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MASTER THESIS W.K. BOELRIJK

ABSTRACT

Over the last decades, flying has become increasingly accessible and the global avi-
ation industry is growing rapidly. This causes airports and airspaces to reach their
capacity limits. Reliable estimation and forecasting of air passenger demand is very
important for airlines in order to allocate resources effectively in a constrained and
competitive aviation environment. A model is developed to estimate air passenger
demand suitable for routes where currently no direct service exists in order to aid
decision-making on new destinations. For this model the traditional gravity model
is extended with big data from worldwide flight search engines (meta search data).
The model is applied to a case study with real world data from KLM Royal Dutch
Airlines. We find that the gravity model enriched with meta search data is able to
accurately predict demand and rank destinations that are currently not connected
to KLM’s network by a direct flight. The data-driven approach allows us to give
recommendations about promising destinations that could be added to an airline’s
network. Ultimately, a more efficient network as a result of advanced demand
estimation is expected to lead to higher load factors and lower emissions per pas-
senger.

Keywords: Air Passenger Demand Estimation, Aviation, Networks, Gravity Model,
Ordinary Least Squares, Big Data

JEL Classifications: C01, C13, C21, C52, C80, C82
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PREFACE

Dear reader,

This master thesis was the final challenge for me in order for obtain the Master
of Science degree in Engineering & Policy Analysis from Delft University of Tech-
nology. During my exchange semester abroad, as part of the master, I got inspired
to pursue a second master degree. After obtaining all credits for the courses, thus
excluding the master thesis, I started with a master in Econometrics at the VU Am-
sterdam. After obtaining all course credits in the second master as well, a double
master thesis assignment awaited. Both master theses are being performed sequen-
tially during a extensive internship at KLM Royal Dutch Airlines. Interestingly, this
first thesis originally started out to be delivered at the VU Amsterdam, but after a
change of plans the work was converted to the TU Delft master thesis.

The idea for the thesis topic was born during a brainstorm session at KLM when
they asked the question: "What is the next best destination we could fly to?" Since I
worked with internal company data that includes sensitive competitive informa-
tion, specific KLM results on recommended destinations are classified as confiden-
tial and are therefore excluded from the published version. The prepared data set
and developed code are available upon request for the graduation committee.

As I took a special journey throughout the master and especially during the master
thesis, quite a few people got involved in the process. First of all I would like to
thank my TU Delft supervisor Dr. Jan Anne Annema and chair of the graduation
commitee Dr.ir. Bert Enserink for their feedback and flexible attitude in the process.
Secondly I would like to thank my special supervisor from the VU Amsterdam Dr.
Francisco Blasques for his enthusiasm, feedback and continued support even after
the work converted to become the TU Delft thesis. Furthermore I would like to
thank my KLM supervisors Bjørn Tesselaar and Anne Jan Beeks for their guidance
and support. Besides that I would like to thank my friend and classmate Charlotte
de Bruijn for helping me out with structuring numerous of my ideas and proof-
reading the entire thesis. Last but not least I would like to thank anyone whom I
worked with during my internship at KLM, in special the departments Operations
Research and Network Planning.

I hope you enjoy reading my master thesis.

Wesley Kevin Boelrijk
Amstelveen, August 2019
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EXECUTIVE SUMMARY

Over the last few decades, flying has become increasingly accessible and the overall
aviation industry is growing rapidly. While this benefits the worldwide and local
economies, employment and accessibility, it also has its negative impact with emis-
sions and noise pollution. Due to a recent period of strong growth and increasing
public resistance against flying, airports start to reach their capacity limits. This
implies that airlines need to be more selective in the flights they perform as they
are constrained in their growth.

Reliable estimation and forecasting of air passenger demand is very important for
airlines to be profitable in a constrained and competitive aviation environment.
There is an issues with the current demand estimation method based on historic
booking data. The problem is that is that the true demand is unobserved as one
is only able to collect historic booking data on routes where a direct service exists
or where transfers are registered. Secondly, the source for historic booking data
is deteriorating in quality as the booking systems become more and more decen-
tralized over the last years. Therefore, the following research question is presented:

How can air passenger demand be estimated accurately, suitable for city-pairs where cur-
rently no direct air service exists in order to assist the flight network decision-making?

In order to answer this question a literature study is performed addressing the
current standards of air passenger demand estimation. The gravity model is the
most suitable method to estimate demand for destinations where currently no di-
rect service exists (Grosche et al., 2007). The gravity model explains flows of people
or cargo between two locations based on geo-economic attraction variables and the
distance between these locations. However, this traditional method has shortcom-
ings and its applicability to large-scale networks is questioned (Verleger Jr et al.,
1972). In order to improve on these limitations a new source of information is
added to the traditional gravity model in the form of big data.

Subsequently an empirical case study is performed on the network of KLM Royal
Dutch Airlines, the airline that operates at its capacity constrained hub Amsterdam
Airport Schiphol. Through KLM we have access to 15 billion records of searches
for flight on flight search engines from the years 2017 and 2018. The so-called meta
search data contains information regarding the true origin and destination of a
potential passenger, information that is normally unobserved. The meta search en-
riched gravity model is applied to real world data from KLM in order to measure
the benefit of the added big data. Nine different model specifications are made in
order to test which combination of variables in the model have the most predictive
power for demand estimation.
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We find that the most extensive models that contain the traditional gravity vari-
ables, the newly added meta search data and numerous control variables performs
the best at with R2 of 0.92 indicating quite a good model fit. The added predic-
tive power of the meta search data seems to outperform the traditional gravity
variables completely. The model is validated using k-fold cross validation and a
routine to predict back existing KLM destinations. The best models predict 70%
of the current KLM destination with a rank in the top 10 based on total demand.
Furthermore, the data-driven approach allows us to give recommendations about
promising destinations that could be added to an KLM’s network based on total
predicted demand and under-predicted destinations compared to historic booking
data. KLM’s five latest additions to the flight network are all ranked within the top
four, which seems to indicate that this model has a lot of real world value.

An academic conclusion drawn is that meta search data seems to be highly valu-
able for air passenger demand estimation. The results give the impression that
adding the meta search data improves the estimation of true air passenger demand
and that it partly overcomes the measurement error that is present in the historic
booking data. In the gravity model enriched with meta search data, the traditional
gravity variables are not significant anymore as they are outperformed by the meta
search data. This might indicate that the traditional gravity model is not as relevant
today anymore as when it was created.

The gravity model enriched with meta search data seems to shows real world value
as it accurately ranks the most recent KLM destinations highly. The model con-
tributes to the network decision-making of the airline by providing a prediction
for the unobserved true demand. Therefore it might uncover destinations where
previously no attention or interest had been based on the deteriorating historic
booking data. Despite the promising results, the meta search data as well as the
model has some limitations which one should be aware of. It is the price-sensitive
leisure passengers that typically compares flights the most and thus logs the most
searches. Therefore the model is limited the type of destinations it can recommend.
Destinations consisting mainly of business traffic, which are the most profitable for
an airline, are likely to be overlooked using this model. Nonetheless, a well devel-
oped and more efficient KLM network helps Amsterdam Airport Schiphol to offer
better connectivity within its capacity constrains. A more efficient network in terms
of resource allocation might lead to higher load factors resulting in lower emissions
per passenger. During this research the case study is applied to the KLM network
on the constrained Amsterdam Airport Schiphol. However, the developed method
can be generalized to other airlines and airports as well.
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1 INTRODUCTION

This master thesis research is performed during an internship at Air France - KLM Royal
Dutch Airlines (AF-KLM). Data from KLM TripPlanner and Network tools of the Opera-
tions Research department are used from the period January 2017 to December 2018.

Reliable estimation and forecasting of air passenger demand is very important for
airlines to be profitable and competitive (Grosche et al., 2007). A successful airline
is characterized by optimally dividing its assets to fly to the right destinations. This
is particularly important since airlines have large upfront investments in their fleet
and need to make early choices about the aircraft types they purchase. Secondly,
airlines must commit themselves one year in advance to the destinations and fre-
quencies of their flights, regardless of the actual demand for those destinations at
the time of the flights. These investments and commitments are based on what the
airline expects from the market. Thus, in order to make a profit in the competitive
airline industry it is important to have a sound market estimation, since margins
are particularly low.1

Before demand can be estimated, it is crucial to note that true demand is (partially)
unobserved. For example, when a passenger flies from Amsterdam to New York,
it is assumed that the true origin was Amsterdam and the true destination is New
York. However, this passenger could have a connecting flight from Vienna to Ams-
terdam and later a connecting flight from New York to Washington DC. This means
that the true origin-destination (O&D) combination is Vienna - Washington DC. If
the passenger flies all three connecting flights of the route with the same airline or
partner airline, the true O&D is known (at that specific airline). However, if the
passenger books separate flights, three different passenger flows are registered.

Traditionally, bookings were done by travel agencies connected to the largest Global
Distribution Systems (GDSs). These systems contained all information regarding
the true O&Ds of all passengers. However in the last ten to fifteen years it has
become increasingly normal for customers to book flights directly at the airline’s
own booking channels, without the use of a travel agency. This causes that the
information for airlines, which they use to estimate demand on, to deteriorate. It
might be the case that new methods or data has to be used to still estimate demand
accurately. This poses the following research question:

How can air passenger demand be estimated accurately, suitable for city-pairs where cur-
rently no direct air service exists in order to assist the flight network decision-making?

1IATA publication: https://www.iata.org/pressroom/pr/Pages/2018-06-04-01.aspx
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Academic knowledge gap
The literature on air passenger demand estimation and forecasting started in the
1950’s and is still a topic that has a considerable amount of attention from re-
searchers today (Wang and Song, 2010). A very well known and popular model
in the air travel demand estimation literature is the gravity model. Grosche et al.
(2007) state that "Since no single technique guarantees accuracy, airlines in fact compare
forecasts from several different models. Within this set of forecasting methods, the most
widely used is the gravity model." The gravity model explains passenger flows be-
tween two entities (airports, cities, countries etc.) and is able to estimate demand
for city-pairs where no direct air service exists currently. Grosche et al. (2007) ar-
gue that the gravity model is especially appropriate, because it is able to estimate
demand for destinations that are not currently in the network and it has minimal
dependence on airline related data.

However, the gravity model is quite a traditional method. The main issue is that the
model has been proven to work well on a small scale, but on a larger scale (mul-
tiple markets) the performance of the gravity model is questionable (Verleger Jr
et al., 1972; Grosche et al., 2007; Kopsch, 2012; Hazledine, 2017). Since the gravity
model is the best way to estimate demand for destinations that are not currently in
the network we are still eager to use it. We suggest that big data would be a good
addition to the gravity model. It can arguably solve the problem of the increasingly
missing information and the multiple market issue because this information is im-
plicitly incorporated in the data. Therefore we propose to enrich the traditional
gravity model with new data sources from the 21st century called meta search. In
this way connectivity between city pairs can be captured by other influences that
were not available before. It will also show if the gravity model is still useful to
estimate demand or if we need completely new methods. We propose to enrich the
gravity model by adding meta search data to proxy air passenger demand.

Practical relevance and multi-actor perspective
Over the last few decades, flying has become increasingly accessible and the overall
aviation industry is growing rapidly.2 While this benefits the worldwide and local
economies, employment and accessibility, it also has its downsides. Many airports
to have reached their capacity limits. A constrained airport has a reducing compet-
itive position that threatens her airlines and the slows down the development of
international connectivity. National economies are often dependent on travellers
and thus being connected and accessible is important. Many airports deal with
capacity constraints in the form of physical space, but other limitations such as
emission and noise pollution exists as well. We observe an increasing public resis-
tance on flying. Especially concerns regarding noise pollution and CO2 emissions
are raised by residents of the area. While some parties benefit from a growing avi-

2https://www.iata.org/publications/store/Pages/20-year-passenger-forecast.aspx
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ation industry, others are harmed by it.

This makes the problem we are addressing is a typical multi-actor problem where
the perspectives and interests of the involved parties are unaligned. A couple of ac-
tors are explained here. First we have the airports who are interested in expanding,
because their livelihood depends on it. The aviation landscape is very competitive
and not being able to grow can quickly become problematic. The airlines using
the airport are companies with a profit motive and try to capture as many of the
available demand as possible. Passengers using the airlines and airports are gen-
erally also in favor of a growing aviation industry as this increases accessibility
and could reduce prices. Then there are local residents who are often not happy
about the airport expanding, because it causes nuisance in the form of emissions
and noise pollution. There is a large public debate going on worldwide about the
effects of aviation on the environment. Especially extra emission and noise pollu-
tion of additional air traffic. The last key actor are the governments that underline
the importance of the aviation sector for reasons such as that their economic in-
frastructure depends on tourism or is an important business location, while at the
same time they try to reduce CO2 emissions as part of their long term objectives to
battle climate change.

These contradictory interests make future growth of constrained airports highly
uncertain. Airlines and airports have to make decisions on investments in fleet
and infrastructure under this large uncertainty. This research aims to develop a
model to help the aviation industry make better demand estimations to optimize
allocation of current resources such as the fleet and airports flight movements.

Research approach
Several steps will be taken in order to find the answer to the main research ques-
tion. These steps are represented schematically in flow chart in Figure 1. The mo-
tivation for this research is three-fold. The first two motives for the research are
academic in nature and are described in the knowledge gap above. The traditional
gravity model was developed decades ago and copes with certain limitations. We
have a lot of extra data now which can prove to be very helpful. One could imagine
that big data as a product of human behaviour captures underlying patterns that
traditional approaches such as a gravity model could not capture. Also it contains
more information about true demand.

Besides an academic research gap the idea for the research originates from a rel-
evant and urgent real world problem. The aviation industry has been growing for
decades and many airports are coping with space limitations. Airports are getting
congested, by either capacity constraints, emission legislation or noise pollution. A
concrete case is Amsterdam Airport Schiphol. This is the third research motive.

3



MASTER THESIS W.K. BOELRIJK

Figure 1: Flow chart on the research approach

To answer our research question we start with a literature review about the cur-
rent standards for air demand estimation. The gravity model is reviewed and the
idea to improve on the traditional gravity model by adding meta search data is
born. Of course, adding meta search also comes with some difficulties, which will
be discussed.

In order to make any statements on the usefulness, applicability and performance
of the new method, a case study will be done. The method will be tested on a case
study for KLM. KLM is the largest airline at Schiphol responsible for the majority
of the network connectivity. The gravity model will be applied to the flight net-
work of KLM. Due to the choice for a case study we are able to assess the practical
feasibility and usefulness of our new method/model and it allows us to use KLM’s
data. Several model specifications can be compared to find which adjustments and
additions to the traditional model yield the best improvement. The new model will
be validated according to real world data.

4
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The results from the case study will have real world implications and academic
implication. On one side, for academia we will draw conclusions about the ’new’
method, which will show if the gravity model is still relevant. On the other hand,
we will have predictions for KLM to assist in the network decision-making process.

