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Abstract 

 
Small to medium-sized man-made freshwater reservoir are a reliable source for drinking water supply, 
hydropower generation and irrigation purposes worldwide. However, water volumes in these reservoirs can 
be significantly affected by prolonged droughts, resulting in severe impacts on society (Kozacek, 2014; Mahr, 
2018). To mitigate the impact of such events it is crucial for decision makers to know when the available water 
resources are lacking. Although many reservoirs are closely monitored, this data is not always readily 
available. Inadequate information sharing, inaccessibility, and a lack of tools to predict future reservoir 
storages contribute to this problem. 
 
Remote sensing has the potential to address this problem. The Global Water Watch is a platform that and 
provides earth-observed surface area dynamics that can be used to monitor small to medium-sized reservoirs 
worldwide and detect trends in water availability. While this method serves as a valuable indicator of water 
availability, it falls short in providing decision-makers with the necessary absolute volume time series and 
volume predictions. Currently, no platform exists beyond in-situ measurements to meet this essential need. 
 
This thesis presents a novel method for retrieving near real-time volume time series in small to medium-sized 
man-made reservoirs worldwide using remotely sensed open data. The method utilises the MERIT-Hydro 
digital elevation model, HydroMT and stream flow methods by Eilander et al. (2023), and literature by 
Messager et al. (2016) to reconstruct reservoir bathymetry. This novel approach in reconstructing reservoir 
bathymetry enables the conversion of available reservoir area time series into volume time series. These 
were employed in autoregressive and multi-linear regression models to predict water availability up to six 
months in advance. The models incorporate ERA5 precipitation data by Hersbach's (2020) and the 
Standardised Precipitation and Evaporation Index (SPEI) by Beguería et al. (2021) to improve the accuracy 
of the volume predictions. 
 
When comparing the novel method to the method proposed by Messager et al. (2016), the novel method 
yielded more accurate reservoir volume estimations. The method successfully obtained bathymetries and 
accurate volume estimations when validating using 2 reservoirs in Zambia and 48 in India, demonstrating the 
potential of this novel approach. However, some reservoirs with complex shapes faced initial delineation 
challenges, resulting in inaccurate volume predictions. These issues could be resolved by manually 
delineating the area for bathymetry reconstruction. Moreover, regression models were applied to case study 
reservoirs in Eswatini and Lesotho, demonstrating reasonable predictive capabilities with the Heidke Skill 
Scores ranging from 0.77 to 1 for up to 2 months ahead. However, precise prediction of extreme decreases 
in reservoir levels requires a physically based approach that incorporates the volumetric time series provided 
by this novel method. The study emphasises the necessity of considering the volume time series’ memory to 
predict water availability and provides a valuable foundation for volume time series analysis using remotely 
sensed data.   
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1     

Introduction 

1. Introduction 

 
Roughly four billion people worldwide, of which 75% lives in agricultural areas, suffer from limited to no access 
to clean water for drinking and hygiene for at least one month per year (UNICEF, 2023; UNESCO, 2019). 
Worldwide this results in 55 million people that require immediate assistance, need displacement or 
evacuation. Moreover, at least 1100 deaths annually can be directly related to severe dehydration. These 
impacts are often driven by the occurrence of water scarcity, which is the long-term unsustainable use of 
water resources (Van Loon & Van Lanen, 2013). 
 
Water scarcity is highly influenced by water management practices and affects the water availability (Van 
Loon & Van Lanen, 2013). Examples are seen where humanitarian impacts are mitigated due to effective 
management of available water resources during meteorological or agricultural droughts (Murray-Darling 
Basin Authority, 2022; Hallema, 2022; Mahr, 2018). On the other hand, the neglecting of water resource 
management can put society at even higher risks (Kozacek C., 2014). Also, the lack of water availability can 
be driven by mismanagement alone, independent of occurrence of drought (Greenwood, 2018).  
 
Effective management of water resources is essential to build resilience against natural disasters (UNDRR, 
2015). To achieve this, there is a need for understanding disaster risk in all its dimensions, as expressed in 
the United Nations Sendai Framework for Disaster Risk Reduction. For lacking water availability, this includes 
the monitoring of our available clean water resources and predicting when water will be scarce. This 
information enhances risk governance in water management, opens opportunities for effective investment of 
capacities and allows for effective response, or actions in anticipation of events.  
 
These anticipatory actions are preferred over responsive action, as anticipatory actions mitigate the impact 
before it materialises (FAO, 2022). Anticipatory actions are implemented after predictions of hazards. The 
implementation time of the action could require the prediction to be further into the future, introducing 
significant uncertainties (FAO, 2022). Therefore, the risk of acting in-vain increases, which ultimately means 
risking the loss of allocated resources or the unnecessary installation of measures. This is a problem 
especially when measures, like curtailments, have negative impact on livelihoods (Mahr, 2018). 
 
The monitoring of reservoirs could contribute to the understanding of water availability dynamics and risks, 
and thereby helps to reduce the risk of in-vain actions. Generally monitoring is done in-situ or with satellite 
applications. In-situ measurements often provide more accurate data; however, it is highly labour intensive, 
could entail high costs, and acquires access to the reservoir of interest. The latter could be difficult due to 
logistic or safety reasons, or in transboundary conflicts, due to political reasons. Satellite applications mitigate 
these issues. They can provide relatively low-cost analysis (when open-source data is used, and the amount 
of computational time is taken care of) and they allow for analysis on global scale.  
 
Recent efforts dealt with the known difficulties that come with using satellite imagery for reservoir analysis, 
and enabled monitoring of global reservoirs (Donchyts et al., 2022). Time series analysis of surface water 
area in lakes and man-made reservoirs could provide indication of water availability in the region (Donchyts 
et al., 2022). For the sake of understanding water availability dynamics, there is an interest to obtain volumes 
out of the provided surface areas for any specific reservoir. The insight in reservoir volumes, and their 
predictions, is expected to benefit decisions about the implementation of anticipatory actions, and thereby 
benefit societies’ resilience to lacking water availability. 
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1.1 Research questions 
 

This MSc thesis establishes an approach, referred to as the ‘novel method’, for estimating near real-
time volumes in man-made reservoirs, without the need for in-situ access. This method involves 
reconstructing the reservoir bathymetry and the associated hypsometric curve, which characterises 
the relationships between the reservoir's volume, surface area, and water level height. The results for 
2 reservoirs in Zambia and 48 reservoirs in India will be compared to in-situ measurements of water 
level and storage data and to a more generic method proposed in literature by Messager et al. (2016). 
Moreover, an assessment of the forecasting skill of regression models will be made by predicting 
volume dynamics in the Hawane reservoir in Eswatini during a severe drought in 2016, and the Katse 
Dam reservoir in Lesotho in 2015. The set of regression models will be employed to generate the 
forecasts of future volumes for lead times of up to six months. In conclusion, the research outcomes 
will showcase the potential of the novel method in remotely estimating near real-time volume time 
series in reservoirs by utilising Global Water Watch (Donchyts, et al., 2022). Additionally, the study 
will evaluate whether the data generated by this approach can be employed to develop predictions 
that facilitate decision-making aimed at mitigating the impacts of reduced water availability. 
 
This objective will be reached by answering the following main question:  

 
What is the performance and usability of a novel method for reservoir bathymetry 
reconstruction utilised for water availability predictions with earth-observed open data in man-
made reservoirs worldwide? 

 
To answer the main question, three sub questions are defined: 
 
1. What is the accuracy of the hypsometric curve established with the novel method? 
 
2. How does the accuracy of the hypsometric curve proposed in this study compare with the 

benchmark method developed by Messager et al. (2016)? 

 
3. What is the skill of regression models utilising volume time series generated by the novel 

method combined with SPEI or precipitation time series in predicting water availability in 

the Hawane reservoir located in Eswatini? 

1.2 Hypothesis 
It is hypothesised that the novel method has the capability to extract the volume time series of any 
small to medium man-made reservoirs in the Global Water Watch dataset, provided that a dam wall 
is identifiable in the digital elevation model (DEM) chosen for the method. The hypothesis postulates 
that the DEM can also facilitate the extraction of other physical parameters such as the dam wall 
height, elevation of dam outlet, flow direction, dimensions of the reservoir surface area, and the 
surrounding terrain slope. Consequently, a more sophisticated bathymetry reconstruction can be 
carried out on man-made reservoirs using this method, benefitting its accuracy over conventional 
approaches reported in the literature that are applicable to both man-made reservoirs and natural 
lakes (Hollister & Milstead, 2010; Sobek, Nisell, & Fölster, 2011; Heathcote, Giorgio, & Prairie, 2015; 
Messager, Lehner, Grill, Nedeva, & Schmitt, 2016).  
 
Given that the novel method utilises surface area measurements from the Global Water Watch dataset 
to estimate volumes, and surface area time series have been available since 1984, there exists a 
sufficiently long time series to construct data-driven models that can predict future volumes. Regarding 
the volume predictions, it is hypothesised that it is crucial to incorporate the memory of the volume 
time series itself, as the current volume state of the reservoir, due to the residence time of water, 
influences the future water volume in the reservoir. Moreover, the model's forecasting skill is expected 
to improve with the inclusion of precipitation time series, which via runoff is the reservoir’s primary 
inflow, and the standardised precipitation and evapotranspiration index (SPEI) time series, a regional 
drought index that provides an indication of the level of evapotranspiration in the region and indirectly 
provides insight into water demand. 
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1.3 Thesis structure 
 
The thesis structure began with an introduction in Chapter 1, which outlined the research objectives 
and hypothesis. In the remaining of this thesis, Chapter 2 provides background information on the 
subject and discusses related works. The methods applied in this study are presented in detail in 
Chapter 3. The results and findings of the study are presented in Chapter 4, followed by a discussion 
of the results in Chapter 5, where the usability of the novel method will be discussed. Finally, the 
conclusions drawn from the study are presented in Chapter 6, where also recommendations for future 
research is presented. This structured approach ensures a cohesive argument and a thorough 
analysis of the performance and usability of the novel method for reservoir bathymetry reconstruction 
utilised for water availability predictions. 
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2     

Background & Related Work 

2. Background & Related Work 
 
The background and related work section of this thesis provides a comprehensive review of the key concepts 
around water availability estimations and predictions in man-made reservoirs. Section 2.1 differentiates man-
made reservoirs from natural lakes, the two groups that constitute Earth's freshwater bodies. Section 2.2 
focuses specifically on these man-made reservoirs and explains how their storage is established. Section 2.3 
introduces how the storage in man-made reservoirs can be described and introduces the hypsometric curve, 
a metric that relates volume, area, and water level. Furthermore, it is explained how the curve can be derived 
with the use of digital elevation models (DEMs). Section 2.4 provides background information on the creation 
of DEMs, which were created by spaceborne technologies. In Section 2.5, the analysis of surface water 
dynamics is discussed, with a focus on the Global Water Watch database, which provides essential 
information for the method in this thesis. Section 2.6 explores literature that estimates reservoir storage using 
the previously discussed remotely sensed data and highlights the method by Messenger et al. (2016), which 
is considered the benchmark method in this thesis. In addition, Section 2.7 touches upon the impact of 
sedimentation on volume estimations. Section 2.8 provides an overview of model approaches for modelling 
volume dynamics in reservoirs. Section 2.9 delves into data-driven approaches, specifically autoregression 
and multi-linear regression. Finally, Section 2.10 explains how the predictive skill of a model is assessed with 
the Heidke Skill Score. 

2.1 The Distinction Between Natural Lakes and Man-Made Reservoirs  
 

According to Downing (2016) over 3% of Earth’s continental terrain (~4.6 million km2) is covered by 
water. This water coverage includes over 500.000 water bodies that have surface areas exceeding 1 
hectare (~2.59 million km2), with the smaller subset of 70.000 water bodies larger than 10 hectares 
covering the majority of the surface area (~2.47 million km2). While some bodies of water are primarily 
a part of natural systems, others play critical roles in various societal structures, such as providing 
water and electricity. These water bodies can be categorised into two major groups: natural lakes, 
which form due to geological processes and act as a sinkhole of the surrounding landscape, and man-
made reservoirs, which are formed by building a dam across a river to impound water. 
 
Morris and Fan (1998) reported that while natural lakes and man-made reservoirs may share some 
similar characteristics, they also have fundamental differences. In terms of similarities, they can have 
comparable depths, nutrient concentrations, temperatures, and sediment loads, particularly if they are 
situated in the same climatic zone and have similar hydraulic residence times or nutrient and sediment 
loading. However, natural lakes tend to have a larger hydrologic size, higher age, and greater 
transparencies, while man-made reservoirs exhibit higher water level variations and a higher shoreline 
to area ratio. Figure 2.1 represents distinct geometries of a natural lake and a man-made reservoir. 
Moreover, the shape of a man-made reservoir is often more linear and dendritic, whereas natural 
lakes tend to have a more oval shape, as illustrated in Figure 2.1. Furthermore, the depth of man-
made reservoirs tends to increase towards the dam, while the maximum depth of natural lakes is 
usually found in the central region. These differences are crucial for accurately reconstructing the 
bathymetry of water bodies and estimating its contained volume.  
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In addition, it is worth noting that a third, much smaller, group of water bodies exists. These are lakes 
that have been expanded by constructing a dam wall across their natural outflow, thereby increasing 
their storage capacity. These extended natural lakes can exhibit characteristics of both natural lakes 
and reservoirs, which were described by Morris and Fan (1998). 

2.2 Water Balance in Man-Made Reservoirs 
 

This thesis focuses on man-made reservoirs, a group of water bodies described in the previous 
Section 2.1, because they are crucial to societal systems, and water availability in these reservoirs is 
often of great importance. This section examines how the volume in the reservoir is established, 
specifically by discussing its water balance and elaborating on its main in- and outflows. Figure 2.1 
represents the fluxes influencing the total volume contained in man-made reservoirs. The total volume 
present in man-made reservoirs is determined by various factors, which are presented by the dark 
blue arrows in Figure 2.1. These factors include the stream inflow into the reservoir, which is 
influenced by a variety of sources, such as river flow, upstream surface runoff caused by upstream 
precipitation, near-shore surface runoff, and direct precipitation. The outflow of the reservoir, on the 
other hand, is determined by direct evaporation, the abstraction rate, which is dependent on the water 
demand and operating schedule of the reservoir, as well as the discharge rate, which is again based 
on the reservoir's operating strategy. This strategy may involve maintaining an environmental base 
flow, for example. Last, although none was reported in the literature, groundwater inflows and 
seepage, which are affected by the groundwater piezometric head, can also influence the water 
balance by adding or removing water from the reservoir (Habets, 2018). The water balance is also 
expressed in Formula 2.1:  

𝑑𝑉

𝑑𝑡
= 𝑄𝑖𝑛 + 𝑃 + 𝐺𝑖𝑛 − 𝑄𝑜𝑢𝑡 − 𝐸 − 𝑆 − 𝑄𝑎𝑏𝑠  (2.1) 

 
where 𝑑𝑉 is the water volume variation (m3) over period 𝑑𝑡 (s), 𝑄𝑖𝑛 is the stream inflow into the 

reservoir (m3/s), 𝑄𝑜𝑢𝑡 is the outflow from the reservoir (m3/s), 𝐸 is the evaporation rate (m3/s), 𝑃 is 
the precipitation rate (m3/s), 𝑆 is the seepage rate (m3/s), 𝐺𝑖𝑛 is the groundwater inflow (m3/s) and 

𝑄𝑎𝑏𝑠 is the water abstraction (m3/s). 

Figure 2.1: The distinct geometries of a natural lake and a man-made reservoir. The oval-
shaped natural lake (left) is formed by geological factors, while the linear and dendritic shape 
of the man-made reservoir (right) is a result of dam construction. The reservoir's depth gradually 
increases towards the dam, resulting in a shallow upstream end and deeper downstream 
sections. Figure adapted from Morris & Fan (1998). 
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2.3 Methods to Construct a Hypsometric Curve 

 
To determine the filling rate of a reservoir, various types of measurements can be conducted. For 
instance, the surface water level can be measured relative to a known datum, or the surface water 
area can be determined to estimate the filling rate. However, if the goal is to ascertain the available 
water reserves accurately, measuring or calculating the volume is likely the most useful method. The 
relation between these three volume indicators, water level height, surface area, and volume, can be 
represented in a hypsometric curve. 
 
Creating the hypsometric curve of a reservoir traditionally involves combining in-situ water level, area 
and volume measurements over multiple time periods. This is typically achieved through specialised 
equipment such as boats or sonar echo probes during bathymetric surveys, which enable the 
determination of terrain elevations beneath the water surface (Becker et al., 2009; Studio Pietrangeli, 
2012a; 2012b). The resulting maps from these surveys are essential in establishing the hypsometric 
curve including volumes. However, even though they provide the essential information, bathymetric 
surveys can be costly, time-consuming, and challenging due to financial reasons, safety, or political 
concerns as discussed in Section 1. 

 
Reservoir hypsometric curves can be established without the need of in-situ measurements, using 
remotely sensed global datasets that provide surface area measurements over time, constructed by 
Donchyts et al. (2022), which is further elaborated on in Section 2.5. These datasets can be linked to 
digital elevation models (DEMs) that offer elevation measurements. Two types of DEMs are available: 
dynamic and static. Dynamic DEMs are long-duration missions and based on Light Detection and 
Ranging (LiDAR) technologies, such as the Ice, Cloud and land Elevation Satellite 2 (ICESAT-2) 
mission, which provides point cloud elevation measurements over time (Markus et al., 2017). Static 
DEMs, on the other hand, are short-term missions and offer a 3D spatial elevation map of the Earth 
at a single moment in time and are based on Synthetic Aperture Radar (SAR) technologies, such as 
the MERIT-Hydro DEM, constructed by Yamazaki et al. (2017), or the Shuttle Radar Topography 
Mission (SRTM) (Farr & Kobrick, 2000; Yamaguchi, et al., 1998). Section 2.4 will explore these 
spaceborne technologies used to construct DEMs, which are essential in the remote construction of 
hypsometric curves. 

Figure 2.2: Factors influencing the total volume contained in man-made 
reservoirs, including incoming streamflow, upstream and direct runoff and 
direct precipitation. The outflow is determined by discharge, water abstraction 
and evaporation, water abstraction, as well as potential groundwater inflows 
and seepage. Figure adapted from Habets et al. (2018). 
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A type of DEM is a, so-called, ‘dynamic’ DEM, which offers multiple point cloud elevation 
measurements over time. This can be used to establish the hypsometric curve for area and elevation 
in a reservoir (Annor et al., 2009; Gao, et al., 2012). However, a complete hypsometric curve requires 
establishing such relationships throughout the entire filling rate of the reservoir, which is often limited 
by the insufficient number of elevation measurements available for most reservoirs. For instance, even 
the most recent mission providing dynamic elevations, ICESAT-2 by Markus et al. (2017), covers 93% 
of the known water reservoirs, yet it only provides two measurements for many of them (Cooley, Ryan, 
& Smith, 2021). Additionally, this method often requires knowledge of the reservoir's bathymetry to 
determine its associated volume. Thus, while dynamic elevations can be a useful tool for studying 
surface area and water level relationships, in-situ measurements remain crucial for reliable analysis 
of reservoirs. More detailed information about the methods employed dynamic DEMs to establish the 
hypsometric curve and volume time series will be provided in Section 2.6. 
 
On the other hand, there exist ‘static’ DEMs, which are elevations measured in a short duration 
mission. So, the static DEM presents elevation for one moment in time. The static DEMs are applied 
in studies that utilised Hutchinson's long-hold assumption (1957) that the terrain beneath a lake 
surface is shaped by the same physical processes that created the terrain surrounding the lake, 
including in Messager et al. (2016), Heathcote, et al. (2015), Hollister, et al. (2011), Pistocchi & 
Pennington, (2006) and Sobek, et al. (2011), to estimate the global freshwater reserves. These studies 
have used static DEMs to estimate reservoir bathymetry by interpolating the elevations of the 
surrounding terrain, which in turn allows for the estimation of the volume in the reservoir. Although, 
these estimates are, as mentioned by Messager et al. (2016), not accurate enough for lake-to-lake 
analysis, this approach could serve as a foundation for reconstructing reservoir bathymetry. Also, for 
static DEMs, detailed information about methods that employed static DEMs to reconstruct reservoir 
bathymetry is be provided in Section 2.6. 
 

2.4 How Spaceborne LiDAR and Radar are used in the construction of DEMs 

 
The DEMs described in Section 2.3 were used to construct the hypsometric curve. This section aims 
to provide an understanding of the physical principles behind the technologies used to construct the 
DEMs: Spaceborne Light Detection and Ranging (LiDAR) and Synthetic Aperture Radar (SAR). 

2.4.1 How LiDAR Technology Measures Surface Elevations 

LiDAR operates by transmitting a laser beam to the Earth's surface, where photons are reflected and 
received by the satellite's receiver. The time it takes for the reflection of the laser beam to reach the 
satellite is used to derive the elevation of the Earth's surface. Figure 2.3 represents the point cloud 
measurements of ICESAT-2 in the western Pilbara region of the North West Australian coast. The 
photons received in the backscatter of the laser beam provide measurement points, resulting in a 
cloud of elevation measurements on a linear transect as shown in Figure 2.3 (Parrish et al., 2019). 
The laser beam pairs provide three LiDAR tracks with ~3 km spacing, which enabled Cooley, Ryan & 
Smith (2021) to detect 463,252 lakes for their study using ICESAT-2 observations and a global water-
body mask. LiDAR has shown to provide vertical accuracies of better than 10 cm and a resolution of 
less than 6.5 m (Neumann et al., 2019; Alsdorf, Birkett, Dunne, Melack, & Hess, 2001; Magruder, 
Neuenschwander, & Klotz, 2021; Cooley, Ryan, & Smith, 2021). The frequency and wavelength of the 
laser beam depends on the specific LiDAR technology but is always part of the infrared and visible 
part of the electromagnetic spectrum. More specifically, the ICESAT-2 LiDAR beam’s pulse repetition 
frequency is 10 kHz (~tracking every 0.7m on the ground) and its associated wavelength is 532 nm 
(NASA, 2019). The wavelengths indicate that laser beams do not contain enough energy to penetrate 
water vapour. Therefore, the LiDAR measurements can be affected by clouds in the atmosphere and 
does not always provide sufficient elevation data. 
 
Noticeable is that LiDAR technology has the ability to measure depths of clear waters to some extent, 
but it is not sufficient for deriving lake bathymetry. Water selectively absorbs wavelengths of light, 
allowing the laser beam to penetrate water to a certain depth (Jerlov, 1976). Green and blue laser 
beams can detect seafloors up to significant depths, such as the green laser beam of the Advanced 
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Topographic Laser Altimeter System (ATLAS) launched in NASA's ICESAT-2 mission (2018), which 
detected seafloors as deep as -38 m in clear coastal waters, as shown in Figure 2.3. However, to use 
such seafloor detections as bathymetry measurements, correction for the air-water interface and the 
speed of light in the water column is required. Similarly, in a study by Arsen et al. (2014), the red laser 
beam of the Geoscience Laser Altimeter System (GLAS) was used to obtain the hypsometric curve 
of a Bolivian inland lake by measuring the elevation of the lake. However, the volume estimations 
could only be retrieved with measurements of the lake bottom when the reservoir was completely dry. 
The GLAS elevation measurements were then linked to surface area measurements from NASA's 
Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) missions to derive the 
volume. Figure 2.4 represents depth measurements of Lake Poopó, a Bolivian inland lake obtained 
using the GLAS red laser beam. Interestingly, GLAS measurements in clear shallow waters could 
reveal depth to a certain extent, as shown in Figure 2.4, but the red wavelength contains less energy 
than green or blue, and can penetrate water to a lesser extent. In conclusion, while LiDAR 
technologies may provide accurate elevation measurements in clear waters after compensating for 
the air-water interface, volume estimation can only be obtained when the reservoir is completely dry, 
which makes it difficult to apply to numerous reservoirs worldwide. 

2.4.2 Comparing LiDAR Technology to SAR Technology 

SAR is another remote sensing technology that has been used to measure elevations from space. 
Similar to LiDAR, SAR derives elevation by measuring the time it takes for a signal to travel to and 
return from Earth. However, SAR emits radar waves in the microwave frequency, instead of photons, 
which are echoed back by the Earth's surface and detected by the antenna of the satellite. This 
enables SAR to retrieve the distance between the Earth and the satellite and to construct a more 
complete dataset as SAR echo’s enable a three-dimensional reconstruction of the surface elevation 
(Vernimmen, et al., 2020). SAR technology includes wavelengths in the range of 0.8-100 cm and 
frequencies between 0.3 and 12 GHz, as mentioned by NASA (2019), making it possible to penetrate 
water vapor and avoiding the influence of atmospheric conditions and lighting differences between 
day and night. SAR, therefore, is in many cases more favourable than LiDAR, although LiDAR 
provides higher accuracy (Neumann et al., 2019; Alsdorf et al., 2001; Magruder et al., 2021). 
 
