesgue constant A„ is defined as 

1 |sin (n + [li)t 
sin 'hi 

dr. (3.4.14) 

D 

ll'SnzIL 

Figure 3.6. In (l ' | similar curves as in Figure 3.5 are displayed for ihe chain of 160 links of length 
i in (a). 
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Theorem 3.4. Bound /.«(z). 
If Y e rps, then for all integers // ^ 1 

U--Vi ( 4 + D 
4(«+ I) 

L. (3.4.15) 

where L is the perimeter of •/. 

ll*s«*IU 

Figure 3.7. In (hj similar curves as in Figure 3 5 are displayed I<>I the chain ol 726 links of length 
- 05 in la). 
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Proof 

From Lemma 3.1 in Section 3.2 we know that z e A. with Lipsehitz 
constant A = L/2TT. if y e rps. 

A classical result of Lebesgue [1910], p. 201, gives the asymptotically 
best bound on | | / - S„/||» for functions ƒ e A. As Lebesgue's paper 
does not pay attention to the best possible constant, we refer to Cheney 
[1966], p. 147. where it is shown that for integers n ^ 1: 

U / ' - V l U sï (A„+ \)E„(J). (3.4.16) 

(Compare this expression with Eq. 3.4.4.) 
Jackson's Theorem II (Cheney [1966], pp. 132-144) says that i f / e 

A. with Lipsehitz constant ?., then 

and the constant al2(n + 1) is the best constant possible. 
Substituting /. = LI2x and applying Eqs. 3.4.16 and 3.4.17 to z yields 

Eq. 3.4.15. 

D 
Remark. 
The paper by Etesami and Uicker [1985] claims the bound: 

" Z - - V » Z | I - S 4 ( „ + I | - ( ' , A 1 8 1 

which is not correct (cf. Eq. 3.4.15). 

It is well-known (cf. e.g. Zygmund [1959a]) that: 

D 

4 
•^,;s= , l °g" asw-»oc. (3.4.19) 

In the Figures 3.4, 3.5 and 3.6 we have employed Fejér's expression 
(cf. e.g. Lebesgue [1910], p. 197): 
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lor the computation of the bound /.,„(;). In these three examples we 
see that the cheaply computed bound l^J:) performs reasonably well 
in comparison with bound V(z). 

Through Eqs. 3.4.15 and 3.4.19 we immediately see that the asymp
totic behavior of bound Lps(z) is 0(fl - 1 log //) as /; —> y-. Though this 
is worse than the asymptotic behavior of both bound V(z) and hound 
C(z), in many situations bound /.,,„(;) is still sharper than bound \'[z) 
for practical values oi n. 

If */ e r„, we cannot improve on Theorem 3.4. However, sharper 
upperbounds can be derived for \\z - Snz\\* as the contours considered 
satisfy more severe smoothness conditions. This is a direct consequence 
of the faster rates of decay of the \z(k)\ for smoother contours, which 
in turn lead to sharper bounds in the Jackson Theorems (cl. Cheney 
(1966). pp. 139-149). This will soon become clear in a theorem that 
specifies an upperbound for ||r — S„z ||* if y e TWI. 

The set of all trigonometric polynomials of degree at most n. tree ol 
a constant term. t„. have been defined in Appendix A as: 

t„={p,r !>„«)= I <hc'k!.akeC}. (3.4.21) 
| * | • ■ « 

l . o 

Furthermore we define: 

<r</) = inf{| | ./-/;, , | | , , : p„e\„} (3.4.22) 

(compare this expression with Eq. 3.4.1). In analogy with £„( /') we de
note <>:,"(ƒ) as e„(f). 

In the proof of the next theorem we need a variant of Jackson's 
Theorem II (Cheney [ 1966], p. 143. and Eq. 3.4.17) such that it can be 
applied to functions that are free of' a constant term. We formulate this 
variant in the following lemma. 

Lemma 3.6. Upperbound on ('„(ƒ). 
I f / e A. with Lipschitz constant /.. is free of a constant term, then 
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<Jf)« 2 („t„ ^ 

and the constant ,T/2(H + 1) is the best constant possible. 

Proof 

Wc follow the proof of Jackson's Theorem II (Cheney [1966], pp. 143-
144). 

Fixing d > 0. define the auxiliary function 

I I'I+A 

<*>■>(') = 2() | ^ /(r)dr. (3.4.24) 

Since ƒ e A we obtain 

I *«(«)! = 2é M + d)'f{' ~ d)^;- ( 3 A 2 5 > 

Consequently, by Jackson's Theorem I (Cheney [1966], p. 142) it 
follows that 

" » < * ^ 2 ( ; T
+ I , I I ^ " S 2 ( „ 1 , ) ' (3-4-26> 

if we show that 0,) is free of a constant term. This is proved as follows: 

;2n , f2a f/+d 

2,j„Wd'%,.l1 L * * * 

l r2st rd 

f(o + i)dodl. (3.4.27) 
4,TO J„ J_(i 

Through Fubini's theorem (cf. e.g. Roydcn [ 1963], pp. 233-234) we 
may invert the order of integration in Eq. 3.4.27. This and the periodic
ity of ƒ lead to: 



122 ( IIAPTLR 3 

2.7 J„ \jtb 

f :.7 

. -d ■ 
l'U + oKltdo 

4.7^ . 

f 2.7 

-r t 
f(t)ui du 

i i 

2.7 . N 
./(/)d/. (3.4.28) 

Since ƒ is free Of a constant term. Eq. 3.4.28 immediately shows that 
0,, is also free of a constant term. Thus we have shown the validity of 
Eq. 3.4.26. Furthermore: 

1^(0-./'(')| « lb I |/(r)-/(/)|dr 
i - ,\ 

^ [ j r - ' | d r = 2 ' V (3.4.29) 

Let p'„ denote the trigonometric polynomial, free of a constant term. 
that optimally approximates </>A. Then, with Eqs. 3.4.26 and 3.4.29. 

<-„<ƒ)=£ 11/-/dU 

«II ƒ - * J * +II *■>-/>: II* 

.7/. (3.4.30) 

Since this inequality holds for any i) > I), it also holds for i) = 0 giving: 

e„(f) 71/. 

2(« + l)' (3.4.31 

For the proof that the constant .T /2( / /+ 1) is the best constant possi
ble. we refer again to Cheney [1966]. pp. 142-144. The proof of this 
lemma is now complete. □ 
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We are now in a position to specify an upperbound for \\z - S„z\\x 

if y e rwr. 

Theorem 3.5. Bound Lttt(z). 
If y e ƒ"„,. then for all integers n Ss 1: 

| |z-S„*|U=S ^ " + I ) , L X „ X , (3.4.32) 
16(/; + 1)-

where L denotes the perimeter of y. 

Proof 

First we note a property of £„(ƒ) (cf. Eq. 3.4.1): 

£ „ ( ƒ - />„) = £,(ƒ)- V/ '„6T„. (3.4.33) 

Since y e r w we have z e C1 (cf. Appendix A). With these two prop
erties we find from Cheney |1%6]. p. 146. the inequality: 

£ „ M * 2 ( ; T
+ | , -»(i) . O A 3 4 , 

Next we derive an upperbound for c'n('z). According to Lemma 3.2. 
z e A if y 6 rwr with Lipschitz constant /. = (L/2JI) Kmax, where /. 
denotes the perimeter of y. It is well-known that z is free of a constant 
term. As a result of these observations. Lemma 3.6 applies to z. which 
yields (cf. Eq. 3.4.23): 

'M* £Kn~y (3-4J5) 

Combining Eqs. 3.4.34 and 3.4.35 leads to 

£''(2)^2*T,V- (3A36) 

I6(/? + I)-
With the substitution of this result into Eq. 3.4.16 the proof of this 

theorem is complete. □ 
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If y e r,. we can improve slightly on the results in Theorem 3.5, 
obtained lor y e rwr Furthermore, the upperbound on \\z — S„z , can 
be obtained in a much simpler way. as we will see in the following 
theorem. 

Theorem 3.6. Round L,(z). 
II 

• Y e r r, 

• \K(t)\^Kmax<*, V / e | ( l . 2.T|. 

then for all integers /; ^ 3: 

\\z-$„z\\^ K + 1 ) L - A _ - (3.4.37) 
N.T(/; + I)-

wherc /. denotes the perimeter of y. 

Proof 

Jackson's Theorem IV (Cheney [1966], pp. 145-146) states that for 
n > k: 

if the 2.T-periodic function ƒ e C', and that the coefficient .T/2 is the 
best coefficient possible, independent of/. A: and //. 

If y e I], then z e C:. Thus Eq. 3.4.3S yields: 

We recall from Eq. 2.2.25 that 

where //(/) is the complex-valued function that corresponds to the unit 
normal «(/) at z(t) and K(i) is the curvature at ;(/). From this equation 
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we derive: 

IWU-(^W*(^*-r • (3-4.40) 

Since z e C : the second step in Eq. 3.4.40 constitutes an equality in 
this case. 

Combining Eqs. 3.4.16. 3.4.39 and 3.4.40 immediately leads to the 
required result. 

D 
Through Eqs. 3.4.19, 3.4.32 and 3.4.37 we immediately can see that 

the asymptotic behavior of both bound Lwr(2) and bound L,(z) is 
0(/i"2log/?) as n —* <*. We recall from Section 3.2 that we found for 
both y e Twr and y e Tr that z(k) = 0{k~2) as \k\ -» =». 

In Section 3.2 we showed in the Lemmas 3.2 and 3.3 that both z and 
i/> satisfy a Lipschitz condition if y e rK!. These facts can be used to 
derive upperbounds on \\'z - Snz\\x and on | |y - S„v|U-

Theorem 3.7. Bound /.ur(z). 
If y 6 JTW, then for all integers n 2= I: 

\\z-S„z\\^ g ^ V J j ^ X a x - (3.4.41) 

Proof 

In Lemma 3.2 it was shown that, if y e rwr, then z e A. with Lipschitz 
constant /. = {L/27t)2Kmm. Consequently. Jackson's Theorem II. 
Eq. 3.4.17. applies to 'z. Through substitution of the value of A into this 
equation and through Eq. 3.4.16. the required result is obtained im
mediately. 

D 
Theorem 3.8. Bound Lwr(</')-
If y e r w , then for all integers n > 1: 

IIV' - -V/'ll. =£ f" * \\ (LK „ + 2.T). (3.4.42) 
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Proof 

In Lemma 3.3 it was shown that, if;' e /"„,. then '/' e A. with Lipschitz 
constant / = (LKm.J2x) + I. Consequentially. Jackson"s Theorem II. 
Eq. 3.4.17. applies to if and through a substitution of the value o\ /. 
into this equation and through Eq. 3.4.16. the required result is ob
tained immediately. 

D 
If 7 e r r . then both ~ and 7' belong to C'. This enables us to derive 

upperbounds Lt{z) and Lr(y) on \\'z - Snz\\x and 11*/* ~ -SiVlU- respec
tively. through Jackson's Theorem I (Cheney [1966], pp. 142-143). 
However, these bounds are not sharper than the bounds Ln,{'z) and 
/-«,('/') (cf- Theorems 3.7 and 3.8). 

Through Eq. 3.4.19 and Eqs. 3.4.41 and 3.4.42 we observe that the 
asymptotic behavior of both bound Ln,('z) and bound L,u(if) is 
()(n ' log//) a s / z ^ y-. We recall from Section 3.2 that z(k) = ()(\k\']) 
and (/'(A) = 0(|A-|- ') as |*| -* * if y e rwr. 

Similar to the upperbounds on the finite Fourier series truncation 
error, no improvements on the rates of decay of Fourier coefficients 
were found if 7 e r r . 

The truncation error bounds, derived in this section fol various con
tour classes and for various representations of these contours, enable 
us to determine the number of Fourier coefficients needed to guarantee 
a certain approximation accuracy of a Fourier representation. Thu^ we 
are also able to decide whether it is useful at all to use a Fourier 
representation instead of the corresponding contour representation. We 
found that especially for contours with much significant detail this may 
not be the case (cf. also Dekking and Van Otterloo 11986)). 

3.5 Geometric similarity and geometric mirror-similarity in terms of 
Fourier representations of contours 

When no confusion can arise, we use ƒ in the following paragraphs 
again as a generic symbol to indicate any of the 2.7-periodic contour 
representations z. z. z, if and K. 

In Definition 2.4 we have given a formal definition of similarity be
tween contours. In Eq. 2.3.1 we have translated this concept into a 
necessary and sufficient condition on representations of pairs of con-
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tours that preserve shape information. We did the same for geometric 
mirror-similarity, in Definition 2.5 and in Eq. 2.3.2, respectively. 

In Section 3.2 we have examined the characteristics of the con
vergence of the Fourier series and the Fourier coefficients of the 
periodic contour representations z. z. z, ip and K for contours from the 
contour classes T,. fwr, r„, rpr, rpwr and f This examination has shown 
that Fourier series, generated by these periodic contour representa
tions. preserve shape information. Thereby we established that the se
quence of Fourier coefficients ƒ = {f{k))kr-z, generated by the shape 
information-preserving periodic contour representation ƒ, also consti
tutes a shape information-preserving contour representation. This al
lows us to formulate necessary and sufficient conditions for geometric 
similarity and for geometric mirror-similarity in terms of the sequences 
of Fourier coefficients, generated by the representations of a pair o( 
contours. This in analogy with such conditions on the representations 
of the pair of contours themselves. 

Theorem 3.9. 
Two contours •/, and y2. with Fourier representations ƒ, and f\ respec
tively, are geometrically similar iff there exist scalars ^ C . ^ e R ' , 
a. T e R such that 

h = ^r^.»,jj], (3.5.1) 

where .'ƒ.. .'/.'„. % and 'ƒ- are similarity operators which are defined in 
Table 3.2. 

Proof 

In Section 2.2 we have shown that there exists a one-to-one correspon
dence. in the sense of the relevant convergence properties, between a 
contour representation and its Fourier series expansion. This means 
that Eq. 2.3.1 can be obtained from Eq. 3.5.1. and therefore 
Theorem 2.4 applies, thus showing the validity of this theorem. 

D 
In Table 3.2 also the mirror-similarity operator ..ft, is defined. These 

(mirror-)similarity operators constitute analoga to the corresponding 
operators that were previously defined in Table 2.1. In Table 2.1 the 
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Tahlc 3.2. Representations ol the (mirror-)similarity operators in the sequence spaces 
ol the Fourier representations. 

Fourier 
representations 

-

z 

-

li 

k 

Operator 

•'',< 

pm 

fikk) 

Pi(k) 

W(k) 

li 'K(k) 

J 

z(0) - : 

. - (A) , A -■ o 

kk) 

i(k) 

y i A ) 

ktk\ 

■ " . . 

e> i(k) 

cMHk) 

c"'è{k) 

>r(k) 

k(k, 

t. 

e "Wc) 

c ,k,kk) 

c *'kk) 

f>(0) - v ( - r ) 

e • ',iAi. A * 0 

e 'iTkik, 

II 

:(A) 

- ! (* ) 

1(A) 

- V ( A ) 

£(*) 

mirror-similarity operators operate on parametric contour representa
tions whereas here they operate on the Fourier sequences, generated 
by these contour representations. The transformation of operators is 
obtained through straightforward calculation, using the expressions in 
Table 2.1 and the definition of Fourier coefficients (cf. Eq. 3.2.2). 

Remark. 
Though the (mirror-)similarity operators, when applied to Fourier rep
resentations. are formally different from the corresponding operators. 
that are applied to contour representations, we have chosen not to 
express these differences by differences in notation, since both the 
meaning of these operators and the domain on which they operate is 
always clear. 

D 
Using Table 3.2 we can derive a formulation of the condition for 

geometric similarity in Eq. 3.5.1 for each of the individual Fourier 
representations. A survey of these conditions is presented in Table 3.3. 

The formulation of the conditions on i/> in Table 3.3 still requires 
some explanation since no condition on $(0) is mentioned. From Table 
2.3 and from the definition of Fourier coefficients in Eq. 3.2.2 we 
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Table 3.3. Necessary and sufficient conditions that the Fourier coefficients of the 
individual coniour representations musl satisfy, for some 'C e C ft e R", a, r e R and 
Vk e. Z (unless stated otherwise), in order to render a pair of geometrically similar 
contours 

Fourier 
representations 

z 

V 

-

'/' 

k 

Condition for geometric similarity 

c:(0) = ik"'{z,(i)) + c} 

i ,(A-)=/V l"-" ,- l(A) 

; . (* )=/<c ' ; " tr»i,(A) 

V';(A) = e 'k:>j\{k). £ • * ( ! 

K:(k)=li-,c-'k'K,{k) 

obtain the condition on i/>(0) for geometric similarity of a pair of con
tours as 

&(0) = ¥>,(()) - H-r). (3.5.2) 

It can be shown, however, that the conditions stated in Table 3.3 are 
sufficient and that Eq. 3.5.2 follows from these conditions. The reason 
for this is the fact that the property 

</'(<>) = £ '/•(*) = () (3-5.3) 

reduces the number of degrees of freedom in the Fourier representation 
i/> by one. 

Next wc formulate the condition on pairs of Fourier representations 
for geometric mirror-similarity. 

Theorem 3.10. 
Two contours yl and y2. with Fourier representations ƒ, a n d / : respec
tively, are geometrically mirror-similar iff there exist scalars t 6 C, 
ft e R \ «, r e R such that 

/ 2 = A « ? A £ . (3-5.4) 
D 
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The proof of this theorem is similar to that of Theorem 3.9. 
A survey of the formulations of this condition for geometric mirror-

similarity, in terms of the individual Fourier representations, can be 
found in Table 3.4. 

From Table 2.4 and from the definition of Fourier coefficients in 
Eq. 3.2.2 we obtain the condition on i/'(0) for geometric mirror-similar
ity of a pair of contours as 

'/':«') = -'/',('•) + V(r). (3.5.5) 

However, it can be shown along the same lines as we did for the 
corresponding condition on '/'(()) for geometrically similar contours. 
Eq. 3.5.2. that the condition in Fq. 3.5.5 is automatically satisfied il 
the conditions in Table 3.4 are satisfied. 

Table 3.4. Ncccssarj and sufficient conditions thai the Fourier coefficients of the 
individual contour representations must satisfy, tor some j e C. /3 eR'.a.r e R and 
VA e Z (unless staled otherwise), in order to reinier a pair of geometrical!) mirror-simi
lar contours, 

Fourier 
representations 

-

-" 

-

'/' 

A 

Condition lor geometric mirror-similarin 

-CM =fft ,!- :>'i • I) 

;:(A)=/.V £,<*.). * * 0 

:.U) = -,''e " Uk) 

f2(A)=y?c !,(*) 

fz(k) = -c'''y-,f*). k*ü 

X;(A) = ,f '«»'*,<*) 

3.6 Symmetry in terms of Fourier representations of' contours 

In Definitions 2.6 and 2.7 we have formally defined geometric sym
metry m and geometric symmetry n. respectively. The argumentation 
in Section 3.2 concerning the shape information-preserving properties 
of a Fourier representation /. generated by a shape information-preserv
ing periodic contour representation/, enables us to formulate necessary 
and sufficient conditions on ƒ such that this sequence of Fourier coef-
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ficients represents a contour that has geometric symmetry m or geo
metric symmetry n. Such conditions for geometric symmetry in terms 
of ƒ constitute the Fourier analoga of the corresponding conditions in 
terms of the contour representation ƒ itself, which were formulated in 
Eqs. 2.4.1 and 2.4.2. 

Theorem 3.11. 
A contour y. with Fourier representation ƒ. has geometric symmetry m. 
or geometric mirror-symmetry, iff there exist scalars 'C e C and a, T e 
R such that 

% / = i t t 2 r , . / ; „ / /. (3.6.1) 

D 
The proof of this theorem is similar to that of Theorem 3.9. 
A survey of the formulations of this condition for geometric sym

metry in. in terms of the individual Fourier representations, can be 
found in Table 3.5. These formulations merit a closer examination. 

First we consider the conditions on z in order to represent a contour 
that has geometric symmetry m. A suitable u, e C always exists. This 
can be seen by choosing for example £ = - i (0 ) . 

Another way of formulating the condition on i . in order to represent 
a contour y with symmetry m, is the following: a contour/, with Fourier 
representation z. has geometric symmetry m iff there exist constants 
a. T e R such that JT'Jl„z(k) is real-valued. VA e Z - {0}. This formu
lation corresponds exactly to the necessary and sufficient conditions on 
i for geometric symmetry m in Wallace and Wintz [1980]. 

Along the same lines we derive from Table 3.5 similar necessary and 
sufficient conditions for geometric symmetry m in terms of the remain
ing Fourier representations: 

• vy(„2(A') is imaginary. 

• :),.il„z(k) is real-valued, 

• ?)'?liA'{k) is imaginary, 

• STRATA') is real-valued. 

for some a, r 6 R and VA- e Z - {()}. 

From Table 2.5 and from the definition of Fourier coefficients in Eq. 
3.2.2 we also obtain a condition on i/'(0) for a contour with geometric 
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symmetry m: 

',"'(•>) = -</'«)) + ,,<(T). (3.6.2) 

which results from the special property of //• that 9Vty>(0) = 0. indepen
dent of the value of r (cf. Table 2.1). However, it can be shown, along 
the same lines as we did for a similar condition on v(") for geometri
cally similar contours in Eq. 3.5.2. that the condition in Eq. 3.6.2 is 
automatically satisfied if the conditions in Table 3.5 are satisfied. 

Table 3.5. Necessary and sufficieni conditions that the Fourier coefficients oi the 
individual representations must satisfy. for some ; E C. «. r e R and VA e Z (unless 
staled otherwise), in order to render a contour with symmetr) »' 

Fourier 
representations 

z 

': 

-

>'r 

K 

Condition lor geometric symmetry m 

*(0) + £ = e "'{1(0) ' I) 

%k) = c "" 'r'7(Ai. k # 0 

kk) - -c "kk) 

*(*) = e"" " - ( A ) 

VIA) = -e '"v(A). k*0 

R(k) = c'ir£(A) 

We now turn to a discussion of geometric symmetry n or «-fold rota
tional symmetry. 

Theorem 3.12. 
A contour y. with Fourier representation ƒ. has geometric symmetry n 
or «-fold rotational symmetry, iff there exists a scalar 'C e C such that 

D 

The proof of this theorem is similar to that of Theorem 3.9. 
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A survey of the formulations of this condition for geometric sym
metry n. in terms of the individual Fourier representations, can be 
found in Table 3.6. 

Table 3.6. Necessary and sufficient conditions that the Fourier coefficients of the 
individual contour representations must satisfy, for some i e C and VA' e Z (unless 
stated otherwise), in order to render a contour with symmetry n. 

Fourier 
representation 

z 

z 

z 

V 

k 

Condition for geometric symmetry n 

i(0) = -5 

z(k) = l). VA:: k* 1 mod n 

1(A) = 0, VA" k* 1 mod a 

£(*) = (). VA-: A- * 1 mod/i 

>/(*) = <). VA:: Ar^Omodn 

k{k) = i). VA:: A*!) mod/i 

Granlund [1972] was the first to mention conditions for geometric 
symmetry n in terms of z, while Zahn and Roskics [1972] were the first 
to mention such conditions on xp, be it in a slightly different form. 
Crimmins [1982] finds Granlund's proof of the validity of the conditions 
for geometric symmetry n not logically conclusive. He shows that, for 
a contour that has geometric symmetry n, there exists a ku such that. 
V& € Z — {()}, z(k) =£ 0 implies k = k„ mod n. To this observation he 
adds the conjecture that k„ = I if z{\) =£ 0. In Dekking and Van 
Otterloo [1986] a short proof is given for the statement that a contour 
has geometric symmetry n iff. VA- e Z - {()>, z{k) # 0 implies k = 
I mod n, thereby confirming the correctness of Granlund's conclusions. 
On the other hand we emphasize here that the validity of the conditions 
for geometric symmetry n is subject to two conventions, which we intro
duced in Section 2.1, that both need to be satisfied: 

• simplicity of contours, 

• counterclockwise positive sense of the parametrization. 
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3.7 Concluding remarks 

In Section 3.1 we reviewed the literature on the application of Fourier 
series theory to shape analysis. 

In Section 3.2 we analyzed the convergence properties of Fourier 
series ;md Fourier coefficients, generated by the parametric contour 
representations z. z. z, y and K for contours belonging to the contour 
classes r t . rwr, Ts, r„,. r„WI and fj,,,. It was established that the sequence 
of Fourier coefficients, generated by any of these contour representa
tions. preserves shape information. We also found that the type and 
rate of convergence of the Fourier series heavily depends upon the 
smoothness properties of a contour, and thereby upon the differentia
bility properties of its representations. These results may provide 
guidelines in practice to determine whether it is appropriate to use a 
particular Fourier representation or not, 

In Section 3.3 we have shown that, as a result of (normalized) arc 
length parametrization. with the exception of a circle, no position func
tion z can be expanded into a Fourier series with a finite number of 
nonzero Fourier coefficients. Consequently, the same holds for i: and 
for ;. Through an example we have shown that in some cases iy and K 
may he expanded into a finite Fourier series, without affecting the 
linear relation between the parameter and arc length. 

In practice we always use a finite number of Fourier coefficients. In 
Section 3.4 we have derived, for various contour representations and 
for various contour classes, upperbounds on the truncation error that 
is caused by a finite Fourier series expansion. 

Conditions for geometric similarity and for geometric mirror-similar
ity. in terms of pairs of Fourier representations, have been presented 
in Section 3.5. In Chapter 4 these conditions will provide boundary 
conditions for similarity measures based on Fourier representations. 

Similarly, the conditions for geometric symmetry m and for geometric 
symmetry n. in terms of Fourier representations, which were formu
lated in Section 3.6. will provide boundary conditions for symmetry 
measures on the basis of Fourier representations in Chapter 4. 

Also the application of Fourier coefficients for contour representa
tion normalization will be studied in Chapter 4. 

Apart from Fourier expansions, also Walsh expansions of parametric 
contour representations have been proposed for shape representation. 
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Before we turn to Chapter 4, we discuss these expansions briefly. 
Searle [1970] proposes the use of Walsh expansions of the radial 

distance function for shape analysis purposes. 
Shapiro [1976] compares, in the context of cell analysis, the per

formance of various orthogonal expansions through the results of recon
structing contours from a finite number of expansion coefficients. He 
studies, amongst others, the performance of Walsh expansions of the 
polar representation R(£). He found that, apart from potential prob
lems of multiple-valucdness of R($) (cf. Section 2.1). a reconstruction 
from Walsh coefficients gives a reasonable approximation if a sufficient 
number of coefficients is used. Shapiro also observes that, for a given 
accuracy of approximation, more Walsh coefficients than Fourier coef
ficients of /?(£) are needed. 

In the context of the discrimination of handwritten numerals. Dins-
tein and Silberberg [1980] propose the average Walsh power spectrum 
of the periodic cumulative angular function ip, defined as the Walsh 
expansion of the autocorrelation function of ip, for shape representa
tion. This representation clearly does not preserve all shape informa
tion. 

Sethi and Sarvarayudu [ 1980] expand ip itself into a Walsh sequence. 
They used the magnitudes n\ the Walsh coefficients for the classification 
of handwritten numerals. A slightly lower error rate in the classification 
was achieved with the magnitudes of Walsh coefficients than with the 
same number of magnitudes of Fourier coefficients. Unlike the mag
nitudes of Fourier coefficients, the magnitudes of Walsh coefficients 
are sensitive to the location of the parametric starting point on the 
contour. Therefore they proposed two starting point normalization 
methods. In Sarvarayudu [1982] and in Sarvarayudu and Sethi [19X3] 
this work is extended further. Geometrical properties are linked with 
properties of Walsh coefficients of ip. Their methods are somewhat 
biased towards dealing with polygonal contours. This can be explained 
from the fact that a finite Walsh sequency expansion consists of a linear 
combination of step functions and the periodic cumulative angular func
tion v ^ a polygon is a step function. A method for the reconstruction 
and closing of a contour from a finite number of Walsh coefficients of 
xp is also presented. Finally they report on experiments with the classifi
cation of hand-printed numerals and characters using a two-stage clas
sifier. The first stage uses the magnitudes of Walsh coefficients of </' as 
features, while the second stage uses their phases as features. However. 
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the classification results they obtained with Walsh coefficients arc no 
better than those known for classifiers based on Fourier expansions. 

Summarizing this exposé on Walsh coefficients, we observe from the 
literature that Walsh coefficients have a computational advantage over 
Fourier coefficients. The power of Walsh coefficients to represent shape 
information in few coefficients maj varj somewhat with the particular 
contour representation that generates them, but it seems in general to 
be no better or worse than that of the Fourier coefficients generated 
by that contour representation. Finite Walsh scquency expansions have 
more problems with the approximation of a smooth contour represen
tation than finite Fourier series expansions. Furthermore, both mag
nitude and phase of Walsh coefficients are sensitive to the location of 
the parametric starting point. In conclusion we state that the advantages 
of Walsh sequency expansions are overshadowed by their disadvan
tages. Therefore we will not diseuss the use of Walsh sequencj expan
sions of parametric contour representations any further in this thesis. 

Both Fourier series expansions and Walsh sequency expansions. 
being global orthogonal transformations, suffer from the inherent draw
back that they are unable to deal properly with local perturbations on 
a contour. This problem limits their usefulness in applications where 
such phenomena are likely to occur. On the other hand, in inherently 
global contour operations, such as for example contour normalization. 
Fourier coefficients seem to be particularly useful, as we will see in 
Section 4.3. As for shape similarity measurement, our attention will be 
somewhat biased towards the contour representations themselves. 
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Chapter 4 

Measurement of similarity, 
mirror-similarity and symmetry 

4.1 Introductory considerations 

In Chapter 4 we present a detailed discussion on the measurement 
of similarity, (miiror-)similarity and symmetry, based on the contour 
representations and Fourier representations introduced in the previous 
chapters. 

This section gives some introductory considerations on similarity 
measurement and dissimilarity measurement. 

In Section 4.2 various measures of dissimilarity and mirror-dissimilar
ity are defined and some of their properlies are evaluated. For practical 
purposes, sampled-data formulations of these measures are given as 
well as an analysis of their computational complexity. 

In Section 4.3 we study the trade-off between normalization of con-
lours and optimization in dissimilarity measurement. The fundamental 
requiremenis that normalization procedures must satisfy are given in 
each case and a number of proposals for such procedures are made. 

Section 4.4 contains a further theoretical analysis of the dissimilarity 
measures, defined in Section 4.2. Through a number of experiments we 
evaluate the relative behavior of the dissimilarity measures. By ana
lyzing the experimental results of individual dissimilarity measures we 
obtain insight into which aspects of geometric dissimilarity they mea
sure. 

In Section 4.5 we define measures for mirror-dissymmetry and for 
«-fold rotational dissymmetry. The proposed measures for dissymmetry 
are closely related to the (mirror-)dissimilarity measures, defined in 
Section 4.2. A comparison with earlier proposals in the literature is also 
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made. By an experiment we evaluate the performance of the dissymme
try measures defined in this section. 

Final ly, in Section 4.6 we review the results of this chapter. 
In Section 2.5 we remarked that the concepts ol geometric similarity 

and geometrie mirror-s imi lar i ty are mathematical abstractions. In that 
seetion we made the same remark concerning the three types ol geomet
ric symmetry, introduced in Section 2.4. In reality we wi l l not encounter 
pairs of objects that have geometrical ly similar or geometrically mir ror-
similar contours or objects that arc geometrical!) symmet r i c Also the 
finite precision wi th which we can perform measurements would make 
the establishment of such facts vir tual ly impossible. Therefore there is 
a need to dispose of quanti tat ive methods by means of which the extent 
ol similar i ty and symmetry can be measured. 

In everyday life we use subjective criteria in our assessment how 
similar figures are and this assessment wil l in general have a rather 
quali tat ive character. Our perception of a figure is not only determined 
by its geometric properties but also by its semantic content, which in 
turn is a result of our cultural and social background. This, and the 
context in which figures appear, also influence our notion oi similarity 
between them. The parametric contour representations, introduced in 
Chapter 2. only describe the geometry of a figure. Consequently, if we 
measure similarity on the basis of these representations, then such a 
measurement can only express some geometric characteristics of simi
larity between figures. 

In a number ol ' pattern recognit ion and image analysis applications 
it is feasible to perform clustering and classification solely on the kisjs 
of geometric in format ion . In many problems, however, geometric infor
mat ion alone wi l l not suffice. For example, the analysis of decorations 
on objects of pr imi t ive art by computer , as studied in Van Ot te r loo 
11978], is bound to be of l itt le use f rom an anthropological point of view 
if such an analysis is merely based on the geometric properties of these 
decorations and if it refrains f rom considering their semantic connota
tions. O n the other hand, there is no reason to neglect the usefulness 
ol geometric in format ion for such applications. Apar t from semantic 
and contextual in fo rmat ion , geometric in format ion plays an important 
role in our perception of the wor ld that surrounds us. I f required by a 
particular pattern recognit ion or image analysis appl icat ion, the infor
mat ion . obtained by measuring one or more geometric aspects o\' simi
larity between figures, may be passed on to a higher level o f processing 
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where it may be combined with topological, contextual, semantic and 
other types of information. 

The measurement of similarity between figures in a geometrical sense 
is also by no means a trivial problem. Here too our notion of similarity 
is affected by subjective considerations. Intuitively, if two figures are 
approximately similar by subjective standards, a similarity measure 
should give a high value and if two figures are very dissimilar according 
lo the same standards, a similarity measure should give a low value. 
Many measures for geometrical similarity can be formulated which 
satisfy the boundary conditions that geometrically similar figures give 
the maximum value of the measure, while figures that are not geomet
rically similar give a value below the maximum. We will soon see that 
in our approach these boundary conditions influence to a large extent 
the mathematical form of a similarity measure. However, even if a 
similarity measure satisfies these conditions, then this guarantees in no 
way that the measure lias the aforementioned intuitive properties. It 
remains a very difficult and open problem to determine which measures 
are in reasonable correspondence with certain subjective notions of 
shape similarity. Obviously there exists no unique 'best' or 'optimal' 
measure that will give satisfactory results in all circumstances. The 
choice of a particular similarity measure will mainly be governed by 
nature of the problem at hand, though also the robustness of a measure 
for noise and distortion, its computational requirements and the compu
tational means available will influence such a choice. The quality of a 
similarity measure can be judged, for example, by the clustering or 
classification results obtained. On the basis of such evaluations we can 
get insight into how well a similarity measure performs with regard to 
that particular problem. On the other hand, it is usually not possible 
to make general statements about the quality of a similarity measure 
on the basis of results in a particular application: a measure that per
forms well in character recognition does not necessarily perform well 
in industrial inspection. 

Though in practice we usually group objects on the basis of our 
subjective notions of similarity, in the context of pattern recognition 
and image analysis we will use the concept of dissimilarity for that 
purpose. Dissimilarity is usually measured by means of a distance mea
sure (Sneath and Sokal [1973], Anderberg [1973]) and should, for ease 
of interpretation, preferably satisfy the conditions of a metric. For the 
properties of a metric, we refer to Appendix A. 
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Similarity and dissimilarity are complementary concepts, i.e. given a 
similarity measure we can always define a dissimilarity measure as a 
function of the similarity measure and vice versa (Spath [1980]). 

It may happen that we need a similarity measure instead of a dissimi
larity measure. Spath [1980] defines the concept of a metric similarity 
junction and gives a number of examples of mappings o\ a metric dis
similarity function into a metric similarity function and vice versa. Since 
all such mappings set up a one-to-one correspondence between a metric 
dissimilarity function and a metric similarity function, which is neces
sary to preserve the metric properties after the mapping, the ordering 
of pairs of elements by either the metric dissimilarity function or by the 
metric similarity function is exactly reversed by the mapping. Therefore 
the information provided by either of the measures is exactly the same. 

It is understood that the dissimilarity measures, that will be defined 
in Section 4.2. only pretend to measure geometric aspects oi dissimilar
ity. and thereby geometric aspects of similarity. Whenever possible, a 
geometric or physical interpretation of the measures will be given. Such 
interpretations are important in judging what aspects of dissimilarity 
are measured and can be of help in predicting the usefulness of a mea
sure in a given application. However, also the computational complex
ity of a measure has a definite influence upon its usefulness in practice. 
Therefore attention will be given to this aspect with the actual definition 
of the dissimilarity measures. 

We already mentioned that there does not exist a unique 'best' or 
"optimal' measure to quantify geometric dissimilarity between contours. 
Each dissimilarity measure will emphasize a different aspeel of geomet
ric dissimilarity. Therefore we may consider each dissimilarity measure 
as a feature of dissimilarity and combine a number of dissimilarity mea
sures into a new one thai possibly reflects the dissimilarity between 
contours more appropriately in a given application. Some possibilities 
to combine metrics to form a new metric will now be reviewed (cl. 
Anderberg [1973], Spath [1980]): 

• metrics are closed under addition, i.e given two metrics </, and <l2 

then 

(I = tf, + d: (4.1.1) 

is also a metric. 
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• metrics are closed under scaling by a real-valued positive constant, 
i.e. given a metric d\ and a constant /{e R ' then 

r/ = M (4.1.2) 

is also a metric. 

• if dt is a metric and ye R*. then 

d= ' ' ' (4.1.3) 
7 + dx 

is also a metric. 

The operations in Eqs. 4.1.1-4.1.3 may of course be combined. For 
example, if [d„: // = 1. .... -V} is a set of metrics, then V/i„, y„ e R ' 

d= f —\ (4.1.4) 

is also a metric. 

The possibilities just mentioned to map metrics into new metrics are 
certainly not the only possibilities. We refer to Anderbcrg [1973] and 
Spath |I9X()| for further information. We still note that metrics are not 
closed under multiplication, i.e. the product of two metrics is not neces
sarily a metric. This is because the triangle inequality, Eq. A.2. may 
not be satisfied by the product. 

4.2 Measures of dissimilarity and mirror-dissimilarity 

In Section 2.5 we marked a number of information-preserving con
tour representations as candidates for use in the analysis of similarity 
and symmetry of contours of two-dimensional objects. In Section 2.3 
the conditions that these contour representations must satisfy in order 
to render geometrically similar or geometrically mirror-similar contours 
have been formulated. 

In Section 3.2 we verified that the sequences of Fourier coefficients 
generated by the information-preserving contour representations also 
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preserve shape information, for which reason we called them Fourier 
representations. In the previous section we mentioned the need for 
dissimilarity measures and mirror-dissimilarity measures in pattern 
recognition and image analysis applications. In this section we define 
measures of dissimilarity and mirror-dissimilarity, based on the contour 
representations and the Fourier representations, defined in the Chap
ters 2 and 3 respectively. We show that the dissimilarity measures are 
metrics on equivalence classes ol geometrical!) similar contours. 

The (mirror-)dissimilarity measures contain an index/;. b\ which we 
can control whether local or global differences in the contour represen
tations or the Fourier representations are emphasized. The index value 
p — 2 constitutes a special case, because it leads to a greater mathemat
ical tractability of the (mirror-)dissimiJarity measures. We will find that 
for/; = 2. a (mirror-{dissimilarity measure based on a contour represen
tation is equivalent to the measure based on the corresponding Fourier 
representation. 

In practice dissimilarity measurement is performed on the basis ol a 
finite number oi contour representation samples or a finite number of 
Fourier coefficients. Therefore we also present sampled-data formula-
lions of the (mirror-{dissimilarity measures and analyze their computa
tional complexity. For/; = 2 we will find that a substantial reduction in 
computational complexity can be achieved. 

■4.2.1 Measures of dissimilarity and mirror-dissimilarity based on 
parametrie contour representations 

Since we consider the shape of an object not to depend upon its 
position, size and orientation, or upon the choice of a starting point of 
a parametric representation ol its contour, we require (mirror-(dissimi
larity measures to be invariant for the application of equiform transfor
mations on the contours involved. In general this invariance can be 
achieved in two ways: 

• normalization of the position, size, orientation and parametric star
ting point of a contour such that we obtain for each equivalence class 
of geometrically similar contours a unique normalized representant. 

• pairwise optimization of the position, size, orientation and paramet
ric starting point of the contours, so as to yield a minimal dissimilarity 
value. 
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Combinations of these two methods are also possible. For the time 
being we normalize the position and size of the contours and we op
timize their orientation and their parametric starting point in the (mir-
ror-)dissimiIarity measures. At first we exclude the periodic cumulative 
angular function i/' from the discussion and deal with it separately later 
in this section. 

We denote an appropriate translation normalization parameter by £*, 
£* 6 C, and an appropriate scale normalization parameter by /i*. 
ft" e R ' . (What we mean by 'appropriate' translation and scale normal
ization parameters will be discussed in detail in Section 4.3.) Then the 
relation between a contour representation/, where ƒ stands for any of 
the representations z, 'z, z and K. and its translation- and scale-nor
malized version f* is given by 

r = :)/f:f. (4.2.1) 

For a survey of the formulation of the effects of translation and 
scaling upon the individual contour representations we refer to Table 
2.1. We present a detailed discussion on optimization versus normaliza
tion in Section 4.3. In that section we will also indicate appropriate 
translation and scale normalization parameters. 

In Appendix A the Lcbesgue spaces 1/(2.7). 1 =£ /; s£ oo, are defined, 
as well as the usual norm ||.|| ;, on 1/(2.7). It is mentioned there that if 
./, ,/: 6 1/(2.7). 1 $ p ss x . then ||/, - ƒ:11,, defines a metric on 1/(2*), 
the Minkowski-metrics or l/-metrics (cf. Appendix A). The family of 
dissimilarity measures that we now define is directly based upon the 
L/'-metrics. 

Definition 4.1. Dissimilarity measure of index p. 
Let /act as a generic symbol for any of the contour representations z, 
'z, z and K. Then a measure of dissimilarity of index p between a pair 
of contours y, and y2. with contour representations ƒ, and f2 respec
tively, f\, fi e 1/(2.7). is defined as 

</""(ƒ„/:) = minll/f - : ^ , , / l | | „ . 1 **p ̂  *=. (4.2.2) 

D 
We now consider the periodic cumulative angular function i/' in some 

detail. Since i/> is invariant for translation, scaling and rotation of a 
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contour, the righthand side of Eq. 4.2.2. upon substitution of ip for/*. 
becomes: 

min || i/', - .7ri/':ll/.- (4.2.3) 

We require of dissimilarity measures that they are invariant for shifts 
in the starting points of the contours involved. In particular, if Eq. 4.2.3 
would be a valid dissimilarity measure in this respect, then it is required 
that 

niuiH.V/'i - -h'l'iW,, = min||V'] - -V/-;!!/.- V'; e B. (4.2.4) 

Unfortunately. Eq. 4.2.4 is in general not satisfied. The reason for 
this is the effect of a starting point shift upon if' (cf. Table 2.1): 

•V/'O ^ '/'(' - T) - V'(-r). (4.2.5) 

The formula in Eq. 4.2.3 does not even define a symmetrical mea
sure. as we will show in the following example. 