5
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2 THEORETICAL BACKGROUND

In this section we will examine various ways for air passenger demand estimation
from current literature, make the choice of which model to use and argue why
in Section 2.1. We will then present the chosen model and explain it in detail in
Section 2.2. Then we critically discuss the pros and cons of using the gravity model
in Section 2.3. Finally, Section 2.4 deals with literature about adding big data into
our model.

2.1 Air passenger demand estimation

This subsection provides an overview on the methods for air passenger demand
estimation described in the literature. Each method has its advantages and disad-
vantages that determine the applicability for the research: determining air passen-
ger demand for O&Ds where currently no air service exists. Subsequently the most
suitable method is selected.

Air passenger demand estimation review
The literature on air passenger demand estimation and forecasting started in the
1950’s and is still a topic that has a considerable amount of attention from re-
searchers today (Wang and Song, 2010). Verleger Jr et al. (1972) review a series
of air transportation demand models and classify three classes of air passenger de-
mand models: 1) Aggregate travel models, 2) City pair or point-to-point models
and 3) Gravity and cross-sectional models.

Verleger Jr et al. (1972) state that aggregate models appear most frequently and
that the model usually measures air traffic in revenue passenger kilometres (as a
homogeneous commodity). In the model, a measure for aggregated demand is
explained by variables such as price, national incomes and a measure for alterna-
tive methods of travel. Verleger Jr et al. (1972) explain that the models have been
successful for accounting purposes and revenue forecasting under the influence of
changing prices and income of the consumers. However, our research goal is to
estimate demand for destinations that have currently no air service in place, which
implies that no data on revenue and pricing is available for new O&Ds. This makes
the class of aggregate models not applicable for our purpose.

The second method described by Verleger Jr et al. (1972) is the city pair or point-
to-point method for air transport demand. This class of models creates separate
models for each O&D in the data set, such that the changes in demand over time
can be analyzed. In this model the most important explanatory variables of de-
mand are income and price. The main benefit of this technique is that an accurate
model can be made per city pair to forecast demand into the future.

6
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This method is often used to measure and scientifically explain price and income
elasticities (Verleger Jr et al., 1972). The prerequisite of this model is that you need
data per city pair over various points in time. Only with enough observations,
claims about the significance of parameter estimates can be made. However, since
our purpose is to estimate demand for non-served city pairs, we are not specifically
interested in how changes over time occur. Secondly, we only have demand data
available describing the last two years, which is not enough to feasibly create such
a model.

Thirdly, we find the gravity and cross-sectional models. The gravity model as-
sumes that travel between two cities will increase with population and wealth lev-
els and decrease with the distance (Verleger Jr et al., 1972). It is widely used in
many disciplines, such as transportation and marketing (Shen, 2004). In contrast
with the point-to-point model described above, the gravity model is applied typ-
ically to cross-sectional data sets (Verleger Jr et al., 1972), (Gómez-Herrera, 2013).
The gravity model requires the assumption that travel across a diverse set of city
pairs can be characterized by the same set of variables (Verleger Jr et al., 1972). This
often leads to the result that gravity models produce satisfactory results for homo-
geneous sets of city pairs. This means that the scope of a gravity model is often
limited to a country or a group of neighbouring countries such as in studies by
Grosche et al. (2007), Kopsch (2012) and Hazledine (2017). One must be cautious
with using the gravity model when applying it to explain heterogeneous markets.

Grosche et al. (2007) apply the gravity model to estimate air passenger volumes
between city pairs. They specifically state that the gravity model can be applied
to city-pairs where currently no air service is established and historical data is not
available. Also if factors describing the current service level of air transportation
are not accessible or accurately predictable they argue this is the way to go (Grosche
et al., 2007). This is exactly what we need for our research purpose, and therefore
we proceed with this modelling choice. How the gravity model works and a criti-
cal review on gravity model literature is described in the next section.

Variables used in air transport demand models
Jorge-Calderón (1997) distinguish two types of variables in air passenger demand
models: geo-economic variables and service-related variables. Geo-economic vari-
ables contain information about economic activities and geographical characteris-
tics of the areas where transport takes place, while service-related variables con-
tain information about aspects that are under control of airlines, such as flight fre-
quency, plane size and prices. For new destinations, information regarding flight
frequency, plane size and prices (service related variables) are unavailable. This is
an extra reason for choosing the gravity model, as it has minimal dependence on
airline related data Grosche et al. (2007).
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2.2 Gravity model

In this section we explain the intuition for the gravity model and its application in
detail. Then we elaborate on which variables the model usually includes and why.

The origin of the gravity model and the intuition behind it
The idea behind the gravity model is based on Newton’s gravity law from physics.
Newton’s law of universal gravitation states: ’Every particle attracts every other parti-
cle in the universe with a force which is directly proportional to the product of their masses
and inversely proportional to the square of the distance between their centers’ (Newton,
1687). Equation (1) presents the mathematical formulation of the gravitation law
where Fij is the attractive force between i and j, explained by a gravitational con-
stant G, the masses M of objects i and j and the distance between the objects Dij
squared.

Fij = G ·
Mi ·Mj

D2
ij

(1)

The fundamental idea of Newton’s law was the inspiration for creating the gravity
model which aims to explain flows of information, people or goods between places
by their economic mass and distance. The formula to explain these flows bears a
lot of similarities to Equation (1) and is given by:

Vi,j = k ·
(Ai Aj)

α

dγ
i,j

. (2)

We follow the notation of Grosche et al. (2007). So in essence, the gravity model
describes movement or flows between locations. It is expected that the economic
size of a country or city has a positive contribution to the flow, while distance has
a negative effect (Verleger Jr et al., 1972). Earlier versions of the gravity model are
those of Jan Tinbergen in his book ’Shaping the World Economy’, where he applies is
to international trade, the version introduced by Harvey (1951) to explain air pas-
senger traffic patterns and the one given by Isard (1954) to explain trade flows. The
gravity model became a widely used work-horse to explain and predict flows of
goods, services, finance and information ever since, as reported by Gómez-Herrera
(2013) and Hazledine (2017).

To apply the gravity model to the estimation of air passenger as a measure of de-
mand between city-pairs we need to find measures for V, A and d from Equation
2. In our model V represents the passenger flows between cities i and j. In order to
get an idea of the magnitude of global air travel flows nowadays, a visualization of
these flows is presented in Figure 2.3

3Figure by David Kossowsky from Bio.Diaspora on 2013 global flight data
(http://www.capsca.org/Meetings/Global2012/2012CAPSCAGlobal-2-6.pdf)
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Figure 2: Global flight network

Figure 3: GDP density

Next we investigate variables that can represent A in the gravity model. These at-
traction variables translate to the economic size of a city, which is measurable in
various ways. Most common is using variables that measure income through GDP
(per capita) and population in the catchment area of an airport or a combination of
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these variables (Jorge-Calderón, 1997).

An example of a combination variable is GDP density, which is defined as the mul-
tiplication of GDP per capita and the population density, resulting in a variable
measured as GDP per square kilometer. Gallup et al. (1999) visualize GDP den-
sity in their paper on Geography and Economic Development4, displayed by Figure 3.
This figure shows the intuition behind the variables for economic size in the gravity
model: darker areas with larger economic size and wealth are associated with more
air travel flows as presented in Figure 2. Grosche et al. (2007) report that another,
aggregated, measure can be historical passenger volumes at each airport: airport
popularity, as proposed by Doganis (1966). Other geo-economical measures such as
income distribution, education levels and employment are also mentioned in the
literature (Russon and Riley, 1993). The addition of one or multiple so-called attrac-
tion variables can help to explain the level of connectivity between cities such as
former colonial ties, language or other political- and cultural relationships should
be taken into consideration according to Russon and Riley (1993).

The aforementioned variables are in the category of geo-economic variables, other
attraction variables that contribute to the A in the gravity model are service-related
factors, as introduced by (Jorge-Calderón, 1997). Service-related factors are under
control of the airline and determined by both the quality and price of the airline
product. In the literature the quality of airline service is defined through three
main variables: the frequency of departures, the load factor and the aircraft size
or technology (Wang and Song, 2010). Grosche et al. (2007) state in their research:
’By excluding service-related or market-specific input variables, and using cross-sectional
calibration data, the models are particularly applicable to city-pairs where no air service
exists, historical data is unavailable, or factors describing the current service level of air
transportation are not available.’ This is exactly what we need for out-of-network es-
timation and thus the usage of service related variables is minimized.

Distance d is the other core variable in the gravity model, which is expected to
have a negative relation. Getting a clear estimate on the impact of distance is prob-
lematic (Hazledine, 2017; Chaney, 2018). For shorter distances the distance variable
can be positively related to air transport, because it is affected by the main substi-
tute of air travel: road transport and public transport. Besides that, distance has
an effect through price, because airfares are somewhat price related due to flight
costs reasons wuch as fuel and labour time. However fixed costs such as airport
fees, aircraft ownership costs and crew are also reflected in the price, thus price and
distance far from perfectly correlated.

4Since the newer version of this map is not available, the figure from 1999 is used. The num-
bers corresponds with other numbers for GDP an population compared to today. However, these
numbers change relatively slowly and the goal is to visualize areas of wealth and economic size.
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Next to that, the price contains information on the service quality of the flight,
which is not driven by distance. Price will not be included in this research since,
1) there is no unambiguous price data available, especially not for out of network
destinations and 2) a price variable complicates the model a lot, because of its rela-
tion to other variables.

In the gravity model it is also common to control for other variables that affect the
explanatory variables and demand, see Hazledine (2017). These are factors such as
(1) whether there is a direct service, (2) intensity of competition (low cost carriers),
(3) size of the airport, (4) colonial ties.

2.3 Critical reflection on the gravity model

The critical review of the gravity model will mainly revolve around three papers.
One of the most recent cases where the gravity model is applied to air transport is
the study by Hazledine (2017). He applies a gravity model to two distinctive data
sets: cross-border flights between Canada and the USA, and domestic air travel
within New Zealand. He tries to disentangle exogenous and endogenous effects
after he claims that supply and demand for air travel are not independent. We find
this claim rather ambiguous, since supply and demand should be independent and
set by price levels. He argues that extra flights generates extra demand, but this
should be handled through differences in price. On the other hand an additional
flight to the same destination is not a homogeneous product. Especially business
oriented passenger need to be somewhere at a certain time. This makes a flight to
the same destination at another time a different product. Hazledine (2017) uses a
variable for price in his model. The data for price is collected by finding minimum
and average prices of tickets at certain point in time before the flight. This approach
is problematic since the price for tickets fluctuate a lot over time and over different
flights. Ticket prices are determined based on the percentage of tickets sold and
the expectation an airline has on the booking curve. Furthermore each airline has
different service levels and optional extra services, which may or may not be in-
cluded in the price. Passengers on the same flight rarely pay the same tariffs. This
makes adding a reliable price variable to the model a difficult task. Therefore price
variables will not be considered for this research. Also Hazledine (2017) applies
the gravity model to two separate national market: Canada and New Zealand.
However, it seems that the coefficients are estimated on the combined data set of
two distinct market. Contradictory, he also argues that there is an important dif-
ference in traffic flows as Canadians can fly cross-border to the United States quite
frequently, while for New Zealanders international flying is less common, because
of geographic location. This is referred to as the border problem. Subsequently
no validation is performed on the parameter estimates, while claiming to have a
model that successfully entangles exogenous and endogenous effects.
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Grosche et al. (2007) use the gravity model to explain passenger flows between
Germany and 28 European countries. They focus predominantly on variables de-
scribing economic activity and geographic characteristics of city-pairs, to ensure
that the model can be used to find demand for O&Ds where currently no air ser-
vice exists. In order to produce a valid model they exclude O&Ds that meet one of
the following requirements. They exclude typical low-cost routes, where the incen-
tive to fly is argued to be the low price, otherwise these passengers would not have
flown at all (Tacke and Schleusener, 2003). Moreover, they exclude routes under
500 km of range, since there would be strong competition by other means of trans-
portation such as road and rail that offset the results of the gravity model. We argue
that instead of excluding this data, it might be better to control for it. It might be
the case that by removing these instances, you throw away valuable information.
Grosche et al. (2007) use historic booking data to estimate the model, while they
argue that historic bookings only partly reflect true/unconstrained demand since
passengers cannot book flights that are full or do not exist. However, they argue
that this is the best data available for their purpose. They perform cross-validation
to examine the sensitivity of changes in all explanatory variables. Grosche et al.
(2007) conclude that the model is fairly robust with an R2 of 0.76 and is a mean-
ingful tool in determining demand on routes where currently no direct service is
offered by an airline. They create two separate models for cities that have multiple
airports. They deal with it by creating extra variables capturing the effects of com-
peting airports. However, they could also have aggregated the data on city-pair
level instead of airport level. The only minor point of critique we have is the exis-
tence of (multi)-collinearity between the variables distance and travel time, which
obviously correlate strongly and thus make the coefficients corresponding to these
variables unreliable.

Lastly, we review the gravity model from the Verleger Jr et al. (1972) paper. They
present a gravity model about air traffic in the United States for 441 city pairs.
They argue that the gravity model should only be used when dealing with homo-
geneous cities. This means that the effect of one extra dollar of income should have
the same increase in air traffic among all city pairs. As this assumption is likely to
fail as the scope of the model grows larger, they advice against using one gravity
model to analyze an entire air transport market. However, only analyzing a small
sub-part of the market is not our goal. Therefore we might subset our data specif-
ically to Amsterdam Airport Schiphol in order to (better) meet the requirement.
Apart from this, Verleger Jr et al. (1972) added phone call data to the model as it
could proxy the connectivity between cities in order to better analyze the traffic
flows. Unfortunately their phone call data only contributed a little. Nonetheless
the idea of adding different types of variables that capture connectivity between
cities is innovative and opens up opportunities to enrich the gravity model.
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2.4 Big data in air passenger demand forecasting

The magnitude of data generated and shared by businesses, public administrations
and industrial and non-profit organizations has increased immeasurably (Agarwal
and Dhar, 2014). Organizations use analytical techniques to explore data that can
aid product and process discovery, productivity and policy-making. Michael and
Miller (2013) explain that since the wide-spread adoption of the internet we are
transitioning from text-based data to richer data formats that that includes asso-
ciated meta data such as geo-location and date-time stamps, among other things.
With the rise of big data new opportunities appear, but it also brings new chal-
lenges.

New opportunities
Michael and Miller (2013) explain the new opportunities that big data brings for
companies, such as analyzing consumer purchasing trends to better target market-
ing. They state that: "advances in data storage and mining technologies make it possible
to preserve increasing amounts of data to yield valuable new insights. ... Big data can ex-
pose people’s hidden behavioral patterns and even shed light on their intentions." Sivarajah
et al. (2017) speak of opportunities that include value creation, superior business
intelligence for more data-driven business decisions and support in performance
and flexibility improvements of supply chains and resource allocation. These op-
portunities line up exactly with what we are aiming for in our research: trying to
find demand insights for routes currently not operated by airlines. The answer to
our question may be found in the area of big data that uncovers consumer patterns
that have previously been unobserved.