SAR technology can only penetrate a few millimeters into liquid water particles at higher wavelengths 
(<~23 cm), while LiDAR can measure a significant distance through water (Knyazev et al., 2003). 
Figure 2.5 represents the ensitivity of SAR wavelengths to forest structures. In SAR measurements, 
this phenomenon can result in artifacts, as the elevation provided would be that of the top of the 
vegetation rather than the terrain. To cope with these artefacts, it is recommended to use longer 
wavelengths for measuring surface elevation, which will penetrate the vegetation, as presented in 
Figure 2.5 (NASA, 2019). Lastly, interferometric SAR (InSAR) measurements are commonly used to 
construct global digital elevation models, which improves the accuracy of SAR. This method involves 
simultaneous measurements obtained by two SAR antennas on very similar positions, which 
increases the SAR resolution of the constructed DEM (Massonnet & Feigl, 1998).  

Figure 2.3: The point cloud measurements of ICESAT-2 in the western Pilbara region of the North West Australian coast. 
The ICESAT-2 profile shows points below the water surface, where the green laser beam of the Advanced Topographic 
Laser Altimeter System (ATLAS) was able to detect seafloors as deep as -38 m in very clear coastal waters, and points 
above the water, where the laser beam did not penetrate the water surface. This image serves as an example of the potential 

for LiDAR technology to measure the depth of clear waters in various locations. Figure adapted from Parrish et al. (2019).  
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2.5 Surface Area detection by Global Water Watch 
 
As previously discussed in Section 2.3, the LiDAR and SAR DEMs can be used for construction of the 
hypsometric curve if combined with surface area measurements. Measurements of reservoir surface 
area can be obtained by analysis of visual imagery of satellite overpasses, for example with the use 
of missions like the Moderate Resolution Imaging Spectroradiometer (MODIS), NASA's Landsat 
program, or ESA's Copernicus program (Annor et al., 2009; Gao, Birkett, & Lettenmaier, 2012; 
Khandelwal et al., 2017; Donchyts et al., 2022). Most recently such surface area dynamics have been 
provided by the Global Water Watch initiative. 
 
Global Water Watch provides reservior surface area dynamics and distinguishes itself from existing 
datasets that provide surface water area dynamics by providing information on a significantly larger 
group of 71,208 reservoirs, with a focus on small to medium-sized reservoirs between 0.01 and 100 
km2. The group of reservoirs in Global Water Watch was constructed by harmonising different vector 
maps into one global dataset, including the Global Reservoir and Dam database (GRanD) by Lehner 
et al. (2011) and the GlObal geOreferenced Database of Dams (GOODD) database by Mulligan et al. 
(2020). For each reservoir, analysis is conducted using freely available data from NASA's Landsat 7 
& 8 and ESA's Copernicus programs, including Sentinel-2. 
 
The algorithm for water detection applied to construct the Global Water Watch database is presented 
by Figure 2.6. The Global Water Watch initiative employs a specialised water detection algorithm, as 
illustrated in Figure 2.6, to overcome challenges encountered in previous studies for water surface 
area detection in reservoirs worldwide (Khandelwal et al., 2017). First of all, Global Water Watch 
partially occluded satellite images due to clouds or shadows were filtered out fully or partially. 
Secondly, computer vision and image processing methods like Canny Edge detection and Otsu 
thresholding were used to delineate the reservoir pixels indicated as water. This step accounted for 
different spectral properties in the images that vary by location and season through calculating 
separate Otsu threshold for each single reservoir separately based on the Normalised Difference 
Water Index (however it was indicated that any other spectral index would work) (step 2 – 5). Lastly, 
water slope variability due to wind, water flow, or the presence of floating masses were adressed by 
gap filling based on the probability of surface water occurrence (step 6 – 8) (Donchyts et al., 2022). 
These steps combined provide near real-time surface area dynamics for man-made reservoirs of over 
70.000 reservoirs worldwide. 

Figure 2.4: Depth measurements of Lake Poopó, a Bolivian 
inland lake obtained using the GLAS red laser beam, as part of 
NASA’s first ICESAT mission. GLAS measurements of water 
levels were linked to surface area measurements from Landsat 
and MODIS missions to derive the lake's volume. The GLAS 
measurements in clear shallow waters could also measure its 
depth, despite the red laser beam's lower energy compared to 
green or blue wavelengths Figure adapted from Arsen et al. 
(2014). 
 

Figure 2.5: Sensitivity of SAR wavelengths  to 
forest structures. The radar-transmitted 
energy penetrates into the forest canopy and 
reflects back from forest components such as 
leaves, branches, stems and underlying soil. 
The larger wavelengths penetrate deeper into 
the canopy. Figure adapted from NASA 
(2019). 
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In the developing proces of Global Water Watch in total 768 reservoirs were validated. The algorithm 
demonstrated high goodness of fit in daily in-situ water level and storage measurements, with a 

coefficient of determination 𝑟2 greater than 0.7 for 67% of the reservoirs Therefore, the data can be 
used as a proxy in reservoir storage dynamics.  
 
On a general note, the utilization of satellite imagery extends beyond the application of water detection. 
As encompassing studies focused on Earth's processes, such as monitoring vegetated areas 
worldwide by Global Forest Watch (2023), delineating the world's free-flowing rivers in a study by Grill 
et al. (2019), and estimating global water reserves in a study by Messager, et al. (2016). 

 

2.5.1 Challenges in Lake Surface Area Detection 

Several challenges have been identified in lake surface area detection, which still should be taken into 
account when it comes to shallow lakes. In a study by Gao et al. (2012) it was found that when the 
water level in shallow lakes decreases, the lakes leave behind small ponds that are difficult to filter 
from the detected water surface area, leading to an overestimation of the actual lake volume. 
Additionally, lakes with a large shoreline-to-area ratio, such as many man-made reservoirs, are more 
susceptible to uncertainties, even when the lake is relatively full, because many pixels are involved in 
the delineation process and each pixel introduces an additional error. Lastly, the use of altimeter-
based water levels presents a challenge, as discussed earlier, due to their narrow swaths and large 
footprints that measure only a small percentage of the total population of lakes. Therefore, shallow 
lakes were found to be particularly susceptible to overestimation of the lake volume if no correction is 
applied to the surface area detection.  

Figure 2.6: The algorithm for water detection applied to construct the Global Water Watch database involves the 
following steps. First (1), images that contain clouds are filtered from all Landsat 7, 8, and Sentinel-2 images that overlap 

with the reservoir geometry based on a threshold 𝑃𝑐𝑙𝑜𝑢𝑑. Then (2), the spectral water index (NDWI) is determined for 
each pixel, and (3) the Canny edge detection is applied to determine the water/land edge, including (4) a buffer. Next, 
(5) the NDWI in each detected pixel is used to determine the optimal threshold for the Otsu method, which is then used 
to determine (6) the surface water area. Finally, (8) a gap fill is performed to remove incorrectly detected pixels from the 
resulting water mask. Figure adapted from Donchyts et al. (2022).  
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2.6 Methods for Estimating Reservoir Volumes using Digital Elevation Models  
 
Hypsometric curve can be established with the help of DEMs, as discussed in Section 2.3. For this, 
three trends can be found in literature: the use of solely dynamic DEMs, the combination of static and 
dynamic DEMs and the use of solely static DEMs, which are discussed in Section 2.6.1, Section 2.6.2 
and Section 2.6.3 respectively. 

 
2.6.1 Establishing Volumes with Dynamic DEMs 

Several studies have successfully employed dynamic DEMs to construct the hypsometric curve of 
lakes (Gao, Birkett, & Lettenmaier, 2012; Li, Gao, Jasinski, Zhang, & Stoll, 2019; Cooley, Ryan, & 
Smith, 2021). This can be done for lakes where sufficient measurements and area classifications are 
available, allowing for the accurate retrieval of hypsometric relations between area and elevation 
(Cooley, Ryan, & Smith, 2021).  
 
The volume in Gao et al. (2012) is extracted while comparing it to the volume at capacity in the 
following Formula 2.2: 

𝑉𝑜 = 𝑉𝑐 − (𝐴𝑐 + 𝐴𝑜)(ℎ𝑐 − ℎ𝑜)/2 (2.2) 
 

 where 𝑉𝑜 (m3) is the estimated storage, 𝑉𝑐 (m3) the storage at capacity, 𝐴𝑜 (m2) the observed area, 𝐴𝑐 

(m2) the area at capacity, ℎ𝑜 (m) the observed height, ℎ𝑐 (m) the height at capacity.  
 

The advantage of this method is that LiDAR instruments can deliver elevation measurements with 
high accuracies, such as the ATLAS instrument on board of NASA’s ICESAT-2 mission, which 
provides accuracies within 3 centimetres (NASA, 2023). However, a disadvantage is that the 
knowledge on the reservoir at capacity is needed to derive the volume. Furthermore, the method is 
not always applicable to man-made reservoirs where water levels are strategically maintained at the 
same level and to man-made reservoirs with unknown information on lake bathymetry. Lastly, there 
are not always enough measurements available for the construction of a hypsometric curve (Cooley, 
Ryan, & Smith, 2021). Lake overpasses can be limited, or lakes can be entirely excluded from the 
datasets due to the spacing between the laser beams. Therefore, the method is not applicable to every 
reservoir worldwide.  

2.6.2 Coupling Dynamic and Static DEMs 

Literature shows that coupling of static and dynamic DEMs could lead to volume time series 
estimations in lakes. While the static DEMs provide elevation measurements at a specific moment in 
time, they can be used in conjunction with the highly accurate dynamic DEM measurements to 
estimate lake hypsometric curve. Tseng et al. (2016) developed a bathymetry method that linearly 
extrapolates terrain slope from a static ASTER DEM in a 3x3 kernel from the nearest grid cell on the 
shoreline to estimate the depth in each lake cell. In case multiple shoreline cells had the same distance 
to the lake cell, the average of all slopes was taken. However, this method may overestimate the lake 
bottom and cause extrapolation artifacts, which limits its ability to realistically mimic the lake bottom. 
Figure 2.7 represents The Hoover Dam segment of Lake Mead, consisting of several sub-figures that 
highlight the impact of linear interpolation on the DEM and Figure 2.8 represents Bathymetry map of 
Lake Mead constructed using the method proposed by Tseng (2016). Despite the limitations studies 
such as Li (2019) and Li (2020) have successfully estimated lake volume using the extrapolation 
method by Tseng et al. (2016), and have found an accuracy of 0.85 m for simulated water level heights 
in the Hoover Dam-segment of Lake Mead as also shown in Figure 2.7 and 2.8. In conclusion, the 
coupling of static and dynamic DEM enables to obtain the lake bathymetry and the lake hypsometric 
curve, which allows conversion of surface areas into volumes. 
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These studies utilised Formula 2.3 to calculate lake volume: 
 

𝑉𝑛 =  ∑
(ℎ𝑖+1 − ℎ𝑖)(𝐴𝑖+1 + 𝐴𝑖)

2

𝑛=1

𝑖=1

 

              

Where 𝑉 represents the volume based on the number of measured water levels 𝑛 (-), the water level 

height of the of the 𝑖𝑡ℎ contour is ℎ𝑖 (m), the surface area encloused by the 𝑖𝑡ℎ contour is 𝐴𝑖 (m
2) and 

the volume 𝑉𝑛(m3). To address the tendency to overestimate lake volume, Li et al. (2019) terminated 

the process once the lake capacity in the Global Reservoir and Dam Database (GRanD) provided by 
Lehner et al. (2011) was reached   
 

2.6.3 Establishing Volumes with Static DEMs Only 

Over the past three decades, literature has presented various methods for lake volume estimation 
based on static DEMs only (Feng, 2011). Estimating lake volumes based on static DEMs only offers 
the advantage of not being limited by the number of overpasses that altimetry missions make. Many 
studies have focused on the storage of large groups of lakes in specific regions (Håkanson & Peters 
1995; Pistocchi & Pennington, 2006; Hollister & Milstead, 2010; Sobek, 2011; Hollister, Milstead, & 
Urrutia, 2011; Heathcote, Giorgio, & Prairie, 2015). The only global study has been conducted by 
Messager et al. (2016).  
 
Earlier studies have only partially relied on DEMs, as they also included in-situ measurements of the 
maximum depth in the reservoir, which requires in-situ access to the lake and makes it difficult to scale 

Figure 2.8: Bathymetry map of Lake Mead constructed 
using the method proposed by Tseng (2016), and 
corrected for overestimation according to Lake Mead’s 
maximum capacity in the database by Lehner (2011). 
The lower figures show magnified views of specific 
sections of the upper figures, highlighting the 
interpolation artifacts. The figure was accessed through 
Li, Gao, Zhao, & Tseng's (2020). 

Figure 2.7: The Hoover Dam segment of Lake Mead, 
consisting of several sub-figures that highlight the impact 
of linear interpolation on the DEM (GMTED2010). The top 
sub-figure represents the DEM measurements without 
any interpolation, the middle sub-figure demonstrates the 
results of the linear extrapolation method proposed by 
Tseng et al. (2016), and the bottom sub-figure presents 
the actual values. This figure is adapted from Tseng et al. 
(2016) and is used to illustrate the interpolated results with 
an accuracy of 0.85 m in the Hoover Dam segment of 
Lake Mead. 

2.3 
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the method to a global level (Håkanson & Peters, 1995; Hollister & Milstead, 2010; Hollister, Milstead, 
& Urrutia, 2011; Arsen, Crétaux, Berge-Nguyen, & Abarca Del Rio, 2014).  
Later studies have solely relied on data provided by the DEM, such as slope and elevation 
characteristics. Different slope characteristics were sampled in these methods, with Sobek (2011) and 
Messager (2016) applying the slope sampled at the nearest shoreline point, and Pistocchi (2006) and 
Heathcote (2015) using the mean slope within a buffer around the lake. Notable performances were 
seen in the studies of Sobek et al. (2011), Sweden and Heathcote et al. (2015), and Quebec, yet 
Messager et al. (2016) which showed the overall best performance. 
 
Messager et al. (2016) conducted a successful global analysis of lake volumes, making no distinction 
between natural lakes and man-made reservoirs. The region of interest for each lake in the DEM was 
delineated and divided in grid cells. The slope was derived for every cell based on the difference in 
elevation between neighbouring cells. Potential outliers were smoothed by recalculating the mean 
slope in a 3x3 neighbourhood for each cell. The lake depths were determined by multiplying the slope 
sampled at the nearest grid cell on the shoreline and the distance towards that grid cell, with the 
average depth representing the mean lake depth. The resulting mean lake depths were validated 
against 173 European lakes in a variety of geomorphologic settings, mostly clustered in the Baltic 
countries, the Alps, and Ireland. The results were prone to overestimation of the lake depth. In 
Messager et al. (2016) it is believed that this overestimation can be reduced by reconstructing the 
flattening of the lake bottom towards their centre. Additionally, it should be noted that the volume 
estimates relate to aggregated global or regional lakes, and the accuracies do not allow for single 
lake-to-lake analysis.  

2.7 The Impact of Sedimentation in the Lake Bottom 
Reservoir sedimentation significantly impacts the global water storage capacity, as it replaces 0.5-1% 
of the capacity annually, which was mentioned by White (2000) and Trimble (2012) and should 
therefore be accounted in storage estimation models. The extent of sedimentation in lakes depends 
on various factors in the hydrology of catchments and characteristics of river basins. Principally the 
reduced kinetic energy of the river flow, for example because of dam construction or a sudden natural 
impoundment, reduces transport of sediment in the river and thereby causes gradual sedimentation. 
This significantly impacts reservoirs beds (Dargahi, 2012). Figure 2.9 shows the longitudinal 
sedimentation profile of the Dez Reservoir. Sedimentation processes are complex and highly 
influenced by turbidity currents within the lake. However, often they strengthen the flattening of the 
lake bed to the middle and, in case of man-made reservoirs, towards the dam as shown in the example 
of the Dez Reservoir in Figure 2.9 obtained from Li et al. (2019) successfully introduced the concept 
of flattening the lake bottom, which is strenghtened by sedimentation, to their volume estimation 
method that translates areas into volumes. They stopped the linear extrapolation process once 
associated volumes matched the reference values for maximum capacity, as presented in previously 
shown Figure 2.7. This approach corrected for the overestimation caused by linear extrapolation, 
however this cannot be upscaled to a global level as maximum capacity values are not widely available 
for every reservoir worldwide. 

Figure 2.9: The longitudinal sedimentation profile of the Dez Reservoir from 1963 
to 2003, showing a uniform sedimentation layer in the intial 9-year period followed 
by flattening of the bottom. The figure was accessed through Dargahi (2012). 
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Figure 2.10 represents an illustration of the misalignment of elevation in the centre of a lake. Messager 
et al. (2016), the benchmark study in for this thesis, made several attempts to introduce the flattening 
of the lake bottom with the goal to mimic more realistically the lake bed. The gains in predictive power 
were not consistently observed, possibly due artefacts in the centre of the lake where elevations do 

not align with each other, as illustrated in Figure 2.10. 
 
The attempts included a power function in the calculation of the topographic depth, which account for 
the flattening of the lake bottom. Formula 2.2 is used to determine the topographic depth in each cell: 
 

𝐷𝑡 = 𝑑𝑘 tan(𝑠) + 𝐶  (2.2) 

 

where 𝐷𝑡 (m) represents the topographic depth, 𝑑 denotes the distance (m) towards the grid cell on 

the shoreline, 𝑠 (rad) represents the allocated slope sampled in the nearest shoreline grid cell, and 𝐶 

(m) represents the datum (reference elevation). The 𝑘 (-) component introduces the flattening, and 
the values 0.95, 0.97, and 0.99 were explored. Additionally, attempts were made with various mean 
slope values sampled in a buffer up to 1000 meters around the lake.  

 

2.8 Models for Prediction of Water Availability 

The previous sections have focused on estimating the current volume state of a reservoir, providing 
valuable information about the current water availability. This information could benefit decision 
making in anticipatory actions. However, this data may not provide sufficient time to take the actions. 
Therefore, predictions are necessary for early indications lacking water availability. 

Over the years, models have been utilised to forecast water availability by converting hydrological 
observations and forecasts into predictions. The models comprised various fluxes, such as 
evaporation, runoff, transpiration, infiltration, percolation, discharge, condensation, and states 
including volumes in glaciers, aquifers, reservoirs, ice sheets, clouds, and lakes (Sene, 2010). Two 
distinct approaches can be taken for this: process-based modelling, as discussed in Section 2.8.1, 
and data-driven modelling, as discussed in Section 2.8.2.  

2.8.1 Process-Based Models 

Process-based models could be physically based models or conceptual models. Depending on the 
modelling objectives, studies can choose the appropriate approach to suit the modelling purpose.  
 
Physically based models, also known as mechanistic models, are constructed using a bottom-up 
approach by dividing the distributed catchment into smaller grid cells assumed to be small, continuous, 
and homogenous control volumes (Hrachowitz, 2017). Physical processes within each cell are 
described using the Navier-Stokes equation for fluid movement in porous media, conserving mass, 
momentum, and energy. These models provide high degrees of spatial and process detail, but 
correctly describing the heterogeneous characteristics of each grid cell can be a significant challenge, 
requiring large computation power. Catchments are inherently heterogeneous, making it difficult to 

Figure 2.10: An illustration of the misalignment of elevation in 
the centre of the lake as an effect of the interpolation of slope 
towards the center according to Messager et al. (2016), which 
includes a parameter for flattening of the lake bottom. Figure 
adapted from Messager et al. (2016). 
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realistically describe them as homogeneous in the model. Therefore, ideally, to accurately describe 
the catchment, physically based models would extreme large amounts of samples, which is difficult to 
achieve (Hrachowitz, 2021). Examples of physically based distributed models include DHSVM 
(Wigmosta et al., 1994), MIKE-SHE (Refsgaard and Storm, 1996), PARFLOW (Kollet & Maxwell, 
2008), CATFLOW (Zehe et al., 2001), HYDRUS-3D (Šimunek et al., 2008), CATHY (Camporese et 
al., 2010), HydroGeoSphere (Jones et al., 2006) or PIHM (Qu and Duffy, 2007).  
 
Conceptual models, on the other hand, follow a top-down approach by describing the system starting 
from the overall system response. For instance, lumped models represent the catchment as one entity, 
while semi-distributed models distribute the model into smaller entities based on catchment 
characteristics but in a less extreme way than in distributed models. Lumped conceptual models 
include unit hydrograph (Sherman, 1932), HBV (Bergström, 1976), or SUPERFLEX (Fenicia et al., 
2011). Semi-distributed conceptual models, such as FLEX-Topo (Gharari et al., 2014), HYPE 
(Lindström et al., 2010), NWSSacramento (Burnash, 1995), GR4J (Perrin et al., 2003) or VIC (Liang 
et al., 1994), account for spatial heterogeneity in a less extreme approach than in distributed models 
by considering multiple larger entities within one catchment based on its characteristics. These models 
have the potential to efficiently accommodate organizational features and their temporal evolutions 
(Savenije & Hrachowitz, 2017). 
 
In conceptual models, it is important to consider the concept of equifinality, which refers to the 
existence of multiple ways to model the same output, making it difficult to determine which approach 
provides the most accurate physical representation of the system. Equifinality arises due to the 
presence of unobservable parts of the system, the uncertainties associated with available 
observations, or when models are calibrated with a single aggregated error metric that compresses 
multidimensional problems into a single value. To account for equifinality, the parameter space and 
degrees of freedom in the model can be reduced, or individual parameters can be calibrated to 
compensate for errors in other parameters and uncertainties in other parts of the model. The reduction 
of parameters or the expansion of validated outputs can help to minimise equifinality in conceptual 
models (Hrachowitz, 2021).  

2.8.2 Data-driven models 

Data-driven models offer an alternative approach to hydrological process-based modelling by relying 
on empirical relationships, statistics, or machine learning techniques, whereas process-based models 
are based on physical principles. The advantage of data-driven models is their ability to extract 
information from data series, providing an alternative when computational speed is critical, or 
underlying relationships are poorly understood (UNESCO, 2005). The models process information in 
a ‘black-box’ method, where the output is based on a combination of the inputs values. Linear 
regression is a common approach for data-driven models, as it is simpler to use and interpret. 
However, non-linear regression may be necessary if the specific curve being modelled does not fit a 
linear relationship (IBM, 2021). Data-driven models include a variety of methods, such as (multi-)linear 
regression, autoregressive, decision tree models, random forest models, artificial neural network 
models, long short-term network models, and Bayesian network models. 

 
The primary advantage of data-driven models is their ability to detect previously unknown relationships 
between variables, without requiring prior knowledge of the catchment. They provide a relatively 
straightforward means for modelling catchment characteristics (Hrachowitz, 2021). However, long 
series of training data is required to accurately calibrate these models. Furthermore, as these models 
are not based on physical principles, they run the risk of violating fundamental thermodynamic laws 
(e.g., Navier-Stokes) and the causality of relationships between variables is not always guaranteed. 
Due to this, so-called, ‘black-box’ approach, the resulting structure of a data-driven model does not 
offer any insight into the inner workings of the system, but only offers the model's output.  
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2.9 Linear Regression Models for Man-Made Reservoirs 
 
Linear regression models are widely used in data-driven modelling due to their simplicity and 
interpretability (UNESCO, 2005). These models can also be applied to estimate volume dynamics in 
man-made reservoirs, with the selection of model type depending on the input variables used in the 
modelling process. The volume time series can be explored using an autoregressive model, as 
discussed in Section 2.9.1, and additional information based on other time series variables can be 
explored using a multi-linear regression model, as outlined in Section 2.9.2.  
 
 

2.9.1 Brief Introduction to Autoregressive Models 

Autoregressive models have been widely utilised for predicting hydrological time series since 1960, 
including streamflow forecasting in a study by Li et al. (2015), rainfall forecasting in a study by Burgan 
(2016), and volume estimations in a study by Chen & Boccelli (2014). Figure 2.11 represents The tge 
concept of an autoregressive model. Autoregressive models are a type of data-driven model 
commonly used in time series analysis. In such models, the output variable is modelled as a linear 
combination of its past values. This means that, like presented in Figure 2.11, the current value of the 
variable depends on its previous values, which allows the model to capture the patterns and trends in 
the time series data. The autoregressive model is a simple yet powerful tool for predicting future values 
in a time series. It can be used to identify and model trends, seasonality, and other patterns in the 
data. Additionally, it is an interpretable model since the coefficients that represent the impact of past 
values on the current value are easy to understand (Brownlee, 2017). 