Kxample 4.1. 
Consider two contours y, and y: as displayed in Figures 4.1a and 4.2a. 
respectively. In the contour •/, the straight line segments have the same 
length as the circular arcs. The representation /,•, of ;-, is displayed in 
Figure 4.1b and \p2 ot / ; in Figure 4.2b. Note that if: is identically zero 
because y2 is a circle 

We are interested in the behavior of niinr||-7„i/'i - -V/';!,.. as a func
tion oi o. Since i,': is identically zero we find 

min||.'/„v, - ./,!/':||,, = ||3"„V',||r (4.2.6) 

To illustrate the effect of a starting shift upon Y (cf. Eq. 4.2.5) we 
have displayed i/'\(r) - ./, i,,',"i(') and if.'"(t) - J..,Vi(') in Figure 4.3 
(compare with Figure 4.1). 
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t = 
- f = 0 

75 

Y,W £ 

Figure 4.1. Contour ;•, is shown iii (a), consisting ol lour circular arcs and lour straight line 
Segments. The length "I each straight line segment is the same as thai Ol each circular arc. The 
periodic cumulative annular function </\ of ;■, is displayed in (h). 

| - f = 0 

'1 
'8 

jr 
'X 

J 
1 

3jt 
2 

2ir 

Figure 4.2. Contour ;\. displayed in (a), is a circle lis periodic cumulative angular function <p, 
shown in (hi. is identically zero. 
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Through straightforward integration we find for | ■ ).lyt\\.,: 

4 j/.T , 71 

\%y>\\\p = < 

. .7 , .T 

7 T T fork t^ozk + k' . 
4 X 4 

,'•• i Up 

4 
7I(P+ 1) 

.7 7 

3.7 7 

/' " I 

P • ; 

(4.2.7a) 

' s + * 4 " ° 

7 , 7 71 7 
. o r s + A 4 ^ ^ 4 + . 4 . 

!," 

(4.2.7b) 

for all A- e Z. 
These expressions show thai minr||-'7„i/'i - -'A-ty':!!,. is "<'t independent 

of the starting point shift .-/„ in I/'I- A graph of ||.V,', (|,,. as a function 
of a. is displayed in Figure 4.4 for /> = I, p = 2.p = 5 and. in the limit. 
for p = x, 

We will also show through this example that minr||i/'| - ./,',':||,, is 
not a symmetric measure, i.e. in general 

m iin||i/'i - -V/':!!,.* min||»/': - -V/'ill,.- (4.2.8) 

This can be seen as follows. 
We found the results of the lefthand side of Eq. 4.2.N. as a function 

of the starting point shift in ^i hi Eq. 4.2.7a. b. For the righthand side 
of Eq. 4.2.K we find 

mi - ii - ii I 

i r in | |y :- .V/ ' i | | , , = min ||-'J,V'ill,- = ; + , 14.2.9) 
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for T = k -7(14. k e Z. So only for starting point shifts of k-ixIA, k e Z, 
minr || Vi - -V/':!!,, and minr||i/N - -V/'iH,, yield the same result in this 
example. 

D 

Wt>l 

figure -4.3. Periodic cumulative angular functions of contour y, in Figure 4.1a alter starting point 
shifts. In (a) \p\ = ./, ]tltf, is shown and in if>) •/■' >.,;' , 

- p * co 

Figure 4.4. Graph ol | i„i;'i|',, as a function of the starling point shift «'for various values of the 
index p. 
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One way to cure the problems described in the foregoing example is 
to propose the formula 

min||./„v, - - V / N L (4.2.1(1) 
O.T 

as a dissimilarity measure on the basis of if. Though this formula would 
yield a valid dissimilarity measure, it has the drawback that it lead-. lo 
a considerably increased computational effort. 

Another way to get rid of the peculiar starting point dependence ol 
iy is to base a dissimilarity measure on a normalized periodic cumulative 
angular function tp* that preserves the information in if) and that has 
the property 

•V/' (') = ¥'*(' - r). (4.2,11) 

One waj to find such a function if is as follows. Let 

V -(/) - if(i) + ;-(</•)• (4.2.12) 

where /.(if) is a. not yet specified, real-valued and single-valued func
tion of i/'. Since »/'(()) = 0 it is clear that ip(t) can always be obtained 
from if it) as 

VU) = if (t) - < / ' « > ) . (4.2.13) 

which shows that V* preserves the information in iff. 
From Eq. 4.2.12 we derive the equations 

if U - r ) = ifd - r) + /.(v) (4.2.14) 

and 

.>.;■ (/) = ./,'/'(') + M'W)- (4.2.151 

Through substitution of Eqs. 4.2.14 and 4.2.15 into the required 
property, expressed in Eq. 4.2.11. we find with the aid of Eq. 4.2.5 thai 
the function /('/ ') must satisfy 

y.(h>r) = M>r) + V ( - T ) . (4.2.K.) 
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Many functions /., that have this property, can be defined. 

Definition 4.2. Dissimilarity mensure of index p on lhe basis of \p . 
A measure of dissimilarity of index /; between a pair of contours y, and 
}':, with contour representations i/', and '/': respectively, i/',. ip^ 6 

L''(2.T). is defined as 

</""(</',•'/':) = minllyf - g#$||,, I */>««», (4.2.17) 

where i/' is a normalized version of if), according to Eqs. 4.2.12 and 
4.2.16. 

D 

Note that the form of Eq. 4.2.17 conforms with the definition of the 
dissimilarity measures in Eq. 4.2.2. since •'/(„'/' = '/' (<-'f- Table 2.1). 

In order to give an example of a normalization of \p we define the 
contour average of a periodic contour representation. 

Definition 4.3. Contour average. 
Let ƒ be a periodic contour representation or another contour-related 
function, with a normalized arc length parameter /. The contour aver
age (ƒ) o f / i s defined as 

</> - i f(t)<ii. (4.2.18) 
2.7 

D 
We note from the definition of the complex Fourier coefficients in 

Eq. 3.2.2 that 

< / W « > ) . (4.2.19) 

We recall from Table 3.3 the sufficient conditions that the Fourier 
coefficients of >/• must satisfy in order to render a pair of geometrically 
similar contours: 

jp2(k) = e-* ,^,(*) , V* e Z - {()>. 

for some fixed value of T e R. 
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Using 

r(')= I V'(*)eu' 
AtZ 

we find as a sufficient condition lor geometric similarity in terms ol' if. 

' / ' : ( ' ) - ('/':) = V i C - r) - (»/'i) 

= ■V/ , I ( ' ) -< -3" ,VI>- V / 6 | ( I . 2 . T | . (4.2.2(1) 

for some fixed value of r. 
Compare the sufficient conditions in Eq. 4.2.20 with those in Table 

2.3. From Eq. 4.2.2(1 we draw the conclusion that an appropriate choice 
lor /.('/') is 

/-(</') - - { ' / • ) • (4.2.21) 

It is easily verified that /('/') in Eq. 4.2.21 satisfies the condition in 
Eq. 4.2.16. This choice results in (f) = 0 (cl. Eq. 4.2.12). 

In the following theorem we show thai the normalization of tf, as 
defined in Eq. 4.2.21. is optimal if the index/; in in </''''( i/V '/';) equals 2. 

Theorem 4.1. Optimal normalization in (/''"(if,, ys) for p = -■ 
If/; = 2 in the dissimilarity measure eFpy(y?\. '/'_-)■ defined in Eq. 4.2.17. 
then the normalization of '/' according to Eq. 4.2.21. i.e. by choosing 
MV-') = ~(y) ' n Eq. 4.2.12. is optimal. 

Proof 

( 'onsider: 

f/ ' : ,(V'i. '/':) = rnin| |yf - . 'M ' : l l ; 

= mm 
tit 

W\U) - ' / ' : ( ' - T)\'dl ■ (4. 
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Applying Eq. 4.2.12 to Eq. 4.2.22 and expanding the integrand yields 

I 
</':'( v'|. '/':) = m m 

. 2 - T J : , 
{ ' / ' I ( 0 - '/':(' -T)}:dl 

+ 2{<y,) - <'/-2>}{A(v.) - A(i/.2)} 

-
U(Vt)-A(V2)}' (4.2.23) 

which can be rewritten as 

(/'•■'(Vi-1/1:) = m i n 
I 

2n 
! ' / ' , ( ' ) - ' / " : ( ' - r )} 2 d / 

+ !(Vi) +A(v,) - (v:) -A(y2)}2 

-{^,>-<V2>}2 (4.2.24) 

Only the middle quadratic term in Eq. 4.2.24 depends upon the 
choice of a normalization function /.((/'). It is clear from the expression 
in Eq. 4.2.24 thai </|2l('/'i- Vs) ' s always minimized if we choose 

D 

A survey of the dissimilarity measures of index p, defined in Defini
tions 4.1 and 4.2. in terms of the individual contour representations, is 
given in Table 4.1. 

Remark. 
In the tables in this section, dealing with (mirror-)dissimilarity measures 
for general values of the index /?, the value p = ^ has been excluded. 
though these measures are also defined for this value of/?. The reason 
for this exclusion is the fact that the formula for || • | |x is somewhat 
different from || ■ ||p, l € p < < » (cf. Eqs. A. 12 and A. 13). However, 
given the formula of a (mirror-)dissimilarity measure for 1 =S p < 'x, 
the derivation of the formula for p = » is straightforward. □ 
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Table 4.1. Dissimilar») measures of index p. I s p < x, in terms ol the individual 
contour representations. 

Contour 
representation 

-

-

-

V' 

K 

Dissimilarit) measures of index /> 

(/""(--,.;-)= min 

d""(kfZ 1 = min 

lfi"(zl.z1) = in in 

rf""('i'\- '/';> = min 

d':\K .K.) = mil 

|r*(0 - e'"--;(; - n | d/ 

1 f . .. 
, |r"(f) - e'"r :u- T\[i\t 

2'T | | f * ( 0 - c - U r)|'d» 

1 
',■ I/I ', (' nl'd' 

, 1 A' l/i Kt(/ n d; 

1 U 

ir 

An important property of the dissimilarity measures is established in 
the following theorem. 

Theorem 4.2. Metric properties of dissimilarity measures. 
The families of dissimilarity measures defined in Definitions-4.1 and 
4.2 constitute metrics on the equivalence classes of representations o\ 
geometrically similar contours. 

Proof 

Let /s tand for any of the contour representations z. i:. z. >,■ and K. If 
/'i. _/': and /; are the representations ol the arbitrary contours ;■■.. y: and 
;•-,. with/ | . ƒ>. J\ e L' '(2.T). then we have to show (cf. Definition A.I): 

(a) (l''"(j\. j'i) - 0 iff ./i and A belong to the same equivalence class of 
representations of geometrical!) similar contours. 

(b) (/""(ƒ,. ƒ,) =S ci"'y\.J\) + <1""{J\.I:). the triangle inequality. 
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Ad (a) The families of dissimilarity measures épHf\, /2) a r e directly 
based upon the necessary and sufficient conditions that j \ and j \ must 
satisfy in order to render geometrically similar contours (cf. Eq. 2.3.1). 
This ensures that, if (l'r)(j\. f2) = 0, then the conditions for geometric 
similarity in Eq. 2.3.1 are satisfied almost everywhere for some (t and 
T, which allows us to conclude that y, and y2 are indeed geometrically 
similar. On the other hand, if y, and y2 are geometrically similar we 
find (f'"(/i- /:) = "• whereas if y, and y : are not geometrically similar 
we find d''"(f\. j'2) > 0. In this discussion we have assumed that the 
normalized representation ƒ* can always be determined uniquely from 
/(cf. Eqs. 4.2.1 and 4.2.12). 

Ad (b) Through Eqs. 4.2.2 and 4.2.17 we have 

</""(./,ƒ,) = min \\n-W„n\\P. (4-2.25) 

Let a !3 and r)3 be the solutions of the minimizations over a and r in 
</""<ƒ,./',)• 

Similarly, let av$ and r:;, be the corresponding solutions in (Iu'\f\. f2). 
Then we obtain 

</""(ƒ,.ƒ,) + </""(./-.ƒ:) = H/S - V W T | | , + II.H - •V^„ ;J':|| /, 

(4.2.26) 

Since ||/, - /-H,,. with ƒ , . / : e L''(2;r), constitutes a metric on L''(2,T) 

(cf. Theorems A.l and A.2). the triangle inequality leads to 

— || f* or oti e * il 

11/ I " ( r ja r;-.) ••"<«;■• - c iu) / 2 ll/> 

>d<i%l\.f2), (4.2.27) 
which is the required inequality. 

The properties (a) and (b) in this proof correspond to the require
ments of a metric in Eqs. A.l and A.2, respectively. Since these prop
erties are sufficient for a metric (cf. Appendix A), the proof of the 
theorem is now complete. D 
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Along the same lines as we defined families of dissimilarity measures 
in Definitions 4.1 and 4.2 we now define mirror-dissimilaritv measures. 
The mirror-dissimilarity measures are directly based on the necessarj 
and sufficient conditions on contour representations of gcometricall) 
mirror-similar contours, as defined in Eq. 2.3.2. 

Definition 4.4. Minor-dissimilarity measure oj index p. 
Lei ƒ act as a generic symbol for any of the contour representations z, 
':. z, if and K. Then a measure of mirror-dissimilarity of index p be
tween a pair of contours •/, and •/-. with contour representations l{ and 
/ : respectively, ƒ,. j \ e L' '(2.T). is defined as 

</""(ƒ,.ƒ;) = min | | / ï - . II,/,./(,,ƒ :||,, I ^ p ^ x . ,4 .2 .2M 

D 
It is easily verified that (/''"(/,. /•) is in fact a dissimilarity measure 

between a contour and another contour, that is mirror-reflected about 
the x-axis. i.e. 

</■'■"(ƒ,.ƒ;) = </""(ƒ,.. " , / : )• (4.2.29) 

In analogy with the dissimilarity measures defined in Definitions 4.1 
and 4.2. the families of mirror-dissimilarity measures d':' ael as mea
sures between equivalence classes of geometrically similar contours. 
i.e. apart from the type of contour representation and the value of the 
index /;. the value of d'r' will only depend upon the pair of equivalence 
classes to which the contours belong and not upon the particular speci
mens from these equivalence classes. 

The families of mirror-dissimilarity measures </''"' possess the property 
ol symmetry: <-/''"(ƒ,. ƒ■>) = d''"(f:. J\). The property of reflexivity. i.e. 
d''"(J\.f\) = 0, is only satisfied by a special subset of contours, namely 
contours that are mirror-symmelric. We will use this fact later in Section 
4.5 to define families of measures of mirror-dissymmetry. 

The triangle inequality does not hold lor d'1" and is in fact meaningless 
in this case. The same applies to the concept of a metric in relation to (/''". 

A survey of the mirror-dissimilarity measures of index p. defined in 
Definition 4.4. in terms of the individual contour representations, is 
given in Table 4.2. 
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Table 4.2. Mirror-dissimilarity measures of index /;. I S / K "■. in lerms of the 
individual contour representations. 

Contour 
Representation 

2 

Z 

-

'i' 

K 

Mirror-dissimilarity measures of index p 

dl"{:i.::) = min 

<l""Czl,z1) = min 
'i 1 

</"''(l|.ir:) = min 

(tp)(yi\9 '/':) = min 
r 

(fiKK,. K£ = mil 
r 

' | z t ( r ) - e 1 - ' I 1 ( - / + r ) | ' ' d / 

1 
2.7 | i , ( / ) + e '" ' z\(-i+ T)\''(1I 

2* 

2 ^ j |2T(0-c "'r?(-/ + r)|"d/ 

f 1 f 1 1, 1' 
2.1 J 

^ j | /ff(f)-K?(-i + r)|''d/ 

"I HP 

"I Up 

"1IV' 

P 

Up 

An important special case of the (mirror-)dissimilarity measures of 
index p is formed by the measures of index /; = 2. These are discussed 
in the next subsection. 

4.2.2 Measures of dissimilarity and mirror-dissimilarity of index p = 2 

In this subsection a special case of the measures of dissimilarity and 
mirror-dissimilarity of indexp is discussed: the measures of index p = 2. 
These measures arc directly based upon the Lr-metric or Euclidean 
metric on L : (2 .T) . The main reasons for the importance of this case are 
its greater mathematical tractability. leading to computationally effi
cient implementations, and, as we will see later on. its isometric relation 
with corresponding Fourier representation-based (mirror-)dissimilarity 
measures. For p = 2. the concepts of correlation and convolution ap
pear in the expressions of the dissimilarity and mirror-dissimilarity mea
sures. 
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Definition 4.5. Cyclic crow-correlation (unction. 
Let /, and f2 be a pair of complex-valued 2.7-periodic functions, 
with ƒ), f2 e L : (2 .T) . Then the cross-correlation function between /', and 
/ : is defined as 

'_>i:(r:./)= J\(t)f:(i - r)dt. (4.2.3(1) 

D 
Definition 4.6. Cyclic convolution function. 
Let j \ and f2 be a pair of complex-valued 2.7-periodic functions. 
with /,. / : e L"(2.7). Then the cyclic convolution function of/, and / : is 
defined as 

hn{x\f)= / , ( / )ƒ;(- /+ r)d/. 14.2.31) 

D 

It is readily understood that, as a special case, the functions ƒ, and /-
in Definitions 4.5 and 4.6 may also be real-valued. 

We will treat the (mirror-)dissimilarity measures based on complex-
valued contour representations and those based on real-valued contour 
representations separately, because there is a slight difference in their 
analysis. 

Let ƒ act as a generic symbol for any of the complex-valued contour 
representations z, z and z. Substitution of p = 2 into cl':'{l\. f2). 
Eq. 4.2.2. and expanding the norm gives 

d':'(l\.f:) = min\\f]-.JrJi.,r:\\: 

= mm 
l.-T 

/ , ( / ) - e " 7 ; ( / - r ) | - d / 

[ l l / t | | ' + l l / ! | | ^ - m a x ! e " o i ; ( r ; / s ) + e l " ^ ( r : / )]] . 

(4.2.32) 

where / in Q\i(j',f) indicates that the translation- and scale-nor-
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malized versions of j \ and f2 are used in the cyclic cross-correlation 
function (cf, Eq. 4.2.1). Analyzing the optimization over a and r in Eq. 
4.2.32 we observe that 

max[max{e "Vj|:(r;/"K) + c ' ^ r ; / " ) } ] - 2 max|e l 2(r;ƒ*)], 

(4.2.33) 

where the solution for a, as a function of r. is given by 

\ R e { o i : ( r ; / ) } / 

Through Eq. 4.2.33 we find for cl>2>(J\. f2) the end result 

d{2)(!\.Jz) = [\\n\\\ + | | / 11 | ; - 2 max \Qn(r,/*)|f. (4.2.35) 

Let g act as a generic symbol for any of the two real-valued contour 
representations i/' and K. Substitution of p — 2 into the dissimilarity 
measure ol' index /;. Eqs. 4.2.2 and 4.2.17. and expanding the norm 
gives 

^2'tei-fc) = m»i|Ui - - M U : | | 2 

>■ -i 'I: 

|gT(/)-«!( '-r) | :d/ 

= [ l U t | | ; + \\gm
2\\l-2 max O12{T; a*)]*- (4-2.36) 

A survey of the results in Eqs. 4.2.35 and 4.2.36 for the dissimilarity 
measures of index /; = 2, in terms of the individual contour representa
tions. is given in Table 4.3. 

Note that in the expressions for the dissimilarity measures of index 
p — 2 on the basis of the real-valued contour representations !/• and K 
an optimization over the cyclic correlation function appears, whereas 
in the corresponding measures on the basis of the complex-valued con-

min 
i 

1 
?JT 
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tour representations 2. 2 and 2 the optimization is over the modulus of 
the cyclic correlation function. 

Table 4.3. Dissimilarity, measures of index /> = 2 in terms of the individual contour 
representations. 

Contour 
representation Dissimilarity measuresoi indcxp = 2 

rfa,(2|,r,}=[|k||; + | | r ! | 2 max I0i2ir: -' i l ' 
*/'-''(.-,.:-..) = [||r,||;1 + | | r : | | ; - 2 max L (r:: 1 ] 

d (z,.f;) = [||-,||; * ||--: II;- 2 max |o,: I n : | | ] 

'i'■'(', .V':)= [llv ||: * || '/ '; | |; " 2 max.. in», 1] 

K </ ' ' [K . K 1 = [\\K] ||; + \\k -2maxn <r: K 1] 

Table 4.4. Mirror-dissimilarity measures ol index p — 2 in terms <>| the individual 
contour representations. 

('ontour 
representation 

Mirror-dissimilarity measuresoi indcxp = 2 

,/ ■ . : . , ! = [H.-lli + ll.-:!!;:- 2 m a x | / , j r : ; , ] 

</':'(cl.i.)= [||; | | ;+ | | z ï | | ; - 2 m a x | M r : c l | ] ' 

<r:>(:[.;:)= [ | |r, | | ; + ||f? ||i - 2 max |/i Ir . : | | ] 

■• "/;•'/ ' .)= [||'/'T||i+ lUlll: + 2min/j «(r:* 1] 

K , / ' : U,.K ; l = K) | | ; + \\K%\\\ 2 max h :tr: K 1 I 
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The analysis of the mirror-dissimilarity measures of index p - 2 
evolves along the same lines as that oi' the dissimilarity measures of 
index /; = 2. Instead of the cyclic correlation function the cyclic con
volution function appears in the expressions for the mirror-dissimilarity 
measures of index p = 2. A survey of these expressions, in terms of the 
individual contour representations, is given in Table 4.4. 

Note in Table 4.4 the somewhat differing expression for r/l2l(f/?i- '/';) 
which is a consequence of the expression for <7'/,,(j/'i. i/s) in Table 4.2. 

4.2.3 Measures of dissimilarity and mirror-dissimilarity based on 
Fourier representations of con/ours 

In analogy with the (mirror-)dissimilarity measures defined in Defini
tions 4.1, 4.2 and 4.4, which arc based on the information-preserving 
contour representations introduced in Chapter 2. we can also define 
such measures on the basis of the corresponding Fourier representa
tions of contours. In Section 3.2 we have shown that these Fourier 
representations are also information-preserving. 

In Section 3.5 we have formulated the necessary and sufficient condi
tions that Fourier representations must satisfy in order to render geo
metrically (mirror-)similar contours. In analogy with (mirror-)dissimi-
larity measures based on parametric contour representations (cf. Sec
tion 4.2.1). these conditions will form the basis for the definition of 
(mirror-)dissimilarity measures based on Fourier representations of 
contours. 

We consider Fourier representations as elements in the sequence 
space f ( Z ) . I s£ p =£ oo. In the definition of (mirror-)dissimilarity 
measures based on Fourier representations we employ the fact that, if 
ƒ, , / , e €p(Z), then H/, -/:ll,>defines a metric on f '(Z), where ||-||,, 
denotes the usual norm on f '(Z) (cf. Appendix A). 

This section constitutes a direct parallel with the Sections 4.2.1 and 
4.2.2. The required invariance of the (mirror-)dissimilarity measures 
for the position, size and orientation of the contours and for the position 
of the parametric starting point on the contours will be realized in the 
same manner. Therefore, the conversion of the formulations and deri
vations in the Sections 4.2.1 and 4.2.2 to Fourier analoga is straightfor
ward. replacing contour representations by Fourier representations and 
integrals by appropriate sums. For this reason we limit ourselves to the 
major formulations and leave the details to the reader. 
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Definition 4.7. Dissimilarity measure of index p based on Fourier 
representations. 

Lei ƒ act as a generic symbol lor an) of the Fourier representations 
z, z. z, '/' and K. Then a measure of dissimilariu ol index p between a 
pair ol'contours / , and y:. with Fourier representations /, and / : respec
tively. j\.f: e V'CZ). is defined as 

ép){"fuh) = min||/T - ./,./*.,/; ||„. I *£p=£*. (4.2.37) 

D 

Compare Definition 4.7 with Definition 4.1. In Eq. 4.2.37. / stands 
for the Fourier representation, generated by the normalized contour 
representation ƒ*, as defined in Eqs. 4.2.1. 4.2.12 and 4.2.21. It is 
easily verified that 

/ = •/ >J. (4.2.38) 

when /stands for ;. ;. z' or K. and that 

>r = y> + >■(;■) = '/"• - '/•«». (4.2.39) 

A survey of the formulations of the effects of translation and scaling 
upon the individual Fourier representations can be found in Table 3.2. 
With the aid of this table it is straightforward to derive expressions for 
^"'</i-./:) m terms of the individual Fourier representations. 

The dissimilarity measures </,;'(/ . /'• | also possess metric properties. 

Theorem 4.3. Metric properties of dissimilarity measures based on 
Fourier representations. 
The families of dissimilarity measures. </''"( j\.f:). defined in Definition 
4.7. constitute metrics over the equivalence classes of Fourier represen
tations ai geometrically similar contours. 

D 

The proof of this theorem follows exactly the proof of Theorem 4.2. 
replacing ƒ e V(2TI) by ƒ € f '(Z). 
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Definition 4.8. Mirror-dissimilarity measure of index p based on 
Fourier representations. 
Let ƒ act as a generic symbol for any of the Fourier representations 
z. 'z, I. v' and K. Then a measure of mirror-dissimilarity of index /; 
between a pair of contours y, and y2. with Fourier representations ) \ 
and / : respectively,/j, fo e f ' (Z) . is defined as 

</n./,,/:) = minll/? -M,?&J$\\,. t « p * « . (4.2.40) 

D 
Compare Definition 4.8 with Definition 4.4. An analogon to 

Table 4.2 for d""(j\. j\) can be derived by using Table 3.2. 
For index p = 2 the dissimilarity measures dC){j\,j\) and d{2)('f\, J\) 

are isometrics: 

dr-'()\. ƒ:) = é2\fuh), V/„ ./, e L-(2.T). (4.2.4I) 

This fact is a direct consequence of Parseval's formula (cf. e.g. Ed
wards [1979], pp. 131-132): 

11/11? " ^ \fW\2dt= L\h*)\2m\\i\\l> V / £ L U T ) . 

(4.2.42) 

For the same reason the mirror-dissimilarity measures of index 
p — 2 satisfy 

</' : ,(/..h) *" ̂ ' : ' ( / , , / : ) - V/„/2 e L-(2,T). (4.2.43) 

In practice the (mirror-)dissimilarity measures of index p = 2 can be 
computed efficiently via the Fourier domain. One of the reasons for 
this efficiency is the form that the cyclic cross-correlation function and 
the cyclic convolution function take when they arc expressed in the 
Fourier coefficients of the corresponding contour representations: 
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Qr.(T:f)= E / i W A W e * 1 (4.2.44) 

and 

lh:(r.f)= ^j\(k)f:{k)c'k'. (4.2.45) 
Ac 2 

Another reason that (mirror-(dissimilarity measures can be computed 
efficiently for p = 2 is the existence of fast algorithms for the (approx
imate) computation of Fourier coefficients. More attention will be given 
to these issues in the next subsection. 

4.2.4 Sampled-data formulations of measures of dissimilarity and 
mirror-dissimilarity and analysis o] computational complexity 

In the previous sections we have defined measures of dissimilarity 
and mirror-dissimilarity on the basis of various contour representations 
and Fourier representations. In the formulation of the measures the 
contour representations are functions of the continuous normalized arc 
length parameter t. 

In practice the measures are computed on the basis of a finite number 
of samples of the contour representations or on the basis of a finite 
number of Fourier coefficients. In this section we present the discrete 
formulations of the previous!) defined measures of dissimilarity and 
mirror-dissimilarity in terms of sampled contour representations and 
finite Fourier representations and analyze the computational complexi
ties of the measures. 

We assume that in practice we have V samples of a contour represen
tation ƒ. taken equidistantly in terms of arc length along the contour. 
The problem of estimating these contour representation samples from 
segmented digital images will be dealt with in Section 4.4 and Appendix 
C. 

Since a 2.T-normalized arc length parametrization is used for the con
tour representations the discrete contour sample /'[//] can be related to 
the contour representation as 

f[n]=f[T + n 2"T). ne{0 N - l } . (4.2.46) 
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for some r e [0. 2,T//V). In practice we choose T = 0, which corresponds 
to the convention ƒ[0] = /((I). 

The periodicity of a contour representation/in terms of its N discrete 
samples is expressed as 

/ ["] = IV' + N]. (4.2.47) 

An estimate of | | / | | r on the basis of discrete samples of/, is defined as 

v i 

.v i i/wr 
/ v n = II 

(4.2.48) 

Remark. 
In a number of situations we denote the sampled version of a contour 
representation / b y /[ |. 

In analogous situations we denote the truncated version of a Fourier 
representation / by /[ |. 

D 
In the dissimilarity measures of index p. d{p)(f{. f2), the orientation 

of the contour y :. represented by/>. is optimized with respect to that 
of contour yu represented by ft. In practice this optimization is per
formed over a finite number of orientations, say M. An estimate of 
d{'n(f\.fz) based on .V equidistant samples of both/, and/; , denoted as 
</""[ƒ,. /:|. is given by 

éP\fx,f2) = vmn\\n\ \-\^mJl\ HI,,. 

"! e {() M - l], q e {() N - 1}. (4.2.49) 

where the discrete starting point shift operator ÏÏ^i is defined as 

%]f[n]=f[n-q]. (4.2.50) 

Similarly, an estimate of the mirror-dissimilarity measure of index p 
</""(/,./;). denoted as </<'"[ƒ,, ƒ,], is given by 
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<H/'i,/':l = min||/T| l-. l f,^|.«,>w„.,/:| | | | r 

m e {O M-\), (/ e {(l N - \). (4.2.51) 

A survey of the expressions tor </"'"[ ƒ,. /':| and d'"\j\. f:\ can be found 
in Tables 4.5 and 4.6 respectively. 

In the righthand columns of these tables the computational complex
ity of the (mirror-)dissimilarity measures is listed. B\ the computational 
complexity of the measures we mean the order of the number of arith
metic operations that has to be performed in order to compute the 
measure. We have assumed thai the number of arithmetic operations. 
necessary to compute \f\''. is not a function of p . The concept of com
putational complexity that we use here corresponds with the time com-

Tablc 4.5. Dissimilar») measures ol index />. I -s /> < v . in terms ol \ equidistant 
samples of the individual contour representations. The minimizations .ire over \ 
equidistant starting point shifts and M cqualh spaced orientations. 

Contour 
represen
tation 

-"I 1 

'A 1 

2| 1 

v\ 1 

K\ | 

Discrete dissimilarih mcasurcsol index/» 

. / ( : , . - - 1 = min ..../ 

,1' \:,.;:|= min 

,/'■■"[;,. _-:] = min 
III U 

d" '1',' . V 1 ~ n i m 

<l",\K>.K-\= m in 
'1 

1 '• ' 
.. II-il''|-^">l",'--:l''-'/ll 

{ Ï. \=nn\-e"-^"z%\n-q\\' 

1 ̂  ' ' 1 
N 1 VÏW- V:l"-</i!'" 

I s ' 1 

1 V 

1 | 

'f 

( omputa-
tional 
complexity 

<U\! \ ) 

0\ \1- \ i 

0{\1\ i 

<H\ i 

(HN3) 
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plexity lor most traditional computing devices (Aho. Hopcroft and 
oilman [ 1974|). However, if wc use multi-processor architectures for 
the computation of the measures, then the specified order of complex
ity. in terms of the number of arithmetic operations, may give an overly 
pessimistic impression of the real time complexity involved. 

In the previous section we have found that for index p = 2 the con
cepts of correlation and convolution appear in the dissimilarity and 
mirror-dissimilarity measures, respectively. The discrete cyclic cross-
correlation function QX2[Q\ ƒ]. on the basis of N equidistant samples of 
both ƒ, and/ ; is defined as (cf. Definition 4.5) 

Qnk',f\=lNf!fi[n]h[n-g]. (4.2.52) 
/ v n = (i 

Table 4.6. Mirror-dissimilarit) measures "I index p, I s / K i . in terms oi V equidis
tant samples of the individual contour representations. The minimizations are over V 
equidistant startini! point shifts and M equally spaced orientations. III! 
4 1 

-;l 1 

2| 1 

y[ I 

K\ I 

Discrete dissimilarity measures of index p 

rf""[2„2J= min 
ID,I) 

&n[z„z3] = min 

,/' 'l-V-N = min 
m.ii 

'/■'"'I'/'i •'/'_■] = ""in 

^ ' " l A : , . A.%1 = m i n 

1 s ' . ' 

N „ - a 

" n II 

r i »-i 
., T. |'/'tl"l+ V*[-n +'/\\' 

[ i N ' i 1 
,, I k;i«i- m-n+éi 

. ' V n 

Up 

17' 

Up 

Up 

Up 

Computa
tional 
complexity 

0(MN*) 

0(M-N2) 

0(M-N2) 

OOP) 

0(N:) 
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Likewise the discrete cyclic convolution function //,:|</: ƒ] oi /, and /, 
is defined as (cf. Definition 4.6): 

V I 

>'.:!</:ƒ]= v ZfiMM-n + ql (4.2.53, 
.r i l 

As a result of the periodicity ol' ƒ,[ | and /:[ |. both Q\z[q; f\ and 
nv\ll'-f\ a r e periodic, with period N. 

The derivation of the discrete (mirror-(dissimilarity measures of 
index p = 2 from those of general index /> is along the same lines ;is 
described in Section 4.2.2 for the continuous-parameter representa
tions. A survey of the results is given in the Tables 4.7 and 4.S. 

The computational complexity ol the discrete (mirror-Jdissimilarity 
measures of index p = 2 is dominated b\ the compulation of '_';;|</'. /] 
and //|;|</: ƒ]. Straightforward computation would lead to a computa
tional complexity of 0(N2) for all measures of index p = 2. However. 
the following analysis shows that often more efficient implementations 
are possible. 

Table 4.7. Dissimilarity measures ol index p = 2 in terms «\ \ equidistant samples ol 
the individual contour representations. The optimizations are over \ equidistant start
ing point shifts. 

Contour 
repre
sentation 

Discrete dissimilarity measures ol index/; = 2 
< 'omputa-
tional 
complexity 

</' l--,--;| = [||r,| l l l :+ N ||| :-2max| t , , : to:; | | 0( \ l0& \ I 

^lii.ij-fllil '. • j ; . | |||; - 2 max (o,;!-/:.- | | ] ' J <h \ los V] 

' / i : , | ^ : | -2max|o, \q-.i \ \ 
i : 

0(.VlOg; \ | 

'/i:'lv',.V:l = [ll'/',l llli+lU'Sl III- 2maxe,Jiq:V |] oi \ log, \) 

dt2,[Kl.K2] = [\\K'l\ | | | ' • \\Kl\ ||| ImaxQdqiK | ] oi \ log \ i 

file:///q-.i
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The discrete Fourier transform (DFT) of a periodic sequence f[n\. 
with period N, is defined as (cf. Oppenheim and Schafer [1975]) 

\ - i 
f[k] = N J= I /Me -ik(2s/N)n 

n = 11 
(4.2.54a) 

ind the inverse discrete Fourier transform (IDFT) as 

,v- l I m = i m^mN)n- (4.2.54b) 

Note from Eq. 4.2.54a that f\k\ is also a periodic sequence with 
period N. 

Through the cyclic correlation theorem (cf. Tretter [1976]) we can 
express Qi2[q; f] as the IDFT of the sequence f\[k]f2[k]: 

N - 1 — D 
/ t -o 

Qd* f] = Z M]k[k)e,kWN». (4 .2 .55) 

Table 4.8. Mirror-dissimilarity measures of index /' = 2 in terms of N equidistant 
samples of the individual contour representations. The optimizations are over N 
equidistant starting point shifts. 

Contour 
repre
sen
tation 

Discrete dissimilarity measures of index /> = 2 

Computa
tional 
complexity 

4 I d<*\z„z:\= [||zT[ | | | *+ | |2|[ | | | ; - 2 m a x | / l l ; [ , / ; 2 - | | ] 1 G(N log: N) 

A\ '^[zt,k]= [||iTI llll+llül ' - ■ ? I max ht2[q;z>]\] w 0(/Vlog,,V) 

n a«if,.%i- *Tl 1II1 + | |*a l l l ! -2max|A I 2 fo ;2* ] | ] 
1/3 0(/V log, N) 

K[ 

''i:'l'/',.'/•:!= [| \i + \m\ | ; + 2min/i12[(/;v»*l] <V(/Vlog,/V) 

'l'1'\Ki.K2\= [\\K*,[ ] | | ; + K-\ \]-2mmhl2[q;K'\]' 0(N log, N) 
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Similarly, through the cyclic convolution theorem (cf. Tretter [1976]) 
h\i[q; j ' \ can be expressed as 

v - i 

I 
* = II 

l>A<r.f\= ifmkkW"12--"^. (4.2.56) 

Compare Eqs. 4.2.55 and 4.2.56 with Eqs. 4.2.44 and 4.2.45. 
With the specification of the computational complexities in the Ta

bles 4.7 and 4.8 it has been assumed that the number of samples V has 
been chosen such that Nis a power of 2. In that case Q\z[q; ƒ] andhlz[q:f] 
can be computed efficiently through Eqs. 4.2.55 and 4.2.5d. using the 
Radix-2 Fast Fourier Transform (FFT) algorithm (Cooley and Tukey 
[1965]). If/Vis not a power of 2. but another highly-composite number. 
then the Mixed-Radix FFT algorithm can be applied (Singleton 11%9|). 
Number-theoretic transform methods (McClellan and Rader [1979]. 
Nussbaumer [1981]) or special-purpose hardware may lead to even 
greater computational efficiency. 

Another method to compute the Fourier coefficients is in determine 
a polygonal approximation of the contour and to apply the formulas for 
the Fourier coefficients of polygonal representations in Table 3.1. In 
the latter case the number of arithmetic operations per Fourier coeffi
cient is proportional to the number of vertices of the polygon. Effi
ciency in computation is only achieved if the number of vertices in the 
polygonal approximation is relatively small and if the number of Fourier 
coefficients can be kept limited. 

In practice, the (mirror-)dissimilarity measures based on Fourier rep
resentations. as defined in Section 4.2.3. are computed b\ means of 
truncated or windowed Fourier representations, resulting in discrete 
measures of dissimilarity <7''"[./i- /:! and mirror-dissimilarity </''"[/i. ƒ;]. 

We consider truncated Fourier representations and assume that .V 
Fourier coefficients are used, with V even. Adaptations of formulas for 
N odd are straightforward. 

The coefficients in the Fourier representation / and those in the 
truncated Fourier representation / | | are related as 

where k e X. 

X N 
, /U). - *£*< - 1. (4.2.57a) 

0. k otherwise. (4.2.57b) 
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In analogy with Eq. 4.2.48 we denote an estimate of ||/||;, on the basis 
of N Fourier coefficients as ||/[ J||,, and define this estimate as 

A72 - I 

I 
k = - A M 

(4.2.58) 

If we perform in the discrete (mirror-)dissimilarity measures the op
timization of contour orientation over M discrete orientations and the 
optimization of parametric starting point over N discrete starting points. 
then <V''"[./'i-./:I 's g»ven by 

</"'Ü.A] = min||/ÏI ] - ïïyfko.Mjtl ill,. 

m e {0 M-\), q 6 (0 N-l}, (4.2.59) 

where the discrete starting point shift operator S"ifli is defined in the 
Fourier domain as (cf. Table 3.2 and Eq. 4.2.50): 

\lf[k) = c-i**u,*f[k]. (4.2.60) 

Compare Eq. 4.2.59 with Eq. 4.2.49. 
Similarly, the discrete mirror-dissimilarity measure d{l'][f\. ƒ.] is given 

by 

a ,")[/.,/2]= min f)/tl \-MJi^li^t)J%\ HI,,. 

me{0 M-\\, q e {0 N-l}. (4.2.61) 

Compare Eq. 4.2.61 with Eq. 4.2.51. 
It is straightforward to derive the expressions for d{'n\j\. f?\ and 

d[,')\f\. fi\ for the individual truncated Fourier representations. Under 
the conditions for orientation and starting point optimization indicated 
in Eqs. 4.2.59 and 4.2.61. the computational complexities of the (mirror-) 
dissimilarity measures (l{i')[f[,f2\ and ^[f\,fj\ are identical to the com-
putional complexities of the corresponding (mirror-)dissimilarity mea
sures <flp)[fl,f2] and r/''"[/,, ƒ,), which are listed in Tables 4.5 and 4.6. 

Due to the relations observed in Eqs. 4.2.41 and 4.2.43 for index 
p = 2. we will not treat this case separately for </(2,[/i,/2] and dl2)[j\. ) 2 \ . 
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but merely refer to what has been said about cl':'[l\. f:\ and cl'-'\ / , . /-| 
earlier in this section. 

4.3 Normalization versus optimization in dissimilarity and mirror-
dissimilarity measures 

In the previous section families of (mir ror- )d iss imi lar i t \ measures 
have been def ined, based on various periodic contour representations 
or on the sequences of Fourier coefficients generated by these represen
tations. Each of these measures satisfies the required property of in-
variance for equi form transformations. As a result we were able to 
show in Theorem 4.2 that the dissimilarity measures constitute metrics 
on the equivalence classes of representations of geometrically similar 
contours. 

The invariance of the (mirror-(d iss imi lar i ty measures for equi form 
transformations was achieved through an appropriate normalizat ion of 
the contour representations for the posit ion and the size of the contours 
and through an opt imizat ion of the or ientat ion and the parametric start
ing point on one contour wi th respect to those of the other. What 
constitutes 'appropr iate ' translation and scale normal izat ion of contour 
representations was left unspecified. This wi l l be discussed in this sec
t ion . 

In Tables 4.5-4.cS we saw that the opt imizat ion o f the (mirror-(d iss imi
larity measures for or ientat ion and starting point of the contours leads 
to a considerable computat ional complexity of the (mirror-(dissimi lar i ty 
measures, which may be prohibi t ive for some applications. Therefore 
we wi l l also discuss methods to normalize the or ientat ion and starting 
point of a contour. 

A general requirement that a normal izat ion process must satisfy is 
that it leads to a unique solut ion. If this were not the case a dissimilarity 
measure could even give a nonzero value for geometrically similar con-
lours. just by choosing different solutions of the normal izat ion process 
in the contours. Consequential ly, the metric propert ies of the dissimi
larity measure would be lost. Unfor tunate ly , the requirement that a 
normal izat ion process must have a unique solut ion does not lead to a 
unique def in i t ion of such a process, as wi l l become clear in the fo l lowing 
sections. 
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In Sections 4.3.1-4.3.3 we will subsequently discuss the normalization 
of contour position, of contour size and of contour orientation and 
parametric starting point. In Section 4.3.4 the results of the previous 
sections are reviewed and normalized dissimilarity measures are de
fined. Also a combined optimization/normalization method of dissimi
larity measurement is described and its computational complexity is 
analyzed. The latter method may be very interesting in practice, since 
it combines a low computational complexity with a limited risk of using 
an incorrect normalization for dissimilarity measurement. 

4.3.1 Normalization of contour position 

From Table 2.2 we know that the position function z is the only 
contour representation, introduced in Chapter 2. that is variant under 
a translation of the contour it represents. For the other contour repre
sentations. 2. 2. i/' and K. the translation operator 7 : is equivalent to 
the identity operator (cf. Table 2.1). 

