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Abstract The Generalized Pareto Distribution (GPD) is often used in the statisti-
cal analysis of climate extremes. For a sample of independent and identically dis-
tributed observations, the parameters of the GPD can be estimated by the Maximum
Likelihood (ML) method. In this paper, we drop the assumption of identically dis-
tributed random variables. We consider independent observations from GPD dis-
tributions having a common shape parameter but possibly an increasing trend in
the scale parameter. Such a model, with increasing scale parameter, can be used to
describe a trend in the observed extremes as time progresses. Estimating an increas-
ing trend in a distribution parameter is common in the field of isotonic regression.
We use ideas and tools from that area to compute ML estimates of the GPD parame-
ters. In a simulation experiment we show that the Iterative Convex Minorant (ICM)
algorithm is much faster than the Projected Gradient (PG) algorithm. We apply the
approach to the daily maxima of the Central England Temperature (CET) data. A
clear positive trend in the GPD scale parameter is found, leading to an increase in
the 100-year return level from about 31 degrees in the 1880s to 34 degrees in 2015.

Keywords nonparametric estimation · isotonic regression · peaks-over-threshold ·
GPD · Central England temperature

1 Introduction

Statistical modelling of climate extremes is important for many branches of mod-
ern society. Examples include insurance, heat stress, and the planning of critical
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infrastructure such as dams or sewer systems. Often the Generalized Pareto Dis-
tribution (GPD) is used to model the tail of the distribution, which is justified by
the Pickands–Balkema–De Haan theorem. It states that, under certain regularity con-
ditions, the distribution of independent and indentically distributed excesses over
a threshold u can be approximated by a GPD, if u is sufficiently high (Reiss and
Thomas, 2007). We consider the two-parameter GPD with ξ ∈ R and σ > 0 denot-
ing the shape and scale parameter, respectively. Its cumulative distribution function
is given by

Gξ,σ(y) = 1−
(

1 + ξ
y
σ

)−1/ξ
, (1)

with support y ≥ 0 for ξ ≥ 0 and 0 ≤ y ≤ −σ/ξ for ξ < 0. For ξ = 0 the GPD
reduces to the exponential distribution with scale parameter σ. The density of the
GPD in the case ξ 6= 0 is given by

gξ,σ(y) =
1
σ

(
1 +

ξy
σ

)− 1
ξ−1

(2)

on its support.
For ξ > −0.5 , parameter estimates can be obtained using the Maximum Likeli-

hood (ML) approach (Embrechts et al., 1997). The restriction ξ > −0.5 does not pose
a severe restriction in our setting, as climate data exhibit shape parameters in the
interval (−0.5, 0.5). For instance, for daily rainfall slightly positive values of ξ up to
about 0.3 are usually found (Roth et al., 2012; Langousis et al., 2016; Carreau et al.,
2017), whereas for daily maximum temperatures ξ tends to be negative but not less
than -0.5 (Lucio et al., 2010) Therefore, we restrict ourselves to the case ξ > −0.5.
The likelihood equations can only be solved numerically, which is usually done by
the Newton-Raphson approach or variants including gradient descent steps (Em-
brechts et al., 1997). Hosking and Wallis (1987) show that for small sample sizes,
the probability weighted moment estimators and moment estimators have gener-
ally smaller root mean squared error than the ML estimators for ξ ∈ [0, 0.4] and
ξ ∈ [−0.2, 0.2], respectively. A drawback of these approaches is their lack of flexibil-
ity compared to the ML method, which is necessary when it comes to the inclusion
of trends.

The characteristics of climate extremes may vary over time and, hence, the GPD
parameters may be no longer constant. It is often assumed that these parameters
vary (log-) linearly with time or a time-dependent covariate (e.g. Coelho et al.,
2008; Beguería et al., 2010; Kyselý et al., 2010; Acero et al., 2011; Roth et al., 2012;
Van de Vyver, 2012; Tramblay et al., 2013). A number of these authors also stud-
ied quadratic changes in GPD parameters. The shape parameter can often be kept
constant.

