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Discover how to model waves efficiently.

Is wave modelling a nail problem, and do we simply need to find 
a good hammer? Or are we facing a screw problem, and do we 
need to develop a special screw head to match each case? If so, 
how many cases are there? 

Waves come in a large variety – from localized resonances, to 
scattered wave fronts, to waves that propagate over long 
distances. The underlying physics of acoustics and electro-
magnetics are also different. 

Faced with this complexity, the screwdriver enthusiast would 
argue that a single, efficient modeling approach lacks specificity. 
The friends of the hammer would counter that non-experts can 
never be expected to know which screw to use for which 
problem. For them, the hammer will almost always be sufficient. 

This thesis is for the curious mind who wants a new look into the 
interdisciplinary field of wave modeling, situated in the triangle 
of linear algebra, computational physics and imaging. Starting 
from the laws of physics, you will learn how to derive a 
computable small model or imaging algorithm in a few steps 
using model-order reduction. Novel methods for the computa-
tion of resonances in dispersive structures and structures with 
large travel times are introduced. 

Explore the wide range of applications of model reduction in this 
field and form your opinion on the hammer-screwdriver debate.
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Alles was
Ich sonst besitze, hat Natur und Glück

Mir zugeteilt. Dies Eigentum allein
Dank’ ich der Tugend

Gotthold Ephraim Lessing in Nathan der Weise

Der Mensch ist Etwas, das überwunden werden muss:
und darum sollst du deine Tugenden lieben denn du wirst an ihnen zugrunde gehn.

Friedrich Nietzsche in Also sprach Zarathustra
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SUMMARY ix

SUMMARY

H OW do you look inside a box without opening it? How can we know whether or not
a heart valve is functioning correctly without cutting a person open?

Imaging – the art of seeing the unseeable. A CT-scan at the doctor’s office, crack de-
tection in the wing of an airplane, and medical ultrasound are all examples of imaging
techniques that allow us to inspect the interior of an object or person and enable us
to observe features that are not directly visible to the naked eye. Science continuously
improves upon existing imaging methods and occasionally invents new ones leading to
improved image quality and faster image acquisition.

Many imaging applications rely on acoustic, electromagnetic, or elastodynamic
waves for imaging. These methods use waves to illuminate a penetrable object, and
then form an image of its interior from measurements of transmitted or scattered waves.
In such imaging problems efficient computation of wavefields in complex geometries
is key. New mathematical methods and algorithms are needed to keep up with the de-
mands of the imaging industry – advancements in the computer industry alone cannot
respond to the shift towards larger domains, higher resolution, and larger data sets.

This thesis is about reduced-order modeling of the equations that describe the
dynamics of wave propagation. In reduced-order modeling, the aim is to systematically
develop a small model that describes a complex system without losing information that
is valuable for a specific application. Evaluating such a model is computationally much
more efficient than direct evaluation of the unreduced system and in the context of imag-
ing it can lighten the computational burden associated with imaging algorithms. The
central question is, of course: How does one construct a model that describes the wave
dynamics relevant to a particular application?

Wave equations are partial differential equations that interrelate the spatial and
temporal variations of a particular physical wavefield quantity. When we discretize such
equations in space, sparse systems of equations with hundreds of thousands or even
millions of unknowns are obtained. Via projection onto a small subspace such a large-
scale system can be reduced to a much smaller reduced system. The solution of this
small system is called a reduced-order model. A properly constructed reduced-order
model can be easily evaluated and gives an accurate wavefield description over a certain
time or frequency interval or parameter range of interest.

In this thesis, we discuss different choices for the subspaces that are used for pro-
jection in model-order reduction. In particular, we show which types of subspaces are
effective for wavefields that are localized and highly resonant and how to efficiently gen-
erate such subspaces by exploiting certain symmetry properties of the wave equations.
We illustrate the effectiveness of the resulting reduced-order models by computing opti-
cal wavefield responses in three-dimensional metallic nano-resonators.
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Not all wavefields are determined by a few resonances, of course. Waves can also
travel over long distances without losing information; a property that is used by mobile
phones every day. The reduction methods developed for resonating fields are not effi-
cient for these types of propagation problems and require a different approach. In this
thesis, we present a so-called phase-preconditioning reduction method, in which a spe-
cific subspace is generated that explicitly takes the large travel times of the waves into
account. We demonstrate the effectiveness of this reduction approach using examples
from geophysics, where waves with long travel times are frequently encountered or used
to probe the subsurface of the Earth.

Finally, we show how reduced-order modeling techniques can be incorporated
into advanced nonlinear imaging algorithms. Here, we focus on an imaging application
in geophysics, where the goal is to retrieve the conductivity tensor of a bounded anomaly
located in the subsurface of the Earth, based on measured electromagnetic field data
collected on a borehole axis. We demonstrate that the use of reduced-order models in
a nonlinear optimization framework does indeed lead to significant computational sav-
ings without sacrificing the quality of imaging results. To illustrate the wide applicability
of model-order reduction techniques in imaging, an additional example from nuclear
geophysical imaging is also presented.
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SAMENVATTING

H OE kijk je in een doos zonder de doos te openen? Hoe weten we of een hartklep nog
goed functioneert, zonder een persoon open te snijden?

Imaging – de kunst van zien wat niet gezien kan worden. Een CT scan bij de dokter, het
detecteren van scheurtjes in de vleugel van een vliegtuig of medische echografie, het zijn
allemaal voorbeelden van afbeeldingstechnieken, welke ons in staat stellen om de bin-
nenkant van een object of het inwendige van een persoon te inspecteren en kenmerken
te kunnen waarnemen die met het blote oog niet waarneembaar zijn. Binnen de weten-
schap worden er voortdurend nieuwe en verbeterde afbeeldingstechnieken ontwikkeld,
waarmee op een steeds snellere wijze afbeeldingen met een hogere beeldkwaliteit kun-
nen worden verkregen.

Om een afbeelding te realiseren, maken een groot aantal technieken gebruik van
elektromagnetische, akoestische of seismische golven. Door een doordringbaar object
met deze golven te belichten, kan aan de hand van metingen van de doorgelaten en
verstrooide golven een afbeelding van de inwendige structuur van het object worden ge-
maakt. Het efficiënt kunnen berekenen van golfvelden in complexe geometrieën is van
essentieel belang bij dit soort golfveld-afbeeldingsproblemen en ontwikkelingen binnen
imagingindustrie vragen om nieuwe wiskundige methoden en algoritmes die met grote
datasets overweg kunnen om grote gebieden bij hoge resolutie af te kunnen beelden.

Dit proefschrift handelt over het opstellen van modellen van gereduceerde orde
voor golfvergelijkingen. Het doel van dit reductieproces is om op een systematische
wijze gereduceerde modellen op te stellen, waarmee het gedrag van een complex sys-
teem kan worden beschreven zonder dat essentiële informatie verloren gaat. Het evalu-
eren van zo’n gereduceerd model kost in vergelijking met een directe evaluatie van het
niet-gereduceerde systeem aanzienlijk minder rekenkracht en -tijd en leidt bij toepas-
sing tot efficiënte afbeeldingstechnieken. De centrale vraag is natuurlijk: Hoe constru-
eren wij een model, waarmee de golfdynamica binnen een bepaalde toepassing nauw-
keurig beschreven wordt?

Golfvergelijkingen zijn partiële differentiaalvergelijkingen en leggen een verband
tussen de ruimtelijke en temporele variaties van een zekere golfveldgrootheid. Discre-
tizeren wij een golfvergelijking in de ruimte, dan verkrijgen wij een ijl stelsel van verge-
lijkingen met honderdduizenden of zelfs miljoenen onbekenden. Via projectie op een
kleine deelruimte kan zo’n groot stelsel worden gereduceerd tot een veel kleiner stelsel.
De oplossing van dit kleine stelsel wordt een model van gereduceerde orde genoemd.
Een goed geconstrueerd model is snel te evalueren en geeft een nauwkeurige beschrij-
ving van het golfveld over een zeker tijd- of frequentieinterval of over een parameterbe-
reik, waarin wij geïnteresseerd zijn.

In dit proefschrift bespreken wij verschillende keuzes voor de deelruimtes die
voor projectie binnen modelordereductie worden gebruikt. We laten zien welke deel-
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ruimtes tot een nauwkeurige beschrijving van gelokaliseerde en sterk resonante golven
leiden en hoe deze deelruimtes op een efficiënte manier kunnen worden gegenereerd
door gebruik te maken van zekere symmetrie-eigenschappen van de golfvergelijking.
We illustreren de effectiviteit van de resulterende gereduceerde modellen door optische
golfveldresponsies te berekenen in driedimensionale metallische nano-resonatoren.

Natuurlijk worden niet alle golfvelden door slechts een klein aantal resonanties
beschreven. Golven kunnen ook over grote afstanden propageren zonder informatie te
verliezen; een eigenschap, waarvan tijdens mobiel bellen dagelijks gebruik wordt ge-
maakt. De reductiemethoden voor resonante golfvelden zijn niet efficiënt voor dit soort
propagatieproblemen en vereisen een andere aanpak. Wij introduceren daartoe een re-
ductiemethode, waarin het golfveld wordt gepreconditioneerd en waarin de reistijden
van de golven expliciet worden meegenomen in de constructie van de deelruimte die
voor projectie wordt gebruikt. De effectiviteit van deze reductiemethode illustreren wij
aan de hand van een aantal geofysische toepassingen, waarin golfvelden met lange reis-
tijden vaak voorkomen.

Tot slot laten wij zien hoe modellen van gereduceerde orde kunnen worden op-
genomen in geavanceerde niet-lineaire afbeeldingsalgoritmes. We concentreren ons
hierbij op een afbeeldingstoepassing uit de geofysica, waarin het doel is om de gelei-
dingstensor van een begrensde anomalie in de ondergrond te reconstrueren aan de hand
van elektromagnetische velddata gemeten in een boorgat. We laten zien dat het ge-
bruik van gereduceerde modellen in een niet-lineair optimalisatiekader inderdaad tot
een aanzienlijke besparing aan rekentijd en benodigde rekenkracht oplevert zonder de
kwaliteit van de afbeeldingen aan te tasten. Om de brede toepassing van modelordere-
ductie te illustreren, bespreken wij als laatste ook nog een nucleaire afbeeldingstechniek
welke wordt toegepast binnen de geofysica.
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ZUSAMMENFASSUNG

W IE sieht man in eine Schachtel oder Kiste, ohne sie zu öffnen? Wie bringt man in Er-
fahrung ob eine Herzklappe noch funktioniert, ohne einen Patienten aufzuschnei-

den?

Imaging (zu Deutsch: Abbilden) – Die Kunst das Unsichtbare sichtbar zu machen. Ein
CT-Scan beim Arzt, das Entdecken von Rissen im Flügel eines Flugzeugs oder aus me-
dizinischer Sicht eine Ultraschalluntersuchung, sind Vorbilder von Abbildungsverfah-
ren, die es uns ermöglichen, das Innere eines Objektes oder einer Person zu inspizieren
und Merkmale zu erkennen, die für das bloße Auge nicht sichtbar sind. Fortlaufend ver-
bessert die Wissenschaft existierende bildgebende Verfahren und findet stets schnellere
Möglichkeiten der Darstellung mit höherer Bildqualität.

Um eine Abbildung zu erstellen, verwenden viele Verfahren akustische, elektro-
magnetische oder elastische Wellen. Aus Messungen des gestreuten Feldes eines von
Wellen bestrahlten und durchdringbarem Objektes kann eine Abbildung der inneren
Struktur des Objektes erstellt werden. Das effiziente Berechnen dieser Wellen und Fel-
der in komplexen Geometrien ist von äußerster Bedeutung für diese Abbildungsverfah-
ren. Um mit den Entwicklungen in der Industrie für Abbildungsverfahren, wie zum Bei-
spiel größere Abbildungsgebiete, höhere Auflösungen oder größere Datensätze, Schritt
halten zu können, bedarf es neuer mathematischer Methoden und Algorithmen, da der
Fortschritt in der Computerindustrie allein nicht ausreicht , um den Anforderungen der
Industrie für bildgebende Verfahren gerecht zu werden.

In dieser Dissertation werden Modelle von reduzierter Ordnung entwickelt, die
die dynamischen Eigenschaften von Wellen und Feldern beschreiben. Das Ziel beim Mo-
dellieren mit Modellen von reduzierter Ordnung ist es, ein komplexes System in einem
kleinstmöglichen Modell zusammen- zufassen, ohne dabei den Verlust anwendungsre-
levanter Informationen zuzulassen. Das Auswerten eines solchen Modelles ist rechen-
technisch gesehen effizienter als das Berechnen eines nicht reduzierten Systems und im
Zusammenhang mit Abbildungsverfahren können diese Modelle die benötigte Rechen-
kapazität senken. Die Schlüsselfrage für diese Methode ist: Wie erstellt man ein Model,
dass die anwendungsspezifische Wellendynamik ausreichend genau beschreibt?

Wellengleichungen sind partielle Differentialgleichungen die räumliche und zeit-
liche Veränderungen einer bestimmten physikalischen GröSSe miteinander verbinden.
Wenn eine solche Gleichung im Raum diskretisiert wird, so erhält man ein dünnbesetz-
tes System von Gleichungen mit hunderttausenden oder sogar Millionen Unbekannten.
Mittels Projektion auf einen kleinen Unterraum kann solch ein großes System reduziert
werden zu einem kleineren System, ein Model von reduzierter Ordnung. Ein angemes-
sen reduziertes System kann schnell ausgewertet werden und gibt genaue Beschreibun-
gen der Wellendynamik und Felder über ein gewisses Zeitintervall, Frequenzintervall
oder Parameterintervall.
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In dieser Doktorarbeit werden verschiedene Unterräume behandelt, die verwen-
det werden, um mittels Projektion Modelle von reduzierter Ordnung zu erhalten. Insbe-
sondere wird gezeigt welche Arten von Unterräumen geeignet sind um lokalisierte, re-
sonante Felder zu beschreiben, und wie solche Unterräume effizient, unter Berücksich-
tigung der Symmetrieeigenschaften von Wellengleichungen, berechnet werden können.
Die Effizienz dieser Methode wird veranschaulicht am Beispiel der Berechnung von elek-
tromagnetischen Resonanzen in dreidimensionalen, metallischen Nanoresonatoren.

Längst nicht alle natürlichen Wellen-Phänomene sind lokalisiert und resonant.
Wellen können sich auch über große Strecken fortbewegen ohne Information zu ver-
lieren, eine Eigenschaft die Mobiltelefone täglich nutzen. Die Verfahren, die entwickelt
wurden, um resonante Felder zu reduzieren sind nicht sehr effizient für Felder, die sich
über lange Strecken fortbewegen. In dieser Arbeit wird ein Verfahren, dass wir “Phasen-
vorkonditionierung” für Modelle reduzierter Ordnung nennen, eingeführt, dass einen
Unterraum generiert der explizit die Wellenlaufzeit in dem vorliegenden Material be-
rücksichtigt. Mit Hilfe von Beispielen aus der Geophysik werden die Vorteile einer sol-
chen Methode aufgezeigt, da große Wellenlaufzeiten in vielen Anwendungen in der Geo-
physik vorkommen. Abschließend wird in dieser Arbeit gezeigt, wie Modelle von redu-
zierter Ordnung in nichtlinearen

Abbildungsalgorithmen verwendet werden können. Dies geschieht hier am Vor-
bild eines Abbildungsverfahren aus der Geophysik, bei dem ein Leitfähigkeitstensor ei-
ner begrenzten, unterirdischen Anomalie, durch elektromagnetische Messungen in ei-
nem Bohrloch, abgebildet wird. Es wird gezeigt, dass Modelle von reduzierter Ordnung,
ohne die Abbildung zu beeinflussen, zu einer erheblichen Minderung der Berechnungs-
komplexität in nichtlinearen Optimierungsverfahren beitragen, die dieses Abbildungs-
problem zu lösen versuchen. Um den breiten Anwendungsbereich von Modellen von
reduzierter Ordnung zu demonstrieren wird als weiteres Beispiel ein nukleares Abbil-
dungsverfahren aus der Geophysik behandelt.
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1
INTRODUCTION

Mathematics is not a deductive science – that’s a cliche. When you try to prove a theorem,
you don’t just list the hypotheses, and then start to reason. What you do is trial and error,

experimentation, guesswork.

Paul Halmos
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2 1. INTRODUCTION

W E experience the world primarily through our senses – we see an idyllic meadow in
the woods, we hear the birds sing their songs, we feel the heat of a stone in the sun

before we even touch it. These everyday sensual experiences rely on the laws of physics
and the transport of energy over a distance. Over the centuries humans have mastered
many of the domains of physics and have developed associated tools to prolong and
enhance our quality of life. Electromagnetism, the physics that lets you see a meadow,
is used to image bodies in medical applications like MRI- or CT-scans. Acoustical waves,
like those responsible for transporting a bird’s song from its hidden nest to your ear, are
used in medical ultrasound to image a fetus.

Waves transporting energy, like the sun’s rays warming a stone, also play an im-
portant role in our society; no mother would get a phone call on a Sunday if it weren’t
for the ability to send energy – and thus, information – over long distances. Waves are
also used in many applications in imaging; we understand the interaction of waves with
materials well enough to make claims about what a material looks like just by compar-
ing the waves we send into a material to the waves that come out of the material after
interacting with it.

In this thesis we are modeling wave propagation in complex materials in such a way that
we can tell a computer to calculate the material interaction of the waves given a com-
puter that is powerful enough. For many applications, computing the so-called wave-
field in the whole space and to a high precision is unnecessary; the waves that are scat-
tered during an ultrasound scan that don’t reach a receiver, for example, are of little in-
terest.

Standard techniques to make models to compute wave propagation can be very
large and difficult to compute even on modern computers. For many applications this
can be prohibitive: in medical imaging, you don’t always have time to wait a week for
an image to be computed; if an imaging device searches for land mines underground,
fast computational methods are vital. Model order reduction techniques, which are ex-
tensively used in the area of system and control, can be used to lighten the computa-
tional burden associated with the computation of wave problems. Wave phenomena
are described by partial differential equations (PDEs) and the materials that waves travel
through manifest themselves as the coefficients in these PDEs. In this thesis we are in-
terested in two types of wave problems:

1. Forward problems: The design of fast and efficient numerical solvers for PDEs
with variable coefficients and in complex geometries. We develop reduced-order
modeling techniques to lower the computational burden associated with wave
simulations.

2. Inverse problems: Estimating the coefficients of a PDE from remote measure-
ments of a wavefield. Specifically, utilizing reduced-order model approaches for
fast and accurate imaging and inversion.

In this thesis we deal with the Maxwell equations, which describe electromagnetic wave
propagation, and with the wave equation. We limit ourselves to these equations so as to
not get lost in the notation and peculiarities of the different laws of physics; however, the
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methods introduced in this work are also applicable to equations describing other types
of wave phenomena (seismic waves for example).

The aim of this thesis is to assess reduced-order modeling techniques for wave
equations, to develop efficient reduced-order modeling techniques for resonant as well
as propagating wavefields, and to identify important application areas where these re-
duction techniques can be utilized.

1.1. REDUCED-ORDER MODELING OF WAVE PROPAGATION IN

UNBOUNDED DOMAINS
Solutions of PDEs with variable coefficients in complex geometries are required in many
applications, such as optimal design in optics and medical or geophysical imaging. Straight-
forward discretization of such equations is often computationally intractable. This, how-
ever, can be overcome by determining a computationally tractable surrogate, or reduced-
order model. This model can then be evaluated in applications instead of solving the
full-scale PDE.

There are two classes of reduced-order modeling techniques: (1) Techniques for
finding approximate solutions of the PDE, so that construction and evaluation of the
model is fast. (2) Techniques for building computationally “optimal” models. The con-
struction of such models may be computationally expensive; however, their evaluation
is fast and accurate. The first class of reduction techniques is referred to as “online”
model reduction, while the second class is called “offline” model reduction. The goal of
reduced-order modeling is generally a reduction in computational load [2].

The model order reduction approaches in this thesis are projection-based: a large
wave operator is projected onto a small subspace. An approximate solution to the full-
order system can be drawn from this projection at an insignificant computational cost
compared to the full-order system.

Most applications encountered in wave propagation are on open domains, mean-
ing that waves can leave the domain on which we model them. To model such open
domains, we use a perfectly matched layer (PML) around the domain of interest that ab-
sorbs any outgoing wave without reflection. This is achieved by stretching the spatial
coordinates inside this layer. Stretching depends nonlinearly on frequency and there-
fore the PML introduces a nonlinearity with respect to frequency into the modeling ap-
proach. The main computational cost of model reduction lies in the computation of a
suitable projection space.

As subspaces we use various forms of Krylov subspaces, which have a proven track
record in scientific computing [71, 72, 83, 17]. Many iterative solvers for matrix systems
are based on polynomial Krylov subspaces (PKSs) [72, 82], originally introduced by Alek-
sey Krylov to study oscillations of ships [52]. In these methods, one searches for approx-
imate solutions to the full-order system in a subspace spanned by polynomials of the
full-order operator acting on a starting vector.

This polynomial space can be extended by adding negative powers of the full-
order operator to arrive at so-called extended Krylov subspaces (EKS) [47, 22]. Polyno-
mial and extended Krylov subspaces are particularly efficient for large, sparse, shifted
systems as many matrix-vector products are required for their construction. A finite-
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difference discretization of a wave equation is sparse; however, the system is only a
shifted system in the absence of the nonlinearity introduced by the PML. Nonetheless, by
using linearization techniques, PKS and EKS reduced-order models can still be obtained
for wave equations on open domains [29, 28].

Rational Krylov subspaces (RKS), on the other hand, can deal with nonlinear sys-
tems directly. First introduced to compute eigenvalue problems [70], they are now used
in many areas of scientific computing like control theory or parabolic PDEs [11, 50, 55].

Wave equations on open domains are challenging compared to diffusion equa-
tions due to the absorbing boundary conditions and due to the fact that information
can travel long distances with waves. Therefore, the use of Krylov model order reduction
techniques for wave problems has been limited so far [29, 68, 28].

1.2. REDUCED-ORDER MODELING IN APPLICATIONS
Several types of wave phenomena and special model reduction techniques for them are
studied in this thesis. Localized wavefields in resonators are studied which have con-
nections to classical eigenvalue problems. Waves that transport energy over many wave-
lengths are studied as these wave phenomena usually lead to a large computational grid.
In addition, attention is paid to waves in lossy media since loss of information in such
media allows for very small models.

1.2.1. REDUCED-ORDER MODELING IN GEOPHYSICS

In inverse problems in geophysics, several physical sensing mechanisms are used to re-
veal different properties of rock formations. For instance, a ground penetrating radar is
used to estimate the electrical permittivity and conductivity of rock. Krylov-based elec-
tromagnetics solvers for the Maxwell system in the diffusion approximation have long
been the workhorse of the geophysics community [11, 21, 51]. In such a solver, the dis-
cretized system of equations is projected onto a Krylov subspace in an iterative fashion.
The projected system forms a reduced-order model (ROM) from which approximate so-
lutions to the full-order system can be drawn.

Since rock formations in the Earth are typically conductive and thus lossy, the
Maxwell equations do not form a hyperbolic system in this case. In this thesis we de-
scribe how model order reduction techniques can be applied to lossy wave equations
and discuss the convergence of several Krylov based model order reduction techniques.
As an application, the ground penetrating radar is considered. Further, model order re-
duction techniques for the lossy Maxwell equations are compared to the ones used for
the diffusion approximation using a three-dimensional diffusion example.

Seismic exploration is another mechanism used to unveil the structure of the
Earth, and is used extensively in geophysics to make accurate and large images of the
subsurface for hydrocarbon exploration. Solving the resulting large models even for
a single frequency is challenging due to the large size of the meshes required for such
simulations. Model reduction techniques have been used to speed up such simulations
via domain decomposition [26] or projection upon time-domain snapshots [63]. In the
scope of this thesis, however, we do not deal with the elastodynamic wave equation,
which describes the propagation of seismic waves.
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1.2.2. RESONANCES IN OPEN DISPERSIVE SYSTEMS

Resonance is the basic principle behind most music instruments. The resonances of a vi-
olin, for instance, determine the timbre of a violin [44], and thus determine the response
of it.

In model order reduction, a structure that only supports a few resonances can
be approximated very efficiently once those resonances are known. In the context of
this thesis we study resonances of dispersive materials – those for which the material
parameters are dependent on the frequency of a wave. The efficient computation of
time- and frequency-domain electromagnetic wavefields in linear dispersive media is
extremely important in a wide variety of applications ranging from bioelectromagnet-
ics [37] to nano-optics [58]. In the optical frequency range many noble metals have
frequency-dependent material properties. Straightforward discretization of these dis-
persive Maxwell equations and solving the resulting nonlinear eigenvalue problem to
obtain the resonances is not feasible due to the fine mesh that is needed to capture the
complex sub-wavelength features. Common eigenvalue solvers for the resulting nonlin-
ear eigenvalue problem cannot handle such large system of equations.

