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Unified model predictive control method of automated vehicles for lane- 
changing and lane-keeping maneuvers

Wei Liua , Li Songa, Yongqi Dongb , Xuequan Zhanga, and Liangjie Xua 

aSchool of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan, China; bDepartment of Transport and 
Planning, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands 

ABSTRACT 
This paper investigates the motion control of automated vehicles for both lane-changing 
and lane-keeping maneuvers. This research is critical because lane keeping and lane chang
ing, which need to be integrated into a unified control system, are still two fundamental 
control problems on the way to developing the highly automated vehicle. In addition, environ
ment perception, which is highly coupled with motion control, should be introduced into the 
control loop. A further challenge is to solve the complex optimization problem with constraints 
of vehicle dynamics and full-dimensional collision avoidance. To solve these issues, this paper 
proposes a unified model predictive control method that can seamlessly handle lane-keeping 
and lane-changing maneuvers. The control problem adopts three reference generation 
approaches to get the perception of the traffic environment involved. Further, a rough-plan- 
and-fine-check strategy is utilized to reduce the complexity of solving the proposed unified 
model predictive control problem with constraints of collision avoidance. The proposed method 
has been implemented on the PreScan-MATLAB/Simulink joint simulation platform, where its 
performance of lane keeping and lane changing has been evaluated in different driving sce
narios. Simulation results verify the capabilities of the proposed method.
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1. Introduction

Automated vehicles are growing rapidly to participate in 
the Intelligent Transportation System (ITS) with the 
potential to improve traffic safety and mitigate traffic 
congestion (Cui et al., 2021; Marcano et al., 2020; 
Moradloo et al., 2025; Wang et al., 2014; Yang et al., 
2018). However, it is undeniable that there are still lots of 
challenges that need to be overcome before they become 
common participants in future transportation systems.

As lane keeping and lane changing are two basic 
categories of driving behaviors when people drive 
vehicles on a structured road (Xie et al., 2019; Hu 
et al., 2020; Hu et al., 2019; Chen & Huang, 2017), 
numerous works have been done to contribute to the 
automated lane-keeping and lane-changing methods. 
Lane-keeping controllers are designed to keep the 
vehicle within its lane while maintaining the speed 
and avoiding collisions automatically (Li et al., 2021; 
Liang et al., 2021) and the lane-changing controllers 
are able to guide the automated vehicle move to the 
adjacent lane smoothly (Do et al., 2017; Suh & An, 
2024; Yu et al., 2018).

Lane keeping and lane changing are still two essen
tial control problems of automated vehicles (Vechione 
& Cheu, 2022). However, as in the above-mentioned 
literature and other state-of-the-art works, these two 
driving behaviors are studied separately with different 
methods. In addition, behavioral decisions on lane 
changing or lane keeping should be made before tra
jectory or path planning and motion control 
(Gonzalez et al., 2016; Marti et al., 2019; Xu et al., 
2020). Fully or highly automated vehicles need to be 
deployed with control modules that are capable of 
automatic lane keeping and lane changing and have 
the functionality to switch from one to another seam
lessly. Hence, it is in great need to develop control 
methods that can cope with lane keeping and lane 
changing simultaneously. Should the automated 
vehicle get equipped with such a controller, there will 
be no need to decide to keep in the current lane or 
change to another lane and consequently plan the cor
responding path or trajectory by using different meth
ods, which will make the automated driving system 
much simpler.
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The perception system and the control system are two 
general subsystems in the overall automated driving sys
tem (Li & Wang, 2007; Fu et al., 2021; Hu et al., 2021). 
The former one obtains the information describing the 
traffic environment, the state of the ego vehicle, and 
other vehicles by heavily relying on on-board sensors, 
such as cameras, LiDARs, and radars (Marti et al., 2019). 
The general control system of the automated vehicle con
sists of route planning, behavioral decision making, 
motion planning, and local feedback control (Gong et al., 
2016; Paden et al., 2016). However, most of the related 
works only focus on the planning or control task of lane 
changing or lane keeping individually in a specific driv
ing scenario. The overall control system would be organ
ized with a cumbersome hierarchical structure to handle 
the continuous and complex driving process. Hence, 
there is considerable potential for the development of a 
compact control system by comprehensively involving 
the last three modules in a unified automatic lane-keep
ing and lane-changing control method.

Moreover, the connection between the perception 
system and the driving control system of automated 
vehicles has not been fully investigated yet. In a cycle of 
the information flow, the information captured by the 
perception system determines the control commands 
generated by the control system, and then the state of 
the ego vehicle altered by the control commands affects 
the information that would be obtained by the percep
tion system. That these two systems depend on each 
other makes the overall automated driving system very 
complicated. It might be too ideal to assume that the 
environment is always static during the whole control 
period or the mapping from the traffic environment to 
the information obtained is stable when the ego vehicle 
and the environment are at different states, for instance 
in Liu et al. (2017). Therefore, it is appealing to develop 
a closed control loop that can take the perception of the 
environment into consideration.

The vehicle dynamics model is suitable for the 
accurate motion control of automated vehicles and 
considering multiple dynamic constraints at the same 
time, but it is more complex than the vehicle kinemat
ics model. Due to the inherent capability of explicit 
multi-constraint handling for multiple-input and mul
tiple-output systems, model predictive control has 
been widely used for the motion control of complex 
vehicle dynamics systems (Arrigoni et al., 2022; 
Falcone et al., 2007; Gao et al., 2014; Liu & Li, 2018; 
Rasekhipour et al., 2017). The model predictive con
trol problem of automated vehicles for various motion 
control is usually transformed into a constrained opti
mization problem (Liu & Li, 2019; Zhai et al., 2022; 

Zhang et al., 2022; Zhao et al., 2022). However, it is 
tough to solve the complex optimization problem with 
constraints of vehicle dynamics and full-dimensional 
collision avoidance.

To address the above challenges and make the con
trol system of automated vehicles simpler, more flex
ible, and more capable of dealing with various driving 
scenarios, we would like to propose a unified control 
method for lane keeping and lane changing within the 
framework of model predictive control. The main 
contributions of this work are as follows.

First, this paper proposes a method that can seam
lessly solve the control problems of lane keeping and 
lane changing without switching from one to another, 
which eliminates the boundary between these two 
driving maneuvers and simplifies the control system 
of automated vehicles. Originating from the idea that 
lane changing and lane keeping are two different 
behaviors classified by human drivers but could be 
treated the same from the perspective of computers, 
this method makes automated vehicles more like 
machines rather than human-driven vehicles.

Second, this paper narrows the gap between the per
ception system and the control system of the automated 
vehicle by using reference generation methods, which 
can diminish the impact of the perception errors on the 
control of the trajectory tracking. Furthermore, the uni
fied model predictive control method does not require a 
sophisticated path or trajectory planning method in 
advance. Involving the output of the perception system 
in the control loop, this method formulates a closed- 
loop control system for automated vehicles within a 
dynamic traffic environment.

The rest of this paper is organized as follows. 
Section 2 formulates the general control problem of 
automated vehicles driving on the structural road. 
Section 3 describes the proposed unified model pre
dictive control method for lane keeping and lane 
changing in detail. Simulations and results under dif
ferent driving scenarios are discussed in Section 4. 
Finally, Section 5 briefly concludes this paper.