Another current in the literature focuses on non-parametric, smooth trends in
the GPD parameters (e.g. Hall and Tajvidi, 2000; Chavez-Demoulin and Davison,
2005).

In the present paper we leave the strong restriction of (log-)linearity, but keep
more structure than in the above mentioned non-parameteric trend studies by im-
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posing monotonicity on the scale estimate. For climate-change studies such a set-
ting is of interest, when an increasing or decreasing trend is expected that is non-
linear. This might, for one instance, be the case for temperature extremes as a result
of the increased atmospheric greenhous gas concentrations. This trend can be de-
scribed using a monotone function of time, other covariates might be considered as
well. For the rest of the paper the shape parameter is assumed to be constant.

In section 2 we introduce the estimation method, using two different algorithms.
Section 3 presents a simulation experiment of the proposed estimators. In section
4 the proposed approach is applied to the daily maxima of the Central England
Temperature (CET) data, which are available from 1878 onwards. The conclusion is
given in section 5.

2 Method

2.1 Maximum Likelihood estimation

Suppose that Y1, . . . , Yn are independent random variables, such that Yi ∼ Gξ,σi for
some common shape parameter ξ > −0.5 and 0 < σ1 ≤ · · · ≤ σn. We want to
estimate the parameter ξ and the vector of scale parameters σ ∈ C, where

C = {σ = (σ1, . . . , σn) ∈ (0, ∞)n : σ1 ≤ · · · ≤ σn} . (3)

Thus, for this purpose we consider the ML approach. Based on observed values
y = (y1, y2, . . . , yn), the log likelihood for ξ and σ is given by

`(ξ, σ) =
n

∑
i=1

ln
[
gξ,σi (yi)

]
, (4)

where gξ,σ is the density of the GPD as given in Eq. 2. Note that

ln
[
gξ,σ(y)

]
= ln

[
1
σ

(
1 +

ξy
σ

)(− 1
ξ−1)

]

=
1
ξ

[
ln(σ)− ln(σ + ξy)

]
− ln(σ + ξy), (5)

yielding (for ξ 6= 0)

`(ξ, σ) =
n

∑
i=1

(
1
ξ
[ln(σi)− ln(σi + ξyi)]− ln(σi + ξyi)

)
.

The maximizing argument (ξ̂, σ̂) of the log likelihood in Eq. 4 is the ML estimator
for ξ and σ.

One way to maximize ` over (−0.5, ∞)× C is using the profile (log) likelihood
in a two-step procedure. In this approach, for a fine grid of possible ξ-values, the



4 Martin Roth et al.

profile likelihood is constructed, i.e.

`p(ξ) = max
σ∈C

`(ξ, σ). (6)

For each ξ, the log likelihood ` is maximized over σ. As ξ is one-dimensional, this
profile likelihood can be visualized naturally. In the second step, one searches for
ξ maximizing `p(ξ). Together, with the corresponding σ, this defines the ML esti-
mate. Of course, in order for this to be applicable, a method is needed to actually
compute the profile likelihood, i.e., to maximize ` over C for fixed ξ.

The Lemma in the appendix shows that `p(ξ) is well defined. However, the
function σ 7→ `(ξ, σ) is not concave for ξ 6= 0, as shown in the appendix. Therefore,
optimization algorithms that need this property cannot be used. In the next section,
we will address the problem of computing the function `p and maximizing this in
ξ to maximize the full log likelihood `.

2.2 Computing the profile log likelihood

In this section two methods are presented to compute `p. Rather than maximizing
the log likelihood over the cone C in Rn, defined in Eq. 3, the negative log likelihood
is minimized. The case ξ = 0 is special in this respect. As can be seen in Section 1.5
in Robertson et al. (1988), the optimization problem for ξ = 0 is a special case of the
so-called Gamma extremum problem. The solution of this problem is given by

σ̂ = pr(y),

where pr is the projection operator from Rn onto C, defined by

pr(y) = arg min{||x− y||2 : x ∈ C} (7)

= arg min
x∈C

1
2

n

∑
i=1

(yi − xi)
2.