In this thesis, we develop a model order reduction method for dispersive systems,
applicable to arbitrary three-dimensional configurations. The method is particularly ef-
fective for sub-wavelength resonating structures as encountered in nano-optics, for ex-
ample, and both time- and frequency-domain fields can be computed simultaneously.
In addition, the modes that dominate the electromagnetic field response at particular re-
ceiver locations can be determined directly at negligible additional computational costs
and the method allows for so-called frequency sweeps as well, meaning that a single
reduced-order model can be used for all frequencies within a certain frequency-interval
of interest even in case of dispersive frequency-dependent dielectric materials.

1.2.3. COMPRESSION OF LARGE-SCALE WAVE PROPAGATION MODELS:
PHASE-PRECONDITIONING

In exploration geophysics, waves are sent into the subsurface and the goal is to im-
age the Earth from measured reflections. Earth models are large, and computations of
wavefields in these applications are cumbersome. Moreover, waves travel over many
wavelengths until they scatter back, leading to long travel times between sources and re-
ceivers. The reduced-order models based on rational Krylov subspaces that were devel-
oped for wave equations in unbounded domains are not performing well for these types
of configurations, since they are based on data interpolation in the frequency-domain,
where long travel times mean that the wavefields are highly oscillatory. The reduced-
order models are limited by the Nyquist sampling rate in the frequency-domain, so their
model order increases for oscillatory fields.

In general, preconditioning of Krylov subspaces for model reduction is a difficult
and still open problem. However, we show that effective preconditioning is possible by
incorporating asymptotic (high-frequency) wavefield solutions into a Krylov reduction
framework.

Specifically, we use ideas from asymptotic Wentzel–Kramers–Brillouin analysis
and Filon quadrature to factor out the highly oscillatory phase in wavefields. Then the
wave operator can be projected onto a subspace that is frequency-dependent, to ob-
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tain a reduced-order model that significantly outperforms the Nyquist limit. The sub-
space is spanned by functions defined by the product of frequency-independent smooth
functions and frequency-dependent highly oscillatory phase terms that are computed
from asymptotic analysis. The combination of asymptotic approximations gauged by a
projection approach allows us to significantly compress the computed wavefields. The
resulting “phase-preconditioned rational Krylov subspace method” (PPRKS) preserves
the structure and properties of the PDE, although it is projected onto a subspace that is
frequency-dependent.

1.3. REDUCED-ORDER MODELING FOR IMAGING
Reduced-order models have long been used for imaging in various applications. Exam-
ples range from diffusive optical tomography [48] to controlled source electromagnetics
inversion in the oil and gas industry [10, 30]. An inverse problem is often formulated as
a minimization problem of the form

argmin
m

(||d−F {m}||) , (1.1)

with d the measured data and F {m} the operator that maps the PDE coefficients m to
the data. Assuming convexity of the functional in a neighborhood of the true coefficients
and an initial guess in this neighborhood, one can use convex optimization to solve the
imaging problem. This requires the evaluation of F {m}, which means solving a PDE at
every iteration of the chosen optimization algorithm for a parameter realization m. For
real-time imaging applications like process control for optical lithography, solving full
scale PDEs may be infeasible. Therefore, the operator F {m} is replaced with a reduced-
order operator as a surrogate for the full-scale operator to speed up the computations.

Two types of model reduction technique for inversion algorithms can be distin-
guished: reduction in the “online” and in the “offline” stage. Generally speaking, the
online stage of an inversion algorithm is the stage in which one tries to minimize the
mismatch between measured and modeled data. The offline stage consists of compu-
tations that can be carried out independent of the measurement data – for instance,
computation of a parametric ROM, in case the range of PDE coefficients encountered in
inversion is small and known a priori.

More recent approaches to inversion based on model order reduction are direct
approaches rather than iterative [25]. Here, a ROM that interpolates the measurement
data is constructed and the interpretation of such an interpolatory ROM as a projection
of a full-scale finite-difference operator leads to direct imaging algorithms.

In process control for optical lithography, a known structure is fabricated on a
silicon wafer and optical measurements are used to infer how well the structure was
fabricated. In this specific application, the range of possible coefficients for the PDE
is limited, and consequently one can construct a reduced-order model that is valid for
the whole parameter range of interest [7, 13]. This can be done independent of a mea-
surement or imaging algorithm (“offline”) and can take significant computation time as
long as the constructed reduced-order model is easy to evaluate and accurate. The opti-
mization problem (1.1) can then be solved using the reduced-order model as a surrogate
for F {m} to speed up the inverse problem.
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In the case the parameter space for which the reduced-order model needs to be
accurate is too large or unknown, one cannot construct a reduced-order model offline.
This is the case for anisotropic three-dimensional resistivity imaging in boreholes. Since
the displacement currents give a negligible contribution to the total induced currents in
wet rock formations, the Maxwell equations can be approximated by a diffusion equa-
tion in this type of application. Since the response of wet rock formations is directionally
dependent on the electric field, the formation is anisotropic and must be modeled with
a rank two conductivity tensor.

Model order reduction techniques for these types of problems were developed in
[31]. They are used to build a reduced-order model that interpolates the full-order model
for all previously computed sets of PDE coefficients encountered during the optimiza-
tion. Subsequently, the reduced-order model is used to solve the optimization problem
stated in equation (1.1), only to run a full computation at the found minimum and to
improve the reduced-order model. In this way, a reduced-order model is constructed
and exploited “online.”

The described problem is a particularly difficult inverse problem as it seeks to re-
construct a symmetric tensor in three dimensions using diffusive measurements taken
on a single line (the borehole) at multiple frequencies. Regularization of formulation (1.1)
is therefore very important in this application. In this thesis it is shown that the full aniso-
tropic conductivity tensor can be reconstructed from limited triaxial measurements. For
an imaging application with inexact measurements, which is typically an underdeter-
mined problem, this is no longer the case. However, it is shown that one does not obtain
worse inversion results using the reduced-order method compared to solving the full
PDE at every iteration. Further, the problem becomes easier to regularize in the model
reduction framework.

1.4. THESIS CONTRIBUTIONS AND OUTLINE
The key contributions of this thesis can be summarized as follows:

1. Development of an efficient model reduction technique for the Maxwell equations
with dispersive media [A].

2. Efficient computation of the spontaneous decay rate and resonance fields of arbi-
trarily shaped three-dimensional dispersive resonators [B].

3. Review and compare model order reduction techniques for the Maxwell equations
with applications in geophysics [C].

4. Development of rational Krylov subspace techniques and phase-preconditioning
to simulate and compress wave propagation on open domains. The developed
techniques can handle localized resonant fields as well as fields propagating over
many wavelength [D].

5. Application of “online” and “offline” reduced-order modeling to problems in imag-
ing and inversion (see Chapter 5).
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The thesis is structured into six chapters. In this chapter, we briefly touched upon the
subjects relevant to the thesis, introduced the problems it deals with and outlined some
solution approaches. In the next chapter, the wave equation and Maxwell equations
are introduced, the properties of wavefields are discussed, and the dispersive Maxwell
equations are used to show how to obtain a discrete system from continuous equations.
Chapter 3 deals with model order reduction for forward problems. Several applications
are presented to show how model order reduction reduces the computational require-
ments for problems in wave propagation. In Chapter 4, phase-preconditioning is intro-
duced as a method for model order reduction of wave problems with long propagation
delays. Chapter 5 shows the use of ROMs in imaging and inversion. Conclusions from
this work are drawn in the final chapter.
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2
FROM PHYSICS TO DISCRETE

SYSTEMS

I didn’t have time to write a short letter, so I wrote a long one instead.

Mark Twain

Parts of this chapter have been published in Computational Physics [88].
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2.1. INTRODUCTION

I N this chapter, we discuss how to obtain a discrete system from partial differential
equations that describe the physics of electromagnetic fields or acoustic fields. Spe-

cial attention is paid to wavefield properties such as symmetry and passivity and how
they translate from analytical to the discrete domain. This chapter is divided into seven
sections. First, the wave equation is discussed followed by the Maxwell equations. The
properties of fields satisfying these equations are discussed as well. In order to find nu-
merical approximations to the solutions of such equations the governing wave equations
are spatially discretized. Since wave equations on open domains are considered in this
thesis, absorbing boundary conditions are examined. Finally, formal solutions to the
equations are given and the terminology used throughout the thesis is defined.

2.2. SCALAR WAVE EQUATION ON AN UNBOUNDED DOMAIN

We consider the scalar, isotropic, continuous wave equation on Rk × [0,∞[

∆u− 1

ν2 ut t =− 1

ν2 δ(t )δ(x −xS), u|t=0 = 0, ut |t=0 = 0. (2.1)

In this equation, ∆ denotes the k-dimensional Laplace operator and the position vector
lies in a k-dimensional Euclidean space, i.e. x ∈ Rk (1 ≤ k ≤ 3). Furthermore, ν(x) > 0 is
a wavespeed distribution in L∞[Rk ], and u(x, t ) is the wavefield with a compact support
for all finite times.

After Laplace transformation, equation (2.1) turns into the Helmholtz equation

∆u − s2

ν2 u =− 1

ν2 δ(x −xS), (2.2)

where s is the complex Laplace parameter withRe (s) ≥ 0. The Laplace domain wavefield
u satisfies the limiting absorption principle, i.e. u vanishes at infinity for Re (s) > 0 and
converges to the solution of Helmholtz’s equation that satisfies the outgoing radiation
condition as the Laplace parameter s approaches the imaginary axis via the right-half of
the complex s-plane.

Let Ω be a bounded subdomain of Rk such that xS ∈Ω. We now equivalently re-
duce the original problem on the unbounded domain to a problem on Ω by considering
equation (2.2) in the weak formulation and testing this equation with a testing func-
tion p. This gives ∫

Ω
p

(
∆− s2

ν2

)
u dx =− 1

ν(xS)2 p(xS), (2.3)

where the overbar denotes complex conjugation. After integration by parts, we obtain

−
∫
Ω

(∇p) · (∇u)dx −
∫
Ω

p
s2

ν2 u dx +
∫
∂Ω

p
∂u

∂n
dx =− 1

ν(xS)2 p(xS), (2.4)

with ∂u
∂n the derivative of u in the direction of the outward-pointing normal on ∂Ω. Fi-

nally, introducing the Dirichlet-to-Neumann (DtN) map D(s) on ∂Ω such that ∂u
∂n = D(s)u,
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the above equation can be written as

−
∫
Ω

(∇p) · (∇u)dx −
∫
Ω

p
s2

ν2 u dx +
∫
∂Ω

pD(s)u dx =− 1

ν(xS)2 p(xS). (2.5)

Without the boundary integral (third term on the left-hand side of the above equation)
this equation is linear is s2; the DtN map, however, is a nonlinear function of frequency
s [20].

NOTATION

To better draw similarities between continuous and discrete formulations, we will treat
the complex-valued functions u and p as vectors from R∞ in the linear algebraic deriva-
tions and introduce the inner product

p H u =
∫
Ω

pu dV. (2.6)

We note, that u and p for k > 1 have singularities at xS that may make this inner product
divergent. To avoid this, we assume by default that instead of δ(x − xS) we have some
regular approximation of the delta function. After discretization, u and p become finite-
dimensional vectors from RN and the issue of diverging integrals due to singularities
disappears. In this notation, superscript H denotes the Hermitian transpose for vectors
and an inner product with complex conjugation for functions. Analogously, the super
script T denotes the ordinary transpose for vectors and a bilinear form for functions,
i.e. equation (2.6) without complex conjugation. Since the vectors are complex-valued
such a bilinear form does not induce a norm. Operators in an integral form are printed
with capital italic letters like Q, all other operators are printed in calligraphic font like A.
Physical vectors are printed bold, e.g., the electrical field strength is printed as E. Laplace
transformed field quantities carry a hat, e.g. Ê. Functions are printed in upright front in
the time-domain and in italic in the Laplace domain. For linear combinations such as

qm =α1g [1] +α2g [2] + ...+αm g [m],

with coefficientsαi and expansion functions g [i ], we write qm =Gmz with z= [α1, ...,αm]T

and the expansion functions are stored as columns in the function array Gm , i.e., Gm ∈
R∞×m (sometimes referred to as a quasimatrix [81]). Finally, finite-dimensional matrices
are printed using a capital sans serif font (like A).

Using this notation, we now introduce the wave operator Q(s) to rewrite equation (2.5)
as

p H Q(s)u =− 1

ν(xS)2 p(xS). (2.7)

We note that the real and imaginary parts of Q(s) are self-adjoint.

2.3. MAXWELL EQUATIONS ON AN UNBOUNDED DOMAIN
We now consider the electromagnetic field equations since most applications in this the-
sis are of electromagnetic nature. The associated PDEs – the Maxwell equations – and
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their variants are introduced in this section. The resulting field equations will be written
in a unified form to introduce model order reduction concepts for all equations at once.

Electromagnetic fields are governed by the Maxwell equations

−∇×H+ Jcond +∂t D =−Jext (2.8)

and

∇×E+∂t B =−Kext. (2.9)

The fundamental unknowns in these equations are H the magnetic field strength and E
the electrical field strength. These fields respond to the external sources on the right-
hand side of equations (2.8) and (2.9). Here, Kext denotes an external magnetic current
density and Jext an external electrical current density. Again, we limit our domain of
interest to Ω and assume that the sources Kext and Jext are compactly supported on this
domain Ω.

Further, Jcond and D are the conduction current density, and electrical flux den-
sity, respectively, and they are related to the electric field strength E via constitutive
relations. Finally, B is the magnetic flux density which is related to the magnetic field
strength H via a constitutive relation. These constitutive relations describe the reaction
of a material to the presence of a field. We consider four cases separately in this thesis:

1. LOSSLESS ELECTROMAGNETICS – For lossless, instantaneously reacting, isotropic
media the constitutive relations are

B =µH, Jcond = 0, D = εE, (2.10)

with µ > 0 the permeability, and ε > 0 the permittivity. Both medium parameters
are spatially dependent scalars.

2. LOSSY ELECTROMAGNETICS – For lossy, instantaneously reacting, isotropic media
the conduction current no longer vanishes. The constitutive relations are

B =µH, Jcond =σE, D = εE, (2.11)

with σ≥ 0 the conductivity.

3. SECOND-ORDER ELECTRIC DISPERSION – Dispersive media are not instantaneously
reacting – the constitutive relations generally include a (temporal) differential equa-
tion. In this thesis we are interested in materials that are electrically dispersive
and whose constitutive relations are (at most) given by a second-order differential
equation. The constitutive relation for such a material are

B =µH, Jcond =σE, D = εE+P, (2.12)

where the polarization density P is related to E via a second-order constitutive
relation

β3∂
2
t P+β2∂t P+β1P =β0E, (2.13)

with βi , i = 0,1,2,3, the parameters describing the particular dispersive material.
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4. ANISOTROPIC DIFFUSION APPROXIMATION – In the case the magnitude of the con-
duction current density Jcond is much larger than the magnitude of the displace-
ment current density ∂t D, the latter can be neglected and the Maxwell equations
can be approximated by a diffusion equation. For these types of fields, the consti-
tutive relations are

Jcond =σE, and B =µH. (2.14)

In the anisotropic case, σ is a positive-definite tensor of rank two.

2.3.1. LOSSLESS, INSTANTANEOUSLY REACTING, ISOTROPIC MEDIA
For lossless, instantaneously reacting, isotropic media the Maxwell equations simplify to

−∇×H+ε∂t E =−Jext (2.15)

and

∇×E+µ∂t H =−Kext, (2.16)

where ε and µ are spatially dependent scalars and one obtains a hyperbolic wave equa-
tion in a first-order formulation. For lossless electromagnetics the constitutive relation
reads D = εE and the conduction current vanishes. These equations can be written in
matrix-operator form as

(D+M∂t )U =B′, (2.17)

with

D =
[

0 −∇×
∇× 0

]
, and M=

[
ε 0
0 µ

]
(2.18)

whereD contains the spatial derivatives,M the medium parameters, the field quantities
are combined in

U = [Ex ,Ey ,Ez ,Hx ,Hy ,Hz ]T

and the corresponding sources are collected in

B′ =−[Jext
x ,Jext

y ,Jext
z ,Kext

x ,Kext
y ,Kext

z ]T .

2.3.2. LOSSY, INSTANTANEOUSLY REACTING, ISOTROPIC MEDIA
In the case losses are present but the material is still instantaneously reacting this matrix
operator form becomes

(D+S+M∂t )U =B′, with S =
[
σ 0
0 0

]
, (2.19)

whereSU contains the conduction current density σE. In the Laplace domain this equa-
tion can obviously also be written as a shifted system

(M−1D+M−1S+ sI)Û =M−1B̂′, (2.20)
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assuming vanishing initial conditions and with I the identity operator. Testing equa-

tion (2.20) in the Laplace domain with a test field
(
Êt Ĥt) in a WEM =

[
ε 0
0 −µ

]
bilinear

form and integrating over Ω we find∫
Ω
−Ĥt ·∇× Ê− Êt ·∇× Ĥ+ Êt · (σ+ sε)Ê− Ĥt · sµĤdV =

∫
Ω
−Êt · Ĵext + Ĥt · K̂extdV , (2.21)

and using ∇· (Êt × Ĥ) = Ĥ · (∇× Êt)− Êt · (∇× Ĥ) this equation can be rewritten as∫
Ω
−(∇× Ĥt ) · Ê− (∇× Êt ) · Ĥ+ Êt · (σ+ sε)Ê− Ĥt · sµĤdV

+
∫
∂Ω

(Êt × Ĥ+ Ĥt × Ê) ·ndS =
∫
Ω
−Êt · Ĵext + Ĥt · K̂extdV , (2.22)

Here n is the outward-pointing unit-normal on ∂Ω. In our modeling approach we sur-
round our domain of interest by an absorbing boundary layer that simulates the exten-
sion of our domain to infinity and absorbs all outgoing waves. The layer itself is termi-
nated using the boundary conditions n ×E = 0 and n ×Et = 0, which need to be satisfied
by the test and trial field. Under these conditions the boundary integral in the above
equation vanishes and we obtain a symmetric operator. The introduction of the absorb-
ing boundary layer is discussed in section 2.6.

To summarize, with boundary conditions included, the Maxwell equations form
a symmetric operator in the WEM bilinear form from equation (2.21). Since the anti-
symmetric boundary integral

∫
∂Ω . . .dS vanishes for these boundary conditions we can

swap the trial and test functions
(
Êt Ĥt) and

(
Ê Ĥ

)
and obtain the same result. Finally,

we rewrite the symmetric bilinear form (2.21) as

pT Q(s)u = pT b, (2.23)

which is of the same form as the Helmholtz equation and Q(s) symmetric in the trans-
pose bilinear form. (Or with Q(s̄) as adjoint in the Hermitian inner product). We do this
in the understanding that u and p are 6-tuples with tuple elements from R∞ in the case
of the instantaneously reacting, first-order electromagnetic equation.

2.3.3. DISPERSIVE MEDIA
In case the medium is electrically dispersive, the relation between the electric flux den-
sity and field strength is more involved. In this thesis we consider dispersive materi-
als that follow a Debye, Drude, or Lorentz dispersion relation. To include this into the
Maxwell equations, the polarization density P is introduced and the electric flux density
is given by D = εE+P with ε= ε0ε∞ and ε∞ the instantaneous or high-frequency relative
permittivity. The polarization vector P is related to the electric field strength E via the
second-order constitutive relation

β3∂
2
t P+β2∂t P+β1P =β0E, (2.24)

where the βi , i = 0,1,2,3, are parameters describing the particular dispersive material
of interest. For example, for a Drude material we have β0 = ε0ω

2
p, β1 = 0, β2 = γp, and
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β3 = 1, where ωp is the volume plasma frequency and γp the collision frequency. The
β-coefficients of other commonly used materials are summarized in Table 2.1. For a
Lorentz medium we obtain the relation of a damped oscillator with damping term β2 =
2δ.

Table 2.1: Parameters to obtain common dispersion models with the general second-order dispersion model.
Here, τ is the characteristic relaxation time, εs is the static relative permittivity, ωp is the volume plasma fre-
quency, γp is the collision frequency, ω0 is the resonant plasma frequency, and δ is the damping coefficient.

Medium β0 β1 β2 β3

Lorentz ε0(ε0s−ε0∞)ω2
0 ω2

0 2δ 1
Drude ε0ω

2
p 0 γp 1

Debye ε0(ε0s−ε0∞) 1 τ 0
Conductivity σ 0 1 0

To try to find a self-adjoint formulation, we first rewrite the second-order constitutive
relation in first-order form. To this end, we introduce the auxiliary field

U =−∂t P (2.25)

and rewrite Eq. (2.24) as
β3∂t U+β2U−β1P+β0E = 0. (2.26)

Combining these last two equations with Maxwell’s equations, we arrive at the first-order
system

−∇×H−U+ε∂t E =−Jext, (2.27)

U+∂t P = 0, (2.28)

β2U−β1P+β0E+β3∂t U = 0, (2.29)

and

∇×E+µ∂t H =−Kext. (2.30)

These equations can be written in matrix-operator form as

(D+S+M∂t )U =B′, (2.31)

where U and B are the field and source vectors given by

U = [Ex ,Ey ,Ez ,Px ,Py ,Pz ,Ux ,Uy ,Uz , Hx , Hy , Hz ]T (2.32)

and

B′ =−[J ext
x , J ext

y , J ext
z ,0,0,0,0,0,0,K ext

x ,K ext
y ,K ext

z ]T , (2.33)



2

18 2. FROM PHYSICS TO DISCRETE SYSTEMS

respectively. Furthermore, D is a spatial differentiation matrix containing the curl op-
erators from Maxwell’s equations and S and M are medium matrices containing the
medium parameters βi , ε, and µ. Explicitly, the differentiation matrix is given by

D =


0 0 0 −∇×
0 0 0 0
0 0 0 0
∇× 0 0 0

 (2.34)

and the medium matrices are

S =


0 0 −1 0
0 0 1 0
β0 −β1 β2 0
0 0 0 0

 and M=


ε 0 0 0
0 1 0 0
0 0 β3 0
0 0 0 µ

 . (2.35)

With these medium matrices in equation (2.20) we obtain a self-adjoint operator Q(s)
in a bilinear form weighted with WDP = diag(ε,β1/β0,−β3/β0,−µ) which again can be
written in the symmetric integral form

pT Q(s)u = pT b. (2.36)

2.3.4. ANISOTROPIC DIFFUSION APPROXIMATION
The electromagnetic diffusion approximation holds if the magnitude of the conduction
current density σE is much larger that the magnitude of the displacement current den-
sity ∂t D in equation (2.8). This is the case for very lossy materials with a high conductiv-
ity or for very slowly varying fields; i.e. at low frequencies. Dropping the displacement
current and eliminating H in the Maxwell equations leads to the second-order PDE

∇×∇×E+µσ∂t E =−∇×Kext −∂tµJext (2.37)

known as the diffusion approximation in the E-field formulation. In case the conductiv-
ity is directionally dependent the medium is said to be anisotropic and the conductivity
σ is a 3×3 positive definite (rank 2) tensor as opposed to a positive scalar in the isotropic
case. In the diffusive case we can define a Hermitian operator with a real spectrum via
the weak form. Then using integration by parts we obtain a Hermitian operator which
can again be written in the form p H Q(s)u = p H b.

2.4. SOME GENERAL WAVEFIELD PROPERTIES
In this section, the properties satisfied by the fields and operators presented in the pre-
vious section are discussed. These properties will be revisited after discretization in the
next section and after model order reduction in the next chapter. The properties dis-
cussed are fundamental and need to be preserved after discretization and model order
reduction.

In this thesis, we only consider passive materials – materials that do not produce
any energy by themselves. This means that for isotropic materials σ ≥ 0 for wavefields
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and σ> 0 for diffusion needs to hold. Using passive materials leads to global energy con-
servation so that the energy in the region of interest Ω is smaller or equal to the energy
fed into the systems by initial conditions or sources. Therefore, all our operators Q(s) are
passive as well. Passivity can be defined via the numerical range of the operator.

DEFINITION 2.1. — We define the nonlinear numerical range as

N {A(s)} =
{

s ∈C : xH A(s)x = 0 for some nontrivial x ∈Ck
}

. (2.38)

This coincides with the ordinary numerical range definition for linear shifted sys-
tems A(s) = A′ − sI (see [45], [32]). Passivity of a dynamic system is equivalent to the
condition

ReN
{
Q(s)

}≤ 0, (2.39)

so that the region of convergence of the Laplace transform is the right half-plane. Pas-
sive systems do not produce any energy and strictly passive systems dissipate the input
energy. Further, passive systems are always stable [78].