2. Problem formulation

In this section, a generic control scheme of auto
mated vehicles for lane changing and lane keeping 
is formulated.

2.1. Overall formulation

The overall structure of the automated driving system 
for lane change and lane keeping is introduced in 
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Figure 1, where the traffic environment, the vehicle 
dynamics, and the control system form a closed loop. 
The ego vehicle is a part of the traffic, and at the 
same time interacts with others in the traffic. The 
tire-road interaction is one of the direct interactions 
between the vehicle and the traffic environment, while 
the aerodynamics are not explicitly considered in this 
paper. The sensors detect the physical parameters of 
interest in the traffic environment, such as color and 
distance, and then provide the perception system with 
the digital signals that can be further processed into 
structured data representing objects or lane lines.

It is assumed that the automated vehicle is 
equipped with a decision-making module that pro
vides a desired maneuver request, e.g., keeping in the 
current lane or changing to the left lane. The dashed 
rectangle in Figure 1 highlights the control scheme 
consisting of two modules for the lane-changing and 
lane-keeping maneuvers. The upper control module 
generates the steering angle and acceleration, while 
the lower module computes the throttle and the brake 
based on the acceleration requirement. That the hier
archical two-module control structure separates the gen
eral dynamics of vehicle motions and the complex 
dynamics of tires simplifies the overall dynamics of the 
control system, but still preserves the adequate ability to 
control the automated vehicle at a high speed.

The upper control module, namely the lane change/ 
keeping control, which is one of the most important 
parts of the proposed control scheme, is formulated as 
an optimal control problem within the framework of 

model predictive control. It is able to solve the motion 
control problem for lane keeping or lane changing in 
the same way without changing its formation, no matter 
which driving maneuver is required. The vehicle state 
variable is denoted as x 2 Rnx ; and the control variable 
is denoted as u 2 Rnu : The lane change/keeping control 
scheme is written as

min
uðtÞ

ðTp

t¼0
JðxðtÞ, uðtÞ, rðtÞÞ, (1a) 

s:t: _xðtÞ ¼ f0ðxðtÞ, uðtÞÞ, t 2 0, Tp
� �

; (1b) 

xmin � xðtÞ � xmax, t 2 0, Tp
� �

; (1c) 

umin � uðtÞ � umax, t 2 0, Tp
� �

; (1d) 

EðxðtÞÞ � FðtÞ, t 2 0, Tp
� �

: (1e) 

Herein, Tp is the length of the prediction horizon in 
time, J is the cost function to be minimized, rðtÞ is the 
reference trajectory that depends on the traffic environ
ment. The function f0 : Rnx �Rnu ! Rnx describes the 
vehicle dynamics. ½xmin, xmax� and ½umin, umax� denote the 
limitations of the vehicle state and control, respectively. 
Eð�Þ : Rnx ! R2 is a mapping from the vehicle state to 
the space occupied by the controlled vehicle in the hori
zontal plane. F � R2 represents the free space where 
the vehicle does not collide with other objects. The 
details behind the aforementioned abstract symbols will 
be explained in the remainder of this section.

2.2. Traffic environment

This paper considers the control problems of auto
mated vehicles running on the structured roads as 
shown in Figure 2, where the solid black lines and the 
dashed black lines represent the road boundaries and 
the lane markings, respectively. The icon of a sedan 
represents the ego vehicle that is an automated vehicle 
controlled by the proposed method, while the gray 
rectangles are the surrounding vehicles around the 
controlled one, regardless of whether they are auto
mated or human-driven.

It is assumed that the lane markings, the road 
boundaries, and the surrounding vehicles or other 
objects within a certain range can be detected by the 
sensors mounted on the ego vehicle. More specifically, 
the perception system of the automated vehicle can 
provide a set of polynomials describing the lane mark
ings and the road boundaries with respect to the 
coordinate system of the sensors. The reference trajec
tory rðtÞ in Equation (1a) consists of points related to 
those polynomials. Sensors can also detect the dis
tance, detection angle, velocity, and heading angle of 

Figure 1. Automated driving system for lane change and lane 
keeping.
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the surrounding objects. The world coordinate of the 
center of gravity (CG) of the ego vehicle is (X, Y), 
which can be precisely estimated by the on-board sen
sors such as GPS and IMUs.

2.3. Vehicle dynamic constraints

This subsection introduces a simple nonlinear 2-D 
vehicle dynamic model that formulates the dynamics 
constraints for the control problem of the ego vehicle. 
As shown in Figure 3, X − Y is the world coordinate 
system, XB − YB is the body-fixed coordinate system of 
the ego vehicle, CG is the center of gravity of the 
vehicle, point A and point B are the center of the front 
and rear tire, respectively. The differential equations 
describing the vehicle dynamics are written as follows.

m0 _ux ¼ m0ax þm0uyc (2) 

m0 _uy ¼ Ffy þ Fry − m0uxc (3) 

Iz _c ¼ Ffylf − Frylr (4) 

_w ¼ c (5) 

_X ¼ ux cos w − uy sin w (6) 

_Y ¼ ux sin wþ uy cos w: (7) 

Herein, m0 is the mass of the ego vehicle, lf is the 
distance from point A to CG, lr is the distance from 
point B to CG, Iz is the moment of inertia around the 
vertical axis through CG. ux and uy are the longitudinal 
and lateral velocities of the vehicle in the body-fixed 
coordinate system. w is the angle from the X-axis to the 
longitudinal axis of the vehicle body AB. c is the yaw 
rate of the vehicle, c ¼ _w: (X, Y) is the world coordinate 
of CG, which is consistent with the ego vehicle in 
Figure 2. ax is the longitudinal acceleration, which is 
treated as one of the control commands of the upper- 
layer control system.

In Equations (3)–(4), Ffy and Fry are the total lat
eral forces of the front and rear tires, which can be 

calculated by the following equations of tire dynamics 
(Rasekhipour et al., 2017).

Ffy ¼ Cf df −
uy þ lf c

ux

� �

, (8) 

Fry ¼ Cr −
uy − lrc

ux

� �

, (9) 

where Cf and Cr are the cornering stiffness coefficients 
of the front and rear tires, respectively. In Equations 
(2)–(9), ux; uy; c; w; X, Y, df and ax are variables in 
the time domain, _ux; _uy; _c; _w; _X and _Y are the time 
derivatives of ux; uy; c; w; X and Y. The steering angle 
of the front tires df is another control variable of the 
upper control module. Then, defining the state variable 
as x ¼ ½ux , uy , c, w, X, Y�T and the control variable as 
u ¼ ½df , ax�

T
; the explicit form of f0 in Equation (1b)

can be obtained by combining Equations (1)–(9).
To make the problem more feasible and reduce 

the computation burden, the nonlinear dynamic sys
tem is linearized around its operating point. 
Assuming that the vehicle runs straight at a steady 
longitudinal speed of ux ¼ u0 > 0; and uy; c and w 

are very small in magnitude at time t, the linearized 
system can be written as

_x ¼ AðtÞxþ BðtÞu, (10) 

where

AðtÞ ¼

0 0 0 0 0 0
0 − CfþCr

m0u0

−Cf lfþCrlr
m0u0

− u0 0 0 0

0 −Cf lfþCrlr
Izu0

−
Cf l2

fþCrl2
r

Izu0
0 0 0

0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 u0 0 0

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

,

(11) 

Figure 2. Traffic environment around the automated vehicle.