New challenges
While big data offers a wide range of new opportunities and applications, it also
brings new challenges. Michael and Miller (2013) states that: "While big data can
yield extremely useful information it also presents new challenges with respect to how
much data to store, how much this will cost, whether the data will be secure and how
long it must be maintained." Moreover Sivarajah et al. (2017) notice that with the re-
ality of big data comes the challenge of analyzing it in a way that brings value. The
worldwide growth of data volumes seems to out-speed the advance of computing
infrastructures. Currently, only a fraction of all the data generated is analyzed for
insights. Besides the technical challenges, big data also presents new ethical chal-
lenges on a topic such as privacy. Lastly (Michael and Miller, 2013) warns that big
data applications could have unintended and unpredictable results. This is a con-
sequence of the trends that data scientists seek to discover new patterns and trends
that previously have been latent. When working with big data it is important to be
aware of these difficulties and work act accordingly.
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Big data in the aviation industry
There has already been some research in the field of applications of big data in
the aviation industry. Howell (2016) performs a case study to find out if big data
can bring value for London Gatwick airport, i.e. if the benefits outweigh the costs.
He concludes that directly and indirectly big data analytics support the decision-
making at the airport. Kim et al. (2016) developed a forecasting model for short-
term air passenger demand fluctuations by making use of big data from search
engine queries such as Google. However, non of these models seem to generate
insight in demand on O&D level, i.e. where to and where from the passengers are
flying. Zhao et al. (2018) mentions that the development of big data presents new
challenges to travel-demand forecasting methods specifically in the area of data ac-
quisition, data processing, data analysis, and application of results.

Through our case study for KLM we are granted access to meta search data. This
data contains online searches for flight by potential passengers on flight compari-
son websites such as skyscanner.com. We think this meta search data has the po-
tential to provide novel insights into passenger flows and demand estimation. The
data we got from KLM is not personal. What these the meta data records exactly
include and more specifically how we can use them as addition into the gravity
model will be explained in Section 4.1. Besides that, we expect to encounter some
of the challenges mentioned before, especially on the topics of big data storage and
processing. How we aim to tackle these challenge will be explained in Chapter 6
as well.
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3 KLM CASE STUDY

In this section the empirical case study is introduced. One of the reasons to do a
case study is that we can test the suitability of the traditional gravity model versus
the gravity model enriched with meta search data by applying it to real world data.
We obtain this meta search data from KLM and therefore apply the model to their
network. For KLM we hope to discover destinations where the current methods
of KLM are unable to accurately display demand, i.e. to discover new destina-
tions that are possibly overlooked now. The results from this case study could be
the starting point for a KLM business case to evaluate the full potential of actually
adding this destination to the network. Another reason to do a case study (about
KLM) is that KLM is the biggest airline located at Amsterdam Airport Schiphol.

In the first chapter the problem of congested airports is introduced. An example
of this problem is Amsterdam Airport Schiphol. Schiphol has been growing a lot
in the last decades and has reached its current capacity limit. The Omgevingsraad
Schiphol is a comity consisting of a variety of actors that try to balance the develop-
ment of aviation and improve the quality of the environment and the area around
the airport. In 2008 these parties agreed to have a maximum number of flights at
Schiphol of 500,000 a year until the year 2020 Alders (2008). In the year 2017 a
number or 497,747 flight movements were registered and in 2018 the maximum of
500,000 flight movements was reached, see Figure 4. The red line corresponds to
the 500,000 threshold. However the number of passengers is increasing fast which
suggests that demand is growing, see Figure 5. A in-depth analysis on the situa-
tion at Amsterdam Airport Schiphol including the perspectives and interests of the
involved actors is provided in Appendix I.

Figure 4: Schiphol flight movements Figure 5: Schiphol number of passenger

The case study is explained in detail in the following sections. Section 3.1 intro-
duces KLM shortly. Collaboration between airlines is increasingly common nowa-
days and essential for a successful business model. How this creates opportunities
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for an airline to offer more destinations is explained in Section 3.2. Subsequently
the current methods of air passenger demand estimation at KLM, its associated
limitations and the way they decide which destinations to add to the network will
be explained in Section 3.3. The benefits and risks associated with introducing meta
search data will be explained in Section 3.4.

3.1 KLM Royal Dutch Airlines

KLM is the oldest airline still operating under its own name, established in 1919
by Dutch aviation pioneer Albert Plesman. KLM operates in a hub-and-spoke net-
work and therefore classifies as a network carrier. KLM is located at her home base
Amsterdam Airport Schiphol. Currently KLM offers 151 direct destinations.5 Fig-
ure 6 visualizes the network that KLM operates by displaying all routes starting in
Amsterdam. KLM, together with Air France as part of the Air France-KLM group,
is one of the three main players in the competitive European aviation landscape.
The other two players are International Airline Group and Lufthansa Group.

Figure 6: KLM Flight Network

3.2 Network strategy and collaboration

Different network designs for airlines exists. For this research we consider the hub-
and-spoke and point-to-point networks. In a hub-and-spoke network the passen-
gers are transported to a central node in the network (the hub) and transported to
their final destination after a transfer of aircraft. In a point-to-point network only
direct flights between two O&Ds are considered, without the option to transfer. An
in-depth analysis of airline networks is done in Appendix II. KLM is operating in

5According to KLM’s internal network tool Skyline
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a hub-and-spoke network and therefore every destination that is added to the net-
work (lets call it X) creates dozens of new routes for her passengers. Besides the
new link created from Amsterdam to destination X, every other destination in the
KLM network is connected to destination X via a transfer in Amsterdam. Transfer
traffic is the main business model for KLM (70%).

Furthermore, it is important to understand a bit about collaboration in network
strategy to understand the decision making process for new destinations. The (po-
tential) profitability of a route depends, besides demand, on collaboration and com-
petition on that route. Collaboration is common practice and is required to make
routes profitable by exploiting economies of scale. Many network airlines are con-
nected to an alliance. The main benefits of an alliance is offering a larger network
through code sharing to increase market share and to lower the costs. When two
airlines have a code share agreement, the airlines can sell there own tickets on a
flight performed by the partner airline. Code sharing is widely used to connect
the networks of partner airlines to provide many more transfer options to their
customers. However, KLM also stated that for each destination they consider to
add to her network, there should be a significant local market in order to prevent
that they are too dependent on the transfer markets. Relying too much on trans-
fer traffic would make them vulnerable for changes in the strategy and network of
competitors. Therefore the decision on whether or not a destination is a promising
candidate to be added to the network depends on the network of her partners and
the network of her competitors. An extensive explanation of the multiple forms of
collaboration in the airline industry is provided in Appendix III.

3.3 Current network decision-making and demand estimation at KLM

In this section the current network decision-making process and demand estima-
tion method of KLM will be presented and how they might be advanced.

KLM’s network decision-making
Whether or not a destination is a valuable addition to the network does not only
depend on demand, but on many other factors. Examples of those factors are
economic development, stability of the local currency and political environment,
fuel price, competitor analysis and partner collaborations and operational limita-
tions. Destination with minimal (macro-economic) risk are preferred. Based on the
estimated demand an indication for the potential revenue is made and balanced
against the estimated costs. The result from the newly developed gravity model
is to be a starting point for the decision-making process of KLM. The advice on
potential destinations is a data-driven approach for KLM to select destinations for
which a business case is relevant. Currently this is done by expert judgment. The
data-driven approach could discover opportunities that have not been on the radar
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before. An in-depth explanation of how new destination are evaluated and what
factors impact the decision-making is given in Appendix IV.

Air passenger demand estimation data at KLM
As introduced in chapter 1, traditionally bookings were done by booking agencies
connected to the largest Global Distribution Services (GDS). The largest GDS such
as Amadeus and Sabre provide market intelligence in the form of Market Informa-
tion Data Tapes (MIDT). The MIDT data source contains booking information on
true O&D level of all airlines affiliated with those GDS. Both the airline industry
and academia use MIDT data for insights regarding passenger flows. Also at KLM
it is common practice to use this data for market insights for network planning.
However this data is not nearly a perfect substitution for market demand because
of the following reasons.

1. MIDT data is incomplete
In the last ten to fifteen years it has become increasingly normal for customers to
book flights directly at the airline’s own booking channels, without the use of a
travel agency. These bookings are logged only by the airline at which the customer
booked the flight and airlines are reluctant to share this information among each
other. It has become very easy and convenient to book (separate) flights at an air-
lines private website, a comparison site or a mobile application. The MIDT data
becomes more and more incomplete and less reliable. Especially passenger flows
on typical low cost routes are usually not visible in the data, since they are almost
always booked directly at the airline. Therefore a considerable proportion of the
market is overlooked when decisions are made purely on the demand insights of
MIDT data.

2. MIDT booking data is not unconstrained demand
MIDT booking data, in the form of historical passenger flows on O&D level, is
not the same as unconstrained demand (Grosche et al., 2007). Unconstrained de-
mand is the demand for a particular route/flight/date irrespective of the capacity.
Weatherford and Pölt (2002) state: "Accurate forecasts of passenger demand are the heart
of a successful revenue management system. The forecasts are usually based on historical
booking data. These bookings do not reflect historical demand in all cases because booking
requests can be rejected due to capacity constraints or booking control limits." Obtaining
unconstrained demand from booking data is a topic on its own and will not be
considered here.

3. Historic flows do not provide insight for new routes/destinations
Currently KLM’s air passenger estimation (and forecasts) are largely based on his-
torical passenger flows, which is a limitation itself. The main shortcoming is that
historical information on existing routes does not provide insight on potential pas-
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senger flows for new destinations, which is essential for decision-making about
new destinations. In order words, a passenger can not book a flight to a destina-
tion that is not connected to the network.

The three reasons mentioned above make the MIDT data increasingly less reliable.
KLM is very aware of these limitations of MIDT data and has various ways to deal
with this.

KLM solution 1: Manual up-scaling
KLM has a rather quick fix solution available for the issue of incomplete data due to
missing direct bookings in MIDT. The data is mostly incomplete on the typical low
cost routes. In order to control for the missing data, passenger flows are manually
up-scaled based on expert judgment from the network planning department. The
risk with this is that it is not a consistent solution. Every network planner does this
manually based on his/her experience with the market portfolio he/she manages.
This results in a non data-driven solution with limited accuracy and efficiency.

KLM solution 2: Enriching MIDT
The second solution to counteract the incomplete data is to enrich it with additional
data sources, such as T100 from the US government, Eurostat from the European
Union and KLM Actuals. Each added data source only contains information on
very specific parts of the market. This complex enrichment process takes a lot of
time and yields only marginal improvements.

3.4 A new opportunity: meta search data

In order to solve the difficulties with the estimation of demand due to the incom-
plete data, we propose a new solution: combining meta search data with the grav-
ity model. Meta search data is very promising because it can solve the limitations
of MIDT data, however it also creates some new challenges.

Since December 2016, KLM logs the data stream of online search queries for all
flights. Every day 25-30 million air travel search requests are send to the KLM
servers by flight search engines, such as Skyscanner or Kayak. The data of these
requests are logged search by search and accessible for this research. With suitable
aggregation and cleaning of this data it can be used as additional source of infor-
mation to perform air passenger demand estimation on city pair level. Since people
search for trips from their origin to their final destination and every combination
of origin and destionation can be searched for, meta search data is presumably a
better source for the true O&D demand, which (partly) solves limitation 1 and 3.
Regardless of whether the preferred booking class is available, potential passengers
can search for flights. This solves limitation 2.
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Of course, meta search data also has limitations that should be considered. We can
not directly use the searches as demand, since there is a very high look-to-book
ratio. This means that a lot of people search for flights, but only a small number
of people actually book a flight. This is because flight search engines are often
used as comparison method for passengers to gain information on the options for
their travel and to compare prices. Secondly meta search data can contain biases
in the type of traffic: MS data mainly contains information on the leisure market
where passengers are generally price-sensitive (Kopsch, 2012). Furthermore the
data reveals that business travelers generally do not search for their tickets on such
websites. Another bias can arise when the flight search engines are more popular
in one country than another. This is also true for the look-to-book ratio that may
vary per country. We will come back on how to deal (or not deal) with these bi-
ases. Lastly there is a challenge in the size of the meta search data. The individual
searches are logged in a database that contains approximately 10 TB of data and
grows with a speed of 100 GB per week (approximately). This is a huge amount
of data and will bring challenges accordingly. Suitable aggregation, cleaning and
editing is required to create a data set of feasible size to work with.
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4 THE DATA CHALLENGE

The (newly) proposed gravity model requires the availability of (high) quality data.
Therefore, a large part of this research is devoted to creating an extensive data set,
obtained from various data sources. This chapter is devoted to the collection, pre-
processing and exploration of the data. In total seven different data sources are
used, each contributing a different piece of information.

This research is heavily based on empirical data to extract insights for real world
decisions. However, when working with data one should always be cautious, since
data is never perfect. It will never be complete, nor free of errors. When relevant,
the limitations, biases and struggles will be discussed.

This chapter is divided into four sections. First meta search, a big data source
from the worlds largest flight search engines, is explained in Section 4.1. Then the
other data sources we require to create the traditional gravity model are presented.
The variables and features extracted from these data are explained in Section 4.2.
In Section 4.3 we explain how all data sources are joined together into one big data
set, and subsequently sub-setted such that we only keep the data that is relevant for
the case study. Lastly we explore the data, highlighting some preliminary insights.
This is carried out in Section 4.4.

4.1 Big data source: meta search

As explained, there is large potential in meta search data when we manage to ex-
tract it and prepare it in the right way. We start by looking at how the data is
generated, recorded and acquired.

Nowadays, many people search for flights online. In Europe, Skyscanner is one of
the leading flight comparison websites, displaying all options for a search between
two cities or airports. When a search is entered by a person online, Skyscanner
forwards this question to all airlines. The airline’s IT systems respond to this re-
quest by returning a list of flights and their corresponding prices. For the customer,
Skyscanner provides an overview of all possible flights and the corresponding in-
formation such as departure times, transfer connections (if applicable) and prices
of all airlines in their system.

The reason we are interested in the meta search data is because it contains im-
plicitly a lot of information on consumer preferences. A lot of flights are flown via
the hub-and-spoke network, so a passenger flies from A via B to C. Often this pas-
senger books flights from A to B and from B to C, possibly with different airlines,
which hides the true demand from A to C. Besides that, a bias is created on the
demand to large hub airports.
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The added value of meta search is that it shows the consumer’s preference of the
true demand from A to C, since that is what consumers will search for naturally on
the meta search channels. This can provide insights in the demand on routes that
are not currently operated.

Data acquisition
KLM does not only collect the worldwide searches from Skyscanner, but also from
34 other Meta Search Providers (MSPs). Which MSPs these are and their associated
market share for searches answered by KLM is provided in Appendix V. For every
search, a log file is created and saved to a KLM database. This database has been
made available for this research. It contains over 15 billion searches for the years
2017 and 2018 combined. This comes down to approximately 25 million searches
per day. To give an indication of the magnitude of the data, this is 17,500 searches
each minute. Each search creates a log file that is saved in JSON format. An exam-
ple of such a log file is shown in Appendix VI.