An elegant way to obtain the projection pr(y) explicitly is via the derivative
of the greatest convex minorant of a diagram of points. More specifically, defining
P0 = (0, 0) and

Pj =

(
j,

j

∑
i=1

yi

)
, 1 ≤ j ≤ n, (8)

one can construct the greatest convex function lying entirely below the diagram of
points. Then taking the left derivative of this function at j, gives σ̂j. By construction,
the vector σ̂ = (σ̂1, . . . , σ̂n) is in C. The projection gives the (un-weighted) least
squares isotonic regression of y = (y1, . . . , yn) (Robertson et al., 1988, Lemma 1.2.1).

For ξ 6= 0 such a connection between the ML estimator of ordered scale param-
eters in a GPD model and plain isotonic regression does not exist. In order to com-
pute `p(ξ) for values ξ 6= 0, an iterative algorithm is needed. A possible algorithm
that can be used in this setting, is the Projected Gradient (PG) algorithm, developed
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independently by Goldstein (1964) and Levitin and Polyak (1966) for minimizing a
continuously differentiable function on a convex subset of Rn.

For f (σ) = −`(ξ, σ) and a given initial starting value σ0 the PG algorithm is
defined by

σk+1 = pr [σk − αk∇ f (σk)] , (9)

where ak > 0 is the step size. At each step it has to be ensured, that the new iterate
lies within the support of the GPD. The following Goldstein-Armijo type choice for
the step size is considered:

αk = βmk s, (10)

with mk the smallest integer, such that

f (σk+1) ≤ f (σk)− µ· < ∇ f (σk), σk+1 − σk >, (11)

where s > 0, β ∈ (0, 1), and µ ∈ (0, 1) are given scalars and < ·, · > denotes
the standard scalar product. In our implementation we set s = 1, β = 0.5, and
µ = 1e−4. Bertsekas (1976) and Gafni and Bertsekas (1982) showed that in this
setting every limit point of {σk} is stationary. If such a limit point exist we take this
as the scale estimate σ̂.

An alternative algorithm that can be used to compute `p(ξ), under the mono-
tonicity constraint, is the Iterative Convex Minorant (ICM) algorithm studied by
Jongbloed (1998) and for instance used in Roth et al. (2015) to estimate monotone
trends in high daily precipitation quantiles. The ICM algorithm can incorporate
positive weights, using the weighted projection

prW(y) = arg min
x∈C

1
2

n

∑
i=1

(yi − xi)
2wi,

where W is a diagonal matrix with positive diagonal entries wi. This projection can
be obtained explicitly as before from the following point diagram, P0 = (0, 0) and

Pj =

(
j

∑
i=1

wi,
j

∑
i=1

yi · wi

)
.

For a weight matrix Wk with positive weights wk
i , one can define one step in the

ICM algorithm by:

σk+1 = σk + αk

(
prWk

[
σk − (Wk)−1∇ f (σk)

]
− σk

)
. (12)

The scaling constant αk can again be chosen as in Eq. 11. If the Hessian H has pos-
itive diagonal entries, these are a natural choice for the weight matrix W at each
step. However, in our case this condition is not fulfilled. After experimenting with
different weights, setting W = diag(|H|), i.e. the diagonal matrix consisting of the
absolute values of the diagonal entries of the Hessian (Blobel and Lohrmann, 1998),
worked quite well.
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Fig. 1 The scale parameter vector σ∗ used in the simulation.