Figure 3. Vehicle dynamic model.
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BðtÞ ¼

0 1
Cf
m0

0
Cf lf
Iz

0
0 0
0 0
0 0

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

: (12) 

Then, discretizing the state space system by using 
the zero-order hold (ZOH), the discrete system that 
can be applied to the digital control system is 
obtained as

xkþ1 ¼ Akxk þ Bkuk, (13) 

where Ak ¼ eAðtÞDt; Bk ¼
Ð Dt

0 eAðtÞ~t d~tBðtÞ; and Dt is the 
sampling time of the control system.

2.4. Collision-avoidance constraints

This subsection describes the collision-avoidance con
straints in Equation (1e). The signed distance function 
is a popular theoretical tool to detect collision for full- 
dimensional objects (X. Zhang et al., 2021). The 
signed distance function between the ego vehicle and 
the obstacle is defined as

sdðEðxÞ,OÞ :¼ distðEðxÞ,OÞ − penðEðxÞ,OÞ, (14) 

where EðxÞ is the convex set of points occupied by 
the ego vehicle, O is the convex set of points occupied 
by the full-dimensional objects in the traffic environ
ment around the ego vehicle, distð�, �Þ and penð�, �Þ are 
the distance and penetration depth defined as

distðEðxÞ,OÞ ¼ inffjjTjjjðEðxÞ þTÞ \O 6¼Øg, (15) 

penðEðxÞ,OÞ ¼ inffjjTjjjðEðxÞ þTÞ \O ¼Øg: (16) 

The distance between two sets, which is nonzero 
for non-intersecting sets, is defined as the smallest 
translation T that puts two shapes in contact. The 
penetration depth, which is nonzero for overlapping 
shapes, is defined analogously as the minimum trans
lation T that takes two shapes out of contact. Roughly 
speaking, the signed distance in Equation (14) is posi
tive if EðxÞ and O do not intersect, and negative if 
they overlap.

The ego vehicle is not colliding with an object if 
the signed distance between them is positive. At the 
beginning of every control cycle t ¼ 0; the sensor sys
tem can detect the number of obstacles in the field of 
view (FOV) of the sensors mounted on the ego 
vehicle and their accurate information, such as range, 
azimuth, velocity, and heading angle. For the sake of 
simplicity, the velocity of the obstacle is assumed to 

be constant during the prediction horizon ½0, Tp�; then 
the future states of the obstacles from t ¼ 0 to t ¼ Tp 
are accessible at the beginning of the collision-avoidance 
motion planning. Therefore, the collision-avoidance con
straints in Equation (1e) can be rewritten as

sdðEðxðtÞÞ,OiðtÞÞ > 0, 8i 2 N o, t 2 0, Tp
� �

, (17) 

where N o is the set consisting of all the indexes of 
the obstacles in the FOV of sensors.

However, it is tough to take the full-dimensional 
collision-avoidance constraints into consideration 
when solving the motion planning problem with the 
constraints of vehicle dynamics. To reduce the com
plicity of the optimization problem in Equation (1), 
we utilize a rough-plan-and-fine-check strategy that 
applies a dilated elliptical constraint (Li et al., 2022; Li 
et al., 2021) instead at the optimization stage and then 
applies the full-dimensional collision-avoidance con
straints in Equation (17) to check whether the colli
sion would happen or not. The elliptical constraint is 
written as

ðX − XiÞ
2

Pi
þ
ðY − YiÞ

2

Qi
P1, (18) 

where ðXi, YiÞ is the coordinate of the ith obstacle, Pi 
and Qi are two positive real numbers depending on 
the size of the obstacle, and Pi is much larger than Qi 
because the lateral velocity is generally much lower 
than the longitudinal velocity in normal driving sce
narios. If a collision were detected at the checking 
stage, Pi and Qi would be increased to dilate the ellip
tical obstacle (Liu et al., 2017).

3. Lane-changing and lane-keeping control

3.1. Motivations

This section proposes a control scheme that solves the 
lane-changing and lane-keeping problems in a unified 
fashion. In other words, the lane-changing process is 
treated the same as the lane keeping. Thus, the auto
mated driving control on the structural road is only 
about the lane-keeping control, which will signifi
cantly simplify the control system of the automated 
vehicle designed for normal tasks on the structural 
road.

Generally, lane changing and lane keeping are two 
basic kinds of driving behaviors when people are driv
ing on structural roads such as urban roads or high
ways. Other kinds of complex driving behaviors can 
be considered as a combination of these two basic 
ones. For instance, the process of overtaking is typic
ally divided into lane changing, lane keeping, and 
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another lane changing back to the original lane in a 
sequential manner (Dixit et al., 2020; Graf et al., 2019; 
Ortega et al., 2020) as demonstrated in Figure 4.

Typically, the control problem of the flexible driv
ing process is dealt with by decomposing the whole 
into simple individual maneuvers, which can be easily 
solved without considering the long-term process of 
continuous driving. However, this kind of strategy 
renders vague boundaries between different maneu
vers and redundant modules in control systems. To 
consider further, lane changing and lane keeping are 
different in terms of concepts, but there are no differ
ences between them in the view of computers. If these 
two kinds of control problems are solved in a unified 
way, the structure of the control strategy can be 
straightforward and the scale of the control system 
can be reduced.

In the remainder of this section, we first generate 
the reference points for trajectory planning, then for
mulate the unified control method for lane keeping 
and lane changing, finally introduce the feedback con
trol of throttle and brake.

3.2. Generation of reference points

Lane marking detection, which is a part of the percep
tion system, is a fundamental but crucial step for tra
jectory or motion planning in intelligent driving 
systems (Zhang et al., 2021). However, the informa
tion flow and the connection between the perception 
system and the control system have not been fully 
investigated. Most detection methods output the coor
dinates of several points or pixels of lane markings in 
the image coordinate system. Then, a series of curve 
fitting methods are used to fix the broken lane mark
ing edges and refine the detection results.

In this paper, different lane lines are modeled with 
different groups of polynomials relative to the sensor 
in the fitting step. For each lane line detected in the 
FOV of the sensor, the fitting method attempts to fit 
the entire lane line with a set of polynomials for lon
gitudinal and lateral coordinates at first. If the 

maximum fitting error is larger than the threshold, 
then the interval of the lane line for fitting in this 
attempt is shortened until the maximum error does 
not exceed the limit. Then the rest of the lane line 
will be fitted with the same approach and a sequence 
of polynomials can be obtained at last. From the right 
to the left in the view of the sensor, one of the lane 
lines including the road boundary lines is modeled as

Lj ¼ ffP
ðj1Þ
X , Pðj1ÞY g, fP

ðj2Þ
X , Pðj2ÞY g, :::, fP

ðjMÞ
X , PðjMÞY gg,

(19) 

where Lj is a group consisting of at least one set of 
polynomials, j is the index of the lane line, M is the 
index of the last set of fitting polynomials, PX and PY 
are polynomials fitted for longitudinal and lateral 
coordinates formulated as

Pjm
xy ¼ ajm

xy l3 þ bjm
xy l2 þ cjm

xy l þ djm
xy , (20) 

where xy 2 fX, Yg; l 2 ½0, Lm�: Lm is the length of the 
interval, which needs to be determined by the fitting 
method, along with the coefficients ajm

xy ; bjm
xy ; cjm

xy and 
djm

xy : Cubic or quadratic polynomials are commonly 
used to fit curves of structural highways or normal 
city roads except for the intersections, not to mention 
small segments of lane lines in this approach. For 
example, the road shape in highway scenarios is mod
eled by a third-degree polynomial (Zhang, 2023); 
Chapuis et al. (2002) utilized quadratic and cubic pol
ynomials to fit the road lines about 80 meters instead 
of small segments; Wang et al. (2019) established the 
quadratic curve model for the curved lane-line in the 
far field of view.