We denote a translation normalization parameter of a particular po
sition function z as 'C(z). The requirement that a normalization process 
must have a unique solution means that 'C must be a single-valued 
function of z. 

A proper translation normalization process has the property that a 
position function z and the position function 'J:z. resulting from a trans
lation of the contour over t e C, lead to the same contour representa
tion after translation normalization, i.e. 

/ : . ( : )2 = ' / : , , , l ( / 2 ) . V C e C . (4.3.1) 

which leads to the requirement (cf. Table 2.1): 

£*(%) = £*(*) - £. (4.3.2) 

In the literature we find two propositions for t,*(z) that both satisfy 
the requirements just mentioned. 

Many authors (e.g. Granlund [1972]. Richard and Hcmami [1974]. 
Sychra et al. [1976]. Persoon and Fu [1977], Burkhardt [1979], Wallace 
and Wintz [1980]. Wallace and Mitchell [19X0], Ghen and Shi [1980], 
Kuhl and Giardina [1982], Proffitt [1982], Parui and Dutta Majumder 
[1982], Nguyen, Poulsen and Louis [1983], Mitchell and Grogan [1984]) 
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use the average position along the contour to normalize its position. 
i.e. thev define 

£(*) = " 2.7 
_(/)d/. (4.3.3] 

Note that £J(z) = -<z) = -z(0) (cf. Eqs. 4.2.18 and 3.2.2). In shape 
analysis techniques based on the Fourier coefficients generated by z. 
this translation normalization is usually implicit by not considering 1(0). 

In the shape analysis literature, where the shape of a region is rep
resented by the gravitational moments oi that region, the translation 
normalization of that region is also based on its momenis. 

Definition 4.9. Moment /»,„.. 
The moment niliq of a region R in the plane is defined as 

mPq= »'/.„( K) = .v'V'd.vdv. p.«7 = 0, I. 14.3.4) 

The moment mpil is said to be of order (p + q). 

U 
Please note that the definition of m in Eq. 4.3.4 is a special case of 

the general definition of two-dimensional moments of order (/> + q) 
which is given by (cf. e.g. Hu [1962}): 

f(x.y)xpfdxdy, p,q=0, 1 
- / j i 

(4.3.5) 

In Eq. 4.3.4 we have chosen /(.v. y) to be the characteristic function 
of the region R. i.e. /'(.v. y) = I inside R and /'(.v. y) = d outside R (cf. 
Appendix B). which suffices in the context of contour-oriented shape 
analysis, where wc do not consider the internal structure of an object 
to be part of its shape. 

Since d.vdv is equivalent to the element of area &A, it is clear dial 
mim (i.e. p = 0. q = 0 in Eq. 4.3.4) represents the area ,1 of the 
two-dimensional region R. 
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Translation normalization based on moments is accomplished by 
using the centroid (or center of gravity) of the region enclosed by the 
contour, i.e. by defining 

£?(*) = " ! (mw+imo,), (4.3.6) 
' " l m 

(cf. Hu [1962], Alt [1962]. Ehrlich and Weinberg [1970], Nagy and 
Tuong [1970], Casey [1970], Dudani. Breeding and McGhee [1977], 
Wong and Hall [1978], Zvolanck [1981]. Reeves and Rostampour 
[1981]. Reeves and Wittner [1983]). Note that the centroid corresponds 
to the regional average, i.e. 

zdA 

' (m10 + imo,) = * ■ (4.3.7) 

ÓA 

It is easily verified that both £*(z) and C*(z) satisfy the requirement 
of uniqueness and Eq. 4.3.2. 

In the literature the contour average (z) is frequently called the 
centroid or the center of gravity. The following example shows that the 
contour average and the center of gravity are in general not the same. 

Example 4.2. 
In this example we consider a simply-connected region, bounded by the 
simple closed polygon specified in Figure 4.5. 

We recall from Table 3.1 that the average position along a closed 
polygon is given by 

( z ) = i ( 0 ) = ' Ê |Az(0 |{*fe, + i) +*( '«)} . (4.3.8a) 
"*- H = 0 

where L is the perimeter of the polygon: 

L= £ |Azft.)l- (4.3.8b) 
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Figure4.5. A region bounded b) a simple closed polygon with I" vertices. Die eomplex-
valncd vertices arc listed on the right. The contour average (z) = i((i) = -t\ and the ccntroid 
(«In, + \m, 11 ;»,., = -_', arc not the same. 

Il is straightforward to derive the following expression for the cen-
troid of the region enclosed by a polygon: 

1 
m 

( » ' i . i + i/W|o) 
mi 

\ - I 
X [{2.v(/ /1)v(U+.v(/„)v(/„.,) 

O/t „ = (i 

+ -v(/„, ,)v(/„) + 2.v(/„ . ,)y(/„, ,)} {1(1,,) - z(t„ , ,)}■]. 

(4.3.9a) 

where A is the area of the polygonal region given by 

\ i 

A = _ I {.v(Uy(<„. ,) - .v(/„. ,)y(/„)}. (4.3.%) 

Substitution of the coordinates of the ver t ices o\' the po lygon specified 
in Figure 4 .5 yie lds : 

r , , , ) = f ( ) + 2SA/5 ( 4 7 2 + 2 S V ' 5 + ( H ) ~ 4 - 3 6 0 + °'' 
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and 

(m10 + imoi)= , c , (4144 + 0 i ) « 5.481 + 0 - i . 

which clearly shows that the average position along a contour and the 
centroid of the region, bounded by that contour, are in general not the 
same. 

D 
In Section 2.4 we remarked that the symmetry point « of an «-fold 

geometrically rotationally symmetric contour coincides with the cen
troid of the region bounded by that contour. In the following theorem 
we show that «-fold rotational symmetry, n 2= 2, is a sufficient condition 
for the centroid and the average position along the contour to coincide. 

Theorem 4.4. 
If a contour is «-fold geometrically rotationally symmetric, « 3= 2. then 
the average position along the contour and the centroid of the region. 
bounded by that contour, coincide. 

Proof 

Assume thai a contour y. with position function z, possesses «-fold 
geometrical rotational symmetry. It follows from Table 2.6 and Eq. 
2.4.3 that the following relation holds for z: 

z(l) + u^c""r-',:n,{z(l - md.-r/n)) + L . } . V i e B , Vm e Z. 

(4.3.10) 

where —£ e C is the symmetry point of order «. From Table 2.6 and 
Eq. 2.4.3 it also follows that the tangent function z of y satisfies 

z(,) = jmOmft - m(2-rln)), Vt e E, Vw 6 Z. 

(4.3.11) 

In Eq. 4.3.7 we noted that the centroid of a region corresponds with 
the regional average. A complex formulation of Green's theorem reads 
(Spiegel [1%4]): 
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a e <^cU=' fC f e I ,d I . 
az 2 

(4.3.12) 

If wc apply Eq. 4.3.12 both to the numerator and to the denominator 
of the righthand side ol' Eq. 4.3.7 we obtain: 

; j*n j z\oim 
(mw + imm)= = , . (4.3.13) 

2 * zdl _-(0r(0d/ 

Substitution of Eqs. 4.3.10 and 4.3.11 into the righthand side of 
Eq. 4.3.13 and rearranging summations and integrations leads lo 

I (/??,„ + im,,|) 

1 m»(l Jtl 
2„-i r,:""" 

£ {el"":T'",2(/) + (o1""-"7"' - 1 )£}e '"■':in':(i)di 
HI = 11 J l l 

1 
2 

ffc.7711 n i i ' » i 
-2/»e 1 z(/)z(/)df + £ ':(t)iit 

'(2.7/n) 

;(/)r(/)d/ + C ;(/)df 
in 

= - C , (4.3.14) 

where we have repeatedly used the properly 

X e1*""17"' = (). i fA#l)mod/i . (4.3.15) 
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Thus we have shown in Eq. 4.3.14 that —£ in Eq. 4.3.10 indeed 
eorresponds to the centroid of the region R. 

Substitution of Eq. 4.3.10 into the equation of the average position 
along the eontour yields (cf. Eq. 4.2. IX): 

(z) = 
1 

2,T 
z(t)6l 

I n - l = I 
■(£r/n) 

|e,„,(2.-,;n)2(/) + (cim»2.-,;„)_ 1 ) ? | d , 

I 2vT . 
2.T n 

= -£ , (4.3.16) 

where we have again applied Eq. 4.3.15. Combining Eqs. 4.3.14 and 
4.3.16 completes the proof of the theorem. 

D 
It can be shown that the translation normalization parameter 

£*(z) = -(z) = - i ( 0 ) minimizes </<2|(z,. z2) and é2)(Ê\, z2) over all 
possible translation normalizations. The proof of this assertion follows 
immediately from the equation of dC)(z\, z2).(cf. Eq. 4.2.37): 

^ , ( f „ f : ) = m i n p ! - g - r 9 i „ z | | | 2 

= min [|/?ï{i,(0) + £?} - e"'/^{z2(0) + t;2} \2 

+ £ | /?fi,(^)-e- i a r-" ,/?!22(A:)|2]"' ' , 
* e Z - (llj 

(4.3.17) 

and from the equality of dl2\zu z2) and flP(zt, z2) by Parseval's formula 
(Eq. 4.2.42). Along different lines the optimality of £*(z) as a transla
tion normalization parameter in di2)(z{, z2) has also been shown by Prof-
fitt [1982]. 
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4.3.2 Normalization of contour size 

From Table 2.2 we know that of all contour representations that we 
proposed for dissimilarity measurement. if is the only scale invariant 
representation. Therefore the scaling operator '.)'g applied to '/' is equi
valent to the identity operator (el. Table 2.1). The contour representa
tions z, 'z. z and K are all variant under the scaling of a contour. There
fore we have to specify scale normalization parameters in the (mirror-) 
dissimilarity measures based on these contour representations. Let 'J:-f 
denote any of these contour representations after translation normaliza
tion and let ft*('.fc-f) denote a scale normalization parameter for i I'. 
By defining/f as a function of a translation-normalized contour repre
sentation we ensure that ft will be translation invariant. The necessity 
of this provision stems from the fact that the operators ./ and ' do 
not commute when ƒ corresponds to the position function r. In order 
to ensure that the normalization process has a unique solution. ft' must 
be a single-valued function of 's •/'. We also require that ft' is a positive 
function of 7j-/since scaling is always performed by positive real-valued 
coefficients. 

A proper scale normalization process has the property that the con
tour representations V • •/' and 'J,,'/-f. the latter resulting from scaling 
'/:l 'by a factor ft e R ' . lead to the same contour representation after 
scale normalization, i.e. 

•'>,<■,. , , < • / . / ) - . ; . , , . ( J . ' ƒ). (4J.18) 

which leads, through the propern ./ /, = .) ... to the requirement 
(Cf. Table 2.1): 

r ( - V J . - . / ' ) = r ' - r ( 0 : . / ) . (4.3.19) 

Various propositions for scale normalization operators ./„••. that all 
satisfy the aforementioned requirements, can be found in the literature. 
These propositions occur mainly in relation with the translation-nor
malized position function 'J_Z or with the corresponding Fourier rep
resentation 'J z. 
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For example: 

• /3* = |2(1)| -1 (Granlund [1972], Wallace and Wintz 
[19801, Mitchell. Reeves and Grogan 
[1982]). 

• fl* = \\'J,:.Z\\:,' (Burkhardt [1979]). 

• /i* = IKMlIï ' (Chen and Shi [ 1982]). 

• /}* = \z(\) + z(-\)\~l (Sychra cl al. [1976], Persoon and Fu 
[1977). Kuhl and Giardina [1982], 
Nguyen. Poulsen and Louis [1983]). 

• ft* = | i ( l ) - f ( - l ) | ~ ' (Tai. Li and Chiang [1976]). 

(Richard and Hemami [1974], Burkhardt 
[1979], Proffitt [1982]). 

(Freeman [1978], Kuhl and Giardina 
[1982]). 

where L is the perimeter of the contour 
(Crimmins [1982]). 

where A is the area enclosed by the con
tour (Hu [1962]. Alt [1962]. Casey [1970]. 
Reeves and Rostampour [1981]. Tang 
[1982]. Luerkens. Beddow and Vetter 
[1982a]). Note that A - inm. the moment 
of order (0. 0) (cf. Eq. 4.3.4). which ex
plains why this normalization coefficient 
is mainly proposed in shape analysis 
methods based on moments. 

Though this constitutes quite a substantial list of scale normalization 
coefficients, many other coefficients, that all satisfy Eq. 4.3.19. can be 
formulated. The list also reveals that little agreement exists in the liter
ature concerning scale normalization. 

Example 4.3. 
To obtain an impression of the effect of some of the aforementioned 
scale normalization coefficients, we have displayed in Figure 4.6 a 7-

p* 

p 

ft* 

ft" 

= I M ; 1 

= IIMI-

= L-', 

= A-"\ 
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pointed star normalized by lour different scale normalization coeffi
cients. These seale normalizations were chosen such that, if they were 
applied to a circle, they would all yield a circle of unit radius. In Figure 
4.6a we notice that rather thin shapes, that enclose relatively little area. 
virtually explode as a result of an area-based scale normalization. On 
the other hand, contours with a relatively large perimeter, will shrink 
to very small figures if we use a perimeter-based scale normalization 
(Figure 4.6b). Furthermore, varying signal-to-noise ratio conditions 
among contours may cause perimeter estimates to differ, even with 
otherwise congruent contours. These circumstances will lead to un
realistic values for ép\z\, z2) and ci"'"(;,. ::) if we use a perimeter-based 
scale normalization for r. as proposed for example by Crimmins [ 1982]. 
The contour normalizations displayed in Figures 4.6c and 4.6d. based 
on | i ( l ) | and | | ' / : -z | | : respectively, both normalize the 7-pointed star 
to a size comparable to that of the circle. The reason to propose |i( 1 )|" ' 
as a scale normalization coefficient is that for many simple closed con-

# 

a b c 

^ O 
d e 

Figure 4.<>. Illustration ol the effect >>i various Male normalization!! upon a 7-pointcd Mar In (a) 
the area has been normalized to A= .7. in (hi the perimeter to /. - n. in (ei the Fourict coefficient 
i( I) in |i( I)1 = I and in (d) the Lr-norm to I i_-:\.. I For this 7-pointcil star these normaliza
tions lead to ihe salues 2.083. 0.567. I 643 and 1.536 lor the radii of ihe circumscribed circles in 
the eases lai. (hi. (ei and (d). respective!) Foi a circle, each oi the lour normalizations uould 
yield a circle of radius I. as displayed in (e). 
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tours i ( l ) is the Fourier coefficient of largest magnitude, not counting 
z(0). However, simple closed contours exist for which this is not true, 
as we will show in the next example. 

a 

Example 4.4. 
In this example we consider a thin, strip-like object that loops around 
a center point (cf. Figure 4.7a). The magnitudes of the Fourier coeffi-

A 

a 

5 

fzlkll 

1 < 
3 

2 

1 

0 
- 8 - 7 - 6 - 5 - 1 - 3 - 2 - 1 0 1 2 3 4 5 6 7 8 

b -+k 
Figure 4.7. (;i) shows a simple closed contour with position Function :(/). In (hi the magnitudes 
Of the Fourier coefficients :\k). k = —8 8. generated by :(l). arc displayed. Clearly nol i ( l ) 
bul -■!') has ihe largest magnitude for this contour. 



ISft C HAPThR 4 

cierttS i(k) of this object are displayed in Figure 4.7b. It is clear that 
i(l) is not the Fourier coefficient of largest magnitude, but 2(3). If we 
construct objects such as in Figure 4.7a with more loops, then it turns 
out that there is a direct correspondence between the number of loops 
and the index of the Fourier coefficient of largest magnitude. 

G 

Apart from satisfying the requirement in Eq. 4.3.19. a scale normali
zation parameter should be relatively insensitive to noise, thus limiting 
the noise sensitivity of the (mirror-)dissimilarity measures. It should 
also render scale-normalized contour representations that arc compar
able. in terms of the (mirror-)dissimilarity measure employed, for a 
wide range of shapes. The example just given shows that shapes exist 
for which | f( l) | '. considered as a potential scale normalization 
parameter for z, does not satisfy the condition that it has a relatively 
low noise sensitivity. Experiments have shown that ||V--z|| ~:

l is a better 
candidate for a scale normalization of ;. More generally, we may state 
that ifp = H'/^zll"1 is an appropriate scale normalization operator to 
be used in </""(2|. z2) and </""(r,. z:). since, apart from satisfying Eq. 
4.3.19. it normalizes the size of objects by means of the same criterion 
that is also used to measure (mirror-)dissimilarity. 

Continuing this argumentation. :irr - | |S-- / | |~ ' is an appropriate 
scale normalization operator in r/''"(./|../:) and <llr'ij\. f : ) . where /stands 
for any of the contour representations z. z. z and K. The effect of the 
scale normalization operator .7(. = HX-'/ll/»1 ' s , n a I '• maps the contour 
representation i: ƒ onto a unit sphere in the function space L"(2.7). 
endowed with the metric induced by the norm | | - | | r It is easily verified 
thai the scale normalization operator 'J>r = ||S6v»/||~' normalizes the 
representations z. 'z. z and K of a circle to the corresponding represen
tations of a unit circle. 

In the following we evaluate the ranges of the (mirror-)dissimilarity 
measures proposed in Section 4.2. We also analyze the effect of scale 
normalization upon these ranges. 

The effect of the scale normalization operator :/ ;. = > _ ' , , ' upon 
the range of the (mirror-)dissimilarity measures is easily established. 
Expanding d(l'\J\. ƒ-). using Eqs. 4.2.1 and 4.2.2 and applying Min-
kowski's inequality, yields: 
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•s||sfc9e-»/ill,+ 11%%/UIP 

With the proposed scale normalization operator Jjr = pop/Il p~'* we 
find from Eq. 4.3.20 for the range of r/(/"(ƒ,, ƒ.): 

0^dtpi(ƒ,../:) « 2 . (4.3.21) 

Eq. 4.3.20 is also valid for ^'"(i/',. y>2) (cf. Eq. 4.2.17 and Table 2.1), 
since .'//,• is the identity operator when applied to 1/'- However, for the 
same reason Eq. 4.3.21 is not valid for f/(/"(i/'|. '/"a)-

If ƒ stands for any of the contour representations 2, 2 or 2. we can 
find a more restricted range for r/""(./'i- fz)-

From Eqs. 4.2.1 and 4.2.35 we find 

- 2 m a x | o , : ( r . -7,; X - / ) | ] 

^ N l l K l / i l l a + ^ l l ^ ^ l l a ] * (4.3.22) 

Applying :/,;■ = HO^/Hi' we find for the range of dC)(j\. f:): 

0 € ^ , 2 ) ( / i . / ; ) ^ V2. (4.3.23) 

The range of S2\KX, K:) can be restricted even further. From Eqs. 
2.2.31 and 2.2.34 it is easily verified that the average curvature along 
a simple closed curve equals 

«-ij K(t)dt= 2* (4.3.24) 
2.7 ^ 

where L is the perimeter of the curve and / the normalized arc length 
parameter. Consider o,2(r; K*) as a function of r. Integration over r 
yields: 
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e f 
ei2(r;/r*)dr = 

2.7 Jl-I 

1 r " 

—7 J2.7 

-iL*™ K?(/-r)dr 

_ (2.7) . / . . - , 
/.,/-: 

dr 

d/ 

2.7 max o r ( r : A>' ). (4.3.25) 

where the last step follows from the fact that the maximum value of 
Oi:(r: K*) is always larger than its contour average. With .7,. = \\K\\^ 
we find from Eq. 4.3.25 

m a x o i : ( r ; / v ) ^ ( 2 T ) " > ' ' ' 
LXL^ 

(4.3.26a) 
1 ^ : 

- 1 . which gives through the substitution of :/..- = | | ^ | | : : 

(2.T):||A:I||5I||A::||;' 
maxO| :(r: K 

L\LZ 
X ) . (4.3.2r>b) 

From Table 4.3 we find for é2\K{, K:). using Eq. 4.3.25: 

r / ' - 'UV^:) = [ l k ( ; K i | | ; + | | .Vr.A::| |;-2 maxo,;(r: .1 K\] 

yh\\KM;+yk\\K,\\:-( J . l l ^ l l l : "*" ■',!: 
2(2.T./ -

L,L^ i L : 

(4.3.27) 

Substituting again .7/r = \\K\\:' wc find for the range of é-\Kx, K:): 

I ">-,>- II f || - I || 1/ || - I 
(—T) II /V| II ; || A : | | 2 ( ) = £ < / ( : i ( K , . K : ) = S V 2 I - L,L f - : 

<V2. 

(4.3.28) 
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All results obtained in Eqs. 4.3.20-4.3.28 are equally valid for the 
corresponding mirror-dissimilarity measures. 

If we use Fourier representations, instead of the contour representa
tions themselves, to measure (mirror-)dissimilarity. then the require
ment in Eq. 4.3.19 becomes 

f}*C.iJJ:f) = ll ' -Wijl (4.3.29) 

where ƒ stands for any of the Fourier representations z, z, z or R.. On 
the basis of the same argumentations as before we propose 9*« = 
HX/l lp ' as a scale normalization operator in both rf""(./|. J\) and 
cll''\fx, ƒ>). The effect of the scale normalization coefficient Sfy. = 
ll®c/llp' ' s l n a l ' l maps the Fourier representation rf.cf onto a unit 
sphere in the sequence space C'(Z). endowed with the metric induced 
by 11-11,, 

The proposed scale normalization operator .7; = ||95f/|| ' nor
malizes the Fourier representations z, 'z. z and K of a circle to the corre
sponding Fourier representations of a unit circle. 

For the range of the (mirror-)dissimilarity measures du'\j\. f2) and 
<lu'\f\-./:) exactly the same results as obtained in Eqs. 4.3.20-4.3.28 can 
be derived. 

Some remarks concerning the proposed scale normalization operators 
are still in order. 

We recall from Section 2 2 that \z(t)\ = Lllix. V/ e [0, 2TT] if I is the 
normalized arc length parameter. As a result we find ||z||;> = L/2.T. 
Vp 3= I. Thus we see that the scale normalization operator .7/(- = ||z||~' 
removes the effect of the noise-prone perimeter value from the (mirror-) 
dissimilarity measurement based on z. 

In Proffitt 11982) it is stated that Sfy. = ||2>£.z||i' is an optimal choice 
as a scale normalization operator in </':,(z,, z2) or dl2'(zx, z2), in the 
sense that the dissimilarity measure is minimized over all scale normali
zation operators that are chosen independently for each contour. How
ever. if we use for example 'i\v = fl||'/_-z||:'. where 0 < a < 1, then 
this will always yield a smaller value for the dissimilarity measure than 
if we use 9«« = ||2Ö£»z|| 2'- Thus, we sec that there does not exist an 
optimal scale normalization operator. 

In one instance in the literature (Persoon and Fu [1977]). it is pro
posed to optimize the scale in one contour representation with respect 
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to the other, instead of normalizing the scale in the individual contour 
representations. They proposed as a dissimilarity measure 

, < - ) , -dp, ( i : . z:) = min X I*i(*}-j8e kT)z2(k)\2 

keZ 
(4.3.30) 

Note that t*(i) = —1(0), which we found to be the optimal choice 
(el. Section 4.3.1). has heen chosen for translation normalization. Per
soon and Fu [1977| used numerical techniques to find solutions for/3, 
r and a in Eq. 4.3.30. However, it is straightforward to find analytic 
solutions. Using the same methods of analysis as in Eqs. 4.2.32-4.2.35. 
we find for a: 

a = arg {oi:(r: 7 :) J . 

where the appropriate value of r is found from: 

(2) Tit Il ^ ■> n I I -* 
rfp| ( i | . i : ) = min[||7_ ,;, ||; + p-1| V - ; , r 2 1| ; 

P 
- 2 / i m a x | o i : ( r : 7 : . - ) | ] . 

(4.3.31) 

(4.3.32) 

The solution for/3 can be found by taking the partial derivative with 
respect to/?of [dP f( i | , z2)]\ and equating the result to zero. This yields 
for j', 

ft = 
max \Q\:(T:'J - ) | 

' -:ll: 
(4.3.33) 

Substitution of this result into Eq. 4.3.32 leads to: 

.(2), . . . 
' / | . i ' - i - 2 : ) = s :.i, ;-

max |o, :(r: / . ; ) | 

= | | f/_-;,i, | | ,[l - max|o i : ( r : : / . ; . - ) | :] . 

(4.3.34) 
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where 'J)V = | | ' / ; - ; i | | 2 . i.e. the scale normalization operator that we 
proposed earlier in this section. 

If we use the translation and scale normalization operators 2>£ and 
:/,,•• in the dissimilarity measure é2\êt, z2), we can derive the expression 
(cf. Eq. 4.2.41, Table 4.3 and Eq. 4.2.1): 

</,;,(£,.i2) = V2~[l - max|(?,;(7-::/.; 9 g z ) | ] * . (4.3.35) 

With the aforementioned choice for .7;[ it is straightforward to show 
that 

<>=£ |» , : (^V- ' , ~-)l« '■ (4-3-36) 

Combining Eqs. 4.3.34-4.3.36 we can relate é2\ix, z:) and d\^(zu z2) by 
the inequality 

r/'-'(z„ z:) =£ V2 ||9>E; z, | |" ld™(iu z2). (4.3.37) 

Though dp.,(i|. i2) leads, through our analysis, to the same computa
tional complexity as r/ , : ,(i|, z2), it has some considerable drawbacks. 
The dissimilarity measure c/p"c(i,,f7) is not symmetric, i.e. in genei (2) eral flp| ( i | , z2) i1 dpV(z2, ij). Therefore it does not constitute a metric 
over equivalence classes of geometrically similar contours. As a conse
quence of the asymmetry of rf,,"F(i|. z2) we have to take care that the 
sizes of the templates of shape classes are optimized with respect to the 
contour to be classified instead of the other way around, when this dis
similarity measure is used for shape classification. For shape clustering 
dpF(z\. z2) seems inappropriate, since it lacks metric properties. 

Concluding we can say that we have shown that flPF(Z|, £2)and 
cl{2)(zi. z.) have comparable properties in view of dissimilarity measure
ment (cf. Eqs. 4.3.34, 4.3.35), but that rf':i(i|. z2) is preferable since it 
possesses metric properties (cf. Theorem 4.3). 

4.3.3 Normalization of orientation and starting point 

In our formulation of (mirror-)dissimilarity measures in Section 4.2 
we optimized for both the orientation and the starting point of one 
contour with respect to the other. As we can see in Tables 4.5-4.cS. this 
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accounts for most of the computational complexity of the (mirror-(dis
similarity measures, especially in measures with index p =£ 2. The defi
nition of effective means for normalization of orientation and starting 
point in contours would greatly enhance the attractiveness of the pro
posed dissimilarity measures from a computational point of view. Clear
ly. a (mirror-)dissimilarity measure that is optimized for orientation and 
starting point yields a smaller value than a measure where the contour 
representations have been normalized with respect to these parameters. 
However, if the normalization procedures produce unique solutions. 
then a dissimilarity measure will still constitute a metric over the equiva
lence classes of representations of geometrically similar contours. In the 
latter case every equivalence class is represented by a unique normalized 
contour representation and a dissimilarity measure is a metric in the 
space of normalized contour representations. 

If a normalization procedure does not always yield a unique solution. 
then, in order to preserve the metric properties of a dissimilarity mea
sure. we can optimize the measure over the often limited set of candidate 
normalizations. 

From Table 2.2 we know that all contour representations, on the basis 
oi which we defined (mirror-)dissimilarity measures in Section 4.2. are 
variant under a shift of the parametric starting point and the representa
tions z. z and ~ are also variant under rotations of a contour. 

Let ƒ denote any of the contour representations z.'z. z. >/■' and K. Since 
the operators 7 and ./'„ do not commute when /stands lor the position 
function z. we perform the normalization of orientation and starting 
point on 7_-■_/'. The operators .'/,. .it,, and .7, all commute. Therefore it is 
not necessary for orientation and starting point normalization that scale 
normalization has already taken place. 

A proper orientation and starling point normalization process has the 
property that the contour representations 7 ./and .Jr.//„7 / lead to the 
same orientation- and starting point-normalized contour representation. 
i.e. 

■'",,. , 7 ' . . , , M( 7 / ) = -V,,,.... , A , , . , , , ,,( ' 7 v '_ / ' ) . 

(4.3.38) 

which leads, through the commutativity of ,it„ and -7, and the properties 
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:?ri.%; = .%, + r, and 9 ^ , 9 ^ = Oft,,, + „,, to the requirements 

r*(%f) = T*(?lfik,^.f) + r. (4.3.39) 

independent of 9h„ and 

a*(a{ . /) = a*(%%$ ƒ) + «, (4.3.40) 

independent of %. 

The contour representations 2, z, ip* and /Call involve differentiation 
(cf. Section 2.2) and are therefore more sensitive to noise than the pos
ition function z of the object contour or the characteristic function 
-/jt(x, y) of the object (cf. Appendix B). As a consequence, it is natural to 
base orientation normalization either on features directly generated by z 
or by %R(X, y) and to base starting point normalization on features gener
ated by z. The orientation and/or starting point normalization parame
ters thus obtained can then be used to normalize the contour representa
tions 2. i . 2. if>* or K, as desired. 

In the literature we find two main approaches towards orientation and/ 
or starting point normalization: 

• Orientation normalization based on the gravitational moments mpq 

(cf. Definition 4.9) of the region that is occupied by the object. 

• Orientation and starting point normalization based on the Fourier 
coefficients z(k) generated by the position function z. 

In the following we will evaluate these two approaches. 
The oldest technique for orientation normalization in pictorial pattern 

recognition is based upon the moments m/1(/ (Hu [1962], Alt [1962]), 
which are features generated by the characteristic function yj<(x, y) of the 
object (cf. Definition 4.9). 

In the orientation normalization technique based on moments, trans
lation normalization of the object is achieved by the moment-based 
translation normalization parameter £* (cf. Eq. 4.3.6). The orientation 
normalization process uses the central moments/^(Z?) of the region R. 

Definition 4.10. Central moment fillir 

The central moment /<,„, of a region R in the plane is defined as 
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l'h 

lil,, 
y - I d.vdv. 

mm' H 

p,<7 = 0 , l 

The central moment «.„. is said to be of order {p + q). 

(4.3.41 

D 

Note thatHpq(R) = mIHI('J-Ji). Vp.q = 0. 1 
The first step in the orientation normalization method based on mo

ments is to determine an orientation a such that, after a rotation of 
i R over -a. we obtain /<,,(/( ,, J R) = 0. i.e. 

^,(9L„%fl) = \{') vleosr/ + (7 ;v)sin« 

• { -(7_,.v) sin a + (7 ::v) cos «J di d\ 

= - sinacQS«/*2(|(fl) + (cos2a - sin :a),"u(ft) 

+ sin a cos (i/t,r(R) 

= 0. 

Solving a from Eq. 4.3.42 gives: 

tan 2d — 2,uu{R) 
U:II(R)-II,MR) 

from which we find 

(4.3.42) 

(4.3.43) 

I / 2/<„(fl) \ .T 
as=2aretanU)(/?)-^W+/"2 » e Z . 

(4.3.44) 

This result shows that the constraint in Eq. 4.3.42 yields four solutions 
for a in a range of length 2.T. In order to obtain a unique solution for a. 
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additional constraints are needed. Hu [1%2| and Reeves and Rostam-
pour [1981] have proposed to choose that value of a from the solutions in 
Eq. 4.3.44, such that 

/*20(9La%/?) >^,2(SL a%/?) (4.3.45a) 

and 

ftx(0i^%;R) > 0. (4.3.45b) 

However, under rather general conditions it may happen that 

//;..(■'*. „I:*) = fhdfr-t&tfQ (4.3.46a) 

and/or 

to$L&tiK) = 0 (4.3.46b) 

(cf. Casey [1970], Nagy and Tuong [1970]) or thai these equations are 
almost valid. In these cases even more constraints are needed to arrive 
at a unique value for a. Another possible approach is to optimize (mir-
ror-)dissimilarity measures over the four solutions that we found for a 
in Eq. 4.3.44. 

In the special case of «-fold rotational symmetry, with « > 2. it is not 
possible to use Eq. 4.3.42 as a constraint on «, since in that case 
MuCM-u'fy.R) = "• f° r a n y °f the values of u in Eq. 4.3.44. Then mo
ments of order (p + q) - n are required to define a useful constraint 
on the orientation normalization parameter a (cf. Hu [1962]). In that 
case a must be solved from constraints on upH(-'h ,', I:\R). which is re
lated to HIHICJC-R) as 

= I i,(-Wm\P)\q) <sin «)" + " " '"(cos aY ~ " +'" „ = nm = o \n/\ml 

■flp^g-n-m.n+m(%;R)- (4.3.47) 
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The central moments tint's_Ji) can be computed directly from a seg
mented image. 

The concept of a parametric starting point on the contour of a region 
in the plane does not naturally arise if we are dealing with its moments. 
This explains why starting point normalization is not mentioned in the 
pattern recognition literature on moments. However, it we apply orien
tation normalization to the translation-normalized position function 
S*'Z, it is very well possible to define constraints on the basis of this con
tour representation to arrive at a starting point normalization. Examples 
of such constraints are the following. 

Figure 4.H. Translation and orientation normalization based >>n moments. The contour in i.ii has 
position function z{t) and centroid -~', = u».,, - \m,,)jm,.,. The contour, resulting from the 
normalization, is displayed in (b) and has position function h, /32(f) I he set "i parameter \alues 
f. for which the.»-axis in (b) intersects^,, /-z(/). is 7*0 = | r . r : . r , . r . ; Diesel fo may be used for 
starting point normalization, as described in the text. 

file:///alues
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Orientation normalization of ':i :\z yields .%/:! :-z. where -a* is a 
unique solution for a. Next we determine the set 7"„ of values r for 
which ^(„-7 ;z(r) lies on the .v-axis, i.e. \m{'.'i\„'ic\z{T)} = O.andchoose 
r* e T{l such that 

./f„// :;z(r*)= max {.</(„ 7-;z(r)}, (4.3.48) 

cf. Figure 4.8. 
Another possibility for starting point normalization in %11,/S^z is to 

use the phase of one of the Fourier coefficients generated by .'ll,/J:\z. 
E.g., let the index A, be such that 

\%,'i:z{ki)\= sup |:'/(„.'/_i(A)|. (4.3.49) 
( f Z - (II) 

A reason to make this choice is the fact that the phase of the most 
significant Fourier coefficient may be expected to be less sensitive to 
noise. 

We denote 

t](k)= arg{^,//;,;i(A:)} (4.3.50a) 

and 

,h(k) = arg {7I^„H,z(k)). (4.3.50b) 

Then we have the relation (cf. Table 3.2): 

>h(k) = rj(k) - kr. (4.3.51) 

If the constraint is that the starting point normalization parameter r* 
is chosen such that ■:I,.'.'k„'lc'z(kl) is a positive real value, we find for r*: 

r * = ! >/(*,)+ / j ^ T , H 6 Z . (4.3.52) 
A:, A:, 

Only for |A-|| = 1 does Eq. 4.3.52 define a unique solution for r*. 
Otherwise additional constraints arc needed to select a T* from the |Aj| 
candidates defined by Eq. 4.3.52. 
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The latter method for starting point normalization is quite similar to 
the methods for orientation and starting point normalization based 
entirely on the Fourier coefficients generated by 7 -r. that we will 
discuss next. 

In methods for orientation and starting point normalization entirely 
based on the Fourier coefficients generated by the position function r 
it is natural to use £*(z) = — 2(0) (cf. Eq. 4.3.3) for translation normali
zation. We observe from the literature that these methods have the 
following characteristics in common: 

• Select two indices A,. A: e Z - |() | . A, # A:. 

• Determine an angle of rotation a* and a starling point shift r such 
that ./,./(„ 7 -i(A,). ;' = 1.2. both are positive real values. 

• II the latter constraints do not lead to a unique solution for a* and 
r*. then determine additional constraints to arrive at a unique pair o\ 
solutions. 

We will now derive the solutions for a* and r from the phases of 
the selected pair of Fourier coefficients z(Aj.) and i(A:) and determine 
how the number of solutions depends upon the values of A, and A:. We 
denote 

//(A) = arg( /_i(A)} (4.3.53a) 
and 

>/,„(A) - arg {./../;..,. -(A)}. (4.3.53b) 

Then we have the relation (cf. Table 3.2): 

,lrJk) = >/(k) - AT + a. (4.3.54) 

Note that >/(k) and »/,„(A) can only be determined up to a multiple 
of 2.T. With the aid of Eq. 4.3.54 the constraint that ./, >. ' i(A,). 
i = 1.2. are positive real values yields the equations 

//(A,) - lep* + a* = n,2n. n, e Z . ;' = 1. 2 (4.3.55) 

from which r* and a ' can be solved: 
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* 9(*i) - ?(*') 2.7 
r = A - , - A , " + " A , - V («•*•) 

« - A( _ ^ + n A. _ ^ . neZ. (4.3.56b) 

The solutions for r* and a* in Eqs. 4.3.56a and 4.3.56b need not 
necessarily be in the range (0, 2.7). though we note that solutions r* 
mod 2.7 and a* mod 2,7 are equally valid. Keeping this in mind, it is 
clear that in Eqs. 4.3.56a and 4.3.56b we have obtained |A, - A2| pairs 
of solutions for r* and a* in ranges of length 2.7. Only in the case of 
|A| — ArT| = 1 do wc obtain a unique solution for the orientation and 
starting point normalization. In all other cases additional constraints 
are needed to determine a unique pair r* and a*. Another possibility 
is to minimize (mirror-)dissimilarity measures over the |A, - A:| candi
date normalizations. 

The orientation and starting point normalization techniques based on 
Fourier coefficients that have been published so far differ in the selec
tion of the indices k] and A: and in the definition of additional con
straints, if any. to arrive at a unique solution for r* and a*. These 
techniques arc reviewed in the following. 

Persoon and Fu were the first to present such normalization tech
niques (Persoon and Fu [1974] and Persoon and Fu [1977]). They 
choose the indices A, = I and A: = - 1 and determine r* and a* such that 
.Jr.ji„-'j:: f(A,). i - 1.2. become purely imaginary values, instead of 
positive real values. Since they do not specify the signs of the imaginary 
Fourier coefficients after normalization, their normalization constraints 
lead to the equation: 

//(*,) - A,r* + a* = n~ + npi, n, e Z. / = 1. 2. (4.3.57) 

With A, = 1 and k2 = - 1. r* and a* are solved from Eq. 4.3.57 as: 

r* = 2 { ' / ( I ) ->/( - ! )} + " 2 - (4.3.58a) 

« = - 2 { ' / d ) + ' / ( - ! ) } + ( « ± 1 ) 2 - neZ. (4.3.58b) 
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From these equations we see that the normalization procedure pro
posed by Persoon and Fu yields eight distinct pairs of r and a*. instead 
of two, as claimed by Wallace [19X1). Persoon and Fu do not give any 
additional constraints to arrive at a unique solution for r" and a . 

A problem with the choice of the index k: = - I is that |7 i ( - l ) 
can be zero or close to zero under fairlj general conditions (sec Figure 
4.9). which causes >/(-!) either to be undetermined or most likely to 
be corrupted by noise. In Section 3.6 we already found that, if the 
contour to be normalized has n-fold rotational symmetry, with n > 2, 
this constitutes a sufficient condition such that \'i_ z{-\) = 0. 

Figure 4.9. The contour in (:i| has position function ;(/) In ibi the magnitudes ol the Fourier 
coefficients l:;2(k). k = -32. . 32. generated b\ / :(/). arc displayed. Note thai i :(-l .) | 
is close u> /em 

file:///ITER4
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Kuhl and Giardina [1982] presented an orientation and starting point 
normalization technique based on •elliptic Fourier features'. Some 
straightforward analysis reveals that all their results can be expressed 
in terms of the Fourier coefficients z(k). In particular their orientation 
and starting point normalization turn out to be virtually identical to the 
one proposed by Persoon and Fu. Kuhl and Giardina also choose the 
indices A, = 1 and fc2 = — 1, but they determine r* and o* such that 
./i,-:ii„-rj:z(k,). i - 1.2 become positive real values, as we did earlier 
(cf. Eqs. 4.3.55, 4.3.56a, b), instead of purely imaginary values, as 
Persoon and Fu did. From Eqs. 4.3.56a and 4.3.56b we observe that. 
with |A.'| — k2\ = 2, Kuhl and Giardina obtain two pairs of solutions for 
T* and a* which are found by substitution of kt = 1 and k: = - 1 into 
these equations. In Figure 4.10 we have displayed an example of the 
results of the orientation and starting point normalization according to 
Kuhl and Giardina. They do not specify additional constraints to arrive 
at a unique solution for r* and a*. 

In the orientation and starting point normalization procedure pro
posed by Exel [1978] and Burkhardt [1979] A, is chosen such that 

| ' / ;f(A-,) |= sup|'/,-i(A-)|. (4.3.59) 
u z 

i.e. A, is the index of the most significant Fourier coefficient in the 
sequence 'Sc-z. In their reports the authors argue that in most cases 
A'I = 1. In Example 4.3 we have shown circumstances for which this is 
not true. For contours with a counterclockwise sense we conjecture 
that A, > 0 in Eq. 4.3.59. 

Exel and Burkhardt determine A: > A, such that k2 - £| is the order 
of rotational symmetry of the contour. The authors state that, in order 
to reduce the noise sensitivity of the normalization procedure, the most 
significant Fourier coefficients must be chosen. However, the criterion 
they use for the selection of A: is not always in accordance with this 
statement since (k2 - k\)-hM rotational symmetry does not guarantee 
that 3)g z(k2) is significant, as shown for example in Figure 4.11. This 
figure also shows that there is no clear reason to exclude the indices 
A < A, for the selection of A2. 

Once the indices A| and k2 have been selected, Exel and Burkhardt 
determine r* and a* such that ÏÏT-:.'Jl,,r'j\:-J(kl). for i — 1,2, become 
positive real values. Thus they obtain As — A| pairs of solutions for r* 
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l-ïguri' 4.10. Normalization of orientation and starting poinl of the conioui in (a) using the con
straint ihai ÏÏf/fty/J-Hk,). i = I. 2, arc positive real values, lor A' = I anil k- - - I iKuhl and 
I liardina [ 1982]) this constraint yields two solutions, displayed in ibi and (c), In Uns example ;| 11 
and ; ( - I) arc the two most significant I burier coefficients: :( I) 78,133 and | ;(-11 = 30.663 
In (hi and (e) the position and orientation " i the coordinate axes with respect to the contout and 
ihc location of ihc starting point on the contour aftci normalization have been indicated 

and a* (cf. Eqs. 4.3.56a,b). No additional constraints are given to 
obtain a unique pair of r* and a in ease k: - A, > 1. However, if 
the contour has (Jt2 —jfcj)-fold rotational symmetry, then each o\' the 
k: - kt candidate normalizations will lead to the same normalized con
tour representation. Since rotational symmetry was indeed chosen as a 
criterion for choosing k:. ambiguity resolving criteria are not needed in 
this procedure. In Section 4.5. where we will treat the subject of sym
metry measurement in detail, we will return to Exel and Burkhardt's 
proposal for symmetry measurement. 