Time-domain quantities like the electric field strength are real functions of time.
Consequently, the operator Q(s) and the field u(s) satisfy the Schwarz reflection princi-
ple

Q(s̄) =Q(s) and u(s̄) = u(s), (2.40)

and the spectrum of Q(s) is closed under conjugation.
Further, the symmetry bilinear forms of the various equations can be related to

a field Lagrangian. More specifically, for the instantaneously reacting electromagnetic
equations, an inner product with the symmetry operator WEM yields the free field La-
grangian as

Lfree =
1

2
uHWE M u = 1

2

∫
Ω
ε|Ê|2 −µ|Ĥ|2dV. (2.41)

Similarly, the symmetry operator found for the Maxwell equations with the second-order
dispersion relation WDP yields

L= 1

2
uHWDPu =Lfree +

1

2

∫
Ω

β1

β0
|P̂|2 dV − 1

2

∫
Ω

β3

β0
|∂t P̂|2 dV. (2.42)

As an illustration, if we substitute the values for a Lorentz medium we find

L= 1

2
uHWDP u =Lfree +

1

2

∫
Ω

1

ε0(εs −ε∞)
|P̂|2 dV − 1

2

∫
Ω

1

ε0(εs −ε∞)ω2
0

|∂t P̂|2 dV , (2.43)

which can be recognized as the free field Lagrangian and the material Lagrangian of a
material responding as an harmonic oscillator of frequency ω0, i.e. a Lorentz medium in
absence of damping. (Compare with the Lagrangian of the harmonic oscillator 1

ω2
0

(∂t )2x+
x = 0).

The bilinear form is not only connected to the Lagrangian but also to reciprocity.
To show this, assume that the test field (Êt Ĥt ) in equation (2.22) satisfies Maxwell’s
equations and is causally related to the external sources (Ĵt;ext K̂t;ext), which have a bounded
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support in Ω. Furthermore, at the boundary ∂Ω of Ω we assume that the tangential com-
ponents of Et and E vanish or, if an unbounded domain is of interest, we assume that in
Ω’s complement the medium is homogeneous. Now, substituting Maxwell’s equations
for the test field in equation (2.22) and taking either one of the above assumptions into
account, we obtain the classical reciprocity relation∫

Ω
−Ĵt;ext · Ê+ K̂t;ext ·HdV =

∫
Ω
−Êt · Ĵext + Ĥt · K̂extdV. (2.44)

In inverse problems with multiple sources and receivers this reciprocity leads to invari-
ance with respect to interchanging the role of sources and receivers.

2.4.1. RESONANCES
The field operator Q(s) can become singular leading to so-called scattering poles or res-
onances [49].

DEFINITION 2.2. — The resonance frequency and resonance mode of the operator Q(s)
are given by the eigenpair (ueig, seig) that satisfies

Q(seig)ueig = 0. (2.45)

In general, the eigenfrequency seig is complex, with an imaginary part that is re-
lated to the oscillation frequency of the mode and a real part that determines the tem-
poral decay of the mode due to material losses or radiation losses as energy leaves the
system through ∂Ω.

2.5. SPATIAL DISCRETIZATION
In this section we show how to obtain a semi-discrete system from the continuous field
equations. Furthermore, we introduce the discrete counterparts to the general wave-
field properties discussed in the last section, to show that they are preserved after dis-
cretization. As an example we will derive the discrete system for the Maxwell equations
with a second-order dispersion relation and then point out the peculiarities of the other
cases considered. We start by considering instantaneously reacting materials and sub-
sequently add dispersion.

We discretize the first-order field equations on a staggered Yee-grid [79] using pri-
mary and dual nodes in each Cartesian direction. For example, the primary and dual
nodes in the y-direction are defined as

Ω
p
y = {yq ∈R, q = 0,1, . . . , Ny +1, yq > yq−1}, (2.46)

and

Ωd
y = {ŷq ∈R, q = 1, . . . , Ny +1, ŷq+1 > ŷq }, (2.47)

respectively, with corresponding step sizes given by

δy,q = yq − yq−1, q = 1, . . . , Ny +1 and δ̂y,q = ŷq+1 − ŷq , q = 1, . . . , Ny . (2.48)
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Dual step sizes carry a hat1, while primary step sizes do not. Grid nodes in the x- and
z-direction are introduced in a similar manner with Nx dual step sizes in the x-direction
and Nz dual step sizes in the z-direction.

On a Yee-grid, differentiation in each Cartesian direction can conveniently be de-
scribed in terms of bidiagonal differentiation matrices. In particular, if we introduce the
(Ny +1)-by-(Ny +1) diagonal matrix of primary step sizes

Wy = diag(δy ;1,δy ;2, ...,δy ;Ny+1) (2.49)

and the Ny -by-(Ny +1) bidiagonal matrix bidiagNy
(−1,1) with −1 on the diagonal and +1

on the first upper diagonal, then differentiation of field quantities defined on primary
grid nodes in the y-direction is carried out by the sparse differentiation matrix

Y =−W−1
y bidiagNy

(−1,1)T . (2.50)

In a similar manner we can define a differentiation matrix that acts on field quantities
defined on the dual nodes. Introducing the Ny -by-Ny diagonal step size matrix

Ŵy = diag(δ̂y ;1, δ̂y ;2, ..., δ̂y ;Ny ), (2.51)

Ŷ = Ŵ−1
y bidiagNy

(−1,1) (2.52)

computes two-point finite-differences of field quantities defined on dual nodes in the
y-direction. Moreover, both differentiation matrices are related to each other via the
obvious symmetry relation

ŶT Ŵy =−Wy Y. (2.53)

Differentiation matrices X, X̂, Z, and Ẑ in the x- and z-direction are defined in an anal-
ogous manner.

2.5.1. INSTANTANEOUSLY REACTING MEDIA
Discretizing the first-order Maxwell system on a standard Yee-grid and arranging the
unknowns in lexicographical order, we arrive at the state-space representation

(D+S+M∂t )u= b′. (2.54)

The order of this system is denoted by N and it is typically very large for real-world 3D
problems (millions or even a billion of unknowns is not uncommon).

In the above representation, the sparse, spatial differentiation matrix is given by

D=
[

0 Dh

De 0

]
, (2.55)

with

Dh =

 0 Ẑ⊗ INy ⊗ INx+1 −INz ⊗ Ŷ⊗ INx+1

−Ẑ⊗ INy+1 ⊗ INx 0 INz ⊗ INy+1 ⊗ X̂
INz+1 ⊗ Ŷ⊗ INx −INz+1 ⊗ INy ⊗ X̂ 0

 (2.56)

1Not to be confused with Laplace domain quantities that also carry a hat.
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and

De =
 0 −Z⊗ INy+1 ⊗ INx INz+1 ⊗Y⊗ INx

Z⊗ INy ⊗ INx+1 0 −INz+1 ⊗ INy ⊗X
−INz ⊗Y⊗ INx+1 INz ⊗ INy+1 ⊗X 0

 , (2.57)

and ⊗ is the Kronecker (tensor) product. Furthermore, the medium matrix S is given by

S=
[
Mσ 0
0 0

]
, (2.58)

where Mσ is a diagonal semi-positive definite matrix with (averaged) conductivity values
on its diagonal. The medium matrix M is given by

M=
[
Mε 0
0 Mµ

]
, (2.59)

and both Mε and Mµ are diagonal and positive definite medium matrices with averaged
permittivity and permeability values on their diagonal (in the case of isotropic media).
The field vector is of the form

u= [eT
x ,eT

y ,eT
z ,hT

x ,hT
y ,hT

z ]T , (2.60)

where all field quantities are stored in lexicographical order in the corresponding field
vectors ei and hi , i = x, y, z. Finally, the finite-difference approximations of the external
sources are stored in the source vector

b′ =−[jext;T
x , jext;T

y , jext;T
z ,kext;T

x ,kext;T
y ,kext;T

z ]T . (2.61)

Premultiplying equation (2.54) by the inverse of the medium matrix M, we arrive at

(A+ I∂t )u=M−1b′, (2.62)

where we have introduced the system matrix as

A=M−1(D+S). (2.63)

This is the sparse system matrix for instantaneously reacting materials.

SYMMETRY RELATIONS

To discuss the symmetry properties satisfied by the system matrix, we first introduce the
diagonal step size matrices

We =
 Ŵz ⊗Ŵy ⊗Wx 0 0

0 Ŵz ⊗Wy ⊗Ŵx 0
0 0 Wz ⊗Ŵy ⊗Ŵx

 , (2.64)

and

Wh =
 Wz ⊗Wy ⊗Ŵx 0 0

0 Wz ⊗Ŵy ⊗Wx 0
0 0 Ŵz ⊗Wy ⊗Wx

 , (2.65)
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containing the voxel volumes of the Yee-cells on the diagonal. Using the symmetry rela-
tion of equation (2.53) (and the corresponding relations in the x- and z-directions), it is
now easily verified that

DT
h We =−WhDe and DT

e Wh =−WeDh. (2.66)

Furthermore, with

W̃EM =
(
We 0
0 −Wh

)
(2.67)

we also have
DT W̃EM = W̃EMD, (2.68)

which leads to the symmetry property

AT WEM =WEMA with WEM =MW̃EM = W̃EMM=WEM
T . (2.69)

This symmetry property is the discrete analog of the previously discussed symmetry
in an continuous setting. Since W̃ contains the voxel volumes on the diagonal, a W̃-
weighted inner-product is the finite-difference counterpart to spatial integration in the
continuous domain. Analogues to the continuous case, the 1

2 uH Wu bilinear form with
Hermitian transpose approximates the field Lagrangian. Finally, the symmetrized oper-
ator Q can be found as

(WA+W∂t ) =Q(∂t )u=WM−1b′ = b. (2.70)

REMARK 1. — Lossless media – For lossless media the operator can be defined as ALL =
M−1D. For this operator an anti-symmetric form can be found with weight matrix

WLL =
(
We 0

0 Wh

)
M (2.71)

leading ot the anti-symmetry relation

AT
LLWLL =−WLLALL. (2.72)

The WLL weighted inner product 1
2 uH WLLu is the finite-difference approximation of the

total energy of the field.

2.5.2. DISPERSIVE MEDIA
Loosely speaking, the main difference in setting up the semi-discrete Maxwell system
for dispersive media is the presence of the polarization vectors P and U = −∂t P in the
field equations. These vectors are only active at points where a dispersive material is
present. From a storage point of view, it is therefore advantageous to only keep the
finite-difference approximations of P and U at these points in memory. Since the po-
larization is related to the electric field strength and electric field strength approxima-
tions are defined over the total computational domain, we need to introduce support2

2Sometimes called restriction matrix as Isupu restricts u to the support domain.
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ΩDOI

y0 y1 y2 y3 y4

ΩSup

Isup =
(

0 0 1 0 0
0 0 0 1 0

)
(2.74)

Figure 2.1: Construction of a support matrix. Grid points y2 and y3 are within the dispersive medium and thus
y2, y3 ∈Ωsup. The rows of Isup are the basis vectors of Ωsup expressed in the basis vectors of ΩDOI.

matrices to implement the local dispersion relations. To this end, we define selection or
logical projection matrices, which select the relevant electric field strength components
from the total electric field vector. For example, if Isup

y is the support matrix of a disper-
sive material in the y-direction and ey contains all finite-difference approximations of
the y-component of the electric field strength, then the vector Isup

y ey contains only those
y-components of E located within the dispersive material. An illustration of how the
support matrix is constructed is shown in Figure 2.1.

Using this definition of the support matrices, the constitutive relation of equa-
tion (2.24) relating the electric and polarization fields to each other can be implemented
in a straightforward manner. For example, for the y-component of equation (2.24) we
have

B3,y∂t uy +B2,y uy −B1,y py +B0,y Isup
y ey = 0, (2.73)

where the matrices B{0,1,2,3},y are diagonal matrices with the (averaged) medium param-
eters β{0,1,2,3} on their diagonal.

Using the Yee-grid introduced earlier, approximating the partial derivatives by two-point
finite-difference formulas, and arranging the unknowns in lexicographical order, we now
again arrive at the state-space representation

(D+S+M∂t )u= b′. (2.75)

In this equation, the spatial differentiation matrix is given by

D=


0 0 0 Dh

0 0 0 0
0 0 0 0

De 0 0 0

 , (2.76)

where Dh and De are given by equation (2.56) and (2.57), respectively. Furthermore,
matrix S is given by

S=


0 0 −Isup;T 0
0 0 I 0

B0Isup −B1 B2 0
0 0 0 0

 , (2.77)

where B{0,1,2} are diagonal matrices only defined on the support of the dispersive media.



2.5. SPATIAL DISCRETIZATION

2

25

In addition, Isup is the total support matrix and the medium matrix M is given by

M=


Mε 0 0 0
0 I 0 0
0 0 B3 0
0 0 0 Mµ

 , (2.78)

where B3 is again a dispersion matrix and both Mε and Mµ are diagonal and positive
definite medium matrices with averaged permittivity and permeability values on their
diagonal. The field vector is now of the form

u= [eT
x ,eT

y ,eT
z ,pT

x ,pT
y ,pT

z ,uT
x ,uT

y ,uT
z ,hT

x ,hT
y ,hT

z ]T , (2.79)

where all field quantities are stored in lexicographical order in the corresponding field
vectors ei , pi , ui , and hi , i = x, y, z. Finally, the finite-difference approximations of the
external sources are stored in the source vector

b′ =−[jext;T
x , jext;T

y , jext;T
z ,0,0,0,0,0,0,kext;T

x ,kext;T
y ,kext;T

z ]T . (2.80)

Again, a symmetrized system can be obtained.

SYMMETRY RELATIONS

The system matrix for media exhibiting relaxation is given by

ADP =M−1(D+S). (2.81)

To discuss its symmetry properties, we introduce the matrix

W̃DP =


We 0 0 0

0 Wp 0 0
0 0 −Wu 0
0 0 0 −Wh

 (2.82)

and We and Wh as defined in equation (2.64) and (2.65). Furthermore, Wu and Wp are
given by

Wu =B−1
0 IsupWeIsup;T and Wp =B1Wu =B1B−1

0 IsupWeIsup;T . (2.83)

PROPOSITION 2.1. — The matrix ADP is symmetric in the WDP bilinear form as

AT
DPWDP =WDPADP with WDP =MW̃DP = W̃DPM=WT

DP. (2.84)

Proof. Given the above WDP the symmetry property can be trivially verified via substi-
tution.

This symmetry property is similar in form to the symmetry relation for instan-
taneously reacting media. In our model order reduction method this symmetry plays
a vital role. However, no such symmetry property can be found for general dispersion
relations with an order higher than two; however, the proposition can be extended to
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dispersion relations formed by sums of second-order dispersion relations. Finally, we
mention that our approach relies on an analytic model for the dielectric constant. It
can also handle measured dielectric data if the experimental data can be fitted by an
arbitrary sum of multiple Drude and Lorentz dispersion curves. In that case the pro-
posed method can still be used as the resulting system can be rewritten in a symmetric
first-order form. Introducing auxiliary variables for every single medium again leads to
a frequency-independent system. Thus, the final symmetrized discrete form of the dis-
persive Maxwell equations is

Q(∂t ) =WDP(ADP +∂t I)u= b, (2.85)

with b=WDPM−1b′.

2.6. INTRODUCTION OF A PML
We confined the study of our wave equations to the domain Ω and we assumed that all
sources are supported inside this domain. Therefore, we impose a radiation condition
at the boundary ∂Ω which we denoted by D(s) – the Dirichlet to Neumann (DtN) map.
During the discretization process in the last section we assumed Dirichlet boundary con-
ditions which we now replace by radiation boundary conditions in this section to model
an open domain.

The perfectly matched layers (PMLs) were introduced by Berenger in 1994 [8] for
the Maxwell equations as an absorbing boundary condition, simulating the extension to
an infinite space. The PML essentially reduces to complex-coordinate stretching [15], an
approach introduced in the 1970s to study open quantum systems. In the discrete do-
main we introduce a few layers of complex frequency-dependent step sizes in the spatial
coordinate normal to the boundary ∂Ω of the form

hc
i (s) = hi + ĥi

s
. (2.86)

The real part of hc absorbs evanescent waves, whereas the imaginary part absorbs prop-
agating waves. Optimal step sizes hi , ĥi can be found by rewriting the Dirichlet to Neu-
mann map of a finite-difference grid as a continued fraction with the step sizes hi , ĥi as
coefficients. The coefficients of such a rational function that minimize the difference be-
tween the continuous and discrete DtN map can be found in closed form via Zolotarev
rational approximation (see [20] for details).

This complex coordinate stretching introduces a domain ΩP surrounding the ac-
tual domain of interest. This can be reformulated to obtain an expression for the DtN
that is only active on ∂Ω. To this end, let ΩD be the interior of our domain of inter-
est Ω and let ∂Ω denote its closed boundary surface. The configuration of these non-
overlapping domains is illustrated in Figure 2.2 clearly showing that ΩD is simply con-
nected, ∂Ω andΩP are not. Furthermore,ΩD andΩP are k-dimensional domains, whereas
∂Ω is of dimension k −1.

Let the restriction of a vector or a matrix to a certain domain be denoted by sub-
scripts, such that WD is the restriction of the matrix W to ΩD , W∂ to ∂Ω and so on. These
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restrictions can be defined via the previously introduced support matrices illustrated in

Figure 2.1 as Isup
D u = uD or WD = Isup

D WIsup;T
D for matrices.

Furthermore, let Â(s)−s2I be the discrete operator on the whole domain including
the complex, frequency-dependent step sizes inside the PML in a second-order form
(The first-order form is entirely analogous). The Schur complement method is now used
to permute the matrix Â(s)− s2I intoAD 0 AD∂

0 AP(s) AP∂(s)
A∂D A∂P A∂

− s2I

uD

uP

u∂

=
W−1

D bD

0
0

 , (2.87)

with AP(s) and AP∂(s) the only complex valued and frequency-dependent matrices. All
matrices with double subscripts map values from the domain denoted by the second
subscript into the domain denoted by the first subscript; e.g., AD∂ maps form ∂Ω to ΩD.
We can now rewrite this equation over the domain Ω= ∂Ω∪ΩD eliminating the values of
uP, since we are only interested in the boundary contribution of uP on u∂. We rewrite the
equation described by the second row of equation (2.87) as uP = (AP(s)− s2I)−1AP∂(s)u∂

to arrive at([
AD AD∂

A∂D A∂

]
−

[
0 0
0 A∂P(WP (s)AP(s)− s2WP (s))−1WP (s)AP∂(s)

]
− s2I

)[
uD

u∂

]
=

[
W−1

D bD

0

]
.

(2.88)
This exclusion of the PML eliminates certain eigenvalues whose eigenvectors are solely
supported inside the PML. The DtN map A∂P(WP (s)AP(s)− s2WP (s))−1WP (s)AP∂(s) is
symmetric in the transpose bilinear form with W∂ and (WP (s)AP(s)−s2WP (s))−1 is sym-
metric as well. Thus, introduction of the PML transforms our shifted system into a non-
linear system as the DtN map is a higher order rational function. However, the overall
system is still symmetric in the frequency-independent bilinear form W such that the
reciprocity results from the continuous case directly translate to the discretized domain.
The Schwartz reflection principle still holds as the DtN map and the introduced complex
step sizes follow the reflection principle. Moreover, stability and passivity is preserved as
the numerical range of the resulting matrix still satisfies ReN {Q(s)} ≤ 0. Further, the
Hermitian bilinear form 1

2 uH Wu approximates the field Lagrangian, as the integral is re-
placed by summation with W containing the voxel volumes and medium parameters as
grid weights.

REMARK 2. — Diffusion – In the case of diffusion no PML is needed as diffusive fields de-
cay exponentially in space. Therefore, it suffices to terminate the domain with a Dirichlet
boundary at a distance of a few diffusion length of the field. Further, to discretize aniso-
tropic media a Lebedev-grid is used rather than a Yee-grid.

REMARK 3. — Incorporation of source terms – Until now little attention was paid to the
fact that sources may have a temporal dependency, as we assumed a delta function as
temporal dependence so far. For external sources described by an arbitrary time varia-
tion w(t ), we have

Jext = w(t )Jsp or Kext = w(t )Ksp, (2.89)
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ΩP

ΩD

∂Ω

Figure 2.2: Used domain decomposition with the interior ΩD (dotted), the boundary ∂Ω (red), and the exterior
PML domain ΩP(blue) .

where the quantities with superscript “sp” are time independent, spatial densities and
w(t ) is the so-called wavelet that vanishes prior to the time instant t = 0.

In this thesis, our approach is to solve time- and frequency-domain wave prob-
lems using the Dirac distribution δ(t ) for excitation. The resulting Greens function re-
sponses are then used to obtain the solution due to a wavelet w(t ) by convolution in the
time-domain or simple multiplication in the frequency-domain.

REMARK 4. — Integral and differential form – We write our wave equation in two forms
in this thesis, with a symmetric operator Q(s) defining an integral form and with an op-
erator A(s) provides us with a relation to shifted systems. For clarification we state both
forms here. The shifted system and its discrete counterpart follows the equation

[A(s)+ sI]u =W−1b and
[
Â(s)+ sI

]
û=W(s)−1b (2.90)

and the symmetrized integral form follows as

Q(s)u = b and Q(s)u=W(s)
[
Â(s)+ sI

]
û= b. (2.91)

Since right-hand sides are supported inside Ω (outside of the PML) only, they are fre-
quency-independent. In the discrete case W has a dual purpose, making the equation
symmetric and simultaneously approximating an integral by containing the voxel sizes
of the Yee-cells on the diagonal.

2.7. SOLUTION OF THE SYSTEM
With the system formulation and the PML in place, the solution to the system can be in-
troduced. Two approaches are considered: First we deal with the nonlinear problem and
introduce the solution, next we linearize the nonlinearity introduced by the DtN map to
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arrive at an unstable but shifted system. A stable solution to the introduced equations
can nonetheless be derived via a stability correction procedure.

2.7.1. NONLINEAR PROBLEM

The nonlinear problem can formally be solved in the Laplace domain as

u =Q−1(s)b (2.92)

and quadrature rules for evaluating the Bromwich integral in the inverse Laplace trans-
form can be used to obtain a time-domain solution (see [84]).

In the case of imaging or remote sensing applications we are typically not inter-
ested in the wavefield in the entirety of Ω but at certain receiver locations only. With
r denoting the receiver function, the transfer-function from sources to receivers can be
defined as

f (r,b, s) = r T Q−1(s)b. (2.93)

Since Q(s) is symmetric in the transpose bilinear form we find that f (r,b, s) = f (b,r, s).
Usually multiple sources and receivers are employed in an imaging problem so that next
to a single-input single-output (SISO) transfer-function also a multiple-input multiple-
output (MIMO) transfer-function can be defined. We introduce the MIMO problem via
the wave equation in the time-domain governed by

∆u[l ] − 1

ν2 u[l ]
t t =− 1

ν2 δ(t )δ(x −x l
S), u|t=0 = 0, ut |t=0 = 0, (2.94)

on Rk × [0,∞[, where the superscript l is the source index with l = 1, . . . , Nsrc. The weak
formulation of the corresponding s-domain equations is (cf. equation (2.7))

p H Q(s)u[l ] =−p(x l
S)

1

ν(x l
S)2

, for l = 1,2, ..., Nsrc. (2.95)

Assuming possibly coinciding source-receiver pairs, we collect all sources in the array
Bs = [b[1], . . . ,b[Nsrc]], with individual source contributions b[l ] = −δ(x −x l

S)/ν2(x l
S) as

columns and all receivers in the array Br = [r [1], . . . ,r [Nrec]] with receiver contributions
r [r ] = δ(x −xr

R) . Equivalently, we define Us(s) = [u[1](s), . . . ,u[Nsrc](s)] the array contain-
ing the fields to write the MIMO equation of (2.95) as

P H Q(s)Us = P H Bs. (2.96)

Finally, we define the MIMO transfer-function of size Nrec ×Nsrc as

F(s) = B H
r Us(s). (2.97)

If sources and receivers coincide, the transfer-function F(s) is symmetric due to the sym-
metry of Q(s).
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2.7.2. PML LINEARIZATION - STABILITY CORRECTION

Computing Q−1(s)b for multiple frequencies can be cumbersome or computationally
not feasible for large 3D configurations with millions of unknowns. For certain model
order reduction applications it is beneficial to linearize the PML, and to make use of the
vast theory that was developed for shifted systems. Specifically, a fixed-frequency PML
can be designed to be valid in a spectral range of interest to obtain a shifted operator on
the domain of interest and in the domain where complex coordinate stretching has been
applied (Ω∪ΩP )

W(Afi +∂tI)ufi = b, (2.98)

where the superscript “fi” indicates that the PML frequency is fixed. We note that Afi is a
complex operator due to the application of the complex-scaling method and the above
system is therefore complex and unstable. Instability occurs since a fixed-frequency
PML cannot handle the sign-change in the radiation condition that needs to occur when
the imaginary part of the Laplace parameter s switches sign. Therefore, fixing the PML
frequency approximates outgoing waves on one side of the imaginary axis and incoming
waves on the other side of the imaginary axis. This violates stability and the Schwartz
reflection principle.