Then, the key points of these detected lane mark
ings are defined as the points sampled from the lane 
lines represented by a sequence of polynomials in the 
same group with arc length of the product of the tar
get velocity of the self-vehicle vt and the sampling 
time of the control system Dt: Note that one segment 
may stretch over a polynomial and its following one 
as shown in Figure 5, in which the black circle 
denotes the end of a curve and the beginning of its 
following one modeled by two sequent sets of 

Figure 4. Generic schematic of an overtaking maneuver (i: lane change; ii: lane keeping; iii: lane change; OV: object vehicle).(Dixit 
et al., 2020).
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polynomials. The beginning points of segments, 
namely the key points, are represented by crosses in 
different colors for different lane lines.

Those key points with respect to the sensor system 
require to be transformed to the coordinates in the 
world coordinate system X − Y by the following equa
tion:

X
Y

� �

¼
cos w − sin w

sin w cos w

� �
Xs
Ys

� �

þ
Xoffset
Yoffset

� �� �

,

(21) 

where ½Xs, Ys�
T denotes the coordinate of the key 

point, and ½Xoffset, Yoffset�
T denotes the coordinate of 

the sensor in the world coordinate system. Then, the 
key points denoted by Pj can be obtained for each 
lane line with j representing the index of the lane line. 
Finally, the middle points composing the central line 
of each lane are the midpoints of the corresponding 
two key points on its right and left lane lines. The 
sequence of the middle points of the current lane in 
which the ego vehicle is driving is denoted by Pc and 
that of the target lane which the ego vehicle changes 
to is denoted by Pt: As for the case of the lane keep
ing maneuver, Pt ¼ Pc:

Three different ways are proposed in this paper to 
generate the reference points for the motion control 
of lane change and lane keeping. The first approach is 
to assign the middle points of the target lane within 
the prediction horizon directly to the reference points. 
In other words, the first reference generation method 

directly regards the middle points of the target lane as 
the reference points as shown in Figure 6(a), where 
the ego vehicle is changing to the left adjacent lane, 
the cross denotes the middle point of each lane, and 
the circle denotes the reference point.

The second approach is to attach the middle points 
of the target lane to the end of the reference points at 
the time of the beginning, and then roll the range of 
the reference points forward step by step. The number 
of total time steps of the prediction horizon in the 
discrete system is denoted by Np (Np 2 Z

þ), Np ¼

Tp=Dt: Denote the middle points from the nearest to 
the farthest of the current lane within the prediction 
horizon by ðPcÞ

Np
1 ; then the reference points generated 

by this approach is written as

rðkÞ ¼ fðPcÞ
Np−k−1
1 , ðPtÞ

Np
Np−kg, (22) 

where k is the prediction step, k ¼ 0, 1, :::, Np − 1; and 
k ¼ 0 means the first control step when the lane 
change takes place. The second reference generation 
method forms the reference points from the middle 
points of the current lane and the target lane at the 
first Np steps. Figure 6(b) presents an example of ref
erence points generation for a lane change when Np − 
k ¼ 5; the reference points consist of ðNp − k − 1Þ
middle points of the current lane and ðkþ 1Þ middle 
points of the target lane. After Np control steps from 
the beginning of the lane change, the reference points 
totally come from the middle points of the target lane.

The third reference generation method defines the 
reference point as one of the multi-section points that 
divide the line segment joining two corresponding 
middle points of the current lane and the target lane 
into Np equal parts during the first Np steps. The 
coordinates of the reference point can be calculated 
by using the internal section formula. To be precise, 
the sequence of the reference points is written as

rðkÞ ¼
Np − k − 1

Np
ðPcÞ

Np
1 þ

kþ 1
Np
ðPtÞ

Np
1 , (23) 

with k ¼ 0, 1, :::, Np − 1: Obviously, after Np control 
steps, all the reference points are sourced from the 
middle points of the target lane. Figure 6(c) illustrates 
a sequence of reference points among the middle 
points of two lanes generated by the third approach at 
the moment of k.

The three straightforward reference generation 
approaches proposed above are all quite easy to imple
ment in practice. The first one would be selected if the 
time needed for the lane-changing maneuver has prior
ity over other concerns in the control system of auto
mated vehicles. The third one would be selected if the 

Figure 5. The cross marks denote the key points of lane lines 
and the black circle denotes the end of a curve and the begin
ning of its following one modeled by two sequent 
polynomials.
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small and steady steering is preferred. Otherwise, the 
second one would be selected. This paper provides 
choices for the system designer and the automated 
vehicles with these three reference generation approaches 
to meet different situations and requirements.

3.3. Formation of model predictive control

To isolate the tire dynamics and make the overall 
problem more tractable, the overall control problem is 
solved with an upper controller and a lower controller 
as previously presented in Figure 1. The upper con
troller is formulated within the framework of model 
predictive control to track the reference points and 

generate commands of acceleration and steering, while 
the lower one is utilizing the widely-used PID control
ler to implement the command of acceleration with 
actuators of the ego vehicle.

For the sake of the digital control, the model predict
ive control problem with the discrete dynamic system 
of the ego vehicle for lane-changing and lane-keeping 
maneuvers is formulated in the upper controller as fol
lows:

min
U

XNp−1

n¼0
Jðxnþ1, un, rnþ1Þ (24a) 

s:t: xnþ1 ¼ Anxn þ Bnun, n ¼ 0, 1, :::, Np − 1 (24b) 

Figure 6. Generating the reference points for changing lanes to the left. The cross marker “�” denotes the Middle point of each 
lane, and the circle “�” denotes the reference point. (a) Reference points generated by the first approach. (b) Reference points gen
erated by the second approach when Np − k ¼ 5: (c) reference points generated by the third approach at the moment of 
k, k ¼ 0, 1, :::, Np − 1:
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xmin � xn � xmax, n ¼ 1, 2, :::, Np (24c) 

umin � un � umax, n ¼ 0, 1, :::, Np − 1 (24d) 

Dumin�un −unþ1�Dumax,n¼0,1, :::,Np −2 (24e) 

Dumin�u−1 −u0�Dumax (24f) 

ðXn −Xi,nÞ
2

Pi
þ
ðYn −Yi,nÞ

2

Qi
−1P0,

n¼1,2,:::,Np, i¼1,2, :::,No

(24g) 

x0¼xk: (24h) 

In Equation (24a), U ¼ ½uT
0 , uT

1 , :::, uT
Np−1�

T represents 
the sequence of the control commands that need to 
be solved. n is the prediction step, n ¼ 1, 2, :::, Np − 1:
The objective function is written as

Jðxnþ1, un, rnþ1Þ ¼ uT
n Sun þ qðvt − C1xnþ1Þ

2

þ ðrnþ1 − C2xnþ1Þ
TRðrnþ1 − C2xnþ1Þ,

(25) 

where S and R are semi-definite matrices, q is a con
stant coefficient, vt is the target velocity mentioned in 
the previous subsection, the C1 and C2 are binary 
matrices that extract the longitudinal velocity and the 
coordinates of the ego vehicle from the full state vari
able, respectively. rnþ1 represents the ðnþ 1Þ-th elem
ent of the sequence of reference points rk: The first 
term of the right-hand side of Equation (25) repre
sents the control cost, while the second term and the 
third term reflect the penalties on the tracking devia
tions of the target speed and the reference trajectory, 
respectively.