To build an autoregressive model, each historic input value is assigned a coefficient, which is 
optimised through ordinary least squares with the training data. The number of historic inputs taken 
along in the regression model is depended on the lagged autocorrelation, which is elaborated on in 
Section 2.9.3. The model is then used to make predictions about future values of the variable based 
on the previous values. The trends in the data which are not described by the autoregressive memory 
is referred to as ‘white noise’ and described by the error. The accuracy of the model can be evaluated 
by comparing its predictions to the actual values in the test data set. The autoregressive model is 
described in Formula 2.3: 
 

𝑋𝑡 =  𝑏0 + 𝛽1𝑋𝑡−1 + 𝛽2𝑋𝑡−2 + ⋯ + 𝛽𝑖𝑋𝑡−𝑖 + 𝜀𝑡   (2.3) 
 
where 𝑋 is the dependent variable, 𝑏0 is the intercept, where 𝑖 represents the number of preceding 

timesteps 𝑡 in the autoregressive model. 𝑋𝑡−1, 𝑋𝑡−2, … 𝑋𝑡−𝑖  are the values associated with the 
preceding timesteps and 𝛽1, 𝛽2, … 𝛽𝑖  (-) represent their associated weights. Last, 𝜀𝑚 is the uncertainty 
or "white noise" that comes with the prediction in the respective timestep.  

 
 

Figure 2.11: The concept of an autoregressive model, where a linear combination of 
the past values in the time series (𝑥𝑡−2, 𝑥𝑡−1) of the dependent variable are used to 
describe the new dependent variable. To illustrate, in this Figure, the model uses two 
past values, yet this should be determined with the lagged correlation in the time series. 
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2.9.2 Brief Introduction to Multi-Linear Regression Models  

Multi-linear regression models are a type of data-driven models that are commonly used to estimate 
the relationship between multiple explanatory variables and a single dependent variable. Figure 2.12 
shows the concept of an multi-linear regression model. They have been applied in hydrological time 
series predictions (McGuire et al., 2006; Kim et al., 2018). Unlike autoregression models, which only 
use the historical values of the dependent variable to make predictions, multi-linear regression models 
incorporate a range of additional explanatory variables that may influence the dependent variable as 
shown in Figure 2.12.  

The multi-linear regression model functions similarly to the autoregressive model, in that it assigns 
coefficients to each input variable using ordinary least squares fit, while the white noise component 
represents the unexplained trend in the data. Formula 2.4 can be used to express the multi-linear 
regression model: 

𝑋𝑡 = 𝑏0 + 𝛽1𝑌𝑡−1 + 𝛽2𝑋𝑡−1 + ⋯ + 𝛽𝑖𝑌𝑡−𝑖 + 𝛽𝑖𝑋𝑡−𝑖 + 𝜀𝑡  (2.4) 
 
 where 𝑌𝑡−𝑖, and 𝑋𝑡−𝑖 represent the explanatory and dependent variables, respectively, in the 𝑖th 
month preceding the respective month. The weights associated with each variable value are 
represented by  𝛽1, 𝛽2  … 𝛽𝑖  (-). 𝑏0 is the intercept, and 𝜀𝑚 is the ‘white noise’ or uncertainty in the 
prediction at the respective timestep 𝑡. 

2.9.3 The Number of Inputs Depends on the Lagged Correlation 

The number of input values utilised in autoregressive and multi-linear regression models is determined 
by the lagged correlation between the input time series and the dependent variable. The 
autoregressive model assesses the internal correlation, while the multi-linear regression model 
considers the correlation between the lagged explanatory variables and the dependent variable. 
Formula 2.5 can be used to calculate the correlation coefficient: 
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∑((𝑥𝑖− 

1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1 )(𝑦𝑖+ 

1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1 ))

√∑(𝑥𝑖− 
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1 )

2
∑(𝑦𝑖+ 

1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1 )

2
  (2.5) 

 
where 𝑟 is the correlation coefficient for each single lag, 𝑥 the value of the dependent variable, 𝑦 the 

value of the lagged variable, and 𝑛 the total number of lagged variables. The correlation coefficient 
ranges between -1 and 1, with values close to these extremes indicating a strong correlation and 
values close to 0 indicating a weak correlation. Values that exceed the range in which 95% of the 
values fit, are considered to vary significantly from zero correlation and can be included in the 
regression model. The points within the range are not considered to vary significantly from zero 
corelation and are likely to be “white noise” in the time series. The band including 95% of all values 
can be calculated  according to Formula 2.6 in which 𝑛 is the length of the time series: 
 

band95% =  
±1.96

√𝑛
  (2.6) 

  

Figure 2.12: The concept of an multi-linear regression model, which is an extended version of the 

autoregressive model in Figure 2.11. The main difference is that the predicted value 𝑋𝑛 of the dependent 

variable is obtained by a linear combination past values of multiple explanatory variables (𝑦𝑡−2, 𝑦𝑡−1, 𝑥𝑡−2, 
𝑥𝑡−1). To illustrate, in this Figure, the model uses two past values for both variables, yet the exact amount 
of input values is determined by the lagged correlation between the input and output variables. 
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2.10 Assessing the gained Forecasting Skill   

 
To forecast the volume in man-made reservoirs, a wide range of model constructions can be explored, 
incorporating infinite variations of variables. To determine the best-performing model for a particular 
type of prediction, skill scores are often used. Skill scores quantify the improvement in forecast 
accuracy relative to a perfect forecast. The purpose of these scores is to provide a measure of how 
much better a given forecasting system performs compared to a reference system (Wheatcroft, 2019). 
By comparing all models to the same reference system, skill scores enable effective comparison of 
each model's performance. Skill scores are conventionally calculated using Formula 2.7: 
 

skill score =  
𝐴𝑓−𝐴𝑟

𝐴𝑝−𝐴𝑟
   (2.7) 

 
 where 𝐴𝑓 and 𝐴𝑟  represent the accuracy of the forecasting model being evaluated and the reference 

data, respectively, and 𝐴𝑝 represents the accuracy of a perfect forecast. The Heidke Skill Score is a 

measure used to evaluate the overall skill of prediction in the context of binary categorical problems. 
For categorical variables, the forecast is the prediction of the occurrence within a predetermined range 
of values such as for example, in regional climatological forecasts, occur in categories named ‘above 
normal’, ‘normal’ and ‘below normal’ (Chandimala & Zubair, 2007; EUMeTrain, 2023). Figure 2.13 
shows the contingency matrix that classifies the forecasting outcomes into four categories: ‘hit’, ‘miss’, 
‘correct rejection’, and ‘false alarm’. In the score there are four possible outcomes considered, which 
are presented in Figure 2.13: hits, false alarms, misses, and correct rejections. A hit occurs when a 
prediction correctly identifies an event that falls below a predefined threshold. A false alarm occurs 
when a prediction identifies an event that does not actually fall below the threshold. A miss occurs 
when a prediction fails to identify an event that does fall below the threshold. Finally, a correct rejection 
occurs when a prediction correctly identifies that no event falls below the threshold. The Heidke Skill 
Score evaluates a model's performance by counting the occurrences of each possible outcome. The 
Heidke Skill Score is calculated using Formula 2.8: 
 

Heidke Skill Score =  
2(𝑎𝑑 −𝑏𝑐) 

(𝑎+𝑐)(𝑐+𝑑)+(𝑎+𝑏)(𝑏+𝑑)
   (2.8) 

 
where, 𝑎 represents the number of hits (true positive), 𝑏 represents the number of false alarms (false 

positive), 𝑐 represents the number of misses (false negative), and 𝑑 represents the number of 
rejections (true negative). The score indicates the proportion of correctly forecasted observed values 
relative to what would be expected by chance. A perfect forecast is indicated by a value of 1, while a 
score of 0 indicates no skill. A negative score suggests that the forecast performs worse than a 
forecast by chance. 
 
 
 

 
True value (observation) 

Positive (1) Negative (0) 

Modelled 
forecast 

Positive (1) Hit False Alarm 

Negative (0) Miss 
Correct 

Rejection 

Figure 2.13: The contingency matrix that classifies the forecasting outcomes into four categories: ‘hit’, ‘miss’, 
‘correct rejection’, and ‘false alarm’. A ‘hit’ occurs when the model correctly forecasts an event to occur, a 
‘miss’ occurs when it fails to forecast the occurrence of the event, a ‘correct rejection’ occurs when it forecasts 
the non-occurrence of the event, and a ‘false alarm’ occurs when it incorrectly forecasts the occurrence of 
the event that does not happen. The Heidke Skill Score (HSS) is then calculated using the number of hits, 
false alarms, misses, and correct rejections. This score provides a measure of the model's performance. 
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3     

Methods 

3 Method 
The methods chapter of this thesis presents the techniques used in this study to derive reservoir bathymetry, 
benchmark the novel method, and the method to test the predictive skill in regression models that predict 
water availability. In Section 3.1, the method to derive reservoir bathymetry in a novel way by utilising digital 
elevation models is explained. Section 3.2 elaborates on the method used to benchmark the novel method to 
existing methods established by Messager et al. (2016). Section 3.3 presents the method used to explore the 
predictive performance for water availability using regression models. Section 3.4 introduces the case study 
and the datasets applied. Overall, this chapter provides a detailed overview of the methodology used to 
analyse the reservoirs and their associated water availability.  
 

3.1 Estimating Water Volumes in Man-made Reservoirs 
 
The aim in this first part of this thesis is to construct and test a method that can transform water surface 
area time series of any reservoir worldwide into volume time series by reconstructing bathymetry from 
static digital elevation datasets. Thereby the first research question in this thesis is addressed. 

 
The method involves combining radar altimetry datasets with surface water observations from Global 
Water Watch, constructed by Donchyts et al. (2022), to generate a hypsometric curve for every 
specific reservoir. The elevation data utilised in this research is sourced from the hydrologically 
adjusted Multi-Error-Removed Improved-Terrain Hydro (MERIT-Hydro) digital elevation model (DEM), 
which is a static DEM (Yamazaki et al., 2017). This is obtained via HydroMT, an automated and 
reproducible tool for model construction and analysis (Eilander et al., 2023). To evaluate its 
performance, the coefficient of determination and relative error have been computed for reservoir 
filling states of 25%, 50%, 75%, and 100% of maximum capacity. The approach is visually represented 
in Figure 3.1 and further expanded in the subsequent sections. 

3.1.1 The MERIT-Hydro Digital Elevation Model as a Base 

The novel method relies on data obtained from the global MERIT-Hydro DEM (Yamazaki et al., 2017). 
The publicly accessible DEM has a resolution of roughly 90 meters (3 arc-sec), covering latitudes 
between N90 and S60, and is referenced to WSG84 and the EGM96 geoid. The resolution of this 
DEM, relative to the size of the reservoirs within the dataset (which range from 0.1-100 km2), is 
sufficient for creating a distributed model. MERIT-Hydro is constructed from the MERIT DEM and 
comprises smoothed elevations in water surfaces, with most outliers removed. The hydrological 
adjustment has considered and corrected for the input elevation data errors resulting in dummy 
depressions in the DEM. Additionally, the location of the river streamlines has been realistically aligned 
with the existing global river channel data obtained from satellites. The hydrological correction of the 
DEM has made the MERIT-Hydro DEM suitable for flow-direction calculations, which is a critical 
requirement for the novel method, as discussed further in Section 3.1.3. 
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3.1.2 Why Reservoir Bathymetry is Reconstructed 

A methodology to derive volume time series for a reservoir without requiring in-situ measurements 
involves the reconstruction of the reservoir's bathymetry through the use of a DEM, establishing a 
hypsometric curve, and subsequently translating surface area data into volume time series. This 
process relies on the fundamental assumption that the physical processes that shape the surrounding 
terrain also influence the bathymetry of a lake, as outlined by Hutchinson in (1957). Accordingly, 
interpolation of the surrounding DEM can effectively estimate the bathymetry of the lake. The 
assumption is supported by previous studies, which are discussed in Section 2.6, in similar domains 
(Pistocchi & Pennington, 2006; Hollister et al., 2010; Heathcote et al., 2015; Messager et al., 2016). 
From these studies, the method proposed by Messager et al. (2016) has shown to perform significantly 
better compared to other studies that employ a similar approach (Pistocchi & Pennington, 2006; 
Hollister & Milstead, 2010; Heathcote, Giorgio, & Prairie, 2015). Therefore, the proposed method in 
this thesis is based on the approach suggested by Messager et al. (2016), which relies solely on 
parameters derived from DEMs to estimate volume and has the advantage of not requiring in-situ 
access to the lake, thus making it easy to scale-up or apply in various (inaccessible) locations.  
 
In addition to the method by Messager et al. (2016), this thesis argues that man-made reservoirs 
require a different approach than natural lakes due to the fundamental differences in their geometry, 
which were previously discussed in Section 2.1 (Morris & Fan, 1998). Messager et al. (2016) made 
no distinction between natural lakes and man-made reservoirs yet applied their method to the entire 
population of lakes. However, unlike natural lakes, the depth in man-made reservoirs increases 

Figure 3.1: A conceptual representation of the methodology employed to answer the first research question, which 
comprises of three main components: retrieving volume time series (1.1), the validation process (1.2), and performance 
assessment (1.3). The method to retrieve volume time series (1.1) involves several steps that can be broadly divided into 
two phases. In the first phase, the reservoir bathymetry is constructed using a novel method, which is elaborated further 
in Section 3.1.3. This involves pre-processing elevation, slope, and flow direction data using HydroMT (1.1.1), an 
automated and reproducible tool for building and analyzing models (Eilander et al., 2023). Additionally, the reservoir data 
is filtered (1.1.2), and the original river stream is determined (1.1.3), followed by the determination of depth in each cell 
(1.1.4). Subsequently, tributary streams are delineated (1.1.5), and their depths are determined in a repeatable process 
until streams that deviate five Strahler orders from the main stream are identified. Lastly, the remaining elevations in the 
reservoir bathymetry are obtained using cubic linear interpolation. In the second phase, the reservoir hypsometric curve is 
constructed based on Formula 3.2-3.4 presented in Section 3.1.4. This curve is then used to translate the imported surface 
area data from Global Water Watch (1.1.8) into volume time series (1.1.9). 
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towards the dam wall. This is information that can be utilised 
to make a more sophisticated volume estimations in man-
made reservoirs. As a result, the newly proposed method 
outlined in this thesis is tailored specifically for man-made 
reservoirs that exhibit this characteristic. 

 
Datasets obtained through radar altimetry provide access to 
valuable information regarding the characteristic of the 
reservoir mentioned earlier. For instance, such datasets can 
reveal a distinct elevation shift at the location of the dam wall. 
By calculating the difference in elevation between the water 
level and the bottom of the dam wall, which is assumed as 
the maximum depth of the reservoir, the volume of water 
stored is be estimated. This approach provides a reliable 
means of reconstructing the reservoir bathymetry. 

3.1.3 Steps in Constructing Reservoir Bathymetry 

Accurately estimating the volume of a reservoir requires 
determining its bathymetry as the first step. As discussed in 
Section 3.1.1, this can be achieved using the MERIT-Hydro 
DEM as a base. The method relies on several parameters 
extracted from the DEM, such as the dam wall location, the 
flow direction, elevation difference covered by the dam wall, 
nearest upstream shoreline cell, and slope sampled in the 
nearest upstream shoreline terrain. These parameters are 
utilised in the method, as presented in Figure 3.2, to 
reconstruct bathymetry in individual reservoirs. Adopting this 
approach serves as the basis for estimating reservoir volume. 

 
1. The reservoir and its surrounding terrain are initially 

delineated from the DEM (see Figure 3.2: Step 1). This is 
done with the use of the HydroMT software, developed by 
Eilander et al. (2023), which generates a raster with cells 
representing the elevations of the reservoir and its 
surrounding terrain based on a georeferenced location, 
which is retrieved for the specific reservoir through the 
Global Water Watch platform (Donchyts et al., 2022). To 
account for potential uncertainties in the delineated area, 
a buffer of 500 meter was introduced in the delineation 
process.  
 

2. Subsequently, the cells that represent the reservoir 
surface are filtered from the raster (see Figure 3.2: Step 
2). The cells are identified by a group of cells with similar 
elevation values. Also, other parameters are identified like 
the dam wall location, the flow direction, elevation 
difference covered by the dam wall, nearest upstream 
shoreline cell, and slope sampled in the nearest upstream 
shoreline terrain. 

 
3. Then a main stream in the reservoir is estimated, which 

approaches the original river stream, based on the flow 
directions calculated with the D8 flow direction method (see 
Figure 3.2: Step 3). This method was originally proposed 
by O'Callighan and Mark (1984) and later applied by 
Jenson and Domingue (1988). In this method, the flow 

6. 

Figure 3.2: A visual illustration of the novel 
method, with the aim to conceptually 
explain the approach employed in deriving 
reservoir bathymetry. First, reservoir is 
delinated and filtered from the DEM (1-2). 
Subsequently, the identification of the main 
axis of the reservoir is established based on 
the flow directions (3), following the 
establishement of the topographic depth on 
the main axis (4). Furthermore, tributary 
axis are drawn in the reservoir, and 
associated elevations are derived (5). 
Cubic linear interpolation of the remaining 
cells results in the final bathymetry (6). 
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direction in a cell is determined based on the orientation of the neighbouring cell with the steepest 
descent, as shown in Figure 3.3. Compared to other flow direction methods such as D-Infinity or 
Multi Flow Direction, which consider the landscape curvature and flow into multiple neighbouring 
cells, the D8 method is less computationally intensive and faster (Tarboton, 1997; Qin, Zhu, Li, 
Zhou, & Yang, 2007). However, in cases where there is no clear flow direction, as in flat areas like 
the water surface of the reservoirs, a cell is assigned the flow direction towards the cell that does 
not lead towards a local depression after multiple steps. The main river stream obtained serves 
as the foundation for the reservoir bathymetry. 

  

 
4. In the next step (Figure 3.2: Step 4), the depth along the main stream is determined using Formula 

3.1, while incorporating the reservoir-specific flattening parameter 𝑘 (-). The purpose of introducing 
this parameter is to partly compensate for sedimentation in the reservoir. Unlike the approach by 
Messager et al. (2016), the novel method orients the flattening towards the dam wall instead of 
the centre of the lake. With that, this approach avoids bathymetry artefacts in the centre of the 
reservoir like those previously discussed in Section 2.7 and illustrated in Figure 2.9a. To simulate 
calculate the topographic depth on the main stream, the previously presented Formula 2.2 is used: 
 

𝐷𝑡 = 𝑑𝑘 tan(𝑠) + 𝐶 (2.2) 

 

where 𝐷𝑡 (m) is the topographic depth,  𝑑 (m) the distance from the nearest cell upstream of the 

reservoir, 𝑠 (rad) the sampled slope in that cell, 𝐶 (m) its datum (reference water level), and 𝑘 (-) 

the flattening parameter. The latter parameter is determined separately for each reservoir through 
a non-linear fit of the elevation sampled upstream of the reservoir and the elevation sampled within 

a 500 meters buffer downstream of the dam. The fit is optimised to match the slope 𝑠 (rad) sampled 

in the nearest onshore upstream cell. These characteristics are derived from the surrounding 
terrain, suggesting that reservoirs in similar terrains are likely to have similar flattening parameters.  
  

5. In addition, tributary streams are identified using a similar approach to step 3 (Figure 3.2: Step 5). 
The D8 flow direction method was utilised to locate tributary streams with Strahler orders that 
deviated up to 5 orders lower than the Strahler order identified in the main stream of the reservoir. 
The process in step 4 is then repeated for each tributary stream to determine its topographic depth. 
Consequently, a new parameter 𝑏 (-) is obtained for each tributary, which involved the slope and 
elevation sampled at the nearest onshore cell upstream of the tributary stream and the elevation 
sampled at the intersection with the main stream. 
 

6. Finally, the depth of the remaining cells is determined through a linear interpolation of the known 
bathymetry values on a grid (Figure 3.2: Step 6). This step yields a new elevation value for each 
cell, representing the final reconstruction of the reservoir bathymetry. With this step, the process 
of constructing the bathymetry for the specific reservoir is completed, paving the way for further 
steps towards determining the volume of the reservoir. 

Figure 3.3: Illustration of the D8 flow direction method as introduced by 
O’Calligan and Mark (1984). The surrounding cells are assigned 
consequtive values in the power of 2, which function as directional 
coordinates. The lowest elevation in the neighborhood determines the 
actual flow direction if not leading to a local depression (b). This principle 
is used to reconstruct the stream network in the cells that represent the 
reservoir in step 3. The figure is adapted from Buarque et al. (2015). 
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3.1.4 Modelling the Hypsometric Curve 

The bathymetry in a reservoir, which can be reconstructed according to the previously proposed 
method in Section 3.1.3, provides a foundation for the establishment of the hypsometric curve, which 
represents the relationship between volume and area for a range of water levels. The reservoir area 

𝐴 (m2) for each water level ℎ (m) is determined by the area sum of all cells for each water level, as 

shown in Formula 3.1:  
𝐴(ℎ) = 𝑁(ℎ) 𝑑𝑥𝑑𝑦  (3.1) 

 

where 𝑁 represents the number of pixels (-) and 𝑑𝑥𝑑𝑦 represent the pixel surface area (m2). The 

functional relationship between the reservoir area and the corresponding water level can be expressed 
mathematically using Formula 3.2: 

𝐴 = 𝑎(ℎ − ℎ0)𝑐   (3.2) 
 

where 𝐴 (m2) is the reservoir area, ℎ (m) is the corresponding water level, ℎ0 (m) is the reference 

water level, and 𝑎 (m) and 𝑐 (m/m) are regression parameters obtained in the model through least 

squares fit. The reference water level ℎ0 (m) considered represents the deepest point in the reservoir 

and assumed to be equivalent to the elevation of the dam outlet. Consequently, the minimum value 
of 𝐷𝑡 that is determined with Formula 3.1 is equivalent to ℎ0.The regression parameters can be 

obtained by implementing a non-linear regression on the available data, where 𝑎 (m) represents the 

intercept of the fitted line, and 𝑐 (m/m) represents the slope. Notably, the non-linear regression 
technique is preferred over linear regression on the logarithmic transformation of the data, as literature 
mentions it minimises the potential for systematic errors to be introduced (Xiao, White, Hooten, & 
Durham, 2011). The relation between the water level and the reservoir volume can be expressed 
using Formula 3.3: 

𝑉 = ∫ 𝑎(ℎ − ℎ0)𝑐𝑑ℎ
ℎ=ℎ

ℎ=ℎ0

 

(3.3) 
 

𝑉 =
𝑎

𝑏+1
(ℎ − ℎ0)𝑐+1 + 𝐶 

 

where 𝑉 (m3) is the reservoir volume, ℎ (m) is the corresponding water level, ℎ0 (m) is the reference 

water level, and 𝑎 (m) and 𝑐 (m/m) are regression parameters. All the variables in these formulas are 

known, water level ℎ (m), reference water level ℎ0 (m), and regression parameters 𝑎 (m), 𝑏 (-) and 𝑐 

(m/m). The parameter 𝑏, which is dependent on the characteristics of the surrounding terrain, has a 
notable influence on both the calculated hypsometric curve and the estimated volume of the reservoir. 
A value of 𝑏 = 1 results in a linear elevation shift along the watercourse, whereas a smaller 𝑏 value 
causes the reservoir bed to become flatter. Assuming a constant area 𝐴, a lower 𝑏 value will lead to 

an increase in the ℎ0 parameter, which in turn causes the parameter set of (𝑎, 𝑐) to increase. In 
conclusion, it should be noted that if assuming a constant area 𝐴, smaller values of 𝑏 will result in a 
decrease in the calculated volumes (and vice versa). The integral of the hypsometric curve over the 
water level provides the relationship between the reservoir water level and volume. Upon completing 
this step, the relationship between volume and area is established for a range of water levels, allowing 
for the construction of the hypsometric curve. 
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3.1.5 Validation and Performance Evaluation of the Novel Method 

Before validating the method, and testing the performance of the method, the modelled data is 
corrected for a systematic error related to the distinct datums in the datasets. The in-situ datum used 
in the validation data in many reservoirs differs from the reference elevation employed by the MERIT-
Hydro DEM, which is, as previously discussed, referenced to the EGM96 geoid (Yamazaki et al., 
2017). As a result, there may be a systematic offset between the observations of the model and the 
validation data, which could lead to poor model performance, even if the hypsometric curve suggests 
a strong relationship, indicated when the curve shows a similar shape. To address this issue, the 
systematic error (m) was calculated according to Formula 3.4:  
 

systematic error =  
1

𝑛
(∑ ℎ𝑚𝑜𝑑𝑒𝑙𝑖

𝑛
𝑖=1 − ∑ ℎ𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝑖

𝑛
𝑖=1 ) (3.4) 

 
where, ℎ𝑚𝑜𝑑𝑒𝑙 (m) represents the modelled water level for the 𝑖th water level in the reservoir, ℎ𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 

(m) represents the associated water level in the validation data and 𝑛 (-) presents number of 

measurements. The systematic error is then subtracted from the water levels observed by the model. 
This correction for the distinct in-situ datums in the validation and modelled data will allow for fair 
analysis of the method. 
 