Finally. Wallace and Mitchell |1979| and Wallace and Wint/ [l l),sii| 
choose kj = 1 in Eqs. 4.3.56a and 4.3.56b. The index k: is chosen such 
thai 

|%;!(A:2)|= sup |%2( * ) | , 
k € Z 1 (4.3.611) 
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-100 

i.e. J :(k2) is the most significant Fourier coefficient, not considering 
k = \. Note that '7_ z(0) = 0 (cf. Eq. 4.3.2). Wallace et al. also deter
mine T* and a' such that 3,-.i'.,l'i :z{k,). i - 1.2, become positive real 
values, leading to |*| - k2\ pairs of candidate solutions for r* and a* 
(cf. Eqs. 4.3.56a. b). To arrive at a unique solution for r* and a* if 
l^i ~ k2\ > 1- Wallace. Mitchell and Wintz present two methods. 

The first method can be summarized as follows: 

• Determine the set K of indices such that 

Kn {(), *,, k2} = 0 (4.3.61a) 

and 

keK iff GCDfl* - *, | , |*2 - * | | ) = 1, (4.3.61b) 
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where GCD ( ) stands for greatest common divisor. 

• Select an index fa e K sued that 

ƒ. f(*3)| - sup | ' / , ; i(A)| (4.3.62) 
■ h 

• Choose that pair r* and a* from the \k} — k:\ candidate normaliza
tions for which 

Rc{.:ir.Jt,/J:::(k.)} (4.3,63) 

is maximum. 

to' 

■o 

w-

UP 

10' 
-32 -2i -16 -8 16 2i 32 

Figure 4.11. In (;i) we have ü contour with 3-fold rotational symmetry I he position Function oi 
this contour is ;(/). In (b) the magnitudes ol the Fourier coefficients fsHk), k = -32 32. 
generated In i _-(/:. are displayed. / --(l) is the most significant Fourier coefficient, whereas 
i _-(4) is relatively small. Also note thai > -4(-2i is the second most significant Fourier coeffi

cient. 
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The second ambiguity resolving criterion proposed by Wallace, 
Mitchell and Wintz simply consists of selecting that pair r* and a* from 
the |&, - k2\ candidate normalizations for which 

Table 4.9. Survey of orientation and Marling point normalization techniques based on 
Fourier coefficients z(k), k e Z - {()>. 

References 

Persoon and Fu 
[1974] 
Persoon and Fu 
[1977] 

Kulil and Giardina 
[1982] 

Exel[I978] 
Burkhardtl I979| 

Wallace and Mitchell 
[1979] 
Wallace and Wintz 
[1980] 
[!9X()| 

Indices of'/ f (A:) 

*, = 1; 

k2=-] 

k: = -1 

A, such that: 
' m)\ 

= sup | 7 . i(A)|: 
* E Z 

k. such that: 
k:> A, and 
k2 - k, is the 
order of rotational 
symmetry 

*, = !; 

k- such that: 
|V..i(A,)| 
= sup \'J_;z(k)\ 

*eZ- It,) 

Constrainis on 
/. •//.. % :(A,I. 

( = 1 . 2 

imaginary values 

positive real values 

positive real values 

positive real values 

Remarks 

S pairs of solutions 
forr* and a* in 
Eqs. 4.3.58a, b; 

no additional 
ambiguity resolving 
constraints 

2 pairs of solutions 
forr" and a' in 
Eqs. 4.3.56a. b: 

no additional 
ambiquity resolving 
constraints 

A> - A, pairs of 
solutions forr* 
and a" in 
Eqs. 4.3.56a. b: 

no additional 
ambiguity resolving 
constraints (nol 
needed, see text) 

\k2 - 1| pairs of 
solutions forr* 
and a* in 
Eqs. 4.3.56a. b; 

unique solution for 
r* and a ' obtained 
through additional 
constraints 
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£ Re {9.../:. i :(k)} ■ Re (./r .//.. ï -(A)) | (4.3.64) 

is maximum. 
A survey of the characteristics of the orientation and starting point 

normalization techniques based on the Fourier coefficients i . as discus
sed in the foregoing, is presented in Table 4.9. 

We now propose a slightly modified technique for orientation and 
starting point normalization: 

• Select k\ such that: 

|9fcf(*t)| = s u p | ' / . i ( A ) | (4.3.65) 
keZ 

and A: such that: 

|%( *s ) |= sup |'7.-(A)|. (4.3.66) 
A e Z U 

i.e. A, and A: are the indices of the two most significant Fourier coeffi
cients. 

• Determine values of r* and a* such that S,-.i:„■ s. i(A\). / = 1.2. 
become positive real values. There are \k1 - A,| candidate pairs of r* 
and a*, given by Eqs. 4.3.56a. b. If |A': - k\\ = 1. then we have ob
tained a unique solution for r* and a*, else we perform the next step. 

• Apply additional ambiguity resolving constraints to find a single 
pair T and a' from the |A: — AJ candidate pairs. 

Concerning this normalization scheme we make the following re
marks: 

• The most significant pair of Fourier coefficients is chosen in order 
to reduce the noise sensitivity of the method. It may happen that there 
are other, almost as significant Fourier coefficients. In the latter case 
it is advisable to consider also normalizations that use these Fourier 
coefficients and to optimize (mirror-)dissimilarity measurement over 
these normalizations, since the selection of a contour normalization. 
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that is incomparable to that of another contour, will lead to a poor 
(mirror-)dissimilarity measurement. 

• If the third step in the proposed normalization procedure is neces
sary in order to arrive at a unique solution for r* and a*, either of the 
two methods, defined by Wallace, Mitchell and Wintz (Eqs. 4.3.61a-
4.3.64), can be used. An alternative ambiguity resolving constraint that 
we propose here is to select that pair r* and a* from the \k2 — kt\ 
candidate pairs such that 

£ Re{3T.%,.%-z(k)} (4.3.67) 

is maximum. Experiments have shown that the second method to obtain 
a unique solution for r* and a* proposed by Wallace, Mitchell and 
Wintz (Eq. 4.3.64) is more robust than the first method they proposed 
(Eqs. 4.3.61 a-4.3.63). These experiments have also shown that the al
ternative method we propose here in Eq. 4.3.67 has properties that arc 
comparable to the method in Eq. 4.3.64. However, our method re
quires less computational effort than the second method of Wallace. 
Mitchell and Wintz (compare Eq. 4.3.64 and Eq. 4.3.67). 

• An alternative for the third step in our procedure simply consists of 
minimizing (mirror-)dissimilarity measures over |&2-A:|| candidate 
normalizations obtained in the second step. 

4.3.4 Discussion of normalization versus optimization in dissimilarity 
and mirror-dissimilarity measures 

In the previous sections we have discussed methods for the normal
ization of contour representations with respect to the contour position. 
size, orientation and location of the parametric starting point. The nor
malizations with respect to position and size are expected by the (mir-
ror-)dissimilarity measures, as defined in Section 4.2. The normaliza
tions with respect to orientation and parametric starting point were 
investigated in order to be able to modify the previously defined dissim
ilarity measures to measures with comparable metric properties, but 
with a much lower computational complexity. Assume that a unique 
normalized version 9"r.$a.9a.2>£>/of a contour representation ƒ has been 
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obtained, where ƒ stands for any of the eontour representations z, 'z. z. 
ip* and K. Then a normalized dissimilarity measure of index/) is defined 
as follows. 

Definition 4.11. Normalized dissimilarity measure of index p. 
Let fact as a generic symbol for any of the contour representations 2. 
'z. z. i/' and K. Then a normalized measure of dissimilarity of index p 
between a pair of contours y, and y:. with contour representations /, 
and/2 respectively, ƒ , . / 2 e L' '(2.T). is defined as 

<W../:) = ||-V.tf„ •', < ' : - ■'■ % -hOrMr l * P * « . 

(4.3.68) 

where .), .1: I > •/,. / = 1.2. are the uniquely normalized versions of 
fr 

D 
The discrete normalized dissimilarity measure of index/;. </''"[/|. /;|. 

based on N equidistant samples of both /', and /'•. is defined similarly 
(compare with Eq. 4.2.49). If we do not take the computational com
plexities of the normalization procedures into account, the computa
tional complexity otV/'f'[ƒ,. / :] is ()(S) lor any of the contour represen
tations and for any value of the index p. This is considerably less than 
the computational complexities of d''"[j\. f:\. mentioned in Table 4.5. 
and also less than those of dl2'\)\. f:\. mentioned in Table 4.7. 

All methods proposed for translation and scale normalization, in the 
Sections 4.3.1 and 4.3.2 respectively, lead to unique solutions. The 
methods for orientation and starting point normalization, however, may 
lead to multiple candidate solutions. In order to preserve the metric 
properties of a dissimilarity measure, we must find a unique solution 
from these candidates. 

If we decide to minimize a dissimilarity measure over the candidate 
normalizations of the contour representations, instead of obtaining a 
unique normalization through an ambiguity resolving criterion, then 
this has the following effect upon the computational complexity of the 
dissimilarity measure. 
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Consider for example the orientation and starting point normaliza
tion based on Fourier coefficients. Let there be \ku - ki2\ candidate 
normalizations for contour yx and \k2X — k22\ for contour y2, where klt 

and kl2. i = 1.2, are the indices of Fourier coefficients zn selected for 
the normalization of contour /,. Since 

= Pli{hJ\-$,:-r[Ac-,l^:J2\\l, (4-3.69) 

it is easily verified, using Eqs. 4.3.56a and 4.3.56b, that there exist 
LCM (\ku - kn\. \k2i - k22\) distinct normalized pairs of contour rep
resentations for the contours y, and y2. where LCM ( ) stands for least 
common multiple. As a consequence, the computational complexity of 
^«"[/i •/:>]< when optimized over the candidate normalizations, is 
()(N ■ LCM (|&|, - k]2\, \k2l - A:2:|)). This complexity can still be con
siderably lower than the complexities reported in Tables 4.5 and 4.7 for 
d(p)[f\' ƒ:] and d<2)\f\. ƒ;] respectively. Optimizing dissimilarity measure
ment over a limited set of contour normalizations may be an acceptable 
compromise that offers a reduced computational complexity and that 
limits the danger of arriving at inappropriate normalizations. 

In the same way as we defined ^ " ( / | . / : ) in Eq. 4.3.68. a normalized 
mirror-dissimilarity measure cP$\f\, fa) can be defined (cf. Definition 
4.4). The discrete normalized version <V..'''\f\- fi\ has the same proper
ties with regard to computational complexity as dl2>[ft, ƒ.]. Along the 
same lines normalized (mirror-)dissimilarity measures dlp)(fi, f2) and 
dl'')(j\'h). based on the Fourier representation ƒ of contours, can be 
defined. If iV Fourier coefficients are used in the discrete normalized 
(mirror-)dissimilarity measures djf^fi, f2\ and d^'^J], f2], then their 
computational complexity is O(N), if we disregard the computational 
complexity of the normalization procedure itself and that of the compu
tation of the Fourier coefficients. Likewise, if we minimize dlp)[f\, f2\ 
and dl'"\)\, f2\ over multiple candidate normalizations, generated by 
Eqs. 4.3.56a and 4.3.56b, then the computational complexity of these 
measures is 0(N ■ LCM (\ku — ki2\. \k2l - k22\))-

As we already observed, the normalization procedures for transla
tion. size, orientation and starting point, discussed in the previous sec
tions. can be distinguished into two main classes: 



210 < IIAITER4 

• those based on the gravitational moments mrH of the region enclosed 
by the contour. 

• those based on the Fourier coefficients generated by the position 
function z of the contour. 

From a theoretical point of view normalization procedures based on 
Fourier coefficients are somewhat better adapted to the mathematical 
form of the (mirror-)dissimilarity measures defined in Section 4.2 
(cf. for example Section 4.3.1 concerning the optimality of £* = -z(0) 
in d{1\z\. z2)). However, there is no indication that normalization pro
cedures based on moments niM perform less well than those based on 
Fourier coefficients (apart from the absence of the concept of a starting 
point on a contour in moment-based methods). Since the moments in 
nipq are defined in Definition 4.9 as region integrals, the insensitivitv 
for noise of the moment-based normalization methods may be expected 
to be at least as good as that of methods based on Fourier coefficients 
generated by the position function ;. 

A drawback, at first sight, of the normalization methods based on 
moments is that the computation of moments of gravity requires inte
gration over a region in the plane, or. in the context of the discrete 
geometry of digital pictures, summation over a region. However. 
through the application of Green's theorem in the plane, by means of 
which the surface integral becomes a contour integral, the computa
tional complexity of moments can be highly reduced (cf, e.g. Tang 
[1982], Cyganski and Orr [1985]). In Appendix B we show that, if the 
contour can be approximated by a polygon with .V vertices. m,ul can be 
computed exactly with a computational complexity of O(pqN). Re
cently Bamieh and Figueiredo [19Kn| published a similar result, by 
means of which the computational complexity can even be reduced to 
r;(min(/;. q) ■ N). 

4.4 Theoretical and experimental evaluation of the behavior of 
dissimilarity measures 

In Section 4.4.1 wc derive some further theoretical properties of the 
dissimilarity measures defined in Section 4.2. In particular we establish 
a number of mathematical relations between various dissimilarity mea
sures. We also relate a special case of the dissimilarity measures, based 
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on the curvature function K, to the bending energy necessary to deform 
one contour, considered as a thin clastic beam, into an other contour. 

In Section 4.4.2 we discuss some experimental results, obtained with 
a number of dissimilarity measures. Such analyses are needed in order 
to enable the choice of an appropriate dissimilarity measure, or of a 
combination of dissimilarity measures, in a particular application. First 
we evaluate through clustering techniques the relative behavior of the 
dissimilarity measures used in the experiments. Thus we obtain insight 
into which dissimilarity measures perform similarly and which perform 
differently. Next we use clustering techniques to analyze the perfor
mance of individual dissimilarity measures. We evaluate which aspects 
of geometric dissimilarity are emphasized by a particular dissimilarity 
measure. 

Since each mirror-dissimilarity measure constitutes a special case of 
a corresponding dissimilarity measure (cf. Eq. 4.2.29). we limit the 
discussions to dissimilarity measures. 

4.4.1 Further analysis of theoretical properties of dissimilarity measures 

First we consider the effect of the index p upon the dissimilarity 
measures based on contour representations. The lower the value of/; 
the more globally the differences between a pair of contour representa
tions are measured. For p — 1 the average deviation between contour 
representations is measured and for p = 2 the square root of the mean 
square deviation (cf. Table 4.1). The larger the value of p the more 
sensitive a dissimilarity measure becomes for local deviations between 
contour representations. In the limit, for/; = °°, the measure expresses 
the maximum deviation between a pair of contour representations. 

It is a well-known fact from mathematical analysis (cf. e.g. Edwards 
[1979], p. 28) that, if ƒ e L''. then 

ll/IU * ll/IU 0<q<p^cc. (4.4.1) 

Since dissimilarity measures have been defined in Section 4.2 as the 
norm of the difference of a pair of contour representations, we might 
expect this inequality also to be valid for dissimilarity measures. How
ever. in Section 4.3 we proposed %« = ||'^-./|| Ö as a scale normalization 
operator for a contour representation ƒ in d{p'(j\. ƒ:). when/stands for 
any of the scale variant contour representations z, z, z and K. 
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As a result, the inequality in Eq. 4.4.1 is only valid for a dissimilarity 
measure based on ƒ if HO /̂H,, is independent of p or if ƒ is scale in
variant. This is true for the tangent function 'z, since \\z\\p = L/2.7. 
V/; 5= I (cf. Section 4.3). and for the scale invariant periodic cumulative 
angular function \j>. Thus we obtain the inequalities 

tfW(z,, z:) Ï= </""(-',. r : ) . (4,4.2a) 

r/('"(v,. „.,)*£ rf""(vv '/':)• (4.4.2b) 

lor I =S p < q =£ x . 

For dissimilarity measures based on z. z and K similar inequalities 
are not valid. 

The interpretation of dissimilarity measurement based on Fourier 
representations of contours is different from that of the measurement 
based on the contour representations themselves. Fourier coefficients 
have been defined as contour averages (cf. Definition 3.1). Therefore 
each Fourier coefficient expresses a global feature of a contour: local 
shape information is not present in Fourier representations. As a con
sequence. in the dissimilarity measures based on Fourier representa
tions. the deviation between an individual pair of Fourier coefficients 
with corresponding indices still expresses a global difference between 
the pair of contours under consideration. This constitutes a fundamen
tal difference in the way dissimilarity measures based on contour rep
resentations and those based on Fourier representations, operate. 

However, the effect of varying the value of the index /; in dissimilarity 
measures based on Fourier representations is fairly similar to that in 
dissimilarity measures based on contour representations. Also in the 
former measures we observe that the lower the value of /; the more 
globally the differences between a pair of Fourier representations are 
measured. For p = 1 the total deviation between a pair of Fourier rep
resentations is measured and for p - 2 the square root of the total 
squared deviation. The larger the value of /; the more sensitive a dis
similarity measure becomes for deviations between individual Fourier 
coefficients in a pair of Fourier representations. In the limit, for p = 
s.. the measure expresses the largest deviation between any individual 
pair of corresponding Fourier coefficients. 
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In analogy with Eq. 4.4.1, we have for norms of a sequence ƒ the 
inequality (cf. Edwards [1979], p. 29): 

II/IU ^ ll/ll, * 11/11,, 0<q<p<«>. (4.4.3) 

In Section 4.3 we proposed £P« = | | -%/ | |p ' as a scale normalization 
operator for a Fourier representation ƒ in é'')(f\. / i ) , when/stands for 
any of the scale variant Fourier representations f, 2, z and K. 

Therefore the inequality in Eq. 4.4.3 applies again only to those 
dissimilarity measures, based on Fourier representations, for which 
||' i f\\r is independent of the value of/; or for which ƒ is scale invariant. 
It turns out that none of the scale variant Fourier representations satis
fies this condition. Thus Eq. 4.4.3 applies only to éi'\\j>\, V'2)' which is 
based on the scale invariant Fourier representation yr. 

d{p)(\j>\. 1/"':) ^ d ( '"(^i, '/':)■ for I s£p < q «S 00. (4.4.4) 

It is also possible to relate norms of periodic functions to norms of 
Fourier series. In Eq. 4.2.42 we already noted Parseval's identity: 

II/IU =| | / | | 2, V/6L2(2tf), (4.4.5) 

which causes a dissimilarity measure cl{Z)(fx, / 2 ) , to be isometric with 
^' : ' ( / i- ƒ2) (cf. Eq- 4.2.41). For more general values of the index p, 
inequalities exist, known as the Hausdorff-Young inequalities (cf. e.g. 
Edwards [1982), pp. 153-157). 

I f / e L''(2-r). then 

II/IU « 11/11,,. I *S p *£ 2, (4.4.6a) 

and. if ƒ e l"(Z), then 

II/IU « | |/ | |„. I ^p sS 2, (4.4.6b) 

where \lp + \lp' = 1. 
Since we proposed in Section 4.3 'Jjt- = \\^f\\pX as a scale normali

zation operator for the scale variant contour representation ƒ in 
dPKfufö andty. = H^f/H;,1 for ƒ in é''\"fx, ƒ,), the validity of the in-
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equalities in Eqs. 4.4.6a and 4.4.6b does not extend to these dissimilar
ity measures. For other choices of scale normalization operators the 
inequalities in Eqs. 4.4.6a and 4.4.6b may apply to dissimilarity mea
sures. For dissimilarity measures based on the scale invariant contour 
representation tp and Fourier representation »/• the following in
equalities are valid: 

II Vi- '/': e I / ( 2 . T ) . then 

d<n'('h- '/':) « '/""('A- '/';)• I 'S P « 2. (4.4.7) 

and. if #, , »ƒ•, e V'(Z). then 

</""('/'i- V;) « </""('/V '/':)• I ^P « 2. (4.4.8) 

The analysis of the effects of varying the value of the index p in 
dissimilarity measures just given and the inequalities mentioned give 
some insight into what is measured by a dissimilarity measure and can 
be helpful to guide the choice for a parlicular dissimilarity measure in 
a given application. 

Another means of analyzing the relative behavior of dissimilarity 
measures may be provided by inclusion relations that exist for L''-spaees 
of functions and their derivatives (cf. Beckenbach and Bellman [1971]. 
Ch. 5). In some cases even explicit inequalities have been derived be
tween the norm of a function and the norm of a derivative of that 
function: e.g. Wirtinger's inequality (cf. Hardy. Littlewood and Pólya 
[1952], Beckenbach and Bellman [1971], pp. 177-17«S). relating | | / | | : 

and | | / | | : of a zero-mean function / . and the Northcott-Bellman in
equalities (cf. Beckenbach and Bellman (1971]. p. L82), relating H/H,, 
and | | / a , | | , , for p - ■* and for arbitrary values of/; > 0. where fa' is 
the A-th derivative of a zero-mean function / . 

Since these inequalities relate only norms of functions with norms of 
their derivatives we may only consider the representations :. ': and jr. 
Unfortunately these inequalities do not directly apply to the dissimilar
ity measures based on these representations as a result of the scale 
normalization coefficients proposed in Section 4.3. For different choices 
of scale normalization operators, that are not dependent upon the par
ticular contour representation to be scale-normalized itself, these in
equalities may be valid though. 

file:///PTER4
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More powerful guidance for the choice of an appropriate dissimilarity 
measure may be obtained through an interpretation of the role of each 
of the contour representations in dissimilarity measurement. The gen
eral properties of the dissimilarity measures based on contour represen
tations are that they are functions of pointwise absolute differences 
between contour representations. We have just seen above that the 
value of the index p in these measures determines how locally or glo
bally these absolute differences are expressed in the measure. The ab
solute differences are measured after the appropriate translation and 
scale normalizations and contour orientation and starting point optimi
zation or normalization, if the contour representation is variant for 
these parameters. 

Dissimilarity measures dl,,){zt. z2) are functions of pointwise distances 
between a contour pair. As a consequence this dissimilarity measure 
tends to operate rather coarsely. Relatively small protrusions or intru
sions in contours, which may be very important for a proper distinction 
between objects, will in general have little effect on the value of 
<7('"U|. z2). Dissimilarity measures d{l'\'z\. z2) are functions of pointwise 
absolute differences between complex tangents along a pair of contours. 

h'(t-T) 

Figure 4.12. Vector representation of the tangent functions of two contours as an illustration of 
dissimilarity measurcmenl by means of i/{ / , ' | ; , . ; . ) . Apart from lite value of the index ; i . the local 

contribution to </''"(;,. i :i is determined hv the length of the difference vector: 

| z - ( / ) - i - ( r - r ) | = 2 | s i n ( % { 0 , ( / ) - 0 2 ( f - r ) } ) | . 
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Representing the tangents as two-dimensional vectors is very illustrative 
in this context (cf. Figure 4.12). The scale normalization proposed in 
Section 4.3 leads to |i*(/)| = I. everywhere where r(/) exists, for every 
contour. Therefore </''"(i\, z2) is really a function of pointwise differ
ences in tangent direction between a pair of contours (cf. Figure 4.12). 

Dissimilarity measurement by (l''"(':\- -:) is much less coarse than by 
d['u(z\, z2). Small protrusions or intrusions in a contour, for example. 
can have a significant effect on the value of d'in("z\. z-). especially for 
larger values of p. On the one hand this reveals an increased noise 
sensitivity of d(/"(Z|, z2) with respect to </''"( z,. z2). but on the other 
hand it shows the sensitivity of </''"( z,. :2) for fine shape detail. 

Dissimilarity measures </''"(-1- z:) are closely related to </''"('/'i- '/':)• 
Through Eq. 2.2.32 and Eqs. 4.2.11. 4.2.12 and 4.2.14 we can rewrite 
<•/''"( W '/';)■ as defined in Eq. 4.2.17. as 

( / ' ' " ' ( ' / ' ] • ' / ' : ) = mi" 
r 

(4.4.9) 

For a given pair of contours ;-, and y2. represented by i,', and i/-2 

respectively. A(Vi) and /.(</':) in Eq. 4.4.9 are constants. Furthermore. 
the value of q>t(t) - </2(i - r) indicates the local difference in tangent 
direction at / on y, and / - r on y2. If we apply Eq. 2.2.3(1 to Eq. 4.4.9 
and compare the result with Figure 4.12. then the resemblance of 
ép\k\, z:) and (/''''(i/'i- '/':) becomes clear immediately. 

We can derive an inequality between (/''"{'z^. 'z2) and </""(»/'i- '/':)• F°r 
the proof of this inequality we need the following lemma. 

Lemma 4.1. 

|e" - e"| « |/ - .v | . (4.4.10) 

Proof 

i e iMd« s= J>" 
c 

9 i(') " </:(' - *") + /-('/'i) ~ HVz) ~ T\''ÓI 
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Theorem 4.5. 
If V'i- V'2 6 L''(2-T). then 

d{'Xz„ z2) « f/""(./'i- '/':)• (4.4.11) 

Proof 

Through Eqs. 2.2.9. 2.2.30, 2.2.32 and Eq. 4.2.12 we can relate z*(/) 
and (/'*(') a s 

z*(t) = |z*(0|e i ! ' ' ' ' (o - ;,(./■) * i < " (n i l (4.4.12) 

where we proposed in Section 4.3 for z*(f): 

z*(r) = Vinilz0) = [S? • (4.4.13) 

As a result of Eq. 2.2.5 and Hill,, = L/2x. Vp I 
we obtain 

|z*(0l = 1. V/€ [0,2*]. 

(cf. Section 4.3). 

(4.4.14) 

The dissimilarity measure dt'')('zi.'z2) has been defined as (cf. 
Table 4.1): 

= min ||z\-'^k,ft ||„ 

1 
= mm "•r . 2 .TJ 1 7 

T ' , 
z t ( 0 - c " ' K ( / - r ) | " d f 

(4.4.15) 

The substitution of Eqs. 4.4.12 and 4.4.14 into Eq. 4.4.15 and the 
application of Lemma 4.1, give: 
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rf""(z„z2) = min 
:.T 

c ' I•- ' " > '<; i - i ■ » i (0 ) ] 

_ e i « e i ( t « r) « , I " ' r+Ö:(( l )} | / 'd / 

min 
l i . T U T J:, jpTW - X{ipi) + 0,(0) 

- a - '/•:(/ - T) + ;.(»/':) + r - tf:(())|''d/ (4.4.16) 

Through the application of Minkowski's inequality (cf. Appendix A) 
to the latter expression in Eq. 4.4.16. we obtain, for p > I: 

min U.T 

\ 1 
12-7 . 

y f ( O - A ( y , ) + 0,(O) 

- a - vK ' - r) + /.(v;) + r - 0:(O)|''d/ 

=S mini 2.T 
ViC) - ' / ' :( ' - r)\''dl 

+ min | -/.(I/1,) + /.0/':) + 0,(0) - 0,(0) - a + T 

= mm 
I 

2.T 

i 

>l1(0- >/ ' ;( '-r) | ' 'd/ (4.4.17) 

The transition from the second to the third expression in Eq. 4.4.17 
can be made because for any value o\ r we can find a value for a such 
that | - x(v'i) + /('/•;) + 0,(0) - 0,(0) - a + r | = 0. The third expres
sion in Eq. 4.4.17 equals d('"((/•,, </':) (cf. Table 4.1). By combining 
Eqs. 4.4.16 and 4.4.17 the proof of this theorem is complete. 

D 
I he proof of this theorem clearly depends upon the fact that \Z*(t)\ 

is a contour independent constant, which is a result of the choice of the 
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scale normalization operator up* = \\z\\~\ that was proposed in Section 
4.3. For other scale normalization operators this theorem may no longer 
be valid. 

The dissimilarity measures d{,'\z\, z2) and dlp)(K\. K2) a l s o show great 
resemblance. This becomes clear if we rewrite d{p\zx, z2). First we 
examine the scale normalization operator ■/,((;)• proposed in Section 
4.3. more closely by using the relation in Eq. 2.2.25: 

Sfoij =11*1 [ - i 

1 
2JT 

x\!^K(t)é™ d/ 
-v, 

2 - T V l l K H - ' (4.4.18) 

Next we rewrite </('"(z'|, z2), by using Eq. 2.2.25 and Eq. 4.4.18: 

</""(z,.Z;) = min 
1 

2,T 
| z t ( / ) - c ' " z1 ( / - r ) | ' ' d / 

= min 
rt.T 

1 
2.T ) 2 n 

I f {,\~<«\U) |K , | | ;> i ( / )e 

-e•"\\K1\\:>
,K2(l-T)c"h-,l r )fdi 

1 '*'■ 
(4.4.19) 

From Table 4.1 it is immediately clear that ép\Ku K2) is a function 
of pointwise differences in curvature between a pair of contours. From 
Eq. 4.4.19 we observe that d{p\z\. z2) is a function of pointwise differ
ences both in curvature and in tangent direction between a pair of 
contours. For the latter reason d{p\z\, z2) also exhibits some resem
blance with </('"(z,. Z2). 

For the dissimilarity measure e^2\Ku K2) we can also find a physical 
interpretation from elasticity theory. In Section 3.2 we already men-
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tioned the concept of bending energy in relation with shape analysis. 
Over a number of years elastic energy or bending energj has been 
proposed by various authors as a feature to characterize the shape of a 
curve or contour (e.g. Freeman and Glass [1969|. Young. Walker and 
Bowie [1974], Freeman [1979]. Morn [1983]). 

It is a well-known fact from elasticity theory (Den Hartog [1949]. 
Landau and LifschitZ [1970]) that the elastic energy or bending energj 
per unit length U. stored in a thin elastic beam, is proportional to the 
squared curvature of the beam: 

U(s)= E(s)I(s)K2(s), (4.4.20) 

where: 

.v - arc length parameter. 
E(s) - Young"s modulus at v. 
/(.v) - moment of inertia at s. 

If we assume the cross-section of the beam to be circular, with con
stant diameter, then the moment of inertia is constant, i.e. t(s) = I. 
For homogeneous isotropic media Young's modulus is also a constant. 
i.e. £(.v) = E. Further we assume the elastic beam to be very thin and 
its elastic properties to be such that Hooke's Law, which is the basis 
for Eq. 4.4.20, is valid over a wide range of curvatures. Then the aver
age elastic energy per unit length (U) is proportional to \\K\\'-,: 

(4.4.21) 

where K(t) serves as a shorthand notation for K(s(i)). 
We now consider two thin elastic beams of equal arc length. Landau 

and Lifschitz [1970], pp. 78-S2. derive that the total bending energj 
£/,,„. necessary to deform one beam, with curvature function K\, into 
the other, with curvature function K:. is 

K-(i)dt= EI\\K\ 
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Utot(KitK2)= \El 
f/-

{K,(.v)-K:(.v)}2d.v. (4.4.22) 

Thus the average bending energy per unit length (E) for a pair of 
equal length curves is proportional to \\K\ - K2\\'2: 

= 2 ' 1 ' I {*I(,V) " *:(y)}:dv = 2 £ / | | / C l ~ K^v 

(4.4.23) 

If we use arc length as a scale normalization parameter for the curva
ture function, i.e. 

•Vi/o = l* (" ) l~ '= 2 ^- (4-4.24) 

thus normalizing curvature functions to those of contours with perime
ter 2.T, then we find for d[2)(Kx. K2): 

</'-'(£,. K2) = mm \\K*t - %K*2\\2- (4.4.25) 

Comparing Eq. 4.4.23 and Eq. 4.4.25 wc find that da){Kx. K2) is pro
portional to the square root of the average bending energy per unit of 
arc length, needed to deform the contour y* with curvature function 
K* to the contour y% with curvature function K2. with optimization of 
the starting point of y% with respect to that of y\: 

é2\KuK2)=^ ■ min(U(KlïïtKl)f. 

(4.4.26) 

Apart from the theoretical analyses and interpretations of the behav
ior of dissimilarity measures, a practical example may provide more 
insight. Such an example will be described in the next section. 
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4.4.2 Experimental analysis of the behavior of dissimilarity measures 

Though the analysis of the theoretical properties of dissimilarity mea
sures has shed some light on their relative behavior, further insight is 
desirable. To this end we have performed an experiment, which is 
described in the following. 

In this experiment we use IN different contours. [y1 yis). These 
contours have been depicted in figure 4.13. The fact that these con
tours. apart from y\o, the circle, all have 5-fold rotational s\mmetr\ 
does not really constitute a limitation: in this example we have inter
preted the performance of dissimilarity measures on the basis of '/s-th 
Of each contour. 

As for the smoothness of the contours in this example, there are two 
distinct groups: the subset [yt, yz, ;■-.. ;■■.. ;•-. ;■■.. ;•,:. ; v ! of piecewise 
regular contours and the subset !;•„. ;•-. yn, yl0, YiuYu- */r- 7r- Vu- Yn) 
Of regular contours. 

Though we have defined c and K as distributions when they represent 
contours that belong to /j,N or to I'pi (el. Section 2.2). these distributions 
cannot be used in dissimilarity measures with index p > I. Therefore 
some smoothing is performed in the neighborhood of nonsmooth points 
('corners') on contours. This smoothing is a natural phenomenon in the 
process of estimating contour representations from a finite number of 
contour samples. 

The contours in this experiment are all known in analytic form: poly
gons, hypocycloids. circle, epicycloids and limacons of Pascal (cf. e.g. 
Wieleitner |I9()S|. Lawrence [1972)). The contour parameter in these 
analytic expressions does not necessarily correspond to (normalized) 
arc length. As a result, dissimilarity measurement on the basis of the 
analytic expressions that describe these contours is not feasible in view 
of the conventions introduced in Section 2.2. Therefore we perform 
dissimilarity measurement on the basis of the discrete versions of the 
dissimilarity measures, which were introduced in Section 4.2.4. To do 
this we need N equidistant (in the sense of arc length) contour represen
tation samples for every contour. In this experiment we used the fol
lowing procedure to obtain these samples. 

Step I. Let u be the parameter of the analytic form of the position 
function of a contour. In general, u is not a (normalized) arc 
length parameter. 
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Using the analytic form, compute M samples of the position 
function, taken uniformly in the parameter u. We take M 
substantially larger than N. In this experiment M - 40% and 
N = 512. 

Step 2. We consider the M position function samples, resulting from 
Step 1. as the vertices of a polygon. This polygon is resampled, 
taking N equidistant samples along its perimeter. These sam
ples are used as (approximately) equidistant position function 
samples z[n\. 

Step 3. In order to estimate N equidistant samples of z. z. q or K we 
determine at each position z\n] a polynomial fit, in least squares 
sense. For each fit we use a window containing an odd number 
of position function samples, with z[n] as the central sample. 
The resulting polynomial is differentiated once or twice, as is 
required for the contour representation to be estimated and is 
evaluated at the central sample. 

Details of this procedure and efficient implementations as FIR filters 
arc presented in Appendix C. Some resulting estimates of contour rep
resentations have been depicted in Figures 4.14a-f. 

Remarks. 
For the contours ;.',. y2. y> / j . '/=, and 7m the parameter u in the analytic 
form of the position function can be related in a straightforward manner 
to arc length. Therefore for these contours Step I of our procedure has 
been discarded and the N equidistant position function samples {z\n]} 
have been computed directly from the analytic form. 

In this experiment we are interested in the behavior of the dissimilar
ity measures as a function of the contour representation used and of 
the value of the index p. We wish to minimize the effects of using 
discrete dissimilarity measures based on a finite number of contour 
representation samples. Therefore we have chosen N - 512, which may 
be larger than what is necessary in most practical situations for a set of 
contours such as {•/, y^}. 

The piecewise polynomial fitting procedures, used for the estimation 
of contour representations in this experiment, may not be optimal. 
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Figure 4.19. rhe set of contours ; | used in the dissimilarity measurement experiments 
m this section. 

Many different options are available as estimation procedures. For 
example, (differentiating) low-pass fillers (ef. Mct'lellan. Parks and 
Rabiner [1973], Rahiner. McClellan and Parks [1975]. Hamming 
11977]). (differentiating) Gaussian filters (ef. Marr and Hildreth [19801. 
Hodson. Thayer and Franklin [1981], Marr [1982], Witkin [1983], 
Asada and Brady [1986], Babaud et al. [1986], Mokhtarian and 
Mackworth [19S6]. Yuille and Poggio [1986]). approximating splines 
(ef. De Boor [1978], Faux and Pratt [1979]. Pavlidis [1982]). 

The criterion for optimality of contour representation estimation in 
the context of dissimilarity measurement is quite obvious: that estima
tion procedure should be selected which may be expected to yield the 
smallest distortion, in the sense of the dissimilarity measure used in the 
estimate with respect to the original representation. An in-depth inves
tigation of this important issue is outside the scope of this thesis. 

D 
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For each of the 5 contour representations of the 18 test figures we 
have computed pairwise discrete dissimilarities dl'"\ | for/? = 1 . 2 . 3, 5 
and oo. Thus we obtained 25 symmetric 1 8 x I S matrices of dissimilarity 
values. From these matrices we wish to learn two things: 

1. What is the relative performance of the 25 dissimilarity measures? 
Arc there dissimilarity measures among these 25 that can be grouped 
together because they give similar results'.' 

2. What is the performance of individual dissimilarity measures. Which 
aspects of similarity or dissimilarity are emphasized or neglected by 
a given measure? 

We begin by considering the first question in more detail. In order 
to compare the relative performance of the 25 dissimilarity measures 
we compute for each pair of dissimilarity matrices D, and D, a dissimi
larity matrix correlation coefficient R(D„ D,). which is defined as (cf. 
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Sneath and Sokal [1973], p. 138 and pp. 279-280. or Dubes and Jain 
[1980], p. 159): 

R(D„ Dj) 

1 '' '' 
' m = 1 n " 1 

p p 

j: X ED|(m,«)-(D,)2 
m = 1 n = I 

/' /• 
I E^(m,n)-<D;)2 

W = I « = I 

(4.4.27) 

where (fl,) and (D,) are matrix averages: 

/ ' /■ 

'M= ia I !>*(/",«)■ (4.4.28) 
' »i = i H = i 
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In our example the number of test figures P = IS. Since the dissimi
larity matrices Dk are symmetric and all elements on their main diagonal 
are equal to zero, the summations in Eq. 4.4.28 can be reduced to 

m- I 

P' III = 2 M = I 
(4.4.29) 

The indices i and / of the dissimilarity matrices D, and D, in 
Eq. 4.4.27 arc in the range ( 1 25}. The correspondence between 
these indices and the dissimilarity measures is indicated in Table 4. 111. 

The computation of R(D,. D,) for each pair of dissimilarity matrices 
yields a 25 x 25 matrix R of matrix correlation coefficients. Note from 
Eq. 4.4.27 that R is also a symmetric matrix and that all elements on 
its main diagonal are equal to one. Though in theory the entries 
R(D,.D,) in R are in the range [— 1. I|. we found in practice only 
positive values, as might be expected when comparing dissimilarity ma
trices generated through a single set of contours (the smallest entry we 
found was R(Dt. Dl2) - 0.055). Therefore the conversion 

D(D,. D,) = I - R(D,. D.) (4.4.30) 

defines a dissimilarity coefficient (cf. Section 4.1 and Spath [19S0]). 
Thus we obtain a 25 x 25 matrix D of dissimilarity coefficients, resulting 

Table 4.10. Correspondence between dissimilarit) measures and the indexed dissimi
larity matrices: e.g. dissimilarity matrix Dr. has heen generated h\ </'"(::,„. .-. i 
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from a pairwise comparison of the dissimilarity matrices Dh i = 1 
25, using Eqs. 4.4.27-4.4.30. The matrix D is symmetric and has zeroes 
on its main diagonal. In order to determine similarities in the perfor
mance of the 25 dissimilarity measures in this experiment we performed 
cluster analysis on the matrix D. 

We used three clustering methods that all belong to the family of 
sequential, agglomerative. hierarchic, nonoverlapping clustering 
methods (SAHN methods) (cf. Sneath and Sokal [1973], Anderbcrg 
[I973J, Dubcs and Jain [198(1], Spiith [1980]): 

1. Single Linkage Clustering, 

2. Complete Linkage Clustering, 

3. Average Linkage Clustering (UPGMA: unweighted pair groups 
using metric averages). 

Since we lack the space to go into very much detail on these methods 
we refer the reader to the literature just mentioned. 

The main reason for using three different clustering methods was to 
enable the detection of dependencies of clustering results upon the 
particular method. In our experiments, however, the characteristics of 
the results were quite similar, irrespective of the clustering method thai 
was employed. 

The result of a clustering is a dendrogram or a phenogram (cf. Sneath 
and Sokal [1973]), which is a graphical representation of the dissimilar
ity values at which items to be clustered or clusters of such items are 
merged into a new. larger cluster. A dendrogram reflects in what way 
the clustering procedure has embedded transitivity between the items 
to be clustered. In Figures 4.15a-c the dendrograms are shown that 
result from applying the three clustering methods to the matrix D. The 
correspondence between the dissimilarity matrices D,, / = 1 25, 
and the dissimilarity measures that generated these matrices can be 
found in Table 4.10. 

Before analyzing these dendrograms in detail we first investigate how 
accurately these dendrograms reflect the mutual relations between the 
performances of dissimilarity measures, as specified in the input matrix 
D. To this end we generate for each dendrogram a cophenetie matrix 
Ck of dimensions 25 x 25. In the cophenetie matrix Ck each entry 
indicates at which dissimilarity value the corresponding pair of dissimi-
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larily measures were merged into a single cluster by the ft-th clustering 
method. Obviously the information contained in a dendrogram and 
thai in a cophcnetic matrix is identical. In order to determine the cor
respondence between D and C\. the cophcnetic correlation coefficient 
(CPCC) (cf. Sneath and Sokal [1973]. Dubes and Jain [1980]) is com
puted. The CPCC has the same form as the dissimilarity matrix corre
lation coefficient, as defined in Eq. 4.4.27. The results obtained in our 
experiment were: 

CPCC(D, C,) = .887 (Single Linkage). 

CPCCfD. C:) = .905 (Complete Linkage). 

CPCC(D. C\) = .911 (Average Linkage). 

These values are sufficiently high in all three cases to be confident 
that the cophcnetic matrices C\ and. equivalently, the corresponding 
dendrograms properly reflect the mutual relations in the matrix D. 

Analyzing the three dendrograms more closely, we observe that the 
clustering structure in each case is virtualk the same. 

First we note that the dissimilarity measures based on r (D\-D^, cf. 
fable 4.1(1) all cluster together at low dissimilarity values and that in 

each of the three eases d{'\z,„. z„\ (Z>0 is the last measure to join the 
cluster. This means that the dissimilarity measures based on z, for va
rying values of the index />. all measure similar aspects of geometric 
dissimilarity, only the measure d' ' ' [z,„. z„| exhibits a slightly different 
character. 