The equality constraints in Equation (24b) are the 
discrete system of the ego vehicle’s dynamics derived 
from Equation (1b). Equations (24c)–(24d) are the 
basic limits of the state and control variables. 
Equation (24e) presents the constraints of the change 
between two adjacent control variables. An extra con
straint is introduced in Equation (24f) for the first 
element of the control sequence based on the reason 
that the predictive control sequence should be closely 
related to the last executed control command denoted 
by u−1: Equation (24g) lists the collision-avoidance 
constraints that have been explained in Equation (18). 
x0 ¼ xk in Equation (24h) means that the initial con
dition of the control predictive problem is the current 
state of the ego vehicle at the system time step k.

By solving the predictive control problem in 
Equation (24) at each control step, the upper control
ler can generate a sequence of the control commands 
of steering and acceleration, the first acceleration of 
which will be delivered to the lower controller. It is 
straightforward to transform the predictive control 

problem to an optimization problem with constraints 
of the control sequence.

3.4. Feedback control of throttle and brake

To implement the acceleration command given by the 
upper controller, a feedback control scheme of throttle 
and brake is proposed as demonstrated in Figure 7, 
where ax and a0x are the acceleration command and 
the estimated acceleration respectively. If ax > a0x; a 
PID controller for the throttle control is activated. 
Otherwise, another PID controller for the brake con
trol is in charge of the longitudinal acceleration. The 
control frequency of the acceleration is assumed to be 
fa; which is a multiple of the frequency of the discrete 
system in Equation (13).

4. Simulations, results, and discussions

To study the performance of the proposed unified 
model predictive control method of automated 
vehicles for lane-keeping and lane-changing maneu
vers, numerical simulations were conducted on the 
platform of PreScan, which is a software tool designed 
as a development environment for intelligent trans
portation systems and intelligent vehicle systems and 
supports a seamless interface with MATLAB and 
Simulink. This section reveals the details of the simu
lation as well as some results.

4.1. Simulation setup

A model of the Audi A8 Sedan offered by PreScan is 
chosen as the dynamic model of the ego vehicle in the 
simulation. The parameters of the vehicle dynamics 
appeared in Subsection 2.3 and their corresponding 
values which are extracted from the default dynamics 
configuration of this model in PreScan are listed in 
Table 1. The length of the prediction horizon Tp is 
2 s, and the sampling time interval Dt is 0.05 s, then 
the total number of the sampling interval Np ¼ 40. 
Table 2 demonstrates some parameters related to the 
control method in Equation (24). In addition, the 
constraints of states xmin and xmax can be derived 

Figure 7. Feedback control of throttle and brake.
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from the limitations in Equation (26) with other ele
ments limited in a reasonably large domain instead of 
the whole infinite space for the consideration of the 
computational feasibility.

−1:5 rad=s½ � � c � 1:5 rad=s½ �,
−5:0 rad½ � � w � 5:0 rad½ �:

(26) 

Two virtual sensors are deployed on the ego vehicle 
in our simulation experiments, one is the lane marker 
sensor called ALMS and another one is the object sensor 
called AIR. The lane marker sensor is mounted on the 
roof of the ego vehicle at the point with coordinates 
(0.23, 0, 1.32)[m] in the ego vehicle’s body-fixed coord
inate system, while the object sensor is attached to the 
front bumper at the point with coordinates (2.17, 0, 
0.37)[m] with respect to the CG of the ego vehicle.

A section of a structured road is constructed with 
straight road segments and bend road segments in the 
PreScan experiment editor. Some test scenarios are 
defined to evaluate the performance of the automated 
driving system implemented with the proposed uni
fied predictive control for lane keeping and lane 
changing, which are two normal human-defined driv
ing behaviors that form the whole process of every 
daily drive. Based on these two driving behaviors, sev
eral scenarios are constructed for testing as follows.

Scenario 1: The ego vehicle changes to the adjacent lane 
because of the slow preceding vehicle, then keeps in its 
current lane and maintains a steady speed.

Scenario 2: The ego vehicle keeps in its lane or changes 
lanes several times on a high-curvature road.

Scenario 3: The ego vehicle overtakes a slow preceding 
obstacle vehicle and deals with an emergency while 
changing lanes.

The above-mentioned scenarios are only some of the 
many cases that might occur when people are driving 

on a structured road. Nevertheless, they can evaluate the 
performance of the automated driving control system in 
observing obstacle avoidance and lateral and longitudinal 
maneuverability. The first scenario investigates the per
formance of lane changing if the current lane is occu
pied by other vehicles and the ability to keep driving in 
the current lane and follow the preceding vehicle. The 
second scenario studies the lane-keeping and lane- 
changing performance of the proposed control method 
on high-curvature road sections. The third scenario is 
employed to evaluate the comprehensive applicability of 
the proposed method in various lane-changing and lane- 
keeping situations.

4.2. Simulation results

4.2.1. Scenario 1
In this scenario, the ego vehicle maintains a steady 
speed of 16 [m/s] in the middle lane of the straight 
road at the beginning, while there is an obstacle 
vehicle moving ahead of the ego vehicle at a speed of 
10 [m/s] in the same lane. The initial distance 
between the ego vehicle and the obstacle vehicle is 
larger than 60 meters. The path of the obstacle vehicle 
is configured with the centerline of its current lane. 
After capturing the obstacle vehicle in the FOV and 
realizing their distance is becoming smaller than the 
safe following distance, the ego vehicle chooses to 
make a lane change to the left to avoid the collision. 
Figure 8 presents some results of the lane changing 
process, the reference points of which are generated 
by the third method mentioned in Subsection 3.2. The 
trajectory of the lane changing is shown in Figure 
8(a), which demonstrates that the ego vehicle accom
plishes the lane-changing process smoothly. The steer
ing control and the corresponding lateral acceleration 
of this process are presented in Figure 8(b). It is noted 
that the steering angle of the front tire is pretty small 
during this process, which means that subtle controls 
in steering are made for lane changing by the pro
posed method.