However, real-valued and stable time-domain field responses can be obtained
from the above system via a stability-correction procedure proposed in [28]. In particu-
lar, stable field approximations can be computed as (for details see [28])

Ufi(t ) = w(t )∗2η(t )Re
[
η(Afi)exp

(
−Afit

)
W−1b

]
for t > 0, (2.99)

where

η(z) =


1 if Re (z) > 0,
1
2 if Re (z) = 0,

0 if Re (z) < 0

is the complex Heaviside unit step function. Furthermore, by applying a one-sided Laplace
transform to equation (2.103) we obtain the frequency-domain solution

Ufi(s) = w(s)
[

r (Afi, s)+ r (Āfi, s)
]
W−1b, (2.100)

where the overbar denotes complex conjugation and where we have introduced the fil-
tered resolvent function

r (z, s) = η(z)

z + s
. (2.101)

In both equations the wavelet w(t ) has been applied to the solution obtained from a delta
source δ(t ). The step function can be seen as a projection of the operator on the stable
side of the imaginary axis and conjugation restores the Schwartz reflection principle.

The finite-difference solution can be obtained by substituting the finite-difference
operators and field vectors into the expressions rather that the continuous expressions.
The discrete analog of the solution given in equation (2.100) is

ûfi = w(s)
[

r (Afi, s)+ r (Āfi, s)
]
W−1b, (2.102)
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and the discrete analog of equation (2.99) is given by

ufi(t ) = w(t )∗2η(t )Re
[
η(Afi)exp

(
−Afit

)
W−1b

]
for t > 0. (2.103)

Although equations (2.103) and (2.102) provide a explicit expression for the time-
and frequency-domain electromagnetic field on our domain of interest, these expres-
sions cannot be evaluated directly, since the order N of the discretized system matrix A is
typically too large. For example, N may easily run into the millions for three-dimensional
problems and direct evaluation of equation (2.103) or equation (2.102) is simply not fea-
sible. However, equation (2.103) and (2.102) do serve as a starting point for the model
order reduction method discussed in the next chapter.

REMARK 5. — Modification of source vector – The field solution in equation (2.102) can
also be written as

ûfi =
[

r (Afi, s)w(−Afi)+ r (Āfi, s)w(−Āfi)
]
W−1b, (2.104)

which becomes evident when evaluating the inverse Laplace transform via the residue
theorem. The PML needs to be matched over the spectrum of the wavelet w(−Afi) for all
angles of incidence. In addition, it can be seen that the parts of the source that actually
excite stable waves are w(−Afi)η(Afi)W−1b and w(−Āfi)η(Āfi)W−1b.

REMARK 6. — Second-order wave equation – The second-order wave equation from
equation (2.2) can be interpreted as a shifted system after linearization of the PML with
shift s2 rather than −s. The solutions obtained for this second-order system will be in

terms of
p

Afi rather than Afi. The stability correction is then incorporated by selecting
the proper branch of the square root (see [28]).

RESONANCES - FIXED-FREQUENCY PML
In the discrete setting, the notion of resonances is defined via the associated eigenvalue
problem. In the continuous setting and in an infinite space, resonant modes are quasi-
normal, e.g. normal in some weighted inner product space or bilinear form in which the
associated differential operators are symmetric.

In the discrete setting with a linearized PML, the modes are also quasi-normal in
the W-weighted bilinear form. Assume Afi is the fixed-frequency PML, first-order oper-
ator. For two eigenpairs (y,λ) and (x,µ) of this matrix, we find that

Afiy=λy and Afix =µx, (2.105)

holds. Since the matrix Afi is symmetric in the W bilinear form, the two following inner
product are equal to one another as

xT WAfiy=λxT Wy and yT WAfix =µyT Wx. (2.106)

By subtracting the second expression from the first we obtain

0 = (λ−µ)yT Wx, (2.107)
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and forλ ̸=µ it follows that the eigenvectors are quasi-normal, that is, they satisfy yT Wx =
0.

For lossless media we can even find a stronger result since WLLAfi
LL = −Afi

LLWLL

(see equation (2.72)) . We find that

0 = (λ+µ)yT WLLx. (2.108)

Thus all modes have to be quasi-normal, except the corresponding unstable incoming
and outgoing stable mode (λ = −µ). In the lossless electromagnetic case the unstable
mode can be obtained by either flipping the sign of the H-field or E-field, thereby revers-
ing the direction of Poynting’s vector and thus the propagation direction. Specifically, let
the lossless system for a stable eigenpair (e1,h1, s1) with Re s1 > 0 satisfy([

0 M−1
ε Dfi

h
M−1

ε Dfi
e 0

]
+ s1

[
I 0
0 I

])(
e1

h1

)
= 0. (2.109)

Now, the unstable mode can be found by left-hand multiplication of

[−I 0
0 I

]
and parti-

tion of unity in front of the field vectors as

[
I 0
0 −I

][
I 0
0 −I

]
. We find

[−I 0
0 I

]([
0 M−1

ε Dfi
h

M−1
ε Dfi

e 0

]
+ s1

[
I 0
0 I

])[
I 0
0 −I

][
I 0
0 −I

](
e1

h1

)
= 0, (2.110)

which simplifies to ([
0 M−1

ε Dfi
h

M−1
ε Dfi

e 0

]
− s1

[
I 0
0 I

])(
e1

−h1

)
= 0. (2.111)

Thus, the mode (e1,−h1,−s1) satisfies the unstable field relations. If (e1,h1, s1) is an out-
going mode, then (e1,−h1,−s1) is an incoming mode since Poynting’s vector flips sign as
well. This analysis does not hold in case losses are involved.

2.8. CONCLUSIONS
In this chapter, the basic wave and diffusion equations considered in this thesis were
discussed. Subsequently, the equations were discretized on a grid such that they can be
solved numerically. The basic properties of wavefields were reviewed and it was shown
that the discrete counterparts of these properties are preserved throughout discretiza-
tion. All considered wave equations were written in a unified form with the symmetric
operator Q(s) in the analytical domain and a sparse, symmetric matrix Q(s) in the dis-
crete domain.

The domain of interest was surrounded by a PML in order to simulate open do-
mains, which introduced a nonlinearity with respect to the Laplace frequency into the
modeling approach. Finally, the solution to the wave equations was obtained for fre-
quency-dependent and frequency-independent PMLs. The frequency-independent PML
is used in the next chapter to leverage methods, developed for shifted systems and eigen-
value problems, for model order reduction. The formulation with the frequency-depen-
dent PML is used to construct efficient reduced-order models and projection methods
on subspaces that themselves depend on the Laplace parameter s.
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3
MODEL ORDER REDUCTION

It is a curious historical fact that modern quantum mechanics began with two quite
different mathematical formulations: the differential equation of Schroedinger and the
matrix algebra of Heisenberg. The two apparently dissimilar approaches were proved to

be mathematically equivalent.

Richard P. Feynman

Parts of this chapter have been published in Geophysics [87] and Applied Physics A [89].
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3.1. INTRODUCTION

I N the last chapter, the continuous wave equations and their discrete counterparts
were introduced. In this chapter, we construct models that are considerably smaller

than the straightforward discretizations introduced in the last chapter.
There are several reasons why one can reduce the model order of wave equa-

tions. First, finite-difference problems are typically over-discretized with respect to the
Nyquist rate. For a second-order accurate finite-difference scheme in a lossless environ-
ment at least 10 point per wavelength should be used as the numerically introduced dis-
persion becomes too large otherwise. In addition, capturing complex sub-wavelength
features or geometries typically leads to over-discretization; however, homogenization
techniques can be used to avoid this. Second, for imaging applications we are typically
only interested in the transfer-function for a few sources and receivers in a specific spec-
tral range rather than the field in the whole simulated domain and for all frequencies.
Therefore, a smaller model can be found that only contains the information relevant
to the application. Furthermore, the transfer-function only needs to be approximated
to the noise level of the measurements. Finally, losses present in the material or in the
PML separate the spectrum of the operator from the imaginary axis, the area where we
want to approximate the operator. Such a separation usually leads to the possibility of
finding lower dimensional models. For example, low-order rational function approxi-
mations can usually be found if the domain where the function needs to be evaluated
is well-separated from the domain containing the singularities of the function. This is
also the reason why model reduction shows excellent results for diffusion problems as
the spectrum of a diffusion operator is contained on the real semi-axis.

In this thesis, we consider projection-based model reduction where a large oper-
ator is projected onto a subspace of a smaller dimension. We consider rational Krylov
subspaces (RKS), polynomial Krylov subspaces (PKS) and extended Krylov subspaces
(EKS).

OUTLINE

First, projection-based reduced-order modeling is introduced in section 3.2 along with
the reduced-order model solution. Subsequently, a rational Krylov subspace method is
introduced to construct field approximations in the time- and frequency-domain. We
show that this RKS approach is structure-preserving and that the transfer-function of
reduced-order models based on this RKS is a Hermite interpolant of the transfer-function
for a coinciding source-receiver pair. In this section we also show that polynomial and
extended Krylov subspaces can be used for projection of the linearized wave operator.
The symmetry and sparsity of the system matrix are exploited to obtain efficient model
reduction algorithms. The approximation of resonances as Lanczos-Ritz pairs of the
reduced-order modeling operator is discussed as well. The computational complexity
of the three Krylov methods is analyzed in section 3.3. In the literature Krylov meth-
ods have extensively been used for diffusion equations and a comparison between these
methods for wave and diffusion operators is given in section 3.4. The presented tech-
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niques are then used in three example applications in section 3.5. First, the spontaneous
decay rate of a quantum emitter in proximity of a dispersive nano-resonator is com-
puted and the resonances are analyzed. Subsequently, examples from geophysics are
discussed – the lossy Maxwell system is solved in a ground penetrating radar application
and the Maxwell diffusion approximation is used for another exploration example. Fi-
nally, a lossless dielectric box is considered to show that RKS also performs well in the
absence of material losses. Conclusions are given in section 3.6.

3.2. PROJECTION-BASED MODEL ORDER REDUCTION
In the last chapter, we arrived at the generic equation

Q(s)u = b, (3.1)

for all of our PDEs. As a first step in our model order reduction framework, we restrict u
to an m-dimensional subspace Km . Let the functions v [1], v [2], . . . , v [m] form a complex
basis Vm ∈ R∞×m of Km and let ûm be the reduced-order solution in this space with
an error em such that u = um + em . The reduced-order solution is now expanded as
um =Vmz with expansion coefficients αi collected in the vector z= [α1, . . . ,αm]T so that

Q(s)Vmz+Q(s)em = b. (3.2)

The residual is defined as rm = Q(s)em , which in the context of wave propagation can
be interpreted as the equivalent source causing the error. The reduced-order solution
in equation (3.2) is not uniquely defined as we need a condition what to regard as error
and what to regard as a solution. The Galerkin condition is such a condition and sets the
residual orthogonal to the expansion space V H

m rm = 0 or the error Q(s)-orthogonal to the
expansion space. Under the Galerkin condition, the elements of z are uniquely defined
through

V H
m [Q(s)Vmz−b] = 0 (3.3)

for all Re (s) > 0 provided that Vm is a basis and the passivity constraint ReN {Q(s)} ≤ 0 is
satisfied1. In that case an invertible (for Re (s) > 0) m×m reduced-order operator Rm(s)
can be defined as

Rm(s) =V H
m Q(s)Vm (3.4)

and the m expansion coefficients of the reduced-order model are found as

z(s) =Rm(s)−1V H
m b (3.5)

defining the reduced-order solution um(s) = Vmz(s). The reduced-order Rm is the pro-
jection of the operator Q(s) onto Km . The reduced-order MIMO transfer-function im-
mediately follows as

Fm(s) = B H
r Um = B H

r VmR−1
m (s)V H

m Bs. (3.6)

PROPOSITION 3.1. — The reduced-order operator Rm is passive, i.e.

ReN {Rm} ≤ 0. (3.7)
1Since we study propagating waves we can even assume that ReN {Q(s)} < 0 holds and obtain a reduced-order

model that is valid for all Re (s) ≥ 0
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Proof. It suffices to show that the numerical range of Rm is contained in the numerical
range of Q(s), that is N {Rm(s)} ⊆N

{
Q(s)

}
. From the definition of the numerical range

of the reduced-order model we find that

xH
mRm(s)xm = (Vmxm)H Q(s)(Vmxm). (3.8)

Now, every s that satisfies xH
mRm(s)xm = 0 also satisfies (Vmxm)H Q(s)(Vmxm) = 0 and

every point in the numerical range of Rm(s) is also included in the numerical range of
Q(s). Since Q(s) is passive, it follows that Rm is passive as well.

Unfortunately, the operator Q(s) is not self-adjoint in the Hermitian inner product
but only in the transpose bilinear form. Therefore, Rm(s)H is equivalent to the reduced-
order model of the adjoint Q(s). However, for real subspaces Vm;Re the reduced-order
model is structure preserving. (Take for instance ReKm ∪ImKm as a subspace).

PROPOSITION 3.2. — For a real basis Vm;Re the reduced-order model preserves the
structure of the Q(s); i.e. Rm;Re (s) is symmetric and self-adjoint in the transpose bi-
linear form and follows the Schwartz reflection principle.

Proof. The symmetry of Rm;Re (s) follows from the symmetry of Q(s) since Rm;Re (s) =
V H

m;ReQ(s)Vm;Re = V T
m;ReQ(s)T V m;Re = Rm;Re (s)T , since Vm;Re is a real. The same

argument shows that the Schwartz reflection principle holds as

Rm;Re (s) =V H
m;ReQ(s)Vm;Re =V H

m;ReQ(s)Vm;Re =Rm;Re (s). (3.9)

Due to this proposition the spectrum of Rm;Re is closed under conjugation and ûm;Re

follows the Schwartz reflection principle. Thus, time-domain reduced order model so-
lutions obtained after applying the inverse Laplace transform are real-valued.

In the following two sections we discuss the choice of Km and the consequences
for the reduced-order model. First, we introduce rational Krylov subspaces and then
polynomial and extended Krylov subspaces. For the latter two we project in a bilinear
form like V T

m Q(s)Vm with a complex basis Vm . Uniqueness, passivity and even stability
of such a reduced-order solution cannot be guaranteed as the numerical range of the
operator is not preserved.

3.2.1. RATIONAL KRYLOV SUBSPACES
As a first step towards an efficient rational Krylov methodology for multi-frequency wave-
field problems, we construct field approximations or reduced-order models based on
an interpolatory rational Krylov subspace containing single frequency solutions (snap-
shots) of the problem as trial and testing space. Specifically, our approach is to define an
RKS of order m as

Km(κ) = span{u(s1),u(s2), . . . ,u(sm)} (3.10)

with m distinct shifts κ= [s1, . . . , sm] and to use its real form, the RKS

K2m
R (κ) = span

{
ReKm(κ),ImKm(κ)

}
, (3.11)
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as a test and trial space. The real and imaginary parts of the snapshots u(si ) spanning
K2m

R (κ) are always linearly independent, since the eigenfunction expansion of the Dirac
distribution appearing on the right-hand side of equation (2.2) has an infinite number of
terms. Furthermore, from the symmetry u(s) = u(s) it follows that Km(κ) ⊂K2m

R (κ) and
Km(κ) ⊂K2m

R (κ) and a projection onto the subspace K2m
R (κ) will therefore preserve the

Schwarz reflection principle leading to real-valued, time-domain wavefield approxima-
tions. The space K2m

R (κ) is equivalent to a rational Krylov subspace with shifts κ∪κ. The
projection is structure preserving and leads to passive reduced-order models as shown
in Propositions 3.1 and 3.2.

INTERPOLATION PROPERTIES

The standard theory of Galerkin projection-based model reduction of passive, dynamic
systems yields the following interpolation properties (e.g., see [3]).

PROPOSITION 3.3. — The projected RKS solution um(s) interpolates at the shifts, i.e.,

um(s) = u(s) ∀s ∈ κ∪κ (3.12)

and the SISO reduced-order transfer-function fm(s) for a coinciding source and receiver
is a Hermite interpolant of the SISO transfer-function f (s) at the shifts, that is,

fm(s) = f (s) and
d

ds
fm(s) = d

ds
f (s) with s ∈ κ∪κ. (3.13)

Proof. Since Km(κ) ⊂K2m
R (κ) and Km(κ) ⊂K2m

R (κ), property (3.12) follows directly from
the uniqueness of the Galerkin condition for passive problems. To prove (3.13), we first
recall that the field error and residual are given by

em(s) = u(s)−um(s) and rm(s) = b −Q(s)um(s),

respectively. From the Galerkin condition we obtain the relation

uH
m(s)rm(s) = 0, (3.14)

since um(s) ∈K2m
R . The error of the transfer-function can now be written as

f (s)− fm(s) = bH em(s) = uH (s)Q(s)em(s), (3.15)

where we have used Schwarz’s reflection principle. Since Q(s)em(s) = rm(s) and the
Galerkin condition of equation (3.14) holds, we can write

f (s)− fm(s) = uH (s)rm(s) = eH
m(s)rm(s), (3.16)

which has double zeros at s = κ∪κ, since the error and residual vanishes for these fre-
quencies due to relation (3.12).

For coinciding sources and receivers the subspace Vm contains the solutions and
the adjoint solutions since we use a real basis, which leads to double interpolation. For
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transfer-functions with non-coinciding sources and receivers, double interpolation can
be achieved by using a subspace that contains Q(κ)−1br and Q(κ)−1bs .

The outlined approach is most efficient if only a few singular Hankel values of the
system contribute to the solution as is the case for resonating structures with a few ex-
cited and observable modes [7]. Then the frequency-domain response is well-described
by a low-degree rational function and a rational Krylov technique will therefore quickly
capture the desired wavefield response.

In the finite-difference framework, assume projection of the finite-difference op-
erator from equation (2.88) with an excluded PML. Further assume the basis Vm to be W
orthogonal as VH

mWVm = Im . The reduced-order operator (for a second-order system) is
then given by

Rm(s) =VH
mW

([
AD AD∂

A∂D A∂

]
−

[
0 0
0 A∂P(WP (s)AP(s)− s2WP (s))−1WP (s)AP∂(s)

]
− s2I

)
Vm ,

(3.17)

and working out the inner-products we find

Rm(s) =
(
VH

mW
[
AD AD∂

A∂D A∂

]
Vm

−
[

0 0
0 VH

m;∂W∂A∂P(WP (s)AP(s)− s2WP (s))−1WP (s)AP∂(s)Vm;∂

]
− s2I

)
. (3.18)

We observe that only the part of the operator concerned with the PML needs to be pro-
jected to obtain the reduced-order model for a new value of s.

The optimal Zolotarev rational approximants (see [20]) used for the PML con-
struction make the size of the finite-difference problem (necessary for accurate approx-
imation of the DtN map) in Rk \Ω negligible compared to the grid in Ω’s interior. In 2D
for instance, the resulting equations that need to be solved in the PML can be solved effi-
ciently with a block-cyclic solver [73], or with a band solver after sorting the PML system
to a bandwidth of 2k +1 (in 2D).

REMARK 7. — Dispersive Media in RKS – The rational Krylov subspaces can deal with
operators that are nonlinear with respect to frequency. Therefore, an RKS can handle
dispersive media without writing the constitutive relations and Maxwell equations as a
first-order system, as long as these relations are passive. The snapshots of u(κ) are then
computed for different wavespeeds at each frequency and upon evaluation the operator
Q(s) is reprojected onto the basis. For the Maxwell equations in the diffusion approxi-
mation such a parameter-dependent rational Krylov subspace has been used to simulate
dispersive media that follow a Cole-Cole model [33].

3.2.2. POLYNOMIAL AND EXTENDED KRYLOV SUBSPACES
In our model order reduction approach, our aim is to approximate the field solution
û(s) = [WÂ(s)+ sWI]−1b̂ by matrix functions that are easier to compute, for instance a
polynomial or a low-order rational function. However, the introduction of coordinate
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stretching to simulate open domains results in a discretized Maxwell system that is non-
linear in frequency, which makes it computationally non-tractable to built high order,
orthogonal polynomials in Â(s) as this requires recomputation of the polynomial for ev-
ery value of s. Therefore, frequency-independent absorbing boundary conditions are
desirable, as introduced in section 2.7.2. Starting point of the frequency-independent
model reduction approach is equation (2.98), which for finite-dimensional vectors and
in the Laplace domain, is given by

(Afi + sI)ûfi =W−1b. (3.19)

As projection spaces, polynomial Krylov subspaces

Km
PKS = span

{
W−1b,AfiW−1b, . . . ,

(
Afi

)m−1
W−1b

}
, (3.20)

and extended Krylov subspaces

Knn,np

EKS = span

{(
Afi

)−nn W−1b, . . . ,W−1b, . . . ,
(
Afi

)np−1
W−1b

}
, (3.21)

are used with the starting vector W−1b as equation (3.19) is a shifted system in this case.
Let Vm be a basis of the m-dimensional PKS that is W quasi-orthonormal in the

transpose bilinear form. The PKS can be build iteratively following the condition

AfiVm =Vm+1Tm+1 (3.22)

with Tm+1 a (m + 1)×m dimensional matrix. The i -th vector is a linear combination

of the i −1 preceding vectors and the vector Avi . Therefore, it is clear that the leading
m ×m block of Tm+1 is upper Hessenberg. Multiplication by VT

mW from the left leads to
a symmetric matrix and reveals the leading m×m block due to the quasi-orthonormality
of Vm as

Tm =VT
mWAfiVm =VT

mWVm+1Tm+1. (3.23)

A symmetric, upper Hessenberg matrix is tridiagonal, so that the reduced-order model
matrix Tm is tridiagonal. For completeness, we mention that the reduced system is given
by Rm(s) =Tm + sI in this case. Due to the symmetry of the system matrix Afi a reduced-
order model can be computed via three-term recursion relations via the Lanczos algo-
rithm [35]. In one iteration of the Lanczos algorithm only one sparse matrix-vector prod-
uct and two vector-vector products are needed. For the extended Krylov subspace five-
term recursion relations can be found leading to a symmetric pentadiagonal reduced-
order model [47]. In order to use these efficient algorithms to construct the ROM we
need to project the operator Afi in the W weighted transpose bilinear form. Therefore,
convergence of the algorithm cannot be proven as the algorithm can theoretically break
down before convergence is reached. However, in applications such a breakdown has
never been observed. For first-order, finite-difference operators it can even be proven
that breakdown cannot occur in the first 2d iterations, where d is the (smallest) number
of grid cells between the support of b to the boundary of the domain.
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As discussed in the last chapter, the linearization of the PML leads to uncondition-
ally unstable matrices and stable field approximations can only be found via a stability-
correction procedure. The stability-corrected solution is unconditionally stable and fol-
lows the Schwarz reflection principle as well.

The short recursion relations together with the fact that only the transfer-function

f̂(r,b, s) = rT W
[

r (Afi, s)+ r (Afi
, s)

]
W−1b (3.24)

is needed rather than the whole field approximation allows for the computation of the
transfer-function without storing the basis. With Vm ∈ CN×m as a basis matrix for the
PKS or EKS, the reduced-order transfer-function can be written as

f̂m(r,b, s) = rT W
[
Vmr (Tm , s)VT

m +Vmr (Tm , s)VH
m

]
W−1b (3.25)

using short term recurrence algorithms. Since the projection of the operator is com-
puted with the short term recurrence algorithm, only the inner products rT WVm and
VT

mb need to be kept in memory and the complete basis does not need to be stored. This
makes these algorithms very memory efficient as only three vectors of the size of the
computational domain need to fit inside the computational memory for PKS and five for
EKS. In the time-domain the reduced-order solution can be written as

fm(r,b, t ) = 2η(t )rT WRe
[
Vmη(Tm)exp(−Tm t )VT

mb
]

for t > 0. (3.26)

For SISO problems and with W−1b as starting vector for the EKS and PKS algorithm, the
expressions further simplify as VT

mW−1b =
p

bT W−1be1 holds. The projected Maxwell
operator Tm = VT

mWAfiVm is tridiagonal for PKS and pentadiagonal in the case of EKS,
simplifying the evaluation of r (Tm) or exp(−Tm t ) even further.

REMARK 8. — Numerical stability – To enhance the numerical stability for ill-conditioned
bilinear forms, it is possible to use basis vectors v[i ] that have unit Euclidean norm and
are only W-orthogonal. The resulting reduced-order model is then symmetric with re-
spect to the inverse of the diagonal matrix VT

mWVm , rather than being symmetric on its
own.