The first available logged data is from the 30th of November 2016, however the
system needed an installation period and not all data was logged correctly in these
early days. Therefore, it was decided to use data from the 1st of January 2017 on-
wards. The data is stored in an Elasticsearch database. A wide selection of vari-
ables are available in the database, such as: outbound origin, destination and date,
inbound origin, destination and date, cabin type, single flight or return, currency,
country of the MSP, maximum number of transfer flights and number of adults,
children and infants. The raw MS log is fairly extensive. For our purpose, we are
most interested in how many times an O&D combination is searched for to serve
as a measure for demand. Therefore, the fields that are most important for this re-
search are origin and destination. Furthermore we are interested in the flight date,
the search date and the cabin class (economy or business). The logged searches are
worldwide, with a small note that for some channels a filter is applied to exclude
searches for domestic flights in the USA, since it is by law not allowed to fly do-
mestically in the USA for a non-USA airline.

By the use of a Python script and Elasticsearch queries it became possible to obtain
data aggregations on O&D level per flight day. However, there was a limitation of a
120 second time out per query, which means only a few variables could be extracted
within that time frame. In addition, the data was divided over two database clus-
ters since they were in the middle of a data migration, which made the extraction
more complex. In the end extractions were made on a daily level from 01-01-2017
until 31-12-2018. For extracting the data from the database, aggregating to daily
level and saving it as a *.csv file Python was used with the Elasticsearch query lan-
guage for aggregation per O&D on a daily level. For all other data cleaning and
aggregating R was used.
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Search date vs flight date
The search logs contain a field for search date and flight date. For O&D demand
purpose, we are interested in the demand per flight date and not the search date.
In order to create a comparable measure across days we need to introduce a (hy-
per) parameter for the number of days searched before the flight. In the airline
industry this is generally called days before departure (DBD). Due to the limited
time-out of 120 seconds at database host system a DBD of 30 days is feasible in a
single query. For example, when someone searches on the 10th of May for a flight
on 25th of May, there is a window of 15 days before departure. This approach gives
us three advantages: (1) the run-time of the aggregations is workable, (2) we need
only 30 days of "warm up data" and (3) the bookings made closer to the flight date
are generally worth more for the airline, since prices tend to increase towards the
flight date. Two disadvantages are that (1) we might introduce a bias since some
markets typically book (and thus) search earlier compared to others. Secondly, (2)
since people are able to search for flights up to a year in advance we do not use
all data available. However, since we compare all O&D combinations on the same
DBD the actual MS count does not matter that much as long as it is a (valid) proxy
for the demand.

Aggregation level: time interval
The data is extracted from the database and saved in daily files. In order to per-
form an analysis we need to merge the files and aggregate to a higher level. Several
options are available for the time period of the aggregation level for the data: daily,
weekly, monthly, seasonal or yearly. Airline data typically exhibits a degree of sea-
sonality. Especially tourist destinations are very seasonally dependent, with high
demand in the summer and low demand in the winter. Airlines react to this in a
way that some destinations are only flown in the summer, while others are only
flown in the winter, or at a higher capacity in the winter. Airlines typically deter-
mine their flight schedule and decided upon new destinations twice a year, i.e. on
a seasonal basis. Therefore the time interval we use here is on seasonal level. The
aggregation level of the data set can be changed in the future researches, for ex-
ample if an airline wishes to increase the frequency of the flight schedule releases.
From the available data of the years 2017 and 2018, three different seasons can be
extracted:

• Summer 2017: from 26 March 2017 to 28 October 2017;

• Winter 2017: from 29 October 2017 to 24 March 2018;

• Summer 2018: from 25 March 2018 to 29 October 2018.

Grosche et al. (2007) created a cross-sectional data set in a similar way by aggregat-
ing several months to one data set.
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Aggregation level: airport level vs city level
Each origin (ORG) and destination (DEST) in the meta search data is indicated with
a three-letter code. These origins and destinations could be airports, but also cities
or train stations. We are interested in city-pair demand since, people are generally
interested to travel to a city, instead of an airport as final destination. Sometimes
one cities has multiple airports. The searches for individual airports or train station
are summed to a city total, including the searches that were already on city level.

Statistics on meta search data
After data extraction we find 3,424,158 different O&D combinations where an ac-
tual Meta Search is logged on at least once on the 730 days. This data set contains
17,041 unique origins/destinations. To investigate what the data looks like we plot
Figure 7. It shows the worldwide number of searches from 2017 and 2018 aggre-
gated to a daily count per flight day with a DBD of 30 days. There are some patterns
and trends to observe in this figure. First of all there is a weekly pattern with the
most searches typically on a Friday with a dip in on the day after. Furthermore
seasonal variation is present with an increase in the number of searches during the
European summer months and towards Christmas (blue smoothed line). The red
line shows the overall trend of the increasing number of searches.

Figure 7: Meta Search daily aggregation 30 DBD
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Interesting is that only 3, 424, 158/17, 0412 = 1.2% out of all the possible direct
combinations is actually searched for. A large fraction of the searches consists of
O&D combinations that are only searches a hand-full number of times throughout
the two years. An arbitrary threshold of 100 searches per season is set in order to
filter these destinations out of the data set, while keeping the valuable information.
After cleaning and aggregating to city level there are approximately 6.23 billion
relevant searches left for 176,544 unique O&D combinations.

When we further subset the data for only origin Amsterdam (AMS), we find searches
for 5613 unique direct destinations. Nonetheless, having the search demand in-
sights for the entire world has a great benefit. This makes it possible to estimate
demand on all one-stop transfer markets, besides the direct connections. This key
contribution to the analysis for new destinations is displayed in Figure 8.

Figure 8: Meta Search insights for the transfer potential of a new destination: the
hub airport is represented in light blue, in dark blue the destinations already in the network
and in light gray the potential new destination. The gray arrows represent the number of
meta searches from people who want to travel between these cities.

From the meta search data two variables are created: one for direct demand and
one for indirect demand. The first variable is the number of direct meta searches
per O&D summed. Secondly, the transfer potential is calculated by summing all
meta searches for all potential destinations to all existing destinations in the KLM
network. Only valid transfer options are considered, such as a transfer within Eu-
rope, or from one continent to another.
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4.2 Traditional gravity model variables and its data sources

Besides the innovation of adding the meta search data to the gravity model, the
traditional variables deserve their fair share of attention as well. For each O&D in
the meta search data we want to add gravity variables that hold information about
the specific origin and destination. Inspiration is taken from the literature review
in Chapter 2 to come up with a selection of variables. Most of the variables are ei-
ther typically required in a gravity model, other are introduced by Verleger Jr et al.
(1972); Grosche et al. (2007); Hazledine (2017). This section explains how various
data sources are used to create the traditional gravity model variables and why
specifically these variables are chosen. Besides geo-economic variables, some avi-
ation related variables are added that are expected to control or explain additional
variation in the model.

This section explains the data that forms the foundation of the gravity model. A
small paragraph is devoted to each potential variable in the model. Note that some
of these variables provide information on the node in the network, i.e. on city level,
where other variables provide information on the link between the notes, i.e. on
the level of the O&D combination.

Origin - Destination (O&D)
In the data set, each O&D combination is a row. In total we have 176,544 O&Ds or
city pairs. Information accompanying that O&D such as the geographic location
(coordinates: longitude and latitude), the country, continent, and sometimes mu-
nicipality is all included the data set. These additional variables are not inserted
directly in the model as variables, but used to create other variables as listed in this
section.

MIDT data
The current industry standard for insight in demand on O&D level is MIDT data,
which is based on historic bookings. MIDT stands for Market Information Data
Tapes. MIDT data is created by the commercial company OAG which incorporates
the registered bookings from all large GDSs into one data set. Subsequently OAG
cleans and aggregates the data to a higher level (e.g. weekly or monthly). In the end
the data is sold back to airlines and airports. For this research the monthly number
of passengers that traveled on an O&D is available from this source. Grosche et al.
(2007) estimates the gravity model on data originating from the same MIDT data
source. Regardless the limitations discussed in the previous chapter, it is the best
data source that reflects large-scale true demand. For the time scope of this research
about 942 million historic passenger bookings available on O&D level. The MIDT
data has a skewed distribution, in the data it is observed that the top 1% most pop-
ulated routes contain 40% of the worldwide traffic.
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Income: GDP per capita
A measure for income is one of the cornerstone variables in the gravity model (Ver-
leger Jr et al., 1972; Grosche et al., 2007; Hazledine, 2017). Income serves as a mea-
sure to indicate a country’s economic magnitude/size, welfare level or purchasing
power. The income of a city is approximated by the Gross Domestic Product (GDP)
per capita of the country. We expect that GDP per capita is positively correlated
with the demand for flying. The World Bank provides an overview of most coun-
try’s GDP per capita, where the latest known value is considered. GDP on city level
would be ideal, but this data is not available on a worldwide scale. For countries
missing in the World Bank data set the GDP per capita of neighbouring countries is
taken as replacement, if the countries have a similar wealth level. A very number
small of cities, often from third world or very small countries, have NA values left,
which are imputed with the median GDP per capita of 5806 USD per year. This
only affects 1.4% of the O&D’s.

Airport characteristics
An extensive open source data set lists over 8000 airports and its characteristics.6

The variables used from the airport data are described here. Each airport is ref-
erenced to by a three-letter airport code. The data contains information on the
municipality, country and continent an airport lays in. Each airport contains a
size indicator (large, medium or small) and coordinates (longitude and latitude).
In the previous section is explained how the data was aggregated from airport
level to city level. Some cities have multiple airports. Variables for number of
large/medium/small airports per city are created from this data.

Population: catchment area
Population is expected to be a very important variable in explaining demand (Grosche
et al., 2007; Kopsch, 2012; Hazledine, 2017). The larger a city is, hypothetically the
more people demand flights from and to that city. Population is easily available on
country level, but to require that data on city level for on a world-wide scale is a
challenge. Another open source database on population per city is discovered and
consulted.7. Some larger airports serve more than just a city it is directly associated
with, but also cities in the area around it. The area an airport attracts passengers
from is called the catchment area Lieshout (2012). Based on these catchment areas
a variable for the gravity model is created. The open source data set includes co-
ordinates for all the cites, similarly to the airport data set. According to the size
measure of the airport, circles are drawn around it and the cities within that circle
are assumed to be in the catchment area. Radii of 100 km, 150km and 200 km are
arbitrarily chosen for respectively for small, medium and large airports. This cal-
culation creates the catchment area variable.

6Source: https://datahub.io/core/airport-codes
7Source: https://simplemaps.com/data/world-cities
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Airport popularity
From Verleger Jr et al. (1972) and Grosche et al. (2007) we learned that a variable
for airport popularity might prove beneficial (as already seen in Chapter 2). The
number of seats offered to/from a certain destination are summed for the season
and could explain the geo-economic attraction aspect of the gravity model.

Distance
Distance is determined using the longitude and latitude of the O&D and calcu-
lated according to the great circle distance. The Haversine formula, presented in
Equation 3 is used to find the exact distance (Chopde and Nichat, 2013).

d = 2r · sin−1

(√
sin2

(
φ2 − φ1

2

)
+ cos(φ1) · cos(φ2) · sin2

(
ψ2 − ψ1

2

))
(3)

d is the distance between to points, ψ is the longitude, φ is the latitude and r is the
earth’s (average) radius. When travel distances are small, we should control for
strong competition from other modes of transport (Grosche et al., 2007; Hazledine,
2017). Therefore, dummy variables are created for distances under 300 and under
500 kilometers.

Long Haul / Medium Haul / Short Haul
Based on the continent a city is based on and the calculated flight path distance
we can create a variable that indicates whether a flight fits in the European sched-
ule (EU) or in the Intercontinental schedule (ICA) for the airline. This is of im-
portance since airlines generally operate routes in these schedules with different
aircraft types that are not interchangeable. When both the origin and destination
is in Europe a dummy variable for EU is created. Another word for the typical
range of a European schedule is medium-haul. When the continent of the origin
and destination is not the same, and the distance is larger than 3500 km we indicate
this with a ICA dummy variable (also called long-haul). There is a third category
(short-haul) which applies mainly to domestic flights, which we do not have in the
Netherlands.
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Number of Flights and seats
The company OAG analytics provides digital flight information8. They claim to
track 96% of the commercial flights. Through KLM we have access to this data
source via an internal application called Skyline. The data on the number of flights
per O&D is collected on city level together with a daily time stamp. The data is
aggregated to a seasonal level and the scope of the data is worldwide. The vari-
ables of interest are the number of flights per O&D per month, the number of seats
(capacity), the operating airline and the alliance the airline is associated with. The
data is already cleaned by OAG.

The extractions are done in batches of a month, since the system could not han-
dle more data in a single excel export at a time. The data is merged into one data
file using R. The data ranges from January 2017 to December 2018. From the OAG
data source, several variables are created. The number of flights on O&D level per
season, the number of seats on O&D level per season, the available capacity per
route.

Direct service
A dummy variable indicating whether or not there is a direct service offered by any
of the airlines is also included in the OAG data set. This variable is used to subset
the dataset for routes where a direct air service exists.

Partners / competitors direct service
Multiple dummy variables are created for specific airlines of interest: either a part-
ner or a competitor. An airline wants to prevent competing with its partners, but
rather build the network in collaboration. Partner airlines for which a dummy
variable is created are: Air France (AF), Transavia (HV) and Delta (DL). Competi-
tors are also of interest for the decision making on new destinations. The typical
competitors of KLM are the other European network carriers. Therefore we create
dummies for Lufthansa Group, that including Lufthansa (LH), Swiss International
Air Lines (LX) and Austrian Airlines (OS) and the International Airline Group con-
sisting of British Airways (BA) and Iberia (IB).

Low Cost Carrier active
Furthermore, from the OAG data source we extract whether or not a LCC is active
on the O&D. This is particularly important to control for, because of missing infor-
mation on LCC in the MIDT data. A dummy variable is created to capture if the
two largest European LCCs (easyJet (U2) or RyanAir (FR)) have this route as direct
service in their network.

8Official Airline Guide - https://www.oag.com/about-oag
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Historical colonial ties
Two of KLM’s most successful intercontinental flights are Paramaribo in Suriname
and one of the Dutch Antilles Curacao. The success of these routes and associated
traffic flows can be explained by former colonial ties. Therefore it is expected that
a dummy variable that indicates whether or not countries have colonial ties can
control for these effects in the econometric model. The data set originates from re-
search by Wimmer and Min (2006) and is available through Github.9

Hub variable
At last we observe a lot of traffic flows through the worlds largest hubs. Large net-
work carriers rely heavily on transfer traffic.

For KLM the mix of local traffic versus transfer passengers is about 30% versus
70%. We expect that the demand to cities with hub airports is higher than what the
typical gravity model variables would explain. Therefore we like to have a variable
indicating whether the origin and/or destination is a hub airport. There is not one
definition of when an airport is a hub. Therefore it is decided to add the worlds
30 largest airports in terms of yearly passenger numbers10. The variable is a factor
with possible three values: zero for no hubs, one if one of the O&Ds is a hub and
two if both O&Ds are considered as hubs.