Three kinds of lane changing using reference points 
generated by different methods are compared and pre
sented in Figure 9, where Figure 9(a) shows the trajec
tories of lane changing fulfilled by the proposed 
method and Figure 9(b) presents the steering controls. 
Results manifest that the ego vehicle is steered swiftly 
in response to the lane change by using the first refer
ence generation approach. The maximum steering 
angle is very large and the whole process is completed 
in a very short time. This approach is very similar to 
the lane-changing behavior of aggressive driving or in 

Table 1. Parameters of vehicle dynamics.
Parameter Value (unit) Parameter Value (unit)

m0 1820 (kg) Iz 3746 ðkg �m2Þ

lf 1.170 (m) lr 1.770 (m)
Cf 72653 (N/rad) Cr 121449 (N/rad)

Table 2. Parameters of the control method.
Parameter Value (unit) Parameter Value (unit)

Dt 0.05 (s) Tp 2 (s)
umin ½−0:4363, − 10�T umax ½0:4363, 3�T

Dumin ½−0:1, − 0:5�T Dumax ½0:1, 0:5�T

Pi 8.0 (m) Qi 4.0 (m)
S diagð1, 1Þ R diagð0:05, 0:05Þ
q 0.05 Np 40
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an emergent situation. The second reference generation 
approach reacts to the lane changing most slowly, but 
the amplitude of the steering angle is not the smallest. 
By using the reference points generated by the third 
approach, the proposed method starts to steer the ego 
vehicle immediately with moderate steering angles. It 
turns out that the trajectory of the ego vehicle using this 
approach is the smoothest among these three. The dur
ation of the steering for the lane change in this case is 
about 3.10 s, which is much larger than the lane-chang
ing time (1.50 s) if the first reference generation method 
is deployed. Its performance of the lane-changing con
trol is comparable to the normal driving behavior of a 
conservative human driver who tends to steer slower 
with small angles (Yang et al., 2021; Chen & Wang, 
2018; Li et al., 2019).

Afterward, the ego vehicle moves in the rightmost 
lane on the straight road with a curved road ahead at 
a speed of 16 [m/s]. There is an obstacle vehicle run
ning ahead in the same lane at a nominal speed of 16 
[m/s] with a slight fluctuation. The path of the obs
tacle vehicle is inherited from the centerline of the 
rightmost lane and the speed profile is set with the 
smooth acceleration and deceleration of 0.3 [m/s2] in 
the SpeedProfile Editor of PreScan. The initial dis
tance between these two vehicles is around 60 meters. 

The simulation results of this scenario are shown in 
Figure 10. Figure 10(a) presents the trajectory of the 
ego vehicle on the curved road. The green rectangles 
demonstrate the position and orientation of the ego 
vehicle sampled from the full trajectory of the control 
process. As presented in Figure 10(b), the steering 
control commands are generated by the proposed 
control method to keep the ego vehicle in its current 
lane and prevent it from running outside of the road 
boundaries during the curve driving. Figure 10(b) also 
shows that the lateral acceleration closely comes after 
the steering control command.

4.2.2. Scenario 2
Further experiments have been conducted under more 
complex road conditions to study the lane-keeping 
and lane-changing performance of the proposed con
trol method on high-curvature road sections. In this 
case, the ego vehicle enters a high-curvature zigzag 
road composed of four pieces of curves whose radii 
are all equal to 40 meters. The target speed of the ego 
vehicle is 10 [m/s] while it is running on this road. 
The configuration of the road and the trajectory and 
the motions of the ego vehicle while keeping in the 
middle lane are displayed in Figure 11, where the 
dash-dot blue lines with filled circles attached to their 

Figure 8. A lane change in scenario 1. (a) Lane-changing trajectory of the ego vehicle. (b) Steering control and lateral acceleration 
during lane changing.
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ends represent the radius of the curved road, the rect
angle with solid green lines represents the ego vehicle, 
the solid red line is the trajectory of the ego vehicle. 
Meanwhile, the tracking error between the ego vehicle 
and the reference, which is the centerline of the mid
dle lane during lane keeping, is presented in Figure 
12. The maximum and average tracking errors are 
0.791 [m] and 0.326 [m], respectively, which indicate 
that the ego vehicle’s body remains in the lane while 
keeping lanes on this high-curvature road.

Applying the third reference generation method 
described in Section 3.2, the trajectory and the 
motions of the ego vehicle when it changes lanes four 
times on this zigzag road in a short period of about 
35 s are presented in Figure 13, where the rectangle 
with dash-dot blue lines denotes the pose of the ego 
vehicle while changing lanes. Except for trajectories of 
lane changes, the maximum and average tracking 
errors between the ego vehicle and the centerlines of 
the lane where it is are 0.939 [m] and 0.398 [m], 
respectively, which are comparable to the case of lane 
keeping in the middle lane. Each lane change in this 
scenario lasts for about 3 s.

Moreover, experiments with lane changes using 
another two reference generation methods have also 

been conducted on the high-curvature road. The trajec
tories of the ego vehicle are presented in Figure 14, 
where the solid red line, the dashed green line, and the 
dash-dot blue line denote the trajectories accomplished 
by using the first, the second, and the third reference 
generation method, respectively. Figure 14 only displays 
two-thirds of the whole driving process to make the 
comparison of three reference generation methods more 
visible. As demonstrated in Scenario 1, the first reference 
generation method guides very swift lane changes, the 
second one reacts to the lane change slowly, while the 
third one leads moderate lane-changing maneuvers.

To evaluate the tracking performance of the pro
posed controller when the ego vehicle keeps in its 
lane or changes lanes on a high-curvature road, key 
performance indicators, such as the average, the max
imum, and the root mean square value of the tracking 
error, are calculated and summarized in Table 3. The 
tracking performance indicators of the lane keeping are 
calculated based on the entire process of driving in the 
center lane on this high-curvature road, while the track
ing performance indicators of the ego vehicle when it 
changes lanes multiple times are based on the segments 
of trajectories excluding the lane-changing parts due to 
the lack of comparability among controllers concerning 

Figure 9. Comparisons between lane changes using three different reference generation methods. (a) Trajectories of lane chang
ing. (b) Steering control of lane changing.
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their different and time-variant references. Considering 
the width of each lane is 3.5 [m] and the width of the 
ego vehicle is 1.8 [m], results show that the proposed 
control method keeps the body of the ego vehicle in the 
target lane most of the time in lane-keeping and lane- 
changing scenarios on the high-curvature road. The per
formance of the proposed control method in our paper 
is acceptable according to the key performance indicators 

in Table 3 compared to the state-of-the-art literature 
(Cheng et al., 2021; Hu & Zhao, 2021; Stano et al., 2023; 
Wang et al., 2021) focusing on the path tracking method 
based on Model Predictive Control.

4.2.3. Scenario 3
In this scenario, the ego vehicle realizes an overtak
ing maneuver and deals with an emergency while 

Figure 10. Lane keeping in scenario 1. (a) Trajectory of the ego vehicle on the curved road. (b) Steering control and lateral accel
eration during a curve driving.

Figure 11. Lane keeping on a high-curvature road. (The rectangle with solid green lines represents the ego vehicle. The solid red 
line is the trajectory of the ego vehicle. The dash-dot blue lines with filled circles attached to their ends represent the radius of 
the curved road.).
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changing lanes. The distance between the ego vehicle 
and a proceeding obstacle vehicle is 55 meters at the 
beginning of the simulation. There is another obs
tacle vehicle that is out of the FOV of the ego vehicle 
moving in the left adjacent lane. The initial speed of 
the ego vehicle is set to be 16 [m/s], and those two 
obstacle vehicles remain at the same constant speed 
of 10 [m/s]. There is a platoon of obstacle vehicles 
continuously moving at a speed of 15 [m/s] in the 
right adjacent lane.

After driving in its current lane for several seconds, 
the ego vehicle changes to the left lane to avoid collid
ing with the moving obstacle vehicle ahead before the 
gap becomes too small. The reference path of the MPC 
problem in Equation (24) is generated by the third 
approach for this lane-changing process. Then the ego 
vehicle keeps in the left lane temporarily. When passing 
by the first obstacle vehicle, the second one comes into 
the FOV of the ego vehicle. For the same reason as the 
first lane change, the ego vehicle should be able to 

Figure 12. The tracking error between the ego vehicle and the lane centerline.