Adding a vector to a PKS is computationally cheap and just requires one matrix-
vector multiplication: it is equivalent in cost to one step of the Finite-Difference Time-
Domain (FDTD) method. However, adding a negative power of matrix Afi to an EKS
is computationally more expensive, as one has to numerically solve a static (zero fre-
quency) problem. Generally, EKS performs well if low frequencies need to be approx-
imated, as it interpolates the original function and first nn − 1 derivatives at zero fre-
quency. Finally, we mention that polynomial and extended Krylov field approximations
of the stability-corrected transfer-function are stable by construction, since all eigenval-

ues of η(Afi) and η(Afi) lie in the right half-plane.
The matrix Afi is singular for wave propagation and diffusion and we therefore

need to solve the system with the pseudo inverse of Afi [66]. In the case of 2D wave prop-
agation, this pseudo inverse corresponds to the law of Biot-Savart (the action of Afi;†b).
One has to essentially solve Poisson equations to compute the action of the pseudo in-
verse on a right-hand side [23]. This can be done with standard Poisson solvers or more
generally with iterative solvers computing the minimum norm solution.
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REMARK 9. — Relation to shifted systems – Finally, we mention that in our model reduc-
tion approach, we approximate shifted systems using polynomial and extended Krylov
subspaces. The first-order Maxwell system leads to such a linear system if a fixed-fre-
quency PML is used. The second-order Maxwell system leads to a quadratic equation

(D+Mεµs2 +Mµσs)e= b′′ (3.27)

that can only be viewed as a shifted system in the lossless case, in the diffusion approx-
imation or if ε is proportional to σ throughout the domain (see [65]). Thus for general
lossy Maxwell systems, the first-order formulation is used in the proposed approach.

3.2.3. RESONANCES AS LANCZOS-RITZ PAIRS

Although the matrix Afi has unstable eigenvalues, the stable eigenvalues for which the
PML is matched are still valid finite-difference approximations of the resonances of the
open system.

The Lanczos-Ritz pairs of the reduced-order model in turn approximate the mir-
rored2 eigenvalues of the FD system and can thus be used to approximate the resonances
of an open system. Let an eigenpair of Tm be given by (zi ,λi ), then the Lanczos-Ritz pairs
are given by (Vmzi ,λi ); i.e., the eigenvectors of the reduced-order model are the expan-
sion coefficients of the basis. The modes are still quasi-normal in the W transpose inner
product as the eigenvectors3 zi are quasi-normal in the transpose.

In an implementation it is usually not feasible to store the entire matrix Vm and
the computational advantage of the short term recursion relations is memory efficiency
as Vm is not needed to obtain the transfer-function. In the case a few resonance modes
need to be approximated without storing Vm , two runs of the Lanzos algorithm are
needed; in the first run the expansion coefficients zi of the eigenvalues of interest are
computed, while in the second run these coefficients are used during the Lanczos proce-
dure to compute Vmzi . As a measure to check if an eigenpair has converged, the residual

ri
res =AfiVmzi −λi Vmzi = v[m+1]βm+1(zi )m (3.28)

of that eigenpair is used, with βm+1 = (vm)T Wvm and (zi )m the last entry in the ROM
eigenvector. This well-known relation shows that (Vmzi ,λi ) is an approximate eigenpair
of Afi if ||ri

res||2 is small.

3.3. COMPUTATIONAL COMPLEXITY OF RKS, EKS AND PKS
In this section, we briefly discuss the computational complexity and memory require-
ments of the PKS, EKS, and RKS algorithms. With N denoting the order of the original
unreduced Maxwell system and m the order of the reduced-order model, the perfor-
mance of all three methods can be summarized as in Table 3.1. In this table, the order of
the computational cost (in terms of N ) is Nψ(N ) for solving a shifted system and Nϕ(N )

2Mirrored with respect to the origin as the eigenvalues of the matrix pencil (Afi,−I) are the resonances.
3Existence of an eigenvalue decomposition cannot be guaranteed; however, orthogonality of eigenvectors still

holds.
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Table 3.1: Computational complexity, memory requirement and possible parallelization of the PKS, RKS and
EKS method.

Method Asymptotic complexity Memory Possible parallelization
RKS ψ(N )N m mN m
PKS N m 3N –
EKS ϕ(N )N m 5N –

Nψ(N ) - Complexity of solving one shifted system
Nϕ(N ) - Complexity of solving one static system (s = 0)

for a static system with zero shift. Thus ϕ(N ) and ψ(N ) describe the cost of the particular
solver used4.

From this table it is clear that there is a trade-off between memory requirements,
parallelization and computational complexity. Specifically, one iteration of RKS is much
more costly than one iteration of PKS or EKS, since it requires a solution of the unre-
duced Maxwell system at each iteration. On the other hand, RKS typically converges
much faster than PKS or EKS as demonstrated in the numerical experiments at the end
of this chapter. Another advantage of the RKS method is that the construction of the RKS
basis is parallelizable, since multiple shifted systems can be solved in parallel. From a
memory point of view, the PKS and EKS algorithms are more attractive due to the short
term recurrence relations that allow for a memory efficient construction of these spaces.
Only three vectors of the size of the computational domain need to be stored for PKS
and five vectors for EKS. For the RKS method, m vectors need to be stored in memory.
Finally, we note that in a sequential implementation of the RKS and PKS method, the
computational cost of each iteration of RKS or PKS is approximately constant.

3.4. DIFFUSION APPROXIMATION VERSUS FULL MAXWELL SYS-
TEM

For the Maxwell equations in the diffusion approximation, polynomial or rational Krylov
subspace methods clearly outperform time-stepping schemes [21, 51, 11]. In particular,
to obtain the time-domain solution in the interval [0,T ] to the diffusion equations, dis-
cretized with step size h, one needs m =O(h−1

√
log(h)T ) PKS iterations as opposed to

O(h−2T ) time steps using an explicit second-order time-stepping scheme. Furthermore,
the eigenvalues of the diffusion operator lie on the positive, real semi-axis and the op-
timal shifts for an RKS are known via a Zolotarev rational approximant [51]. In contrast
to this, the CFL condition of the FDTD method for Maxwell’s wave equations with loss-
less media yields an estimate of only O(h−1T ) time steps. In fact, one can show that the
PKS method for these types of problems is computationally equivalent to FDTD with an
optimal time step in case of PEC boundary conditions and lossless media [67]. Material
losses and the PML, however, shift the spectrum of the first-order wave operator away
from the imaginary axis and into the complex plane. The separation of the spectrum

4If a sparse LU factorization is used to solve the 2D Helmholtz equations for instance, ψ(N ) =p
N [38].
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from the area of approximation (the imaginary axis) enhances the convergence of PKS.

In Figure 3.1, we show the spectrum of a typical discretized first-order wave and
second-order diffusion operator. All eigenvalues are shown as red crosses and are lo-
cated in the right-half of the complex s-plane. The spectra of the diffusion and wave op-
erator are clearly different – eigenvalues of the diffusion operator are located on the pos-
itive real line, while the wave operator has a (symmetric) spectrum that is completely lo-
cated in the stable right half-plane Re(s) ≥ 0. For frequency-domain problems, we want
to obtain an accurate approximation in a frequency interval of interest that is usually lo-
cated on the imaginary axis (encircled with a dashed black line). After discretization of
the continuous wave operator, its spectrum becomes discrete and shifts into the com-
plex plane due to material losses and the introduction of a PML. The fixed-frequency
PML is only matched in a certain region of interest, corresponding to strongly damped
eigenvalues with a large real part. Cavities or other resonant inclusions can introduce so-
called resonance modes, which are characterized by eigenvalues with a small real part,
as they lead to a slowly decaying exponent in the transfer-function of equation (3.26).
The separation of the area of approximation and the spectrum also allows for efficient
model reduction via rational Krylov subspaces. However, contrary to the diffusive case,
the eigenvalues of the wave operator are not located on the real axis, but can be found in
the complex plane (For more information about the spectrum of A(s) we refer to [49], for
example). A priori selection of optimal shifts as in the diffusive case is therefore very dif-
ficult. In general, the frequency-domain response of a wave equation can be oscillatory
which limits an interpolatory method like the RKS method. In conclusion, introducing
losses into the Maxwell system allows us to find smaller reduced-order models. Losses
lead to loss of information and allows for a low-order approximation that can capture
the relevant features of the transfer-function. This will be illustrated with a numerical
experiment in the application section.

3.5. APPLICATIONS

In this section, we show the performance of the introduced model reduction techniques
in several applications. First, we consider the computation of the spontaneous decay
rate of a quantum emitter in vicinity of a dispersive resonator. Next, applications from
geophysics are considered. The effect of losses on the convergence behavior is studied
for a ground penetrating radar. Further, for another example from geophysics, we con-
sider the Maxwell equations in the diffusion approximation. The last example, a lossless
dielectric box, shows that the developed methods don’t rely on losses being present in
the configuration. More specifically, the transfer-function of such a dielectric box can be
well approximated by a low-degree rational function which allows for an approximation
in a small rational Krylov subspace.

In this section, we show the wide applicability of model reduction for wave equa-
tions. Localized fields in resonators, fields in lossy environments and fields in configu-
rations where the transfer-function can be described by a low-degree rational function
are all well suited for model order reduction techniques.
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(a) Illustration of the eigenvalues of the second-
order diffusion operator.
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(b) Illustration of the eigenvalues of the (lin-
earized, stabilized) first-order wave operator Afi

including stability correction

Figure 3.1: Comparison of the spectra of a linearized wave operator and a diffusion operator. The unstable left
half-plane (Re(s) < 0) is depicted in red, while the stable right half-plane (Re(s) > 0) is shown in blue.

3.5.1. SPONTANEOUS DECAY RATE AND DISPERSIVE RESONATORS
The spontaneous decay (SD) rate of a quantum emitter depends on its environment and
can be modified by an electromagnetic resonance. This so-called Purcell effect [64] is a
basic effect in quantum electrodynamics and it is well known that in the so-called weak-
coupling regime, the SD rate can be computed classically and does not require a quan-
tum mechanical treatment. Specifically, for electric-dipole transitions that take place at
r = r0, the SD rate γ normalized with respect to the decay rate γ0 in a reference medium
can be computed as [58]

γ/γ0 = P/P0, (3.29)

where
P = ω

2
Im[p ·E(r0)] (3.30)

is the power radiated by an electric dipole of the form Ĵext = −iωpδ(r − r0) with p the
dipole moment and P0 is the radiated power in the reference medium.

To determine the SD rate, the electric field at the location of the quantum emitter
is required over a spectral interval of interest. For emitters located in the vicinity of dis-
persive nano-structures, we therefore have to solve the Maxwell equations for a coincid-
ing source and receiver pair. The PKS algorithm is used for this application as the con-
sidered three-dimensional configurations with subwavelength geometries lead to very
large finite-difference grids and only a few vectors fit into the computational memory.
The PKS algorithm also allows us to efficiently compute and study the resonances in
terms of the Lanczos-Ritz pairs.
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PROPOSITION 3.4. — The normalized spontaneous decay rate of a quantum emitter can
be computed in terms of the ROM as

P

P0
= δ3

v 6πc3

εrω2 ReeT
1

[
η(Tm)(Tm + sIm)−1 +η(Tm)(Tm + sIm)−1

]
e1. (3.31)

Proof. The power radiated by a dipole inside a homogeneous medium with refractive
index n, relative permittivity εr , operating at a frequency ω, and having a dipole moment
p is given by [36]

P0 =
ω4||p||22
12πε0c3 . (3.32)

As mentioned above, to compute the spontaneous decay rate, a PKS reduced-order model
is used. In our finite-difference approximation we find that −b is the finite-difference ap-
proximation of the delta pulse in the direction of p scaled by the voxel volume of the
corresponding source voxel δ3

v and with wavelet w = s||p||. In addition, the receiver
r = −||p||W̃−1b is an approximation of the delta function at the source location, since
the source and receiver coincide for this application. The starting vector in the basis Vm

is W−1b and consequently VT
mWW−1b = e1

p
bT W−1b is the scaled first unit vector. To

compute the spontaneous decay rate, the inner product of the polarization vector with
the electric field needs to be evaluated. With W̃ the matrix containing the Yee-voxel size
this inner product is obtained in terms of the ROM as

p̄ · Ê(x0) ≈ w(s)rT W̃Vm
[
η(Tm)(Tm + sIm)−1 +η(T̄m)(T̄m + sIm)−1]VT

mb. (3.33)

Substitution of the receiver vector r=−||p||W̃−1b in the above expression gives

p̄ · Ê(x0) ≈−w(s)(||p||W̃−1b)T W̃Vm
[
η(Tm)(Tm + sIm)−1 +η(T̄m)(T̄m + sIm)−1]VT

mb,

and since the inner product of the source and receiver vector with the Lanczos vectors is
known we find

p̄ · Ê(x0) ≈−w(s)||p||(bT W−1b)eT
1

[
η(Tm)(Tm + sIm)−1 +η(T̄m)(T̄m + sIm)−1]e1.

Finally, using w(s) = s||p|| and s =−iω we obtain

p̄ · Ê(x0) ≈ iω
||p||2δ3

v

ε0εr
eT

[
r (Tm)+ r (Tm)

]
e1, with r (z) = η(z)

z + s
. (3.34)

In this derivation we used that bT W−1b= δ3
v

ε0εr
, leading to a reduced-order approximation

of the radiated power as

P = δ3
vω

2||p||2
2εr ε0

ReeT
1

[
η(Tm)(Tm + sIm)−1 +η(Tm)(Tm + sIm)−1

]
e1. (3.35)

Finally, the reduced-order approximation of the normalized spontaneous decay rate fol-
lows as

P

P0
= δ3

v 6πc3

εrω2 ReeT
1

[
η(Tm)(Tm + sIm)−1 +η(Tm)(Tm + sIm)−1

]
e1.
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GOLDEN NANOROD

As a first example, we consider a configuration similar to the one presented in [74],
which consists of an electric dipole located in the vicinity of a golden nanorod (see Fig-
ure 3.4(a)). The rod has a diameter of 30 nm and a length of 100 nm and the dipole
is located 10 nm above the upper surface of the rod. The background medium is ho-
mogeneous and is characterized by a refractive index of n = 1.5, while a Drude model
with a plasma frequency ωp = 1.26 ·1016 s−1 and a collision frequency γp = 1.41 ·1014 s−1

is used as a constitutive relation for the golden nanorod. We are interested in the SD
rate of the quantum emitter on a wavelength interval ranging from 0.7 µm to 1.2 µm.
Discretizing the first-order Maxwell system of equations (2.27–2.30) such that the elec-
tromagnetic field and the geometry are well resolved for all wavelengths of interest, we
obtain a semi-discrete Maxwell system as given by equation (2.75) with approximately
8.7 million unknowns. Given this large order, it is clear that direct evaluation of equa-
tion (2.102) is simply not feasible. We therefore construct the reduced-order model for
the radiated power as given by equation (3.35) via the Lanczos reduction algorithm. For
this particular example, it turns out that a model of order m = 4500 is sufficient to accu-
rately describe the SD rate of the quantum emitter over the entire wavelength interval of
interest. Since the order of the original system is approximately 8.7 million, the order of
the reduced-order model is about 1930 times smaller than the original system. Also note
that the system matrix Afi is sparse, and the Lanczos algorithm is therefore very efficient,
since the algorithm is based on a three-term recurrence relation and the system matrix
is only needed to compute a single matrix-vector multiplication at every iteration.

Now taking the homogeneous background medium as a reference medium to
compute P0 (see equation (3.36)), we obtain the normalized decay rate curve shown in
Figure 3.2(a) (black solid line). Also shown is the normalized SD rate as computed in [74]
with 2D Rigorous Coupled-Wave Analysis (RCWA) that assumes rotational symmetry of
the configuration (red dashed line). Clearly, both SD curves essentially overlap on the
wavelength interval of interest.

In addition to the reduced-order models for the SD rate, we can also determine
the dominant quasi-normal modes from the Lanczos decomposition. As an illustration,
Figure 3.2(b) shows all eigenvalues of the reduced Lanczos matrix T4500 in the com-
plex λ-plane. The reduced-order model takes the contribution of all these eigenvalues
into account, but only one eigenvalue (encircled in Figure 3.2(b)) essentially contributes
to the SD rate response. The mode that corresponds to this eigenvalue has converged
and in Figure 3.3(a) we show the magnitude of the x-component of the electric field
strength of this dominant quasi-normal mode for the quantum emitter configuration of
Figure 3.4(a), while Figure 3.3(b) shows the y-component of the electric field strength.
The solution can also be expanded in this one resonant mode as shown in Figure 3.2(a)
(blue dashed line). Higher order modes that, do not contribute to the field excited by the
dipole are shown in Figure 3.4(b) and Figure 3.4(c).

Finally, we remark that in exact arithmetic only those modes that are excited by
the emitter can be captured by the Lanczos algorithm, since the (scaled) source vec-
tor W−1b is used as a starting vector. These are the modes of interest, of course, since
possible other quasi-normal modes are simply not excited.
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Figure 3.2: Spontaneous decay rate and the Lanczos-Ritz values of the simulated structure.

(a) Ex field of the resonance. (b) Ey field of the resonance. (c) Ez field of the resonance.

Figure 3.3: Isosurfaces of the electrical field strength of the fundamental resonance at λ= 926−47i nm.
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(a) Configuration simulated
with excitation dipole.

(b) Ex field of second harmonic
λ= 517−10i nm.

(c) Ex field of third harmonic.

Figure 3.4: Second and third harmonic resonance fields of the nanorod configuration and the simulated con-
figuration with the quantum emitter are shown. (a) Quantum emitter located above the golden nanorod, (b)
the second and (c) the third harmonic resonance field.

PARALLEL PLATE OSCILLATOR

As a second example, we consider a quantum emitter located at the center of a gap be-
tween two rectangular golden nanorods (see Figure 3.5(b)).

The side lengths of each rectangle are given by 102× 20× 40 nm and the gap is
28 nm wide. We use the same Drude model as in the previous example as a constitutive
relation for gold. The rods and emitter are embedded in a homogeneous background
medium with a refractive index of n = 1.5.

Discretizing the first-order Maxwell system in space such that the electromag-
netic field is well resolved for wavelengths running from 0.52 µm to 1.2 µm, a semi-
discrete Maxwell system with approximately 7.2 million unknowns is obtained. Using
the Lanczos algorithm, we construct reduced-order models of increasing order until
convergence is reached. For this example, a reduced-order model of order m = 10000
is sufficient to accurately describe the SD rate on the wavelength interval of interest (see
Figure 3.5(a)). Again, the SD rate is computed by taking all eigenvalues of the reduced
Lanczos matrix Tm into account. However, only a small number of eigenvalues actually
contribute to the SD rate in this configuration, as shown by the dashed curve in Fig-
ure 3.5(a)). The fields of one of the main contributing resonances for a dipole source
oriented in the y-direction are shown in Figure 3.6.

Comparing the SD experiment for the nanorod with the experiment for the parallel-
plate antenna, we observe that the two experiments differ not only in model complexity,
but also in the wavelength-range of interest. Specifically, in the nanorod experiment
only a single resonance essentially contributes to the SD rate on the wavelength interval
of interest, while for the antenna two resonance modes contribute on a wavelength in-
terval that is larger than in the first example (smaller wavelengths are considered in the
second example compared with the first). Convergence therefore slows down, since the
wavelength interval and the number of modes that need to be captured is larger. More-
over, smaller wavelengths put stronger constraints on the PML, which usually leads to a
poorer conditioning of the system matrix.
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(a) Normalized spontaneous decay
rate as approximated by the ROM,
shown alongside the contribution
of the main resonances for a dipole
oriented along the y-axis.

(b) Simulated configuration of
parallel plates.

(c) Higher order resonance
mode.

Figure 3.5: The normalized spontaneous decay rate for a quantum emitter between two parallel plates (a), the
parallel plate configuration with the quantum emitter (b) and the isosurface of an high order anti-symmetric
resonance mode (c).

(a) Ex field. (b) Ey field. (c) Ez field.

Figure 3.6: Isosurface of one of the two main contributing, anti-symmetric resonance mode of the parallel
plate configuration with λ = 622− 14i nm. Shown are the x−component (a), the y−component (b) and the
z−component (c) of the electric field strength.
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The construction of the reduced-order model in Matlab takes less than one hour
for the first example and 2.5 hours for the second example on an Intel i5-3470 CPU 3.2
GHz under 64-bit Windows 7. As soon as the model is constructed, its evaluation on the
complete wavelength interval of interest takes less than one second for one thousand
uniformly sampled wavelength values. This “wavelength sweeping" feature is the main
advantage of our reduced-order model approach.

Next to the spontaneous decay rate, the reduced-order modeling approach allows
us to approximate the resonances of the system. In Figures 3.8 and 3.9 we show the
magnitude of the x−, y− and z−components of the electric field strength of the quasi-
normal modes corresponding to the fundamental resonances. A symmetric and an anti-
symmetric mode can be found, where the symmetric mode has a higher frequency of
oscillation.

The symmetric and anti-symmetric resonances and the difference in oscillation
frequency can be analyzed with a simple circuit model of the parallel plate configuration.
Imagine each of the parallel plates as a lossless LC -oscillator. Coupling two of these
oscillators with coupling capacitors we end up with the circuit shown in Figure 3.7.

C

i1

L

i2

L

i3

C

i4Cc

i6

Cc

i5

V = 0

V1V3

V4

Figure 3.7: Two harmonic oscillators coupled with a coupling capacitor of size Cc .

To find the resonances of this circuit we analyze it in the Fourier domain and
search for solutions that can sustain themselves in absence of sources. The sum of all
currents in every node needs to be zero so that we find i5 = i6, which leads to V1 =V3+V4.
Further, using the current-voltage relationships for each component in the Fourier do-
main we find that

(1−ω2C L)V1 =−ω2CcV4. (3.36)

This equation has two solutions, namely, the symmetric and anti-symmetric oscillatory
modes. The symmetric mode is equivalent to the resonance of the independent LC -
circuits. In the symmetric oscillatory mode there is no voltage drop across Cc such that

ωsym = 1p
LC

, with V4 = 0,V3 =V1 and i5 = 0. (3.37)

The two coupled oscillators are not interacting with each other in this case. In the anti-
symmetric case, however, the oscillation frequency decreases to

ωanti = 1p
L(C +Cc )

, with V3 = 0,V4 =V1 and i5 ̸= 0. (3.38)
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Clearly the anti-symmetric mode has a lower oscillation frequency than the symmetric
one, which is equivalent to the coupled parallel plate oscillators discussed in this sec-
tion. Obviously this model is an over simplification of the situation; however, it enables
us to understand the difference in symmetric and anti-symmetric oscillation frequency.
According to this model the resonance of the symmetric mode and a single plate would
need to coincide. This is not the case for the parallel plate oscillator, as the single plate
supports a fundamental resonance at a wavelength that is 50 nm larger than the one of
the symmetric parallel plate configuration as shown in Figure 3.10.

(a) Anti-symmetric Ex field. (b) Anti-symmetric Ey field. (c) Anti-symmetric Ez field.

Figure 3.8: Isosurfaces of all three electric field strength components of the anti-symmetric resonance mode
of the parallel plate configuration with λ= 1034−34i nm.

(a) Symmetric Ex field. (b) Symmetric Ey field. (c) Symmetric Ez field.

Figure 3.9: Isosurfaces of all three electric field strength components of the symmetric resonance mode of the
parallel plate configuration with λ= 891−68i nm.
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(a) Symmetric Ex . (b) Symmetric Ey field. (c) Symmetric Ez field.

Figure 3.10: Isosurfaces of all three electric field strength components of the fundamental resonance mode of
a single plate configuration with λ= 941−52i nm.

3.5.2. MODEL ORDER REDUCTION IN GEOPHYSICS

Krylov-based EM solvers for the Maxwell system in the diffusion approximation have
long been the workhorse of the geophysics community ( see [11, 21, 51]). In such a solver,
the discretized system of equations is projected onto a Krylov subspace in an iterative
fashion. The projected system forms a reduced-order model from which approximate
solutions to the full order system can be drawn. In geoscience the inverse problem is
typically of interest – imaging the conductivity of the Earth from a few measurements of
a ground-penetrating electromagnetic field. Therefore, only the transfer-function from
distinct sources to receivers are of interest. The domains encountered are typically open
so that the computational domain is truncated by absorbing boundary conditions.

The Earth is a conductive medium with two electromagnetic regimes: the diffu-
sion and wave regime. In the diffusion regime the displacement currents ε∂t E are much
smaller than the conduction currents due to high conductivity profiles or low frequen-
cies. In the wave regime low losses are present or high frequencies of operation or both
and the displacement currents cannot be neglected.

There are several reasons to use model order reduction in geosciences. In the
model order reduction framework the computation of Jacobians for the associated in-
verse problems is fast and very memory efficient. Further, the computational domains
encountered are typically very large so that the computational demands can be low-
ered with model order reduction compared to traditional methods. The electromagnetic
losses present in the Earth cause the spectrum of the Maxwell operator to shift into the
complex plane away from the imaginary axis. Such a separation between the imaginary
axis and the spectrum of the operator aids low-order approximations. From a physics
stand point, dissipation typically leads to loss of information allowing for lower order
approximations (see also page 56).