4.3 Data joining process and data sub-setting

The variables explained above originate from seven different data sources. These
variables are all joined together based on key variable pairs such as airport code,
city code or country code. Finally we end up with one data set that includes all
(world wide) information and is prepared for modelling. We subset this data such
that we have the relevant information left for the KLM case. We show some sum-
mary statistics on the filtered data, followed by an exploratory data analysis in the
next section.

Combining data from all data sources
The pipeline on how these data sources are joined together into one final data set
is shown in Figure 9. Each of the steps are visible in the figure and are explained in
the text as follows. We start with the daily meta search extractions, joined together
and aggregated to a seasonal level. This data is combined with the airports char-
acteristics data by joining it on the three letter airport code. We aggregate the data
from airport to city level, by summing the meta searches for the individual airports
within a city. Subsequently we create the catchment variable from the population

9Source: https://github.com/owid/owid-datasets/tree/master/datasets/Colonial%20Regimes%20-
%20Minner%20and%20Wim%20(2006)

10Source: https://www.world-airport-codes.com/world-top-30-airports.html
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data. Then, we join the GDP data from the World Bank to the catchment data using
the ISO 3166 country codes, to join it to the main data by the use of city codes for the
origin and destination. The next step is adding the MIDT data. We have monthly
extractions that we aggregate to a seasonal level. Subsequently we join this MIDT
data to the main data by the use of O&Ds city pairs. Hereafter we add the network
data, that includes the network schedules of KLM, its partners and its competitors.
Similar to the MIDT data we aggregate the monthly extractions to a seasonal level
before joining the data to the main data by the key O&D city pairs. Lastly we add
data about former colonial ties to the main data by again using both O&D keys. In
the end we have the final data set that includes all seven data sources for 153,666
O&Ds worldwide for three seasons: Summer 2017, Winter 2018 and Summer 2018.
Note that we count a return trip as two separate O&Ds here. In total the data set
contains 451,563 rows and 69 columns.
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Figure 9: Data Joining Flow Chart

Data sub setting and summary
The main data set that we have acquired covers the whole world. However for our
case study we want to investigate which connections would be interesting to add
(worldwide) from the point of view that Amsterdam is the origin or destination.
So we subsetted the data to have Amsterdam as the origin or destination. The
Amsterdam filtered data set contains 1861 unique true O&D pairs (return counted
as two). We are left with 5517 observations and 69 columns containing variables.
Now it is time to explore this data.
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4.4 Descriptive statistics and exploratory data analysis

Descriptive statistics
We start by investigating the properties of the data. Table 1 shows a summary
statistics of all major variables in the data set, for both the numeric and non-numeric
variables. One of the first things to notice is the large difference between the me-
dian and mean for both the meta search variable and the MIDT variable. This hints
to a skewed distribution. Furthermore, we find that about 26% of the O&Ds in the
data set already have a direct service. On the other hand, 74% of the O&Ds are
opportunities if there is enough demand. Only a very small percentages of O&Ds
have LCC active or former colonial ties.

Table 1: Summary statistics AMS data set

Min. 1st Qu. Median Mean 3rd Qu. Max.
Meta Search 100 678 2734 56820 23168 3996637
MIDT 1 112 451 4579 2311 323404
GDP 286 17891 45638 36066 45638 100739
Airport Popularity
Catchment 0 1740278 10881688 7130658 10881688 31816422
Distance 126 1788 6078 5385 7934 18700
Number of Flights 0 0 0 137.9 17 11311
Number of Seats 0 0 0 23333 2486 1657902
Direct Service 0 0 0 0.259 1 1
LCC active 0 0 0 0.0375 0 1
Colony 0 0 0 0.0161 0 1
Hub 0 0 0 0.1343 1 2

We expect that the MS and MIDT data are extremely skewed to the right. It makes
sense that a lot of small O&Ds are searched and booked only very rarely while
some major O&Ds are very popular. Figure 10a shows the distribution of the
non-transformed data, in which this skewness is very visible. In Figure 10b the
same data is log-transformed. The log-transformation helps tremendously and
two somewhat similar looking distributions are uncovered. Since there are gen-
erally more searches than bookings, the MS distribution is positioned more to the
right.
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(a) Non-transformed (b) Log-transformed

Figure 10: Density of MIDT (gray) and MS (light blue)

Next, we look at the correlation between the new meta search data and the tradi-
tional MIDT data, which is shown in Figure 11. It shows a scatter plot with MIDT
count on the x-axis versus the MS count on the y-axis. Interesting to see is the
strong positive correlation of 0.94 (for 739 O&Ds). This indicates that MS seems to
be a strong explanatory variable for MIDT. For the extensive worldwide data set
the correlation is a lot lower at 0.54 if we take all O&Ds into account (153666/2
O&Ds).

We do not show the graphs here but we find that the correlation between the MIDT
data and the traditional gravity variables is a lot lower. The correlation between
MIDT and GDP is only 0.11 and the correlation between MIDT and catchment is
0.30. Scatter plots for a visual reflection of these correlations are available in Ap-
pendix VII. This suggests that the meta search variable will outperform the tradi-
tional gravity model. The correlation of the number of seats and number of flights
is a higher than expected, since it basically shows the supply of direct flights. The
correlation between the number of seats and MIDT and the number of seats and
MS is respectively are 0.92 and 0.94. However, note that the flights/seats data only
shows direct routes flown, while the MIDT and MS data shows the demand for true
O&D, which may or may not require a connecting flight depending on the supply.

Since the correlation between MIDT and MS is very high, we are naturally inter-
ested in the most searched destinations from the raw data. Potentially this data
already provides valuable insight for the destination selection procedure. In Ap-
pendix VIII an overview is made with the top 5 destinations for the European
and intercontinental schedules. Similar as in Figure 11 three categories are dis-
tinguished: the destination where KLM is already active, the destinations where
other airlines are active and the destinations where no airline is active.
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Figure 11: Scatter MS vs MIDT: Each dot is a destination with Amsterdam as origin. In
the plot we show Europe in the left part and intercontinental in the right part. Furthermore
we observe three colors: blue for flights operated directly by KLM, red for flights operated
directly by another airline, which can be a partner or a competitor of KLM and gray for
O&Ds where currently no direct service exists.
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5 MODELLING, ESTIMATION AND VALIDATION

This chapter introduces the theoretical model. In Section 5.1 is explained how the
model is created and there will be explained the estimation method and the as-
sociated assumptions and restrictions. In Section 5.2 the comparison metrics are
introduced which help with selecting which model is ’best’. Finally, Section 5.3
elaborates on the validation method(s) in order to make a statement about the real
world value and reliability of the model.

5.1 Model and estimation

The initial idea of the thesis was to create a gravity model for demand with the
addition of using meta search data. The basic model for this is given by:

Di,j = f (Gi,j) + Mi,j + νi,j, (4)

where Di,j is demand at origin i and destination j, f a function of gravity variables
Gi,j, Mi,j the meta search variable and νi,j the error term. However, there must be
dealt with the issue that ’true’ demand Di,j is unobserved. Therefore the demand
Di,j is substituted with observed data: booking data from the MIDT data source.
Since the MIDT data is incomplete, there will be introduced an extra measurement
error in the following way:

Di,j = yi,j + εi,j, (5)

where yi,j is the observed demand (MIDT data) and εi,j the measurement error. This
is then substitute Di,j = yi,j + εi,j into equation (4) which gives:

yi,j = f (Gi,j) + Mi,j + (νi,j − εi,j) (6)

= f (Gi,j) + Mi,j + µi,j,

with µi,j = (νi,j − εi,j). The uncertainty effect of the model and the extra uncer-
tainty about the incomplete MIDT data are now captured in µt. Adding the meta
search data into the gravity model is supposed to fix part of the extra uncertainty
introduced by the MIDT data. It ’fixes’ this measurement error to a certain extend.

In order for equation (6) to give reliable results, a check for exogeneity of the re-
gressors is a necessity. The following assumption must be checked:

E(Di,j|Xi,j) = E(yi,j|Xi,j) + E(εi,j|Xi,j), (7)

where Xi,j are all explanatory variables. In other words, the measurement error
εi,j should not be correlated to the regressors Xi,j. If there are other variables in
εi,j that affect Xi,j there will be a change of over- or under predict yi,j. There are
reasons to believe this might be the case in our model as well, since the MIDT data
is incomplete.
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It could be that the low cost travelers are not represented properly and that the
users of meta search are likely to be highly price sensitive and biased towards the
leisure segment. Also there might be an indication that the meta search variable is
not exogenous. The expectation is that when a low MIDT is observed on a low cost
route, a high count of meta searches are observed, which results in underestimating
the β coefficient on the MS variable. Adding a control variable to the equation can
help to remove this relationship. Therefore a dummy variable is added to routes
where the largest European low cost carriers RyanAir and EasyJet are active.

Despite its shortcomings, MIDT is chosen as dependent variable and the MS vari-
able is used as one of the explanatory variables to add information that is not cap-
tured by the MIDT variable. This makes it possible to check to what extent the
meta-search data can explain the current observed demand. It also allows us to see
where MS and MIDT give different results which is interesting. If there are a lot
of searches but not that many bookings, this could indicate that this route is over-
looked when only considering MIDT data. In this way, destinations can be fined
that are currently predicted above or below.

Model formulation
The formulation of the gravity model within aviation, in the style of Grosche et al.
(2007), is given in equation (8). This equation shows travel demand between the
cities i and j.

Vi,j = k ·
(Ai Aj)

α

dγ
i,j

, (8)

where Vi,j entails the passenger volume between i and j, for i 6= j. The variables Ai
and Aj are attraction factors of respectively i and j. Here di,j represents the great
circle distance between i and j, and k is a constant. The parameter α indicates the
influence of the attraction variables, while the parameter γ indicates the effect of
the distance on travel demand. In order to estimate the model in a linear form,
the equation is transformed by taking the logarithm on both sides of the equation,
which gives us:

log(Vi,j) = k + α · log(Ai Aj)− γ · log(di,j) (9)

The equations (9) and (6) can now be combined to find our preferred model: the
gravity model enriched with the meta search variables and some control variables.

log(yi,j) = k + α · log(Ai Aj)− γ · log(di,j) + β · log(mi,j) + ρ · log(li,j), (10)

where yi,j is the MIDT known demand, k is the intercept, log(Ai Aj) are all the
attraction variables, di,j is the distance, mi,j is the meta search variable and li,j are
all control variables. An overview of all specific variables used in the different
model specifications are given in the results chapter.
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Now that the theoretical model has been completed, the decision can be made as
to how the model should be estimated: the way of finding coefficients for k, γ and
all α’s and β’s. The estimation of this model is done by Ordinary Least Squares
(OLS), a commonly used method for estimating parameters in a linear regression
model. See also Gómez-Herrera (2013) and Grosche et al. (2007). OLS minimizes
the sum of the squares of the differences between the observed dependent variable
and those predicted by the linear function. The OLS estimation method comes
with a set of assumptions that must hold to produce valid results when looking
to find a causal relationship. However that is not our aim here, we are trying to
find the model that produces the best prediction. So even if not all assumptions are
satisfied, the model still has value. However, it will be checked whether the errors
exhibit heteroscedasticity (non-constant variance over time). If it is determined that
the errors are heteroscedastic (by examining this graphically in the results chapter),
this can be dealt with by using robust standard errors with heteroskedasticity, such
as the standard errors Heteroskedasticity and Autocorrelation Consistent (HAC)
represented by (Newey and West, 1986).

5.2 Model comparison

The different model specifications are tested in the next chapter. To choose which
model specification yields the best estimate of the demand, comparison statistics
are needed to evaluate the different models.

The first metric is the R2, see equation (11). The R2 measures how good the line
produced by the linear model captures your data points, so the ’fit’ of the model on
the data. So it indicates how much of the variance in the data is explained by our
model.

R2 = 1− SSR

SST
, (11)

where SSR = ∑N
i=1(yi − ŷi)

2 is the squared sum of the regression error and SST =

∑N
i=1(yi − ȳi)

2 is the squared sum of the total error. Now to compare (slightly)
different models to each other the adjusted R2 can be used instead of the R2. The
R2 increases with every added variable, even if this variable has no explanatory
power and only introduces extra (estimation) uncertainty. The adjusted R2 corrects
for adding extra variables to the model. Otherwise adding extra variables to the
model always seems like a good idea, which makes comparison between models
impossible. The formula for the adjusted R2 is given by:

R2
adj = 1− (1− R2)(n− 1)

n− k− 1
, (12)

where n is the number of observations and k is the number of regressors.
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Another way to compare models is the Akaike Information Criterion (AIC). It is a
measure used in Maximum Likelihood Estimation (MLE). MLE using a normally
distributed log-likelihood function results in exactly the same results as OLS esti-
mation. That is why the AIC can be used here. The AIC formula is shown in equa-
tion (13). Similar to the adjusted R2 the AIC penalizes the use of more variables in
the model. It makes a trade-off between a better log likelihood (ln L̂) and adding
more parameters (k). The lower the AIC value, the better the model performs, since
the log-likelihood is subtracted from the 2k term.

AIC = 2k− 2ln(L̂) (13)

The previous two measures describe the in-sample fit of the model with respect to
the data and which variables enhance this fit. The whole premise of our model is
that meta search data has been added to ’fix’ the incomplete MIDT data. Therefore
we are more interested in the predictive power of our model. Ultimately, the model
that performs ’the best’ is chosen, based on the case study where empirical data are
used. Better performance will be measured in various ways as well. One way
to evaluate the performance of the different models is to look at error measures,
such as the Root Mean Squared Error (RMSE) and the Mean Absolute Error (MAE),
which take the form:

MAE =
1
N

N

∑
i=1
|ei|, RMSE =

√√√√ 1
N

N

∑
i=1

e2
i , (14)

with ei as error term per observation. The error measures depend on both the
prediction and the realization, meaning they depend on the prediction error (ŷ− y)
only and they are symmetric. Of course in both cases lower values indicate more
accuracy. Both measures have their advantages. The MAE is a linear score which
means that all observations are weighted equally. The RMSE gives relatively high
weight to large errors, since the errors are squared. They do not necessarily always
indicate the same model as the ’winner’ and we will therefore use both to check
which of our models does better.

5.3 Validation and sensitivity analysis

The main purpose of validating a model is to check if the model is reliable and if
the results have real world value. This is also related to the performance of the
model. As explained, the interest lies with the model that has the best predictive
power. The model will be validated in two ways: cross validation to investigate the
differences in estimation outcomes when leaving out a part of the data (sensitivity)
and predicting back removed KLM destinations.
If a model is very sensitive to small changes, such as using slightly less or more
data, the validity of the model must be questioned. Whether the outcomes are ro-
bust, is tested by doing k-fold cross-validation. This method creates k equivalent
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folds and uses k-1 folds to estimate the model, and testing the models performance
on the last k set. For example if k = 5 is used, each fold contains 1

5 of the data.
In a stable model the coefficients and model fit are not very sensitive and will not
change that much using the different folds for estimation.