The dendrograms in Figures 4. (Sa-C also show that, with the exception 
of (t ''{':,„. z„] and </'''''[ ■/',„. ip„] (I)]u and D : „ ) . the dissimilarity measures 
based on ir (D,,-D„) and on i/' (D\b-D\ti) are merged into a single cluster 
at low dissimilarity levels. Looking at this cluster in greater detail we 
we note that r/(liz,„..S,| and W( , ,|v,„. y'„| (D„ and I)u.) and <f-\zm, z„\ 
and c/':'[i/',„. !/'„l (D- and D17) behave almost identically. In view of the 
lower computational complexity of the dissimilarity measures based on 
i/' for arbitrary values of the index p (cf. Table 4.5). we draw the 
conclusion that the contour representation i/1 is to be preferred over z 
with the set of contours used in this experiment. Though the perfor
mance of dr''[z,„. 'z„\ and d'''|</',„. Vn] (^m a n t ' Dyi) 's similar, the be
havior of these dissimilarity measures differs considerably from that of 
the measures based on z (DrDt) and from that of the other measures 
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based on z (D,,-D,,) and \ji (D|(,-D|,,) (with the exception of d''\y/m, 'i'n\ 
(D|.,) under the Complete Linkage Clustering Scheme, where this dis
similarity measure is closer to d"'\z„,. 'z„\ and </'"['/',„. ty'„|. cf. Figure 
4.15b). This is not surprising since both dr''\z,„. 'z„\ and d" '|</\..-- v j 
measure the maximum directional difference between a pair of con
tours. minimized over orientation and/or starting point, which is a local 
and noise-sensitive property. Though these measures are legitimate dis
similarity measures, their usefulness in practical applications is doubt
ful. 

The dissimilarity measures based on z (Du-D^) and K (DirD:;) also 
cluster together in a single cluster, though at much higher dissimilarity 
values. The fact that the measures based on r and K are merged into 
a single cluster shows that they behave similarly, although this similarity 
is not as pronounced as with the measures based on z or with those 
based on z and ip. The large dispersion of this cluster is an indication 
of the high noise sensitivity of dissimilarity measures based on z and K. 
Therefore we draw the conclusion that dissimilarity measures based on 
these contour representations can only be useful if a number of condi
tions is satisfied: 

1. The curves under consideration must at least belong to the class Twr 

of weakly regular simple closed curves (cf. Definition 3.3). In the 
present experiment this condition is clearly not met by the contours 
7i 3/5, 7,,. 7|j and y{s. which all belong to the class ƒ'.„ of piecewise 
regular curves. 

2. The value of the index /> must be kept sufficiently low. 

3. An appropriate and noise-resistent method for estimating z and K 
from the (segmented) input picture must be used. As remarked ear
lier. the polynomial filters (cf. Appendix C) used for that purpose in 
this experiment may not be optimal in this respect. 

If one has to make a choice between dissimilarity measures based on 
r and those on K. then dissimilarity measures based on K are to be 
preferred because they have a lower computational complexity (cf. 
Table 4.5). 

After the foregoing analysis of the relative performance oi the dis
similarity measures, we arive at the second question raised in this exper-
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iment: what is the performance of individual dissimilari ty measures and 
what aspects of geometrical dissimilarity do they measure. Obv ious l j 
we lack the space lor an exhaustive evaluation of the performance of 
all 25 dissimilarity measures used in this experiment. Therefore we 
present a more global evaluat ion, using one of the major observations 
f rom the foregoing analysis of the relative performance of the dissimi
larity measures, i.e. that the main dist inct ion in behavior is not brought 
about by a var iat ion of the value of the index p. but mainly by the 
contour representation used and. more in part icular, by the order of 
d i f ferent iat ion to which the contour representation belongs. 

We evaluate the performance of individual dissimilarity measures 
through clustering experiments on the 18 x 18 matrices o f dissimi lar i ty 
coefficients Dt. / = 1 25. generated by these dissimilari ty measures 
(cf. Table 4.10). For these experiments we have used again a clustering 
technique f rom the family of S A I I N methods: Average Linkage Clus
tering ( U P G M A ) . We have chosen a clustering technique f rom the 
family of S A H N methods because these methods enable us to dist in
guish structures at mul t ip le levels of clustering, a possibil ity that is 
lacking in part i t ional (or non-hierarchic) clustering methods. From the 
family of S A H N methods we have chosen U P G M A because it takes. 
in many respects, a middle posit ion between Single Linkage Clustering 
and Complete Linkage Cluster ing. Thus we avoid the extreme proper
ties of the latter two methods (cf. Anderberg [1973]. Sneath and Sokal 
[1973]). 

To analyze dissimilari ty measures based on the posit ion function z 
we clustered on D , . D , and £>5. generated by illl"\:,„. :„\ for /; = 1.3 
and S-. respect i \e l \ (cf. Tab le4 .10) . Figure 4.16 shows the dendrogram 
resulting f rom U P G M A clustering on D,. We observe in this figure two 
major clusters of contours: <7i -7<-77-7i<-7n-7i : -* / ' r - 7 u - l ' i d and (;■-. 
;';. ;•:■ y5, y8, y „ . y1 6) , plus an isolated pair of contours: (;',-. v IK) (cf. 
Figure 4.13 for a display of the contours). The clustering resulting f rom 
Ds is vir tual ly identical to that of D-,. F o r D , there are some differences 
in the sense that y:. y3 and ys are merged into the first cluster instead 
of the second. Evaluat ing the clusterings based on D , . D-, and D<, 
j o in t l y , we f ind the clusters (•/,.;■-. y , d . (;';. ;'•.. y s ) , (y4 . y5, ; v ;•„,). (;■„• 
7ni- 7n- 7 i : - 7i3- Yu) a n c l t l l c isolated pair (y,7 , y18). Analyz ing this result 
qual i tat ively wc see in Figure 4.13 that contours of substantially differ
ent smoothness propert ies are merged together into a single cluster 
(e.g. 7|. y7 and y, s ) . For the set of contours (V| y[s) used in this 
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experiment, the clustering on the basis of d{l'][zm. z„], for varying values 
of p. seems to generate a grouping of contours according to similar 
concavity properties. 

With dissimilarity measures based on the tangent function z wc clus
tered on D,,. DH and Dw. generated by W""[z,„. z„] for p = 1,3 and x , 
respectively. Likewise, with dissimilarity measures based on the 
periodic cumulative angular function i/\ we clustered on Di6, D ( x and 
D2„. generated by W''J,(i/',„. i/'„] for the same values of p. Figures 4.17 
and 4.18 show the dendrograms resulting from clustering on D(, and 
DUt. These clustering results are clearly virtually identical, which con
firms our previous observation concerning the similarity in performance 
of dissimilarity measures based on z and i/' with the set of contours used 
in this experiment. In Figures 4.17 and 4.18 we can identify two major 
clusters, each consisting of two smaller clusters. The two clusters in the 
first major cluster consist of (y,. y :, y3, y7. ys. y„. yis) and (yh,yw, Y\\-
Y\2, 5'I.Ï. Yu), while the two clusters in the second major cluster consist 
of (74- )'v 7K,) and (y,7. y,s)-

Looking more globally at the clustering results for various values of 
p we find that the dissimilarity measures based on z give rise to the 
clusters (•/,. y :. y,, y7, yx. •/,,). (y,. Ys), (Yu- YW-YU-Y\I)- ( /uO' i^and 
(y,7, y,s). Comparing this result with the contours in Figure 4.13. we 
observe that contours that arc merged into a single cluster generally 
have similar smoothness characteristics. These clustering results also 
correspond fairly well with our subjective notion of shape similarity. 

For the dissimilarity measures based on if similar results are found. 

In order to evaluate the similarity in performance of dissimilarity 
measures based on z and on \p further, we performed another experi
ment with a different set of contours. Apart from a circle and a square 
this set contained 6 contours of thin, strip-like objects, such as in Figure 
4.7. The latter (•> contours had an increasing number of loops. 

For contours with loops the contour representations z and \j> behave 
differently. The reason for this difference is the fact that the phase of 
2 is restricted to a range of length 2.T. whereas in i/' the directional 
changes along a contour are accumulated. 

As a result the dissimilarity measures based on z and on tp also 
behave differently for contours with loops and for other strongly non-
holomorphic contours. In this additional experiment we frequently 
found substantially higher values for <•/''"[(/',„. '/'»] m a n for d{'"[z„„ z„\. 
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However, these differences in dissimilarity values did not lead to 
substantial differences in clustering results. We performed both a Single 
Linkage Clustering and a Complete Linkage Clustering on the dissimi
larity matrices, generated for this set of contours by (l'-'['z„,. ':,,\ and 
</':'l W '/'«I- I he structure of the Single Linkage Clustering results was 
identical for both dissimilarity measures. The structure of the Complete 
Linkage Clustering results differed only for one contour. More differ
ences occurred between the results of Single Linkage Clustering and 
those of Complete Linkage Clustering on the same dissimilarity matrix. 
These differences are the result of the difference in behavior of these 
two elustering schemes (cf. Sneath and Sokal [1973]. Anderberg [ 1973). 
Dubes and Jain [1980], Spiith [19X0|). 

From this experiment, and from previously obtained evidence, we 
draw the conclusion that, with contour clustering and classification, 
(/''"('z,,,. z„) and ép)(y>m, '/'„) have a similar performance. In view o( its 
lower computational complexity in practice for general values of the 
index /; (cf. Table 4.5). (/''''('/',„. '/'») is to be preferred as a dissimilarity 
measure to </''"(?,„. z„). 

Finally, with dissimilarity measures based on r we clustered on Du 

and D|5, generated by ép\zm, z„] for p = I and » , respectively. With 
dissimilarity measures based on K we clustered on D:i and D;. gener
ated by il['"\Kin. K„\. for the same values of p. Figures 4.19 and 4.20 
show the dendrograms resulting from clustering on Du and D:i. 

First we note a significantly increased dispersion in these clusterings: 
clustering generally takes place at higher dissimilarity levels than in the 
previous clusterings with dissimilarity measures based on c. j . This is 
remarkable since we found in Section 4.3.2 that </''"(;,„. Z„), d': (;... z,.). 
cl"'\z,„.z„) and ép\K„„ K„) are in the same range 

Secondly we see in Figures 4.19 and 4.20 that there are many local 
differences between these two clusterings, though at a more global 
level the results are similar. 

A global analysis of the results from clustering on Du and D,< 
leads to four clusters of contours: (;-,. ;-». •/,. yA, y5, ys. ;',,). (;■„. ;•,<). (y,2, 
Yi3i }'u) ;||1(J L/i<.- Yr)- Analyzing the results from clustering on D:t and 
D:^ jointly, we find only two clusters: (;/,. y2, •/-,. yA., ys, ;■-.;■..;•„) and 
0'n- 7\2' /'i> "/iv YH« 7\-)- ' n 'he clustering on D25 the circle. yw, behaves 
as a complete outlier, which is understandable for the dissimilarity mea-
sure Sx\Km, K„). 
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From the clustering results it appears that there are analogies in the 
behavior of dissimilarity measures based on z and those based on K. as 
might be expected from the relation that exists between z and K (cf. 
Eq. 2.2.25). However, the analogies in behavior are far less pronounced 
than those between dissimilarity measures based on z and on i/\ Though 
there is no theoretical reason for this weaker analogy, there are some 
practical reasons. Due to the high noise sensitivity of double differenti
ation it is far more difficult to obtain a reliable estimate of the contour 
representations z and K than of the contour representations z and i/\ 
Also the class of curves for which z and K can be usefully estimated in 
practice is more restricted than that for which z and ip can be estimated. 

Contour representation estimation processes, as described for exam
ple in Appendix C, necessarily exercise a smoothing operation on the 
contour data. Thus we obtain also estimates for z and K of the piecewise 
regular contours y,. y2. y-,. yA, y$, yy, yM and yis for which z and K are 
defined as distributions (cf. Section 2.2). Therefore the estimates ob
tained have a limited reliability, which is a source for the large disper
sion in the clustering results. Since S out of the IS contours in this 
experiment arc piecewise regular, with unreliable estimates for z and 
K. it is hard to judge the clustering results properly. 

Analyzing the clustering results qualitatively, we find that the con
tours in the large cluster (y,, y2, y3, y4. ys> Y», y>>), resulting from cluster
ing on D|, and D|~. all have five pronounced convex corners. Each of 
the other three clusters. (y(l. y,5), (y, :. yl3, yl4) and (y16, y)7). indeed 
contains contours that may be called similar from a subjective point of 
view. The contours in each of the latter two clusters belong to the same 
family of plane curves: epicycloids and limacons of Pascal, respectively. 

The contours in the first cluster that we found from clustering on D : , 
and D2~. (}'|. y%, ;'-,- YA, y.s. */?. yx- )'<>). all have pronounced convex 
corners. With the exception of yi and ys. these contours are not twice 
differentiable. Most contours in the second cluster, (y n , yl2, y{3, yl5, 
}'i«- Yn)- have more or less pronounced concavities (an exception is yM), 
while all contours in this cluster are at least twice differentiable. 

4.5 Measures of mirror-symmetry and ol' //-fold rotational symmetry 

In Section 2.4 we formulated for each of the contour representations. 
introduced in Sections 2.1 and 2.2, the conditions that these represen-
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unions musi satisfy in order to represent a contour thai possesses mir
ror-symmetry (or symmetry m) or «-fold rotational symmetry (or sym
metry it). Likewise, in Seetion 3.6 we formulated these conditions in 
terms of the Fourier coefficients generated bj each of the aforemen
tioned contour representations. 

As we remarked in Seetion 2.5. symmetry in objects will onlj be 
approximate in real life. Thus, if we want to establish quantitative!) the 
extent to which a certain type of symmetry is present in objects, we 
need measures oi mirror-symmetry and of «-fold rotational symmetry. 
or. cquivalcntly. measures of mirror-dissymmetry and of n-fold rotatio
nal dissymmetry. The purpose of this seetion is to define such measures 
and to investigate some of their theoretical properties. Since we con
sider an object to be symmetric if it comes into coincidence with itself 
upon a symmetry transformation, the concept of dissimilarity naturally 
arises in dissymmetry measurement. 

We will make use of the (mirror-)dissimilarity measures, defined in 
Section 4.2. in order to define measures of mirror-dissymmetry and of 
«-fold rotational dissymmetry. 

In Section 4.5.1 we define measures of mirror-dissymmctr) as special 
cases of measures of mirror-dissimilarity, which were defined earlier in 
Seetion 4.2. 

In Section 4.5.2 we define measures of/i-fold rotational dissymmetry 
which are closely related to the previously defined dissimilarity mea
sures. The measures of «-fold rotational dissymmetry, based on Fourier 
representations, will be compared with existing proposals for such mea
sures. 

To obtain insight into the behavior and performance o\ the measures 
of dissymmetry we also present and evaluate the results of an experi
ment. 

4.5.1 Measures of mirror-dissymmetry or dissymmetry m 

There are various reasons why the quantitative assessment of the 
degree of symmetry m has been given considerable attention in the 
literature on digital shape analysis, even more than that of symmetry 
n. Symmetry m plays an important role in human perception of shape 
orientation (Rock |I973|). and can also be of significance in a theory 
of shape understanding (Davis [ Iy77bj). Furthermore, the detection of 
symmetry m can be useful for the normalization of orientation and 
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starting point of contours. It can also lead to a compaction of shape 
description since we need to store only half of the contour representa
tion of a mirror-symmetric object. The detection of symmetry m in 
partially occluded shapes can give clues as to how shape completion 
should be performed. In the latter case we are dealing with nonclosed 
curves or contour segments. Though we study in this thesis only simple 
closed contours, the (mirror-dissimilarity measures based on contour 
representations can be generalized to nonclosed curves or contour seg
ments in a straightforward manner. 

In the literature on shape analysis various propositions for the mea
surement of symmetry m can be found. 

Zahn and Roskies [ 1972] derive a property between the phases of the 
Fourier coefficients generated by y when the contour is mirror-symmet
ric. This property forms the basis for a measure of dissymmetry m, 
where dissymmetry is complementary to the concept of symmetry. Da
vis [ 1977b] uses a hierarchical model of contour segments and angles 
between these segments to represent shape. Local mirror-symmetries 
are detected at a low level in the hierarchical representation. Through 
clustering of local symmetries and through the definition of relations 
between the clusters, a global axis of symmetry is found. 

Parui and Dutta Majumder 11983] also use a hierarchical shape repre
sentation, similar to that of Davis (Davis [1977a], Davis [ 1977b]). At 
each level in the hierarchy a shape is represented as a polygon. Their 
method starts at a high. i.e. coarse, level in the hierarchy. At each 
hierarchical level the polygonal contour is mirror-reflected about var
ious candidate axes of symmetry and an optimum axis of symmetry for 
this hierarchical level is determined. Directional differences between 
the sides of the polygon, when it is mirror-reflected about a candidate 
axis, are used as a match criterion, and thereby as a measure of dissym
metry m (cf. Figure 4.21). At the next lower level in the hierarchical 
representation the result of the higher level is used as an initial estimate 
for the location of an axis of symmetry. 

Bolles [1979] uses a tree description to represent an object. The 
nodes in such a tree correspond to various object features. This rep
resentation is also determined after a mirror-reflection of the object 
about an arbitrary axis. A measure of similarity between these two tree 
representations, before and after mirror-reflection, is used as a measure 
of symmetry m. 
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Wechsler [I979J defines a piecewise linear axis of symmetry in a 
binary object-background picture. Each segment of this axis is deter
mined as a local optimum of mirror-symmetry in terms of a mismatch 
criterion (see Figure 4.22). Wcchsler's piecewise linear axis of sym
metry is closely related to the symmetric axis of an object, as defined 
by Blum [1973]. The piecewise linear nature of the symmetry axis in 
Wechsler's method constitutes a major difference from all other 
methods for the measurement of symmetry m found in the literature. 
These methods determine a single straight line as a global axis of sym
metry. 

Both Freeman [1979| and C'haudhuri and Dutta Majumder [1980] 
use a contour representation that is closely related to the curvature 
function K. They determine this representation also for a mirror-re-

d c l j l * i d l l j l 

b 

Huurt 4.21. One stage in the determination o f the axis ol symmetry according i " Parui and Dutta 
Majumder [ 1983]. At hierarchical stage r (he polygon consists ol V vertices A l lower hierarchical 
levels the polygon contains more vertices. f l ic vertices al stage ' arc equidistant, when measured 
alone ihe polygon at the lowest hierarchical level (stage I) . 

I he polygon side formed In the vertices i ' and \' . , has direction [/'. expressed in units Ol .1 4. 
At each ol V72 consecutive polygon vertices \' a symmetry avis is hypothesized, which devides 
the polygon in two halves with an equal number ol vertices, and thus of equal length (a) I lu
lu polhesi/ed axis o l symmetry oj . between the vertices i ' and i ' . . . . has direction </.',(_/1. 

Between each pair ol corresponding opposite sides with respect to </'. With directions if' t and 
if. , |. a local axis of symmetry is determined in the direction ol the bisecting line ii'j/) ol these 
(WO sides, as illustrated in (h). II the bisecting line ojf/) has direction il'.ii). then the local contribu
tion to the deviation from pure symmetry m is measured as d'&j) - i / j(yl | . The total deviation 
from pure symmetry m lor the axis a\ is the average over all V72 local deviations 
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figure -4.22. Pieccwisc linear axis oi symmctrj oi a pair of objects according to a method proposed 
hy Wechslet [I971J|. The x- and y-axis correspond to the principal axes o| [lie objects (determined 
through the method of moments as described in Section 4.3). 

fleeted version of the same contour. A correlation-like measure be
tween the two representations thus obtained serves as a measure of 
symmetry m. Freeman [1979] proposes to normalize the starting point 
of the contour representation, whereas Chaudhuri and Dutta Majum-
der [1980] determine an optimal starting point along the contour. 
thereby varying the location of the axis of symmetry. 

The measures of dissymmetry m that we propose in the following are 
directly based upon the definition of symmetry m, which states that a 
contour y is mirror-symmetric iff there exists a line m in the plane such 
that when y is mirror-reflected about m, y coincides with itself (cf. 
Definition 2.6). A natural measure of dissymmetry m. in view of this 
definition, is obtained by performing an arbitrary mirror-reflection 
upon the contour and by measuring the dissimilarity between the orig
inal and the mirror-reflected contour. This approach is closely related 
to those of Bolles [1979]. Freeman (1979], Chaudhuri and Dutta 
Majumder [1980] and Parui and Dutta Majumder [1983]. 

It follows from the foregoing that we can use the mirror-dissimilarity 
measures, defined in Section 4.2 (Definitions 4.4 and 4.8), for the 
measurement of dissymmetry m. 
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Definition 4.12. Measure of dissymmetry m of index p. 
Lot / ac t as a generic symbol lor any of the contour representations r, 
'z, z. !/• and K. Then a measure of dissymmetry m of index p for a 
contour y. with contour representation / . ƒ e L' '(2.T). is defined as (cf. 
Definition 4.4): 

</"'*( /://») = </""(/./). I € / ? ^ x . (4.5.1) 

D 

Through Eq. 4.2.29 </'"(/: m) can also be written as 

, / " (ƒ : ' » ) = </""(/'.-lij). I4.5.2) 

In view of this definition it follows immediately that the range of 
values that (t''"{f: m) can assume is identical to the range of the mirror-
dissimilarity measures d{,,)(j\. f : ) . which in turn is equivalent to that of 
the dissimilarity measures <!''"(j\- /;) (cf. Eq. 4.5.2). The range of 
</''''( /,../:) has been discussed in Section 4.3.2 and depends upon the 
particular contour representation / and the contour size normalization 
employed. Further theoretical properties of </''"(/: "') can be found 
through the discussion on such properties for </''"(Y|./:) in Section 4.4.1. 

II /indicates the Fourier representation generated by / then, along 
the same lines as we defined the mirror-dissimilarity measures based 
on Fourier representations /of contours in Section 4.2 (Definition 4.S). 
we can define a measure of dissymmetry m based on f. 

Definition 4.13. Measure of dissymmetry m of index /> based on 
Fourier representations. 
Let /be the Fourier representation of a contour representation I. where 
ƒ acts as a generic symbol for any of the contour representations z. ':. 
z, i/' and K. Then a measure of dissymmetry m of index p for a contour 
•/. with Fourier representation/, ƒ e (.''(X). is defined as (cf. Definition 
4.S): 

</''"(/; m) = J""(/ . ƒ). I ^p « oc. (4.5.3) 

D 
A number of properties are required for a measure of dissymmetry 

m. The measure must be invariant for the position, size and orientation 
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Of the contour and it must be invariant for the parametric starting point 
on the contour. Furthermore, a measure of dissymmetry m shall assume 
a value zero iff the contour is mirror-symmetric, and be greater than 
zero otherwise. Since the measures of dissymmetry m defined above 
are special cases of the mirror-dissimilarity measures, all properties 
that apply to the mirror-dissimilarity measures are also valid for the 
measures of dissymmetry in. In particular, all required invariancc 
properties are valid as a result of normalization of contour position and 
size and of optimization over orientation and starting point in the mea
sure. Furthermore, the measures of mirror-dissimilarity are positive 
scmi-dcfinite, assuming the value zero only in the case of mirror-similar 
contours. Thus, the validity of all properties that we required the mea
sures of dissymmetry m to satisfy, immediately follows. 

In analogy with the (mirror-)dissimilarity measures, the measures of 
dissymmetry m arc computed in practice from N equidistant samples 
of a contour representation. The resulting discrete measures of dissym
metry m are a special case of the discrete measures of mirror-dissimilar
ity in Eq. 4.2.51. i.e. 

</""[ƒ; m] = </""[ƒ./|. (4.5.4) 

The computational complexities of the ép)\f\ m\. for the individual 
contour representations, are the same as mentioned for the correspond
ing (I""[/]. ƒ:] in Table 4.6. For index p = 2 the computational com
plexities of d'2]\f: m\ can be found in Table 4.8. 

Similarly, the measures of dissymmetry m based on Fourier represen
tations are computed in practice from finite Fourier representations, 
i.e. 

dW[f;m] = W[fJ), (4.5.5) 

cf. Eqs. 4.2.61 and 4.5.3. For general values of p and for p = 2 the 
computational complexities of dll"[ ƒ; m\. for the individual Fourier rep
resentations, are the same as mentioned in Section 4.2.4 for the corre
sponding </''"[/'. ƒ]. A reduction in computational complexity can be 
obtained by a normalization of the orientation and/or the parametric 
starling point of the contour, using the methods discussed in Section 
4.3.3. 
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Figure 4.23. The set of contours 
in ihi1- section. 

', used in the dissymmctr) measurement experiments 
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To obtain quantitative insight in the performance of d^'Xf; m) for 
various contour representations ƒ. we performed an experiment. The 
set of contours used in this experiment, {•/, Y\i), is displayed in 
Figure 4.23. All these contours are 6-fold «nationally symmetric and. 
apart from y3, all contours are also mirror-symmetric. Concerning the 
smoothness properties of these contours, there are two distinct groups: 
the subset fy,, y2, y%. y,,. y$, yl2) of pieccwisc regular contours and the 
set {yA. y5, y7. ys, yw. yn) of regular contours. 

We have performed dissymmetry measurement experiments based 
on each of the five contour representations z, z, z, ip and K. The 
considerations and methods used for contour representation estimation 
are exactly the same as in the dissimilarity measurement experiments 
in Section 4.4.2. We refer the reader to this section and to Appendix 
C. The number of contour representation samples used in the dissym
metry measurement experiments is the same as in the dissimilarity mea
surement experiment in Section 4.4.2: N = 512. 

Since the effect of the index p on the behavior of d{l'](fm, /„) has 
already been investigated in detail in Section 4.4, we have limited the 
dissymmetry measurement experiments to the case p — 2. 

The values obtained for dt2>[f„; m\, // = 1 12 for the contour 
representations z, z, z, i/' and K arc listed in Table 4.11. In Figures 
4.24a and 4.24b we show the axis of symmetry and the shifted starting 
points found through d'2,[f„; m\ for all five contour representations for 
the contours y=, and y9, respectively. 

For the contour representations iy and K we did not find an axis of 
symmetry directly since no orientation information is present in these 
representations. However, after finding an optimal starting point shift 
r* in f/(/,|(;/>; m) or du'\K\ m). we can substitute r* in the translation-
normalized position function 'i:-z to find the angle between the axis of 
symmetry and the positive .r-axis as '/:[arg {'/-z(())} + arg {^;.z(r*)} J. 
For é''\z\ m). d""(r. in) and </""(z; m) this angle is given by a*/2, 
where a* is the optimal rotation angle found by the measure of dissym
metry m. 

From Table 4.11 we see that d<2)\f„: m\ performs very well for the 
position function z. The largest mirror-dissymmetry value we find for 
a mirror-symmetric contour is d<2'[zl2\ m\ = 0.0051 for yn-, which may 
be a result of contour sampling errors and round-off noise. Yet this 
value is well over 50 times as small as J'2'[z-,; m\ for y3, the only contour 
in our test set that lacks mirror-symmetry. 
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In Table 4.11 we also see that for this set of contours the behavior 
of cf2)\z,r m\ and é2)[ip„; m\ is similar, which corresponds to our previ
ous experience with dissimilarity measurement on the basis of 2 and tp 
in Section 4.4.2. The ratio between the mirror-dissymmetry value found 
for the non-mirror-symmetric contour y3 and the largest value found 
for a mirror-symmetric contour is over 40 for measurement based on 'z 
and just over 25 for measurement based on if'. The decrease of this 
ratio with respect to mirror-dissymmetry measurement based on 2 is 
due to contour representation estimation errors in z and y. Yet the 
results in Table 4.11 show that mirror-dissymmetry measurement can 
be performed in a sufficiently reliable way on the basis of ': and y. 

Table 4.11. Values of Sz\fH; m), n = 1 12. for the contour representations z, ':. 
z. i,' and A.' <>l the sei <>l contours !;■ y^}. displayed in Figure 4.23. 

Contour 

Y\ 

y 

',': 

'■' 1 

. 

: ■ 

7 

■ • 

Y; 

*/'in 

XII 

Y 

Contour representation 

-

ii.in ii in 

0.0003 

0.2972 

II.in ii in 

0.0005 

(1.Ill II III 

0.0000 

II.noon 

11.01 II IS 

0.0000 

0.0036 

001)51 

-~ 

0.0054 

0.0122 
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0.0022 

0.(1(111 

0.0007 

0.0051 

0.0010 
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11 i II145 

0.0165 

0.0170 

-

0.0652 

0.0652 

0.1941 

0.0176 

0.0081 

0.11(134 

0.0261 

o 0023 

0.0619 

0.0168 

0.0654 

0.0641 

V 

0.0062 

0.0152 

0.9484 

0.0025 

0.0013 

o 0006 

0.0051 

0.0000 

0.0277 

o 0046 

0.0201. 

0.0377 

K 

0.0675 

o , | 109 

0.4958 

0.0171 

0.0088 

0.0123 

0.02(0 

0.0018 

II 4'H<2 

0.0166 

0 . 1 2 4 0 

0.2755 
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This situation changes quite dramatically with measurements based 
on z and K. While the ratio of dissymmetry values for non-mirror-sym
metric contours and mirror-symmetric contours is still almost 3 when 
the measurement is based on z. the ratio decreases to just below 1 when 
based on K. This is mainly due to the unreliability of the contour rep
resentation estimates of z and K. We also see from Table 4.11 that most 
problems occur for contours for which z and K are defined as distribu
tions, such as y,, y2. yy and yl2. The results for contour y6, for which z 
and K are also defined as distributions, constitute an exception in posi
tive sense. On the other hand, the results based on z and K for yu, 
which is a regular contour but with very large negative curvatures, are 
remarkably bad. Furthermore, also the value d?\K9] m\ = 0.4962 (cf. 
Figure 4.24b) can only be explained from estimation errors in K since 
the starting point shift found is a correct candidate out of 6 other correct 
candidates. 

In general we observe from the results in Table 4.11 that, concerning 
the smoothness of contours in relation to the contour representations 
that can usefully be applied for dissymmetry measurement, the same 
considerations hold as we found earlier in Section 4.4.2 for 
(mirror-Jdissimilarity measurement. 

For an evaluation of the various aspects of mirror-dissymmetry mea
sured by <■/""(ƒ: m) for different contour representations and for differ
ent values of/;, we also refer to Section 4.4. 

4.5.2 Measures of n-fokl rotational dissymmetry or dissymmetry n 

Rotational symmetry plays an essential role in many industrial parts 
(Perkins [1978]. Bolles [1979]). It also constitutes an important feature 
in many biological structures, such as enzymes, viruses, etc. (Santiste-
ban et al. [1980], Santisteban, Garcia and Carrascosa [1981)). In Sec
tion 4.3.3 we saw that the detection of the order of rotational symmetry 
is necessary for a proper execution of procedures for orientation and 
starting point normalization (Hu [1962], Burkhardt [1979], Wallace and 
Wintz 1198()|). If a contour has symmetry n. then it can be represented 
compactly since we need to store only Vn-th part of the contour repre
sentation of an /i-fold rotationally symmetric object. Finally, the detec
tion of symmetry n may also indicate how shape completion should be 
performed in incomplete contours (e.g. with partially overlapping sha
pes). However an adaptation of the measures of dissymmetry n, that 
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arc defined in this section, is necessary in that case in order to cope 
with incomplete contours. 

Since in practice symmetry is rarely perfect, we need measures that 
enable us to establish the extent of n-fold rotational symmetry in an 
object quantitatively. In the literature we find several propositions to 
this end. 

Zahn and Roskfes [ i ^72] observed that a contour has n-fold rota
tional symmetry iff '/'(A) = 0, VA e Z such that A ^ (I mod n (see also 
Table 3.6 in Section 3.6). Based on this observation the) proposed 

2- £ |-/'(A-)| (4.5.6) 
A r i l mod n 

as a measure of dissymmetry n. 

d'"iz.iml '0.0005 d'"(z^m] ' 0.0011 d'"lz^m) = 0.0081 
a'lz5l '0.3333K a'lz5l '0.3333TT a' (Z5) ---0.6650jr 
T'(ZSI '0.I602X T'/ZSI =0 1602n T' tz5) = 11502* 

d"'t<fs.in] =00013 d'"lKS:ml 'O.OOBB 
a T' (y5) '0.16027T T* tK5) '01602K 

Figure 4.24a. Results "i the mcasuremcni "i dissymmetry m lor the contour y. from I igure 4.23 
loi the contour representations;. ;• -'. y and ^ 
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Burkhardt [1979| has a similar proposition for a measure of dissym
metry n, based on the Fourier representation z. Recall from Section 
3.6 that a contour has n-fold rotational symmetry iff z(k) = 0. 
Vk e Z - {()} such that k =£ 1 mod n. This property constitutes the 
basis for Burkhardt's proposition 

I \m\ 
A e Z - (0] 
k *■ I mod n 

I \m\ 
(4.5.7) 

keZ- Mil 

as a measure of dissymmetry n. The expression in the denominator of 
Eq. 4.5.7 ensures the scale invariance of the measure, while the exclu-

-t=o -t=o -t=o 

d'2'lzvm]: 0 0008 
a'(zg) : 0.6663* 
r'lz9) = 0X961 x 

du'lz9lm]: 0.0115 
a'lzgl = 0.6673 X 
r'lzgl =0X961* 

d"'tzg.ml = 0.0619 
a'lzg) = 0.6706 x 
T'lZgl = 0X961 X 

-t=0 - 1 = 0 

b 
d' 'l<p',. ml =0.0277 
T'(<l/S) = 0X961x r'(Kql = 0. 161.1 x 

Figure 4.24h. Results of the measurement of dissymmetry m for the contour •/., from Figure 4.23 
for lite eontour representations z, ':. z. Ifi and K. 
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sion of 1(0) Irani both the numerator and the denominator takes eare 
of the translation invarianee. 

By comparing Eq. 4.5.6 with Eq. 4.5.7. the conceptual similarity of 
these two propositions as measures of dissymmetry n is obvious. Since 
both measures sum over moduli of Fourier coefficients, invarianee for 
orientation and starting point is automatically obtained (cf. Table 3.2). 

Another approach to the measurement of the extent ol symmetry n 
in an object has been given by Perkins [ 197S]. lie represents a contour 
as a set of connecting line segments and circular arcs. On top of this he 
registers the positions of a set of equally spaced samples on the contour. 
{z\n\\ in our terminology, and the directions of lines perpendicular to 
the contour in the sample positions. 0\n\ ± JT/2 in our terminology, 
where 0 is the tangent angle function (cf. Eq. 2.2.6). An illustration of 
this representation is given in Figure 4.23. Rotational symmetry n is 
measured by rotating the contour representation just described about 
the center of gravity ol object over angles///(2.7/M) for/;/ = I n - I. 
After each rotation a measure of coincidence between the original and 
the rotated representations is determined. Finally, the results of the 
/i - 1 measurements are combined to obtain a global impression of the 
extent of symmetry n in the object. 

. .•*■ . v . ■-•* 
» . • ■ ■ « • • • • * 

■ • • • • • » . 

. .*.. 
* ■ . 

■ • » • • • » . . 

b .*.." 

Figure 4.25. Illustration ol contoui representation according to Perkins 11978). (a) displays the 
result "i fitting straight line segments and circular arcs to input contour data, leading to a represen
tation ol two closed contours In 27 straight line segments and circular arcs. Each ol these two 
approximated contour", is called a concurve (Perkins [1978]) Superimposed on the concurves is ,i 
multi-sector representation ih) The multi-sector representation consists of a set ol approximate!) 
equidistant positions along the concurves. marked bj an In tb). and b) a set ol perpendicular 
directions at these positions, marked by a short dot ted line Hie two concurves are represented 
In $7 and 4 mulliseetors. respective!) 
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Bolles [1979] introduces a tree representation for objects and deter
mines the presence of symmetry n in an object directly from its tree 
representation. The nodes in this tree representation correspond to 
various object features. First similar subpatterns arc determined within 
the object and subsequently it is tested whether these subpatterns are 
arranged in an n-fold rotationally symmetric manner. 

Before we actually present our propositions for measures of dissym
metry n we first mention the requirements that such measures must 
satisfy. Since a measure of dissymmetry n constitutes a shape properly. 
it must be invariant for the position, size and orientation of the object 
and for the position of the parametric starting point on the contour (cf. 
Section 1.1). We also require of a measure of dissymmetry n that it 
assumes the value zero iff the object has n-fold rotational symmetry 
and that its value is greater than zero otherwise. 

The measures of dissymmetry n that we propose in the following are 
directly based upon the definition of symmetry », Definition 2.7. which 
states that a contour y is n-fold rotationally symmetric iff there exists a 
point of order n in the plane such that, when y is rotated about this 
point, y coincides with itself after each rotation over an angle Irtln. A 
natural measure of dissymmetry n. in view of this definition, is obtained 
by performing a rotation of the translation-normalized contour about 
the origin over angles m{2nln) for in = 1 n - 1. and by measuring 
the dissimilarity between the original and the rotated contour after 
each rotation. The results of these n - I dissimilarity measurements are 
subsequently averaged to obtain a global measure of dissymmetry n. 
This approach is conceptually related to that of Perkins [1978], while 
further analysis will reveal that the approaches of Zahn and Roskies 
[1972] and Burkhardt [1979] belong to the same class. 

We now formulate our proposition for a measure of dissymmetry n. 
which is based on the property of contour representations of n-fold 
rotationally symmetric contours, expressed in Eq. 2.4.3. We will do this 
in two steps. First we define the m-th component of dissymmetry n and 
subsequently we define a global measure of dissymmetry n by averaging 
over the components of dissymmetry n. 

Definition 4.14. m-th component of dissymmetry n of index p. 
Let ƒ act as a generic symbol for any of the contour representations z. 
'z. z, i/' and K. Then the m-th component of dissymmetry n for a contour 
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•'. with contour representation/, ƒ e L' '(2.T). is defined as (cl. Eq. 2.4.3): 

^\fin,m)=\\f*-ïïma,lH)%nP_,ln)r\\^ 

meZ. IsSpsSoc. (4.5.S) 

where ƒ * is related to /as given in Eq. 4.2.1 and Eqs. 4.2.12 and 4.2.21. 

D 
[f ƒ Stands for z. z, z or K. then ƒ is the translation- and scale-nor

malized version of/. If/ stands for '/'• then/* is a normalization of/ 
to a version with contour average zero. Recall from Section 2.4 that 
2.T//I is the elementary angle of rotation of an /i-fold rotalionally sym
metric object. The /?i-th component of dissymmetry n. </''"(ƒ"• n. in). 
measures the dissimilarity between a contour and a version of that 
contour, rotated over an angle m(2nln). in e Z. We note the following 
properties of trp'(f4, it. in). From the properties ol ƒ mentioned above 
it follows that ép)(f; it. in) is invariant for the position and size of the 
object. It is easily verified that </""(ƒ; n, in) is also invariant tor the 
orientation ol' the object and for the position of the parametric starting 
point on its contour. If a contour possesses symmetry n. then it follows 
from Eq. 2.4.3 that </""(/; n. in) = I). V/>; e Z. We also note that 
</''"(/: ;/. m). considered as a function on Z . is periodic, with period n. 
and that it is an even function, i.e. 

</""(/: n. in) = </""(/• n. -in). V/;; e Z. (4.5.9) 

Furthermore. </""(/: n. in) = (I if in - (I mod n. 
Since an «-fold rotationally symmetric contour comes into coinci

dence with itself after a rotation over any multiple of Ircln. we measure 
(/(/"(/; n. in) over all multiples of 2.T//I in a range of length 2.7. i.e. lor 
m = I n — 1. With these measurements we obtain a global measure 
of dissymmetry it by averaging over the d['"(f: n. in). 

Definition 4.15. Measure of dissymmetry n of index pair l/>. q). 
Let / a c t as a generic symbol for any of the contour representations ;. 
2. 2, i/' and K. Then a measure of dissymmetry it of index pair (p. q) 
for a contour y. with contour representation f, f e L' '(2.T). is defined as 
(cf. Eq. 2.4.3 and Definition 4.14): 



MEASURES OF SYMMETRY 259 

</"'<"( ƒ : / ) = (). (4.5.10a) 

= Y {d^(J-n.,n)}" 
n- \ ,„ = | 

r | n - i 
= „ , L \\f* ~ &m(Ztfn)®-m(2xlit)f* 

(4.5.10b) 

for 1 ^ p.q « x . 

D 
For /i = 1 we have the trivial case of rotational symmetry. Therefore 

we defined d*p■'"(ƒ; 1) = 0 in Eq. 4.5.10a. 
In Eq. 4.5.10b we used the generalized mean for averaging over the 

values d[''\f; n, in) (cf. Beckenbach and Bellman [1971], Abramowitz 
and Stegun [1972]). 

In the generalized mean the index q can assume any real value. It is 
easily verified that the generalized mean contains the arithmetic mean 
(q - 1). the geometric mean (lim,,_.„) and the harmonic mean (q - - 1 ) 
as special cases (cf. Beckenbach and Bellman [1971], pp. 3-19, Ab
ramowitz and Stegun [1972], p. 10). 

In the context of our application we have limited the range of q (cf. 
Eq. 4.5.10b). This is necessary since for g =£ 0 we always obtain 
el"'- '"(ƒ; n) = 0 if </""(ƒ; if, in) = 0 for some m ± 0 mod n. This means 
for example that if we arc measuring 12-fold rotational dissymmetry 
for a contour that has only 6-fold rotational symmetry, wc still find 
</"""(ƒ: 12) = 0 for q « 0. Clearly, for q ^ 0 the measure of dissym
metry n in Eq. 4.5.10b would not satisfy the requirement that it should 
only assume the value zero if the contour possesses rotational symmetry 
n. 

The interpretation of varying the value of the index q in </*''■'''(ƒ; /;) 
is as follows. For q — 1, the arithmetic mean, we have a very global 
averaging over the values cl{l"{f; n, in). The larger the value of the 
index q, the more sensitive é'K '"(ƒ; «) becomes for the largest value 

n 2* 2. 
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among the values d{''\f; n. m). The indices /; and q in tl'r ' ' '(/: n) are 
independent parameters that emphasize different aspects in the mea
sure of dissymmetry n. Therefore the case /; = </ has no special interpre
tation. although it leads to some computational simplifications 
(cf. Eq. 4.5.10b). 

We now check whether d,!''"(f; n) possesses the properties that we 
require for a measure of dissymmetry n. 

Since the values </''"(/: a, m) are invariant for the position, size and 
orientation of an object and for the position of the parametric starting 
point on its contour, it follows from Definition 4.15 that the same 
properties are valid for </'''■'''(ƒ: n). 

Eq. 4.5.1(1 shows that <l(r■'"(ƒ: n) = 0 iff (/''"(/'• n. m) = (I for m = 
1 n- 1. n 2= 2. It follows from Eqs. 2.4.2 and 2.4.3 and from 
Definition 4.14 thaW/""(/':/».»/) = 0 for »i = I n - I if the contour. 
represented by/ , is n-fold rotationally symmetric. If the contour is not 
It-fold rotationally symmetric, then d''"{f: n, in) > 0 at least for all in 
that are prime to it. (A number a is called prime to a number /' if 
GCD(«. b) = 1. Shanks [l%2].) Since I is prime to any n 3= 2. we find 
that (!''"(/: n. 1) > 0 if the contour, represented by /. is not n-fold 
rotationally symmetric. 