Figure 13. Lane changes on a high-curvature road. (The rectangle with dash-dot blue lines represents the ego vehicle while 
changing lanes. The rectangle with solid green lines represents the ego vehicle while keeping lanes. The solid red line is the trajec
tory of the ego vehicle.).

Figure 14. Trajectories of the ego vehicle when it changes lanes on a high-curvature road. (The solid red line, the dashed green 
line, and the dash-dot blue line denote the trajectories accomplished by using the first, the second, and the third reference gener
ation method, respectively.).
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change back to the middle lane and at the same time it 
should be following the regulations of collision avoid
ance with two obstacles. This lane change should be 
finished swiftly, so the first reference generation 
approach is applied to guide the ego vehicle this time. 
The simulation results are shown in Figure 15, where 
Figure 15(a) presents the trajectory of the entire over
taking process of the ego vehicle implemented by the 
proposed method, and Figure 15(b) depicts the steering 
angle generated by the upper control module and the 
lateral acceleration in response to the control.

An emergency occurs if the obstacle vehicle in the 
left adjacent lane is behind the ego vehicle and moves 
at a speed of 15 [m/s] at the beginning and increases 
to 18 [m/s] afterward. The ego vehicle keeps moving 
at a steady speed of 16 [m/s] in the middle lane, while 
there is an obstacle vehicle moving ahead of the ego 
vehicle at a speed of 10 [m/s] in the same lane. After 

capturing the preceding vehicle in the FOV and real
izing their distance is becoming smaller and smaller, 
the ego vehicle chooses to change to the left lane 
instead of decreasing the speed to keep a safe distance. 
However, one second after the start of the lane 
change, the gap between the obstacle vehicle in the 
left lane and the ego vehicle becomes insufficient 
because of the acceleration of the obstacle vehicle.

There is no feasible solution for the ego vehicle to 
continue the lane-changing maneuver for collision 
avoidance. Therefore, the index of the original lane is 
assigned to the target lane in the proposed method. 
Without altering anything else of the controller, the 
ego vehicle automatically changes to the right lane 
and decreases the speed to keep a safe distance from 
the preceding obstacle vehicle in the middle lane. The 
trajectories of these vehicles are shown in Figure 16, 
where the rectangles with solid green lines represent 
the ego vehicle, the rectangles with dashed red lines 
represent the obstacle vehicle that is behind the ego 
vehicle at the beginning, rectangles with dots repre
sent the platoon of the obstacle vehicles in the right
most lane. The time when those vehicles pass by those 
positions is stamped inside those rectangles. The pro
cess of attempting a lane change and a change back to 
the original lane lasts for about four seconds in this 
scenario.

Table 3. Key performance indicators.

Lane  
keeping

Lane changes

First  
reference  

generation  
method

Second  
reference  

generation  
method

Third  
reference  

generation  
method

Average [m] 0.326 0.361 0.451 0.398
RMS [m] 0.365 0.406 0.523 0.454
Maximum [m] 0.791 0.874 1.20 0.939

Figure 15. Overtaking in scenario 3. (a) Trajectory of the ego vehicle during overtaking. (b) Steering control and lateral acceler
ation of the ego vehicle during overtaking.
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Keeping in the middle lane and following the 
slower preceding vehicle, the ego vehicle gets a second 
chance to change lanes to the left after the approach
ing vehicle from behind passes by. Specifically, the 
ego vehicle is moving on a curved road at the speed 
of 10 [m/s] with a preceding vehicle at this time. 
When the decision of a lane change is made, the 
index of the left lane is assigned to the target lane and 
the target speed can be increased to a higher one in 
the proposed controller. The trajectories of these two 
vehicles are shown in Figure 17, where the rectangles 
with solid green lines represent the ego vehicle, and the 
rectangles with dashed red lines represent the preceding 
vehicle. Figures 16 and 17 show that the proposed con
trol method has the capability to deal with emergencies 
in different situations no matter what the shape of the 
road is.

Compared to state-of-the-art methods, our method 
regards the lane-changing maneuver and the lane-keep
ing maneuver as the same. The reference generation is a 
transition period for the ego vehicle when it changes 
from one lane to another. This period can be tuned in 

simple manners to match any longer duration of the 
lane change when the decision is made as long as it is 
within the safety gap and accords with the vehicle 
dynamics. The simulation results of different scenarios 
demonstrate the comprehensive applicability of the pro
posed method in various lane-changing and lane-keeping 
situations.

There is no difference in the proposed control 
method for lane-keeping and lane-changing maneuvers, 
no matter whether on the straight road or the curved 
road. The results of these scenarios demonstrate the 
capabilities of our proposed method in various complex 
driving conditions.

4.3. Perception errors

Experiments have been conducted to investigate the 
impact of the perception errors on the final control 
accuracy of the automated vehicle for lane keeping on 
the curved road. In this case, the automated vehicle is 
driving steadily at the speed of 16 [m/s] when enter
ing the S-shaped curve. If the perception errors exist, 

Figure 16. The ego vehicle changes back to its original lane because the traffic gap in the target lane is becoming insufficient. 
(The rectangle with solid green lines represents the ego vehicle. The number inside the rectangle represents the time.).

Figure 17. The ego vehicle changes again to the left adjacent lane on the curved road. (The rectangle with green solid lines rep
resents the ego vehicle. The number inside the rectangle represents the time.).
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there would be longitudinal and lateral displacements 
of the reference for the trajectory tracking in the 
world coordinate system. It is assumed that the longi
tudinal and lateral displacements are both 

ffiffi
2
p

2 [m], and 
the malfunction of the perception starts when the 
automated vehicle enters the curve road and lasts for 
TError seconds.

In the first experiment, the automated vehicle is 
controlled by the proposed method involving the per
ception system in the control loop and there are no 
perception errors. The second and the third experi
ments are similar to the first one except there are per
ception errors lasting 1 s and 2 s, respectively. In the 
last experiment, the perception system is not involved 
in the closed control loop, which means the proposed 
method is decoupled to an open-loop control and the 
perception errors that occurred at the beginning keep 
existing in the whole process.

The average displacement errors (ADEs) between 
the reference of the lane and the trajectories of the 
automated vehicle in those above experiments are pre
sented in Table 4, which demonstrates that the percep
tion errors decrease the accuracy of trajectory tracking. 
Furthermore, compared to the open-loop control fash
ion, the proposed method involving the perception in 
the control loop greatly diminishes the impact of the 
perception errors on the control of the trajectory track
ing. Figure 18 distinctly presents the ground-truth ref
erence and the trajectories of the automated vehicle 
controlled by the proposed method without perception 
errors, the proposed method with perception errors 
(TError ¼ 2), and the open-loop control with perception 
errors.

In this case, the target lane is the current lane, the 
three reference generation methods are equivalent to 
the control of lane keeping. At the same time, the 
ground-truth reference of lane keeping is the center
line of the lane. Therefore, these three reference gen
eration methods would yield the same ADE under the 
same perception errors.

4.4. Comparative studies

This paper provides comparative studies of the pro
posed method and state-of-the-art works (Luo et al., 
2016) and (Li et al., 2022) on driving comfort and 
efficiency instead of the tracking performance of the 

lane change control to validate the advantages of our 
method.