3.1.5.1. Validation with a Group of Reservoirs 

Then, accuracy of the hypsometric curves is determined as part of the qualitative analysis, which tests 

the performance of the method on a group of reservoirs. The coefficient of determination 𝑟2 (-) is used 
to assess the overall performance of the reservoirs by comparing the absolute modeled values with 
the validation data at different filling rates (0%, 25%, 50%, 75%, and 100% of maximum capacity). To 

benchmark the 𝑟2 values, literature values are used, which suggest values of 0.8 or higher, as seen 
in studies by Pistocchi & Pennington (2006), Hollister & Milstead (2010), and Heathcote, Giorgio, & 
Prairie (2015). Formula 3.5 was utilised to calculate the coefficient of determination:  
 

𝑟2 = (
𝑛(∑ 𝑉𝑚𝑜𝑑𝑒𝑙𝑉𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛

𝑖=𝑛
𝑖=1 )−(∑ 𝑉𝑚𝑜𝑑𝑒𝑙

𝑖=𝑛
𝑖=1 )(∑ 𝑉𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛

𝑖=𝑛
𝑖=1 )

√(𝑛 ∑ 𝑉𝑚𝑜𝑑𝑒𝑙
2𝑖=𝑛

𝑖=1 −(∑ 𝑉𝑚𝑜𝑑𝑒𝑙
𝑖=𝑛
𝑖=1 )

2
)(𝑛 ∑ 𝑉𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛

2 −(∑ 𝑉𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛
𝑖=𝑛
𝑖=1 )

2𝑖=𝑛
𝑖=1 )

)

2

 (3.5) 

 

where 𝑉𝑚𝑜𝑑𝑒𝑙 represents the modelled volume and 𝑉𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 (m3) the in-situ measured reservoir 

volume at each water level height, with 𝑛 (-) representing the number of measurements. A coefficient 
of determination of 1 indicates a perfect fit, suggesting that the novel method is performing accurately 
for every reservoir in the reference dataset. However, a lower coefficient of determination suggests 
that the method may not be performing well for certain reservoirs in the dataset. When the coefficient 
of determination approaches 0, it may suggest that the novel method is unsuitable for estimating 
volumes in certain reservoirs of the reference dataset. 

3.1.5.2. Validation of Individual Reservoirs 

Finally, the relative error (-) is computed to evaluate the individual performance of the reservoirs with 
respect to their size, which adjusts for under or overprediction of reservoir volumes based on the 
reservoir size. This metric is expressed in Formula 3.6:  

 

relative error =  
𝑉𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛−𝑉𝑚𝑜𝑑𝑒𝑙

𝑉𝑚𝑜𝑑𝑒𝑙
  (3.6) 

 
where 𝑉𝑚𝑜𝑑𝑒𝑙 (m

3) represents the modelled volume, 𝑉𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 (m3) the reference volume for specific 

water level heights (0%, 25%, 50%, 75%, and 100% relative to maximum capacity). A relative error 
ranging between 0 and 1 indicates an underestimation by the model, while a relative error of 1 
indicates an accurate estimation of the reservoir volume. A relative error ranging between 1 and 2 
implies an overestimation of the volume, while a relative error greater than 2 indicates an 
overestimation of twice the volume of the reservoir itself. 
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3.1.6 Transferability of the Novel Method 

Ensuring the transferability of the method across different regions is crucial for its applicability to any 
reservoir worldwide within the Global Water Watch dataset. Some parameters discussed in Section 
3.1.2 can be considered transferable as they are likely to be similar across multiple reservoirs, while 
others are untransferable and vary from reservoir to reservoir. These untransferable parameters are 
computed by the model and include the slope at the nearest upstream point, flattening parameter 𝑘, 
intercept, and slope parameters.  
 
The method utilised in this thesis involves transferable input parameters such as the buffer around the 
initial delineated reservoir (Figure 3.2: Step 1), maximum Strahler order deviation from the Strahler 
order found in the main stream (Figure 3.2: Step 4), and downstream buffer considered for the 
downstream point (Figure 3.2: Step 2). These parameters are set similarly for reservoirs in the 
reference dataset. However, due to variations in reservoir size, shape, and surroundings, a single 
optimal parameter combination may not exist that applies universally to all reservoirs. Therefore, it is 
recommended to evaluate the performance of the parameter settings individually for each region. 
 
The Strahler order deviation from the main stream plays a critical role in determining whether the 
entire reservoir is included in the computation. However, a larger deviation increases computation 
time significantly compared to smaller deviations. Additionally, the optimal downstream buffer 
considered for the downstream point may differ between smaller and larger reservoirs. It may be larger 
for larger reservoirs and smaller for smaller reservoirs. These variations in optimal parameter settings 
highlight that the optimal settings may vary between simple and complex-shaped reservoirs and may 
vary depending on the terrain and surrounding conditions. 
 
The below Table 3.1 provides an overview of the untransferable input parameters used in the 
validation reservoirs, which can serve as a baseline for wider application of this method. The 
transferability of the parameters is further discussed in Section 3.4. 
 
 

Transferable parameters 

Buffer around initial delineated reservoir  
(Figure 3.2: Step 1) 

30 m 

Downstream buffer from downstream point (Figure 
3.2: Step 4) 

500 m 

Maximum Strahler order deviation from Strahler 
order found in main stream (Figure 3.2: Step 5) 

5 (-) 

  

Untransferable parameters 

Slope sampled at nearest upstream point  
(part of Formula 2.2) 

Sampled from the DEM (m/m) 

Flattening parameter 𝑘 in main stream 
(part of Formula 2.2) 

Obtained by linear regression (-) 

Intercept 𝑎 (part of Formula 3.1-3.3) Obtained with least squares method (-) 

Slope 𝑐 (part of Formula 3.1-3.3) Obtained with least squares method (-) 

 
 
 

Table 3.1: The following tables provide an overview of the transferable and untransferable 
parameters utilised in the proposed method. The transferable parameters are given as input to 
the model, whereas the untransferable parameters are computed by the model itself. The 
transferable parameters listed in the table were applied in this thesis, but their optimal values 
may vary when applying the method to other regions and should therefore be thoroughly 
analysed and reconsidered. 
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3.2 Benchmark the Novel Method with Messager et al. (2016) 
 
The objective of the consecutive research phase is to compare the performance of the novel method 
to literature. The novel method, described in Section 3.1, is benchmarked bathymetry reconstruction 
technique introduced by Messager et al. (2016), which was already introduced in Section 2.6 and is 
further elaborated on in Section 3.2.1. A schematic diagram of the conceptual framework for this 
benchmark experiment is presented in Figure 3.3. 
 
To compare the effectiveness of the two methods, the volume time series produced by each approach 
were compared. The volume time series generated by the method described in Section 3.1 is 
compared with that generated using a bathymetry reconstruction approach proposed by Messager et 
al. (2016). This approach involves determining the topographic depth in each individual cell by 
extending the slope sampled in the nearest grid cell on the shoreline, using a 3x3 kernel towards the 
centre of the lake. The topographic depth in the cells is determined for each cell using Formula 2.2, 
which was previously presented. The effect of flattening of the lake bottom is taken into account by 
setting the flattening parameters 𝑘 (-) to 0.95, 0.97, and 0.97. The resulting bathymetry is then used 
to derive the hypsometric curve. 

 
To ensure consistency and comparability of the results, the derivation of the hypsometric curve using 
the bathymetry reconstruction approach in this study is performed with the same MERIT-Hydro DEM 
used in the novel method, as discussed in Section 3.1. Additionally, the DEM is accessed through 
HydroMT, a software developed by Eilander et al. (2023), in a similar manner, following comparable 
pre-processing steps such as region delineation and filtering of water surface cells with similar 
thresholds and methods as those described in Section 3.1.  
 
 As previously discussed in Section 2.6, the static approach proposed by Messager et al. (2016) is 
prone to sudden jumps in the bathymetry map of the reservoir. This is because the method relies on 
values sampled from the nearest cell on the shoreline to determine the topographic depth of a grid 
cell, which may differ for adjacent cells. Furthermore, the method's use of the generic parameter 𝑘 to 
account for bottom flattening towards the centre of the lake is expected to result in an overestimation 
of volumes. These limitations may negatively impact the performance of the static approach by 
Messager et al. (2016) in comparison to the novel method. 

 

Figure 3.3: The figure illustrates the methodology employed to answer the second research question. First, the 
bathymetry is reconstructed using the method proposed by Messager et al. (2016) with varying flattening parameters k: 
0.05 (2.1a), 0.97 (2.1b), and 0.99 (2.1c). Next, the resulting bathymetries are used to establish the reservoir hypsometric 
curve (2.2), which allows for the translation of the surface area time series (2.3) into volume time series (2.4). This newly 
established volume time series serves as the benchmark time series, and the coefficient of determination can be 
determined (2.5) and compared with the results of question 1 (2.7). 
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The hypsometric curve generated based on Messager et al. (2016) facilitates the conversion of the 
benchmark volume time series provided by Global Water Watch.  Like the novel method, systematic 
errors are corrected in the benchmark time series, using Formula 3.4, before validation. Then, the 

coefficient of determination (𝑟2) for each reservoir is computed using Formula 3.5. This formula 
considers the modelled reservoir volume (𝑉𝑚𝑜𝑑𝑒𝑙) at specific water level heights provided by the 

Messager et al. (2016) method, the validation volume (𝑉𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛), and the number of measurements 

(𝑛). An 𝑟2 value of 1 indicates perfect performance for all reservoirs, while a lower value suggests 
suboptimal performance, and a coefficient of determination of 0 indicates unsuitability for volume 
estimations in the reservoirs in the validation dataset. By comparing the coefficient of determination 
between the novel method and the Messager et al. method, their performances could be compared. 
 

3.3 Exploring the Predictive Performance for Water Availability 
 
The last research phase is dedicated to predicting decreased water availability in reservoirs, with the 

help of the volume time series generated by the novel method in Section 3.1. For this purpose, the 

volume dynamics in the Hawane reservoir in Eswatini is examined. This reservoir is introduced and 

contextualised in the following Section 3.4, along with an overview of all other reservoirs examined 

throughout this thesis. This subsection will cover the data-driven models used for predicting water 

availability, the variables used for prediction, and the method applied to assess their predictive skill. 

Figure 3.4 provides a visual representation of this approach. 

3.3.1 Predicting Water Availability with Regression Models 

This subsection evaluates the skill of several regression models in predicting the decreased water 
availability in reservoirs during drought events. The volume time series used in this analysis is obtained 
with the method introduced in Section 3.1, which means that the models are not tested on in-situ 
measured volumes but rather on volumes derived from bathymetry estimations. The regression 
models are trained using a distinct subset of the entire time series, and their aim was to identify the 
gain in predictive performance compared to the seasonality. 
 

Figure 3.4: A conceptual representation of the approach to answer the third research question. The methodology involves 
retrieving the hypsometric curve of the Hawane Dam using the novel method outlined in Section 3.1 of this thesis. 
Subsequently, a narrative is created from a severe drought event that occurred in 2016 using three different versions of the 
regression model. The first model relies solely on volume time series (autoregression) (3.1), while the second version 
introduces the Standardised Precipitation and Evapotranspiration Index (SPEI) time series as a variable (multi-linear 
regression) (3.2). The third version explores the predictive skill of the precipitaiton (3.3). To determine the appropriate lag-
time of each variable taken into account, the methodology entails employing lag-time analysis for each version of the model. 
Additionally, a autoregressive model (3.4) or a multi-linear regression model is created (3.5-3.8). The results of the models 
are analysed first in a qualitative analysis and then by the Heidke Skill Score in a quantitative analysis (3.9 & 3.10). 
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The predictor variables considered in the models are the volumes itself, the ERA5 precipitation in the 
catchment upstream of the reservoir by Hersbach et al. (2020), and the monthly Standardised 
Precipitation and Evaporation Index (SPEI) by Beguería et al. (2021). The motivation behind the 
selection of each predictor variable and the way they are used in the regression models will be 
presented in Section 3.3.2. Each model forecasts up to 6 months into the future using these predictors, 
resulting in a total of 72 predictions per year (starting at every month, for every consecutive month up 
to six months after).  
 
As discussed in Section 2.9.3, the number of values included in the regression model varies depending 
on the lagged correlation with the dependent variable in the respective month, which is the current 
month (0) in this case. To calculate the correlation coefficient (r) for each lag, Formula 3.7 is applied: 
 

𝑟 =  
∑((𝑥𝑖− 

1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1 )(𝑦𝑖+ 

1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1 ))

√∑(𝑥𝑖− 
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1 )

2
∑(𝑦𝑖+ 

1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1 )

2
  (3.7) 

 
where x represents the value of the dependent variable, y the value of the lagged variable, and 𝑛 the 
total number of lagged variables. The correlation coefficient ranges from -1 to 1, with values closer to 
these extremes indicating a stronger correlation and values closer to 0 indicating a weaker correlation. 
It is expected that 95% of the values in the autocorrelation lay within two standard deviations from the 
mean, representing the white noise. The 95% bound is derived with Formula 3.8: 
 

bounds95% =  
±1.96

√𝑛
 (3.8) 

 
where 𝑛 represents the length of the time series. If there are values that are outside these bounds, or 
if the entire series is outside these bounds, the series is likely to contain a signal, and is most probably 
not white noise only. The values inside these bounds are likely to show a correlation that does not 
differ from 0. 
 
The outputs of the regression models are subjected to both qualitative and quantitative analyses. In 
the qualitative analysis, a series of predictions are examined starting at three distinct moments: the 
middle of the rainy season, the end of the rainy season, and the middle of the dry season. For each 
moment in time, predictions up to six months ahead are examined, and their behavior in correctly 
predicting the volume time series will be described. In the quantitative analysis, the models are 
evaluated based on their skill to predict whether the volume will fall below the threshold of one 
standard deviation from the seasonal trend, expressed with the Heidke Skill Score, which was 
discussed in Section 2.10 in Formula 2.8. The score is derived for every month of the year for each 
lead time in the forecast, and it indicates the proportion of correctly forecasted observed values relative 
to what would be expected by chance. A perfect forecast is indicated by a value of 1, while a score of 
0 indicates no skill. A negative score suggests that the forecast performs worse than a forecast by 
chance.  

3.3.2 Predictors and Models Under Consideration 

This study aims to evaluate the predictive performance of regression models utilising the volume time 
series generated with the novel method, which was discussed in Section 3.1. To achieve this, three 
predictor variables are selected: volume, precipitation, and the Standardised Evapotranspiration and 
Precipitation Index (SPEI). The memory of the volume time series is tested using an autoregressive 
model, while the added predictive skill with precipitation and SPEI are examined through a multi-linear 
regression model. All predictors are evaluated as individual predictors as well as in combination with 
volume as a predictor. In the following subsections, each single predictor will be discussed in detail. 

3.3.2.1. Autoregression with Volume Time Series  

The autoregressive analysis is performed on the volume time series obtained from the novel method 
discussed in Section 3.1. The volume of a reservoir is not only determined by the inflow, outflow, and 
storage capacity, but also by its residence time, which refers to the duration of water storage in the 
reservoir before it is released. This residence time causes a lagged response of the reservoir to 
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external factors. For example, in case of the absence of inflow, the reservoir will take a period equal 
to its residence time to become completely depleted. Thus, the memory effect of the reservoir is 
expected to be a crucial factor in predicting its future state. In line with Section 2.9, the autoregressive 
model takes advantage of this memory effect in the dependent variable, which in this case is the 
volume time series. The autoregressive model employed in this study is based on the one described 
in Section 2.9 and can be mathematically represented by Formula 3.11: 
 

𝑉𝑚 =  𝐶 + 𝛽1𝑉𝑚−1 + 𝛽2𝑉𝑚−2 + ⋯ + 𝛽𝑖𝑉𝑚−𝑖 + 𝜀𝑚   (3.11) 
 
where  𝑉 is the dependent variable, 𝐶 as the reference datum, 𝑖 as the number of preceding months 

in the autoregressive model, 𝑉𝑚−1, 𝑉𝑚−2, … 𝑉𝑚−𝑖  as the monthly volumes associated with the 
preceding months, and 𝛽1, 𝛽2, … 𝛽𝑖  (-) as the corresponding weights. The determination of the number 
of values used as input is described in Section 3.3.1 and is based on the lagged autocorrelation. Last, 
𝜀𝑚 is the uncertainty or "white noise" associated with the prediction for the respective month 𝑚. 

 

3.3.2.2. Multi-Linear Regression with Precipitation Time Series 

The added predictive skill by the introduction of precipitation as a predictor is explored in multi-linear 
regression models. As previously discussed in Section 2.2, reservoir storages are supplemented by 
the runoff resulting from precipitation in the catchment upstream. Thus, the amount of precipitation 
resulting in runoff into the reservoir is expected to be an important factor in predicting its future state. 
As mentioned in Section 2.9, the multi-linear regression model takes advantage of the information in 
time series of an explanatory variable, which in this case is the precipitation time series. 
 
The aim of this analysis is to determine whether incorporating precipitation time series, obtained from 
the ERA5 dataset by Hersbach et al. (2020), into the previously presented model in Section 3.3.2.1 
would enhance its predictive power, given that precipitation contributes to reservoir storages through 
runoff from the upstream catchment. It is anticipated that the addition of precipitation time series to 
the model will improve its predictive ability, particularly during the wet seasons when more precipitation 
is expected, while during the dry seasons, minimal to no precipitation is expected, and the effect on 
the model may be limited. The approach starts with analysing the predictive performance of 
precipitation as the sole predictor using a multi-linear regression model described in Formula 3.12: 
 

𝑉𝑚 =  𝐶 + 𝜔1𝑃𝑚−1 + 𝜔2𝑃𝑚−2 + ⋯ + 𝜔𝑖𝑃𝑚−𝑖 + 𝜀𝑚   (3.12) 
 
where 𝑉 (m3) is the dependent variable at the respective month 𝑚, while the explanatory variable is 

the precipitation 𝑃 (mm) for the preceding months. The determination of the number of values used 
as input is described in Section 3.3.1 and is based on the lagged correlation between volume and 
precipitation.  𝜔1, 𝜔2, … 𝜔𝑖 (-) represent the weights associated with the precipitation values of the 
preceding months, 𝐶 is the reference datum and 𝜀𝑚 is the "white noise" or uncertainty in the prediction 
at the same respective month 𝑚. 
 
Next, the predictive performance of a combination of precipitation and volume time series is explored. 
The multi-linear regression model aims to find the volume 𝑉 (m3) at the respective month 𝑚 by 
combining volume (as both dependent and explanatory variable, like in autoregression) and 
precipitation (as explanatory variable). Specifically, this is described in Formula 3.13: 
 

𝑉𝑚 =  𝐶 + 𝛽1𝑉𝑚−1 + 𝜔1𝑃𝑚−1 + 𝛽2𝑉𝑚−2 + 𝜔2𝑃𝑚−2 + ⋯ + 𝛽𝑖𝑉𝑚−𝑖 + 𝜔𝑗𝑃𝑚−𝑗 + 𝜀𝑚  (3.13) 

 
where 𝑉𝑚−𝑖 represents volume in the 𝑖th month preceding the respective month. For each volume 
value the associated weights are presented by 𝛽1, 𝛽2, … 𝛽𝑖 (-). 𝑃 represents precipitation in the 𝑗th 

preceding month, with associated weights 𝜔1, 𝜔2, … 𝜔𝑖. Again, the number of values used as input is 
based on the lagged correlation between volume and precipitation. 𝐶 is the reference datum, and 𝜀𝑚 

is the "white noise" or uncertainty in the prediction at the respective month 𝑚. 
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3.3.2.3. Multi-Linear Regression with Monthly SPEI Time Series 

Last, the added predictive skill of the monthly SPEI by Beguería et al. (2021) is explored in a multi-
linear regression model. As noted in Section 2.2, both precipitation and evapotranspiration have direct 
and indirect impacts on reservoir conditions, which are captured by the SPEI, representing the 
standardised discrepancy between precipitation and potential evapotranspiration. This index provides 
an indication of drought conditions relative to normal conditions. The SPEI serves as an indicator of 
drought conditions relative to normal conditions in a 1x1 degree latitude-longitude spatial resolution. 
In addition to providing insight into precipitation and evaporation levels, it also reflects the demand for 
water in the surrounding environment, which is likely to increase during times of drought. As a result, 
the SPEI is anticipated to be a crucial factor in forecasting the future state of a reservoir. The multi-
linear regression model takes advantage of the information in the SPEI time series, as explanatory 
variable.  
 
First, the predictive performance of the SPEI as the sole predictor is explored in a multiple linear 
regression model, which is expressed in Formula 3.14: 
 

𝑉𝑚 =  𝐶 + 𝜑1𝑆𝑚−1 + 𝜑2𝑆𝑚−2 + ⋯ + 𝜑𝑖𝑆𝑚−𝑖 + 𝜀𝑚   (3.14) 
 
where 𝑉 (m3) represents the dependent variable for the corresponding month 𝑚, while the explainable 

variable is the SPEI 𝑆 (-) for the previous months. Again, the number of values used as input is based 
on the lagged correlation between volume and SPEI. The weights assigned to the SPEI values of the 
previous months are represented by 𝜑1, 𝜑2, … 𝜑𝑗 (-) with 𝐶 serving as the reference datum and 𝜀𝑚 

representing the "white noise" or uncertainty in the SPEI for the same corresponding month 𝑚. Last, 
the SPEI is integrated with the available volumetric time series, as detailed in Formula 3.15: 
 

𝑉𝑚 =  𝐶 + 𝛽1𝑉𝑚−1 + 𝜑1𝑆𝑚−1 + 𝛽2𝑉𝑚−2 + 𝜑2𝑆𝑚−2 + ⋯ + 𝛽𝑖𝑉𝑚−𝑖 + 𝜑𝑗𝑆𝑚−𝑗 + 𝜀𝑚  (3.15) 

 
where 𝑉𝑚−𝑖 refers to the volume in the 𝑖th month before the respective month. The associated weights 
for each volume value are presented as 𝛽1, 𝛽2, … 𝛽𝑖 (-). Additionally, the SPEI 𝑆 in the same 𝑖th 

preceding months and is represented by 𝜕 (-), with associated weights 𝜑1, 𝜑2, … 𝜑𝑖 (-). Again, the 
number of values used as input is based on the lagged correlation between volume and SPEI. 𝐶 

denotes the reference datum, and 𝜀𝑚 signifies the "white noise" or uncertainty in the prediction for the 
respective month 𝑚. 

 

3.3.2.4. Additional Analysis with SPEI Time Series 

Previous studies have demonstrated successful analysis of water availability or deficits using climate 
indices similar to SPEI in regression models (Dibike et al., 2016; Ghasemi et al., 2021; Jiao et al., 
2021; Gurrapu et al., 2021; Li et al., 2023). However, in some reservoirs, it is possible that there is no 
significant lagged correlation between the SPEI and the volume time series. The hypothesis is that 
reservoirs with longer residence times may not exhibit enough variation in volume dynamics to have 
a lagged correlation with SPEI. In such cases, it is decided to use three SPEI values in the multi-linear 
regression model for the subject reservoir, even if no lagged correlation is found. Furthermore, an 
examination is carried out on a different reservoir, which exhibited volume dynamics that closely 
corresponded with the seasonality and, therefore, presented more fluctuations. The hypothesis is that 
due to this variability, there would be a higher lagged correlation between the SPEI and the volume of 
water in the reservoir. 
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3.4 Description of Case Studies and Reference Data 
In this thesis, reservoirs from Zambia, India, Eswatini, and Lesotho are studied to address the research 
questions. This section provides an introduction to the reservoirs and their datasets and explains why 
they were selected. The Zambian reservoirs are discussed in Section 3.4.1 and the Indian dataset is 
introduced in Section 3.4.2. The reservoir in Eswatini is extensively emphasised in Section 3.4.3 
becasue it is part of the third research question of this thesis. Last the Lesotho reservoir is introduced 
in Section 3.4.4. To provide a clear overview of all the reservoirs and their details, Table 3.1 highlights 
the information for each reservoir and the experiments in which they are utilised in this thesis. 

3.4.1 Zambian Reservoirs examined for Validation Novel Method 

Two reservoirs in Zambia, Mita Hills and Mulungushi, are primarily examined to validate the novel 
method described in Section 3.1. Figure 3.5 presents an overview on the Mita Hills Dam in Zambia 
and Figure 3.6 on the Mulungushi Dam: 

  

Figure 3.5: A map by Global Water Watch and photos that provide an impression of the Mita Hills 
reservoir in Zambia. The reservoir has a dendritic shape with several tributaries, as can be seen 
from the Global Water Watch image on the left (Donchyts, 2022). On the right-hand side, photos 
are displayed to provide an impression of the vegetation and the relatively flat area surrounding 
the reservoir. Source: Left: Map by Global Water Watch (2023). Upper right: Photo by Studio 
Pietrangeli (2012a). Lower right: Photo by Blog (2013). 
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Both reservoirs are situated near Kabwe, the capital of Zambia, and are primarily utilised for 
hydropower generation. As the figures show, they share similar terrains in terms of vegetation and 
elevation. Both have a dendritic shape and contain several smaller tributaries. The Mulungushi 
reservoir was established in 1925 and is approximately 20 kilometres in length and 2-3 kilometres in 
width. The larger Mita Hills Reservoir was constructed in 1955, spans 30 kilometres in length and 3-5 
kilometres in width. 
 