From these observations we conclude that dlp- **(ƒ; n) = (• iff the 
contour, represented by /. is n-fold rotationally symmetric and that 
(/''' '"(ƒ: n) > " if it is not n-fold rotationally symmetric, and therefore 
that tl'r''''(ƒ: ") possesses the properties that we require for a measure 
of dissymmetry n. 

The range of values that (l{'''n(f: n) can assume is analyzed as follows. 
Recall that dun(f: n. in) = t) for m = 0 mod n. Using/*" = -I/JJ. Eq. 
4.2.1. and applying Minkowski's inequality (cf. Appendix A) to Eq. 
4.5,10b yields 

épi\f;n) 

r i --' i"" 
= , I \\ty*%-f- •^:,,I^-,„:,„r',-'V/"li;: 

= 2://(.|r/,./||p, „^2. r 
n- 1 i w^m 

m = I 

(4.5.11) 
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Since we proposed in Section 4.3.2 that .7;( = | |%'/ | |p , when/'stands 
for z, z. z or K, we find for the range of é''''\j\ //): 

</"'•'"(ƒ;/!) « 2, 0 2. (4.5.12) 

The measure of dissymmetry n, d{l''"(f; n). can be rewritten into a 
form, that leads to a reduction in computational complexity by a factor 
2. for ;/ odd. and a factor of almost 2, for n even. Using the «-period
icity and the evenness of the values du"(f: n. m), Eq. 4.5.9. we derive 
for é1'■''*{/; n) the expressions: 

dIIK'"(/;/») = 

(n- l ) /2 

" _ I m=\ 

2 'Y U'i'V- ''•'»)}" 
" _ ' HI = I 

n- 1 rf""(/;/i. n/2) 

for;; odd. 

(4.5.13a) 

for neven. 

(4.5.13b) 

In practice, a measure of dissymmetry n is computed from /V equidis
tant samples of the contour representation, resulting in a discrete mea
sure of dissymmetry n. cl(,''"[f; n\. It follows from Eq. 4.2.48 and Defin
itions 4.14 and 4.15 that the computational complexity of 
d(,'''][f; n] is O(nN) for each of the individual contour representations 
indicated by ƒ. Though, in practice, the expressions for cf'•'''(ƒ: n) in 
Eqs. 4.5.13a and 4.5.13b lead to a reduction of the number of compu
tational operations, they do not affect the order of magnitude of the 
number of these operations. 

In the special case of p = 2 wc can rewrite d'p '''(ƒ; /») into a form in 
which the computational complexity is dominated by the computation 
of the cyclic correlation function off*. For appropriate values of N, 
the number of contour representation samples. d(2'"[j\ n\ can be com-
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Figure 4.26a. Results ol the measuremcni ol dissymmetry n. lor n = 2 16. lor contour ;•< 
irom Figure 4,23. The measure ol dissymmetry « used is d" ' | /: n\. with (/>. </) = (2. 2i; / stands 
for the contour representations 2 i and K*. respectively. 

piited in ()(N log:A' + /i) arithmetic operations, using the FFT al
gorithm to compute the cyclic correlation function (cf. Section 4.2.4). 
0{N \og:N + n) is equivalent to 0(N log :.\'). since for useful measure
ments N has to be larger than n. Whether this method of computation 
is more efficient than the direct computation of <7i: '''[ƒ: n], with a 
computational complexity of ()(n.\). merely depends upon the actual 
values of n and N. 
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To test the performance of the measures of dissymmetry n proposed 
in this section, we perlormed an experiment with the set of contours 
{/, 7 , : j . shown in Figure 4.23. which was also used in an experi
ment with the measures of dissymmetry m. All contours in this set are 
6-fold rotationally symmetric. In Figures 4.26a and 4.26b the results of 
d(l''"[f; n]. with index pair (/;. q) = (2. 2). are shown for the contours 
y$ and y,, respectively. We performed the measurement for the orders 
of rotational symmetry n = 2,..., 16 and for the contour representations 
z. z, z. (/■ and K. We observe some remarkable phenomena from this 
experiment. 
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Figure4.26b. Results ol the iiicasiiri.-iiii.-ni ol dissymmctn n, MI ;/ = 2. ,,, 16. for contour ;. 
from ligurc 4.23. The measure ol dissymmetrj n used is, / ' "\i. n\. with (/>. </) = i2. 2): I stands 
for the contour representations a,, a,, r,. >'u und A... respectivelj 

First we note that a 6-fold rotationally symmetric contour has also 
symmetry 2 and symmetry 3. In general, il' a contour is //-fold rotation-
ally symmetric, then it has also rotational symmetry ol all orders. 
greater than 1. that are divisors of n. 

Next we observe from the results in Figures 4.26a and 4.26h that we 
have obtained relatively low values for the measurement of di-ssvm-
metrv 12. This is caused by the 6-fold rotational symmetry of the con-

http://iiicasiiri.-iiii.-ni


MEASURES OF SYMMETRY 265 

2 T 

a'"'tvalni 
1.5 

1 ■ 

0.5 

_CL rp * * — +■ — t » — f — + — 4-
2 3 i 5 6 7 8 9 10 11 12 13 It 15 16 

—► n 

2 

t '* 
7 

0.5 

1 + — + — * 4 — ♦ — I t — f — t — »■ — * — + — t 
2 3 i 5 6 7 8 9 10 11 12 13 H 15 16 

tour and the fact that 12 is a multiple of 6. To see the effects of this 
upon the measurement of dissymmetry 12 we analyze ép' '''(ƒ; 12): 

d"' ■'"(ƒ; 12) 

II X {./""(ƒ; 12./»)}" 
m= i 

' £ {,/n./-12.2m)}"+ ' E{^( / ;12 .2m-D} ' 
• «I = 11 i» = i 

(4.5.14) 
HI = i 
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If i' e N is a common divisor of both n and m. then (cf. Eq. 4.5.8): 

</""(ƒ: M . / » I ) = </""(./": '',■'")■ (4.5.15) 

Using this property. Eq. 4.5.14 can be rewritten as 

d'1' '''(/'; 12) 

' t {^/""(/:6.»'))"+ ' t {,/""(ƒ: 12. 2 , „ - l ) } " 
11 „, = i 11 ,„ = i 

,V!'/"'"V^)}"+ ' t {<i""(f: 12. 2m- 1)}' 

(4.5.16) 

For a 6-fold rotationally symmetric contour </'''"(ƒ: 6) = 0 and Eq. 
4.5. 16 reduces to 

</''""(ƒ: 12) = 
11 

£ (/"(ƒ; 12,2m- !)}'■ 
.... i 

(4.5.17) 

which explains the relatively low value of </'''■'''[ƒ: 12) in Figures 4.26a 
and 4.26b. where we used (p.q) = (2. 2). 

In general, if a contour has rotational symmetry n. then this influ
ences the measurement of dissymmetries for that contour of orders that 
are multiples of n. However, we can limit this effect by increasing the 
value of q. For example, the larger the value of q, the more the value of 
f/1''"'''(./; 12) will be influenced by the largest component of dissymmetry 
12 among the values </""(ƒ; 12. 2m - 1). m = 1 6. and thus, the 
smaller the influence of d"' '"(ƒ: 6) = (I (cf. Eq. 4.5.16). 

In addition, we remark that the property mentioned in Eq. 4.5.15 
can be used effectively to reduce the number of computations when 
(jU'- </![ƒ. „ | n a s t o be computed for several values of n. 

A second important observation resulting from our experiments on 
the measurement of rotational dissymmetry concerns the relation be-
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tween the order of rotational symmetry n and the number of contour 
representation samples N. Though the contours in our experiment all 
are 2-, 3- and 6-fold «nationally symmetric, we found for dl21)[f; 3) 
and é2'2)\f\ 6| always substantially higher values than for éz,2\f\ 2\. 
This is caused by the fact that neither 3 nor 6 are divisors of N = 512. 
as opposed to 2. The values of cl':2'[z: 3], when expressed in units of 
sample distance along the contour, are 0.333 for all 12 contours in 
Figure 4.23. II the order of rotational dissymmetry to be measured is 
not a divisor of the number of contour representation samples, then the 
starting point shifts in the discrete measures of dissymmetry n. </(/' ' ' ' |/ ';it], 
have to be rounded to the nearest integer number of samples. In each 
of the two starting point shifts in é2'2\z\ 3] this rounding is over V>rd 
of a sample distance, which explains our results and at the same time 
confirms that the contours in this experiment may be considered as 
polygons at the level of a single sample distance for N = 512. 

If we wish to measure rotational dissymmetry of contours for a 
number of orders n, then a rounding of starting point shifts is hard to 
avoid. For example, for measurement of dissymmetry n of all orders 
up to 16 we would need as many as 720720 contour representation 
samples! In the special case of p =■ 2 the measure of dissymmetry 
d{'K '''[ƒ; n] can be computed via the Fourier domain (cf. Eqs. 4.5.10b 
and 4.2.42). where a starting point shift results in a phase shift in the 
Fourier coefficients. In floating point arithmetic these phase shifts can 
be executed with great precision. On the other hand, we found in our 
experiment that, even if we disregard the effect of rounding starting 
point shifts, the discriminative power of the measures of dissymmetry 
n for the presence or absence of rotational symmetry remains sufficient. 

As a figure of merit for the discriminative power of a measure of 
dissymmetry n for a certain contour y we can use the proportion 

min </"'-'"I/;H| 
in: ydocs nol haven) 

max cIl,K,l)[f\n] 
{n: Y has n! 

i.e. the proportion of the minimum value of dissymmetry, taken over 
all orders of rotational symmetry that a contour does not have, and the 
maximum value of dissymmetry, taken over all orders of rotational 
symmetry that a contour does have. Since all contours in our experi-
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ment are 6-fold rotationally symmetric and d{--'\f: n] was measured for 
all orders of rotational symmetry n up to 16. d{~ '[ƒ: n\ was minimized 
in the numerator of this proportion over n = 4. 5. 7 16. and was 
maximized in the denominator over n = 2. 3 and 6. 

In Table 4.12 we have listed the minimum and the maximum values 
of this figure of merit that we found in our experiment for the contour 
representations z, 'z. z, i/' and K. From this table we observe that the 
discriminative power of d': :'\z: n\. d'-:'\'z: n\ and d': : '['/" : "I- l o r 

the set of contours in Figure 4.23. is similar. The performance of 
d{::'\z:n\ and especially of d'::'[K:n\ is much worse. This is again 
caused by the difficulty of obtaining a reliable estimate for z or K il the 
contours are not sufficiently smooth. Not surprisingly, the maximum 
figures of merit for d'z :i\z:n\ and d': 2)\K:n\ occur for the smoothesl 
regular contours in our test set (yA and '/-. respective!) ). 

We can use the proportion 

max d''"r\j:n\ 
n i luc- nul hilVl n 

min Ji'^lf-.n] 
',n j'docs nol have n 

as a measure o\' the variability of d'r ',]\j\ n\ for orders of rotational 
symmetry that a contour ;• does not possess. 

In this experiment, with index pair (p. q) = (2. 2). this variability is 
relatively low in comparison with the figures of merit in Table 4.12. 

Table 4.12. Maximum and minimum liiiiircs of merit <>i measures ol dissymmetry n. 
for n up to 16. found experimentally for the contours in Figure 4.2.>. The contours i*>r 
which the maxima and minima occurred are given in parentheses. 

Measure ol dissymmetry n 

it- :'|--: n\ 

<e-->[z;n] 

<T-*\t.n] 

</' : :1v.»l 
,P::'\K:n\ 

Minimum Figure ol merit 

15.57 ,;■.! 

19.56 .; ■ i 

5.56 (;■ ) 

I4.IMI ( ; „ | 

1.19 i; i 

Maximum Figure of merit 

52.3V (•/,,) 

38.48 i; 

13 69 I-,) 

51.81 i; i 

21.09 i;- i 
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It ranges from 1.001 for é2-Z)[K;n] (for ys and y9) to 1.418 for 
dc 1]\'z; n\ (for 77). The figures of merit for the measures of dissymmetry 
n would improve substantially in this experiment (at least by one order 
of magnitude) if we choose the number of contour representation sam
ples to be a multiple of 6. 

Based on the results just mentioned we may draw the conclusion that 
we have derived a powerful family of measures of dissymmetry n. For 
the contours in our test set the measures based on 2, 2 and 1/' all perform 
very well. There seems to be no preference as to which of these contour 
representations is most favorable. If we wish to measure dissymmetry 
n on the basis of z or K. then a contour must be sufficiently smooth. 
Otherwise 2' and K should not be used. 

In practice, rotational symmetry will only be of interest up to a cer
tain maximum order. All rotational symmetries of higher orders than 
this maximum are taken to be °°-fold. and the contour with this prop-
city is considered to be a circle. This maximum order of rotational 
symmetry of interest depends on the application at hand and on the 
two-dimensional sampling resolution used. In an inspection system for 

Figure 4.27. 30-fold rotational symmetry in the outer contour of the escapement wheel (a) of a 
clock Ulead beat escapement). The center of symmetry is formed by the center of the pivot of the 
escapement wheel. Note that the internal contours of the escapement wheel have a 5-fold rotation
al!) symmetric arrangement (from: De Carle [ I W | . p. III). 
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industrial parts, Perkins [1U7,S| considers rotational symmetries up to 
the order 16. as we did in our experiment. However, situations exist 
where considerably higher orders of rotational symmetry are of interest. 
Consider for example the outer contour of the escapement wheel of a 
clock in Figure 4.27. having 30-fold rotational symmetry on its outer 
boundary. Note that the crossings in the escapement wheel only lead 
to a 5-fold internal rotational symmetry. 

Most propositions for the measurement of dissymmetry // in a contour 
that can be found in the literature are on the basis of a Fourier represen
tation of that contour. Therefore we will also define such measures and 
discuss the relations of these measures with the propositions in the 
literature. This can be done along the same lines as we defined dissimi
larity measures based on the Fourier representations of contours in 
Section 4.2.3. 

Definition 4.16. m-th component of dissymmetry n of index /> based 
on Fourier representations. 
Let /be the Fourier representation generated by a contour representa
tion /. where ƒ acts as a generic symbol lor the contour representations 
:. ':. :. </• and K. Then the m-lh component of dissymmetry n for a 
contour v. with Fourier representation /'. /' e (rCZ). is defined as (cf. 
Eq. 3.6.3): 

</""(ƒ: n. m) = ||/* - .•7,,, i :,„,./U>n,P|| /, m e Z. ! « , ; « - / . . 

(4.5.IS) 

where/* is related to ƒ as given in Eqs. 4.2.3N and 4.2.39. 

D 
This definition is completely analogous to that of d'r'{f: n. m) in 

Definition 4.14. It is easily verified that all properties that we derived 
for d"''(f: n. m) also hold for d""(f: n. m). In analogy with the definition 
of d'1'■'''(ƒ: //) in Definition 4.15. we obtain a measure ol dissymmetry 
n based on the Fourier representation f bv averaging over the 
d'>"(f: n. m). 

Definition 4.17. Measure of dissymmetry n of index pair (p. q) based 
on Fourier representations. 
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Let ƒ be the Fourier representation generated by a contour representa
tion ƒ*, where ƒ acts as a generic symbol for the contour representations 
z, 'z, z, V' and K. Then a measure of dissymmetry n of index pair (p. q) 
for a contour y. with Fourier representation ƒ, ƒ e £7'(Z). is defined as 
(cf. Eq. 3.6.3 and Definition 4.16): 

</"""(ƒ; 1) = 0 , (4.5.19a) 

' lV'(./: ..«)}« 
n - i „, = i 

// 

n - 1 

_ , L II/* 3fli(2a/ji.)̂ »i(2a/ir) ƒ* lip 
m= I 

for 1 />. q 

(4.5.19b) 

D 

The required invariancc of dir''}(f; n) for the position, size and orien
tation of an object and for the position of the parametric starting point on 
its contour can be derived in the same way as we did for </'''• '''(ƒ; n). 
Similarly it can be derived that dir'n(f; n) = 0 iff the contour, rep
resented by/', is n-fold rotationally symmetric and that d{''■'''(f;n) > 0 
otherwise, as required. 

For the range of <7(/' '"(ƒ'; n) we find, through Minkowski's inequality 
for sums (cf. Appendix A), results that are completely analogous to the 
corresponding results for d{'''<'(f: n) in Eqs. 4.5.11 and 4.5.12. Also for 
the properties in Eqs. 4.5.13a-4.5.17 analoga in terms of ƒ can be de
rived. The effect of varying the value of the index q in d{,''l\f\n) is 
identical to its effect in (/''''"(f; n). 

We will now take a closer look at d(l' '"(ƒ; n) and exhibit the resem
blance of these measures to the propositions for a measure of dissym
metry n by Zahn and Roskies [1972] in Eq. 4.5.6, and by Burkhardt 
[1979] in Éq. 4.5.7. 
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First. Iet /stand for any of the Fourier representations i. f or f. Then. 
after substitution of the representations of the similarity operators 
.)„,;,„, and i'„,i:.7nl (c'f. Table 3.2). we obtain for d'<' '•"(/': n): 

ci"'•'"(./: ») 

" ~ • » r l U f Z 

n - 1 

II — 1 
I ■ I ( | l - e " " * ",: |'"-|/ (A)!') 

Since 

(4.5.20) 

, _ c- ,u wanmm = (l ,.,r k = | m o d „ (4.5.21) 

we obtain for Fq. 4.5.2(1: 

I j - (||-c-^'"^'""f . | / (A,|'") 
A • : 

* ' 1 mod n 

(4.5. 

In this equation we see that the summation over k in </ ' ' ' ' ' ( / : '») 
involves only those Fourier coefficients that are zero-valued for an /»-
fold rotationally symmetric contour (cf. Table 3.6). In this respect 
</''"( /': ;i) is similar to the propositions by Zahn and Roskies [1972] and 
by Burkhardt 11979). For the special case of index pair (p. (/) - (2. 2) 
it is straightforward to derive that d{''•'"(ƒ: n) reduces to: 

cP-\j\n) = 
- i . 

-). I Yrmf 
k*Z 

k -*• I moi i n 

(4.5.23) 
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which confirms the similarity with the proposition in Eq. 4.5.7 even 
more. Similarly, let g stand for any of the Fourier representations xp or 
K. Then, in analogy with the foregoing, we obtain for ép'q\g', n): 

é"«\g\n) = 
I n - l 

T £ (|l-e-*»rt*"|'-|r(*)r) 
keZ 

^k * O m n d i i 

* - [ * 

(4.5.24) 

which reduces, in the special case of index pair (p. q) = (2, 2), to: 

cf-'\g;n) = 2- I Irwf 
fceZ 

k * II mod ii 

(4.5.25) 

If we compare Eq. 4.5.25 with Eq. 4.5.6 the resemblance between 
«./(/>• </>(£; „) a n c] the proposition for a measure of dissymmetry n by Zahn 
and Roskies [1972] is obvious. 

In practice, a measure of dissymmetry n, based on a Fourier rep
resentation ƒ. is computed from a finite set of N Fourier coefficients, 
resulting in a discrete measure of dissymmetry n. clil''')[f\ n\. It follows 
from Eqs. 4.5.22 and 4.5.24 that the computational complexity of 
(/</>. -/)[ƒ. rt| j s 0(/i/V). not taking the complexity of the computation of 
the N Fourier coefficients into account. Thus, the order of the compu
tational complexity of ép'q)\}\ n] is the same as that of é"'*\f\ n\. 

In the special case of p = q for the index pair (p, q), the computa
tional complexity of d{'K'!\f; n\ can be reduced to 0(n2 + N) (cf. Eqs. 
4.5.22 and 4.5.24), which will usually be smaller than O(nN). 

Another special case constitutes p = 2. It follows from Eqs. 4.5.8 
and 4.5.18 and from Parseval's formula (cf. Eq. 4.2.42) that: 

dr-'(f; n, m) = d{2\f\ n. in), \/f e L2(2.T). (4.5.26) 

With this result we may conclude from Definitions 4.15 and 4.17 that 

cl,2,l){f;n) =d{2"\f\n), n& 1. 

1 =S q « «>, V / e L 2(2.T) . (4.5.27) 
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Therefore the computational complexity of d'- 'n\ /': n\ is the same as 
that otéz-q\f;n\. 

In the special case of index pair (p. q) = (2. 2) we find from Eqs. 
4.5.23 and 4.5.25 that the computational complexity oi d': :'\f: n\ is 
0(i\). Note that the computation of the N Fourier coefficients ma\ 
dominate the complexity of the computation of </''' ' ' '[/: /i|. 

We remark that, in view of the properties o( the Fourier representa
tions of an n-fold rotationallv symmetric contour. 

I In*)I 
keZ 

-k * I mod n 

\^P (4.5.28) 

can be used as an alternative measure of dissymmetry n of index p 
based on the Fourier representation ƒ. where / stands for any of the 
Fourier representations i . i: or J:. 

Likewise. 

I Iml 
■ k * " m n i l ; i 

(4.5.29) 

where (' stands for the Fourier representations y or A', constitutes such 
an alternative measure. These alternative measures, on the other hand. 
cannot be given a direct interpretation in terms of dissimilarity between 
the original contour and the contour after a symmetry transformation. 
as can be done for d''1,'"(/'; «). the measure of dissymmetry n proposed 
in Definition 4.17. 

4.5.3 Concluding remarks on symmetry measurement 

In the previous two sections, we defined measures of dissymmetrj //; 
and dissymmetry n. In Definition 2.N we described symmetry n in or 
n-fold compositional symmetry as the joint occurrence of symmetrj n 
and of symmetry m in a figure. A measure of dissymmetrj nm can be 
obtained by combining the results of measuring dissymmetrj » and 
dissymmetry m in an appropriate way. 

In this thesis we have discussed only those types of symmetry that 
may occur in a single plane figure, and more specifically, that may 
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occur in a plane simple closed curve. Symmetry was defined as the 
property that a figure comes into coincidence with itself after a sym
metry transformation. We based a quantitative evaluation of the extent 
to which a certain type of symmetry is present in an object on the mea
surement of the dissimilarity between the original object and the object 
after the symmetry transformation. This provided us with the measures 
of dissymmetry. 

This principle of quantitative evaluation of symmetry can also be 
applied to other types of plane symmetry, that involve more than one 
contour. For example, mirror-symmctric and/or rotationally symmetric 
arrangements of figures may occur in the plane (consider the arrange
ment of the internal contours in the escapement wheel of a clock in 
Figure 4.27). Also combinations of translational symmetry and/or mir
ror-symmetry in bands and networks can be encountered. The latter 
types of symmetry are frequently encountered in the creative arts and 
in architecture. We refer to Shubnikov and Koptsik [1974] for a theoret
ical account of such types of symmetries. This reference also contains 
numerous examples. A rich source of examples of symmetry in arrange
ments of figures is provided by the work of M.C. Escher (cf. MacGilla-
vry [1965], Escher et al. [1972]). 

A quantitative evaluation of the extent to which a certain type of 
symmetry is present in an arrangement of figures in the plane can be 
achieved through a straightforward generalization of the principle of 
symmetry measurement proposed in the previous sections. That is, we 
perform the symmetry transformation upon the figures in the arrange
ment and measure the dissimilarities between the figures in the original 
arrangement and in the transformed arrangements, which should have 
come into coincidence with each other if the given type of symmetry 
were present in the arrangement of figures. If necessary, this process 
is repeated for various realizations of the symmetry transformation. An 
appropriate method of averaging over the dissimilarity measurements, 
resulting from the individual symmetry transformations, will yield the 
required measure of dissymmetry. 

Through this discussion we have indicated that the general principle 
of dissymmetry measurement, described in the previous sections, can 
be extended to apply to a wider class of symmetries. As we have just 
described the general ideas of these extensions, we will not elaborate 
on this topic any further. 
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4.6 Concluding remarks 

In the previous sections of this chapter we have presented a detailed 
study of (mirror-)dissimilarity and dissymmetr) measurement, based 
on parametric contour representations. After some introductory consid
erations on dissimilarity measures in Section 4.1. families of (mirror-) 
dissimilarity measures were introduced in Section 4.2. Our proposals 
generalize a number ol proposals in the literature, to which we referred 
extensively. 

An evaluation of the computational complexities of various forms o( 
the (mirror-)dissimilarity measures in Section 4.2.4 led to a study of 
contour normalization methods in Section 4.3. Orientation and starting 
point normalization techniques mainl\ aim at a reduction of computa
tional complexity. General rules for contour normalization methods 
were formulated: uniqueness of the normalization result and idempo-
tentness of the method for already normalized objects/contours. 
Though these rules constitute necessary constraints for useful normali
zation methods, they unfortunately do not lead to unique methods. 
Two major classes of normalization methods were identified: those 
based on moments and those based on Fourier coefficients, h was 
shown that, from a theoretical point of view, the methods based on 
Fourier coefficients are better adapted to contour representations. De
spite the fact that moments do not offer the possibility to normalize the 
parametric starting on a contour, they seem to perform well for the 
normalization of contour position and orientation. We made clear that 
tlie inverse of the norm of the contour representation, on which the 
(mirror-)dissimilarity measure is based, is an appropriate scale normali
zation parameter. 

In Section 4.4 the properties of the families of (mirror-Jdissimilarity 
measures and the relations between them were studied. Also some 
experimental evidence for their properties was obtained. Clustering 
experiments on dissimilarity measures revealed that the order of dif
ferentiation of a contour representation is a major distinguishing factor 
for the behavior of these measures. It also became clear that great care 
must be taken if one wishes to use the contour representations z or K 
(second order differentiation) for dissimilarity measurement because ol 
the high noise sensitivity of these representations. 

Finally in Section 4.5 we introduced methods to quantify the extent 
of mirror- and rotational symmetry in plane objects. By using 'coming 
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into coincidence with itself upon a symmetry transformation' as a defini
tion of symmetry, the concept of (mirror-)dissimilarity naturally came 
in. This enabled us to use the previously defined (mirror-)dissimilarity 
measures as elements in newly defined families of dissymmetry mea
sures. The effectiveness of these measures was demonstrated in an ex
periment. 

In conclusion we can state that this chapter has led to the formulation 
of a theoretically consistent framework for dissimilarity measurement 
between contours and for dissymmetry measurement in contours, which 
can be tailored easily to specific applications. 
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Chapter 5 

Discussion 

This discussion concentrates on the general characteristics of the ap
proach to shape analysis in 2-D imagery that was presented in the 
foregoing chapters. We will establish both the merits and the limitations 
of the approach and indicate some routes to possible extensions to 
overcome these limitations. 

We will also mention some open problems that deserve attention. 
both in the context of the approach presented here and in the context 
of digital shape analysis in general. 

5.1 General characteristics of the contour-oriented approach to digital 
shape analysis: merits and limitations 

Two main topics dealt with in this thesis are the quantification of 
(mirror-)similarity between 2-D shapes and of symmetry in individual 
2-D shapes. In order to do so we needed a representation for shapes. 
The first step was to consider shape information to be concentrated in 
the shape's contour(s). Next wc identified five information-preserving 
contour representations, three of which are complex-valued, i.e. z, z 
and z. and the other two are real-valued, i.e. y< and K. In this context 
information-preserving means that the contour can be reconstructed 
exactly from the representation, possibly up to a translation, rotation 
or a scale factor. In Section 2.1 we have shown that some other contour 
representations that have been proposed in the literature, i.e. /(/), r'{i) 
and /?(£). have undesirable properties, for which reason we did not 
take them into consideration any further. 

The foundation for the definition of measures of (mirror-)similarity 
was laid in Section 2.3 by defining shapes to be (mirror-)similar if they 
can be mapped into each other by means of (mirror-)similarity transfor
mations. In Section 4.2 we used norms on differences between contour 
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representations as a measure of the extent to which the shapes fai led 
to come into coincidence wi th each other, thus def ining (mirror-)dissi-
mi lar i ty measures. One of the merits of our way of formulat ing (mir-
ror-)dissimi lar i ty measures is thai it brings together a number of earlier 
proposals in the l i terature under a general theoretical f ramework with 
well-established roots in mathematical analysis. The generality of this 
f ramework provides ample room for tuning (mirror-Rl issimi lar i ty mea
surement to part icular circumstances and applications. 

In the (mirror-)dissimi lar i ty measures defined in Section 4.2 we op
timized the or ientat ion and the parametric start ing point of one contour 
wi th respect to the other. This led to a considerable computat ional 
complexi ty, especially for measures based on or ientat ion variant con
tour representations. By normal iz ing or ientat ion and starting point the 
computat ional complexi ty can be reduced to the order of the number 
of contour representation samples. A n in-depth discussion on this sub
ject was presented in Section 4.3. where a general scheme for or ienta
tion and starting point normal izat ion based on Fourier coefficients was 
described. Ma jo r dangers of normalizat ion are that the solution is not 
unique or that the solut ion found is close to other solutions (in terms 
of satisfying the normal izat ion cr i ter ia). In these cases addit ional con
straints are needed and i l may even be more desirable to opt imize 
or ientat ion and start ing point over a l imi ted set of normal izat ion candi
dates. O n the other hand, tremendous changes wi l l occur in the years 
to come in terms of the computat ional power available. Mult iprocessor 
architectures (cf. e.g. Uhr [ I9S4]) wi l l al low many operations to be 
executed in paral lel . This wi l l call for a reassessment of the t ime com
plexity of various computat ional tasks and ma) make an opt imizat ion 
of or ientat ion and start ing point feasible in practical shape analysis. 

For symmetry measurement we took a route that is completely 
analogous to the one used for similarity measurement. Ou r def in i t ion 
ol symmetry emphasizes that symmetric shapes come into coincidence 
wi th themselves upon the appropriate symmetry t ransformat ion. This 
def in i t ion has put symmetry measurement in the same perspective as 
similar i ty measurement. In fact, the measures of (mirror-)dissimi lar i ty 
formed the basis for measures of dissymmetry, introduced in Section 
4.5. For each type of symmetry, the measures of dissymmetry express 
the extent to which shapes fail to come into coincidence w i th themselves 
upon the associated symmetry transformations. Thus we created a gen
eral theoretical f ramework for the measurement of symmetry m and 
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symmetry n that is quite similar to the theoretical framework for (mir-
ror-)similarity measurement. A major difference is that the concept of 
a metric is meaningless in the context of symmetry measurement. Our 
approach to symmetry measurement can be extended to other types of 
plane symmetry in a straightforward manner. 

Fourier representations pervade the literature on contour-oriented 
shape analysis (usually under the heading: Fourier descriptors). Some 
important observations concerning the usefulness of Fourier represen
tations can be made on the basis of Chapters 3 and 4: 

• Fourier coefficients can be useful for contour normalization (cf. 
Section 4.3). 

• Computational efficiency of dissimilarity and dissymmetry mea
sures can be achieved through the Fourier domain, using FFT tech
niques. if we choose the value of the index /; = 2 (cf. Sections 4.2.4, 
4.5.1 and 4.5.2). 

• The Fourier representations of z(l), 'z(l) and z(t), with (normalized) 
arc length parameter l, contain an infinite number of nonzero elements 
(cf. Section 3.3). 

• For a given level of approximation precision finite Fourier represen
tations are often not an appropriate means of data reduction in com
parison with direct representation in the contour domain (cf. Section 
3.4). (Data reduction has always been one of the main motivations for 
using Fourier representations.) 

• Each Fourier coefficient inherently contains global shape informa
tion. Therefore shape analysis based on Fourier representations cannot 
be adapted to local shape characteristics. 

• Dissimilarity measures based on Fourier representations introduce 
in general different geometries in the space of equivalence classes ol 
similar shapes in comparison to dissimilarity measures based on direct 
contour representations. This may provide some justification for their 
definition. However, the interpretation of dissimilarity measurement 
based on Fourier representations is far more difficult, thus limiting the 
usefulness of this measurement. 
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From these observations we draw the conclusion that in a contour-
oriented approach to shape analysis dissimilarity measures are prefera
bly defined on the basis of direct contour representations. 

Except for some examples we have assumed throughout this thesis 
that shape analysis is performed on 2-D contours, i.e. simple closed 
curves in the plane, represented by a contour representation with a 
normalized arc length parameter. This causes some limitations: 

(a) no direct link to the 3-D world. 

(h) shapes are assumed to lie simply connected. 

(c) only the shape of simple closed curves can be analyzed. 

(d) shapes are compared on the basis of normalized arc length paramet-
rizations. 

In the following we discuss these limitations and indicate some routes 
to overcome them. 

Ad (a). We have assumed that shape analysis can usefully be per
formed on 2-D contours. For relatively flat objects (e.g. biological cells. 
some industrial parts) this is certainly true. For contours that are projec
tions of 3-D objects onto the imaging plane, our approach has implicitly 
assumed that we deal with perpendicular projections only. It is 
straightforward to incorporate into our model the possibility that a 
contour is the result of skewed projection (cf. e.g. Dirilten and Newman 
[1977], Kanade and Render [1980], Ballard and Brown [19X2]. 
C'yganski. Orr and Pinjo [1983], Brady and Yuille [1984], Cyganski and 
Orr [1985]. Fabcr and Stokely [ 1986). Friedberg [1986]). This additional 
freedom in the third dimension will of course increase the computa
tional complexity of similarity and symmetry analysis. 

Ad (b). Though our approach has assumed shapes to be topologicalb 
simple, many interesting shapes do not have this property (cf. e.g. 
Figures 4.25 and 4.27). To extend our approach to shapes that have 
holes, and possibly even subshapes inside holes, etc.. we have to de
compose such a topologically nonsimple shape into its constituent re
gions or contours and represent the shape by a structural description 
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(cf. e.g. Buncman 11970], Pavlidis [1977a]. Alcxandridis and Klinger 
11978]. Milgram [1979]. Duncan and Andriole [1986]). 

An example of representing a composite shape by a tree structure is 
shown in Figure 5.1. At the level of individual contours our contour-
oriented approach to shape analysis can be applied. The results of shape 
analysis for individual regions or contours can be used at higher hierar
chical levels (using a structural shape analysis approach) to analyze the 
complex shape as a whole. 

Ad (c). In many image analysis applications a shape analysis scheme 
based on simple closed curves may prove to be a serious limitation for 
a number of reasons. Objects may for example be overlapping. In this 
case an outer boundary will consist of segments of the boundaries of 
the overlapping objects. A second reason is the fact that edge detection 
and image segmentation procedures sometimes do not find complete 
shape contours, but only parts of these contours. Furthermore, shape 
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Figure 5.1. Example "i .i composite shape (a) represented b) a tree structure (b). Each node in 
the tree may have various descriptive attributes about the region it represents. Similarly the links 
in the tree, that represent the adjacency relations between the regions, may have descriptive 
attributes. 
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analysis based on complete contours forces us to maintain a constant 
contour sampling density everywhere along the contour that is in accor
dance with the finest shape detail of interest. 

In order to deal with these situations it is desirable to be able to 
analyze the shape of curve segments. We can distinguish two situations: 
one where one segment is completely matched with another segment 
and one where a segment is matched to part of another segment. 

In the former situation the extension of our method is obtained by 
positioning the parametric starting point in endpoints of the curve seg
ments. In dissimilarity measurement we need only to vary the paramet
ric starting point over the two endpoints of one of the two curve seg
ments. If the curve representations describe a curve segment from one 
endpoint to the other, then these representations will, in general, not 
be periodic. If desired (e.g. for Fourier analysis), the curve representa
tions can be made periodic by making them describe a curve segment 
from one endpoint to the other and hack (cf. Impedovo, Marangelli 
and Fanelli [1978]. Dekking and Van Otterloo [1986] and Figure 3.6). 
for which we coined the term retracing. 

The latter situation, where a segment is matched to part of another 
segment (cf. e.g. Turney, Mudge and Volz [ 19S4]) is far more complex. 
Not only do we have to choose an appropriate starting point on one 
curve segment to match with one of the endpoints of an other segment. 
but we also have to determine the appropriate scale of arc length in 
one curve segment with respect to that in an other, thus increasing the 
computational complexity. In the process of matching a curve segment 
to part of an other curve segment Fourier representations cannot be of 
much use since Fourier coefficients contain only global shape informa
tion. as we pointed out earlier. 

In both cases the extensions we propose fit in the context of the 
contour-oriented approach to shape analysis presented in this thesis. 
Ad (d). The choice to use a (normalized) arc length parametrization for 
contour representations was made on the basis of practical considera
tions. In order to limit the number of degrees of freedom in contour-
oriented shape matching processes this is a natural choice that sets a 
clear reference for such matching processes. Yet in some applications 
more llexibility may be desired. For example, some parts of a contour 
may contain more noise than other parts. In that case the contour is 
traversed slower in the noisier parts. Clearly this will have disturbing 
effects on contour-oriented similarity and symmetry measurement 
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based on equidistant contour representation sampling, which assumes 
equal noise characteristics everywhere along the contour. Similar con
siderations apply if the amount of shape detail of interest varies along 
the contour. In the case of varying noise characteristics, contour 
smoothing/filtering, in conjunction with a contour resampling proce
dure. may reduce the problems. In the case of varying shape detail 
along the contour, different techniques are needed. 

One method may be to segment the contour in parts with homoge
neous characteristics in terms of some homogeneity criterion. This 
would enable us to maintain the linear relation between the contour 
segment parameter and arc length and the propositions for shape anal
ysis of contour segments under ad (c) would apply. The results of shape 
analysis on individual contour segments may then be combined to ob
tain a single result, using combinations of metrics as described in Sec
tion 4.1 (e.g. Eq. 4.1.4). or using structural shape analysis techniques. 
similar to those for topologically nonsimple shapes (as referred to under 
ad (b)). 

A second method to overcome problems in contour-oriented shape 
analysis, caused by the (normalized) arc length parametrization of con
tour representations, is to relax this parametrization convention. This 
can be achieved by allowing the relation between the contour parameter 
and arc length to become nonlinear in one of a pair of contour represen
tations in a shape matching process. Such methods are well known in 
l-D signal processing, especially in speech processing (cf. Sakoc and 
Chiba [1978]. Ney [1981]. Kuhn. Tomaschewski and Ney [1981], Ney 
[1982]. Anderson and Gaby [1983]). In analogy with the term lime 
warping in l-D signal processing, we may call this method arc length 
warping in the context of contour-oriented shape analysis. For optical 
character recognition similar methods have been proposed (Fujimoto 
et al. [1976], Burr [1979], CTRourke and Washington [1985]). Recently. 
Cheng and Fu [1987] proposed time warping for matching strings and 
patterns, along with a VLSI architecture to implement this method. 

Dissimilarity measures need to be modified somewhat, when using 
arc length warping methods, in order to preserve the required proper
ties of such measures (cf. Sections 4.1 and 4.2), which may be lost if 
we do not control the increased flexibility in the shape matching pro
cess. This control can be achieved for example by incorporating a 
parameter in the dissimilarity measure that expresses the nonlinearity 
of the relation between arc length and the contour parameter in the 
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matched contour representation. Similar considerations appl) to dis
symmetry measures. 

Another approach to cope with varying detail and noise in contours 
is due to Zack [1982]. He separates a contour into two components: a 
smooth contour with homogeneous global characteristics, thai can jus
tifiably be parametrized by (normalized) arc length, and an additional 
noise/detail component, that can be processed separately. 

5.2 In search of accuracy 

Important open problems still exist in the area of the practical im
plementation of digital image analysis techniques. For example, ques
tions regarding the selection of a 2-D image sampling density and a 
contour sampling density, that will give a specified measurement accu
racy, remain largely unanswered. 

The model that we commonly use for image analysis, and for shape 
analysis in particular, is that of image regions (or objects and 
background) that occupy mutually exclusive regions in the (bounded) 
2-D image plane and whose union comprises the entire image plane. 
Image functions that correspond to this image model with sharply 
bounded regions are not bandlimited. Therefore neither bandwidth 
(Shannon [1949]. Jerri [1977]) nor the maximum absolute curvature 
Aw'im,x of the contours (Young. Walker and Bowie [1974]. Van Otterloo 
and Gerbrands 11978]) can provide a useful criterion for a 2-D sampling 
theorem aimed at information preservation. As a result, the 2-D sam
pling process leads to an inevitable loss of information with respect lo 
our picture model (we are temporarily disregarding the bandlimiting 
effects of physical imaging devices upon the image function). In signal-
theoretic terms the finite sampling density causes aliasing while in 
geometric terms it causes quantization. Some of the effects of finite 2-D 
sampling are the following: 

• It leads to a tolerance region (or domain, cf. Freeman and Glass 
[ 1969]) in the neighborhood of a boundary in segmented digital images. 
Al l contours that fit in this tolerance region lead to the same boundary 
in the segmented digital image. Thus we are confronted with a many-to-
one mapping of shapes. 

• Since the position and orientation of model contours with respect 
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to the 2-D sampling pattern is usually random, a single model contour 
can lead to various contours in the segmented digital image that are in 
general not geometrically similar. Thus we are also confronted with a 
one-to-many mapping of shapes. 

From these observations it is clear that, given a contour in a digital 
image, there is uncertainty about the exact size and shape of the model 
contour and about the exact position and orientation of the model 
contour with respect to the 2-D sampling pattern. 

Bribiesca and Guzman [1980] have proposed to avoid the many-to-
many mapping problem by first normalizing the position and orienta
tion of the object to be digitized, thereby evidently creating a chicken-
and-egg problem in digital image analysis. 

In Section 3.3 we have shown that the contour representations z, 'z 
and z. parametrized by (normalized) arc length, are not bandlimited. 
Since, in practice, dissimilarity and dissymmetry measurement are 
necessarily based on a finite number of contour representation samples 
(cf. Section 4.2.4). the contour sampling process constitutes yet another 
source of information loss. 

As indicated above, also the bandlimiting effects of the imaging de
vice upon the image function result in a loss of information. In fact. 
from a theoretical point of view, each step in the image analysis system 
produces a loss of information. Because of these information losses we 
have to deal with approximations, which must be of sufficient accuracy 
such that the entire measurement process can be performed with the 
specified accuracy. The goal of the measurement process may, for 
example, be dissimilarity or dissymmetry measurement, based on a 
certain type of contour representation. 

To enable an efficient design of an image analysis system (i.e. avoid
ing overkill at various stages) it is extremely important to specify in the 
model of the scenes or objects to be analyzed what we consider to be 
relevant shape detail and what not. It must also be specified to which 
smoothness class we consider contours to belong and, if possible, what 
we consider to be the relevant value of Kmax of these contours, etc. On 
the other hand, to achieve the specified accuracy in the end result it 
may be clear that not only the precision of each processing step must 
be in accordance with the required accuracy of the end result, but that 
this precision must also leave room for subsequent processing steps. 
This observation explains why it is sensible in an image analysis system, 
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where the emphasis is on measurement accuracy and not on picture 
communication, to sample images more densely than necessary accord
ing to Shannon"s sampling theorem (Shannon [1949]. Jerri [1977]). 

The accuracy of a complete image analysis system is very difficult to 
analyze (and even more difficult to predict). Most reports in the litera
ture concentrate on the accuracy of part of the image analysis system. 
This may still he an acceptable approach, as long as we keep in mind 
that the overall system will put more severe conditions on accuracy 
than may be apparent from an analysis of part of the system. 