The most important part is to check if our model has real world value and thus if it
can be used to accurately estimate demand for destinations that are not currently in
the network (and signal under and over-prediction of existing destinations). This
can be tested by eliminating successful routes (which therefore have high demand)
that are operated by KLM from Amsterdam airport and see if it is possible to pre-
dict them back.

If the model does this accurately, the conclusion can be drawn that it has real
world value. We have therefore implemented the following iterative validation
procedure:

1. Remove a current KLM destination from the dataset.

2. Estimate the model on the remaining data (so all observations minus the re-
moved destination).

3. Predict the fitted values for all observations (including the removed destina-
tion).

4. Rank all destinations that are not currently in the network according to pre-
dicted demand (based on the fitted values).

5. Report the rank of the removed destination.

We do this for all (151) direct destinations, one by one, and create a vector contain-
ing all ranks. The the mean, median and mode of the rank vector are reported for
each model and the percentage of removed KLM destinations that the model pre-
dicts in the top 10 destinations. This shows the performance of the different model
specifications. The intercontinental flights and the European flights are compared
separately and the summer of 2018 is used as the preferred period because it con-
tains the most data points.

The results of the sensitivity analysis and the validation check are presented in
the next chapter. This helps in making a decision about the final model.
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6 RESULTS

Now that the model is described conceptually it can be applied to the KLM case
and look how it performs. The econometric results are elaborated on in Section
6.1. This includes an overview of parameter estimates, a comparison between sev-
eral different model specifications and the decision on the preferred model. Subse-
quently the model’s assumptions are tested with diagnostic tests and the validity
of the preferred model is evaluated in Section 6.2. In the last section, Section 6.3,
the results for the KLM case study are presented. These include the demand pre-
dictions for O&Ds where currently no direct air service exists. The recommended
destinations based on these demand estimations are presented alongside an expla-
nation why. Furthermore, the real world implications validity of the method is
checked by looking at KLM’s recent additions her flight network.

6.1 Econometric results

The conceptual model is explained with clusters of variables such as gravity vari-
ables and control variables. An overview of the specific variables used in the model
is shown in Table 2.

Table 2: List of variables

Letter Variable Transformation Data source Unit Variable type
y observed demand log(y) MIDT passengers Dependent
m meta search count log(m) Meta Search searches Meta search
t transfer potential log(t) Meta Search searches Meta search
i income ii · ij / mean(i) GDP per capita USD per person Gravity
p catchment pi · pj / mean(p) population persons Gravity
d distance log(d) coordinates km Gravity
c colony - colony 0, 1 Control
h hub - airport data 0, 1, 2 Control
ds direct service - OAG 0, 1 Control
lcc low cost carrier - OAG 0, 1 Control
sd1 distance < 300km - coordinates 0, 1 Control
sd2 distance < 500km - coordinates 0, 1 Control
al nr. of large airports - airport data count Control

am nr. of medium airports - airport data count Control
as nr. of small airports - airport data count Control
ss season - KLM schedule S17, W17, S18 Control
s seat capacity - OAG seats Aviation
f number of flights - OAG flights Aviation
a airport popularity - OAG passengers Aviation

airlines KL, AF, DL, HV, LH, BA - OAG passengers Aviation
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Many variables are available from the data set, this means that many possible com-
binations can be made to find the best model. Nine different model specifications
are created to test how the model performs with certain clusters of variables in- or
excluded from the model. For example, the pure gravity model can be compared
to the gravity model enriched with meta search data. An overview of the model
specifications that will be estimated is provided in Table 3.

Table 3: Model specifications

# Specification Independent variables
01 Gravity i, p, d
02 Gravity + control i, p, d, c, h, ds, lcc, sd1, sd2, al, am, as, ss
03 Gravity + control + country i, p, d, c, h, ds, lcc, sd1, sd2, al, am, as, ss, cy
04 MS (excl. MS transfer) m
05 MS (incl. MS transfer) m, t
06 MS + gravity + control m, t, i, p, d, c, h, ds, lcc, sd1, sd2, al, am, as, ss
07 MS * country + gravity + control m * cy, t, i, p, d, c, h, ds, lcc, sd1, sd2, al, am, as, ss
08 All variables m * cy, t, i, p, d, h, s, f, ds, lcc, sd1, sd2, al, am, as, ss, s, f, a, airlines
09 Only significant variables tbd

Parameter estimation
The models are estimated using OLS and parameter estimates are found. These are
all presented in Table 4. The continuous variables are presented with their param-
eter estimates on the top line, followed by the standard error between parentheses
and the statistical significance displayed in stars. Three stars (***) means signifi-
cant at a 0.001 level, two stars (**) at 0.01, one star (*) at 0.05 and a dot (.) at 0.1. For
the control variables, only the statistical significance is reported in the table. The
bottom four rows shows the various performance measures of the models.

A lot of information can be digested from this extensive table. The most impor-
tant findings will be discussed. The first model that is estimated is the pure gravity
model without any control variables added. All parameters are statistically signif-
icant in the direction that is expected. However, the model performs poorly with
an adjusted R2 of only 0.2. Adding the set of control variables helps tremendously
at the cost of loosing significance of the income and distance variables. The third
model introduces dummy variables for each country. This means that for every
country a different intercept is estimated. This addition again increases the model
fit to a level of 0.70 adjusted R2.
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Table 4: Parameter estimates (coefficients)

Model -> 01 02 03 04 05 06 07 08 09
Variable
k 2.464 2.127 4.183 -0.786 -1.448 -1.644 2.426 1.525 -4.067

(0.674) (0.401) (1.299) (0.068) (0.114) (0.277) (4.158) (3.446) (3.158)
*** *** ** *** *** ***

m 0.842 0.730 0.642 0.851 0.845 0.846
(0.007) (0.018) (0.020) (0.263) (0.269) (0.273)

*** *** *** ** ** **
t 0.146 0.166 0.179 0.186 0.172

(0.021) (0.021) (0.029) (0.027) (0.027)
*** *** *** *** ***

i 0.148 0.018 -0.354 0.014 -0.756 -0.759 0.104
(0.020) (0.017) (0.143) (0.010) (0.494) (0.349) (0.280)

*** *
p 0.443 0.240 0.345 0.001 0.023 0.008 0.015

(0.032) (0.017) (0.023) (0.012) (0.017) (0.016) (0.016)
*** *** ***

d -0.413 -0.004 -0.024 0.050 0.109 0.242 0.212
(0.031) (0.030) (0.071) (0.021) (0.067) (0.063) (0.063)

*** * *** **
s -5.32e-7

(8.54e-7)

f 6.42e-4
(1.51e-4)

***
a -4.18e-8

(6.60e-9)
***

cy (intercept) *** *** *** ***
cy (interaction) *** *** ***
c * .
h *** *** *** *** *
ds *** *** *** *** .
lcc *** *** ** . .
sd1, sd2 *** *** *** * * *
al, am, as *** *** *** *** *** ***
ss *** *** *** *** *** ***
airlines *** ***
R2 0.198 0.552 0.708 0.800 0.804 0.819 0.902 0.917 0.915
Adj. R2 0.197 0.551 0.693 0.800 0.804 0.818 0.892 0.909 0.906
AIC 13474 11424 10215 8543 8463 8209 6644 6059 6164
RMSE 1.61 1.20 0.973 0.805 0.796 0.765 0.563 0.518 0.526
MAE 1.29 0.938 0.716 0.602 0.592 0.568 0.385 0.361 0.365
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Figure 12: Model with continent inter-
action effects

Figure 13: Model with country interac-
tion effects

The forth model is the pure meta search model. With only a single variable, 80% of
the data’s variation is explained and the gravity model including control variables
is outperformed. The good fit does not come as a surprise since a high correla-
tion between MIDT and MS was already spotted in the exploratory data analysis.
Since both the dependent variable as the MS variable are log-transformed the co-
efficients can be interpret as elasticities. This implies that a 1% increase in searches
results in 0.84% more demand on average. In model five the MS transfer variables
is added. Even though the model fit stays similar, the addition is highly signifi-
cant. It reduces the effect previously attributed to direct meta searches. Model six
is a combination of previous models, thus includes the meta search, gravity and
control variables. This increases the fit slightly to 0.82. It can be preliminary con-
cluded when MS is already in the model, the gravity and control variables describe
very similar variance in the data and are only of marginal improvement. Note that
both income and catchment are not significant, while the distance parameter has a
small positive, significant coefficient.

Model 7 introduces an new idea. The country variable that has been added to
model 3 previously, is now added as interaction variable with the meta search vari-
able. This implies that both the intercept and slope of the regression line are slightly
changed for each country. These effects are visualized for continents in Figure 12
and for countries in Figure 13. This addition improves the model fit quite a lot to
0.89 adjusted R2. However, one should be cautious for over-fitting. The goal is
not to fit the model as closely as possible to the MIDT data, but to find new desti-
nations. The risk of fitting the data so closely to the MIDT data is that the model
neglects the added value captured in the meta search data.
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Model eight is the most extensive model since it contains all available variables. It
includes the aviation variables such as number of seats available per O&D. Note
that this data is only available for routes where a direct service is available. The
fit increases slightly while the added continuous variables have really small co-
efficients. Two out of three added variables are significant. The added dummy
variables on partner and competitor airlines are significant as well. However one
should be cautious for multi-colinearity since meta search correlates highly with
the number of flights (0.91), number of seats (0.94) and airport popularity (0.83). It
is trivial to say that these variables also correlate highly among each other.

The ninth model contains only the significant variables and is created by back-
wards elimination: the least significant variable is removed until all variables are
significant. The change in adjusted R2 is almost indifferent compared to model 7
and 8, yet the RMSE and MAE are improved quite a lot.

6.2 Model validation

The preferred model will be evaluated by the validation methods proposed in Sec-
tion 5.3. Conclusions will be drawn regarding the real world practicality and value
of this model.

Diagnostic test results
A diagnostic check for constant variance in the error term is performed. The resid-
uals are graphically checked for heteroskedsticity. In Figure 14 the fitted values are
plotted versus the actual values. Quite a good fit is observed across the diagonal.
Destinations that have a direct service are plotted in light blue, while dark blue
means the opposite. Figure 15 shows the variance of the residuals. A larger spread
is observed on the lower end of the demand spectrum (left on the x-axis). Form
this figure we suspect a slight bit of heteroskedasticity. In order to prevent for un-
reliable standard errors, we correct for this by making use of HAC standard errors
in the estimation.

Validation results
Five-fold cross validation is performed on the model. This means that the data is
split randomly in five equal folds. Subsequently the model is trained on 80% of the
data and predicts on the other 20% of the data, for each combinations of folds. The
total process is repeated five times, so we have a five-times-five cross validation.
The parameter estimates change only very marginally. The model fit measures and
error measures only change slightly as well. A weaker measure is expected since
the model only uses 80% of the data in stead of the former 100% to estimate. The
average R2 is 0.87, the RMSE is 0.627 and the MAE is 0.406. From these measures
we can conclude that the model seems fairly stable under changing data inputs.
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Figure 14: Fitted values vs Actuals Figure 15: Residual variance

The second validation method is the back prediction of existing KLM destinations.
The routine on how this validation method works exactly is explained in Section
5.3. The results of are presented in Table 5. For all nine models the mean, median
and mode of the rank is presented as well as the percentage of KLM destinations
that is ranked in the top 10. We observe that the first model performs quite poorly,
but once the Meta Search variable is added (from model four and higher) the vali-
dation results become fairly stable. Models eight and nine score the best validation
results, which is also in line with the best model fit and prediction power reported
earlier.

Table 5: Validation results: predicting back destinations

Model 01 02 03 04 05 06 07 08 09
Mean rank 57.8 19.4 15.7 14.0 13.7 13.2 13.9 11.15 11.28
Median rank 30 8 7 5 5 6 6 5 6
Mode rank 3 1 2 1 1 1 1 1 1
Percentage in top 10 26.8 57.0 58.4 65.1 63.0 64.4 63.1 69.8 69.8

A visual presentation of the distribution of the ranks is shown in Figure 16 by the
use of boxplots. Note that there are quite a few outliers. These are destinations that
the model is not able to predict back with a high rank. This could be explained
by the fact that the destinations are ranked based on predicted demand, while not
all KLM destinations are selected predominantly on the largest demand. Some
smaller destinations (in terms of total demand) are profitable for KLM, because of
various reasons. An example is a high share of business passengers, because of
an oil business. This is the case for numerous of the outliers. In order to compare
the validation results between different models a histogram is made. In Figure 17
the ranks from model 2 and model 9 are compared. From the histogram it becomes
clear that model 9 has many more destinations ranked at number one and performs
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better overall. The results from model 8 and 9 are very similar. Overall we observe
that about 70% of the KLM destinations are predicted in the top 10 with the best
performing models, that the most predicted rank is number one and that the me-
dian lays around number 5 or 6. It is plausible to conclude that the model is valid
for real world use.

Figure 16: Validation rank boxplots

Figure 17: Validation rank histogram
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Model comparison
Nine models are created whereof one will be chosen to continue the analysis with
and present the final results for the case study. Four statistics are available to com-
pare the different models among each other. Model 8 and 9 have the highest model
fit measures in adjusted R2 and AIC and the highest predictive power indicated by
the error measures RMSE and MAE. Besides that, they also score the best during
the model validation. All statistics are very similar between model 8 and 9. Since
the goal is to predict demand for city pairs where currently no direct service is
available, the aviation related variables included model 8 are unavailable for those
destinations. Furthermore the predictive ability is arguably more important than
model fit given the goal to predict demand. For these reasons model 9 is chosen as
preferred model.

6.3 Results for KLM case study

Demand predictions are created by applying the meta search enriched gravity model
to the KLM case. An extensive ranking of potential destinations is provided. Fur-
thermore the real world value of the model will be argued by looking at KLM’s
recent additions to the network.

Recommended destinations
Below we present the very extensive results for KLM. In order to share the results
for KLM four tables are presented:

• Recommended destinations where already another direct service exists based
on highest predicted demand (Table 6)

• Recommended destinations where already another direct service exists based
on highest under-predicted demand from negative residuals (Table 7)

• Recommended destinations where currently no direct service exists based on
highest predicted demand (Table 8)

• Recommended destinations where currently no direct service exists based on
highest under-predicted demand from negative residuals (Table 9)

In each table the top 10 destinations based on predicted demand from the model
are presented. The tables are split in 4 for parts, each representing a different sched-
ule: European Summer, European Winter, Intercontinental Summer and Intercontinental
Winter. Note that the destinations recommended are based on demand predictions
and does not explain other aspects of the destinations decision-making. The rec-
ommendations are meant to be the starting point of a business case. Besides that if
a destination does not provide enough demand to open a new route, it can be an
interesting opportunity to extent code-share partnerships.
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Table 6 & 7 includes only destinations where other airlines are already present.
This can be a partner airline, or a competitor. When a partner is already there,
KLM could either strengthen the joint position by increasing on that route capac-
ity or leaving the partner to prevent unwanted competition. When a competitor
is operating on that route KLM can either choose to compete for market share or
stay away if the expected returns are too low. On the contrary, Table 8 & 9 show
the top destinations for the same four schedules, this time where no other airline is
active. This means that adding these destinations to the network results in achiev-
ing a monopoly on these routes. A motivation to add a destination to the network
can be because of direct traffic, but it can also be because of the transfer traffic that
can flow from and to this new destination. Adding a destination that is not yet
connected to one of the main European hubs can be an interesting opportunity to
optimally exploit economies of scale.