The main motivation for the examination of these reservoirs is because of the high-quality bathymetric 
reference data for the reservoirs was made available by the Zambian Water Resource Management 
Authority (WARMA) (Studio Pietrangeli, 2012a; 2012b). The data from the bathymetric report was 
created during a survey with a single-beam sonar system and included relationships between volume 
and area for a range of water level heights. This high-quality data enabled the validation of a sub-step 
in the method for generating volume time series.  
 
To optimise the transferable parameters of the novel method for the Zambian reservoirs, the method 
applied a parameter set with a Strahler order deviation from the main stream to 5, the delineation 
buffer in HydroMT was set to 30 meters and a buffer of 500 meters downstream of the lowest sampled 
point was used. 
  

 
 
 
 

Figure 3.6: Also for the Mulungushi Dam in Zambia a map and photos are shown. Like Mita 
Hills, the shape is dendritic with smaller tributary areas. On the right, several photos provide 
a glimpse of the reservoir's surroundings, which are relatively flat and covered in vegetation 
similar to that of the Mulungushi Dam. Source: Left: Map by Global Water Watch (2023). 

Upper right: Photo by Studio Pietrangeli (2012b). Lower right: Photo by Muwowo (2012). 
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3.4.2 Indian Reservoirs examined for Further Validation  

A total of 94 Indian reservoirs are analysed, and their locations are depicted in Figure 3.7: 
 

 

 
 
 
 
 

 
 
 
As illustrated in the figure, these reservoirs are dispersed throughout the entire country and exhibit 
diverse characteristics such as varying sizes, shapes, elevations, and surrounding terrains. The 
decision to utilise the Indian dataset was primarily driven by the accessibility of data provided by the 
Indian Central Water Commission. The dataset includes volume time series for each reservoir in 
respect to an unknown in-situ datum and ranges from 2002 to 2018. The dataset's wide range of 
reservoir types made it particularly suitable for testing the proposed method. The method employed 
the same parameter settings used for the Zambian reservoirs to retrieve bathymetry. 

  

The Map of India showing the Locations of 94 Reservoirs 

N 
300 km 

Figure 3.7: The map of India indicating the location of each reservoir in the Indian reference 
dataset. The reservoirs are dispersed throughout the entire country, with a greater 
concentration in the west. The wide range of variation in the dataset presents an opportunity 
to test the effectiveness of the novel method. 
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3.4.3 Eswatini Reservoir for Water Availability Predictions  

The predictive performance of regression models is applied to the Hawane reservoir in Eswatini due 
to societal importance of the Hawane reservoir. The data used in the prediction ranges from 2000 to 
2021 and is obtained through Global Water Watch and translated into volumes with the novel method. 
The Kingdom of Eswatini, previously known as Swaziland and hereafter referred to as ‘Eswatini’, is a 
Southern African country with a population of approximately 1,2 million people. Eswatini shares 
borders with South Africa and Mozambique and has a land area of 17.360 km2, making it the smallest 
country in the Southern Hemisphere. The country has a subtropical climate characterised by wet 
summers from November to April, with average temperatures ranging between 15 and 27 degrees 
Celsius. The winters are generally dry, lasting from April to September, with average temperatures 
ranging from 14,6 to 25 degrees Celsius. Eswatini receives an average annual precipitation of around 
800 mm, of which approximately 75% falls during the summer, as illustrated in Figure 3.8 and spatially 
presented in Figure 3.9 (World Bank Group, 2021). 

 
 
 
 

 

Agriculture is the most significant economic activity in the country, with 77% relying on resources 
provided by livestock. Eswatini has faced various natural hazards over the past century, including 
tropical storms, epidemic diseases, forest fires, severe floods, and multi-year droughts. These events 
have had significant impacts on the country's population, with 25% of its population experiencing food 
and water insecurity. Climate change is considered a significant threat to the growing needs of 
Eswatini's vulnerable communities (World Bank Group, 2021). 

Figure 3.8: The average monthly temperature and rainfall for Eswatini, calculated over the 
period 1991-2020. Eswatini has a subtropical climate with wet summers that start in October 
and end in April. The figure illustrates that the annual temperature ranges from 15 to 27 
degrees Celsius, while 75% of the annual rainfall occurs during the summer period from 
November to April, as noted in the World Bank Group report (2021).  
 

 

Figure 3.9: The spatial variability of the annual precipitation (mm) in Eswatini processed with 
interpolation between weather stations, causing the gradual pattern. The graph demonstrates 
that the majority of precipitation occurs in the western region of the country where the Highveld 
is situated. The Highveld is characterised by montane grasslands and aquatic systems, and the 
city of Mbabane is located within this region, as indicated in the World Bank Group report (2021).  
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3.4.3.1. The Severe Drought 2015-2016: Impacts on the Hawane Reservoir 

In 2016, Eswatini experienced a severe drought induced by El Nino, which led to a decrease of over 
50% in rainfall during the 2015-2016 season. The country suffered extensive damage, with fresh water 
reserves declining by more than half, and resources like the Hawane Dam and Mnjoli Dam almost 
completely drying up (Deputy Prime Minister's Office, 2016). The ESG News Eswatini (2016) reported 
that the government declared a state of emergency from February of that year and called for severe 
curtailments, which included cutting off the domestic water grid for four days a week until the arrival 
of the summer rains. The agricultural sector was severely impacted, with significant economic losses 
reported, particularly in sugarcane and vegetable production, where revenue losses of 30% and 80%, 
respectively, were observed as well as reduced crop qualities. The yields were also affected, with 
maize production reduced by 63% compared to the previous five years. By March, over 63.000 cattle 
had died, leading to many farmers losing their businesses (Magagula, 2016). This resulted in higher 
food prices and poor crops, which put 550.744 livelihoods (approximately 50% of the population) at 
risk. 

  
The Hawane Dam serves as the primary source of water for Mbabane, the capital city of Eswatini, 
which has a population of 60.691 individuals (Tracks4Africa, 2013; AZ Nations, 2017). Located in the 
Hawane Dam and Nature Reserve, a protected area of approximately 232 hectares, the dam is 
situated along the Mbuluzi River northeast of Mbabane, as illustrated in Figure 3.9. Established in 
1978, the nature reserve was created to preserve the marshes along the Mbuluzi River, which play a 
significant role in supporting the region's biodiversity. During the 2016 drought, water levels in the 
Hawane Dam fell to 9% of full capacity by August, as reported by ESG News (2016). Images capturing 
the nearly dried-up Hawane Dam are presented in Figure 3.10. 

 
  

Figure 3.10: A map retrieved from Global Water Watch by Donchyts et al. (2022) showing the shape of the Hawane 
reservoir and its surroundings (left). Furthermore stills from a public TV broadcast by ESG News (2016) are 
presented (right). The broadcast was aired on November 8, 2016, after rainfall had started filling the Hawane Dam 
reservoir again. The provided stills depict the completely dried areas in the Hawane Dam earlier that year, which 
were used in the broadcast to compare the current situation (ESG News Eswatini, 2016). 
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3.4.4 Lesotho Reservoir examined for Seasonality in Volume Time Series 

 
To investigate the effect of seasonality on the predictive performance of the regression model using 
the SPEI and volume, an additional study is conducted on the Katse Dam in Lesotho, which is 
presented in Figure 3.11: 
 

 
 
 
 
 
 
 
 
 

Similar to the Hawane Dam, the analysis of the Katse Dam does not rely on reference data. The 
method used for bathymetry retrieval for the Katse Dam study is the same as the one used for the 
Zambian reservoirs. The selection of the Katse Dam for the additional study is based on its response 
to seasonality in its volume dynamics, which contrasts with the Eswatini reservoir that maintains a 
more constant dynamics except during drought events. The study's goal is to compare the predictive 
performance of the regression model using the SPEI and volume for the Katse Dam and the Hawane 
Dam.  

Figure 3.11: A map retrieved by Global Water Watch (Donchyts, 2022) and photos of the Katse 
Dam in Lesotho. It is evident from the images that the dam has a complex shape, where two 
longitudinal shapes converge at the dam. The satellite imagery on the left displays the shape of 
the Katse Dam, while the image on the right provides a view at the dam itself, as well as the 

surrounding elevations and vegetation. These photos were captured by Brian Cohen (2015). 
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3.4.5 Overview of Case Studies 

 
Table 3.3 provides a summary of Section 3.4 as a whole: 
 
 

 
The study examines several reservoirs in different countries to test the proposed method for calculating 
bathymetry and predicting water volumes. Two reservoirs in Zambia, Mita Hills and Mulungushi Dam, are 
used to develop and test the novel method because their reference data provided excellent reference data. 
The study also included 94 man-made reservoirs in India with varying sizes, shapes, and surrounding terrains, 
ideal for testing the novel method for a large number of reservoirs. In Eswatini, the study focuses on Hawane 
Dam, which experienced a severe drought event in 2016. This case study therefore allows to test whether 
predictive performance can be gained using volume, precipitation, and SPEI as predictors. Lastly, the study 
uses Katse Dam in Lesotho to validate against a reservoir with high seasonality in volume time series.  
  

Case 
study 

Number of 
reservoirs 

Description of reservoirs  Validation data Experiments 

Zambia 
2 (Mita Hills and 

Mulungushi Dam) 

Size ~ 5500 ha.  (Mita Hills) 
and ~3000 ha. (Mulungushi) 

Man-made reservoirs 
Dendritic shape incl. smaller tributaries 

Constructed in 1955 (Mita Hills) and 1925 
(Mulungushi) 

Bathymetric Survey 
providing the 

hypsometric curve 
provided by WARMA 

(2012). 

Applied in initial validation process 
for the novel approach in 

calculating bathymetry due to 
complete bathymetry validation 

data (Section 4.1). 

India 94 

Various sizes 
All man-made reservoirs. 

Mix of complex, cascading and ‘standard’ 
dendritic shapes 

Constructed over various years 

Volume Time Series 
(2002-2018) provided 

by Indian CWC 

Applied in testing of novel method 
for a wide range of reservoirs 

(Section 4.2) 

Eswatini 1 (Hawane Dam) 

Size ~232 ha. 
Man-made reservoir 

Dendritic shape 
Constructed in 1988 

N.A. 

Test the predictive performance of 
water volumes (qualitative and 

quantitative) using autoregression, 
precipitation and SPEI (Section 4.3 
& 4.4). Chosen because relevant 
to society and recent impactful 
drought event in the reservoir. 

Lesotho 1 (Katse Dam) 

Size ~3.580 ha. / 1950 km3 (max. 
capacity) 

Complex, two merging dendritic shapes 
Man-made reservoir 
Constructed in 1996 

N.A. 

Test the predictive performance of 
water volumes (qualitative and 

quantitative) using autoregression, 
precipitation and SPEI (Section 
4.5). Chosen to validate against 
reservoir with high seasonality in 

volume time series. 

Table 3.3: An overview of the reservoirs examined in the case studies, including the number of reservoirs, reservoir description, 
validation datum details (if applicable), and experiments done with the reservoirs. Abbreviations in the table: WARMA is the 
Zambian Water Resource Management Authority, CWC is the Central Water Committee in India and the SPEI is the 
Standardised Precipitation and Evapotranspiration Index.  
 
 
 
 
 
An overview of the reservoirs examined in the case studies with for each presented the number of reservoirs, the descrption of 
the reservoir, details on the validation datum, if applicable, and the DEM used in this case study. 
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4     

Results 

4 Results 
The results chapter provides the in-depth analysis of the performance of the novel method for retrieving 
reservoir bathymetry and predicting water availability. Section 4.1 presents the results of the step-by-step 
retrieval process and the construction of associated hypsometric curves. In Section 4.2, the novel method is 
applied to 94 reservoirs in India, and the results are analysed. Section 4.3 compares the novel method with 
a benchmark method proposed by Messager et al. (2016). The results of the regression models in reservoirs 
in Eswatini are presented in Section 4.4. Finally, Section 4.5 provides additional analysis of the Standardised 
Precipitation and Evapotranspiration Index (SPEI) in the Lesotho reservoir. Overall, this chapter provides a 
comprehensive evaluation of the effectiveness and accuracy of the novel method and its potential for 
improving water resource management in various regions. 
 

4.1 Step-By-Step Bathymetry and Hypsometry Construction 

 
In this section, the step-by-step results of the retrieval process is presented for the bathymetry and 
hypsometry of two reservoirs located in Zambia, namely 'Mulungushi' and 'Mita Hills'. These are the 
results of the bathymetry method after multiple iterations and optimisation of the algorithm. The 
conceptual approach utilised in this process is visually presented in Figure 3.2. The hypsometric curve 
is shown in Figure 8. 

4.1.1 Delineation of the Reservoir  

The delineation process is carried out using the model generation tool HydroMT, software by Eilander 

et al. (2023), and reference coordinates accessed from the Global Water Watch platform (Donchyts 

et al., 2022). Mita Hills and Mulungushi reservoirs are identified using their respective reference IDs 

88643 and 87292. Results of the delineation process, which is described in Step 1 and illustrated in 

Figure 3.2, are presented in Figure 4.3 for Mita Hills and Figure 4.4 for Mulungushi.  
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Figure 4.1: The satellite image including the reservoir shape obtained through Global 
Water Watch by Donchyts et al. (2022) (left) and MERIT-Hydro DEM by Yamazaki et al. 
(2017) (right) of the Mita Hills reservoir in Zambia. The surface water level of the reservoir 
at the time of measurement was approximately 1050 meters. The geospatial coordinate 
system in terms of latitude and longitude in degrees is presented on the y- and x-axis, 
while the z-axis represents the elevation in meters as indicated by the colorbar ranging 
from 900 to 1400 meters. 
 

Figure 4.2: The elevation map of the Mulungushi reservoir in Zambia retrieved from 
Global Water Watch by Donchyts et al. (2022) (left) and the Hydro-MERIT DEM Yamazaki 
et al. (2017) (right). The reservoir's surface water level at the time of measurement 
recorded is around 1115 meters. Like Figure 4.3, the y-axis and x-axis represent the 
geospatial coordinate system in latitude and longitude, while the z-axis is represented in 
colors following the colorbar of elevation, ranging from 900 to 1400 meters. 
 

MERIT-Hydro DEM Global Water Watch Image 
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The reservoirs have a typical man-made reservoir shape, characterised by a dendritic shape as 
discussed in Section 2.1. In addition, both reservoirs exhibit clear tributaries on each side of the 
reservoir, which is a common feature of man-made reservoirs where water follows the surrounding 
landscape elevations. Both reservoirs have similar terrain surroundings in terms of vegetation and 
elevation, as stated in the introduction of this section. However, the Mita Hills reservoir is situated 
approximately 65 meters below the Mulungushi reservoir, as shown in the Figures. Furthermore, both 
maps exhibit a sudden jump in elevation (for Mita Hills area at -13.97° latitude and 29.13° longitude, 
and for Mulungushi at -14.54° latitude and 28.825° longitude), which is assumed to correspond to the 
location of the dam wall. 

4.1.2 Filtering the Reservoir Surface  

The algorithm designed for the retrieval of reservoir bathymetry begins by filtering the surface water 

level from the reservoir, as is illustrated by Figure 3.2 and described by Step 2. This process is 

successfully executed for both Mita Hills (left), as shown in Figure 4.3, and Mulungushi (right).  

 

 

 

 

The resulting output only include the cells that represent the reservoir surface water pixels, with all 

pixels upstream of the dam wall until the first elevation of the surrounding landscape removed as can 

be seen in the figure. Consequently, the remaining cells present the landscape prior to the filtering 

procedure. 

4.1.3 Determining the Depth on Main Stream in Reservoir   

In accordance with the methodology described in Step 4 in Figure 3.2, flow directions are determined 

for each reservoir to establish the main stream direction. As shown in Figure 4.4 for Mita Hills (left) 

and Mulungushi (right), the main stream flows from the most upstream cell towards the dam wall, 

which represents the outflow location in the reservoir.  

Figure 4.3: Elevation map of the Mita Hills reservoir (left) and the Mulungushi reservoir (right) in Zambia after filtering 
surface water cells, based on Hydro-MERIT elevation data. The remaining cells show the terrain elevation. Latitude and 
longitude are presented on the y- and x-axis, respectively, while elevation in meters is indicated by the colorbar (ranging 
from 900 to 1400 meters) on the z-axis. 
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As expected from the D8 method the main stream was found to roughly follow a central path through the 
reservoir. Subsequently, topographic depths are calculated for each cell along the main stream in accordance 
with the approach outlined in Step 5 of Figure 3.2. The resulting bathymetry for this line is presented in Figure 
4.5 for Mita Hills (left) and Mulungushi (right).  
 

 
 
 
 
 
 
It is evident that the new bathymetry closely aligns with the surrounding upstream terrain and gradually 
flattens towards the dam wall downstream (note the dimension of the x-axis relative to the y axis). It is worth 
noting that in Mita Hills, the terrain downstream of the identified bottom of the dam wall is descending, while 
in Mulungushi, the bottom of the dam wall was identified at a point where the terrain begins to flatten 
downstream. 

Figure 4.5: The cross-section of the main stream bathymetry and water surface elevation in the Mita Hills reservoir, 
with elevation in meters on the Y-axis and distance from the most downstream cell in meters on the X-axis. The water 
surface elevation is located at approximately 1109 meters for Mita Hills (left) and 1059 meters for Mulungushi (right), 
with the dam wall having a height of 119 meters and 26 meters. The length of the main stream is approximately 30000 
meters, and the location of the main stream is shown in Figure 4.6. It can be seen that the bathymetry slightly 
incorporates flattenening of the reservoir bottom. 
 

Figure 4.4: The elevation map of the Mita Hills (left) and Mulungushi (right) reservoir, with the main stream with the 
water surface filtered out, overlaid on the filtered elevation data. The main stream is identified based on the flow 
directions calculated following Section 3.1.3, and is represented by the line through the filtered area. The elevation 
data is obtained from the MERIT-Hydro dataset accessed through HydroMT (Eilander et al., 2023). The y- and x-
axes represent latitude and longitude, respectively, while the z-axis represents elevation in meters as indicated by 
the colorbar ranging from 900 to 1400 meters. 
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4.1.4 Identify the Stream Tributaries and Determining Associated Depths 

In accordance with the procedure outlined in Figure 3.2 (Step 5), the tributaries of the reservoir are 

identified with a maximum Strahler order of 5 below the Strahler order of the main stream. This is set 

due to computational constraints. Figure 4.6 displays the identified tributaries for Mita Hills on the left, 

while the identified tributaries for Mulungushi are displayed on the right.  

 

 

 

 

 

 

As expected, the main tributaries of each reservoir exhibit identifiable streams. The bathymetry of 

each tributary is plotted, with the flattening of the elevation towards the intersection point with the main 

stream initially plotted within the reservoir. 

 

4.1.5 Interpolation of the Bathymetry 

The subsequent step in the method, as outlined in Section 3.1.3 and illustrated in Figure 3.2, involves 

determining the topographic depth for the cells that are filtered and thus are assigned no elevation 

values. Linear interpolation of the original elevation data and the surrounding elevations are employed 

to obtain the topographic depths, which are presented on the next page in Figure 4.7 for Mita Hills 

and Figure 4.8 for Mulungushi. The results show that the bathymetry for the cells with no elevation 

values has been successfully determined through linear interpolation of the surrounding elevations 

and the original elevation data, as illustrated in Figure 4.7 for Mita Hills and 4.8 for Mulungushi. The 

plots on the right provide a representation of the bathymetry, which appears to naturally fit into the 

surrounding landscape and the bathymetry naturally aligns with the terrain downstream. This also 

holds for the bathymetry in the main tributaries. However, this is not the case in the tributaries of the 

tributaries, where no stream axis was plotted. 

Figure 4.6: Tributaries plotted to the main stream presented in an elevation map of the Mita Hills reservoir (left) 
and the Mulungushi reservoir (right). The artificial streams are identified based on the flow directions calculated 
following Section 3.1 and is represented by the lines through the filtered area. The elevation data is obtained 
from the MERIT-Hydro dataset accessed through HydroMT (Eilander et al., 2023). The y- and x-axes represent 
latitude and longitude, respectively, while the z-axis represents elevation in meters as indicated by the colorbar 
ranging from 900 to 1400 meters. 
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Figure 4.7: Comparison of the elevation map of Mita Hills reservoir, with Global Water Watch image by 
Donchyts et al. (2016) (left), before (middle) and after (right) retrieval of the bathymetry. The original 
elevation data is retrieved from the MERIT-Hydro database accessed through HydroMT (Eilander et al., 
2023). The bathymetry is obtained for each cell representing the water surface area using linear 
interpolation of the surrounding elevations. The resulting bathymetry data provide a more detailed 
representation of the reservoir's topography. The y- and x-axes represent latitude and longitude, 
respectively, while the z-axis represents elevation in meters as indicated by the colorbar ranging from 
900 to 1400 meters. 

 

 

Figure 4.8: A similar comparison of the Mulungushi reservoir, with Global Water Watch image by Donchyts et al. 
(2016) (left), before (middle) and after (right) retrieval of the bathymetry. The original elevation data is retrieved 
from the MERIT-Hydro database accessed through HydroMT (Eilander et al., 2023). The bathymetry is obtained 
with linear interpolation of the surrounding elevations. The resulting bathymetry data provide a more detailed 
representation of the reservoir's topography. The y- and x-axes represent latitude and longitude, respectively, 
while the z-axis represents elevation in meters as indicated by the colorbar is similar to Figure 4.11. 
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4.1.6 Establishing the Hypsometric Relations 

The hypsometric relation is established by deriving the reservoir bathymetry, following the 
methodology detailed in Section 3.1.3. The resulting hypsometry, which shows the relationship 
between volume and water for the Mita Hills and Mulungushi reservoirs, is presented in Figure 4.9.  
 

  

 

 
To derive the hypsometry, first the relation is established between water level and volume, and water 
level and area separately, which are detailed in Appendix B. The analysis reveals a non-linear 
relationship between the parameters, with larger area sizes corresponding to greater volume gains 
per step, consistent with the known characteristics of lakes and reservoirs, as discussed in Section 
2.1. 

 
In the results some deviations from the theoretical fit are observed in both the Mita Hills and 
Mulungushi reservoirs. Specifically, in the Mita Hills, a discrepancy is observed around an area of 60 
km2, with the volume diverging from the theoretical hypsometric fit. This finding suggests that for this 
area, there are smaller area gains for each increase in volume compared to what is predicted by the 
theoretical fit. However, around an area of 80 km2, the samples meet the theoretical hypsometric fit 
again. Similarly, for Mulungushi, a similar deviation is observed around an area of 35 km2 and 39 km2. 

 

Figure 4.9: The hypsometric curves representing volume (m3) and area (m2) obtained with the novel method for 
the Mita Hills (left) reservoir and the Mulungushi reservoir (right) in Zambia. For each water level height the volume 
and the area is determined by the model, which allows for the relation establishement.  
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4.1.7 Validation of the Hypsometric Curves in Mita Hills and Mulungushi 

The validation of the results obtained through the novel method is done after retrieval of the modelled 

hypsometric curve. The validation results for the relationship between volume and water level are 

presented in the Figure 4.10  for Mita Hills (left) and Mulungushi (right).  

 

As shown in the figures, a neat fit through the samples is observed for the volume versus water level 

relationship. The blue dots represent the in-situ samples, which closely align with the results obtained 

from the model for both Mita Hills and Mulungushi reservoirs. However, for the Mita Hills samples, it 

looks like an offset between the validation data and the model results would give a better result. For 

both reservoirs, the relative error is determined, and it was found to be 0.88 for Mita Hills and 1.01 for 

Mulungushi, which represents a 12% underprediction and 1% overprediction, respectively. These 

results demonstrate the effectiveness of the novel method in accurately predicting the relationship 

between volume and water level in the studied reservoirs.  

4.2 The Novel Method Applied for Hypsometry in Indian Reservoirs 
After establishment of the novel method, of which initial results are presented in previous Section 4.1, 

the novel method is employed to derive hypsometric curves for a larger validation dataset of Indian 

reservoirs. The dataset originally comprised 106 reservoirs; however, two of the reservoirs lacked an 

overlapping reference ID in the Global Water Watch database, and georeferenced data for 10 

reservoirs could not be loaded due to an error in the algorithm, which, at the time of writing, has been 

resolved but due to time restrictions was not applied in the thesis. Consequently, the final dataset 

consisted of 94 reservoirs. This section presents both qualitative and quantitative analyses of the 

derived hypsometric curves for each reservoir in the validation dataset. 

4.2.1 Qualitative Analysis of Hypsometry in Indian Reservoirs 

The qualitative analysis involves visually inspecting all bathymetry plots of the main streams’ reservoir-

by-reservoir. The spatial distribution of the performance for the 94 reservoirs is illustrated on the map 

of India in Figure 4.11. 