The name of the ICM algorithm stems from the computation of iterative pro-
jections via the greatest convex minorant of a point diagram. Note the geometric
difference between the PG algorithm and the ICM algorithm. In the PG algorithm,
in principle a whole line segment connecting the current iterate σk and σk−∇ f (σk)

is projected (using multiple projections), leaving a trace on the cone C that is in gen-
eral not a line segment, but a ‘broken line’. The ICM algorithm just takes the point
σk − (Wk)−1∇ f (σk) and projects it on C. Then a new iterate is chosen from the line
segment connecting σk and this projection, a line that lies completely within C due
to convexity of C. Therefore, one can assume that one iteration of the ICM algorithm
is faster than one of the PG algorithm.

Having two algorithms that can be used to compute the profile (log) likelihood
function `p on a grid of ξ-values, the next step is to plot it on such a grid and find
its maximum.

3 Simulation study

We carried out a small simulation experiment using the values -0.2 and 0.2 for the
shape parameter. The used scale parameter vector σ∗ is shown in Fig. 1. For the
implementation of the algorithms we use the expressions for the needed partial
derivatives as given in the Appendix.

First we compare the speed of the two algorithms. Because we use a profile
likelihood approach we assume that the shape parameter is known. Moreover, we
use σ∗ as the starting value for the two algorithms. The ICM algorithm needs less
iterations to converge. This can be visualized by plotting the deviance measure

∆ξ := 2
(
`p(ξ)− `(ξ, σk)

)
,

where `p(ξ) is the profile log likelihood for shape parameter ξ and `(ξ, σk) the log
likelihood for the k-th iterate. Fig. 2 shows an example of such a plot for both shape
parameters. The ICM algorithm needs only 13 (18) iterations, while the PG algo-



MONOTONE TRENDS IN THE DISTRIBUTION OF CLIMATE EXTREMES 7

-0.2 0.2

1e-10

1e-06

1e-02

0 10 20 30 0 10 20 30
iterations

∆
ξ

Fig. 2 Trace of the deviance ∆ξ based on the ICM algorithm (red dots) and the PG algorithm (blue
triangles) for ξ = −0.2 (left) and ξ = 0.2 (right).
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Fig. 3 Density of the ratio between the computation time of the PG and the ICM approach for
ξ = −0.2 and ξ = 0.2 based on 1100 simulations. The vertical line indicates the median (dashed
red) and mean (dotted blue) ratio.

rithm uses 286 (90) for ξ = −0.2 (0.2). In our simulations the standard number of
maximal repetitions, i.e. 105, is sometimes not enough for the PG algorithm to con-
verge. With the ICM algorithm no problems were observed as the typically needed
number of simulations is well below. Although the PG algorithm is fully imple-
mented in C++ and the ICM algorithm mostly in R, the fact that the ICM algorithm
uses less and faster iterations has a drastic effect on the computation time, as shown
in Fig. 3. Only simulations where both approaches converge are shown. In less than
0.5% of the simulations the PG algorithm is faster. In all other simulations the ICM
algorithm is considerably faster, the median of the ratio of the computation time is
about 8 and the average is larger than 100.

We now drop the assumption of a known shape parameter. For the computa-
tion of the profile likelihood we start at ξ = 0, where pr(y) as defined in Eq. 7 is
the solution. Then, we compute `p(ξ) for ξ ∈ (0, 0.5) incrementally moving from 0
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σ

Fig. 4 Median (black line) of the scale estimates and 95% confidence band (grey area) for the scale
parameter based on 1100 bootstrap samples with scale parameter vector σ∗ (dashed red line) and
shape parameter ξ = −0.2 (left) or 0.2 (right).

towards 0.5, at each step taking the solution of the previous step as starting value.
The interval (0,−0.5) is treated correspondingly. The overall restriction to the inter-
val (−0.5, 0.5) is due to the restriction on the ML approach and the typical value of
the shape parameter in environmental applications, see Section 1.

Fig. 4 shows the point-wise median of the scale estimates from 1100 simulations,
together with the area between the point-wise 5 and 95 percentiles. The sampling
distribution of the estimate is getting more biased at both ends. At the start the bias
is negative and at the end the bias is positive. This phenomenon is quite common in
the isotonic setting and known as the spiking problem (Woodroofe and Sun, 1993).
Fig. 5 shows the corresponding bootstrap density of the estimated shape parame-
ter. There is apparently a negative bias, which is in line with the literature on the
classical setting of extreme value theory (e.g. Zhang and Stephens, 2009).