For an analysis of the achievable accuracy in dissimilarity and dissym
metry measurement, as proposed in Chapter 4. a good starling point 
might be to study the influence of the selection of: 

• the 2-D image sampling density. 

• the contour definition in digital pictures. 

• the I-D contour sampling density, 

• processing and estimation procedures for contour representations 
and contour normalization parameters. 

upon this accuracy, using geometrical figures of known shape. 
The choice of an appropriate 2-D sampling density for shape analysis 

purposes has been widely studied. The quantization of the geometry of 
the plane by the finite 2-D sampling density has given rise to the study 
of digital topology and digital geometry. For these topics we refer to 
Rosenfeld and Kak [19821, Sena [1982] and Haas [1985], who also 
provide reference to the relevant literature. 

Pavlidis used Kmax as one of the features in a 2-D sampling theorem 
(cf. Pavlidis (1980b] or Pavlidis [1982], pp. 130-142). The topological 
structure of the image regions (i.e. objects, background, etc.) in the 
model picture is preserved if the conditions in this theorem are satisfied. 
Thus this theorem sets a minimum requirement on the 2-D sampling 
density. 

Freeman and Glass [1969] determine the curve of minimum bending 
energy over all curves that lead to the same digital curve. The difference 
in bending energy in the original curve and this minimum bending 
energy curve is taken as a measure of degradation in shape detail as a 
result of 2-D sampling. They also use the maximum curvature, that 
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must be recoverable to a certain accuracy after 2-D sampling, as a 
criterion for specifying significant detail. In Freeman 1197«Sa| it is stated 
that for a well-quantized curve variations in direction over minimally 5 
or maximally 13 curve segments in the digital curve should not represent 
significant shape detail. Wallace and Wintz 1198()j also state that sig
nificant contour variations must extend over many digital curve seg
ments, though they do not specify over how many. 

The influence of the choice of a 2-D sampling density upon the accu
racy with which shape parameters can be estimated has been widely 
studied (cf. e.g. Frolov and Maling [ 1969]. Lloyd [1976], Kulpa [1977], 
Pröffitt and Rosen [1979], Ellis et al. [1979], Rosen [19801. Wechsler 
11981]. Vossepoel and Smculders [1982], Kulpa [1983], Ho [1983], 
Dorst and Smculders [1986], Veillon [1986]. Teh and Chin [1986]). 
Despite all these studies a sound theoretical model for the relation 
between the 2-D sampling density and the accuracy of parameter esti
mation is still lacking. The literature on geometrical probability and 
spatial statistics (cf. Solomon [1953]. Matérn [I960], Kendall and 
Moran [1963], Moran [1966], Moran [1969], Miles [1972], Little [1974], 
Harding and Kendall [1974]. Bartlett [1975], Santaló [1976], Baddeley 
[1977], Miles and Serra [1978], Miles [1980]. Ripley [1981], Baddeley 
[1982]), on random set theory and integral geometry (cf. Matheron 
[1975], Serra [1982|) and on stereological methods (cf. Weibel [1979], 
Weibel [1980]) may provide valuable sources of inspiration in this re
spect. Rosenfeld [1984] has proposed to use 2-D fuzzy sets to take the 
geometrical uncertainty, resulting from a finite 2-D sampling, into ac
count. However, for an appropriate specification of such fuzzy sets we 
need a probabilistic model. 

For dissimilarity and dissymmetry measurement as proposed in this 
thesis, accurate methods for contour representation estimation are at 
least as important as those for shape parameter measurement, since 
this accuracy sets the limits on the discriminative power of dissimilarity 
and dissymmetry measures. For good performance it is essential that 
we abandon the geometrically discrete pixel domain (Wallace and 
Wintz [1980]. Wallace. Mitchell and Fukunaga [1981]), i.e. the digital 
contour must be defined in C or in R~ to enable an effective smoothing 
of the geometric quantization effects of 2-D sampling. 

Though there have been some reports on smoothing the digital con
tour to estimate the position function z (cf. e.g. Dessimoz [1979]. Wal
lace and Wintz [1980]). most reports on smoothing the digital boundary 
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are in conjunction with the estimation of the curvature function K (cf. 
e.g. Young. Walker and Bowie [ 1974]. Bennett and MacDonald 11975], 
Van Otterloo [1978], Wallace. Mitchell and Fukunaga [1981], Ander
son and Bezdek [1984], Asada and Brady [1986], Mokhtarian and 
Mackworth [19X6]). This is not surprising in view of our experience of 
the sensitivity of K for noise, for distortion and for the finite 1-D con
tour sampling density. Virtually none of these reports deals with the 
issue of estimation accuracy. 

For appropriate contour representation estimation methods ii is again 
important that we specify the smoothness class, to which the contours. 
in terms of our model, belong. There should be no discrepancy between 
the smoothness class of the contours in our model and the type of 
contour representation used for dissimilarity or dissymmetry measure
ment (e.g. in practice do not use the curvature function to represent 
polygons, cf. Shirai [1973]). It may be expected that the higher the 
derivative involved in the contour representations the more samples 
will be needed for a reliable estimate. 

Ii should be noted that there are two aspects in contour representa
tion estimation: not only the contour representation itself, but also the 
relation between the contour representation and arc length is involved. 
since we proposed to use a (normalized) arc length parameter for con-
lour representations. Therefore contour representation estimation pro
cedures must take the arc length constraint into account. Dessimoz 
I Dessimoz 11979]. Dessimoz (19X0)) proposed an iterative procedure to 
deal with both aspects. To obtain practical guidelines for contour rep
resentation estimation, a comparative investigation of the performance 
of various methods from digital signal processing and numerical analysis 
(confer the suggestions given in Section 4.4 and the proposal in Appen
dix (") is desirable. Adaptive estimation techniques (cf. e.g. I lodson. 
Thayer and Franklin [19X1]) may lead to an improved estimation accu
racy. Such a comparative study should of course also involve the effects 
of 2-D sampling, digital boundary definition. 1-D (re(sampling, etc. . 
and is preferably done on the basis of geometric figures with known 
contour representations. The dissimilarity measures proposed in this 
thesis will then constitute appropriate reference to judge the accuracy 
of contour representation estimation. 
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Appendix A 

Some mathematical concepts 
and properties 

The purpose of this appendix is to introduce some of the mathemat
ical concepts, notations and properties that have been used at various 
places in this thesis. The treatment will be rather cursory. In many 
cases theorems will be stated without proof. For an in-depth treatment 
and more mathematical rigor we will refer to standard texts on 
mathematical analysis, functional analysis and Fourier series theory. 

To indicate the order of magnitude of functions, we use the Landau 
order symbols (cf. Titchmarsh [1939], Zygmund [1959a], Apostol 
[1974]). Consider two functions ƒ and g, defined on a set .S'. with g(x) 
> 0 for all x e .S". By 

fix) = 0{g(x)} 

we generally mean that there is a constant c > 0 such that \f(x)\ < cg(x) 
for all x e S. In particular. 

fix) = 0( 1) 

means that/(A) is a bounded function. By 

f(x) = o{g(x)} 

as x —> a we mean that j\x)jg(x) -» 0 as x —* a. In particular, 

/(*) = 0{1) 

as x - » 0 means that f(x) is a function which tends to zero as x —* 0. 
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In the following we introduce some concepts and properties of func
tion spaces and sequence spaces. We start with some basic definitions 
and properties, and relate these to the context of this thesis. 

Definition A. l . Metric (Copson 11968]). 
A metric on an abstract set A (whose elements «,. a:. a-,. ... are called 
points) is a function d: A x A —* R such that for all. not necessarily 
distinct r/,. a2. a-, e A: 

• (/(«,. a2) = 0 iff a, = a2. (A.l) 

• d(au u2) « d(a3, a,) + rf(o3, a2), (A.2) 

• rf(a(, «:) = d(a2. «i). (A.3) 

• </(«,. «r2) > 0 if «i * fl2- (A.4) 

The pair (^. J) is called a metric space. 

a 
The properties of a metric specified in Eqs. A.l-A.4 are the ones 

that are usually specified to define a metric. It can he shown (Copson 
|1%S|) that Eqs. A.l-A.2 specify the minimal conditions on a metric 
and that the properties in Eqs. A.3-A.4 can be derived from them. 

From Eqs. A.3-A.4 we see that a metric d is a symmetric and non-
negative function. 

In the context of this thesis the set A consists of all 2.7-periodic 
contour representations of a certain type (z. ':. z. ir or K) or of all 
Fourier representations of a certain type (f. 'z. z. \j) or K). In the case 
of 2.7-periodic contour representations we speak of A as a function 
space. In the latter case we speak of A as a sequence space. 

By equality between a pair of elements in a function space we mean 
that this equality exists at least almost everywhere. To define the mean
ing of "almost everywhere' we need the concept of a set of measure zero. 

Definition A.2. Set o) measure zero (Apostol (1974]). 
A set S of real numbers is said to have measure zero if. for every t > 0. 
there is a set of intervals (ak. bk). k = 1.2 such that: 
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S9[)(ak,bk) and Y{bk-ak)<e. 
k I 

D 
Definition A.3. Almost everywhere (a.e.) (Zaancn [1953], Apostol 
[1974]). 
If a function ƒ, defined on a set S, posscscs a certain property at every 
point of S, except at most at a subset of S of measure zero, then ƒ is 
said to satisfy this property almost everywhere on >S'. 

D 
For the next definition we use the concept of a linear space, defined 

over a set of scalars :A (e.g. K or C). For a definition of a linear space 
we refer e.g. to Banach [1955], Simmons [1963] or Wouk [1979]. 

Definition A.4. Norm (Wouk [1979]). 
A norm on a linear space A is a function ||-|| :A —* {«: 0 ^ « < « } , 
such that for all a,, a2 e A and a e .'A: 

• ||a, || = 0 iff «i = 0. (A.5) 

• Haw, || = | a | ||d|||, (A.6) 

• ||«, + «:||=£|M + lkll- (A.7) 

The pair {A. ||-||) is called a normed linear space. 

a 
The norm defines the notion of distance from an arbitrary element 

in a space to the origin, that is. the notion of size' of an element. 

Theorem A. l . Metric induced by the norm (Simmons [1963], 
Lipschutz [1965]). 
In a normed linear space (A, | |-| |) the norm of the difference between 
pairs (a,, a2) e A x A defines a metric on A: 

d{ax, a2) = ||«i - fl2II- (A.8) 

This metric is called the induced metric on (/4, | | - | | ) . D 
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An important family of function spaces is characterized by the Lebes-
gue-integrability of its elements. Since the natural metric in these spaces 
is defined as a norm and the norm is based on a Lebesgue integral. 
these function spaces consist of equivalence classes ot functions that are 
equal almost everywhere (a.e.) (cf. Definition A.3). 

Remark. 
A proper introduction to Lebesgue"s theory oï integration is beyond 
the scope of this appendix. Through this theory, in which l.ebesgue's 
famous theorem on dominated convergence constitutes an important 
result, the notion of integrahility was extended, thus yielding more 
integrable functions. For more details we refer e.g. to Apostol [1974]. 
Riesz and Sz.-Nagy [1955] or to Janssen and Van der Steen [1984]. 

D 
Definition A.5. Essential supremum (Zaanen [1953]. Wouk [1979]. 
Taylor and Lay [1980]). 
The essential least upper bound or the essential supremum of a real-
or complex-valued function ƒ. defined on a set S. is the smallest number 
a ? 0 such that [/'(/)| ^ a a.e. on S. i.e. 

ess sup ƒ = min {a: a SHIand |/(/)| s= « a.e. on S). (A.9) 

If the context is clear, the subscript ,S' can be discarded. 

D 

Remark. 
As mentioned above, the contour representations discussed in this 
thesis are 2.T-periodic functions (cf. Chapter 2). Therefore the function 
spaces, that will be defined in the following, all consist of 2.T-periodic 
functions. 

D 
Definition A.6. \I spaces (Zaanen [1953], Wouk [1979]. Taylor and 
Lay [1980]). 
For I ^ p < oo we denote by L'' = L''(2.T) the set of equivalence classes 
of Lebesgue-integrable real- or complex-valued functions ƒ such that 
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\f\p is intcgrable. i.e. 

f \f(t)\"<it<*. (A. 10) 

In addition. V ~ V{2n) denotes the set of equivalence classes of 
measurable real- or complex-valued functions, that are essentially 
bounded, i.e. 

ess sup l/l < * . (A. 11) 

D 

The 1/ spaces are sometimes called Lebesguc (function) spaces 
(Zaanen [1953J, Taylor [1958], Auhin [1979]). 

Theorem A.2. Norm on 1/ (Taylor and Lay [1980]). 
A norm on V(2x) is defined by 

Up 

l^p<cc. (A. 12) 

Further, it can be shown that 

| | / | |» = Hm | | / | | p = e s s s u p | / | . (A. 13) 

Thus the essential supremum defines a norm on Lx. 

D 
It follows immediately that the properties of a norm in Eqs. A.5 and 

A.6 are satisfied by Eqs. A. 12 and A. 13 (for the property in Eq. A.5 
it is sufficient that equality to zero is satisfied almost everywhere). The 
validity of property A.7 of a norm (triangle inequaliiy) for Eqs. A. 12 
and A. 13, follows from Minkowski's inequaliiy. which in turn is a con
sequence of Holder's inequality. 

Theorem A.3. Holder's inequality (Hardy. Littlewood and Pólva 
[1952), Beckenbach and Bellman [1971]). 

I 
In \S\t) I'd/ 
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II I « p =£ --c. \lp + \j(, =-. I, ƒ e L'' and g e V1. then f-ge L' and 

' /('W)d/ 
-•7 JIT 

1 I' I ' " 

(A.14) 

D 
For/? : : </ : : 2 in Eq. A.14 we obtain the (Buniakowski-)Schwarz 
inequality. 

Theorem A.4. Minkowski's inequality (Hardy. Litllewood and Pólya 
11952]. Beckenbach and Bellman [1971]). 
II \ ^ p ^ y-.fe U and g e If. then 

r i ' i"' 
\m+g(t)\pdi 

tip 

(A.15) 

D 
The norm ||/||;, constitutes the usual norm on L'1. The Lebesgue 

spaces L'' constitute Banach spaces, i.e. complete normcd linear spaces 
(Zaanen [1953]). 

The V spaces are also metric spaces, with the metric induced by the 
usual norm (cf. Theorem A.l) . These metrics are sometimes called 
Minkowski metrics (Anderberg |1973]. Sncath and Sokal [1973]). 

For/; = 2 the norm and the metric are called Euclidean. For/? = * 
the norm is called the sup norm (Apostol 11974)) or the uniform norm 
(Simmons [1963]). while in the context of approximation theory, it is 
also called the Chebychev norm (Cheney [1966]). The metric induced 
by | | - | | a is sometimes called the Chebychev metric (Anderberg 11973]). 

The effect of varying the value of index p to distance measurement 
in R : is shown in Figure A. l . A unit ball is the set of all points at unit 
distance of a given point, e.g. the origin. For 1 < p < 2 the unit ball 

I 
2.T Wt)gU)\ilt 

I 
2.7 lr~(')ï"d/ 

i / ' 

2.T 

I / ' 

\fU)\riit + 2.7 
IrtOl'di 
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for a given value of p is a convex curve lying between the unit balls for 
the L1 and L : metrics. For 2 < p < = the unit ball for a given value of 
/; is u convex curve lying between the unit balls for the L2 and the L' 
metrics. 

Figure A . l . Unit balls in R". denned by the V' metrics for p = I. p = 2 and p - oo. 

Remark. 
The spaces of contour representations, introduced in this thesis are not 
linear. For the spaces formed by the contour 'representations z. z and 
2 this has a number of reasons. The first reason is that the null element 
is not really part of these spaces, since it represents a degenerate con
tour: a single point. Secondly, these spaces of contour representations 
arc not closed under addition, unless we discard the requirement that 
only simple closed contours are represented. Finally, if any of the con
tour representations is multiplied by a negative real, then it represents 
a contour with clockwise positive sense instead of counterclockwise 
positive sense (cf. Section 2.1). For similar reasons, the spaces of con
tour representations i/> and K arc not linear. 

The fact that the norm was defined in Definition A.4 as a function 
on a linear space docs not prevent us from using the norm and its 
induced metric effectively to define the concepts of size/scale and dis
tance/dissimilarity, respectively, in the spaces of contour representa
tions. D 
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We continue with the definitions of some further concepts concerning 
function spaces. 

Definition A.7. Total variation (Apostol [1974]. Wouk [1979]). 
Let ƒ be a scalar function, defined on [a. />], and. for any n > 0, let 
P = {/,,. i\ /„}. with a = t„ < /, < ■•• < / „ _ ! < t„ = b. define a 
partition of [a, />]. We denote the set of all partitions of [a. b\ by .l'[a, b\. 
Then the total variation of / is defined as 

V a r ( / ) = sup f £ | M ) - M i)| (A.16) 

D 
Definition A.8. The space B\\a. b\ of functions of bounded variation 
on [a. b] (Apostol [1974], Wouk [1979]). 
Let / b e a scalar function, defined on [a, b\. If there exists a positive 
number M < ~'-. such that Var(/) s? ,W. then ƒ is said to be of bounded 
variation on [a. b]. 

The set of all functions of bounded variation on [a. b\ constitutes the 
space BV[«. b\, 

D 
Delinition A.9. The space CBV|</. b\ of continuous Junctions of bound
ed variation on \a. b\ (Edwards [1979]). 
The set of all functions that arc both continuous and of bounded vari
ation on [</. /»] constitutes the space CBV[«. />]. 

D 
Definition A.10. The space \C\a. b\ of absolutely continuous func
tions on [</, b\ (Riesz and Sz.-Nagy [1955]. Apostol [1974]). 
A scalar function/, defined on \a. b\ is said to be absolutely continuous 
on [a, b\ if for every e > 0 there is a ó > 0 such that 

IlAftt)-M)|<« (A-17) 

for every // disjoint open subintervals (ak. bk) of [a. b]. n = 1.2 
the sum of whose lengths 2^ m , (hk - ak) is less than d. 
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The set of all absolutely continuous functions on [a, ft] constitutes 
the space AC[«, ft]. 

a 
Definition A.11. The space A[«. b] of functions thai satisfy a uniform 
Lipschitz condition on [«, b\ (Apostol [1974]). 
A scalar function ƒ. defined on [a, ft], is said to satisfy a uniform 
Lipschitz condition on [a. b] if there exists a positive number M < ■*> 
such that 

\f(s) - j\t)\ < M\s - i\ (A. IX) 

for all s and / in [a, ft]. 
The greatest lower bound of all numbers M for which Eq. A. 18 is 

satisfied for all s and / in [«, ft] is called the Lipschitz constant of ƒ. 
which we indicate by the symbol L 

The set of all functions on [a, ft], that satisfy a uniform Lipschitz 
condition on [a, ft] constitutes the space A[a, ft]. 

D 
Definition A.12. The space Ck\a. ft] ofk times continuously differentia-
hie functions on [a, ft] (Dunford and Schwartz [1958]. Edwards [1979]). 
A scalar function ƒ. defined on [a, ft], is said to be k times continuously 
diffcrentiable on \a. ft] if the derivatives of ƒ of all orders not greater 
than k exist and are continuous at every point in [a, ft]. 

The set of all k times continuously diffcrentiable functions on [a, ft] 
constitutes the space Ck\a. ft]. 

The space C[a. ft] of infinitely-diffcrentiablc functions on \a, ft] is 
defined as 

C'\a,b\ = f) {c":k = 1.2, . . . } • (A. 19) 

The space C"[a. ft] of continuous functions on [«, ft], will also be 
denoted as C[«. ft]. 

D 
For the function spaces, defined in the foregoing, a number of inclu

sion relations exist. 
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Theorem A.5. Inclusion relations between function spaces (Apostol 
[1974], Edwards [197';)). 
The inclusion relations A.20-A.22 are valid for the function spaces just 
defined: 

C ' cz ••• e C* ' ' c Ck c ••• c C" = C c V c V' c IA 

(A.20) 

where A e IN u {()} and where =e > / ; > < / > u. 

C ' c A c A C c CBV c BV c L" (A 21) 

and 
CBV c C. (A.22) 

Proof 

The validity of the left part of Eq. A.2(1. i.e. C1 ' ' c C l for any integer 
A' 2= 0 is obvious (cf. Definition A. 12). 

Every continuous function on \a. b], ~x < a < h < *-. is bounded. 
Thus C c V. The right part of Eq. A.20. i.e. V c V for so &p>q> 0. 
is a consequence of the inequality 

11/11, * 11/11,, Q<q<p* », (A.23) 

which in turn is a result of Holder's inequality. Eq. A. 14 (cf. Edwards 
[1979J. p. 28). 

The validity of Eq. A.21 is verified from left to right. Iff e C'[«- ' ' ] • 
then ƒ is bounded on [a, b\. Considering the definition of the derivative 
of a function and Eq. A.18. taking M = max, f |„./.]]ƒ(/)I- ' l follows 
immediately that ƒ e C' implies f e A. That C' is properly contained in 
A follows for example from /(/) = |/ | , defined on an interval [a. b\. 
with 0 e [a. b\. This establishes C' c A. 

In Proposition 3.1 we established that / e A implies ƒ e AC. That A 
is properly contained in AC follows for example from ƒ(/) = |/l : . de
fined on an interval [a. b\, with 0 e \a. />]. Clearly, if we set / = 0 and 
let s approach to 0 in Eq. A. 18 we see that ƒ(/) = \t\',: does not belong 
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to A. On the other hand, | / (0 | = |sgn(/)|/|" : | is Riemann-integrable 
and therefore ƒ(/) is Lcbesgue-intcgrable. This is a necessary and suffi
cient condition for ƒ(/), the indefinite integral of ƒ(/) up to an additive 
constant, to belong to AC (cf. Riesz and Sz.-Nagy [1955], pp. 50-52). 
Thus we may conclude that A c AC. 

For AC c CBV we refer to Riesz and Sz.-Nagy [1955], pp. 50-52, 
The validity of CBV c BV is trivial (cf. Definitions A..S and A.9). 

We observe from Definitions A.7 and A.S that ƒ e BV[«. b\ implies 
that ƒ is bounded everywhere on [a. b\. Thus from ƒ e BV[«, />] ii 
follows that ƒ e V[a, b). I f / € V[a, b], then ƒ may be unbounded on 
a set of measure zero in \ci. b\ (cf. Definitions A.3-A.6). Thus BV is 
properly contained in V. i.e. BV c V. 

Finally we verify the validity of Eq. A.22. It is trivial that ƒ e CBV 
implies ƒ e C. On the other hand, a continous function need not be of 
bounded variation (cf. Apostol [1974]. p. 129). Thus CBV is properly 
contained in C. i.e. CBV cz C. 

D 

Remark. 
Though Theorem A.5 is valid for oo > p > q > 0 we consider only L'' 
spaces for /; è I since for ( ) < / ; < I the triangle inequality (property 
A.7 of a norm) docs not hold. 

D 

Remark. 
In this thesis we replace the interval identifier [«, b\, as used in Defi
nitions A.6-A.I2 and in Theorem A.5, by [2.T] to signify the length of 
the fundamental parameter interval, since we deal only with 2,T-periodic 
contour representations. Often the context is clear which enables us to 
discard the interval identifier altogether. 

D 

In the following we define some concepts concerning sequence spaces 
over Z. In many respects these concepts constitute duals of their coun
terparts in spaces of functions defined over a bounded closed interval. 

Definition A.13. V'spaces (Simmons (1963], Wouk [1979], Taylor and 
Lay [1980]). 



314 APPENDIX A 

For 1 ̂  p < x we denote by C' = C'(Z) the set of real- or complex-val
ued sequences | = {.... i ( - l ) . |(0), c(i) . . . . } , such that |c(//)|' ' is 
summable. i.e. 

I | | ( n ) | "<3c . I A.24) 

In addition. C' = ('(Z) denotes the set of bounded real- or complex-
valued sequences, i.e. 

sup k „ | < "x-
il e Z 

Theorem A.6. Norm on f (Taylor and Lay [19X0]). 
A norm on (p(2jt) is defined by 

(A.25) 

D 

na- I \m\p 
il e Z 

l/p 
I s£ p < x . (A.26) 

Further it can be shown thai 

||.$IL= sup ||(„)| (A.27) 

Thus the supremum of a sequence defines a norm on t*. 

D 
The validity of the triangle inequality (property A.7 of a norm) fol

lows from Minkowski's inequality for sums, which in turn is ;i conse
quence of Holder's inequality for sums. 

Theorem A.7. Holder's inequality for sums (Hardy, Littlewood and 
Polya [1952], Beckenbach and Bellman [1971]). 
If I s£p sï oo, \lp + \lq = I. c 6 C' and / e C'. then £•% e C and 

ii E Z 

\>P I \m\p I \m 
n r 2 

>•/ 
(A.28) 

D 
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For p = q — 2 in Eq. A.28 we obtain Cauchy's inequality. 

Theorem A.8. Minkowski's inequality for sums (Hardy, Littlewood 
and Pólya [1952], Beckenbach and Bellman 11971]). 
[f 1 sS p «£ oo, £ 6 V and % e t'\ then 

ik(")+x(")r 
n c Z 

Up 

I IttOl 
Up 

I |z('»)| 
Up 

(A.29) 

D 

Compare Theorems A.7 and A.8 with Theorems A.3 and A.4. re
spectively. 

The norm H^H,, constitutes the usual norm on t1'. The sequence 
spaces V' constitute Banach spaces (Zaanen [1953], Taylor and Lay 
[1980]). The C' spaces are also metric spaces, with the metric induced 
by the usual norm (ef. Theorem A.l). The names given to the usual 
norm and metric on C'. both in general and in the special cases/; = 2 
and /; = * , are the same as those given to the usual norm and metric 
on V. 

Remark. 
For the same reasons that the spaces of contour representations, intro
duced in this thesis, are not linear, the spaces of Fourier representations 
of contours are also not linear. Yet, the norm on £p and its induced 
metric properly define the concepts of size/scale and distance/dissimilar
ity. respectively, in the spaces of Fourier representations. 

We introduce some additional concepts and properties concerning 
sequence spaces. 

Definition A.14. c„ spaces (Edwards [ 1979), Wouk [1979]). 
By e,, = c(l(Z) we denote the set of all bounded real- or complex-valued 
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sequences | = {..., £ ( -1) , £(0), £(I), . . . } . for which 

lim c(//) = 0. (A.30) 
n • ' 

In view of Eq. A.30. a sequence § e c„ is called a null sequence. 

D 
The metric induced by | |£| |* can be used to turn c„ into a metric 

space (Wouk [1979]). 
For the sequence spaces just defined the following relations exist. 

Theorem A.9. Inclusion relations between sequence spaces (Edwards 
[1979], Wouk [1979]). 
For the sequence spaces defined above we have the inclusion relations: 

I* c / ' ' c c„ c T . (A.31) 

where i) < q < p < x. 

Proof 

The validity of C' c C' c I ' follows from the inequality 

||*IU * I I H I , * ||*||. (A.32) 

for 0 < q < p < 'x. For a proof of Eq. A.32. which is sometimes called 
Jensen's inequality, we refer to Hardy. Littlewood and Polya [1952] or 
Beckenbach and Bellman [1971]. 

To see that (r. ( ) < / ; < y-. is properly contained in cM consider for 
example the sequence £ = {£(/i-)}J(€z = {(' + l"l) jneZ' which 
belongs to t„ but not to C'. ( ) < / ; < =c. 

Finally. c„ is a subset of (' by definition. That c„ is a proper subset 
of (' is obvious from Definitions A. 13 and A. 14. 

Ü 
Remark. 
For {) < p < 1 the triangle inequality does not hold for the tp spaces 
(in the same way as it does not hold for the L'1 spaces for these values 
of/;). Therefore we do not consider the tp spaces lor (I < /; < 1. □ 
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We conclude this appendix by giving some definitions and properties 
of trigonometric series and Fourier scries. 

Definition A.15. The set of trigonometrie polynomials of degree at 
most n (cf. Zygmund [1959a], Cheney [1966]). 
This set is defined as: 

T„= ( M 0 = I Ckek', q e c ) . (A.33) 
L | * |«n > 

D 
Note that T„ c T„ + , for all /; ^ 0. 

Definition A. 16. The set of trigonometric polynomials of degree at 
most n, free of a constant term (cf. Cheney [1966]). 
This set is defined as: 

t„ = ƒ:ƒ(/) = £ <-,ej". c , e C 
o<|*|«« 

(A.34) 

G 
It is obvious that t„ c T„ for all n 2* 1. 
The following theorem deals with pointwise convergence of Fourier 

series. 

Theorem A.10. Dirichlet-Jordan test (cf. Zygmund [1959a]. Edwards 
[1979]). 
1. If ƒ £ L1 is of bounded variation on some neighborhood of a point 

t, then (cf. Definitions 3.1 and 3.2): 

lim (*„ƒ)(/) = {f(t + 0) + fit - <))}/2. (A.35) 
n — ■*■ 

2. More in particular, at every point of continuity of ƒ we have: 

lim (5„/)(/) =/( / ) . (A.36) 

3. If/'is continuous at every point of a closed interval [a, b\, then (S„f) 
converges uniformly in [a. b). D 
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Theorem A.lI. Riemann-Lebesgue lemma (cl. Zygmund [1959a], 
Katznelson [1968], Edwards [197';)). 
For any integrable ƒ one has (cf. Definition 3.1): 

lira /(//) = 0. 
n ■ ■ 

From Theorem A. II we see that ƒ e c„ if/ is integrable 
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Appendix B 

A method for a fast and reliable 
computation of moments mpq of regions 

bounded by polygons 

B.l Introduction 

Over many years after their introduction in the context of pattern 
recognition and image analysis (Hu [1961]. Hu [1962]. Alt [1962]). mo
ments have maintained a considerable popularity and a substantial body 
of literature on this subject now exists. 

Usually the two-dimensional moments mpq of order (p + q) are de
fined as moments of the image function f(x. y) (cf. Eq. 4.3.5): 

r * r x 
/'(.v.y)-v''y"d.vd.v. (B.l) 

The moments m.„. of f(x,y) are also called monomial moments 
(Boycc and Hossack |1983]), since they arc defined with respect to the 
monomial A'V' (Teague [1980]), or geometric moments (Vijaya Kumar 
and Rahenkamp [1986]). 

A major application of the moments mpq has been the definition of 
moment invariants, a set of image features which are invariant under 
certain image transformations such as translation, scaling, rotation and 
contrast change (Hu [1962], Dudani, Breeding and McGhee [1977], 
Wong and Hall [1978], Sadjadi and Hall [1978], Maitra [1979], Reddi 
[1981]). In this approach the moment invariants constitute feature vec
tors in a multidimensional feature space. 

In another approach the low order moments are used to normalize 
the image, in a way that is comparable to the moment-based object 
normalization described in Section 4.3. Subsequently either higher 

'»/></ = 
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order moments, computed from the normalized images, are used as 
normalized features (Alt [1962], Smith and Wright [1970], Nill [1981], 
Reeves and Rostampour [ I9S1]). or the normalized images are used in 
another way in image processing and analysis (Casey [1970]. Abu-Mos-
tafa and Psaltis [1985]). In the latter paper it is emphasized that, espe
cially under noisy circumstances, the moments should be used only for 
normalization but not for classification purposes. 

Some papers discuss the usefulness of moments for data compression 
(league [1980], Nill [1981], Boyce and Hossack J1983J). 

In applications where the internal structure of objects is not impor
tant. but merely their shape, not the image function /(.v. y) is used in 
the expression for mp„ (Eq. B.l). but the characteristic function 
XR(X, V) of an object that covers the region R c R : (or R a C) (Apostol 
11974|): 

f I. H(x,y)eR, (B.2a) 
Z«(v.y) = < 

.(). otherwise. (B.2b) 
In that case ///,„, is sometimes called a silhouette moment of the object 

(Dudani. Breeding and McGhee [1977). Reeves and Rostampour 
[1981]. Reeves and Wittner [1983]). Silhouette moments are used for 
shape normalization (Casey |197()|. Reeves and Rostampour [1981], 
Gilmore and Boyd [1981]. Reeves and Winner [1983]. Cyganski and 
Orr [1985]). for the computation of moment invariants (Reeves and 
Rostampour |I981| . Gilmore and Boyd [1981]). or as features of the 
shape or incrtial properties of objects (Wilson and Farrior [1976]. 
Reeves and Rostampour [1981]. Tang [1982]. Miles and Tough [1983]. 
Ho |I983]). 

The computation of moments involves integration over a two-dimen
sional region. Especially in the case of silhouette moments it has been 
observed (Wilson and Farrior [1976]. Tang [1982]. Miles and Tough 
[1983], Cyganski and Orr [1985], Bamieh and De Figueiredo [1986]) 
that the computational complexity of moments can be reduced substan
tially through Green's theorem (cf. Spiegel [1964]. Krevsig [1972| or 
Eq. 4.3.12): 

dQ(x.y) _ dP(x.y) 
dx 9y 

d.vd.v = (> P(x,y)dv + Q(x. y)dv. (B.3) 
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where yK is the contour of the region R a R2 (or equivalently. R a C). 
In the next section we develop, through Green's theorem, formulae 
that enable the efficient computation of moments for a special class of 
objects: objects bounded by a polygon. 

B.2 Moments of objects bounded by a polygon 

Usually in digital image analysis the double integral in mm (Eq. B.I) 
is approximated by a double summation: 

M - i A' - i 

'"/«/ = I I ƒ[''-/]'"./''• (B.4) 
i = o / = (I 

where /'[/, ;'] is the sampled image function, which has dimensions M 
and A', and where i and j indicate the discrete pixel locations. The 
discrete summation in Eq. B.4 is one of the sources of errors in mpq 

and causes the moment invariants to be not completely invariant under 
equiform transformations of the image (Abu-Mostafa and Psaltis 
[1985], Teh and Chin [1986]). One way to reduce these errors is to 
increase the sampling density. 

For silhouette moments it is possible to obtain a better approximation 
through Green's theorem, which enables us to replace the double inte
gral in Eq. B.I by a contour integral. In a segmented digital picture we 
can define the boundary of a region for example as a polygon (cf. 
Figure B.I). Obviously we do not completely get rid of the geometric 
discreteness of the segmented image, so it still pays to increase de
sampling density. However, the simple mathematical form of the region 
contour (i.e. a polygon) enables us to obtain an analytic, and therefore 
exact, expression for the silhouette moments mpq of the segmented 
region. 

In the context of data reduction in image analysis, polygonal approx
imation is a popular technique (Montanari [1970], Ramer [1972], Pavli-
dis and Horowitz [1974]. McClure and Vitale [1975], Ellis and Eden 
[1976], Pavlidis [1977b]. Sklansky and Gonzalez [1979], Williams 
[1981], Kurozumi and Davis [1982], Kashyap and Oommcn [1983]). 

The expression for polygonal silhouette moments, that will be de
rived in the following, constitutes a particularly efficient and reliable 
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means for the computation of the silhouette moments of such polygonal 
approximations. 

Figure B.1. Picture I'I a circle, arbitraril) positioned on a Cartesian sampling lattice The polygon 
represents the boundar) of the sampled circle (otbei polygonal boundary definitions are possible 
though). 

We start the derivation by substituting the characteristic function yM. 
Eq. B.2. for the image function / in Eq. B.1: 

"'/'./ = 

X / X 

yM(x. y).v'V'dvdy = 
— 'X J — X 

.vV'dvdv. (B.5) 

We apply Green's theorem. Eq. B.3. to Eq. B.5. In Eq. B.3 we 
choose: 

P(x.y) = 0 . IB.6a] 

Q(x,y)= ' .v'- 'y". 
P+ ' 

(B.6b) 

Thus we obtain: 

rr 
' " / > < / = 

1 X? ' V'dv. 
(B.7) 



MOMENTS OF A POLYGON 325 

We now assume that yR is a polygon with N vertices: 

{2,,} = {x„ + iy„}, n = 0 N - I, (B.8) 

where the vertices have been ordered according to counterclockwise 
traversal of the polygon yR. The line segment between the vertices z„ 
and z„ + | can be represented parametrically as: 

z{s) = A^" (s - s„) + z„, (B.9) 

where s is the parameter of arc length and where 

Az„ — Z„ +1 — z„. (B.10) 

n - I tl- I 

Z I A Z » - I = Z A-ym-
ill = 0 

0, 

//3= I. (B.lla) 

» = (). (B.l lb) 

- £ |Az„,| = - £ A.v,„. « < - l , (B.llc) 

and 

A.v„ = .v„+i - S„ = |Az„|. (B.12) 

Note in Eq. B.9 that z„ = z(s„). Compare Eqs. B.8-B.12 with Eqs. 
2.2.40-2.2.49. We also note that 

Az„ = AA„ + iA>-,„ (B.13) 

where 

Ax„ — x„, | x„. 

A.yH = yR+\ - y„-

(B.14a) 

(B.14b) 
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Substitution of the expressions in Eqs. B.9-B. 14b into Eq. B.7 yields: 

mpil = P + 

\ -1 

I A"''" '(.S)V"(.V) t l V , ( V ) d.S 
d.v 

1 s ' I 
/ ' + I „ - i . . 

V A-v„ 
A.v„ S + A„ 

V I Av„ " ^ ' d , . 
A.v, 

B.15] 

After application of the binomial theorem (cf. Riordan [1979]. p. I) 
to Eq. B.15. we obtain by integration 

<"„=' , % r' e t ' I T i «A..M 
/ ' T i „ = n Ju i„ ii a 

, »«„« • I - 0 

1 ! W/v* « 
;( = II P 

Av, 
"Us, 

« * ;f * i 

(s-yxw 

I V - I ƒ. • I ,/ . . . 

= I E I ' * 
/>+l „tï, „t-n ,,4-,, a + /J + 1 \ a I \/i 

•(AAg".v(;,1^'(Ay„r"vr,i. 

Shifting the summation over/? by 1. using the fact that 

(B.16) 

/; \ _ in I n + I 
in - \' n + 1 \ /» 

(B.17) 

and inverting the order of summation gives: 

I 
, . - 1 ,, ■ ! /? fp + lW<? + l 

'"'"' (p + l)fo+l) A „5, a + /r 

.\ - i 
X (AA-„)"A-r ' - " ( A v j ' S y i - / f (B.18) 

n = (l 
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Eq. B. 18 constitutes the first expression for mm that allows its effi
cient computation. The computational complexity is O(pqN). In Eq. 
B.18 we can distinguish a data dependent part: 

N - 1 

TN(a,fc l>. q) = I (A.v„)X ' ' ~ "(Ay„)"yü+ ' ~", 
» = I I 

(B.19a) 

and a data independent part, which consists of (/; + 2)(q + 1) coeffi
cients: 

</(«. fi: p.q) = 
1 

(/;+ \)(q+ 1) a + fi\ a 

a = 0 p+ 1. ft= 1 q+ I. 

*>,<? = 0,1 

fi (P■■* fq + i 

(B.19b) 

For any moment m/;(/ the coefficients d(a, /?; p, q) can be precom
piled and stored in memory. 

We now develop Eq. B.18 further to obtain an expression for mm 

that involves only the coordinates of the vertices of yK and not the 
differences A.v„ and Ay„. Substituting Eqs. B.14a and B. 14b in Eq. B.18 
and again applying the binomial theorem (cf. Riordan [1979]. p. 1) 
yields: 

I "y "f P (p + l\(q+ï 

N - I 

I 
■ = l i 
l(-D"-("K-,<-;' »+1 - « 

(-if-ó(^yi+iytè\yVl-$ 
(B.20) 
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II' we invert the order of summation of a and y and of f> and d. 
respectively and if we apply the transformations a' = a - y and (V = 
ft - d. we obtain: 

- . .! . '£f(p + i\M+i 
'VI (p+ \)(q+ I) ./=•„ / - , , * y 

V V ( _ , r >P /* +d 

,hu (fen a +/V+ y + d 

/; + I - y\ (q + I - Ó 
a' I [ 0' 

v i I 
ii = n 
z-;;. ,-v:;"" ;y;:. ,vr l". (B.2D 

where, by definition. 