 

Figure 4.10: Validation of the hypsometric curves for volume (m3) and water level (m) obtained with the novel method 
for the Mita Hills (left) reservoir and the Mulungushi reservoir (right) in Zambia. The blue dots, representing in-situ 
measurements, closely match the modeled hypsometric curve, shown as a red fit. Additionally, the relative errors (RE) 
for Mita Hills and Mulungushi are 0.88 and 1.01, respectively. This means that there was an underestimation of 12% 
for Mita Hills and an overestimation of 1% for Mulungushi in terms of their volumes. 
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The bathymetry plots on the relevant axis are classified into four categories based on their quality: 

“Very Bad” (red), where no form of bathymetry can be recognised is observed in 28 reservoirs “Bad” 

(purple), where a poorly drawn bathymetry is visible in 18 reservoirs, “Neutral” (orange), where a 

bathymetry is clearly drawn and looked good, but with room for improvement in 24 reservoirs, and 

“Good” (green), where the bathymetry is perfectly drawn in 24 reservoirs. There is no clear spatial 

pattern observed, although reservoirs with well-drawn bathymetry were somewhat clustered in the 

southwest and more evenly distributed in other parts of the country. Reservoirs with poorly performing 

bathymetry are predominantly clustered in the middle-west and more evenly spread throughout the 

rest of the country. Figure 4.16 – 4.19 provide examples on the classified bathymetry interpolations 

among the Indian reservoir data. 

N 300 km 

The Map of India and The Qualitative Analysis of 94 Reservoirs 

Figure 4.11: A map of India indicating the locations of the 94 reservoirs included in the validation dataset for analysis. 
The arrows are color-coded to indicate the results of the qualitative analysis, which involves a visual inspection of the 
bathymetry drawn on the main stream axis. Red arrows represent reservoirs classified as "Very Bad," where no 
recognizable bathymetry is present. Purple arrows indicate "Bad" performance, where a recognizable bathymetry is 
present but with poor scores. "Neutral" performance is represented by orange arrows, where the bathymetry is clearly 
drawn with significant room for improvement. Finally, green arrows represent reservoirs classified as "Good" based on 
the quality of their drawn bathymetry. 
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Figure 4.12: Three examples of bathymetry plots on the main stream that are classified as "Very Bad" due to their poor quality, which 
represent 28 out of 94 reservoirs in the Indian validation dataset. These plots are insufficient in presenting the bathymetry of the reservoirs, 
and are found to contain three distinct error scenarios: (1) a plot that failed to align with the cells located closest upstream and downstream 
of the reservoir (left), (2) a barely visible plot (middle), and (3) a plot that is partially above the current elevations (right). 

 

 

Figure 4.13: Three examples of bathymetry plots on the main stream that are categorized as "Bad" which accounted for 18 of the 94 
reservoirs in the Indian validation dataset. Although these plots do present the reservoir bathymetry, the quality of the presentation is 
deemed inadequate. This category of plots exhibits three distinct error scenarios: (1) a plot that fails to align with the cells located closest 
upstream and downstream of the reservoir, covering multiple smaller horizontal patches (left), (2) a similar error in failing to snap the 
upstream and downstream cells but covering only one reservoir, resulting in a smaller error (middle), and (3) a plot with incorrect upstream 
or downstream alignment (right), leading to a significant under- or over-prediction of the reservoir volume. 

 

 

Figure 4.14: Three examples of bathymetry plots on the main stream that are classified as "Neutral", comprising 24 of the 94 reservoirs 
in the Indian validation dataset. These plots demonstrate an acceptable performance for the bathymetry on the main stream, although 
there is room for improvement, as indicated by the following: (1) a plot that fails to align with the nearest onshore upstream cell (left), (2) 
a plot that fails to align with the nearest downstream cell (middle), and (3) a plot in which both upstream and downstream cells are almost 
but not perfectly aligned, although the impact on the bathymetry is minimal. It is expected that these errors will not lead to significant 
inaccuracies in the results. 
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Figure 4.15: Three examples of bathymetry plots on the main stream that are categorized as "Good" and show a 
perfect bathymetry plot, which account for 24 of the 94 reservoirs in the Indian validation dataset.  
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The reservoirs classified as “Bad” and “Very Bad” are excluded from further analysis, reducing the 

validation dataset to 48 reservoirs that were either classified as “Neutral” or “Good”. It is important to 

note that there are numerous other ways to classify reservoirs, such as their size, shape, number of 

tributaries, whether they are fully man-made or partly natural, and soil type/geomorphology. These 

characteristics may provide valuable insights into the performance of a reservoir. However, given the 

scope of this thesis and the limitations of future research, they will not be explored further. Instead, 

the emphasis is placed on the quality of the bathymetry estimate on the main stream. 

4.2.2 Quantitative Analysis of Hypsometry in Indian Reservoirs 
A quantitative analysis is performed on a sample of 48 reservoirs in this study. For each reservoir, the 

coefficient of determination is calculated using the method described in Section 3.1.4. The analysis is 

based on the maximum capacity of each reservoir, which is determined as 100% of the maximum in-

situ measurement recorded during validation. Figure 4.16 and 4.17 presents the correlation between 

the validation volume (in-situ) and the modelled volume for each reservoir.  

 

In the figures, the coefficient of determination (𝑟2) for all 48 reservoirs is found to be 0.68, as shown 

in Figure 4.20. The 95% confidence interval is represented by the blue shaded area. Notably, when 

focusing on reservoirs that are smaller than 3 km3, which accounted for 43 of the 48 reservoirs in the 

sample, the coefficient of determination significantly improved, as shown in Figure 4.17. Specifically, 

the 𝑟2 value for this subset of reservoirs is found to be 0.78. The analysis reveals that the model tends 

to overpredict reservoir volumes, particularly for larger reservoirs. A potential explanation for this 

observation could be attributed to the usage of distinct datums in the in-situ measurements and the 

novel method employed in this study. In particular, the in-situ volumes are reported against a local 

reference elevation, which could be for example the lowest operating level. In contrast, the novel 

method utilised in this research relies on the MERIT-Hydro dataset, which is vertically referenced to 

EGM96 (Minderhoud et al., 2019).  

Figure 4.16: The correlation between in-situ 
measured volumes and modelled volumes for each 
Indian reservoir in the validation dataset. The 

coefficient of determination (𝑟2) for this correlation 
is found to be 0.68. The y-axis represents the in-
situ measured volumes from the validation dataset, 
while the x-axis represents the modelled volumes. 
 

Figure 4.17: The correlation between in-situ measured 
volumes and modelled volumes for Indian reservoirs in the 
validation dataset that are smaller than 3 km2. The 

coefficient of determination (𝑟2) for this correlation is found 
to be significantly better than that for the entire dataset, as 
it is 0.78. The y-axis represents the in-situ measured 
volumes from the validation dataset, while the x-axis 
represents the modelled volumes. 
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4.2.3 Hypsometry Performance for Varying Filling States  
The quantitative study included an evaluation of model performance for different reservoir fillings. 
Figure 4.18 displays the correlation between modelled and validation (in-situ) data for reservoirs 
smaller than 3 km3 at fillings of 0%, 25%, 50%, 75% of the water level relative to maximum in-situ 
measured capacity, as outlined in Section 3.1.5.  
 

The performance for filling at maximum capacity is shown previously in Figure 4.16 and Figure 4.17. 
Also, for some of the Indian reservoirs at 25% filling the validation data meets the reporting datum, 
such as the minimum operating level, while the remotely sensed method still reports a significant 

volume, affecting the coefficient of determination (𝑟2) score. 

Figure 4.18: The correlation between in-situ measured volumes and modelled volumes for Indian 
reservoirs in the validation dataset with a maximum capacity below 3 km3. The y-axis shows the in-situ 
measured volumes, while the x-axis represents the modelled volumes. The coefficient of determination 

(𝑟2) increases as the reservoirs reach higher fillings. Please refer to the previously presented Figure 4.16 

and 4.17 for the correlation at maximum capacity. 
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4.2.4 The Relative Error for Reservoirs Varying in Size and Location 
In accordance with the method discussed in Section 3.1.5, the performance of the model was 
evaluated for each of the 48 Indian reservoirs in the validation dataset relative to their size, by 
computing the relative error. As shown in Figure 4.19, the relative error is presented on a spatial plot 
for each reservoir.  

Each circle represents a reservoir, and its size corresponds to the maximum in-situ measured 
volumetric capacity. The colour of the circle represents the relative error, where green represents a 
perfect absolute estimate, red represents an overfit, and blue represents an underfit. A relative error 
of 1 indicates that the model overestimates the volume by at least a factor two, indicating a poor 
estimation. The smaller reservoirs (below 3 km3) located in the central region of the country are 
generally estimated well or overestimated by less than 1.5 times. Conversely, complete bad 
estimations are found in the northern and southernmost parts of the country. 

Figure 4.19: A spatial plot of the relative error for each of the 48 Indian reservoirs in the validation dataset, calculated according 
to the method described in Section 3.1.5, with circle size representing maximum in-situ measured capacity. The color of each 
circle indicates the relative error, where green represents a perfect fit, red an overestimation, and blue an underestimation. 
Notably, smaller reservoirs (below 3 km3) located in central India tend to have better model estimations and are overestimated 
by maximum 1.5 times, while poorer estimations are found in the northern and southern regions of the country. 
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4.2.5 Attempt to Correct for Distinct Datum  
Following the method in Section 3.1.6, an effort is done to address the systematic errors observed 
between the validation and modelled data. Although this approach significantly improved the relative 
error in many reservoirs, it was not effective in all cases. Some reservoirs still exhibited a large relative 
error, as presented in the upper examples in Figure 4.20, with relative errors of 6.56 and 2.43 which 
indicate an extreme overestimation with 556% and 143%, respectively.  

Validation Konar Reservoir  
Correction SE: 0.09m, Resulting RE: 1.61 

Validation Ramganga Reservoir  
Correction SE: 17.23m, Resulting RE: 1.95 

Validation Upper Vaitarana Reservoir  
Correction SE: 10.19 m, Resulting RE: 6.56 

Validation Matatila Reservoir  
Correction SE: 1.93 m, Resulting RE: 2.43 
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Validation MachkundJalaput Reservoir  
Correction SE: 16.25m, Resulting RE: 1.09 

Validation Tawa Reservoir  
Correction SE: 1.92m, Resulting RE: 1.10 

Figure 4.20: The validation results of the hypsometric curve for six reservoirs in the Indian dataset. The validation 
data is denoted by the blue curve, whereas the modeled result is represented by the red curve. The volume (m3) 
is plotted against the water level (m) on the y-axis and x-axis, respectively. The figure title indicates the size of 
the automated correction with "Corr" (m), and the relative error is denoted by RE. The systematic error is denoted 
by SE. The results reveal that the correction applied was not always sufficient to entirely eliminate the distinct 
offsets. Additionally, certain reservoirs in the validation dataset exhibit significant outliers. 
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The automated correction applied to these cases is not successful enough in those reservoirs, 
resulting in a negative correction of -10 meters and -1.9 meters to account for the offset. Conversely, 
the lower graphs in Figure 4.20 demonstrate successful correction attempts, resulting in relative errors 
of 1.09 (left) and 1.10 (right), indicating a 9% and 10% overestimation, respectively. The middle left 
and top graphs also exhibit an offset in both cases, and the middle right graph includes examples of 
outliers in the validation dataset. 

4.3 The Novel Method outperforms Messager et al. (2016) 
The ability of the novel method to estimate the reservoir bathymetry and establish the hypsometric 

curve is compared to a method for bathymetry reconstruction presented by Messager et al. (2016). 

The results of this benchmark experiment are presented in the following Sections.  

4.3.1 Comparing the Novel Method to Messager et al. (2016) 

The bathymetry is reconstructed for the 48 reservoirs in the Indian validation dataset according to the 
suggested method by Messager et al. (2016) which incorporates the flattening of the reservoir bottom 
towards the centre of the reservoir. The bathymetry is calculated for flattening parameters 𝑘 of 0.90, 
0.95 and 0.97, of which the validation versus modelled volume is shown in Figure 4.20 at a water level 
of maximum capacity.  
  

 
The varying numbers of plotted reservoirs 𝑛 is due to that some reservoirs calculated are larger than 
9 km3, for each of the 𝑘. The Figure shows that for 𝑘 = 0.90 the coefficient of determination is highest. 
The results of a qualitative analysis of the bathymetry maps are presented in Figure 4.21, that presents 
the original the bathymetry as presented by Messager et al. (2016) with 𝑘 = 0.90 for the Krishnaraja 
Sagar reservoir in India.   

Figure 4.25: Correlation plot of the volumes in the Indian reservoirs at 
maximum water level computed for the different 𝑘 values 0.90, 0.95 & 
0.97 according the the method as proposed by Messager et al. (2016). 
The in-situ measured volumes are plotted on the y-axis and modelled 
volumes are plotted on the x-axis. Each dot represents a reservoir 
volume calculated eigher with one of the values for 𝑘. From this plot it 

can be derived that the 𝑘 value 0.90 provides the best overall score for 
reservoirs with maximum in-situ measured capacities of < 9 km3. 

Correlation Indian Reservoirs < 9 km3  
at 100% Capacity, Messager et al. (2016) with 𝒌 = 0.9, 0.97 & 0.99 
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Figure 4.20: Correlation plot of the volumes in the Indian reservoirs at maximum water level computed 

for the different 𝑘 values 0.90, 0.95 & 0.97 according the the method as proposed by Messager et al. 
(2016). The insitu measured volumes are plotted on the y-axis and modelled volumes are plotted on 
the x-axis. Each dot represents a reservoir volume calculated eigher with one of the values for 𝑘. 

From this plot it can be derived that the 𝑘 value 0.90 provides the best overall score for reservoirs with 

maximum in-situ measured capacities of < 9 km3. 
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The Messager et al. (2016) plot shows a large depth in the reservoir bathymetry. Also, it is clear from 
the spatial map that the method by Messager et al. (2016) shows sudden jumps in elevations 
according at harsh edges in the reservoir, which is an expected outcome in the approach of Messager 
et al. (2016), because it determines the topographic lake depth by making use of the nearest onshore 
values. The correlation at a maximum in situ measured water level for all reservoirs in the Indian 
dataset for both the novel method presented in this thesis (green) is compared with the correlation 
obtained by the method by Messager et al. (2016) (blue) in Figure 4.22. The coefficient of 

determination 𝑟2 of the novel method is 0.68, representing a 32% underestimation, relative to the 𝑟2 
of 0.44 which is achieved by the Messager et al. (2016) method, representing a 56% underestimation.  

Figure 4.21: Spatial elevation maps of the Krishnaraja Sagar before the bathymetry estimate the bathymetry estimate 
according to the method as proposed by Messager et al. (2016) with 𝑘 = 0.90. The coordinates are presented on the y-
axis and the x-axis. The elevations are presented in the colors on the z-axis. The Messager et al. (2016) derived 
bathymetry shows sudden jumps in elevation. Also it tends to show a deeper estimate of the overall reseservoir depth.  
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Figure 4.22: A comparison between two distinct techniques for correlating modelled volumes with in-situ measured volumes. The 
blue and red data points represent the novel method, while the green data points correspond to the method proposed by Messager 
et al. (2016). The latter method is executed with a k value of 0.9. The grey line indicates a perfect correlation, with a 1:1 relationship 
between the modelled and in-situ measured volumes. The results of this analysis suggest that the novel method performs better 
than the method proposed by Messager et al. (2016) when applied to Indian reservoirs. Each dot on the graph represents a 
reservoir volume computed using either of the two methods. 
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4.4 The Predictive Performance of the Novel Methods’ Volume Time Series  
 
Regression models are utilised to investigate the potential of volume time series data in predicting 
water availability for two reservoirs, namely, the Hawane reservoir located in Eswatini and the Katse 
reservoir situated in Lesotho. The models are constructed with varying combinations of predictors, for 
which its time series are presented below: volume, precipitation, and SPEI for the Hawane reservoir 
(Figure 4.23). 

Figure 4.23: The time series of volume (m3) (top), precipitation (mm) (middle), and monthly SPEI (-) (bottom) for 
the Hawane reservoir in Eswatini. These three variables are utilised as predictors in various regression models. 
The seasonality of volume and precipitation, calculated over two periods (2000-2015 and 2017-2021, excluding 
an extreme drought event), is illustrated in the background with dotted lines and their respective 1, 2, and 3 
standard deviations. The red dotted line indicates the middle of the 2015-2016 wet season, which is characterized 
by lower than expected rainfall. During this time period, the volume time series shows a decrease by more than 3 
standard deviations, the precipitation time series indicates a reduction by 1 standard deviation, and the SPEI of > 
-1.5 reveals extreme dry conditions. 

Precipitation in Upstream Area of Hawane Reservoir 
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 The autocorrelation in the volume time series in the Hawane reservoir is presented in Figure 4.24. 

 
The figure indicates that there are three preceding months, including the current month with a 
correlation that significantly varies from zero. Therefore, the autocorrelation takes three previous 
values into account. The lagged cross-correlation for the precipitation time series and the volume in 
the respective month 0 is shown in Figure 4.25. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It can be observed that there are up to 5 values that are significantly deviating from the blue band. 
This means that 5 observations in history are taken as input in the regression model. The cross-
correlation between SPEI and the volume in the respective month are presented in Figure 4.26. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.24: Autocorrelation analysis 
conducted on two years of volume time series 
data from the Hawane reservoir in Eswatini. The 
Pearson correlation coefficient is presented on 
the y-axis, while the lagged months relative to 
the dependent month (Month 0) are presented 
on the x-axis. The band, determined by Formula 
2.6, represents the area where data is 
considere “white noise” is displayed in pink 
shading. The figure demonstrates that up to 
three months prior to the dependent month 
there is an indication of memory that can be 
utilised for prediction of the volume in Month 0. 
 

Figure 4.25: The cross-correlation between 
lagged-precipitation and volume in the month of 
interest (Month 0) conducted on two years of 
volume time series data from the Hawane 
reservoir in Eswatini showing strong seasonality. 
The cross-correlation coefficient is presented on 
the y-axis, while the lagged months relative to the 
dependent month (Month 0) are presented on the 
x-axis. The band, containing 95% of all values, is 
displayed in blue shading. The figure 
demonstrates that up to five months prior to the 
dependent month there is an indication of 
significant correlation that can be utilised for 
prediction of the volume in Month 0. 
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Auto-Correlation of the Volume Time Series 
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Hawane Reservoir 
Cross Correlation of the Volume (fixed) and Precipitation (lagged) 

Figure 4.26: The second cross-correlation plot, but 
now with the lagged-SPEI and volume in the month 
of interest (Month 0) conducted on two years of 
volume time series data from the Hawane reservoir 
in Eswatini. The axis are similar to Figure 4.25. The 
band, containing 95% of all values, is displayed in 
green shading. The figure demonstrates that there 
is no significant correlation between the two 
variables. Therefore it should be noted that there is 
a possibility that the observed results occurred by 
chance. 
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Figure 4.26 shows no significant deviation from zero. No significant aggregated correlation is found between 
the lagged SPEI and the volume in the respective month, as demonstrated in Figure 3.16. Despite this finding, 
other studies have shown successful analysis of water availability or deficits through the use of similar type 
of climate indices in regression models (Dibike, et al., 2016; Ghasemi, et al., 2021; Jiao, et al., 2021; Gurrapu, 
S., et al., 2021; Li, et al., 2023). Thus, in this study, we will continue the analysis using three SPEI values, 
which is consistent with the number of months taken for the model. However, it is important to note that the 
lack of significant linear correlation raises the possibility that the observed results may have occurred by 
chance. 

 
To assess the added predictive capability of each predictor regression models are employed. The models 
produced 6-month forecasts for each month of the year, resulting in a total of 72 forecasts per year. In the 
following three pages, the analysis is shown of the following figures: Figure 4.27 depicts the outcomes of the 
regression models applied to the Hawane reservoir from April 2015, with a projection of six months into the 
future. Similarly, Figure 2.28 displays the predictions made one year later, in 2016, following a notably arid 
wet season. Figure 4.29, on the other hand, showcases the progression of predictions across the months, 
beginning in May and forecasting six months ahead before advancing to June, July, and subsequent months. 
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Figure 4.27: The volume 
predictions with the 
distinct regression 
models for the Hawane 
reservoir, accompanied 
by precipitation (top) and 
SPEI (2nd from above) 
time series.  
 
The forecast starts in 
April 2015 and predicts 
up to a maximum of 6 
months lead time. The 
forecast commences 
from the midpoint 
(indicated by a black 
cross) of the chart and 
features the asso-ciated 
uncertainty range, 
represented by 1, 2, and 
3 standard deviations, 
alongside each forecast. 
The wet season (i.e., 
October to April) is 
highlighted by the blue 
background, while the 
seasonal trend, and its of 
the associated uncertain-
ty range, is denoted by 
the gray line and shades. 
 
The models shown are 
an autoregressive model 
of the volume (red), a 
multi-linear regression 
(MLR) model of volume 
and precipitation (blue), a 
MLR model of volume 
and SPEI (green), a MLR 
with precipitation only 
(purple) and a MLR with 
SPEI only (yellow).  
 
It can be observed from 
the graphs that all graphs 
show relatively similar 
behaviour, probably 
because the SPEI and 
precipitation do not 
deviate from seasonality 
during this period.  
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Figure 4.28: The volume 
predictions with the 
distinct regression 
models for the Hawane 
reservoir, accompanied 
by precipitation (top) and 
SPEI (2nd from above) 
time series.  
 
The forecast starts in 
April 2016 and predicts 
up to a maximum of 6 
months lead time. The 
forecast commences 
from the midpoint 
(indicated by a black 
cross) of the chart and 
features the asso-ciated 
uncertainty range, 
represented by 1, 2, and 
3 standard deviations, 
alongside each forecast. 
The wet season (i.e., 
October to April) is 
highlighted by the blue 
background, while the 
seasonal trend, and its of 
the associated uncertain-
ty range, is denoted by 
the gray line and shades. 
 
The models shown are 
an autoregressive model 
of the volume (red), a 
multi-linear regression 
(MLR) model of volume 
and precipitation (blue), a 
MLR model of volume 
and SPEI (green), a MLR 
with precipitation only 
(purple) and a MLR with 
SPEI only (yellow). 
 
It can be observed from 
the graphs that especially 
the MLR with volume and 
SPEI show additional 
predictability up to 4 
months lead time.  
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Figure 4.29: The volume predictions for Hawane reservoir moving through different starting months (please read from top to 
bottom), accompanied by the precipitation (mm) and SPEI (-) time series. Each prediction contains 6 months lead time starting 
from each month between May and October 2015 using volume (autoregression) and SPEI & volume (Multi-linear regression).  
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The following paragraphs will discuss Figure 4.27, Figure 4.28 and Figure 4.29. Figure 4.27 and Figure 4.28 
present a forecast starting in April 2015 and April 2016. For each April, all regression models are presented 
in the figure, accompanied by separate sub-figures displaying the precipitation and Standardized Precipitation 
Evapotranspiration Index (SPEI) time series (upper two sub-figures). Figure 4.29 represents the behaviour of 
the model when moving through different starting months. In all figures, the volume time series is analysed in 
an autoregressive model (in red), hereinafter referred to as Vauto, which incorporates the values of the 
preceding three months that exhibit significant correlation with the respective month. Additionally, four 
multilinear regression models are employed. These models are analysed individually, with the precipitation 
model being referred to as PMLR (in purple). The SPEI model, on the other hand, is referred to as SPEIMLR (in 
orange). Additionally, the models are evaluated in combination with volume, with the precipitation (in blue) 
and SPEI models (in green), respectively. These combined models are referred to as V-PMLR and V-SPEIMLR. 
When considering precipitation, values from six preceding months are included, based on the lagged 
correlation discussed in Section 3.3.4.2. For SPEI, values of the preceding three months are included.  
 
The first forecast in Figure 4.27, starting in April 2015, shows that the observed precipitation during the first 
half of the wet season fluctuates around the expected seasonal precipitation within one deviation. However, 
during the second half of the wet season, the precipitation tends to be lower than the seasonal expectations, 
which is a period in which the SPEI indicates dry conditions. The SPEI shows extreme dry conditions following 
the 2014-2015 wet season, while the precipitation does not deviate significantly from the seasonality. This 
might be because temperatures are relative to the low occurrence of precipitation, which is further discussed 
in Section 5.5. The regression models predict that the volume will follow its seasonal trend until July. 
Afterward, Vauto (red), PMLR (purple), and SPEIMLR (yellow) fail to predict a significant decrease in volumes, 
although Vauto (red) still predicts the true values to be within one standard deviation. V-PMLR (blue) and V-
SPEIMLR (green) predictions indicate slightly improves predictive skill relative to Vauto (red). From August 
onwards, these predictions correctly predict a decrease in volume compared to the seasonal trend, with V-
SPEIMLR (green) predictions performing the best. The discussion on this figure is continued in Section 5.6.  
 