It is noted that there is no ground-truth trajectory for 
the automatic lane change in either state-of-the-art 
works or the proposed method in our paper. The plan
ning of trajectories for lane-changing maneuvers is 
designed to meet their requirements with different 
objectives in state-of-the-art works, which is a top-down 
approach. In our paper, the reference generation is a 
transition period for the ego vehicle when it changes 
from one lane to another. The trajectory of the lane- 
changing maneuver is fulfilled optimally in a receding 
horizon with constraints of vehicle dynamics and obs
tacle avoidance, which is a bottom-up approach on the 
contrary. Thus, it may be misleading to compare the 
ADEs of our method with state-of-the-art works when 
the reference trajectories are not the same.

On the other hand, driving comfort and efficiency 
are important indicators to measure the performance 
of the automated vehicle. Calculations of driving com
fort and efficiency can remain consistent among dif
ferent lane-changing control methods. Therefore, 
comparative studies of the proposed method and two 
previous researches (Luo et al., 2016) and (Li et al., 
2022) on these two indicators of automatic lane- 
change control have been conducted to evaluate the 
advantages of the proposed one over state-of-the-art 
methods. Besides, other performance parameters, such 
as the maximum longitudinal acceleration and the 
maximum lateral acceleration, are also compared with 
the method in Luo et al. (2016).

The cost function of the automated vehicle at the 
given trajectory is provided as follows.

CostAV ¼ wcomfort
AV � Ccomfort

AV þ wefficiency
AV � Cefficiency

AV ,
(27) 

where wcomfort
AV and wefficiency

AV are the weight coefficient 
of the comfort and efficiency, Ccomfort

AV and Cefficiency
AV 

are the cost of comfort and efficiency.

Ccomfort
AV ¼

Ð te
ts
jjAV , xðtÞjdt þ

Ð te
ts
jjAV , yðtÞjdt

Ncomfort
AV

, (28) 

Cefficiency
AV ¼

Ð te
ts
jvAVðtÞ − vtargetjdt

Nefficiency
AV

, (29) 

where jAV , xðtÞ and jAV , yðtÞ are the longitudinal and 
lateral jerk, which are the two most important factors 

Table 4. Average displacement errors of trajectory tracking.
Proposed method without 

perception errors
Proposed method with 

perception errors (TError ¼ 1)
Proposed method with 

perception errors (TError ¼ 2)
Open-loop control with 

perception errors

ADE (m) 0.6710 0.6987 0.8123 1.2255
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affecting the ride comfort. Ncomfort
AV and Nefficiency

AV are 
the normalized values of the corresponding terms to 
make the units consistent. ts and te are the moments 
when the automated vehicle starts and ends the lane- 
changing maneuver. vtarget is the target speed of the 
automated vehicle.

In this case, the automated vehicle is moving at a 
steady speed of 25 [m/s] in the middle lane of a 
straight road from the beginning, and starts to change 
to the adjacent lane in 5 s. The target speed of the AV 
is also 25 [m/s]. The cost of comfort and the cost of 
efficiency of the lane-changing maneuver of the auto
mated vehicle are compared to the results of bench
mark methods. Methods proposed in Luo et al. (2016) 
and (Li et al., 2022) are considered as the benchmark 
method 1 and the benchmark method 2, respectively. 
Table 5 lists the results of those three methods. The 
comparison of the bar charts displayed in Figure 19
demonstrates the advantages of our proposed method.

Furthermore, Table 6 shows some performance 
parameters of the lane-changing maneuver of the pro
posed method compared with the benchmark method 
in Luo et al. (2016) when the automated vehicle drives 
on the straight road at a speed of 100 [km/h] and 
changes to the adjacent lane once along the way. 
Here, ax, max and ay, max are the maximum longitudinal 
acceleration and the maximum lateral acceleration 
with respect to the body-fixed coordinate system of 
the automated vehicle. These parameters show that 

the proposed method guarantees a more comfortable 
lane change maneuver.

4.5. Computation time

All the simulations presented in this work were car
ried out on an entry-level desktop computer with an 
Intel i5-12400F 2.50 GHz CPU, 16GB of RAM and an 
NVIDIA RTX 3060 GPU. The computation times of 
the proposed controller executed in every cycle in dif
ferent scenarios described in Subsection 4.2 are plot
ted in Figure 20, which illustrates that most of the 
computation times are less than the control cycle, 
0.05 s. Since industrial automated vehicles may have 
more computational power, our proposed method 
could satisfy the real-time control requirements.

4.6. Discussions

Compared to the scenarios simulated in this section, 
which are straightforward and monotonous, driving 
maneuvers in real life are much more complex and 
flexible. Nevertheless, complicated driving processes 
on structural roads can be accomplished by elemen
tary moves, namely, lane keeps and lane changes. 
Simulations of simple scenarios are utilized to illus
trate the idea that lane change can be treated as lane 
keep and validate that the proposed method has the 
capability to fulfill lane-changing and lane-keeping 
maneuvers continuously.

Figure 18. The ground-truth reference and the trajectories of 
the automated vehicle in different conditions.

Table 5. Costs of the lane change of the automated vehicle.

Cost of lane change
Benchmark  
method 1

Benchmark  
method 2

Our  
method

Cost of comfort 28.87 35.15 18.67
Cost of efficiency 13.97 18.73 18.25
Total cost 21.42 26.94 18.46

Figure 19. Comparison of the costs between the benchmark 
methods and our method.

Table 6. Performance parameters (speed ¼ 100 km/h).
jax, maxjðm=s2Þ jay, maxjðm=s2Þ

Benchmark method 1 3.48 1.81
Our method 0.1906 0.9298
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Simulations with computer tools are ideal, while 
the real-world traffic environment is full of uncertain
ties and risks. Nevertheless, simulations are powerful 
and necessary because they make it easier for us to 
validate our ideas without using expensive equipment 
and risking our safety. The perception of the traffic 
environment is one of the most important parts of the 
automated driving system, but it is not the focus of 
this study. Thanks to simulation platforms for offering 
handy tools to obtain the precise information of the 
road and the traffic, so that we can easily control the 
vehicle in a closed-form.

Readers who are interested in our work can watch 
the videos captured during simulations on our website.1

5. Conclusions

This work designs the motion control of automated 
vehicles for combined lane keeping and lane changing. 
To make the driving process smoother and the control 
system simpler, lane changing is considered as another 
form of lane keeping. A unified model predictive control 
is proposed to formulate the control law of the ego 
vehicle in fulfilling lane-keeping and lane-changing 
maneuvers safely. The controller design forms a closed 
loop that consists of the perception of the road and the 
motion control of the ego vehicle by generating refer
ence points from the lines detected. The proposed con
trol framework is composed of a model predictive 
control in the upper module and a PID control in the 
lower module, which eliminates the complexity of the 
tire dynamics. Various driving scenarios are designed 
and simulated on the PreScan-MATLAB/Simulink joint 
simulation platform. The simulation results have verified 
the comprehensive capabilities of the proposed method 
in dealing with different driving behaviors including 
lane keeping and lane changing. Our future work will 

implement the proposed method on small-scale auto
mated vehicles that allow fully self-contained testing of 
various motion control methods in field experiments.

Note

1. https://liujwei.github.io/research.html.
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