Using the profile likelihood approach, one obtains immediately asymptotic pro-
file likelihood confidence intervals for the shape parameter, which are often as-
sumed to be more accurate than bootstrap confidence intervals (Obeysekera and
Salas, 2013; Schendel and Thongwichian, 2015) and those based on the asymptotic
normality of ξ̂ (Coles, 2001). Murphy and Van der Vaart (2000) justify the use of
the profile likelihood confidence interval for semiparametric models. The profile
likelihood confidence interval is based on the fact, that the profile deviance

Dp(ξ) = 2
(
`(ξ̂, σ̂)− `p(ξ)

)
converges to a χ2

1 distribution. Hence, by this it can be deduced that

Cα =
{

ξ : Dp(ξ) ≤ cα

}
,

with cα being the (1− α) quantile of the χ2
1 distribution, constitutes a (1− α) asymp-

totic confidence interval for the shape parameter. Fig. 6 shows the 95% profile like-
lihood asymptotic confidence interval for one realization of the simulation.
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Fig. 5 Density of the estimated shape parameter based on a parametric bootstap. The dashed red
line marks the true shape parameter, the blue dotted line the mean estimate, and the black dotted
lines mark the 95% bootstrap percentile confidence interval.
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Fig. 6 Profile likelihood with 95% confidence interval for the shape parameter for the simulated
data. The dashed red line marks the true shape parameter, the blue dotted line the estimate, and
the black dotted lines mark the asymptotic 95% confidence interval.

4 Application

In the following we consider the daily maximum temperatures of the CET data
set, which are available from 1878 onwards from the Hadley Centre (http://www.
metoffice.gov.uk/hadobs/hadcet/). The CET series is a constructed data set, rep-
resentative of the temperature in Central England, i.e. the area beteen the Lan-
cashire plains, London and Herefordshire in the West Midlands (Parker et al., 1992;
Parker and Horton, 2005). In the context of extreme value analysis of non-stationary
time series, Davison and Ramesh (2000) considered the r-largest values in each year,
but for the daily mean temperatures of this time series from 1772. Padoan and Wand
(2008) examined the annual maxima of the daily mean temperatures from 1878.

Fig. 7 shows the annual maxima of the series for the period 1878 to 2015. The
smooth trend in this figure is obtained using loess (Cleveland, 1979). Apart from a

http://www.metoffice.gov.uk/hadobs/hadcet/
http://www.metoffice.gov.uk/hadobs/hadcet/
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Fig. 7 CET annual maxima.
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Fig. 8 Annual cycle of the 0.6 quantile of the daily maximum temperature. The points mark the
daily values and the blue line indicates the cyclic GAM fit.

small trough around 1960, the mean annual maximum seems to increase through-
out the series. Therefore, a monotone estimation approach looks promising.

Instead of following the annual maximum approach Padoan and Wand (2008)
or the r-largest value approach Davison and Ramesh (2000) we consider in our ap-
plication all peaks over a high threshold. In order to ensure independent peaks, we
first decluster the data. In the first step of the declustering procedure, we determine
the 0.6 quantile for each day and smooth these quantiles using a cyclic GAM model
(Rigby and Stasinopoulos, 2005), see Fig. 8. We consider two blocks as independent,
when there are at least 4 days below this quantile. From these blocks we take the
maximum.