In this section we compare three types of projection-based Krylov model order
reduction techniques for electromagnetic field problems as encountered in geophysics.
We use several ground penetrating radar scenarios to illustrate the performance of the
various Krylov reduction techniques. In addition, a 3D example for the diffusive Maxwell
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equations is presented as well. Particular attention is paid to the effects of the conduc-
tivity in the lossy Maxwell system on the convergence speed of the ROMs.

TWO-DIMENSIONAL GROUND PENETRATING RADAR

To show the approximation qualities of the introduced ROMs, we consider a configura-
tion arising in exploration with a ground penetrating radar (GPR). We investigate a lossy
subsurface with a box shaped anomaly and use a frequency band between 50 MHz and
3 GHz. The simulated configuration is shown in Figure 3.11(a), where the exact medium
parameters are provided in the caption. An electrical dipole source oriented in the z-
direction is used for excitation and the z-component of the electric field strength is mea-
sured at the ground-air interface. Finite-difference discretization with a second-order
accurate operator at a maximum frequency of 3 GHz leads to a first-order Maxwell sys-
tem with N = 62 ·103 unknowns. As comparison solution for our reduced-order models
this full-order operator is used to compute the transfer-function for this configuration
using a Finite-Difference Frequency-Domain (FDFD) method. This comparison solu-
tion is shown alongside the responses of the PKS, EKS and RKS reduced-order models
in Figure 3.12. The order of the reduced-order models was increased until the reduced-
order models and the comparison solution essentially overlap on the frequency interval
of interest.

For the RKS method we choose equidistant shifts (interpolation points) on the
imaginary axis between 50 MHz and 3 GHz. The RKS method leads to the smallest
model with m = 55; however, a single iteration is much more expensive than a PKS it-
eration. The PKS method needs m = 3400 iterations until convergence, where one it-
eration is as expensive as an FDTD step. The EKS method needs nn = 100 inverse and
np = 2200 forward iterations. The only difference can be seen at very low frequencies
where the frequency-independent and dependent PML deviate. Furthermore, the PKS
method converges from large eigenvalues towards small eigenvalues meaning that high
frequencies are approximated first. The EKS method with 100 inverse iterations inter-
polates at zero frequency and it converges from low and high frequencies towards the
middle of the spectrum. The RKS method with uniform distributed shifts interpolates
the response at all shifts and therefore converges on the whole interval of shifts simul-
taneously. The convergence of the different Krylov methods in the frequency-domain is
shown in more detail in Figure 3.11(b), where the relative L2 error between the different
Krylov ROMs and the FDFD comparison solution is shown as a function of the number
of iterations. We measure the approximation by the relative L2 error in the time-domain
given by

err = ||fm(t )− f(t )||2
||f(t )||2

, (3.39)

and use an FDFD comparison simulation to obtain f(t ).
The RKS-ROM converges up to machine precision to the FDFD comparison solu-

tion, since both solutions are computed using the frequency-dependent Maxwell oper-
ator. The error of the PKS and EKS ROMs stagnates around an error level of about 10−4,
since these models use the frequency-independent PML formulation.

In Figure 3.13 the convergence of the PKS method in the time-domain is illus-
trated. Here, the time derivative of a Gaussian pulse, with a center frequency of 1.15 GHz
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(a) Simulated GPR configuration, with an (εr =
4,σ = 10−2 S/m) anomaly embedded in a (εr =
2,σ= 5·10−4 S/m) surface layer, with dry air εr =
1,σ= 0 on top..
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(b) Relative error of the PKS-, EKS- and RKS-ROMs.
The PKS- and EKS-ROMs stagnate around a relative
error of about err = 10−4 as the comparison solution
was computed with an FDFD method with frequency-
dependent PML.

Figure 3.11: Configuration of the ground penetrating radar application and convergence curves of the different
model reduction techniques.
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Figure 3.12: Imaginary part of the transfer-function over the frequency interval of interest computed with
FDFD (green solid line), PKS after 3400 iterations (blue solid line), EKS after 2200 forward and 100 inverse
iterations with Afi, respectively, (yellow solid line), and RKS after 55 iterations (dashed line).
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was used as a wavelet. The 1% cutoff frequency of this wavelet is 2.4 GHz and discretiza-
tion is chosen such that we have about 10 points per smallest wavelength at this cutoff
frequency. We observe that early times are approximated well after m = 1100; however,
late times containing the reflection of the anomaly did not converge yet. After m = 3400
iterations the time-domain error is below 0.1% and the reduced-order approximation
and FDFD comparison solution are indistinguishable. The direct arrival of the pulse and
the reflections from the anomaly can clearly be distinguished in this experimental setup.

To study the effect of losses on the convergence rate of RKS-ROMs in the time-
domain, we repeat the above experiment with different conductivity models. Specifi-
cally, we scale the conductivity profile by a factor of 0.5, 2, and 5. The relative time-
domain errors (with respect to an FDTD comparison solution) for different iterations of
RKS is shown in Figure 3.14, where we used the same wavelet as in the previous exper-
iment. Higher losses clearly increase the convergence rate, as it shifts the spectrum of
the operator further away from the imaginary axis and into the complex plane. For small
dimensions of the Krylov subspace the errors in all experiments are similar due to the
presence of a direct lossless path between the sources and receivers. Once this direct ar-
rival is well approximated, the errors of the different conductivity models start to differ
and higher losses positively influence the convergence rate. The convergence of RKS is
not monotonic, however, since we use equidistant shifts for our experiments, meaning
that we rebuild our subspace for each of the experiments.

0 100 200 300 400 500 600

−0.5

0

0.5

1

normalized timestep [a.u.]

re
sp

o
n

se
[a

.u
.]

FDFD Comparison
PKS m = 3400
PKS m = 1100

250 550

Figure 3.13: Time-domain trace as approximated by the PKS method after 1100 iterations and after 3400 it-
erations. For a PKS method the early times converge first. The reflections from the anomaly can be seen in
the zoomed panel in the top right. The FDFD comparison response and ROM-PKS response for m = 3400 are
magnified for (normalized) times between 250 and 550.

THREE-DIMENSIONAL GROUND PENETRATING RADAR

To test the algorithm for a three-dimensional ground penetrating radar application a
similar box configuration as in the two-dimensional case is used. A cube shaped box with
side length 40 cm and a relative permittivity of εr = 4 and conductivity of σ= 0.01 S/m is
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Figure 3.14: Time-domain convergence of the RKS method for four different media with increasing conduc-
tivity. All conductivities are given in mS/m and the red crosses correspond to the previously discussed experi-
ment.

buried 60 cm deep in the subsurface which has a permittivity of εr = 2 and conductivity
of σ = 0.5 mS/m. A source and receiver are placed on the Earth-air interface, centered
above the box and 23 cm separated. We are interested in simulating the frequency inter-
val up to 2.4 GHz. Uniform discretization of a 3D volume of 75cm×75cm×160cm with
a Yee-grid leads to 10 million field unknowns and we use a PKS reduced-order model to
compute the frequency-domain transfer-function.

The approximation of the transfer-function is shown in Figure 3.15 for reduced-
order models of increasing dimensionality. After 3500 iterations the L2 error of the ROM
is 1.5% and only small differences with the ROM of dimension 15000 can be seen. The
PKS method clearly converges from high frequencies to the low frequencies similar to a
power method for eigenvalue computation. I took around 30 minutes to compute the
reduced-order model of order 3500 and only 0.5 s to evaluate 1000 frequency points us-
ing the model in a Matlab implementation.

THREE-DIMENSIONAL ELECTROMAGNETIC DIFFUSION

In case the displacement currents ε∂t E are negligible compared to the conduction cur-
rents σE, we obtain the diffusion approximation of Maxwell’s equations. In this compu-
tational example, we consider a three-dimensional configuration with a resistive, aniso-
tropic anomaly. The geometrical configuration is a scaled version of the previous exam-
ple and is shown in Figure 3.16(a), where the source and receiver are directed in the pos-
itive z-direction. The lower half space has a conductivity of σ= 1 S/m and the resistive,
anisotropic, cube anomaly has principal components σI = 0.01 S/m, σI I = 0.04 S/m,
and σI I I = 0.02 S/m with a dip and azimuth angle of the anisotropy of 30 and 15 degrees.
After discretization with finite-differences, the model has N = 1.5 ·106 field unknowns in



3.5. APPLICATIONS

3

57

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

−2

0

2

4

·10−4

frequency [GHz]

re
sp

o
n

se
[a

.u
.]

m = 15000
m = 3500
m = 2500
m = 1500

Figure 3.15: Imaginary part of the transfer-function over the frequency interval of interest computed with PKS
after 1500, 2500, 3500 and 15000 iterations.

a second-order formulation.
The interpolation points of the RKS method are placed on the negative, real semi-

axis and chosen asymptotically optimal assuming a uniform spectral distribution of the
diffusion operator as described in [24]. Therefore, the shifts are known a priori and the
dimension of the RKS can be increased by adding vectors one by one.

In Figure 3.16(b) the L2 error of the reduced-order model is shown as a function
of the iteration number m for the PKS and RKS method. Both methods converge to a
relative error of 10−4 in mPKS = 18700 and mRKS = 33 iterations, respectively. To show the
convergence within a single figure, double logarithmic axes are used. The RKS method
clearly yields a smaller ROM.

The wall times for a sequential implementation are shown in Figure 3.16(b). The
RKS method clearly outperforms the PKS method in terms of computation time and size
of the ROM. However, the PKS uses less memory to construct the ROM. In section 3.3
the computational complexity of the reduced-order modeling methods was discussed
in more detail. We choose to show the wall times in a semi-logarithmic and the L2 error
as function of the iterations on a double-logarithmic scale as the asymptotic complexity
of a single iteration of RKS is constant, and so is the complexity of PKS.

The time-domain transfer-function as approximated by the RKS and PKS method
for the time interval of interest (t = 10−3 − 10−1 s) is shown in Figure 3.16(d). A slight
difference at early times between these methods is caused by different averaging tech-
niques employed in RKS and PKS for spatial discretization (see nodal homogenization
and standard homogenization, respectively, from [56]). In this experiment, a Heaviside
step function is used as a wavelet that is active for all negative times and zero for all posi-
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tive times (switch-off source). The observed L2 error between both methods for the time
trace shown in Figure 3.16(d) is 3%. This 3D diffusive example shows that the conver-
gence of PKS slows down as the error decreases, whereas the RKS shows linear conver-
gence and RKS outperforms PKS in terms of computation time (see also Figure 3.16(b)).
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(a) Cross section of the 3D model simulated with
a lower half space of σ = 1 S/m and a loss-
less upper half space. A resistive, anisotropic,
cube anomaly with principal components σI =
0.01 S/m, σI I = 0.04 S/m, and σI I I = 0.02 S/m
is present in the configuration. The dip and az-
imuth of the anisotropy are 30 and 15 degrees, re-
spectively.
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(b) Time-domain error of the RKS and PKS
reduced-order models as a function of the iter-
ation number m shown on a log-log scale.
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(c) Time-domain error of the RKS and PKS
reduced-order model for a given computation
time.
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(d) Time-domain response for the converged RKS
and PKS reduced-order models. To estimate the er-
ror introduced by finite-difference discretization the
PKS and RKS method employ different homogeniza-
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Figure 3.16: Three-dimensional, anisotropic, electromagnetic diffusion example. The configuration under in-
vestigation (a), the convergence curve of an RKS and PKS method (b) is shown. The error is plotted against the
computation times for the two methods (c) and the time-domain response of the system is depicted (d).
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3.5.3. RESONANT BLOCK – STRUCTURE PRESERVING RKS
In this experiment we simulate the electrical field in a lossless two-dimensional dielec-
tric box with permittivity εr = 4 excited by a line-source as depicted in Figure 3.17(a).
Due to the two-dimensional and lossless nature of this example, the Helmholtz equation
can be used to simulate this configuration in a second-order formulation. As discretiza-
tion and normalization length we choose ∆x = 1 µm and we excite the configuration
using a Ricker wavelet, with a peak in the spectrum at ω = 20 · 1012rad/s (normalized:
ωn = 0.0667). Since the source and receiver location coincide, we have Hermite inter-
polation of the transfer-function by the RKS method. To compute the rational Krylov
subspace we use m equidistant shifts on the imaginary axis in the interval i · s = [0,0.5],
which results in m solves with the large system matrix of size N = 12·103. The frequency-
domain impulse response after m = 20 and m = 60 iterations is shown in Figure 3.18(a).
The time- and frequency-domain (with wavelet) convergence is show in Figure 3.17(b).
For comparison, a Fourier method with 500 equidistant points in the interval i·s = [0,0.5]
is used. Due to Parceval’s identity, the time- and frequency-domain errors are equivalent.
The method converges to machine precision after only m = 130 iterations, meaning that
the system of N = 12 ·103 unknowns can be reduced to 2 ·130 without loss of accuracy.
After m = 60 the difference between the exact response and the reduced-order approxi-
mation is nearly indistinguishable by eye; only in the high frequency region the error is
larger than the line-width. This convergence behavior is typical for resonant structures,
where only a few eigenvalues and eigenvectors of the operator Q(s) need to be approx-
imated to obtain a reasonable field description. The field response in the frequency-
domain looks like a rational function due to the presence of resonances so that a rational
Krylov subspace approximates the response well in a small subspace.
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(a) Wavespeed factor in terms of c0 in the 50µm ×
50µm dielectric box configuration. A dielectric box
with wavespeed factor of 0.5 is embedded in an infi-
nite space with wavespeed factor 1.
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(b) Time- and frequency-domain convergence of
the RKS reduction method for the box configura-
tion. A Ricker wavelet was used for excitation.

Figure 3.17: The box configuration and convergence in the time- and frequency-domain using the RKS method.
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(a) Real part frequency-domain, reduced-order re-
sponse with no wavelet applied after m=20 and m=60
iterations.
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Figure 3.18: The real an imaginary part of the frequency-domain transfer-function of the box experiment.

3.6. CONCLUSIONS
In this chapter we have presented polynomial, extended, and rational Krylov reduced-
order modeling techniques for wave equations on open domains. The model reduction
techniques have been applied to dispersive, optical resonators to study the spontaneous
decay rate of quantum emitters and ground penetrating radar configurations involving
lossy media were considered to compare the convergence of all three model reduction
methods. To illustrate the different convergence properties of the ROMs for diffusion
and wavefield problems, an anisotropic, electromagnetic diffusion configuration was
simulated. Finally, dielectric lossless box was considered to show that the RKS method
can handle structures with many resonances and as a bridge to the next chapter, where a
model order reduction technique is developed for configurations that are not dominated
by resonances.

Polynomial and extended ROMs are based on a frequency-independent PML for-
mulation in combination with a stability-correction procedure to obtain accurate transfer-
function approximations between a given source and a given receiver. By exploiting
the symmetry of the wave equations, we have shown that PKS- and EKS-ROMs can be
constructed using short recurrence relations and it is not necessary to store a complete
Krylov basis to evaluate transfer-function approximations for the fields.

The PKS reduced-order modeling techniques have been employed to compute
the spontaneous decay rate of arbitrarily shaped 3D nano-sized resonators. By exploiting
the symmetry of Maxwell equations in conjunction with a general second-order disper-
sion relation, reduced-order models for the spontaneous decay rate can be constructed
very efficiently via a Lanczos-type reduction algorithm. The use of this algorithm allows
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us to construct a single low-order model that is accurate on an entire spectral interval of
interest and frequency sweeps can be performed at negligible cost given the low-order
of the reduced-order models. Also the Lanczos-Ritz pairs can be used to study the quasi-
normal modes of the resonators.

Large reduction factors can be achieved for general 3D resonators, since elec-
tromagnetic field responses in resonating structures are mainly dominated by a small
number of quasi-normal modes. Moreover, discretizing 3D resonating nano-structures
in space generally leads to heavily oversampled, semi-discrete Maxwell systems, since
detailed subwavelength geometric features of the resonating structure need to be cap-
tured.

The small number of modes contributing to the electromagnetic response, sug-
gests the possibility of solving this problem using rational Krylov subspaces. Rational
Krylov subspaces generally show superior convergence for systems with only a few con-
tributing eigenvalues. Therefore, future work should include the design of a rational
Krylov subspace algorithm to compute the electromagnetic response of 3D resonators.
In that case it is not necessary to work with a first-order form as the RKS method can
handle nonlinearities with respect to frequency.

We point out that the developed approach can easily be extended to multipole
dispersive media in order to simulate more complex dispersive materials. For instance a
single resonator can be simulated with a dispersion relation given by the sum of a Drude
and a Lorentz model. Furthermore, by storing the computed electric field strength val-
ues within the golden nanorod or by collecting the computed EM field at the boundary
of the computational domain, we can determine the heat absorption or emission to the
far field by invoking Poynting’s theorem.

Constructing PKS- and EKS-ROMs can be realized at low computational cost, but
the order of these models can be much larger than the order of RKS models. This makes
PKS and EKS particularly well suited for online field computations. RKSs, on the other
hand, generally yield the smallest models; however, for some applications and configu-
rations the low cost of a single iteration of PKS or EKS outweighs this advantage. Further-
more, generating an RKS demands more memory as we have to save the basis. However,
if the goal is to obtain a reduced-order model of the smallest order and this model can
be computed offline, then RKS-ROMs may be preferred. Another advantage of an RKS
approach over PKS- and EKS-ROM construction is that it does not require linearization
of the PML and a stability-correction procedure is not necessary.

What all methods have in common is that the convergence rate of the models
improves as the losses within the configuration increase. When solving wavefield prob-
lems on open domains, PMLs that simulate outward wave propagation, automatically
introduce a loss mechanism into the system that moves the spectrum of the first-order
Maxwell wave operator away from the imaginary axis, where the wavefield responses are
approximated. If, in addition, material losses are present as well, the spectrum moves
away even further into the complex frequency plane and this separation increases as the
loss profiles of the different media increase. This separation has a positive effect on the
convergence rate of the Krylov ROMs and lower order models are sufficient to accurately
model the transfer-function responses between a source and a receiver. Physically, an
increase in conductivity leads to a loss of information and smoother wave responses,
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which can be more easily approximated, resulting in ROMs of a lower order. This was
shown in this chapter using a GPR application where the convergence rate was studied
as a function of the losses that are present in the configuration.

Finally, for the Maxwell equations in the diffusion approximation rational approx-
imation of the transfer-function via RKS is clearly superior in computation time and re-
sulting model order. The separation of the spectrum and the area of approximation are
intrinsic to the problem in this case and optimal shifts for RKS can be found.

In summary, this chapter introduced model order reduction techniques for wave
and diffusion problems and has identified several applications. It was demonstrated that
reduced-order modeling significantly alleviates the computational burden in multiple
applications ranging from geophysics to nano-photonics. The RKS method described
in this chapter works well for wave equations if only a few singular Hankel values con-
tribute to the system response as demonstrated by the last numerical experiment. It is
now necessary to obtain an efficient model-reduction technique that can handle con-
figurations in which this is no longer the case. The next chapter therefore incorporates
asymptotic solutions into the model order reduction approach in order to handle con-
figurations that are dominated by propagating waves.
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4
PHASE-PRECONDITIONING FOR

COMPRESSION OF WAVEFIELDS

Today’s scientists have substituted mathematics for experiments, and they wander off
through equation after equation, and eventually build a structure which has no relation

to reality.

Nikola Tesla

Parts of this chapter have been submitted for publication in the SIAM journal Multiscale Modeling & Simula-
tion [D].
I thank Guillaume Leclerc for the help with the GPU benchmarking of the presented algorithm.
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4.1. INTRODUCTION

R ATIONAL Krylov subspace (RKS) techniques are well-established and powerful tools
for projection-based model reduction of time-invariant dynamic systems. For hy-

perbolic wavefield problems, such techniques perform well in configurations where only
a few modes contribute to the field. RKS methods, however, are fundamentally limited
by the Nyquist-Shannon sampling rate, making them unsuitable for the approximation
of wavefields in configurations characterized by large travel times and propagation dis-
tances, since wavefield responses in such configurations are highly oscillatory in the
frequency-domain. To overcome this limitation, we propose to precondition the RKSs
by factoring out the rapidly varying frequency-domain field oscillations. The remain-
ing amplitude functions are generally slowly varying functions of source position and
spatial coordinate and allow for a significant compression of the approximation sub-
space. Our one-dimensional analysis together with numerical experiments for large-
scale 2D acoustic models show superior approximation properties of preconditioned
RKS compared with standard RKS model order reduction. The preconditioned RKS re-
sults in a reduction of the frequency sampling well below the Nyquist-Shannon rate, a
weak dependence of the RKS size on the number of inputs and outputs for multiple-
input/multiple-output (MIMO) problems, and, most importantly, in a significant coars-
ening of the finite-difference grid used to generate the RKS. A prototype implementa-
tion indicates that the preconditioned RKS algorithm is competitive in a modern high-
performance computing environment.

4.2. MOTIVATION

The rational Krylov subspace approach is most efficient if only a few singular Hankel
values of the system contribute to the solution as is the case for resonating structures
with a few excited and observable modes [7]. A good example of such a structure is the
dielectric box, the last example studied in the previous chapter in section 3.5.3. The
frequency-domain response of such a configuration is well-described by a low-degree
rational function and a rational Krylov technique will therefore quickly capture the de-
sired wavefield response. For waves characterized by large travel times; however, this
may no longer be the case, since such responses are highly oscillatory in the frequency-
domain and sampling should at least take place at half the Nyquist-Shannon sampling
rate. As an illustration, consider a source-receiver pair with an arrival at T arr such that
the source wavelet convolved with δ(t −T arr) is measured. In the Laplace domain this
translates to multiplication by exp

(−sT arr
)
, which means that according to the Nyquist

sampling theorem the maximum frequency-domain sampling distance is ∆s =π/T arr on
the imaginary axis. Clearly, the number of required frequency-domain samples increases
as the travel time increases leading to prohibitory large rational Krylov subspaces. In this
chapter we will incorporate travel time information to obtain basis functions that are less
oscillatory to lower this sampling demand.

Numerical modeling of wave propagation in large domains is fundamental to
many applications in design optimization and wavefield imaging. In the oil and gas
industry, for instance, the solution of the Maxwell equations is required to invert elec-
tromagnetic measurements, while in seismic imaging the solution to the elastodynamic
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wave equation is needed to ultimately image the subsurface of the Earth.

Finite-difference discretization of the governing wave equations leads to large-
scale linear systems, whose solution is computationally intense. Imaging and optimiza-
tion often use multiple frequencies, sources, and receivers, which leads to systems that
need to be evaluated for multiple right-hand sides, time-steps or frequencies, depend-
ing on whether the problem is solved in the time- or frequency-domain. Therefore,
these so-called multiple-input/multiple-output (MIMO) systems have a high demand
on memory and computational power, causing long runtimes. To be more specific, let
us consider a surface seismic imaging problem in a k-dimensional space (1 ≤ k ≤ 3),
with maximal propagation distance of N wavelengths. This would require the solution
of a discretized system with O(N k ) state variables, O(N k−1) sources and receivers, and
O(N ) frequencies or time steps [57]. Model order reduction aims to reduce the com-
plexity and computational burden of large-scale problems and here we target all three of
these factors.

Recently, promising results were obtained in the time-domain via multiscale model
reduction [16, 27]. The time-domain multiscale algorithms can be efficiently parallelized
via domain-decomposition, but time stepping still needs to be carried out sequentially,
while frequency-domain problems can be solved in parallel for different frequencies.
Here we consider interpolatory projection-based model reduction in the frequency-
domain, e.g., see [3]. The essence of this approach is the projection of the underlying
system onto a rational Krylov subspace (originally introduced by Ruhe for eigenvalue
computations [69]), which produces good quality, low-order approximations if the spec-
trum of the system is well separated from the frequency interval of interest, as in the
case of diffusion PDEs, e.g., [5, 32, 50, 42]. In the context of wavefield modeling, such a
separation of the clustered eigenvalues is introduced by losses present in the media or
by the use of absorbing boundary conditions for the truncation of unbounded domains.
Projection-based reduced-order models (ROMs) for wavefield problems may therefore
exhibit fast convergence, especially for resonant configurations with few isolated reso-
nant eigenmodes [9, 28, 29]. Some modifications of the RKS projection method can also
be competitive for problems with smooth initial conditions leading to effective suppres-
sion of highly oscillatory eigenmodes [39].