The second forecast in Figure 4.28, starting in April 2016, comes right after the 2016 wet season that had 
decreased precipitation. The precipitation time series throughout the entire wet season deviated around one 
standard deviation, with the SPEI indicating dry conditions with SPEI values of -2. Volume time series 
extremely deviated and are observed far below three standard deviations from the seasonal expectation. 
Right after the wet season, the dry conditions continued, which follows expectations as the dry season started. 
The lack of water availability is captured in all regression models that included volume time series. The Vauto 
(red) shows decreased volume estimates relative to seasonality but failed to capture the ever-decreasing 
trend in the volume. V-PMLR (blue) only shows slightly better predictive skill than Vauto (red). The V-SPEIMLR 
(green) shows the best predictive skill, deviating from the seasonal expectation up to four months lead time, 
however predicting the volume to be refilled again in August, which was not the case. All models that 
considered volume time series tend to overestimate the seasonal occurrence in the prediction for a 6-month 
lead time and therefore failed to capture the ever-decreasing trend in volume. The PMLR (purple) and SPEIMLR 
(yellow) directly deviate towards the seasonal trend and fail to represent the water scarcity scenario. The 
observations are further discussed in Section 5.6. 
 
The third forecast, presents in Figure 4.29, provides an overview of the 2015 forecasts of the Vauto (red) and 
V-SPEIMLR (green) predictions up to 6 months lead time starting in May to October. The precipitation in 2015 
follows the seasonal pattern early in the year, while staying within one standard deviation from normal. In the 
end of 2015, the precipitation significantly decreases and deviates from the seasonal pattern, indicating start 
of the 2016 drought event. Yet, extremely dry conditions preceding the 2016 drought event are already 
indicated by the SPEI throughout the whole year, especially around May and July, where the SPEI is around 
-2.5 and -3. April and September, on the other hand, are periods that show relatively medium SPEI 
circumstances. When comparing the Vauto (red) and V-SPEIMLR (green) predictions, there is added 
predictability found in the V-SPEIMLR (green) predictions and Vauto (red) is found to follow the seasonal pattern. 
The predictability in V-SPEIMLR (green) increases while the dry season is proceeding in August, where the 
model shows significant predictions for volume to go down below the threshold of 3 standard deviations from 
the seasonal expectation. After August, both Vauto (red) and V-SPEIMLR (green) fails to predict further decrease 
of volumes. The models and observations are further elaborated on in Section 5.6. 
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The Heidke Skill Score (HSS) is a widely used metric to evaluate the effectiveness of forecasting models and 

is, in this study, used to assess the models in predicting significant decreases in reservoir volume by one 

standard deviation. The calculation formula is described in Formula 3.15. Figure 4.30 represents the HSS for 

V-SPEIMLR, which outperformed V-PMLR and Vauto, despite their relatively similar performance.  

 

 

 

 

The HSS values for all other models are available in Appendix F. Notably, the models that exclude volume 

time series, show similar performance to PMLR and perform poorly, as further elaborated in Section 5.6. The 

y-axis displays the starting month for each prediction, while the x-axis represents the predicted lead time up 

to 6 months. The HSS scores are displayed on a grid and color-coded, with a score of 1 indicating relatively 

good performance (green) and a score of 0 indicating poor predictive ability (red). The results indicate that 

the model performs well in predicting the threshold for one month ahead, particularly at the beginning and 

end of the wet season. As expected, the performance decreases as the prediction lead time increases due 

to increasing uncertainties in future forecasts. However, in July and August, the performance of the model for 

the 6-month lead time predictions shows an improvement compared to the preceding months. This is 

discussed in more detail in Section 5.6.  

 

Figure 4.30: The performance of V-SPEIMLR model in predicting whether the true 
values deviate from the seasonality by 1 standard deviation is presented using 
the Heidke Skill Score (HSS), presented in Forumla 2.8. The HSS scores are 
colorcoded to indicate performance, with green indicating good performance and 
red indicating poor performance. The associated HSS values are also presented, 
with a score of 1 indicating good performance and a score of 0 indicating poor 
performance. The y-axis displays the starting month for each prediction, while the 
x-axis represents the lead time up to which the prediction is made. It is noteworthy 
that the results show a generally good performance for the first month in predicting 
deviations from seasonality. However, as the lead time increases, the 
performance of the model tends to decrease, which is as expected due to the 
increasing uncertainties in future forecasts. 
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Also, the Heidke Skill Score for only SPEIMLR is provided in Figure 4.31. 

 

 

 

 

The SPEIMLR model, which solely relies on SPEI data, displays limited proficiency in predicting values 

below one standard deviation from normal in the majority of forecasting scenarios. However, there is 

some degree of enhanced predictability during the months of February through April, as well as 

September and October, for one-month-ahead predictions. Nevertheless, the predictive ability exhibits 

slight improvement for lead times up to five months during the months of September through 

November.  

 

 

 

 
  

Figure 4.31: The Heidke Skill Score (HSS) for a range of predictions generated 
by the SPEIMLR model, which solely relies on SPEI time series. As always, a score 
of 1 indicates good performance and a score of 0 indicaties poor performance. 
Also the cells are colorcoded. The majority of forecasting scenarios utilizing this 
model exhibit insignificant skill in predicting values below one standard deviation 
from normal. Nonetheless, some degree of added predictability is observed in the 
months of February through April, as well as September and October, for one-
month-ahead predictions. Additionally, little improvement in predictive ability is 
evident for lead times up to five months in the months of September through 
November. 
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4.5 Additional Analysis to SPEI 
The additional analysis in the Katse Dam is done for the V-SPEIMLR. Figure 4.32 represents the SPEI 
(middle, SPEI-3 (bottom) and volume time series (top) in the Katse Dam. 
 

Figure 4.32: The volume time series in the Katse Dam (top), the monthly SPEI (middle), and the 3-month moving 
average of SPEI (SPEI-3). The volume time series exhibits fluctuations that follow the seasonal trend, with a notable 
period of relative constancy where limited data points are available, which are filtered from the data before calculation 
of the seasonal trend. Additionally, the SPEI-3 displays a pattern that is more analogous to the observations in the 
volume time series. 
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The study of Hawane Dam revealed that the V-SPEIMLR model exhibited the best performance in predicting 
whether the reservoir volume will deviate from the seasonal expectation by 1 standard deviation. However, it 
is also observed that the SPEI predictor does not display any lagged correlation with the volume in the 
respective month, as illustrated in Figure 4.26. Additional analysis is done to investigate the hypothesis that 
the lack of correlation between these two variables is mainly caused by the relatively constant water volume 
in the training data of the Hawane reservoir. Therefore, the predictive performance of the V-SPEIMLR and the 
Vauto models are tested on the Katse reservoir in Lesotho, which exhibited greater variations in water volume 
in its training dataset. Figure 4.32 represents the SPEI (middle, SPEI-3 (bottom) and volume time series (top) 
in the Katse Dam.  
 
The water volume time series of Katse dam is presented at the top of Figure 4.32. The figure illustrates clear 
seasonal fluctuations in the water level during the periods 2000-2003 and 2012-2021. However, the 
intervening period exhibits a rather constant trend, which is attributed to the limited observations in the 
remotely sensed dataset that is employed to capture the trend in volume. Notably, the mean water volume 
during the period 2012-2021 declined by approximately 5 x 108 m3 relative to 2000-2003, which could be 
attributed to a variety of factors that will be discussed in Section X. Therefore, the dataset excludes the period 
2003-2012 while predicting the seasonal mean. Also, the year 2013 is excluded as it was chosen to be the 
test data for the regression model. Figure 4.33 also includes the monthly SPEI and its 3-month moving 
average (SPEI-3), which is computed to test the hypothesis that the lack of correlation between the SPEI and 
the volume time series is due to the differences in dynamics. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
As expected, the SPEI-3 shows smaller extremes in SPEI compared to the SPEI-1 but exhibits less variation 
and therefore has a more similar pattern to the volume time series. In contrast, the SPEI-1 displays numerous 
positive and negative peaks during a period when the volume time series only has one peak. This can be 
observed, for example, around November 2016 and November 2019. 
 
The correlation between the lagged SPEI-3 time series and the volume in the respective month is presented 
in Figure 4.34.  
 
 
 
 
 

Figure 4.33: The cross-correlation between lagged-SPEI-3 and volume in the month of interest (Month 0) 
conducted on two years of volume time series data from the Katse reservoir in Lesotho. The cross-
correlation coefficient is presented on the y-axis, while the lagged months relative to the dependent month 
(Month 0) are presented on the x-axis. The 95% confidence interval is displayed in green shading. The 
figure demonstrates that up to four months prior to the dependent month there is an indication of significant 
correlation that can be utilised for prediction of the volume in Month 0. 
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Figure 4.34: The volume predictions for Kaste Dam moving through different starting months (please read from top to bottom), 
accompanied by the SPEI (-) time series. Each prediction contains 6 months lead time starting from each month between 
March and August 2013 using volume (autoregression) and SPEI-3 & volume (Multi-linear regression).  
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The findings reveal that the correlation coefficients between the two variables remain below 0.3, indicating a 
weak correlation. Nonetheless, up to four preceding months can be utilised by the regression as, 
demonstrated by the 95% confidence interval. In the V-SPEI-3MLR (the multi-linear regression model with 
volume and the SPEI-3 as predictors) for Katse Dam three values are used. 
 
The results of the V-SPEI-3MLR (green) and Vauto (red) models for Katse Dam for the months of March to 
October are presented Figure 4.34, accompanied by the SPEI-3 series on the top of the figure. Concurrently, 
the SPEI-3 time series indicate relatively mild wet and dry conditions during the previous wet season, with 
SPEI values dipping as low as maximum -0.8 during the subsequent dry season. The Figure shows that the 
volume in the Katse dam remains comparatively high relative to seasonal expectations, something that is 
explored in further detail in Section 5.7. Notably, the V-SPEI-3MLR (green) model demonstrates slightly 
superior predictive accuracy compared to Vauto (red), an observation that is elaborated upon in Section 5.6.  
 
The HSS scores for V-SPEI-3MLR (green) are presented in Figure 4.35 and is found to be relatively similar to 
Vauto (red). It should be noted that a lower threshold is selected for Katse dam compared to Hawane dam, as 
the former does not exceed the -1 standard deviation threshold often enough to compute the HSS. Moreover, 
the HSS scores indicate that both models perform well in predicting deviations of - 0.5 standard deviation 
below the seasonality. The predictive performance of V-SPEI-3MLR diminishes beyond a three-month lead 
time, with predictions for the months of April, May, and June displaying considerably reduced accuracy. These 
findings are further discussed in Section 5.5. 
  

Figure 4.35: The performance of V-SPEIMLR model in the Katse Dam predicting 
whether the true values deviate from the seasonality by 0.5 standard deviation 
in the Katse Dam is presented using the Heidke Skill Score (HSS), as 
computed by Formula 2.8. The HSS scores are color-coded to indicate 
performance, with green indicating good performance and red indicating poor 
performance. The associated HSS values are also presented, with a score of 
1 indicating good performance and a score of 0 indicating poor performance. 
The y-axis displays the starting month for each prediction, while the x-axis 
represents the lead time up to which the prediction is made. 
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5     

Discussion 

5 Discussion 
This chapter focuses on the evaluation of the proposed method for predicting water availability and 
reconstructing reservoir bathymetries. The novel approach for bathymetry reconstruction is discussed in 
Section 5.1, followed by a detailed description of the validation results in Section 5.2. Section 5.3 covers a 
discussion of the comparison of the proposed method to Messager et al. (2016). The predictors used in the 
regression models are discussed in Section 5.4, while the different regression models are elaborated on in 
Section 5.5. Section 5.6 highlights the correlation between the SPEI and volume, while Section 5.7 is 
dedicated to the discussion of the usability of the model, based on interviews conducted by Red Cross 510 
in parallel to this research. 

5.1 The Novel Method for Bathymetry Reconstruction 
 
This study's findings indicate that the developed methodology has potential for accurately 
reconstructing hypsometry in both Zambian and Indian reservoirs. The Mita Hills and Mulungushi 
reservoirs in Zambia demonstrated significant accuracy (with relative errors of 0.88 and 1.01, 
respectively). While some reservoirs in the Indian validation dataset showed excellent results, others 
did not perform as well or did not allow for bathymetry reconstruction at all. The expectation was that 
the Zambian reservoirs would perform better, partially because they were used as examples during 
the development of the method, which helped to identify and resolve any errors that emerged. 
However, for the large Indian dataset, new errors emerged and due to time limitations, it was not 
feasible to address all of them. Additionally, the better performance of the Zambian reservoirs may 
have been partly since the reference data provided a hypsometric curve, obviating the need to convert 
the reservoir bathymetry into volume time series for validation. This saved an additional step, which 
could have introduced more uncertainty in the validation process. 
 
Nevertheless, the challenges in the Indian reservoirs were mainly related to delineating the reservoirs. 
In total, 46 out of 94 reservoirs had bathymetry plots that had issues to indicate the upstream and 
downstream cells, like in the examples presented in Figure 4.11. This could be cause by, for example, 
wrongly sampling the nearest upstream cell in the reservoir. In the pre-processing, the reservoir is 
delineated by a shape, referred to as a ‘polygon’, that is extracted from Global Water Watch. However, 
if the polygon fails to accurately represent the shape of the reservoir or if the georeferenced data of 
the polygon is inconsistent, it is likely that the upstream cell will be sampled incorrectly. This will cause 
inaccuracies in the delineation of the reservoir.  
 
Another potential explanation is that the digital elevation model may have wrongly indicated the 
location or absence of the dam. This could occur if the slope in the digital model is inaccurately 
calculated and not properly sampled to the main stream, resulting in incorrect sampling of the 
downstream cell during the delineation process. Incorrectly selected downstream cells often lead to 
over-prediction of the bathymetry, as they are frequently sampled lower than the actual bottom of the 
reservoir. Moreover, even if the dam location is accurately identified, the downstream cell may still be 
incorrectly sampled. This could be due to the buffer size being too large in the method. To address 
this issue, a possible solution is to manually adjust the buffer distance beyond the default 500 meters, 
by providing a new distance from the most downstream point. 
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Overall, to account for the errors in delineation of the upstream and downstream cell it is 
recommended to manually assign the upstream and downstream locations. The delineation is 
especially important as it is a fundamental step in retrieving the entire bathymetry of the reservoir. 
Especially the downstream cell should be sampled correctly, as impacts due to incorrect sampling 
shown to be larger than in an upstream cell, as can also be deduced from Figure 4.11. Some of the 
delineation challenges were already addressed at the time of writing, however prospects for even 
further enhancement of this algorithmic component in future iterations are worth considering. 

 
The Indian dataset contains several reservoirs that have complex shapes, including those with 
multiple large tributaries or merging reservoirs. In this study, the bathymetry of such reservoirs was 
determined by identifying tributary streams (Figure 3.2: Step 5) within the reservoir that possess a 
Strahler order deviating by up to five from the Strahler order observed in the first stream (Figure 3.2: 
Step 3). It is noteworthy that not every part of these reservoirs is considered in the interpolation (Figure 
3.2: Step 6), as evident from Figure 3.2. The remote tributaries of a reservoir are subject to an 
interpolation that solely employs the surrounding terrain elevation, as no bathymetric data is 
accessible in their vicinity. Consequently, the resulting volumes of these reservoirs are likely to be 
underestimated. When computing complex shapes, using a deviation lower than five from the Strahler 
order in the first stream is not recommended for reservoirs in the applied dataset. Conversely, higher 
deviations are advisable, although this may result in longer computational time. Determining the 
optimal deviation from the Strahler order depends on the user's requirements, and various strategies 
could be explored in future research. 
 
One of the complex reservoir shapes observed consist out of two different river branches that only 
convolute at the reservoir dam. Apart from the convolution point, the two parts are completely 
disconnected which makes it challenging for the algorithm. If either the Strahler order setting is set too 
low, or the flow direction is calculated wrongly, one of the two branches will not be taken along in the 
volume calculations, leading to an incorrect volume estimation.  
 
Other difficult reservoirs were once that cascades, which were 12 out of 94 reservoirs in the Indian 
dataset, among which the Ban Sager, Malampuzha, and Srisailam reservoirs, which were presented 
in Figure 4.12. For these reservoirs, the algorithm had difficulty determining the exact location for the 
start and end of the reservoir bathymetry because the actual reservoir surface was not clearly 
identified. Therefore, manual location information was required. One potential reason for the 
cascading effect was the algorithm's assignment of surrounding cells as reservoirs. Additionally, 
structures in the water, such as dams or cascades, may cause elevation shifts in the main stream. 
 
It was also assumed that larger reservoirs are more sensitive to errors in the model, which is 
understandable because a small offset in the surface water area observation in the higher water levels 
is results in significant larger changes in volume then in the lower water levels. However, on the 
contrary, the estimation of reservoir bathymetry tends to be more precise in the higher ranges of the 
reservoirs due to the smaller distance to the known terrain. Figures 4.21 and 4.22 presented that the 
latter prevails and that better performances are found in the higher ranges of the reservoirs.  
 
Last, it should be noted that the digital elevation model used in this study was measured at a single 
point in time, and is therefore a static DEM. Specifically, the MERIT-Hydro DEM was constructed 
around December 2017, which means that the DEM contains the full bathymetry of reservoirs 
constructed after the establishment of the DEM. However, for reservoirs constructed after the 
establishment of the DEM, the algorithm will fail as the dam wall was not present at the time of 
measurement. It is recommended to further develop the algorithm so that this is recognised by the 
model. Especially because for such reservoirs, a real precise bathymetry can be measured, as simply 
there is no need for interpolation as the entire bathymetry is available in the DEM. 
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5.2 Validation of the Hypsometric Curve 
 
The validation dataset of Indian reservoirs entailed several instances where a shift in local datum 
occurred across the series for different reservoirs. This shift in elevation could be attributed to a variety 
of reasons, such as a modification of the local datum, which often is the minimum operating capacity, 
or the relocation of the local measurement installations to different elevations. Additionally, the 
introduction of a systematic shift during post-processing could also contribute to a shift in local datum. 
Due to the variations in local datum changes across reservoirs, the analysis focused on the 500 most 
recent measurements for each reservoir. Nevertheless, for some reservoirs, the validation dataset 
displayed a significant number of outliers, leading to overprediction if the outlier values were greater 
than the mean of the dataset, and underestimation if they were smaller than the mean. Figure 4.24 
provides an example of a reservoir where the filtering of outliers was unsuccessful. 
 
If the local datum in the validation dataset remains unknown, this leads to a systematic error between 
the validation and modelled results. The systematic error denotes the difference between the local 
datum and the modelled outcomes. To address this issue for the aggregated group of reservoirs, a 
correction was implemented. This study employed a correction that computed the mean water level 
in the modelled results and the validation data and adjusted for the difference found in the mean. 
However, the correction was not always effective in eliminating the entire offset in certain reservoirs, 
as presented in Figure 4.24. This outcome is likely attributed to the outliers detected in the dataset, 
which significantly influenced the validation mean. Hence, in some cases, an offset is still evident after 
correction. An alternative correction method could involve calibration using known water surface 
areas, specifically when the reservoir is empty, although this approach requires availability of relevant 
information.  Apart from the offset observed in some of the reservoirs, mostly overestimating the 
results, the overall performance of the bathymetry and hypsometry estimates seemed to correctly 
estimate the validation data.  
 
In the quantitative analysis, a comparison was made among reservoirs based on the percentage of 
fillings concerning their maximum capacity. However, it is probable that for certain reservoirs, the 
actual maximum capacity was not reflected in the 500 measurements obtained from the validation 
dataset. This outcome could be due to the measurements being taken coincidentally during a period 
when the water level in the reservoir was relatively low, resulting in classification of these reservoirs 
as smaller than their actual size. Nonetheless, it is inevitable to consider the data available for this 
study. 
 
The evaluation of the model's performance in estimating reservoir volume in India for various filling 
states reveals that the modelled volumes still exhibit considerable water volume in the reservoir at a 
filling state of 25%, whereas the validated volumes indicate no such volume. It should be noted that 
this disparity is likely to be that the local datum has been established as the minimum operating 
capacity of the reservoir, which, in many instances, corresponds to 25%. 
 
It is noteworthy that in addition to the two waterbody categories of natural lakes and reservoirs, there 
may exist other types as well. For instance, a dam can be constructed on a river that flows out of a 
natural lake, transforming the natural lake into a man-made reservoir. Nevertheless, the bottom parts 
of the reservoir may retain the natural lake's morphology, while the upper parts reflect a man-made 
reservoir. In this scenario, the model's estimation of lake volume for such reservoirs would be 
underestimated since the storage below the dam wall would not be accounted for.  
 
Finally, the validation process relies on the use of existing reference datasets, which, particularly when 
bathymetric data is available, is the optimal way to test the method. However, in many cases, such 
reference data is not accessible. To overcome this challenge, one possible solution could be to create 
artificial reservoirs in a digital elevation model (DEM) by simulating dam walls and water levels. By 
doing so, the entire bathymetry can be generated for validation purposes for multiple examples. An 
essential prerequisite for this approach is that the artificial reservoir must be constructed in a location 
that is feasible and realistic.  
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5.3 Comparison to Static DEM-based Method by Messager et al. (2016) 
 
As anticipated, the novel method is exhibiting increased performance when compared to the 
bathymetry reconstructions proposed by Messager et al. (2016), as illustrated in Figure 4.20. This 
outcome can be attributed to several factors, foremost among them is that a tailor-made novel method 
was developed for man-made reservoirs, in contrast to the focus of Messager et al. (2016) on both 
man-made reservoirs and natural lakes. Characteristics of our tailor-made model, as compared to the 
method of Messager et al. (2016) are the location and elevation of the dam wall. Also, it was assumed 
that the flattening in the bottom of the reservoir tends towards the dam wall, while Messager et al. 
(2016) assumes the deepest point to be at the centre of the reservoir, which is typically the case for 
natural lakes (Morris & Fan, 1998). This enabled more accurate volume estimations for man-made 
reservoirs. 
 
As previously discussed in Section 2.6, another significant difference between the two methods is that 
Messager et al. (2016) utilised the same slope parameter 𝑘 for all reservoirs in their analysis, while 
the novel approach determines a slope parameter for each individual reservoir. This approach enables 
the novel method to tailor the methodology to each specific reservoir, thereby successfully enhancing 
the accuracy of the model as presented in Figure 4.27. 

5.4 Predictor Time Series around The 2025-2016 Drought 
Time series of the predictors volume, precipitation and SPEI in the Hawane reservoir are presented 
in Figure 4.29. A prominent feature within the volume time series is the large decrease in water volume 
in January and October in 2016. This is the period during which the ongoing drought impacted the 
water level in the Hawane reservoir, which dropped to 9% (ESG News Eswatini, 2016). These extreme 
circumstances are also characterised by the other predictors: a decrease of 1 standard deviation in 
precipitation and extreme dry conditions with SPEI values ranging from -1 to -3. Overall, all predictors 
considered provide a clear description the drought that started in the beginning of 2015, and prolonged 
till May 2016.  

 
Moreover, it is noteworthy that the reservoir volumes in the Hawane reservoir in the period preceding 
the 2015-2016 drought event remained relatively stable compared to the subsequent period, whereas 
precipitation or SPEI patterns align with seasonality. Notably, the Hawane reservoir showed deviations 
from the constant patterns primarily during the wet seasons, as evident in the years 2004-2005, 2008-
2009, 2023-2014, and 2019-2020. The variation in volumes observed in the Hawane dam can 
potentially be explained by the dam's operating policy. Prior to the 2015-2016 drought event, the dam 
may have been operated at a constant level, with any excess precipitation and runoff being released 
or spilled in equal volume. However, this approach may not have been feasible during the drought 
years of 2004 and 2011, as indicated by the significantly low SPEI values during those periods. This 
could potentially explain the decreased volumes observed in July 2005 and July 2012. Following the 
2015-2016 drought event, the hypothesis is that dam operations were altered to actively use the water 
in the reservoir, potentially driving the seasonal patterns observed. However, this hypothesis could 
not be validated within the scope of this thesis. A motivation for change in operating strategy could 
include factors such as economic development or urban expansion, or as a responsive action to the 
drought. However, to substantiate these assumptions, further research is needed on the social and 
water management strategies in place during those drought periods. Additionally, it is possible that 
the observed changes in volumes could also be attributed to the installation of additional extraction 
facilities in response to the drought. 
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5.5 April Predictions Compared: Before and After the 2015-2016 Drought 
Predictions to water availability were done with various regression models. In Figure 4.27, there was 
examined a prediction that started at the end of the wet season in April 2015, which is the wet season 
before the 2015-2016 drought. During the wet season, there was a moderate amount of precipitation, 
with observations falling within one standard deviation of the seasonal mean. The SPEI indicates that, 
after the 2014-2015 wet season, extreme dry conditions occurred relative to the long-term average 
trend during this period, with values dropping to as low as -3. However, precipitation did not deviate 
from the seasonal trend, neither did the volume time series. Non-precipitation variables, such as daily 
temperature or the heat index, used in calculating evapotranspiration might be responsible for the 
extreme SPEI values during this period. High temperatures in April can result in negative SPEI values, 
but it has no direct impact on the reservoir's water volume. The impact of high temperatures is indirect, 
leading to an increase in evapotranspiration, ultimately resulting in a greater water demand in the long 
run. For instance, crops may require irrigation during periods of heightened evapotranspiration, or 
water could be utilised for cooling purposes. Although no direct effects on the volume time series are 
observed, the SPEI exhibits extreme dry conditions, which suggests that non-precipitation variables 
used in SPEI calculations are contributing to the extreme values during the specific period under 
consideration. 
 