In the following we consider only peaks exceeding 24 degrees, which yields on
average 2.86 peaks per year. Fig. 9 shows the number of peaks per year, together
with the 0.25, 0.5, and 0.75 linear regression quantile. It is apparent, that apart from
the internal variation there is no trend in the number of peaks per year. Fig. 10
shows the peak values together with the 0.5, 0.75, and 0.975 linear regression quan-
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Fig. 9 Number of peaks per year in the CET data. The blue lines indicate the linear 0.25, 0.5, and
0.75 regression quantile.
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Fig. 10 Peak values in the CET data with the linear 0.5, 0.75, and 0.975 regression quantile.

tiles. While the median and the 0.75 regression quantile show a small positive trend,
the 0.975 regression quantile exhibits a clear positive trend. This seems to justify the
use of a constant threshold (which dominates the trend in the lower and middle
parts of the distribution) and a montonically increasing scale parameter (which is
more influential in the upper part of the distribution). A notable point in Fig. 10 is
that there are 5 peaks exceeding 32° C after 1970 and no peaks of this magnitude
before that year, which partly explains the rather strong positive trend in the 0.975-
quantile.

Fig. 11 shows the obtained profile likelihood confidence interval for the shape
parameter. The ML estimate of the shape parameter -0.38 is relatively small com-
pared to the estimate -0.11 given by Padoan and Wand (2008) for the annual maxi-
mum daily mean temperature. The corresponding scale estimate is trimmed at the
ends in order to minimize the effect of the spiking. The trimming is achieved by
replacing the first (last) 1% of the scale vector entries by the lower (upper) first
percentile of the vector entries, see Fig. 12. The scale parameter increases steadily
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Fig. 11 Profile likelihood for the CET data with 95% confidence interval for the shape parameter.
The dashed blue line marks the final likelihood estimate of the shape parameter.
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Fig. 12 Trimmed scale estimate for the CET data.

about 1° C over the period of the record. This trend might, however, still be mod-
elled linearly, in line with the conclusions of Davison and Ramesh (2000) for the
extremes of the daily mean temperature.

Fig. 13 shows the same quantiles as in Fig. 10, but adds these quantiles as mod-
eled by the GPD distribution with isotonic scale parameter. Moreover, it shows the
100-year return level, which corresponds here with the 0.9965 quantile and is ex-
ceeded on average once in 100 years. This extrapolation is made simple by the GPD
approach and demonstrates the advantage over an ordinary quantile regression ap-
proach, where these extreme quantiles are less reliable. The 100-year return level
shows an increase of about 3° C since the 1880s as a result of the trend in the GPD
scale parameter. Fig. 14 shows a quantile-quantile plot after rescaling the residuals
to a standard exponential distribution with a uniform 95% confidence band, ob-
tained by a parametric bootstrap (Davison and Hinkley, 1997). Overall the fit seems
to be good. In particular, the plot does not suggest a larger value for the shape
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Fig. 13 Same as Figure 10 with the 0.5, 0.75, and 0.975 quantile modelled by the GPD in red (dashed
lines). The dotted red line on top indicates the 100-year return level.
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Fig. 14 QQ plot for the rescaled empirical quantiles of the CET data (solid black line) with a uni-
form 95% confidence band.

parameter, i.e., a longer upper tail, as found by Padoan and Wand (2008) for the
maxima of the daily mean temperatures.

5 Conclusion and further directions

We have developed a two-stage procedure to find the ML estimates for indepen-
dent observations from GPD distributions with common shape parameter ξ and an
increasing trend in the scale parameter vector σ, which is useful to describe non-
linear increasing trends in climate extremes. The first step is to compute the profile
(log) likelihood for fixed values of ξ. For ξ = 0, there is an exact algorithm to com-
pute this. For ξ 6= 0 and ξ > −0.5, we describe and test two iterative algorithms,
the PG algorithm and the ICM algorithm. The ICM algorithm needs less iterations
than the PG algorithm and the iterations are also faster in the ICM algorithm. In
the second step the profile likelihood is maximized over a grid of shape parameters
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in order to obtain the ML estimates. The ICM algorithm is used to obtain the GPD
parameters in a peaks-over-threshold model, with increasing trend in the scale pa-
rameter, for the daily maximum temperatures in the CET data set. A clear positive
trend in the GPD scale parameter is found, leading to an increase of about 3 degrees
in the 100-year return level between the 1880s and the present.