Usually, the computational cost of projection-based reduced-order modeling is
dominated by the generation of a suitable projection basis, e.g., see [7, 59]. In the in-
terpolatory projection-based ROM the Helmholtz equation has to be solved at different
frequencies (shifts) and the span of these solutions forms the RKS basis. The solution ob-
tained from the Galerkin projection onto this subspace interpolates at the shifts, which
are therefore also known as interpolation points. Moreover, for coinciding sources and
receivers the transfer-function and its first derivative is interpolated at these points. A
general drawback of an RKS approach is that the number of interpolation points can
become large when wavefield solutions with large travel times or propagation distances
are of interest. Such wavefields are highly oscillatory in the frequency-domain and the
Nyquist-Shannon sampling theorem states that this oscillatory field should be sampled
with at least one point per oscillation (two points per wavelength). Consequently, the
number of interpolation points required to accurately represent the wavefield increases
proportional to the propagation distance. Moreover, discretization grids in Helmholtz
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solvers must also resolve wavefield oscillations. This requirement has an even more dra-
matic effect on the computational cost due to poor scalability of the available solvers.
In favorable situations the best sampling rates approaching the Nyquist limit can be
achieved with high-order spectral methods and their outgrowths. However, their cost
per unknown can be significantly higher compared with less accurate low-order meth-
ods due to loss of sparsity. In this chapter, we show that the sampling demand can be
significantly lowered by adding phase information to the model order reduction tech-
nique leading to phase-preconditioned RKSs (PPRKS). Preconditioning of Krylov sub-
spaces for model reduction is a challenging and still open problem in general. However,
to achieve it for particular applications one can try to incorporate the underlying physics
and asymptotic analysis to arrive at PPRKS. Our approach is related to other known ap-
proaches in the field of oscillatory wave problem computation, such as preconditioners
for Helmholtz solvers [34, 43], Filon quadrature [46], and a recent approach to data com-
pression using phase-tracking [53].

In particular, we construct RKSs using polar decompositions of frequency-
dependent basis functions. These decompositions consist of a product of smooth am-
plitude-functions and a known frequency-dependent oscillatory phase term. The phase
term is determined from high-frequency asymptotic expansions such as the WKB ap-
proximation (Wentzel–Kramers–Brillouin) [6]. The amplitude-functions are computed
by splitting the RKS into incoming and outgoing waves (by applying one-way wave oper-
ators) and factoring out the corresponding phase terms. Analogous to Filon quadrature,
we handle the highly oscillatory phase-functions analytically and the smooth amplitude-
function numerically. By developing a block version of phase-preconditioned RKS for
MIMO problems, we are also able to factor out the main dependence of the RKS on the
input (source) location. This feature, and the reduction of the number of interpolation
points mentioned above, leads to a significant compression of the approximation space.

Finally, the resulting phase-preconditioned ROMs can also extrapolate to frequen-
cies outside the interval of interpolation points, since the basis functions are frequency-
dependent and the amplitude-functions are smooth for smoothly varying wavespeed
profiles. This enables us to coarsen the second-order finite-difference grid used for the
RKS generation.

In conclusion, with phase-preconditioned RKS we can effectively reduce all of the
above mentioned factors contributing to the complexity of the MIMO wavefield prob-
lem. The overall goal is to approximate the transfer-functions from multiple sources
to multiple receivers with a small reduced-order model that honors the physics of the
underlying wave equation. The approach uses a coarse grid and low-frequency interpo-
lation points to build an RKS and to obtain smooth amplitude-functions. Using high-
frequency asymptotic expansions, this RKS is extrapolated to high frequencies and eval-
uated on a fine grid. The projection of a fine grid wave operator onto the extrapolated
RKS gauges the ROM to the fine scale we intend to model. In this way, fine-scale wave
scattering and large-scale wave propagation can be combined, which allows us to obtain
a ROM valid for all time scales. RKS algorithms for wavefield problems are at a disad-
vantage compared with polynomial and extended Krylov subspace algorithms when it
comes to computational memory consumption as the basis needs to be saved for RKS
methods. The compression of the approximation space to a small number of amplitudes
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and phases, however, leads to a reduction in the computational memory demand of the
proposed method.

In section 4.3, we briefly recapitulate the RKS method for SISO problems. In sec-
tion 4.4, we take the RKS approach as a starting point and introduce the phase-
preconditioned RKS for one-dimensional SISO configurations. We show that phase pre-
conditioning is structure-preserving and retains the interpolation properties of standard
RKS Galerkin projection. The main result of this section is that for a piecewise constant
wavespeed profile, the new method yields the exact solution with the number of inter-
polation points equal to the number of homogeneous layers, i.e., this number plays the
same role as the problem dimensionality in a conventional RKS approach. Section 4.5
discusses the algorithm for higher spatial dimensions in a MIMO setting using a block
version of phase-preconditioned RKS. Finite-difference implementation via a two-grid
algorithm is discussed in section 4.6. In section 4.7 we illustrate the performance of
the proposed RKS techniques through a number of two-dimensional numerical exper-
iments. Section 4.8 discusses the implementation of the proposed method on parallel
computation architectures and the conclusions can be found in section 4.9.

4.3. STRUCTURE-PRESERVING RKS
We start the development of the phase-preconditioning approach by briefly recapitulat-
ing the structure-preserving RKS method presented in section 3.2.1. The discussion of
the phase-preconditioned RKS method is based on the Helmholtz equation in the weak
form (see equation (2.5)),

p H Q(s)u =− 1

ν(xS)2 p(xS) = p H b. (4.1)

In a structure-preserving RKS approach, the weak solution of equation (4.1) is approxi-
mated by an element from the space K2m

R (κ). The reduced-order solution is expanded
as um = Vmz using the real basis Vm ∈ R∞×2m of K2m

R (κ) with expansion coefficients αi

collected in vector z = [α1, ...,α2m]T . These coefficients are obtained from a standard
Galerkin procedure defined through the weak form of equation (2.5) leading to

z= [V H
m Q(s)Vm]−1V H

m b or z= R−1
m (s)V H

m b (4.2)

with b =−δ(x −xS)/ν(xS)2 and where Rm(s) is the 2m×2m reduced-order operator given
by Rm(s) =V H

m Q(s)Vm . The reduced-order model is structure preserving as shown by the
proposition in the previous chapter. Symmetry, the Schwarz reflection principle, and the
numerical range are preserved as well.

We end this summary by introducing an alternative way of representing the re-
duced-order solution, which will be useful in the development of phase-preconditioned
RKS methods. In expansion form the reduced-order solution can be written as

um =
m∑

i=1

[
di

δi

]T [
u(si )
u(si )

]
, (4.3)

where the expansion coefficients di and δi follow from the Galerkin condition and si are
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the interpolation points collected in κ. Due to the mentioned linear independence1 of
the real and imaginary part of the snapshots, this representation is algebraically equiva-
lent to um =Vmz, i.e. there exists a transform from the 2m coefficients αi (collected in z)
to the coefficients di and δi of equation (4.3).

4.4. FIELD PARAMETRIZATION FOR SISO PROBLEMS
To enhance the convergence of an RKS approach for travel time dominated structures,
we need to incorporate travel time information into the Krylov subspace, and thus into
our basis functions. To this end, we assume that variations of the medium take place on
a scale much larger than the wavelength at the considered frequencies, since this allows
us to use a geometrical optics ansatz. Every basis vector belonging to the RKS is now
split into an incoming and an outgoing wave and for each of these waves we factor out a
strongly oscillating phase term exp(±sTeik), where Teik = Teik(x) is the eikonal time that
solves the eikonal equation |∇Teik(x)|2 = 1

ν(x)2 . Splitting of the fields is realized using
one-way wave equations. First we introduce this splitting for one-dimensional systems
in section 4.4.1 and then generalize to higher dimensions in section 4.4.2.

4.4.1. ONE-DIMENSIONAL FIELD PARAMETRIZATION
We decompose the field into an incoming and outgoing component by writing

u(s j ) = exp
(−s j Teik

)
cout(s j )+ exp

(
s j Teik

)
cin(s j ). (4.4)

For each component an oscillating phase term has been factored out and the amplitudes
are determined from the single frequency snapshot solutions u(s j ) via one-way wave
equations as

cout(s j ) = ν

2s j
exp

(
s j Teik

)( s j

ν
u(s j )− ∂

∂|x −xS|
u(s j )

)
, (4.5a)

and

cin(s j ) = ν

2s j
exp

(−s j Teik
)( s j

ν
u(s j )+ ∂

∂|x −xS|
u(s j )

)
. (4.5b)

In equation (4.5a), the incoming wave component of u(s j ) is filtered out leaving an out-
going component for which outgoing oscillations can be factored out. In equation (4.5b)
the situation is reversed and the outgoing component of u(s j ) is filtered out. This de-
composition is similar to the one chosen in [18] where Fourier integral operators are
used for computation of wavefields. Finally, we note that using the above one-way wave
equations for decomposition is equivalent to enforcing the condition

exp
(
s j Teik

) ∂

∂|x −xS|
cout(s j )+ exp

(−s j Teik
) ∂

∂|x −xS|
cin(s j ) = 0, (4.6)

1The real and imaginary parts of the snapshots u(si ) spanning K2m
R (κ) are always linearly independent, since

the eigenfunction expansion of the Dirac distribution appearing on the right-hand side of equation (2.2) has
an infinite number of terms.
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and the amplitudes cout and cin are spatially much smoother than the wavefield u, since
the highly oscillatory phase term has been factored out.

Now to obtain a field approximation at frequency s, instead of projecting our op-
erator onto single frequency solutions u(s j ), we project it onto the phase-corrected ba-
sis functions exp(−sTeik)cout(s j ) and exp(sTeik)cin(s j ). This is the central idea of our
approach, which preserves the interpolation properties of the RKS. In particular, by in-
troducing the phase-preconditioned subspace as

K2m
EIK(κ, s) = span{exp(−sTeik)cout(s1), . . . , exp(−sTeik)cout(sm),

exp(sTeik)cin(s1), . . . , exp(sTeik)cin(sm)},
(4.7)

and its symmetry-preserving real form

K4m
EIK;R(κ, s) = span

{
ReK2m

EIK(κ, s),ImK2m
EIK(κ, s)

}
(4.8)

we can construct reduced-order models in the usual way, but now in terms of frequency-
dependent basis functions. More precisely, let M ≤ 4m be the dimension of K4m

EIK;R(κ, s)

and let vectors v [1](s), v [2](s), ..., v [M ](s) ∈R∞ form an orthonormal basis of K4m
EIK;R, then

the field approximation drawn from this subspace can be written as

um(s) =
M∑

i=1
αi (s)v [i ](s) (4.9)

and the coefficientsαi (s) ∈C can again be determined from the Galerkin condition. Note
that m denotes the number of snapshots used to constructK4m

EIK;R, while M ≤ 4m denotes
the dimension of this subspace. The factor of 4 in the upper bound on M is due to split-
ting into incoming and outgoing fields, that can lead to a twice as large approximation
subspace compared with unpreconditioned RKS with the same shifts. However, as we
shall see in subsection 4.5.1, this increase can be circumvented in our implementation;
the overall dimension of the preconditioned RKS is usually comparable to the dimen-
sion of a standard unpreconditioned RKS for the same accuracy, while using a smaller
number of snapshots.

With Vm;EIK(s) ∈ R∞×M the real, orthonormal basis matrix of K4m
EIK;R(κ, s), the re-

duced-order model that follows from the Galerkin condition can be written as a self-
adjoint, time-invariant dynamic system

Vm;EIK(s)Rm;EIK(s)V H
m;EIK(s)um;EIK(s) = bm , (4.10)

with
bm =Vm;EIK(s)V H

m;EIK(s)b and Rm;EIK(s) =V H
m;EIK(s)Q(s)Vm;EIK(s).

The reduced-order model of equation (4.10) is the phase-corrected counterpart of the
reduced-order model of equation (3.3). Furthermore, since cout/in(si ) = cout/in(si ) holds
because the Schwarz reflection principle is satisfied, we can also express the reduced-
order model of equation (4.9) in terms of the amplitude-functions cin(s) and cout(s) as
(cf. equation (4.3))

um(s) =
m∑

i=1

[
ai (s)
αi (s)

]T [
exp(−sTeik)cout(si )
exp

(−sTeik
)

cout(si )

]
+

m∑
i=1

[
di (s)
δi (s)

]T [
exp(sTeik)cin(si )
exp

(
sTeik

)
cin(si )

]
(4.11)
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with expansion coefficients ai , αi , di , and δi ∈ C and where we have assumed that
M = 4m. This formulation clearly shows that we use frequency-independent ampli-
tudes, preconditioned by frequency-dependent phase-functions, employing conjuga-
tion to preserve the symmetry of the wave equation.

Finally, for field evaluations on the imaginary axis (s ∈ iR) the above expansion
can be written more compactly as

um(s) =
2m∑
i=1

[
ai (s)
αi (s)

]T [
exp(−sTeik)c(si )
exp(sTeik)c(−si )

]
with s ∈ iR (4.12)

and where c(si ) = cout(si ) for i = 1,2, ...,m and c(si ) = c in(si−m) for i = m +1, ...,2m.
The following results show that the PPRKS retains the structure-preserving, inter-

polatory-projection properties of standard RKS.

LEMMA 4.1. — The system of (4.10) is structure preserving, i.e., W
{
Rm;EIK(s)

}⊆W
{
Q(s)

}
on the range (column space) of Vm;EIK(s).

Proof. Let a nontrivial xm be in the range of Vm;EIK(s), that is xm =Vm;EIK(s)ym . Then

yH
mRm;EIK(s)ym = yH

mV H
m;EIK(s)Q(s)Vm;EIK(s)ym = xH

mQ(s)xm .

Thus, phase-preconditioned reduced-order models can decrease the numerical
range, as xm lies in the range of Vm;EIK(s); however, the spectrum is always contained in
the numerical range of Q(s) and does not increase.

PROPOSITION 4.1. — The SISO reduced-order transfer-function retains the interpola-
tion properties of the unpreconditioned RKS with the same shifts stated in Proposi-
tion 3.3.

Proof. By construction, K4m
EIK;R(κ, s) ⊃K2m

R (κ) when s ∈ κ∪κ. According to Lemma 4.1,
the ROM is passive given that the Galerkin problem has a unique solution. Therefore,
the proof of Proposition 3.3 applies.

One of the motivations to use this method is the expected fast convergence, when
the parametrization of 4.4 is valid. In that case only a few phase-corrected, smooth
amplitude-functions cout/in are required to approximate the wavefield. Furthermore, in
the RKS method discussed in the previous section, the number of required shifts or fre-
quencies is dependent on the largest arrival time; however, in the phase-preconditioned
RKS (PPRKS) discussed above, the arrival times are factored out and the number of shifts
is dependent on the complexity of the wavespeed model ν(x) rather than the largest ar-
rival time. We make this explicit in the following proposition.

PROPOSITION 4.2. — Let a 1D problem have ℓ homogeneous layers. Then there exist
m ≤ ℓ+1 non-coinciding interpolation points, such that um;EIK(s) = u.
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Proof. We start by noting that if the regions to the left and to the right of the source are
considered as separate layers, then the solution to the one-dimensional wave equation
consists of a superposition of left- and right-going waves of constant amplitude in each
of the ℓ+ 1 layers. For one-dimensional problems, the decomposition direction coin-
cides with the travel direction of the wave; thus, cout(κ) and cin(κ) are piecewise constant.
A piecewise-constant function with ℓ+1 layers can be exactly represented by at most ℓ+1
linear-independent piecewise-constant functions with the same jump locations. Let us
prove from the opposite, i.e., assume, that there are no m ≤ ℓ+1 non-coinciding shifts
κi such that cout(κi ) form a basis for all possible cout(κ). Then the number of shifts m
yielding linear independent solutions should be less then ℓ+1. But by assumption there
must be at least a single cout(κ) not from the subspace. Then one can add this solution
to the subspace, i.e., the true number of linearly-independent solutions is m +1, which
contradicts the assumption that this number is m. Analogously, we can prove the same
statement for cin(κi ).

In conclusion, there exist m ≤ ℓ+1 non-coinciding shifts κi such that cout(κi ) and
cin(κi ) form respective bases for all possible cout(κ) and cin(κ), i.e., the exact solution u
will be in the projection subspace. Finally, due to Lemma 4.1 the exact solution u will be
the unique solution of the Galerkin problem.

The proposition can be extended to almost all arbitrary ℓ+1 interpolation points,
as the interpolation points that lead to ℓ+1 linear-dependent functions have measure
zero. Thus, phase-preconditioning allows us to obtain the exact solution with the num-
ber of interpolation points equal to the number of homogeneous layers, i.e., this number
plays the same role as the problem dimensionality in a conventional RKS approach.

REMARK 10. — Illustration of the Proposition 4.2 – We can illustrate Proposition 4.2 using
a simple one-dimensional configuration with a slab inclusion. The domain is terminated
with a PML on the right-hand side and with a reflecting Neumann boundary on the left-
hand side. The slab inclusion has a wavespeed of 0.5 and sits between L1 and L2. The
medium, field and the field amplitudes are illustrated in Figure 4.1. There is no incoming
field from the PML and the corresponding amplitude therefore vanishes between L2 and
the PML. There now exist three shifts so that the incoming and outgoing amplitudes
form a basis for functions that are piecewise constant in the corresponding layers, with
the exception that the outgoing amplitude in the last layer will always be zero.

REMARK 11. — Interpretation as Filon Quadrature – Filon quadrature deals with the
evaluation of oscillatory integrands. Using a standard quadrature to evaluate

y(s) =
∫

exp(st ) f (t )dt (4.13)

with a smooth function f (t ) that varies slowly compared to exp(st ) leads to

y(s) =∆t
∑
n

an exp(sn∆t ) f (n∆t ) (4.14)

with quadrature weights an which requires s∆t < π. In Filon quadrature one makes the
weights an dependent on s to arrive at quadrature formulas whose convergence depends
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Figure 4.1: Decomposition of a wavefield in incoming and outgoing amplitudes. The medium consists of three
homogenous layers.
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merely on the properties of f (t ). Similarly, in phase-preconditioned rational Krylov
we try to approximate an oscillatory frequency-domain transfer-function. By making
our projection basis frequency-dependent we enhance the convergence of the reduced-
order model.

4.4.2. GENERALIZATION TO HIGHER DIMENSIONS
In higher spatial dimensions we again split the field in incoming and outgoing wave
components and use a function g (z) to factor out a strongly varying phase. Specifically,
for two- and three-dimensional problems we write

u(s j ) = g (s j Teik)cout(s j )+ g (−s j Teik)cin(s j ), (4.15)

and project the problem onto the real and imaginary parts of the phase-preconditioned
subspace

K2m
EIK(κ, s) = span{g (sTeik)cout(s1), . . . , g (sTeik)cout(sm),

g (−sTeik)cin(s1), . . . , g (−sTeik)cin(sm)},
(4.16)

where g (z) = exp(−z)/z in 3D, while g (z) = K0(z) in 2D, with K0 the modified Bessel
function of the second kind and order zero. The singular behavior of the field at the
source location is factored out leading to a weaker dependence of the amplitude-func-
tions cout/in on the source location.

In higher spatial dimensions, the field amplitudes are again obtained via one-way
wave equations, but this time along the eikonal rays leading to decomposition directions
±∇Teik. For 2D applications with K0 (z) as incoming and K0 (−z) as outgoing, we obtain
the amplitude-functions

cout(s j ) = s j T

sign(Im (s j ))iπ

[
K1

(−s j T
)

u(s j )−K0
(−s j T

) v2

s j
∇T ·∇u(s j )

]
(4.17)

and

cin(s j ) = s j T

sign(Im (s j ))iπ

[
K1

(
s j T

)
u(s j )+K0

(
s j T

) v2

s j
∇T ·∇u(s j )

]
, (4.18)

as shown in the appendix A.1. Analogous to the one-dimensional reduced-order solution
of equation (4.11), we can write the reduced-order solution in higher spatial dimensions
as

um =
m∑

i=1

[
ai (s)
αi (s)

]T [
g (sTeik)cout(si )
g (sTeik)cout(si )

]
+

m∑
i=1

[
di (s)
δi (s)

]T [
g (−sTeik)cin(si )
g (−sTeik)cin(si )

]
, (4.19)

where the coefficients follow from the Galerkin condition.
Lemma 4.1 and Proposition 4.1 can be straightforwardly extended to the multi-

dimensional case. However, Proposition 4.2 is not directly extendable to higher dimen-
sions. As opposed to the one-dimensional case, a decomposition direction does not nec-
essarily coincide with the travel direction of the wave and the field parametrization may
be poor in such cases. This problem can be resolved, however, by considering MIMO
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wavefield systems with multiple sources and receivers, since in this case we have a de-
composition direction for each source and the span of these directions may properly
capture the propagation direction of the waves. In the next section, we therefore focus
on wavefield systems with multiple sources and multiple receivers. The problem may
be additionally complicated by multivalued solutions of the eikonal equation. In most
situations it is sufficient to use the rays corresponding to the minimal travel time; how-
ever, as we shall see for the case of internal resonant structures in section 4.7.3, it can be
beneficial to split the subspace along multiple rays.

4.5. PHASE-PRECONDITIONING FOR MIMO SYSTEMS
To introduce the reduced-order transfer-function, we define a block rational Krylov sub-
space

KmNsrc
B (κ) = span{Us(s1),Us(s2), . . . ,Us(sm)} (4.20)

and its real counterpart containing KmNsrc
B (κ) and KmNsrc

B (κ) given by

K2mNsrc
B;R (κ) = span

{
ReKmNsrc

B (κ),ImKmNsrc
B (κ)

}
. (4.21)

The reduced-order model for the fields can now be constructed completely analogous to
the SISO case. Specifically, with Vm a basis array that spans K2mNsrc

B,R (κ), we have

Us;m(s) =VmRm(s)−1V H
m Bs with Rm(s) =V H

m Q(s)Vm . (4.22)

The reduced-order transfer-function now follows as

Fm(s) = B H
s Us;m(s), (4.23)

and it is straightforward to show that the MIMO reduced-order transfer-function Fm(s)
is a Hermite interpolant of the MIMO transfer-function F (s). The proof of this statement
is completely analogous to the proof of Proposition 3.3.

To formulate the phase-corrected extensions of the block-RKS method, we note
that the block-RKS field approximation u[l ]

m (s) due to a source l can be written as

u[l ]
m (s) =

Nsrc∑
r=1

m∑
i=1

[
a[l ]

i
α[l ]

i

]T [
u[r ](si )
u[r ](si )

]
, (4.24)

with si ∈ κ. In other words, the field approximation u[l ]
m (s) due to source l is a linear com-

bination of single frequency solutions from all sources. A straightforward generalization
of phase-preconditioning to MIMO systems is to use a field approximation u[l ]

m (s) that is
a linear combination of phase-corrected incoming and outgoing fields from all sources.
We write the field approximation as

u[l ]
m (s) =

Nsrc∑
r=1

( m∑
j=1

[
a[l ]

r j

α[l ]
r j

]T [
g (sT [r ]

eik)c [r ]
out(s j )

g (sT [r ]
eik)c [r ]

out(s j )

]
+

m∑
j=1

[
d [l ]

r j

δ[l ]
r j

]T [
g (−sT [r ]

eik)c [r ]
in (s j )

g (−sT [r ]
eik)c [r ]

in (s j )

])
, (4.25)
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where T [r ]
eik is the eikonal solution corresponding to the r th source. The coefficients

a[l ]
r j ,α[l ]

r j and d [l ]
r j ,δ[l ]

r j are found via the block-Galerkin condition. For Nsrc > 1, this ap-

proach accounts for multi-directional scattering by representing the field as a linear
combination of phase-corrected functions with multiple directions ∇T [r ]

eik .
The idea that we followed to justify the use of block Krylov methods is that the

field caused by one source contains information about the field caused by a source with
a different location (and frequency). In the context of phase-preconditioning, we can
apply this idea a second time to obtain a block-preconditioned algorithm. This means
that instead of using the phase-correction function g (T [r ]

eik) to only correct c [r ]
out(s j ) for

each source location r separately, we cross combine all phase-functions g (sT [r2]
eik ) with

all amplitudes c [r1]
out (s j ) as indicated by the summations over r1 and r2. This leads to a

field approximation u[l ]
m (s) due to the l th source given by

u[l ]
m (s) =

Nsrc∑
r2=1

Nsrc∑
r1=1

( m∑
j=1

[
a[l ]

r1r2 j

α[l ]
r1r2 j

]T [
g (sT [r2]

eik )c [r1]
out (s j )

g (sT [r2]
eik )c [r1]

out (s j )

]
+

m∑
j=1

[
d [l ]

r1r2 j

δ[l ]
r1r2 j

]T [
g (−sT [r2]

eik )c [r1]
in (s j )

g (−sT [r2]
eik )c [r1]

in (s j )

])
.

(4.26)
The expansion coefficients are found from the block-Galerkin condition. Basis vectors in
this expression can be viewed as a tensor-product of the amplitudes c [r1]

out and the phase

terms g (−sT [r2]
eik ), while the Hadamard product is used spatially.

Similarly to the multidimensional SISO case, Lemma 4.1 and Proposition 4.1 can
be straightforwardly extended for the multidimensional MIMO case. Our experiments
presented in section 4.7 also indicate that the number of interpolation points needed for
multidimensional MIMO configurations is dependent on the complexity of the wave-
speed model and not the largest travel time (as proven for the one-dimensional case
in Proposition 4.2). For the phase-preconditioned expansions it is beneficial to use a
block formulation and incorporate multiple sources, since this allows us to capture a
large number of travel directions. Further, amplitudes originating from one source can
be used to construct meaningful field approximations for another source. This stands in
contrast to ordinary RKS, where using block methods may not necessarily lead to a dras-
tic increase in convergence as fields solutions from different sources are usually close to
orthogonal.