Table 6: Recommended destinations where already a direct service exists

# Code Destination Country Partner Competitor
Due to confidentiality of the data, the content has been removed from the public version

Table 7: Recommended destinations where already a direct service exists based on
under-predicted demand from negative residuals

# Code Destination Country Partner Competitor
Due to confidentiality of the data, the content has been removed from the public version

Recommendations for intercontinental destinations where other airlines already
operate and the demand is under-predicted is unavailable. The destinations Boston,
Seattle and Orlando do show up, but the demand is not under-predicted. KLM is
already the largest airline at Amsterdam Airport Schiphol and there are simply no
intercontinental destination with under-predicted demand where KLM does not
fly to, but others do. Furthermore, note that the destinations presented in grey
means that the distance it too large to offer a direct service, without at least one
stop for refuelling.

Table 8: Recommended destinations where currently no direct service exists

# Code City Country
Due to confidentiality of the data, the content has been removed from the public version
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Table 9: Recommended destinations where currently no direct service exists based
on under-predicted residuals

# Code City Country
Due to confidentiality of the data, the content has been removed from the public version

The real world value of this model becomes clear when we investigate the latest
additions to the KLM network. In 2018 five new destinations are announced:

• Boston (BOS): #1 in both the summer and winter;

• Marseille (MRS): #1 in the summer and #2 in the winter;

• Wroclaw (WRO) #2 in both the summer and winter;

• Las Vegas (LAS): #3 in the winter;

• Napels (NAP): #3 in the summer and #4 in the winter from the under-predicted
destinations.

It is an amazing result that all KLM’s new destinations are all ranked highly since
the decisions to add these destinations the network completely independent of this
research and the meta search data. This indicates that our method is likely to per-
form well in finding the next best destination to add to the network, based on this
case.

Another application of the method is to reverse it and predict which O&Ds in the
current network have the lowest demand. An overview of the KLM destinations
with the lowest predicted demand in provided in Appendix IX.

50



MASTER THESIS W.K. BOELRIJK

7 CONCLUSION & DISCUSSION

Conclusion
In order to conclude on the most important insights, we should go back to the be-
ginning where the main research question is presented:

How can air passenger demand be estimated accurately, suitable for city-pairs where cur-
rently no direct air service exists in order to assist the flight network decision-making?

In order to answer this question a new method is developed: the gravity model
enriched with meta search data. The first conclusion is that the meta search data
seems to be highly valuable for air passenger demand estimation. The results give
the impression that adding the meta search data improves the estimation of true
air passenger demand and that it partly overcomes the measurement error that is
present in the MIDT data. In the gravity model enriched with meta search data, the
traditional gravity variables are not significant anymore as they are outperformed
by the meta search data. This might indicate that the gravity model is not as rele-
vant today anymore as when it was created. On the contrast, the meta search data
seems to uncover patterns that were not visible before in historic booking data as
the deteriorating data source MIDT. The new model is able to discover new des-
tinations where a lot of people search for online, but where no direct air service
is offered yet. The model shows its real world value by accurately ranking the
five latest additions to the KLM flight network highly. For KLM the model could
contribute insights to allocate resources more efficiently. For Amsterdam Airport
Schiphol the model might contribute to a more efficient network that helps to de-
fend the competitive position of Schiphol on the short term while it is growth con-
strained. The model can be extended to other airlines and constrained airports as
well.

Discussion: academic implications
Despite the promising results, the meta search data as well as the model has some
limitations which one should be aware of. It is important to realize what the data
can explain and what not. One should note that there are often many more meta
searches than bookings, as people generally use meta search to explore travel op-
tions and compare prices. Furthermore it is the price-sensitive leisure passengers
that typically compares flights the most and thus logs the most searches. Mean-
while it is the business passenger that contributes the largest margin for an airline.
Therefore the meta search data seems to be a good indicator for demand volumes,
but likely fails to provide reliable insight for the distribution between leisure and
business traffic, which in the end determines the profitability and success of a des-
tination.
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Furthermore, one should be cautious with over-fitting with the preferred model,
as it includes many variables to correct for all country’s interaction effects and in-
tercepts. For predicting purposes it could be that a model with a little less control
variables actually predicts better on new data, because otherwise the model fits the
measurement error in the MIDT too closely. We tried to tackle this challenge with
the validation method to predict back all KLM destinations and find that the most
extensive models are the most accurate.

In search for the optimal model specification, many models were created in order
to measure the effects of each cluster of variables. Several interesting findings are
done. The gravity variables were not significant anymore after enriching the model
with meta search data. This means that the gravity model is not able to explain any
additional variation in the data after the meta search data is added. This can have
various reasons (not exhaustive): 1) The gravity model might not be suitable for
applying to a large scale across heterogeneous markets, even with one fixed point
of origin or destination. 2) The data on the typical gravity variables might not be
fine-grained enough, for example GDP per capita is measured on country level in
stead of the ideal city level. 3) The effects of the typical gravity variables might be
already captured implicitly inside the the meta search data. This would make the
meta search data very valuable and superior to the gravity model. Two academic
conclusions could be drawn from this case study:

• Meta search data seems to be highly valuable for air passenger demand esti-
mation;

• The gravity model might not be as relevant today as when it was created.

Discussion: societal implications
The gravity model enriched with meta search data seems to shows real world value
as it accurately ranks the most recent KLM destinations highly. The model con-
tributes to the network decision-making of the airline by providing a prediction
for the unobserved true demand. Therefore it might uncover destinations where
previously no attention or interest had been based on the deteriorating MIDT data.
The advanced method for demand estimation might lead to a more efficient net-
work in terms of resource allocation implying higher load factors and lower emis-
sions per passenger.

While an improvement in resource allocation might be attributed to more advanced
demand estimation, the tension in the aviation industry will stay. The number of
flight movements is not expected to decrease with this method, since airlines try
to allocate their fleet as optimal as possible. Rather, in a more optimal network,
the same number of flights is more likely to lead to higher profitability levels and
more passengers transported while keeping the CO2 emissions and noise pollution
constant.
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As the public debate on the capacity limit of Schiphol continues, the involved par-
ties keep their conflicting interests. A well developed and more efficient KLM
network helps Amsterdam Airport Schiphol to offer better connectivity within its
capacity constrains. A more efficient network has economic benefits as well as re-
duction in emission per passenger. While Amsterdam Airport Schiphol is not able
to grow until at least to 2020, this model might be able to contribute partly to de-
fend Schiphol’s competitive position towards growing airports in the short run. In
the long run other solutions and technical innovations are required to make the
aviation industry sustainable from an environmental point of view. Nonetheless,
the method keeps value as airlines and airports are always interested in a network
that allocates the resources the more efficient. During this research the case study
is applied to the KLM network on the constrained Amsterdam Airport Schiphol.
However, the developed method can be applied to other airlines and airports as
well.

Further research
The analysis showed that meta search data mainly reflects the low yield part of
the market, i.e. the price sensitive leisure passengers. The model for air passen-
ger demand estimation on big data might be improved in the future if more big
data sources come available that also reflects other yields of the market. If so, this
method might sketch a more complete image of the true unobserved demand.

In spite of that, this research is just one application of meta search data. The po-
tential of this source of big data does not stop here. Further research could be
done to add meta search data to other air passenger demand models besides the
gravity model. Moreover, the time dimension in meta search data is left largely un-
explored. Applications to forecast demand into the future or models that explain
(changing) prices are on the horizon.
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APPENDICES

Appendix I: Implications of Schiphol’s capacity constrains

Amsterdam Schiphol Airport, Europe’s third largest hub-airport has reached its
capacity limit. This harms the growth opportunities of the airport and the main
airlines operating at Schiphol, which subsequently threatens their competitive po-
sition. This is a threat to the development of the international connectivity of the
Netherlands and the economy depending on it (Luchtvaartnota, 2009). The soci-
etal relevance of this problem and the urgency to take action is explained in Section
6.3. Since the future capacity at Schiphol airport is highly uncertain, the only way
to develop the connectivity is not in absolute number of flight movements, but to
plan these flights more efficiently: optimize the network of destinations. In order to
find new destinations, we need to understand the prerequisites that make a desti-
nation viable. The most important factor is the demand: the number of passengers
willing to go travel that destination. When the demand is a lot smaller than the
number of seats in the aircraft, the route is bound to fail. Therefore not all routes
are served with a direct flight, but require a transfer at a hub airport. Some back-
ground information on different types of airports is provided in Section 7. How
the hub function of an airport works and how this impacts the decision making
on destinations is explained as well. Specifically the hub function of airports that
accommodate and stimulate transfer passengers is important to understand before
we dive into air passenger demand estimation.

The problem: Amsterdam Airport Schiphol is full
Amsterdam Airport Schiphol has been growing a lot in the last decades and has
reached its current capacity limit. The Omgevingsraad Schiphol is a comity consist-
ing of a variety of actors that tries to balance the development of aviation and
improve the quality of the environment and the area around the airport. In 2008
these parties agreed to have a maximum number of flights at Schiphol of 500,000
a year until the year 2020 (Alders Agreement, 2008). The capacity limit is enforced
not due to physical capacity limitations, but due to noise constraints. In the year
2017, 497,747 flight movements are registered.11 In the year 2018, the maximum of
500,000 flight movements was reached. In the figures we see strong growth in the
last few years, with the threshold displayed by the red line.

While Schiphol has reached its maximum operational capacity, the overall avia-
tion industry is growing, especially in the upcoming economies such as China and
India.12 Amsterdam Airport Schiphol is not able to accommodate the growth of the
industry because of the capacity limit. The problem is relevant and urgent because

11https://www.nrc.nl/nieuws/2018/01/08/schiphol-net-onder-maximum-aantal-
vliegbewegingen-a1587513

12https://www.iata.org/publications/store/Pages/20-year-passenger-forecast.aspx
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there is no clear cut solution for it right now. The limit of 500,000 flight movements
per year will be maintained until 2020. Initiatives on re-negotiating the current
limit are ongoing, but an expansion of the capacity limit is highly uncertain due to
the public resistance on the topic.13 Especially concerns regarding noise pollution
and CO2 emissions are raised by residents or the area.

This makes the problem we are addressing a typical multi-actor problem where the
perspectives of the involved parties are unaligned. Several actors with their corre-
sponding interests and involvement are discussed. First we have Royal Schiphol
Group facilitating the airport infrastructure and acting as a hub. A hub airport is
defined as an airport that one or more airlines use as a transfer point for passen-
gers to switch planes to continue to their final destination. More on how an hub
airports works exactly is explained in the next Section 7. The airport is used by
the airlines transporting passengers and cargo over their network of destinations.
Most of these airlines operate in collaboration with partner airlines, while compet-
ing with other airlines. Partners and competitors are often, but not always, linked
to the alliances airlines operate in. More about the collaboration between airlines
is described in section 3.2. Moreover, there are local residents around Schiphol air-
port which heavily oppose expansion of Schiphol airport. The nation’s secondary
airports Rotterdam-The Hague Airport, Eindhoven Airport and Lelystad Airport
try to capture some of Schiphol’s spill over traffic now that the number of flight
movements is constrained. There is on-going discussion on a topic of opening
Lelystad airport for medium-haul ’holiday’ flights to relieve Schiphol from some
of her flight movements such that Schiphol can focus on developing its hub con-
nectivity further. There is a lot of political and public debate on the extra emission
and noise pollution of additional air traffic, which delays the opening of Lelystad
airport for commercial traveling.14 The last key actor is the government that un-
derlines the importance of the Dutch aviation sector and specifically the network of
Schiphol and KLM (Luchtvaartnota, Alders agreement). The goal in government
is stated in the Luchtvaartnota (translated): "to further develop the optimal connec-
tivity network while maintaining the competitive position and improving sustainability of
the dutch aviation. The Luchtvaartnota (2009) is a Dutch policy document about the
development of the aviation industry.

Implications of Schiphol’s capacity limit: the relevance and urgency
Schiphol has reached a respectable number of 71 million annual passengers in 2018,
whereof 36% is transfer passengers (Group, 2018). The home market, also referred
to as catchment area, of Schiphol is rather limited which means that the airport
heavily relies on transfer traffic. Schiphol Airport is currently ranked 3rd largest

13https://nos.nl/artikel/2260816-milieueffectrapport-schiphol-kan-doorgroeien-naar-540-000-
vluchten.html

14https://nltimes.nl/2018/02/21/lelystad-airport-opening-delay-blow-schiphol-budget-airlines
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airport of Europe, and wants to maintain this competitive position at least (Lucht-
vaartnota, 2009). Furthermore the Luchtvaartnota states that a high quality net-
work is crucial to achieve the country’s ambitions to be a top international business
location. Moreover the government values that the airport stimulates the economy
directly and indirectly by creating employment. They address that not only the
number of flights, but especially the quality of the network is crucial to support in-
ternational business activity. The quality of the network is expressed in number of
(unique/relevant) destinations, flight frequencies and valid transfer options with
reasonable connection times. In the Luchtvaartnota (2009) the Dutch Government
explicitly states that further developing the worldwide connectivity is key for be-
ing an interesting international business location and being an important driver of
the Dutch economy.

In a world with a growing aviation industry, an increasing number of relevant des-
tinations and a very competitive European aviation landscape, Schiphol is at risk to
loose its competitive position to other highly ranked and fastly growing European
airports such as Istanbul or Frankfurt. When Schiphol is not able to grow it finds
difficulty to add new destinations in growing economies. Airlines will be more
likely to choose for growing airport offering more transfer options for the airline
and her partners. Redondi et al. (2012) analyzed the phenomenon de-hubbing or
airports. This occurs when a large airline leaves an hub airport an the number of
transfer flights is significantly reduced. They conclude that airports experiencing
de-hubbing did not recover their original traffic and that de-hubbing is likely to be
irreversible once happening. While it is unlikely that large airlines will abandon
Schiphol immediately, the capacity limit puts a serious thread to the competitive
position of Schiphol airport. Schiphol is not able to accommodate that growth,
which harms the development and competitive position of Schiphol as mainport
and economic engine of the Netherlands and north-west Europe.

However, it is not the first time an airport is constrained in its capacity. Lon-
don Heathrow is an example of a congested and physically constrained airport for
years. Here we see that flights are scattered over multiple airports in and around
London, harming the transfer capabilities of airlines and her passengers. However
we also observe that while London Heathrow’s number of yearly flight movements
is lower compared to Schiphol (23.000 less), the number of passengers is higher (10
million more) (Royal Schiphol Group Facts and Figures, 2018). This indicates that
average number of people per aircraft is higher, thus the usage of the flight move-
ments is more efficient.