The algorithms are available via the R package gpdIcm (https://github.com/
MartinRoth/gpdIcm). These make it possible to perform significance tests for the
null hypothesis that the scale parameters are equal against the alternative that these
are increasing. Moreover, testing the null hypothesis that the scale parameter is lin-
early increasing against a montone alternative becomes viable. In the present exam-
ple, however, the use of linear modeling seems adequate. Likelihood ratio tests, but
also permutation-based tests can be studied using the algorithms described in this
paper.

For the CET data a constant threshold could be taken. Other applications may
require a monotone trend in the threshold as well, which could be estimated for in-
stance with the method described in Roth et al. (2015). In the case that the shape pa-
rameter cannot be assumed constant, but a linear or other simple parametric model
seems plausible, one can extend the grid search for the profile likelihood approach
correspondingly. It should be noted that the power of detecting a trend in the shape
parameter is low for small and moderate sample sizes if ξ > 0, see also Naveau
et al. (2014). Moreover, a trend in the shape parameter is sensitive to outliers (Roth
et al., 2012).

Appendix

Lemma For each ξ > −0.5, there exists a σξ ∈ C such that

`(σξ , ξ) ≥ `(σ, ξ) for all σ ∈ C.

Consequently, `p given in (6) is well defined.

Proof Fix ξ > 0 and note that σ 7→ `(ξ, σ) is continuous on C. Moreover, note that
by (5), for y > 0 fixed and σ ↓ 0,

ln
[
gξ,σ(y)

]
∼ 1

ξ
ln(σ)→ −∞

and for σ→ ∞,
ln
[
gξ,σ(y)

]
∼ − ln(σ)→ −∞.

Therefore, in maximizing σ 7→ `(ξ, σ) over C, attention can be restricted to a com-
pact subset of C, namely σ ∈ C for which δ ≤ σ1 ≤ σn ≤ 1/δ for some small δ > 0.
This ensures the existence of σξ .

For ξ = 0, ln [g0,σ(y)] = − ln(σ)− y/σ, leading to the same conclusion. In the
case ξ ∈ (−0.5, 0), the restriction y ≤ −σ/ξ implies that σ ≥ −ξy. For σ ↓ −ξy we

https://github.com/MartinRoth/gpdIcm
https://github.com/MartinRoth/gpdIcm
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obtain
ln
[
gξ,σ(y)

]
∼ (−1

ξ
− 1) ln(σ + ξy)→ −∞,

due to the fact that (− 1
ξ − 1) > 0 for ξ ∈ (−0.5, 0). For σ→ ∞ we obtain as before

ln
[
gξ,σ(y)

]
∼ − ln(σ)→ −∞.

Thus, attention can be restricted again to a compact subset of C, namely for some
small δ > 0

∪n
i=1{σ ∈ C : −ξyi + δ ≤ σi ≤ 1/δ}.

On this set, σ 7→ `(ξ, σ) is continuous and hence `p(ξ) is well defined.

Consider the first (partial) derivative

∂ ln gξ,σ(y)
∂σ

=
y− σ

σ(σ + ξy)
.

This shows that σ 7→ ln gξ,σ(y) is unimodal with maximum σ = y for fixed ξ. The
second derivative is given by

∂2 ln gξ,σ(y)
∂σ2 =

(σ− y)2 − (ξ + 1)y2

σ2(σ + ξy)2 .

It follows that
∂2 ln gξ,σ(y)

∂σ2 = 0 ⇐⇒ σ = y(1±
√

1 + ξ).

This shows that the second derivative exhibits in general at least one change of sign.
Thus, the log likelihood is not concave for ξ 6= 0.
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Acronyms

CET Central England Temperature
GPD Generalized Pareto Distribution
ICM Iterative Convex Minorant
ML Maximum Likelihood
PG Projected Gradient
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