In analysing the regression models presented in Figure 4.28, an interesting observation is that the V-
SPEIMLR and SPEIMLR models do not respond to the extreme values in the SPEI time series for the 
first four months, despite the dry conditions indicated by the predictor. It can be inferred from this that 
when input variables are close to the mean in the training dataset, predictions tend to move towards 
the seasonal expected trend. Therefore, although the SPEI values we observe may be significantly 
negative, they provide us with the mean in the training dataset and hence do not add much predictive 
value. This also explains why the V-PMLR and Vauto exhibit similar values in the first four months in 
Figure 4.29, as both inputs for the volume time series and precipitation time series do not deviate from 
their seasonal expectations. Consequently, small weights are calculated in the regression model, and 
the model instructs the prediction to follow the seasonal trend. However, this can pose a limitation 
when volumes do not conform to their seasonal trends, which is a potential issue when using 
regression models. 

 
Figure 4.28 examines the April prediction for one year later, in April 2016. Similar regression weights 
are used for the predictions, as is typical for a regression model, but the inputs have changed. The 
wet season had already ended, and during the 2015-2016 drought, the observed amount of 
precipitation did not align with seasonal expectations. This is evident in the precipitation time series, 
which deviated from the seasonal mean by one standard deviation for the entire season. Additionally, 
the SPEI indicated extreme dry conditions for almost the entire season, observing the drought event. 
The magnitude of precipitation was not similar to that of the volume time series. This can be attributed 
to the fact that the precipitation that fell in the upstream catchment may not have reached the reservoir, 
particularly if the lands upstream were already dry, as the water is most likely absorbed by the 
unsaturated soil. Another explanation could be that the period of drought induced additional 
extractions from the reservoir, causing the volume to deviate more significantly than the precipitation 
time series. Notably, the volume time series showed a deviation of more than three standard 
deviations from normal, indicating a significant drop in reservoir levels during the drought. However, 
the regression models did not fully capture this deviation, indicating a limitation in their ability to predict 
such extreme events. 
 
The regression models, PMLR and SPEIMLR, presented in Figure 4.29 are unable to capture a decrease 
in volume, and instead revert directly to the seasonal mean. This outcome is consistent with the 
anticipated behaviour of the regression model and once again highlights the limitations of the model. 
Notably, the volume time series exert a significant influence on the variation observed in the other 
regression models. This is attributable to the substantial reduction in volume from seasonality, a 
magnitude which neither precipitation nor SPEI can match. In comparison to the mean observed in 
the training dataset, precipitation and SPEI exhibit minimal deviation, and consequently, return little 
deviation from the seasonal mean. This limitation is in line with the discussion on the restrictions of 
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the regression model presented earlier and is something that is likely to overcome in for example a 
physically based model. 
 
In the PMLR and SPEIMLR models, which consider precipitation and SPEI as a predictor only, an 
unexpected finding is the presence of a relatively constant confidence interval, which differs from the 
other models. This phenomenon may be explained by the independence of the predicted values, 
whereby the m+2 value is computed in its own distinct way, regardless of what was predicted in m+1. 
This attribute is characteristic of the linear multiple regression model and implies that it is not 
predetermined that uncertainty ranges will increase in future predictions, like one would expect with 
predictions. The uncertainty in the predicted values is determined by the white noise in the regression 
model, which is reliant on the variance in the training dataset. This leads for example to uncertainty 
ranges of predictions in the wet season to be large, as the training dataset contains larger variance 
during those periods. Also, this is the cause for the varying uncertainty ranges which like previously 
presented in August 2015 in Figure 4.30. 
 
Some anomalous outliers are observed in the predictions, as illustrated in Figure 4.31 for V-SPEIMLR, 
whereby the model abruptly overpredicts the true value with a lead time of 6 months. This outcome is 
feasible in the linear regression model, where the set of weights exhibits a high intercept resulting 
from the optimization fit, and typically, is rectified by negative weights for one of the volume inputs. 
However, during the year 2016, the volume input is remarkably low, which leads to a minor correction 
of the intercept. This exemplifies a situation where the set of weights obtained from the optimization 
fit is inadequate for prediction purposes.  
 
Although the absolute performance of the SPEIMLR, which only uses SPEI as a predictor, is weak 
according to its HSS scores, it does exhibit a slight increase in skill at the end of the rainy season, 
and the end of the dry season. It shows that the predictor gains skill when all input variables are within 
either the dry or wet period, suggesting that the SPEI during these periods is consistently indicative 
across years. However, the HSS score decreases as soon as the seasons are alternating (April and 
November/December), indicating that the SPEI varies from year to year during these periods. This 
agrees with the reasonable assumption that the beginning of the wet and dry seasons may differ by a 
few weeks from year to year.  
 
To conclude, the assumption was that the V-PMLR model would provide better predictability during 
relatively dry periods compared to the Vauto model. However, when examining both models for the wet 
season ending in April 2015 (Figure 4.27) and the very dry one in April 2016 (Figure 4.28), there was 
no significant difference in predictability between the two models. Furthermore, the HSS scores of the 
two models, which are provided in Appendix F, did not indicate any significant added value for V-PMLR. 
A possible explanation for this is that the deviations observed in the precipitation time series were too 
small for the regression model to effectively utilise. Even during the most extreme year of the drought 
in 2015-2016, the precipitation deviated only one standard deviation from seasonality, leading the 
regression model to heavily rely on the seasonal trend. This highlights a limitation of using data-driven 
models, and it would be advisable to develop a physical model of a guided data-driven approach, 
including in-situ measurements, for a more detailed modelling of the water volume. 
 
It is apparent that all models predict an increase in reservoir volume two months after the official start 
of the rainy season. This observation could be explained by various factors, including the possibility 
that there is generally a lag time of around two months in the catchment. This lag time may be due to 
dry soils upstream in the catchment that need to become saturated before precipitation can turn into 
runoff. Alternatively, it may be that water extraction from the reservoir during the initial months of the 
rainy season is like the inflow, and only after two months does the extraction decrease or the inflow 
increase. To find the exact cause, additional research will be needed to the catchment or the extraction 
patterns in the reservoir. 
 
The second conclusion drawn from the analysis is that the V-SPEIMLR model yields the best results for 
volume predictions, as evidenced by the predictions displayed in Figure 4.29 and the HSS score 
analysis presented in Figure 4.30. Interestingly, the lack of correlation between the lagged SPEI 
values and the volume of the Hawane reservoir in the corresponding month is surprising given the 
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model's relatively good performance. Therefore, it might be possible that this lack of correlation is due 
to other factors, such as the significant variation in volumes present in the training dataset. 
 
The analysis shows that the performance of the V-SPEIMLR, VAUTO, and V-PMLR models is significantly 
better than that of the SPEIMLR and PMLR models, which exhibit little to no predictive skill. This suggests 
that when using a data-driven approach to predict reservoir volume time series, it is crucial to account 
for the memory in the reservoir volume dynamics. As such, the novel method presented in this thesis 
can be a valuable tool for this purpose. 
 
It is important to note that the threshold used to predict the HSS scores in this analysis was a decrease 
in water volumes of 1 standard deviation. However, for proper decision-making related to water 
availability, it is necessary to work with thresholds that are relevant to stakeholders. Unfortunately, 
due to time limitations, this was not feasible for this thesis. It is expected that using more extreme 
thresholds will result in lower skill scores, as the model's ability to predict such events may be worse 
due to their infrequency in the training series.  
 
Furthermore, the SPEI is assumed to be a useful indicator of the wet and dry conditions in the region, 
with the demand for water assumed to be higher during dry conditions. Thus, the SPEI can indirectly 
reflect water availability. It would be intriguing to investigate whether this assumption holds by 
including the extraction or discharge time series of the reservoir in the prediction models. However, 
due to time constraints, this was not feasible within the scope of this master's thesis. 

5.6 SPEI: Lacking Correlation, Good Predictor 

 
It was hypothesised that the V-SPEIMLR model would improve predictability compared to the Vauto and 
V-PMLR models, despite the absence of cross-correlation between the lagged-SPEI and volume in the 
respective month. The SPEI index compares precipitation and potential evapotranspiration, thus 
contains information that is applicable to both wet and dry seasons. Therefore, the V-SPEIMLR model 
would provide superior predictability relative to the V-PMLR model, which only incorporates 
precipitation, and the Vauto model, which relies solely on autoregression. While the V-SPEIMLR model 
demonstrated improved predictability, it was hypothesised that the absence of cross-correlation 
between the lagged-SPEI and volume in the respective month may be attributed to the absence of 
variability in the training dataset. Specifically, the training dataset for the Hawane reservoir, which 
comprises the complete time series apart from the years affected by the 2015-2016 drought event, 
predominantly represents a constant volume variable. In contrast, the SPEI series exhibits 
considerable variance. 
 
To test the theory that the lack of correlation between the lagged SPEI time series and the volume in 
the respective month is due to the relatively constant time series in the training dataset, the Katse 
dam, which exhibits more fluctuations in its volume time series, was analysed. In the alignment of the 
time series in Figure 4.32, it was observed that the monthly SPEI contained significantly more positive 
and negative peaks than the volume time series of the Katse dam. As expected, this led to no 
improvement in the correlation between the monthly SPEI and volume. Conversely, the 3 monthly 
SPEI (SPEI-3) exhibited a relatively similar pattern of fluctuations around the reservoir, and 
demonstrated increased correlation towards the respective month, as presented in Figure 4.33. 
 
The enhanced correlation between SPEI-3 and volume implies that the direct influence of precipitation 
and evaporation on the reservoir volume is relatively low. Such direct impacts primarily relate to the 
replenishing and evaporation of water within the reservoir. Conversely, indirect impacts tend to be 
more diffuse and may not be directly observable. For instance, after a precipitation event in the 
upstream catchment, it might take a while before any noticeable effects on the water surface are 
detected. This lag varies across different catchments and depends on a range of factors, including 
soil saturation, soil type, topography, rainfall intensity and duration, the presence of vegetation, and 
urbanization, among others. These indirect impacts could potentially be the reason why the correlation 
between SPEI-3 and volume is stronger than that observed between monthly SPEI and volume. 
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5.7 Usability of the Novel Method and the Volume Predictions  

 
The usability of the novel method and the volume predictions depend heavily on the specific needs 
and requirements of decision makers, which can vary widely. To better understand these needs and 
requirements, Red Cross 510 conducted a study that included human-centred design interviews with 
water management stakeholders in Lesotho, including the Water and Sewerage Company (WASCO), 
the Disaster Management Agency (DMA), the Lesotho Highlands Water Project (LHDA), the Ministry 
of Water and the Lesotho Meteorological Services (LMS) (Red Cross 510, 2023). During these 
interviews, stakeholders were asked about the potential benefits of volume estimations and how they 
would use the Global Water Watch platform, as well as any additional requirements they might have. 
This information can help ensure that the platform meets the specific needs of decision makers and 
is useful in real-world applications. 
 
First of all, it is important to note that the rural areas in Lesotho mainly rely on water resources other 
than the reservoirs included in the Global Water Watch database, such as smaller reservoirs, streams, 
or groundwater wells. Unfortunately, these sources could not be measured by Global Water Watch or 
computed with the novel method. However, challenges still exist in operating the larger reservoirs, 
which play a significant role in generating economic income for the country. As such, these reservoirs 
are closely monitored through in-situ measurements of water availability and reservoir bathymetry. In 
cases where in-situ measurements are unavailable due to logistical reasons, remotely sensed volume 
estimations could help fill gaps in the time series. 
 
In addition, accurately estimating the sedimentation rate in reservoirs remains a complex task. The 
novel method includes a theoretical slope parameter for each reservoir, which flattens the reservoir 
bottom towards the dam wall to account for sedimentation. However, the current results of the method 
provide a volume time series proxy only for reservoirs with the typical man-made shape discussed in 
Section 2.1. To improve the accuracy of volume estimations, a hybrid approach that incorporates 
sedimentation point measurements in specific reservoirs could be beneficial. The measurement points 
from bathymetric surveys can enhance the bathymetry estimates in reservoirs. This would enable a 
more precise calculation of volume by accounting for any sedimentation occurring in the reservoir. 
 
Another potential application of the volume estimations from Global Water Watch is to conduct a 
historical analysis of water volumes in reservoirs during periods when the same outlook was 
presented. This analysis could reveal how and to what extend reservoirs were affected in history, and 
what the impacts on society are. The projection of the historic situation on the current situation will 
provide decision-makers information on what strategy to take in mitigating the impacts of the event. 
 
The volume estimations derived from Global Water Watch can also be utilised for conducting a 
historical analysis of water volumes in reservoirs during periods when the same outlook was 
presented. This analysis can provide insights into how reservoirs were affected and the extent of the 
impacts on society in the past. By projecting the historic situation onto the current situation, new 
information could be revealed to decision-makers which could be useful for developing more effective 
and efficient response plans.  
 
Furthermore, the use of remotely sensed data for water monitoring also provides the benefit of being 
able to automate the monitoring system and link it to an automated warning system that can be set 
up to send alerts or notifications to specific stakeholders. By automating the system, alerts could be 
sent out without the need for manual intervention, which can save time and resources.  
 
Last, the accuracy and frequency of remotely sensed volume estimations are crucial for their usability 
in reservoir management. Reservoir operators may require near-real-time updates at an hourly 
frequency to make informed decisions, while other stakeholders, such as policymakers, may benefit 
from less frequent updates with a much larger frequency. The required levels of accuracy and 
frequency varies for each stakeholder, which is something to investigate in further research.  
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6     

Conclusions & Recommendations 

6. Conclusions & Recommendations 
The final chapter of this thesis presents a summary of the key findings, contributions, limitations, and 
recommendations for future research. It provides an overview of the study's significance and highlights the 
fundamental progress made towards predicting water availability in reservoirs worldwide. 
 

6.1 Towards Water Availability Predictions in Reservoirs Worldwide 
 
In conclusion, this thesis presents a novel method for retrieving near real-time volume time series in 
small to medium-sized man-made reservoirs worldwide using remotely sensed open data. The 
method combines various data sources and techniques to reconstruct the bathymetry of a reservoir 
and convert available reservoir area time series into volume time series. The method involves a step-
by-step approach including the delineation of the reservoir using the model generation tool HydroMT 
by Eilander et al. (2023), surface filtering, stream identification based on D8 flow direction methods in 
PyFlwDir also by Eilander et al. (2023), depth determination of the main and tributary streams, and 
subsequent bathymetric interpolation. The resulting bathymetry of the main stream was observed to 
closely align with the upstream terrain and gradually flatten towards the downstream dam wall. The 
volume time series are then used to predict water availability up to six months in advance using 
regression models that incorporate precipitation data and the Standardised Precipitation and 
Evaporation Index (SPEI). 
 
The results of the study demonstrate the potential of this novel approach in accurately estimating 
reservoir volumes and predicting water availability. The method successfully obtained bathymetries 
and accurate volume estimations when validating using 2 reservoirs in Zambia and 48 in India. 
However, some reservoirs with complex shapes faced initial delineation challenges, resulting in 
inaccurate volume predictions. These issues could be resolved by manually delineating the area for 
bathymetry reconstruction. Moreover, regression models were applied to case study reservoirs in 
Eswatini and Lesotho, demonstrating reasonable predictive capabilities with the Heidke Skill Scores 
ranging from 0.77 to 1 for up to 2 months ahead. 
 
The key contributions of this study are three-fold. First, the novel method introduced in this thesis 
provides an improved methodology to estimating volume time series based on remotely sensed data. 
This novel method stems from an improved approach in deriving reservoir bathymetry. Second, this 
thesis argues that including the volume time series’ memory when predicting the volume time series 
significantly improves the model’s predictive capabilities. This was verified through iterations of 
volume time series predictions with several predictors, which include volume time series memory, 
SPEI, and precipitation time series data. Lastly, the study explored the added skill when incorporating 
a combination of predictors. The conclusions derived from these experiments yielded that the 
combination of SPEI and volume time series’ memory demonstrated the best predictive capacities, 
whereas precipitation data did not significantly improve the accuracy of volume predictions. 
 
Despite the success of the novel approach in predicting water availability, there are some limitations 
to the study that need to be addressed in future research. First, the method is to a lesser extend 
suitable for reservoirs with highly irregular shapes, and these reservoirs require further manual 
delineation. Considering the method relies on accurate bathymetry reconstruction, inaccuracies in 
bathymetry reconstruction directly impact volume predictive capabilities.  Second, the study only 
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considers small to medium-sized man-made reservoirs and cannot be applied to large-scale 
reservoirs. Finally, considering sufficient training data is required to train the prediction models, 
representative data is not always available for reservoirs. For example, historical operating schemes 
of the reservoir can vary significantly when compared to current ones, which results in unrepresentable 
training data.  
 
It is recommended that future research is conducted to explore additional factors that impact the 
accuracy of the methodology of the reservoir bathymetry reconstruction. This can be done by solving 
for delineating errors and by testing the methodology outside of the regions investigated in this thesis, 
namely India and Zambia. In this thesis, consideration of in-reservoir processes such as reservoir 
sedimentation were not included in the scope of the research. For future improvements, it is 
recommended to research the impact of these processes on the construction of the reservoir 
bathymetry further.  
 
Second, it is recommended to explore the added benefit of in-situ bathymetric measurements to the 
model. By using in-situ measurements for specific points within the reservoir, they can be integrated 
with the reconstructed bathymetry to enhance the accuracy of volume estimations. This approach 
would provide a more comprehensive understanding of the sedimentation processes taking place 
within the reservoir and enable more precise calculations of volume. Therefore, the combination of in-
situ measurements and reconstructed bathymetry has the potential to significantly improve the 
accuracy of volume estimations. 

 
Third, future research can be done to ensure the transferability of the method across different regions, 
which is crucial for applicability to any reservoir worldwide within the Global Water Watch dataset. To 
ensure transferability, investigation must be conducted into optimising the model’s transferable 
parameters specific to different regions. In the prediction models, it is possible to utilise predictors that 
are commonly used in specific regions. The only requirement is that sufficient time series data is 
available, and any relevant predictor can be utilised. 
 
Finally, when considering the usability of the novel method, future research is recommended to 
determine the volume thresholds for reservoirs to trigger anticipatory action. Decision makers desire 
a clear action plan when these thresholds are predicted, but more importantly demand a measure of 
certainty for these predictions. Additionally, further exploration is required to understand the most 
effective communication strategies for triggers to the relevant stakeholders. 
 
In conclusion, the method presented in this thesis successfully provided remotely sensed volume 
estimations in small to medium-sized man-made reservoirs and it has the potential for applications 
worldwide. The study highlighted the novel method for bathymetry reconstruction and explored the 
skill of regression models in predicting water availability. Future research can build on the foundations 
laid in this study towards the development of more accurate and reliable volume estimations and 
predictions in various reservoirs worldwide. 
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Appendix A: Global Water Watch 

 
 

Figure A: Screenshot of the Global Water Watch 
website, showing step by step how the reservoir 
surface area for, in this case, the Mita Hills 
reservoir in Zambia is obtained. Retrieved from 
globalwaterwatch.org (2023). 
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Appendix B: Hypsometric Curves 

 
  

Figure B: The hypsometric relations established with the novel method for the Mita Hills reservoir (top) 
and the Mulungushi reservoir (bottom) in Zambia. The figures on the left provide the relation between 
area and water level height, the middle figures provide the relation between volume and water level 
height, the right figures provide the relation between volume and area. 
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The Map of India incl. 48 Good Performing Reservoirs 

The Map of India incl. 46 Bad Performing Reservoirs 

Appendix C: Performance Indian Reservoirs 
  

N 
300 km 

N 
300 km 

Figure C1: The map of India 
including the bad reservoir 
locations. The bad performing 
reservoirs are presented in pink, 
the really bad performing 
reservoirs are presented in red. 

Figure C2: The map of India 
including the good performing 
reservoir locations. The neutral 
performing reservoirs are 
presented in orange, the good 
performing reservoirs are 
presented in green. 
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Appendix D: Bathymetry Hawane Reservoir 

Figure D1: The MERIT-Hydro DEM 
presenting the Hawane region. The axis 
provides the longitudes (°) and latitudes (°). 
The elevation is provided in the z-direction 
indicated by the colors on the color bar. 

Hawane Reservoir DEM 

E
le

v
a

ti
o

n
 (

m
) 

L
a
ti
tu

d
e
s
 (

d
e
g
re

e
s
 N

o
rt

h
) 

E
le

v
a

ti
o

n
 (

m
) 

E
le

v
a

ti
o

n
 (

m
) 

E
le

v
a

ti
o

n
 (

m
) 

L
a
ti
tu

d
e
s
 (

d
e
g
re

e
s
 N

o
rt

h
) 

L
a
ti
tu

d
e
s
 (

d
e
g
re

e
s
 N

o
rt

h
) 

L
a
ti
tu

d
e
s
 (

d
e
g
re

e
s
 N

o
rt

h
) 

Hawane Reservoir Filtered 

Hawane Reservoir Tributary Streams 

Hawane Reservoir Bathymetry 

Figure D2: Cells representing the water 
surface are filtered from the MERIT-Hydro 
DEM presenting the Hawane region. The 
axis provides the longitudes (°) and 
latitudes (°). The elevation is provided in 
the z-direction indicated by the colors on 
the color bar. 

Figure D3: Tributary streams with new 
elevations plotted in the Hawane reservoir. 
The axis provides the longitudes (°) and 
latitudes (°). The elevation is provided in 
the z-direction indicated by the colors on 
the color bar. 

Figure D4: Cubic interpolation to obtain 
bathymetry in Hawane Dam. The axis 
provides the longitudes (°) and latitudes (°). 
The elevation is provided in the z-direction 
indicated by the colors on the color bar. 
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Figure D7: Area 
time series of 
Hawane reservoir 
obtained with 
Global Water 
Watch by 
Donchyts et al. 
(2016). 
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Figure D9: Volume time series of the Hawane reservoir in Eswatini, showing the seasonal mean 
(dotted line) and seasonality computed over regular years (2000-2014 & 2017-2021) presented in blue 
shades, with 1, 2, and 3 standard deviations from the mean. The severe drought event that occurred 
in 2015-2016 resulted in a significant drop of over 3 standard deviations in reservoir volume. 

Figure D5: Bathymetry (blue) on main 
stream in the Hawane Dam. On the x-axis 
the distance from the most downstream cell 
is plotted (m), and the elevation is plotted 
on the y-axis.  

Figure D6: The 
hypsometric 
curves provided 
for Area-Water 
Level (left), 
Volume Water-
Level (middle) 
and Volume-
Area (right) in 
the Hawane 
Dam. 
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Appendix E: Training data for Hawane 
  

Figure 3.12: The training data used for the autoregressive model, presented by the blue line, which 
are the remaining values of the volume time series of the Hawane reservoir after filtering out the 
drought period (highlighted in yellow). The figure also displays the seasonal mean (dotted line) and 
seasonality computed over regular years (2000-2014 & 2017-2021) in blue shades, with 1, 2, and 3 
standard deviations from the mean. 

Figure E1: The training data used for the regression models for volume (top), SPEI (middle) and 
precipitation (bottom), which are the remaining values of the precipitation time series of the catchment 
upstream of the Hawane reservoir after filtering out the drought period (highlighted in yellow). The figure 
also displays the seasonal mean (dotted line) and seasonality computed over regular years (2000-2014 
& 2017-2021) in blue shades, with 1, 2, and 3 standard deviations from the mean. 
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Appendix F Heidke Skill Scores  

Figure F1: The Heidke Skill Score for in the 
Hawane Dam for PMLR (precipitation only) 
(upper left), for VAUTO (upper right), and V-
PMLR (lower left). The HSS scores are color-
coded to indicate performance, with green 
indicating good performance and red 
indicating poor performance. The associated 
HSS values are also presented, with a score 
of 1 indicating good performance and a 
score of 0 indicating poor performance. The 
y-axis displays the starting month for each 
prediction, while the x-axis represents the 
lead time up to which the prediction is made.  
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Figure F2: The Heidke Skill Score for in the 
Katse Dam for VAUTO (upper), and V-SPEIMLR 
(lower). The HSS scores are color-coded to 
indicate performance, with green indicating 
good performance and red indicating poor 
performance. The associated HSS values 
are also presented, with a score of 1 
indicating good performance and a score of 
0 indicating poor performance. The y-axis 
displays the starting month for each 
prediction, while the x-axis represents the 
lead time up to which the prediction is made.  