„• J-r +t* + * - ° - if", + A = "- ,B"' 
Similar to Eq. B.1S. we distinguish in Eq. B.21 a data dependent 

part: 

SN{y,ó;p,q) = ' I ' A ; ; . , < • ' : y ; ; . , ^ - '\ (B.23a) 

and a data independent part, which consists of (/; + 2)[q + 2) coeffi
cients: 

I E (-ir •• ' 

'TICT'ï-
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To reduce the expression for c(y. ó; p, q). we define the help function 

* > . « « . » > - Ê Ê ( - i ) :+c: (")(")■ 
„r-,, „ftn n + in + c2 \nl \ml 

(B.24) 

for a. b, e, e K u {()}, c2 € N. We also define the function 

iii + c, (tt\tb 

(B.25) 

'y „ % „ftu n + m + c2 \nl \m) 

Then we have the relation 

h(c1,c2;a,b)=fil)= I )\x)dx. (B.26) 

Differentiation of / (A) gives 

b 
„ = o \ / i / ,„ - ii \ / n / 

- 6 ^ I ( - D " ( " ) A " I(- l ) '"-'( / ' M-V"-1 
„tV W »£. \m-l) 

= cxx"-~ '(1 - A)" "'' - />A'•■( 1 - A)" '"*" '. (B.27) 

By substituting this result into the integral in Eq. B.26. we obtain 
through Gradshteyn and Ryzhik [1965], pp. 284, 938 and 950: 

(c2-iy.(a + b)\ c2\(a + b-\)l 
h(cuc-,;a,b) = c, , r , — b -. 1 (a + b + c2)\ (a + b + c2)! 

a + b + c2 - 2 \~ ' 



330 AIM'! \ l ) l . \ H 

The help function // occurs in the expression for <■(;•. ó; />. </) in 
Eq. B.23b, which we nou can write as: 

c {y.d: p. q) = 
1 p+]\(q+] 

(p+l)(q+l)\ y M d 

■ h(ó. y + ():/> + 1 - y.q + 1 - ó). (B.29) 

Substitution of Eq. B.28 into Eq. B.29 yields: 

'(;■- d;p, q) 

{ P + '' ) ' I lp+ \\iq+ \\ Xy + ó-l) 

~ (p + \)(q■+ 1 ) ' y ' ' ó '(/> + </+ 1 )(/; + </ +2) 

■ (ó(p + q + 2 - y - d) - (-/ + ó)(q + 1 - A)} 

P+ I qr+1 
Ó 

p + q 
y + d - I 

' I Ó 
(p + q + \)(p + <l + 2) \q + 

i 

P + 

" t ' I C ' l 1 

p + q + 2\ (p + q 
y + Ó 

I 
-Y-d)(y + d) 

ó 
9 + 1 p+l 

(B.30) 

The derivation in Eqs. B.26-B.28 is not valid for c2 = 0. which corre
sponds to (■/, ó) = (0. '•). Substituting these values into Eq. B.23b and 
bearing Eq. B.22 in mind we find 

c(Q,0;p,q) 

1 ,. - i i, * i 

I" 1) AM A / " ' a' + ft' \ a' n p" 
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/> + l 

(p+\)U,+ \) nh« l a' / „tV ' « ' + / ? + l \ , J + i 
,M< P+l / « + ' 

(p+D Jz I (-1)' a' (P + 1 
« I (->>" . . « , , ( « ) • 

/} = (» « ' + / ? + ! \/J 

In analogy with Eqs. B.24-B.25 we define the help functions 

6 I / J. 
h,(c:b)= y (-1)" 11 „t-o « + c\*i 

(B.32) 

for/) e IN u {()}. c e IN, and 

/iW= E(-u" 
-1 - II /I + C V/J 

(B.33) 

Then 

/;,(<;/>)=ƒ,(!) = ./',(-v)d.v. (B.34) 

We derive 

/i(-v)= E ( - l ) " r ) j r , , + c - , = j r c - , ( l - x ) * . (B.35) 

Through substitution of Eq. B.35 into Eq. B.34 and through Grad-
shteyn and Ryzhik [1965], pp. 284. 938 and 950. wc obtain 

ft,(c;ft) = y (-1)" 1 (h\ 1 //> + 
a = ii n + c \n' c \ c 

- i 

(B.36) 

for ft e IN u {()}. c e N. 
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With this result we find for Eq. B.3 

c((l. (I:/;.</)= I ( -1) ' 
P + 1 ,,^n 

„ (P + I 
(x 

hx{a' - \\q) 

i' ■ i 

P + 1 .hu ' \ a' I a' + 1 I a' + 1 

(B.37) 

After some rearrangements in the binomial coefficients in Eq. B.37 
we obtain 

c < o . o : , . * ) - - ' [,, + c' + 1Yl"y(-ir[f, + (l + 2 
1 " (/;+ l)(q+ l)\ , + 1 ' „A,, ' l*+ 1 + a' 

(-D " f, + * + 2\-'"+f- /p + f + 2 

(-1) " 
( , + !)(</ + 

, + <? + 2x ' 
, + 1 

- I = u •* ' , i = n ti 

„ (p + q + 2 

(-1)-'' fp + q + 2\-] 

(/>+ \)(q+ I) ' / ; + 1 

(I - 1)' • " ■ : - ( - I)" (P + C,+ (B.3.S) 

where we used Gradshteyn and Ryzhik [1%5|. p. 3. in the last step of 
this derivation. From Eq. B.38 we find the result: 

<(().<):/;.</) = -
1 

(p+ l)(p + q + 2)' (B.39) 



MOMENTS OF A POLYGON 333 

The derivation of c(y, d; p, q) in Eqs. B.24-B.30 is also not valid for 
(;\ Ó) = (p + 1. q + 1). i.e. a = b - 0 in Eq. B.24. Substituting these 
values in Eq. B.23b gives 

'ip+]-"+':"-") = („+tHq^>X'+2 

= « ; ) + , K , ' + , + 2,- ( B-4 0» 

So we find 

c(p+ \.q+ \:p,q) = -c(0,0;p,q). (B.41) 

Analyzing the data dependent part SN of mpq (Eq. B.23a) for (y. d) 
= (0, 0) gives 

II = 11 

N- I 

2L xn*\ y,i • 1 
n = (l 

= SN(p+l,q + l;p,q), (B.42) 

where we have used the periodicity of the vertices of the polygon: 
x„ 1 ,„v = .v„, y„ + ,„.v = y„, n e {() N - l J . m e Z . Thus we find that 
we can use for the data independent coefficients c(0, 0; p. q) and 
c(p + 1. q + \\p.q) any number, as long as Eq. B.41 is satisfied, which 
then leads to a cancellation of the contribution of S#(0, 0; /;. q) against 
that of Ss(p + 1, q + Up, q). From a computational point of view it 
may be convenient to set both c(0. 0: p. q) = 0 and c(p + 1. q + 1; p. q) 
= (). 

Eqs. B.21-B.23b show that the computational complexity of mp , 
expressed in coordinates of the polygon vertices, is O(pqN). the same 
as we found for the expression in Eq. B. 18. The data independent 
coefficients c(y, r>; p. q) need only be computed once and can be stored 
permanently. 

file:////p.q
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Recently. Bamieh and De Figueiredo [1986] also derived a formula 
for the moments mpq of regions bounded by polygons. Though they also 
apply Green's theorem for the conversion of the surface integral into a 
contour integral, their derivation and the resulting formula are differ
ent. The resulting formula leads to a computational complexity of 
O(qN) instead of O(pqS) and can. by a minor adaptation, be further 
reduced to 0(min(/;. q) ■ V). However, their method of computing mm 

has some drawbacks. For each polygon side it has to be checked 
whether A.v„= I) (vertical side) or whether Ay„ = 0 (horizontal side) 
and. if so. the computation needs to be adapted since otherwise this 
would lead to a singularity. Moreover, if a polygon side is almost verti
cal or almost horizontal, then this may lead to overflow problems in 
the computation. These problems are absent in the formulas for mp 

that we derived in this appendix. 

The results obtained so far in this section can be summarized as 
follows. For/;, q — 0. 1. ... the moment mp„ of a polygonal region is 
given by: 

r ■ i </ • i 

mW = 1 1 <*(«- i{- P- 'D Ts(a< li: P- </>• <B.43) 
./ = n , ; ■ ii 

where d(a. ft; p. q) and I\{</.. ft: p. q) were defined-previously, in 
Eqs. B.19b and B.19a respectively, as 

1 ft lp+\\iq+\ 

and 

«*'fii**)m(p + Wq+l)a + fi\ a 

\ -
H - II 

Ts{a.ft;p.q) = £(A.v„)".v:;" "(Ay„)'V; 

Another expression for the moment mpi) of a polygonal region reads: 

i n i ./ - i 
mPH= I T. dy.d:p.q)S,(y.d:p.q). (B.44) 
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where c(y, ö; p, q) was defined previously in Eq. B.30 as 

, . , ( " ' ) ( " 1 ) 

''' 'P' q) ~ (p + q + 2\ (p + q + 2-V- d)(y + Ö) 

•I è - y )■ 
\ q + 1 p+l\ 

for Y - 0 p + 1 and 0 = 0 q + 1, with the exception of 
(y. ö) = (0. 0) and (y. Ó) = (p+ I, q + I) for which we found 

,«>.o: ,„)=- ( / ; + l l ( ; ;+ ( ; + 2 ) 

and 

r("+l-"+1;"'", = < / > + l ) ( , U + 2,-
in Eqs. B.39 and B.40 respectively, and where SN(y, ö:p, q) was defined 
in Eq. (B.23a) as 

N — 1 

SN(y,Ó;p,q)= LX„ + \xn ^ ^ ^ 
;; = (! 

In Table B. I we list the coefficients d(a, ft; p. q) in matrices D(p, q) 
of size {p + 2)(q + I) for moments of the orders (p + q) = 0, 1, 2 and 
3. The first row in each matrix D is indexed as a = 0. while the first 
column is indexed as ft = 1 (cf. Eq. B.43). The column with index 
ft = 0 is lacking since the coefficients d(a, ft; p, q) = 0 for ft = 0 (cf. 
Eq. B.19b). 

In Table B.2 we do the same for the coefficients c(y. ó; p, q), which 
are listed in matrices C(p. q) of size (/; + 2)(q + 2). using similar inde
xing conventions. The first row in each matrix C is indexed as y = 0, 
while the first column is indexed as ö = 0 (cf. Eq. B.44). 

The matrices C(p. q) of coefficients <(■/. ö; p. q) have a number of 
special properties, which will be derived in the following. 
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Table B.l. Matrices D(p, </) of data indepcndcm coefficients d(tt.fi: p, q) (Eq. B.I 4b) 
for moments of the orders (/ ' + </) = 0. 1.2 and 3. 

Moment order 

ii 

1 

i 

3 

Matrices D( p.q) of coefficients </!</./*; />.</) 

D(0.0) = T ( j ) 

«in.I)= i {'I -\|: 0(1.0)» i (3] 

D(0.2)= T! 

0(2. 0)= £ 

D(0,3)= 77; 

0(2.1) = ?* 

12 

6 

4 
6 
4 
1 

, /12 6 \ 
8 3>: W.D-4[l2 *■] 

20 30 
111 2d 

20 I" 
30 2d 
2(1 15 
5 4 

: 0(3.0) = ^ 

30 
30 
in 

15 
Hi 
in 
5 

\ 1 

30 1(1 
4li [5 
15 6 

Theorem B.l. 
The coefficients <iy. Ó; /;. q) of the matrices C(jP, </) have the following 
antisymmetry property: 

c(p + I -y.q + \ - ö;p, q) = -c(y. <): p. q). 

v = () p + l, ó = 0 q+\. (B.45) 

B\ substituting p + 1 — •/ for ;' and q + 1 — ö for ó into Eq. B.30 we 
find: 

C(p + 1 - y. q + ] - <J; />. </) 
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Table B.2. Matrices C(p, q) of data independent coefficients c(y,è;p, q) (liqs. B.30, 
B.39 and B.40) for moments of the orders (/; + q) = 0 ,1 , 2 and 3. 

Moment order 

0 

1 

2 

3 

Matrices C{p, q) 

C(0.0)= \ \~_ 

ceo, i) - i(z\ 

C(0.2)= è ( l ] 

- 1 

£5(2.0)- i 
-1 

C(0,3) = ^ , ( " j 

C(2. 1)= £ 

- 4 

- 1 

of coefficients (/(;■. Ó; p. </) 

! ) 

_}J); cu.„,= i(:j 

_!_!])= c„,,= i(:j 
i 
i 
l 
i 

.!-!-! i)sco.»-éQ 
3 1 
1 2 

- 1 3 : C (3 ,0 )=^ i 

/ - ! 

- 3 4 , J 

I \ 
I 
1/ 

- 2 3 / 

3 2 1 \ 
-1 i 3 
- 2 - 3 6 / 

1\ 

J / 

/> + I W q + 1 
/;+ I -J//W/+ 1 - 0 / I 

p + q + 2 \ (y + ö){p + q + 2 - y- 6) 
p + q + 2-y- öi 

(/+]-() _p + 1 -y 
q + 1 p + \ 

p+l\(q + l\ 
y A I\_[ 1 f 6 
p + q + 2) (p + q + 2-y- 6)(y + ö) \q + ] 

y+ó 
p + ] 

= -c(y, <): p. q), (B.46) 
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lor Y = 0 p + 1 and <) = 0 q + 1. with the exception of (•/. <M 
= (0. 0) and (y, ó) = (/; + I. q + 1). For the latter two pairs of (;■. ö) 
the relation in Eq. B.45 was already found in Eq. B.41. 

D 
Through this property the number of multiplications required to com

pute a moment mpil can be reduced by a factor of luo. 

Corollary B.I. 

,. • i ,, • i 

X I c(y.ó;p,q) = 0. (B.47) 
n , » = (i 

Proof 

This corollary is a direct consequence of Theorem B.I: 

/. - i ,/ - i 

£ £ c(y.<Y.p.q) 
ii ó = i i 

- I E {e(y,ö;p,q)+c(p+l-y.q + l-ó;p>q)} 

= 0. (B.48) 

D 
Through the following properties the number of arithmetic opera

tions may be reduced even more. 

Theorem B.2. 

<\/.y.p.p) = 0. 0<y<p+l. (B.49a) 

and 

<{'' * ' . q \ ] :p.q) = 0. il' both/; and q odd. (B.49b) 
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Proof 

In Eq. B.49a wc consider the coefficients c(y, d\ p. q) for which p = q 
and y = ó. By applying these relations in Eq. B.30, the validity of 
the property in Eq. B.49a immediately becomes clear. The same is 
found for Eq. B.49b through a substitution of y = (p + l)/2 and 
Ó = (q + 1 )/2 into Eq. B.30. 

D 
From Eqs. B.41. B.42 and B.44 wc already concluded that 

c((). 0; p. q) and c(p + 1. q + 1; /;. q) can just as well both be set to 
zero, thus leading to a further reduction of the number of arithmetic 
operations. 

The next two theorems deal with the properties of sums of coeffi
cients c(y, b\ p. q) over rows and columns of C(p. q). 

Theorem B.3. 
The sum of coefficients c(y. d: p. q) over a row in C(p. q) satisfies: 

9+ > 
£ c(y,d;p,q) = 0, 0«y^/> + l. (B.50) 

6 = ii 

Proof 

In order to show this property, we substitute the expression in Eq. 
B.23b for c(y, Ö; p. q) in Eq. B.50: 

Z <iy-'^-i'-q) 
,) = (! 

'p+\\(q+\ 
" ' ' \ y ) \ Ö 

S 4 - 0 (P+ 0 ( ? + O 

m + Ö (p+l-y\(q+\-<y 
„ = i, „,ft u 'i + m + y + <)\ n J\ in 



340 Al'1'1 \ | ) l \ 15 

p+\ 

7 
(p+ \)U/+ I 

P + i-r 
I < 

n = 11 

„ (P + 1 ~ I' 

(B.51 

In order to solve the last summation in Eq. B.51, we introduce the 
help function 

IA,)= I M r m t c , ( * j 
„, i, m + c2\m 

(B.52) 

with /', r, e N u {()). c2 e IN. 
Analogous to the derivations in Fqs. R.24-R.2S and Eqs. B.32-B.36 

we find 

Mr,.c<fe)=/2(l) = t M r m T C , / 

m = <» ;;; 

Ci — r, / Ci + /> 

r-. \ c 

- i 
/?>(). (B.53a) 

b = (). [B.53b) 

With Cj = ó. c2 = n + 7 + d and & = q + 1 — è we then obtain for 
the last summation in Eq. B.51: 

h2(ó,n + y + ö: q + 1 - b) 
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m~o n + m + y + <)\ in 

n + y (q+l+n+y\ ' 0^ó<q+l> ( B .5 4 a ) 
n+y+ö\ n+y+ö I ' ' 

'!+l . d = q+\. (B.54b) 
n + y + ó q+ 1+ n + y 

Note that Eq. B.54a is not valid for n + y + ó - 0. since it is required 
that c2 =£ 0. Therefore we must verify Eq. B.50 separately for the case 
y = 0. 

Substitution of the results in Eqs. B.54a and B.54b into Eq. B.51 
yields: 

' / - i 

Y,c(y.<):p.q) 
<) = D 

(p+\)(q+\) „% K ' \ n 

* lq+\ \ -(n + y) Iq + 1 + n + y\'{ + q+\ 
fea \ ó I n + y+ <)\ n + y + ö I q + \ + n + y) 

(B.55) 

We now concentrate on the summation over ó in Eq. B.55. Rearrang
ing factorials in this expression gives 

q + \\ n + y lq+\+n + y\~' 
ó In + y + ó \ n + y + ö I 

Jq+]+n + yytn + y-\+<Yy 
n + y I \ n + y- I / 
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With the aid of this result and the formula 

tern"::;1)-
(cf. (iradshteyn and Ryzhik [1965], p. 3). we find for the expression in 
braces in Eq. B.55: 

£ (q + I \ - ( ; / + 7) (q + 1 + n + y \ - ' + </ + I 

9+ ' +» + ;1 i'i+ " + ■/] , 9 
' ) '( 

/j + 7 ' v « + y ' </ + 1 + // + •/ 

</ + 1 + // + y 9 + 1 + ;i + 7 

= 0. (B.58) 

II we consider again Eq. B.55 it is immediately clear that with the 
result in Eq. B.5.S we have proven this theorem for (I < •■ s= /> + I. We 
still have to verify the case y = 0. 

Since we already verified Eq. B.50 for y = p + I. the validity of Eq. 
B.50 for 7 = 0 follows from Theorem B.I: 

, / » i <i • i 

-> = 11 r) ii 

= - Z c 0 » + '•<>>•</> 
.V = II 

= 0, (B.59) 

where 'V = </ + 1 — ó. 
The proof of this theorem is now complete. 

D 
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A similar theorem is valid for the sum of coefficients c(y, 6', p. q) 
over a column in C(p, q). 

Theorem B.4. 
The sum of coefficients c(y. <); p, q) over a column in C(p. q) satisfies: 

Y. c(y.d;p,q) = i). I K k ( / + l . (B.60) 
y = II 

Proof 

The proof of this theorem follows along similar lines as the proof of 
Theorem B.3. We sketch the main steps, substituting in Eq. B.60 the 
expression for c(y, d: /?, q) in Eq. B.23H: 

y-.0 

lp+\\lq+\ 
i'' ' \ y A () 

" A </> + D(<7+ O 

p H I - Y ,, « I - ö ^ ^ m + ó /p + i _ y \ /^ + i _ ry, 

^n ^-,, ^ _ 1 ) ' " n + m + y + (5 I n / I m ; 
n = II m =11 ' 

q + l 
ó "■!:* fq + i-d\ 

E(-ir(m + ó) „ (P+DU/+1) »i = o 

• Pf (P + ' ) /j,(m + y + <5;p + 1 - y), (B.61) 
;■ = II V 7 ' 

where the function //, was defined earlier in Eq. B.32. Note from Eq. 
B.32 that Eq. B.61 is not valid for in + y + ó = 0, and therefore not 
for ó = 0. 
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Through Eqs. B.36 and B.57 we obtain 

r / + 1 i 
V ((■/.<): n. a) = Y (-1)'" 

0 ( l- l)**'-** 

(P+1K-7+1) 

= 0, 0<ó<q+l, (B.62) 
which completes the proof of this theorem. 

D 
From Eq. B.62 we observe that the property of Theorem B.4 is not 

valid for ó = q ■+ 1. since 

For <) = 0 the property is not valid either (cf. also Table B.2). This 
follows immediately if we apply Theorem B.l to Eq. B.63. from which 
we find the result 

! ' ? ! , * ' , I : " - " ^ - ( „ + I , ' W + 1 , -
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Appendix C 

Estimation of contour representations 
using polynomial filters 

In Section 4.4 we described an experiment to obtain insight into the 
characteristics of the dissimilarity measures, defined in Section 4.2. In 
Section 4.5 similar experiments were described to evaluate the perform
ance of the dissymmetry measures, introduced in that section. 

In order to perform these experiments we had to estimate sets of 
samples of the contour representations z, z, z', y and K (cf. Chapter 2), 
taken equidistantly along contours. The contour representations z. z", 
V and K involve first and second order derivatives of the position func
tion z. In the following we describe a method to obtain samples of these 
representations, through differentiation of piecewise polynomial ap
proximations to position function samples z\n\. For the polynomial ap
proximation we use a least squares criterion. We show that this method 
corresponds to applying a finite impulse response filter (FIR filter) with 
fixed coefficients to the position function samples z[//|, which leads to 
efficient implementations. The coefficients of the FIR filter depend on 
the order of the polynomials used in the fit, the order of the derivative 
and the number of samples z\n\ to which we fit the polynomial, but not 
on the position along the contour. 

The polynomial of order P that we fit to 2M + 1 position function 
samples, centered at z[n], with 2A/ + 1 > P, is given by 

*«(*)= £» ic - 'X (en 

where the coefficients cr\n\ are complex valued: 

cp[n] = " , , | " l + U>p[n]. (C.2) 
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The method of least squares fit of .T„(/) to 2M + I samples of the 
position function z. centered at r[//|. requires that we minimize 

w /■ 

D2[n] = £ z[n + m] - £ cp[n]{tn. ,„ - t,,)' 
m = - iM p = ll 

(C.S) 

with respect to the P + I coefficients cp[n\. 
The gradient operator with respect to <',,[>/] is defined as (cf. Spiegel 

[1964], p. 82): 

"l"1" 8«>]+,3/, / ;[„]~-3r>r (C.4) 

Applying this gradient operator to D~\n\ with respect to each of the 
coefficients cp[n] and setting the results equal to zero yields the follow
ing system of / ' + 1 linear equations: 

M 

Z A.» + '" ! ( ' " '»)'' 
,» - W 

P M 

= 1 Z (/„.», - ' „ ) ' " ' ' f eJifJ, /> = () P. (C.5) 

We introduce the notation: 

■S',/["l = Z ('« ■ m ~ 'nY' 
in = - M 

(C.6) 

Writing Eq. C.5 in matrix/vector form gives 

u[n] = T\n\c\n\. (C.7) 

where «[»] is a vector with P + 1 elements: 
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/ 

«["] = 

\ 
m = - M 

M 

I 
m = - M 

]T z[n + m\(tn , „, - t„) 

M 

\ Y. A" + '»]('- t m ~ In)'' 
\m =-M I 

T\n\ is a (P + I) x (P + 1) matrix: 

7[«l = 

/S„[«] S,[rt] . . . Sp[n] \ 

SM S2[n] . . . SP+l[n] 

\sr[n] SP+t[n] . . . S2P[n] / 

(C.8a) 

(C.8b) 

and c\n\ is the vector of P + 1 coefficients cp[n] of the polynomial .T„(') 
(cf. Eq. C.I): 

c[n] = 

(c0[n)\ 

cx[n] 

\ cr[»\ I 

(C.8c) 

We denote the /;-th column in the matrix T[n\ as the vector /,,(/»]: 

',.M = 

/ S„[n] \ 

\s'/- - /•[" 

(C.9) 
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Furthermore, the determinant of a matrix A is denoted as | .4| . Then. 
according to Cramer's rule (cf. Apostol [ l%9j. Colin [1974]). the solu
tions of the coefficients c.,[n] are given by 

\UP1"]\ 
<>M = , . / ' = <> P. (CMO) 

\m\ 
where the matrix L'p\n\ is defined as 

Vp[n] = (t0[n] . . . /,,_,[//[ u[n] rp+1[/i] . . . ir\n\). 

(C.I I) 

We note that in the matrix U,,\n] only the/Mh column, i.e. the vector 
u[n\. depends upon the samples z[n\. 

We denote the cofaclor of the element a(q. />) at row </ and column 
/) of matrix A as A,w. For ease of notation in the context of this appendix 
wc start counting rows and columns by index ll instead of by index I. 

To separate the data independent elements from the data dependent 
elements in Eq. C.lll we expand the determinant | £',,[//] | by its /;-ih 
column: 

<',.l"J = 
\T[n]\ i " m \i 

W 
' I A» + >»\L (>,,-„,-<JU',,\>>\),,r 

/•[„]| m M q II 

M 1^.1".'«I I 
Y. z[n+m] . p = 0 P. (C.12) 

"•= - " |7"[/;|| 

where the matrix V^n, m\ is given by 

Vp[n, m] = (/„[/;] . . . tr ,[«] v[n, m] /,,. ,[«] . . . /,.[»)). 

(C.I 3a) 
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with vector v[//. m\. 

v\n.m\ -

I I 

( '« i in ~ hi) 

\(l„ + m ~ ln) I 

(C.13b) 

In our experiments, contours are parametrized according to nor
malized arc length and the samples z\n\ have been taken cquidistantly 
along the contour. Consequentially, in this case 

t„ - m - i„ = mAt. (C.14) 

If N is the number of samples taken along the contour, then At = 2,T//V. 
So 1,,.,,,-t,, is independent of n. Therefore also Slt[n], T[n\, and 
Vr[n. in\ arc independent of n and are denoted from now on as S,r T 
and VJm]. 

As a result we can now express the coefficients cp[n] as (cf. Eq. C. 12): 

M 

I 
m = - M 

cp{n] = X z[n + m] 
VPl>»\ 

M \Vp[-m'] 
= I An-m'] 

m' = - M 

where 

= z[n]*hp[n], p = i) P. 

/',["] = 
\VP\~n\\ 

n = -M M, 

(C.15) 

(C.16) 

and where * denotes (cyclic) convolution (cf. e.g. Oppcnhcim. Willsky 
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and Young [1983]). From Eqs. C.15 and C.16 we observe that c„[n]. 
the p-th coefficient of the polynomial .T,.(0 centered at :[n\. is the result 
of a (cyclic) convolution of the position function samples and an FIR 
filter /;,,[//] with 2M + 1 coefficients, that are independent o\ the posi
tion along the contour. 

Another consequence of the equidistant sampling along the contour 
(Eq. C.14) is that .V,; becomes (cf. Eq. Co) : 

M 

I 
m = -M 

S„=(A/)" I "," « 
= 0 for (/odd. 

> 0 forq even. 
(C.17) 

As a consequence of Eq. C.17 we obtain for the elements /(</. /■) of 
the matrix T (cf. Eq. C.8b): 

I(q. r) = S h , = 0 for q + r odd. ( ( M M 

It is easily verified that, as ;i result of Eq. C I S . the cofactor Tql of 
the matrix T satisfies 

T = for q + r odd. (C.19) 

If we expand the determinant in the numerator of the expression for 
hp[n] in Eq. C.16 by its/;-th column, we obtain: 

hp[n]= Z(-nA,)"(Vr[-"\) 
,/ = " 

IP 

= Y,(-»&>)*Tir P = 0 P. (C.20) 
,, ii 

since (V;,I»))(//, = TlW for n = - M M, q = 0 /' (cf. Eqs. CSb. 
C13a. b). 

From Eqs. C.19 and C.20 it now follows that 

hp[ri\ = hp[—n] for p even. (C.21a) 
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since for p even the indices q that lead to a contribution to hp[n] in Eq. 
C.20 are also even. Likewise we find 

hp[n] = -hp[-n] forpodd. (C.2lb) 

Thus for p even the coefficients h^n] define a symmetric FIR filter. 
and for p odd they define an antisymmetric FIR filter. 

While the coefficients hv\n\ need to be computed only once, the 
coefficients ^,["1 of the polynomial .T„(/) must be computed at each of 
the iV sample positions along the contour (cf. Eqs. C. 15 and C. 16). The 
complexity of the computation of each of the P coefficients cp[n] at all 
N sample positions along the contour is O(N-M), when fitting to 
2M + 1 position function samples. For sufficiently large M it may be 
more efficient to compute the convolution sum in Eq. C.15 via multi
plication in the Fourier domain using FFT methods (cf. Section 4.2). 
In the latter case the computational complexity is ()(N\og2N). assum
ing that N > 2M + 1 and that N is a power of 2 (cf. Section 4.2). 

With the result in Eq. C. 17 the polynomial .T„(/). Eq. C.l. can be 
computed efficiently at each position z[n] along the contour. In digital 
image analysis, the position function samples z\n\ are always corrupted 
by distortion, caused by the discrete geometry of the two-dimensional 
sampling pattern. Therefore we use the polynomial -T„(/) to smooth the 
position function z at the «-th sample point, i.e. at / = /„. Thus the 
approximated position function sample z\n\ is given by (cf. Eqs. C.l-
C.2): 

-„["I = *„('«) = crf«] = flbW + ' ^ M - (C.22) 

In order to approximate the tangent function z at the n-th sample 
point, we take the derivative of .T„(;) and evaluate the result at I = t„. 
This gives (cf. Eqs. C.l-C.2): 

K[n\ = kn(t„) = ci[n] = at[n] + ib^n]. (C.23) 

Likewise we find for the approximation of the acceleration function z: 

zM = Jtn(Q = 2c2[n] = 2(a2[n] + ib2[n\). (C.24) 
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Thus we observe from Eqs. C.22-C.24 that in order to approximate 
z, 2 or z at the n-th sample position along the contour we only need to 
compute (■„[/;]. (-,[//] oreert], respectively. For the approximation of the 
cumulative angular function </ we use zu[n]. Recalling that za[n] = 
•v.il"] + ■>';■["]• 'he approximation for the tangent angle function 0 at 
t = t„ is (cf. Eq. C.23): 

^ , | = a r c , a n ( ^ ' ' ! ) . a r c t a n ( / , | [ ' ' | ) . (C.25) 
'■v,[//|' v «i l" | 

where we can compute 0[n\ without ambiguity in a range of length 2.T 
from the signs of «,[/;] and h\n\. From D,\n\ we compute </ ,|/)j. using 
the same formulas as for the polygon in Section 2.2 (Eqs. 2.2.63-
2.2.65c). The periodic cumulative angular function i/' is computed from 
«/.,[»] by the formula (cf. Eq. 2.2.32): 

M = <fa[n]-n N. (C.26) 

The curvature function A.' at the n-th contour sample position is ap
proximated on the basis of Eq. 2.2.26. by using both r.,|/;| = .vafn] + 
ii'J/fl and zs[n] = xu[n] + \y.,\n\ (cf. Eqs. C.23-C.24): 

,. , , .. -U"I.U"] -»,l"lr.,l"l 

{(-v,l"])- + (v.,!"|)'} 

__ 2 <t\lii\l>:l>i\-«:\»\h\[»\ 

{(«.M): + (M«)):}' 
(C.27) 

In order to obtain more insight into the behavior of the polynomial 
filters that we derived to estimate za[n]. za[n] and za[n] (el. Eqs. ( .15. 
C.16 and C.22-C.24), and into the influence of the order / ' of the 
polynomial and the fitting width 21/ + 1. it may be interesting to con
sider their frequency responses. 

The frequency response //„(<") of an FIR filter with impulse response 
hp[n], n - — M M. is defined as (cf. Hamming 11*J"77]. Oppenheim 
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and Schafer [1975]) 

H,,((o)= £ hp{n)€ (C.28) 

For symmetric FIR filters, that occur for p even (cf. Eq. C.2la), 
H^((i)) is real-valued: 

M 

Ht,(o>) = /go] + 2 £ kp[n]cos(no,). (C.29a) 
,i = i 

while for antisymmetric FIR filters, that occur for p odd (cf. Eq. 
C.21b). Hp((i)) is purely imaginary 

M 

Hp(<t)) = 2i X /',.[»]s'" ('"")• (C.2%) 
n = I 

Consequentially, the transfer functions //,,(«») of the filters with im
pulse response h„[n] are real-valued. 

In Figure C.Ia we have displayed Re{//„(w)} for FIR filters with 
impulse response h,\n\ of fixed width M = 5 (i.e. fitting to 2M + 1 = 
11 position function samples) and of varying order of the polynomials: 
P - 2. 4 and 6. 

In Figure C.lb we have done the same for FIR filters with impulse 
response ltu[n] of fixed order of the polynomials, i.e. P = 4, and of 
varying width: M = 3, 5 and 7. 

In Figure C.la we observe that the higher the order of the polyno
mials that we fit. the higher the tangency of Re{//0(w)} at u> = 0 
(Hamming [1977)). As a consequence, the width of the passband in
creases with increasing order of the polynomials. 

In Figure C.lb we see that the width ol" the passband decreases with 
an increasing number of position function samples to which we fit the 
polynomial. 

Because of the antisymmetry of /;,[/;] the transfer functions H\(a>) arc 
purely imaginary. In Figure C.2a wc have displayed Im {//|(w)} for 
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Re f H0 (wij 

M = 5 

P:i 

Figure C.I. Display of the real-valued transfei function //,(•"! of the polynomial I IR filter with 
impulse response h.\n\. which is used to compute the approximated position (unction :.\n\. 

In (a) wc have varied the order of the polynomial: / ' - -. 4 and <>. while keeping the width ol 
the impulse response constant (2.v/ - I = II) In I h) the number of contour samples to which wc 
fit the polynomials, and thus the width ol the impulse response, has been varied (M - 5. S. ~). 
while the order of the polynomials has been kept constant. 
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1 -

M=5 

Figure ( .2. Display of ihe purely imaginary transfer Function //|(w) of the polynomial FIR filter 
with impulse response 'i|[/i|. which is used to compute the approximated tangent function JsJM. 

In (a) and (h) of this figure the same parameter values have heen used as in (a) and (b) of 
Figure C.I. 
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0.6-1 

0.6-1 

M=S 

P = i. 

Figure C.3. Display <>f ihc real-valued transfer Function // («) ol the polynomial FIR filtct with 
impulse response '':!"]■ which is used to compute the approximated acceleration function - |'i|-

In (a) .md {!•>) "i this figure the same parameter values have been used as in (a) and (b) ol 
Figure ( ' .I . 
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filters with impulse response h\n\ of fixed width and of varying order 
of the polynomials: P = 1,3 and 5. In Figure C.2b we have done the 
same for FIR filters with impulse response /?,[//] of fixed order of the 
polynomials, i.e. P = 3, and of varying width: M = 3. 5 and 7. 

The transfer functions H2(u>) of the filters with impulse response 
h2\n\ are real-valued. In Figures C.3a and C.3b we have displayed 
Re {H2(OJ)\ for the same values of polynomial order P and width M as 
in Figures C.Ia and C.lb, respectively. In Figures C.2a and C.3a we 
observe that, similar to Re {//„(w)} in Figure C.la, the width of the 
passbands in H\{m) and H2(o>) increases with increasing order P of the 
polynomials (for fixed width M). 

In Figures C.lb and C.3b we see that, similar to H„(OJ), an increase 
of the number of position function samples to which we fit the polyno
mial. i.e. 2M + 1, causes the width of the passband of Ht{o>) and H2(OJ) 
to decrease. Note that the transfer function of the ideal differentiating 
filter is H\(u>) = \o>. while that of the ideal double differentiating filter 
is H2(tn) = — or. 

From Figures C.la-C.3b we observe that the polynomial filters //„[//], 
/;,|/;| and h:\n}. considered as low-pass (differentiating) filters, may not 
have the most desirable properties. However, we have to keep in mind 
that these filters have not been designed specifically for frequency filter
ing. The basic assumption that we make, when using polynomial filters. 
is that, at every sample position, the contour can be appropriately ap
proximated over the fitting width by a polynomial of the order chosen. 
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Samenvatting 

De vorm van objecten of van interessegebieden speelt een fundamen
tele rol bij digitale beeldanalyse. Gedurende de afgelopen decennia 
zijn er in de literatuur vele benaderingen voor het karakteriseren van 
vorm en gelijkvormigheid verschenen. Een belangrijke klasse van 
vormanalysetechnieken is gebaseerd op het representeren van de bui
tenrand van objecten. Deze klasse van technieken wordt in dit proef
schrift in detail bestudeerd. 

Er zijn verschillende methoden voor het representeren van de buiten
rand van tweedimensionale objecten voorgesteld. Het belangrijkste 
doel van dit proefschrift is het geven van een uniforme theoretische 
basis voor het analyseren van de gelijkvormigheid van vormen op basis 
van parametrische contour-representaties. Uniform in die zin dat ver
schillende methoden voor het representeren van contouren, waarvan 
een aantal eerder in de literatuur zijn voorgesteld, worden beschouwd 
en dat de verbanden daartussen worden afgeleid. Daarmee wordt het 
theoretische kader, waarin deze contour-representaties passen, duide
lijk gemaakt. 

Op basis van de parametrische contour-representaties worden maten 
voor ongelijkvormigheid tussen contouren gedefinieerd. Afgezien van 
het bepalen van de relaties tussen de contour-representaties zelf, probe
ren we ook relaties tussen die maten voor ongelijkvormigheid te bepa
len, Verder worden de mogelijkheden om contour-representaties te 
normeren geëvalueerd en wordt de afweging tussen optimalisatie en 
normalisatie, noodzakelijk om de gewenste invariantie-eigenschappen 
in de voorgestelde maten voor ongelijkvormigheid te bereiken, bespro
ken. 

We relateren het begrip symmetrie in vlakke figuren aan dat van 
gelijkvormigheid als resultaat van symmetrietransformatics. Dit stelt 
ons in staat om maten te definiëren, op basis van de eerder gedefinieer
de maten voor ongelijkvormigheid, voor het kwantificeren van symme-
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trie in een vlakke figuur, of voor hel afwezig zijn daarvan (waarvoor 
we de term 'dissymmetry' zullen gebruiken). 

Aangezien er in de literatuur zeer veel aandacht is geschonken aan 
de Fourier-coëfficiënten van parametrische contour-representaties, for
muleren wij in dit proefschrift telkens de equivalenten van de maten 
voor ongelijkvormigheid en voor "dissymmetry' in termen van Fourier-
coëfficiënten. Waar dat mogelijk is leiden wij relaties tussen heide ty
pen van maten af. Enige overwegingen met betrekking lot de practische 
implementatie van de voorgestelde technieken worden gegeven. Nu 
volgt een kort overzicht van de inhoud van de individuele hoofdstuk
ken. 

In Hoofdstuk 1 wordt een kort overzicht gegeven van verschillende 
benaderingen van het vormanalyseprobleem in de context van het ana
lyseren van tweedimensionale beelden en wordt de benadering, die in 
dit proefschrift gevolgd wordt, kort uiteengezet. 

In Floofdstuk 2 worden de parametrische contour-representaties, die 
wij beschouwen, geïntroduceerd en worden de relaties daartussen afge
leid. Tevens wordt hel begrip gelijkvormigheid gedefinieerd, dal ver
volgens wordt geformuleerd als een relatie lussen de contour-represen
taties van een gelijkvormig paar van objecten. Tenslotte worden iwee 
typen van symmetrie in het vlak besproken: spiegelsymmetrie en rota-
tiesymmetrie. De condilies. waaraan een contour-representatie moet 
voldoen om een contour met een dergelijk type symmetrie weer te 
geven, worden geformuleerd. 

Hoofdstuk 3 volgt dezelfde lijn als Hoofdstuk 2. maar dan in termen 
van de Fourier-coëfficiënten van de contour-representaties. Ook wor
den de gevolgen van een genormeerde booglengte-parametiïsatie op de 
Fourier-reeksontwikkelingen van contour-representaties besproken en 
worden er grenzen afgeleid voor de afbreek fouten in eindige Fourier-
reeksontwikkelingen. 

In Hoofdstuk 4 worden maten voor ongelijkvormigheid en voor ■dis
symmetry' gedefinieerd. De theoretische eigenschappen van die maten 
worden geanalyseerd en hun onderlinge relaties afgeleid. Die relaties 
kunnen van nut zijn bij hel oplossen van het ontwerpprobleem, d.w.z. 
welke contour-representatie en welke maat. of welke combinatie van 
maten, moet er uit een groot aantal mogelijkheden gekozen worden in 
een bepaalde toepassing. Met betrekking tot het laatstgenoemde wor
den ook een aantal experimenten beschreven en geanalyseerd. Verder 
wordt in dit hoofdstuk de afweging besproken tussen optimalisatie en 
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normalisatie van contour-representaties, noodzakelijk om in de voorge
stelde maten de gewenste invariantie te bereiken voor translatie, rotatie 
en schaling van contouren en voor de keuze van het parametrische 
startpunt. 

Hoofdstuk 5 bevat een discussie over de resultaten die in de voor
gaande hoofdstukken verkregen zijn. Er worden een aantal open pro
blemen aangeduid en er worden suggesties gedaan voor voortgezet on
derzoek. 

Tenslotte bevat dit proefschrift drie appendices. In Appendix A 
wordt een aantal wiskundige begrippen en eigenschappen gepresen
teerd die voor de inhoud van dit proefschrift van belang zijn. In Appen
dix B wordt een efficiënte methode beschreven voor de berekening van 
de traagheidsmomentcn van gebieden in het vlak die begrensd worden 
door een veelhoek. Appendix C behandelt de schatting van contour-re
presentaties door middel van een stuksgewijze benadering van de con
tour met polynomen. 





8. Het passieve personeelsbeleid bij de Nederlandse univer
sitaire instellingen vormt een bedreiging voor de arbeids
motivatie bij die instellingen. Het is dan ook noodzakelijk 
dat de kwaliteit van dat personeelsbeleid wordt verbeterd. 

9. De intensieve veehouderij en andere hiermee verwante 
bio-industriële activiteiten dienen niet langer in de traditi
onele landbouwgebieden uitgeoefend te worden, maar 
verplaatst te worden naar daar toe aan te wijzen industrie
terreinen, waarbij maximale aandacht besteed moet wor
den aan een beperking van de belasting voor het milieu 
die dergelijke bedrijven nu veroorzaken. 

10. Het ten onrechte letterlijk interpreteren van de aandui
ding 'automatic' op de deuren in de gangpaden van inter
citytreinstellen van de Nederlandse Spoorwegen kan 
pijnlijke gevolgen hebben. 

11. 'No nonsense' does not necessarily make sense. 

Stellingen 

behorende bij het proefschrift van 
P.J. van Otterloo 

Delft, 14 januari 1988. 



Voor het beoordelen van de gladheid van een kromme 
vormt de maximale krommingsmodulus een beter ken
merk dan de gemiddelde buigingsenergie. 

Dit proefschrift, paragraaf 3.2. 

De ontwikkeling van kwantitatieve methoden voor vorm
analyse die aansluiten bij onze perceptie of intuïtie, wordt 
in hoge mate gehinderd, doordat wij slecht in staat zijn 
vorm en vormverschillen te kwantificeren. 

Indien bij het digitaliseren van tweedimensionale beelden 
met een Cartesisch bemonsteringsraster de bemonster-
dichtheid zodanig wordt gekozen dat deze compatibel is 
met deze beelden, volgens de door Pavlidis hiervoor 
gegeven definitie, dan kan bij de segmentatie van deze 
beelden in deelgebieden voor ieder gebied 4-connectivi-
teit gebruikt worden, aangezien bij compatibele be
monstering de 4/8-connectiviteitsparadox niet kan op
treden. 

Th. Pavlidis. Algorithms for Graphics and 
Image Processing, Berlin: Springer-Verlag, 
1982, hoofdstuk 7. 

Bij de afbeelding van op bemonstersnelheid werkende 
digitale signaalbewerkingsalgoritmen op multiproces-
sorarchitecturen, moeten afzonderlijke signaalbewer
kingsoperaties aan processingelementen worden toegewe
zen en moeten deze operaties in klokcycli worden inge
past. Voor een efficiënt afbeeldingsproces is het 
noodzakelijk dat er formalismen worden ontwikkeld vol
gens welke die toewijzing en die inpassing van signaal
bewerkingsoperaties automatisch kunnen plaatsvinden. 

Het meten van de mate van gelijkvormigheid van contou-
renparen kan vooraf gegaan worden door een nor
meringsproces voor het normeren van de oriëntatie en het 
parametrische startpunt van de contouren. Het verdient 
dan aanbeveling om deze meting niet op uniek oriëntatie-
en startpuntgenormeerde contouren te baseren, maar om 
deze te optimaliseren overeen beperkt aantal combinaties 
van oriëntatie en startpunt per contour, die met behulp 
van dat normeringsproces verkregen kunnen worden. 

Dit proefschrift, paragraaf 4.3. 

De door Crimmins gedefinieerde volledige verzameling 
van Fourier-descriptoren van de positiefunctie van een 
enkelvoudig gesloten kromme, waarvan de parameter 
lineair gerelateerd is aan de booglengte van die kromme. 
bevat alleen voor de cirkel een eindig aantal van nu! 
verschillende elementen. 

T.R. Crimmins [1982]. A Complete Set of Fou
rier Descriptors for Two-Dimensional Shapes', 
IEEE Trans, on Syst., Man and Cybern., 
SMC-12, 848-855. 

Dit proefschrift, paragraaf 3.3. 

Elliptische Fourier-descriptoren zijn niets anders dan 
meer van hetzelfde. 

F.P. Kuhl and CR. Giardina [1982]. 'Elliptic 
Fourier Features of a Closed Contour'. Compu
ter Graphics and Image Processing, 18, 236-258. 

C.-S. Lin and C.-L. Hwang [1987], 'New Forms 
of Shape Invariants from Elliptic Fourier 
Descriptors', Pattern Recognition, 20, 535-545. 