Under the likely scenario that Schiphol cannot grow in the near future, we need
similar efficiency upgrades at Schiphol. The hub function of Schiphol is essential
to offer transfer passengers a large network of destinations. In order for Schiphol
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to keep its top position as one of the largest and relevant hub airports of Europe, it
needs to keep developing its network. KLM Royal Dutch Airlines is with 48 per-
cent of the 2018 annual passengers by far the largest and most important network
carrier at Schiphol to perform the transfer flights providing the extensive connec-
tivity network for Schiphol (Royal Schiphol Group Fact and Figures, 2018). Because
KLM cannot grow in absolute terms, it needs more efficient network development
to react to the growth constrains. Therefore we introduce a KLM case study in this
research to apply our models to and find the most promising new destinations to
add to the existing network. More information about the case study and specific
KLM information is provided in Chapter 3.
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Appendix II: Airport hubs

Now that we have the main motive for the research we further provide background
information on how an airport works, specifically the hub function of airports that
accommodate and stimulate transfer passengers. Two main types of network de-
sign for airlines are distinguished: the hub-and-spoke network and the point-to-
point network. A symbolic representation is shown in Figure 18. The network
design an airline chooses to adopt says a lot about the strategy and characteristics
of an airline. The advantage of a hub-and-spoke network is that an airline needs
less flight movements to connect each node, compared to a fully connected point-
to-point network. Equation 15 shows the formula to calculate the number of links
for the different network types. In a network with seven cities, the hub-and-spoke
network has consists of six links, while the fully connected point-to-point network
requires 21 links to directly connect the same number of cities.

Figure 18: Network design: hub-and-spoke (left) vs point-to-point (right)

linkshub = n− 1 linksp2p =
n(n− 1)

2
(15)

The largest airports in the world facilitate a hub-and-spoke network design for air-
lines. The largest airports in Europe in terms of annual passenger numbers are
London Heathrow Airport (80.1 million), Paris Charles de Gaulle (72.2 million),
Amsterdam Airport Schiphol (71.1 million), Frankfurt Am Main Airport (69.4 mil-
lion) and Instanbul (68.2 million) all rely on their hub function (Schiphol Facts and
Figures, 2018). These airports facilitate Europe’s largest network airlines that trans-
port passengers by bringing them to their hub, the central node in their network,
and from there bring them to their final destination via another flight. By this strat-
egy Amsterdam Schiphol Airport and its largest airline KLM have been able to
grow far beyond the size of their own catchment area. Last year, 25 million passen-
gers (37%) were transfer passengers (Schiphol Group Facts and Figures, 2018).

Associated with the airport layout is the airline’s strategy. In general two strate-
gies are associated with the network types: the full service carrier, or also called
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the network airline, who operates in a hub-and-spoke network type and the low
cost carrier (LLC), who operates in a point-to-point network. This approach is a
bit simplified, because in reality there is a full spectrum in between these two typi-
cal strategies. Recently there is the trend that airlines become more hybrid in their
strategies (Daft and Albers, 2015).

Full service carrier is an airline that operates in a hub-and-spoke network design
and transports passengers using transfer flights. The operations of network car-
riers are typically centered at one hub or home base, but multi-hub systems do
exist as well. The entire network schedule is designed to offer as many transfer
connections as possible, prioritized on the importance of all the specific markets.
This system providing transfer possibilities for passengers throughout the whole
network. Typically the network is split in an intercontinental part (long haul), and
an short- and medium-haul part to bring passengers to the hub for a transfer flight.
This is called a feeder function and has as goal to exploit economies of density on the
more profitable (intercontinental) routes.

The hub system is used extensively in the airline industry. Therefore is crucial
to understand airline networks when estimating city-pair demand. The demand
estimations are positivally biased towards the hub if we only look at direct pas-
senger flows. In a hub-and-spoke system, we measure the passenger flows on the
links in the left figure, while we are interested in the true O&D demand, i.e. all
the links in the right figure. However, in reality the world is partially connected
by multiple hub-and-spoke networks. This makes measuring the underlying true
demand very complex. A lot of traditional airlines exploit a hub operation, while
we observer a growing number of direct point-to-point connections are added to
the global network.

In contrast to network carriers, there are the low cost carriers that operates in a
point-to-point network design. The point-to-point network is partially connected,
because operating on all links increases quadratically with the number of nodes in
the network, which is hardly ever feasible from business point of view. The airline
selects the links where she expects the most profit and operates a service between
these two cities. By making use of a partially connected point-to-point network,
the carrier has a simpler network schedule to design, since it does not offer transfer
flights. Low cost airlines often open a base on a medium size or regional airport,
and position a small number of aircraft there. From this base the profitability of
destinations is explored and changes to the network can be made easily and rather
quickly, since each link is a service on its own (a direct flight). This is the oppo-
site of a full service airline which accommodates transfers, so that a change in one
destination results in a change for the whole network.
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Appendix III: Collaboration in the airline industry

In 1978 the US aviation market changed because of the Airline Deregulation Act,
subsequently followed by the liberation of the European aviation market in the
1980s and 1990s (Cetin and Eryigit, 2018). Formerly one (national) airline had the
rights to fly between two countries. Real competition between airlines started after
the liberalization. Today, aviation is one of the most competitive industries and
the profit margins are low. Ironically, because of the competition, collaboration is
required to make routes profitable and to exploit economies of scale. There are
multiple levels of collaboration between airlines, which will be discussed in this
section arranged from the most intense form to the least intense form of collabora-
tion.

The most intense form of collaboration is a merger as Air France and KLM have
done. As said before, AF-KLM operate in a dual-hub system, which grands them
benefits from a network strategy point of view. Since both airlines focus on con-
necting passengers, the network schedule should offer as much feasible transfer
options as possible. AF-KLM are synchronizing their intercontinental network to
offer even more options to their shared customers.

The second most intense form of a collaboration between two or more (separate)
airlines is a joint venture (JV). A joint venture is an agreement between two air-
lines to share the revenues, costs, and profits, on a specific (set of) routes. Because
the revenues, costs and risks are shared by multiple parties, it is possible to offer a
more efficient, cheaper and larger network. In a joint venture, decisions on sched-
ules and frequencies on selected routes will be made in a way that the two airlines
operate as one, to maximize the profit. Currently, KLM has multiple joint ventures,
with Delta Air Lines, Alitalia, Kenya Airways, China Eastern and China Southern.

Lastly there are airline alliances. Due to the increasing competition, major airlines
formed alliances. One of the main benefits of an alliance is to create code shares. A
code share is a less intense form of collaboration than a JV. When two airlines have
a code share agreement, the airlines can sell there own tickets on a flight performed
by the partner airline. Code sharing is widely used to connect the networks of part-
ner airlines to provide many more transfer options to their customers. Currently
KLM has approximately twenty code share partners (excluding her JV partners).
The main benefits of an alliance is offering a larger network through code sharing
to increase market share and to lower the costs. Besides the extended network, the
benefits of an alliance include the reduction of costs by sharing sales offices, air-
port lounges, passenger services, maintenance facilities, operational facilities such
as catering or computer systems, operational staff such as ground handling per-
sonnel and investments and purchases by negotiating discounts on e.g. aircraft
and fuel due to extra volume (Fernandez de la Torre, 1999). Note that airlines are
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not obligated to be in the same alliance to have code share agreements, but alliance
partners make natural code share partners (Lordan and Klophaus, 2017). World-
wide there are three main alliances: Skyteam, Star Alliance and Oneworld. KLM is
a member of Skyteam.
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Appendix IV: Network decision-making

Now we arrive at the question how airlines choose their destinations. Finding new
destinations for an airline is a complex problem without one unique correct an-
swer. Finding a suitable next best destination depends on a lot of factors. Let me
introduce this in a general form and look at the aspects that make a destination
viable. The key precondition/requirement is the existence of enough demand on a
new route. For network development purposes, airlines are specifically interested
in demand to destinations they do not offer, since they are able to measure de-
mand quite effectively through the bookings they receive for the destinations they
already offer. The starting point of evaluation a destination’s potential is a measure
for demand on that origin-destination combination.

Next to finding an accurate measure for direct demand, which is a complicated task
itself, the decision-making process includes demand measures for transfer traffic.
If we delineate our scope specifically to network carriers, we understand that air-
lines does not only want to know the demand on from/to all possible destinations
to their hub. They equally interested in the direct demand from/to every possible
new destination to all the relevant transfer destinations. We call this the indirect
demand. Lets say an airline wants to add a new regional destination, it is inter-
ested to know the size of the demand from all the intercontinental destinations
it already offers to this new destination to see you many additional transfer traffic
they could attract because of this new regional destination. Since these connections
are not offered already, no/limited information about historic bookings is available
to create demand estimations from. The demand is partially unobserved, because
there is no accurate way to measure the number of people that would have wanted
to travel on a route that is not offered.

Besides the key factor demand, strategic, tactic and operational aspects determine
the outcome of the network decisions as well. On the strategic level we have the
type network connectivity that an airline aims to provide which should be in ac-
cordance with the fleet composition of an airline. Aircraft are ordered many years
in advance to delivery. Besides that the life cycle of an aircraft is approximately 25
years. This means that airlines make decisions on orders now for aircraft that will
be used in service until the year 2050 roughly. Large uncertainties such as the fu-
ture capacity of an airport (Schiphol as example here) forces airlines to delay there
strategic decisions on fleet renewal untill more information is available.

On a tactical level we have the multi-actor arena an airline lives in. Competition
in the industry is fierce, margins are low and fluctuating oil prices have huge ef-
fects on the overall profitability. Most network carriers operate in alliances where
they collaborate with other airlines to exploit economies of density. Network carri-
ers face competition from each other and form low cost airlines expanding market
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share with their low prices. Adding new destinations to the network is a multi-
actor game, where one responds to the other. Emerging markets that pass an (un-
known) demand threshold are often only profitable for only one airline to operate
in. If two airlines compete for market share, no one will win. Therefore there is a
first mover advantage for growing market that are poorly connected internation-
ally. Moreover, airlines operate in many different countries and deal with all kinds
of political environments and economic situations. The revenues are often obtained
in the local currency, while the costs are made in the home currency. An unstable
political environment or volatile exchange rates are valid reasons not to add a des-
tination to their network, since the expected profitability is highly uncertain.

Lastly we have operational factors such as weather, airport infrastructures and air-
craft capabilities (e.g. range). Two examples are whether or not the airport can
facilitate ground handling for the aircraft types and if a suitable alternative air-
port is found in the region necessary by law in case of operational disruptions.
Besides that, the profitability of a route is strongly dependent on the aircraft type
used. Older aircraft generally use more fuel and require more maintenance, which
makes them more expensive in operation. Thereby is the aircraft size (number of
seats) crucial, since an airline needs to be able to sell all/the majority of the seats
for an acceptable price in order to be profitable. Range and seat capacity correlates
positively, which implies that the further away the destination, the more passen-
gers an airline needs to attract.

Routes are constantly opened and closed, because new destinations fail all the time.
Often destinations will be closed down after a certain period, sometimes because
the political or competitive landscape changed, or sometimes when the demand
turned out to be estimated incorrectly. For example, the first case applies to KLM’s
flight to Teheran, where demand drastically reduced as a result of the reintroduc-
tion of economic sanctions. Trail and error is accepted to some degree as this is
often the only way to really test the demand/hypotheses/business case in the real
world. However adding a destination is really costly in terms of resources (time,
money, opportunity cost, effects of schedule changes), which means an airline only
considers to try a new destination with a strong business case.

True Air passenger demand is unobserved, while the value of the historic book-
ing data is declining. This is the case because ticket sales is becoming more decen-
tralized such that the traditional central parties have less information on historic
bookings than before (more information on this is provided in Section ??). We
are in need of a reliable method for air passenger demand estimation that is ca-
pable of estimating demand for routes that are currently not served directly. With
this method we are capable of creating a more efficient network for capacity con-
strained airports and airlines.
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Appendix V: Meta Search Channels

List here the Meta Search channels with its abbreviation, full name and share of
searches. To calculate the share of searches, data is taken from dates 20-06-2017 to
20-06-2018.

Table 10: Meta Search Channels

Abbreviation Meta Search channel Share
1 SC Skyscanner 38%
2 KY Kayak 16%
3 KM Kayak mobile 12%
4 MM Momondo 10%
5 AS Avia Sales 4%
6 ML Momondo mobile 4%
7 JC Jetcost 2%
8 DH DoHop 2%
9 LL Liligo 2%
10 CH Cheapflights 1%
11 CL Cheapflights mobile 1%
12 SB Skyscanner for business class 1%
13 FI Finn 1%
14 TA Trip Advisor 1%
15 SU Swoodoo 1%
16 QU Qunar 1%
17 LM Liligo 1%
18 SW Swoodoo mobile < 1%
19 CF Checkfelix < 1%
20 WE Wego < 1%
21 HM Hipmunk < 1%
22 CM Checkfelix mobile < 1%
23 VU Vuelos Baratos < 1%
24 KO Kelkoo < 1%
25 TR Trabber < 1%
26 CY Chase.nl < 1%
27 BI Biletyplus < 1%
28 IX Ixigo < 1%
29 FA Fare compare < 1%
30 MD Mundi < 1%
31 JR Jetradar < 1%
32 EL EuropeLowcost < 1%
33 KI Kite < 1%
34 FR Viviro < 1%
35 PL Peroley.com < 1%
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Appendix VI: Meta Search raw JSON example

Figure 19: Meta Search raw JSON example
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Appendix VII: Additional scatter plots for MIDT vs explanatory variables

Figure 20: Scatter MIDT vs catchment area

Figure 21: Scatter MIDT vs GDP per capita
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Appendix VIII: Insight on destination level from the AMS raw data set

The data is arranged on Meta Search counts in the 2018 Summer season. Table
11 shows the top destinations from Amsterdam for the 2018 Summer season (blue
color in Figure 11). Table 12 shows the top destinations from Amsterdam fot the

Table 11: Top destinations from Amsterdam (AMS) for summer 2018

# Code City Country Continent Meta Search MIDT
Due to confidentiality of the data, the content has been removed from the public version

2018 Summer season that are not operated by KLM, but are by either their partners
or competitors (red in Figure 11). Table 13 shows the top destinations from Am-

Table 12: Top destinations from Amsterdam (AMS) for summer 2018 not operated
by KLM

# Code City Country Continent Meta Search MIDT
Due to confidentiality of the data, the content has been removed from the public version

sterdam for the 2018 Summer seasons where currently no direct service is offered
by any airline (gray color in Figure 11). These destinations can only be reached via
a transfer.

Table 13: Top destinations from Amsterdam (AMS) for summer 2018 no direct ser-
vice by any airline (multileg destinations removed)

# Code City Country Continent Meta Search MIDT
Due to confidentiality of the data, the content has been removed from the public version
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Appendix IX: KLM destinations with lowest predicted demand

Table 14: KLM destinations with lowest predicted demand

# Code City Country
Due to confidentiality of the data, the content has been removed from the public version
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