4.5.1. SVD TRUNCATION OF THE EXPANSION AMPLITUDES
In the case of many sources and receivers it is possible to compress the field amplitudes
c [r1]

out (s j ) and c [r1]
in (s j ) a posteriori using a thin singular value decomposition. Using this

SVD we compress the reduced-order model and remove redundancy in the expansion
of equation (4.26). In the phase-preconditioned approach redundancy of the basis oc-
curs in two ways. First, smooth amplitude-functions corresponding to different frequen-
cies can be close to linear dependent due to the frequency-dependent basis vectors in
(4.26). Second, the amplitude-functions of multiple sources can be similar which leads
to redundancy once we use cross combinations of amplitudes and phase-functions as in
equation (4.26). The original block Krylov basis does not have these redundancies.

To realize SVD truncation, the amplitudes c [r1]
in (s j ) and c [r1]

out (s j ) are first normal-

ized in pairs to have unit Euclidean norm. To be more specific, c [r1]
in (s j ) and c [r1]

out (s j ) are
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normalized by √
||c [r1]

in (s j )||2 +||c [r1]
out (s j )||2

such that the sum of the squared singular values is 2mNsrc. In this way the ratio between
the incoming and outgoing amplitude is preserved. The SVD of the 2mNsrc incoming
and outgoing amplitudes is then computed separately and truncated after M out

SVD and

M in
SVD left singular vectors to obtain the compressed amplitudes c j

in;SVD and c j
out;SVD. The

original amplitudes c [r1]
in (s j ) and c [r1]

out (s j ) are associated with a specific frequency s j and

source r1, whereas the compressed amplitudes c j
in;SVD and c j

out;SVD are associated with a
singular value. The amplitudes are therefore no longer associated with a source or fre-
quency and the corresponding subscripts are dropped and replaced by the singular value
index j . The resulting reduced-order solution expressed in terms of these compressed
amplitudes is given by

u[l ]
m (s) =

Nsrc∑
r=1

(M out
SVD∑

j=1

[
a[l ]

r j

α[l ]
r j

]T [
g (sT [r ]

eik)c j
out;SVD

g (sT [r ]
eik)c j

out;SVD

]
+

M in
SVD∑

j=1

[
d [l ]

r j

δ[l ]
r j

]T [
g (−sT [r ]

eik)c j
in;SVD

g (−sT [r ]
eik)c j

in;SVD

])
, (4.27)

where M out/in
SVD ≪ mNsrc.

If we contract the outgoing amplitudes and the conjugate of the incoming ampli-

tudes into one amplitude basis c j
SVD, compute the SVD after pairwise normalization and

evaluate on the imaginary line (s ∈ iR) we can expand the field as

u[l ]
m (s) =

Nsrc∑
r=1

MSVD∑
j=1

[
a[l ]

r j

α[l ]
r j

]T [
g (sT [r ]

eik)c j
SVD

g (−sT [r ]
eik)c j

SVD

]
with s ∈ iR (4.28)

where MSVD ≪ 2mNsrc. Here the c j
SVD are first MSVD left singular vectors of

[c [r1]
in c [r1]

out ]/
√
||c [r1]

in ||2 +||c [r1]
out ||2.

In our numerical experiments we show that the singular values of the contracted

amplitudes c j
SVD decay much faster than the ones of the block Krylov basis. In Figure 4.5

we plotted the decay of singular values of a matrix with pairwise normalized vectors c j
SVD

and normalized vectors u[r1](s j ) as columns. Each SVD trace is normalized to the largest

singular value to emphasize the decay. The singular values associated with c j
SVD show a

strong decay with a plateau at the level of the finite-difference error, whereas the singu-
lar values associated with the wavefield solutions u[r1](s j ) barely show any decay before
reaching the Nyquist sampling rate.

The compressibility of the amplitudes confirms that the chosen parametrization
of the wavefield is valid. Phase-preconditioning enhances the convergence of RKS not by
increasing the subspace but by preconditioning a small basis of problem specific ampli-
tudes in dependence of the evaluation frequency using phase-functions. In our exper-
iments we show that the number of contributing amplitudes is only weakly dependent
on the number of sources.
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The compression of the amplitudes offers several advantages. First, it signifi-
cantly reduces the cost of evaluating the reduced-order model, since it reduces the num-
ber of inner products that need to be computed to obtain the reduced-order operator.
Second, the cost associated with communicating and storing the reduced-order model is
reduced as well. The compressed amplitude basis is only very weakly dependent on the
source locations used to construct it. Therefore, we can reduce the number of sources
(right-hand sides) for which the basis vectors need to be computed, since their response
can be approximated from their eikonal travel time and the basis vectors computed from
other sources. It is in line with our effort to reduce the computation at every stage of our
algorithm.

4.6. DISCRETE FORMULATION
In this section we consider the discrete implementation of the introduced reduced-order
modeling technique. Discretization and selection of the grid accuracy are addressed
first, followed by a discussion on how we handle numerical dispersion.

4.6.1. FINITE-DIFFERENCE DISCRETIZATION
Our basic approach is to solve equation (2.5) (restated here as equation (4.29)) using
phase-corrected single frequency solutions as expansion functions and to obtain a re-
duced-order solution for a complete spectral interval of interest via the Galerkin condi-
tion.

We consider a rectangular domain Ω ∈ Rk with constant ν(x) on Rk \Ω and dis-
cretize the equation∫

Ω
∇p ·∇udΩ−

∫
Ω

p
s2

ν2 udΩ+
∫
∂Ω

pD(s)ud∂Ω=− 1

ν(xS)2 p(xS), (4.29)

using finite-differences to obtain a linear shifted system with a matrix nonlinearly de-
pending on s. Discretization of the first two terms in the above equation using a second-
order accurate finite-difference scheme with constant step sizes is straightforward. To
discretize the third term, we approximate the DtN map D(s) using nearly-optimal dis-
crete perfectly-matched layers (PML) according to [20]. The optimal Zolotarev rational
approximants used for the PML construction make the size the of finite-difference prob-
lem (necessary for accurate approximation of D(s)) in Rk \Ω negligible compared to the
grid in Ω’s interior. In 2D for instance, the resulting equations that need to be solved in
the PML can be solved efficiently with a block-cyclic solver [73], or with a band solver
after sorting the PML system to a bandwidth of 2k +1 (in 2D). This discretization leads
to the matrix equation

pH Q(s)u= pH b, (4.30)

with b the discrete approximation of the scaled delta function. The matrix Q(s) of order
N inherits all properties of the continuous operator Q(s) and thus follows the Schwarz
reflection principle, is symmetric in a bi-linear form (Q(s) is the adjoint of Q(s) in the
Hermitian inner product) and has a nonlinear numerical range in the left-half of the
complex s-plane. The single frequency solutions u(s j ) needed to build the rational Krylov
subspace can be obtained using iterative solvers or Gaussian elimination. The eikonal
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equation |∇T |2 = 1
ν2 is solved on the same grid using a fast marching method [75]. The

associated computational cost is negligible with respect to the computational cost of
solving the Helmholtz equation.

4.6.2. REALIZATION ON TWO GRIDS

For smooth media, the amplitudes c [r1]
out and c [r1]

in are smooth functions of the spatial coor-
dinates, since the highly oscillatory part of the frequency-domain wavefield is factored
out together with the source singularity. Therefore, linear combinations of these am-
plitudes can form reasonable approximations of amplitude distributions at higher fre-
quencies. Consequently, the phase-corrected reduced-order models can extrapolate to
frequencies outside the convex hull of the interpolation points. Building a reduced-order
model that extrapolates to higher frequencies has the advantage that the amplitudes can
be determined on grids that are much coarser than grids required by a direct method at
these high frequencies. This significantly reduces the computational cost of solving the
Helmholtz equation to obtain the amplitude-functions cout/in, since the main cost of the
algorithm is associated with solving shifted systems.

To be specific, let Qfine(s) and Qcoarse(s) denote the matrix operators obtained
by discretizing the wave operator Q(s) on a fine and coarse grid, respectively. Writing
the transfer-function and field approximations obtained with these fine and coarse grid
operators as Fm(s) and Um(s) and Fc;m(s) and Uc;m(s), respectively, we have

Fm(s)−Fc;m(s) = [Um(s)−PinterpUc;m(s)]H Qfine(s)[Um(s)−PinterpUc;m(s)], (4.31)

which is essentially a block version of equation (3.16). Um and Uc;m don’t live on the
same grid and the interpolation matrix Pinterp ∈ RNfine×Ncoarse makes the above equation
consistent. In this case, however, Um(s)−PinterpUc;m(s) signifies the difference between
the fine and coarse grid field solutions and the interpolation property as presented in
Proposition 3.3 obviously does not hold here. In other words, using a coarse grid for
construction and a fine grid for projection leads to a loss of the interpolation property of
the reduced-order model. On the other hand, we do increase the accuracy of the coarse
transfer-function as the errors introduced by interpolation and the coarse grid solution
get squared at the interpolation points s ∈ κ∪κ.

The main drawback of using coarser grids is that the numerical dispersion error
increases and the analytic phase term exp(±sTeik) does not match the phase term of
u(s) for large imaginary shifts. Fortunately, we can correct for this phase mismatch. To
be precise, in the analytic case the phase term exp(−sTeik) is used to cancel the high-
frequency dominant term −s2/ν2 in the wave equation. To guarantee that this cancel-
lation takes place in the discrete case and to match the discrete and analytic phase, we
introduce the discrete, second-order, finite-difference gradient matrix Dxi (see e.g. [14])
mapping from a primary to a dual grid in all spatial directions i = 1, . . . ,k and adjust the
wave speed model from ν to ν′, where ν′ follows from the requirement

exp
(
2sT[l ]

eik;p

) k∑
i=1

[DT
xi

exp
(
−sT[l ]

eik;dxi

)
]2 = s2

ν′[l ]2 , (4.32)
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where Teik;p is the eikonal time on the primary grid, Teik;dxi
the eikonal time on the pri-

mary grid in all spatial directions except for xi . This equation is thus an equation on the
primary grid. This is the discrete counterpart of the (continuous) relation

exp(2sTeik) [∇exp(−sTeik)]2 = s2

ν2 . This equation ensures that the high-frequency dom-

inant term −s2/ν2 vanishes and the numerical dispersion error is minimized.

Finally, we note that this dispersion correction is only accurate in the dominant
direction of ∇T[l ]

eik and only works in the reduced-order modeling framework. In our
block approach multiple directions are taken into account by incorporating multiple
source locations. Therefore, errors occurring in the directions orthogonal to ∇T[l ]

eik are
corrected in the block projection framework by projection onto sources with different
dominant directions.

4.7. RESULTS
In this section we illustrate the performance of the developed solution methods using
three different two-dimensional numerical experiments. In our first set of experiments,
we show the performance of the proposed preconditioning technique for wavefields in
a smooth layered configuration. We simulate the same structure with and without grid
coarsening to show the effects of both concepts. As a second example, we consider a
non-smooth medium with jumps in the wavespeed profile to illustrate that the effective-
ness of preconditioning decreases as the high-frequency geometrical optics argument is
no longer valid. However, the method still exhibits excellent approximation properties
even for non-smooth media. Finally, in the third experiment, a configuration with a res-
onant cavity present in a smooth geology is considered.

4.7.1. A GEOPHYSICAL STRUCTURE WITH A SMOOTH WAVESPEED PROFILE

To illustrate the effect of phase-preconditioning, we consider the smoothed geophysical
structure illustrated in Figure 4.2(a). This model is obtained by smoothing a layered sec-
tion of the acoustic Marmousi model [12] with a Hanning window of width hHan = 200 m
leading to a discretized model of order N = 4 ·105. Five coinciding source-receiver pairs
are placed at the top boundary, where a perfectly reflecting boundary condition is im-
posed to model a water-air interface. A Ricker wavelet with a maximum in its spectrum
at ωpeak = 8 Hz (13 ppw at 1% cut-off frequency) is used as a source signature and a
near optimal eight-layer PML [20] is applied on the remaining outer boundaries to sim-
ulate outward wave propagation towards infinity. Finally, a fast marching method [75] is
adopted to obtain the eikonal solution for this configuration.

The true solution u[4] corresponding to the fourth source from the left at the fre-
quency corresponding to 14.6 ppw is visualized in Figure 4.2(c). This solution shows
“diving wave behavior” and a caustic can be seen at a depth of about 750 m in the left
half of the configuration. The real part of the outgoing amplitude c[4]

out is depicted in Fig-
ure 4.2(d), and is clearly spatially much smoother than the original wavefield. Reflections
of the wavefield can easily be identified in this amplitude plot.

The overall time-domain errors of the block-RKS and preconditioned block-RKS
reduced-order models without grid coarsening are shown in Figure 4.3(a), where we used
a 500-point Fourier method to obtain a comparison solution. The overall time-domain
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Figure 4.2: The smoothed Marmousi layers test configuration. Shown are the configuration (a), the contour
lines of the eikonal times (b) and a solution vector prior (c) and after parametrization (d).
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error is defined by the ratio of the r.m.s. error of all traces and the r.m.s. of the signals over
all traces. Preconditioning the RKS method significantly decreases the number of inter-
polation points needed to reach a certain error level. To obtain an error of one percent in
the time-domain, for example, the RKS algorithm needs about 80 interpolation points,
while only 10 interpolation points are required in the phase-preconditioned algorithm.
This fast convergence is due to the construction of the WKB-like field approximations
at high frequencies in PPRKS, which already provide an accurate approximation of the
Green’s function at high frequencies and in smooth structures as considered in this ex-
ample.

The real part of the transfer-function of the leftmost source to the rightmost re-
ceiver is shown in Figure 4.3(b) for structure-preserving and preconditioned block-RKS
reduced-order models of order m = 20. The phase-preconditioned model coincides with
the comparison solution on the complete frequency interval of interest. The main os-
cillations present in this Green’s function response are due to the direct arrival of the
wave and its first reflection from the salt layer located at a depth of about 2500 m. Typi-
cally, the PPRKS method provides a smooth approximation to the field response showing
only small errors in the amplitudes or at highly oscillatory reflections. The structure-
preserving RKS method, on the other hand, overshoots after every interpolation point
causing spiking behavior as can be clearly seen in Figure 4.3(b).
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(a) Time-domain convergence of RKS and
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Figure 4.3: Convergence curves of the RKS and PRKS (a) and the real part of the transfer-function for the left-
most source to the rightmost receiver (b).

GRID COARSENING AND SVD
The amplitude-functions cin and cout are spatially much smoother than the wavefield
and therefore we expect that a coarser spatial grid can be employed. To investigate the
effects of grid coarsening, we consider the same wavespeed profile as in the previous
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example and place 12 coinciding source-receiver pairs at the top water-air interface in-
stead of 5. For excitation, we use a modulated Gaussian pulse with a center frequency
ωpeak and its support essentially given by [0,2ωpeak]. The pulse is shifted in time such
that it starts at t = 0. Spatial discretization is now chosen such that we have about 5.5
points per smallest wavelength, where the wavelength corresponds to the center fre-
quency of the pulse and 2.7 ppw at the cut-off frequency of the pulse. With this choice,
the step sizes of the grid are four times larger than in the previous example leading to
a system that is sixteen times smaller with N = 2.5 ·104 unknowns. Using such a coarse
grid to model wavefields without phase-preconditioning is obviously insufficient, but
here we expect that the smoothness of the amplitude-functions cin and cout allows us to
use a much coarser grid. During the evaluation of the reduced-order model we project
an operator corresponding to a fine grid onto the phase-corrected RKS. For this example,
we choose a fine operator using half the step size compared to the previous operator in
order to show that the projection gauges the ROM to the operator used during projec-
tion.

For MIMO systems with grid coarsening, we define the error as the error averaged
over all source-receiver combinations. We denote the elements of the finite-difference
matrix transfer-function FF(s) by f [i j ]

F (s) = b[i ];H u[ j ](s), while the element of the ROM

transfer-function Fm(s) are given by f [i j ]
m (s) = b[i ];H u[ j ]

m (s). Having introduced these ele-
ments, the average MIMO error as function of frequency is defined as

erraverage
ROM (m, s) =

p
ωmax

N 2
src

Nsrc∑
j=1

Nsrc∑
i=1

∣∣ f [i j ]
F (s)− f [i j ]

m (s)
∣∣(∫ ωmax

ω=0

∣∣ f [i j ]
F (iω)

∣∣2 dω

)1/2
. (4.33)

It is assumed that the comparison solution f [i j ]
F (t ) is computed with a spatial discretiza-

tion of sufficient accuracy. The averaged frequency-domain error definition of (4.33)
gives a higher error, yet delivers more insight, than computing the overall error. The
overall error is dominated by the monostatic elements f [i i ]

F , whose direct arrival con-
tains most energy and is well approximated. Furthermore, the above error definition
allows us to study the error as a function of frequency.

The phase-corrected RKS is build using m = 40 equidistant shifts on the imagi-
nary axis from ω= 2.4 ·10−3ωpeak (2383 points per smallest wavelength) to ω= 1.1ωpeak

(5 points per wavelength). In other words, the RKS interpolation frequencies uniformly
cover the lower half of the support of the spectrum of the source wavelet. With m =
40 interpolation points and Nsrc = 12 source-receiver pairs, we have 480 amplitude-
functions cin and an additional 480 amplitude-functions cout. Computing the SVD of
the 960 amplitude-functions [cout c in], we observe that for this example, essentially only
the first 100 singular functions contribute to the reduced-order model for the contracted
amplitudes. We therefore use a truncated SVD that uses the first 100 SVD basis functions
to represent the amplitudes.

The resulting time-domain trace from the leftmost source to the rightmost re-
ceiver is shown in Figure 4.4 compared to the trace obtained via a 500-point Fourier
method using an operator with step sizes eight times smaller than the step sizes used
in the coarse operator. Both responses clearly coincide on the considered time window
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and the first arrival of the pulse, the complex interaction between the pulse and the up-
per layered medium, and the reflection of the pulse at the high contrast salt layer around
t = 3000 can be observed. The multiple reflection from source to salt layer, water/air
interface, salt layer and back to the receiver can be seen around t = 6000.
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Figure 4.4: Time-domain trace from the leftmost source to the rightmost receiver after m = 40 interpolation
points.

In Figure 4.5 we plotted the decay of the singular values of a matrix with pairwise
normalized vectors c [r1]

out (s j )/c [r1]
in (s j ) and normalized u[r1](s j ) as columns. The decay of

the singular values of the single frequency solutions that make up the RKS is shown in
black. The singular values associated with the amplitude matrix are shown in blue. Prior
to the SVD the vectors u[r1] were normalized, such that the sum of the squared singular
values equals mNs. The vectors c [r1]

out (s j ) and c [r1]
in (s j ) were normalized in pairs together

to reflect the ratio of the incoming and outgoing wave at each frequency. Their SVD
is computed together such that the sum of the squares of all singular values adds up
to mNs as well. Finally, to show the decay in singular values we normalize the largest
singular value to one for each of the curves. Figure 4.5 clearly shows that incoming and
outgoing amplitudes are significantly compressible, whereas the RKS vectors are not.
The singular values associated with RKS drop by less than a factor of 2 between the index
of 50 and the index 400, indicating that the RKS can hardly be compressed. To show that
after the compression the basis is essentially independent of the number of sources, we
computed the SVD of the amplitudes [c [r1]

out (s j ) c [r1]
in (s j )] for Nsrc = 12,24,48 and 96. The

number of (normalized) singular values larger than 0.01 is shown in Table 4.1. It shows
that the number of contributing singular vectors is basically independent of the number
sources and so are the left singular vectors.

In Figure 4.6, the averaged error erraverage
ROM over all 122 traces is shown along with

the interpolation points used in the construction of the reduced-order model. The same
Fourier method that was used to compute the comparison solution in Figure 4.4 is used
here to compute the errors in the transfer-function. Furthermore, the figure shows the
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Figure 4.5: Decay of singular values of RKS vectors compared to the decay of [cout c in].

Table 4.1: Number of (normalized) singular values larger than 0.01 in dependence of the number of sources

Nsrc 12 24 48 96
Number of (normalized) singular val.> 0.01 for [cout,c in] 69 72 73 73
Number of (normalized) singular values > 0.01 for u 457 833 1369 1741
m ·Nsrc 480 960 1920 3840

error of an FDFD method with a normalized step size of 0.6, which is 20% larger than
the step size used to compute the comparison solution and used for the operator that
was projected onto the PPRKS. For higher frequencies such an operator has increasing
dispersion, such that the solutions between the comparison FDFD method with normal-
ized step size of 0.5 and the one of 0.6 don’t match anymore. For low frequencies there is
a small discrepancy due to the inability of both grids to approximate a delta source.

When introducing grid coarsening, the ROM no longer interpolates the transfer-
function, but the error remains small and below 1% on the frequency interval covered by
the interpolation points. In addition, we observe that the phase-preconditioned reduced-
order models can extrapolate to higher frequencies to a certain extent, since the basis in
PPRKS is frequency-dependent. The error only gradually grows outside the interpolation
interval, which covers the lower half of the spectrum of the pulse, and at 2.4 points per
smallest wavelength we end up with an error of about 5%.

Finally, in Figure 4.7 the averaged error in the transfer-function is shown as a func-
tion of the number of points per wavelength. Again, the PPRKS with 40 interpolation
points is compared to the 500-point Fourier method, but this time the latter method uses
the same coarse-grid operator that is used during construction of the PPRKS (instead of
the operator that uses step sizes 0.6 as in the previous figure). Clearly, the RKS approach
which uses a Galerkin condition to select optimal linear combinations with respect to a
fine operator outperforms the direct Fourier method that uses the same operator to con-
struct the field approximations. The RKS approach is gauged to the operator by using the
Galerkin condition.
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Figure 4.6: The relative error of eq. (4.33) of RKS, FDFD and PPRKS as function of frequency. The error of an
FDFD method with a step size that is 20% larger than the one used to produce the comparison solution is
shown in red.
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4.7.2. A GEOPHYSICAL STRUCTURE WITH A NON-SMOOTH WAVESPEED PRO-
FILE

The justification of the phase-preconditioned algorithm is based on a geometrical optics
argument. This asymptotic argument is applicable for smooth media with spatial varia-
tions that take place on a scale much smaller than the wavelength. On the other hand,
RKS reduced-order modeling is a valid approach independent of the medium consid-
ered and Proposition 4.2 shows that one-dimensional problems with piecewise constant
wavespeeds need not be a problem for this approach to work. Therefore, let us turn to
an unsmoothed variant of the layered geophysical structure from the Marmousi model
considered earlier as depicted in Figure 4.8.
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Figure 4.8: Section of the wavespeed profile from the Marmousi model without smoothing. Twelve coinciding
source-receiver pairs are placed on the surface.

For this structure, we essentially follow the same procedure as before. Specifi-
cally, we again position 12 source-receiver pairs at the top air-water interface and use
the same coarse grid operator as in the previous example to construct a phase-corrected
RKS reduced-order model of order m = 40 with interpolation points on the imaginary
axis covering the lower half of the spectrum of the pulse such that we have 5 points per
smallest wavelength for the highest interpolation frequency. The center frequency of the
pulse is again chosen at 5.5 ppw. The only difference in model construction compared
with the previous example, is that here we use a truncated SVD that takes 150 SVD ba-
sis functions into account, instead of the 100 basis functions in the previous example.
Here, more basis functions are required, since the amplitude-functions are less smooth
due to the non-smooth wavespeed profile of the present Marmousi model. Finally, the
comparison solution is computed using a direct 500-point Fourier method using a spa-
tially discretized operator with step sizes that are four times smaller than the step sizes
used in the coarse operator. The coarse operator has a normalized step size of 4 and the
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operator used to compute the comparison FDFD response has a normalized step size of
1.
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Figure 4.9: Time-domain trace from the leftmost source to the rightmost receiver after m = 40 interpolation
points and the comparison solution.

The resulting error is shown in Figure 4.10 along with the corresponding error
curve for an FDFD method which used the coarse operator that constructed the PPRKS.
In addition, the error of an ordinary RKS method is shown, which uses the fine operator
for construction and evaluation. It uses m = 40 shifts uniformly distributed on the whole
spectral interval. An RKS method on the fine grid interpolates the FDFD response on the
shifts, which leads to a strongly oscillatory error curve. This error curve clearly shows the
advantage of phase-preconditioning with a dual grid approach – a lower error is achieved
while solving considerably smaller shifted systems, and projecting on the same opera-
tor. The performance of the algorithm for smooth profiles is better than for non-smooth
wavespeed profiles, especially for extrapolated frequencies. We also observe that the er-
ror decreases for lower frequencies, since lower frequencies have larger wavelengths and
variations in the wavespeed profile take place on a scale smaller than these wavelengths
of operation. Furthermore, compared to an FDFD method that uses a 20% coarser grid
than the comparison solution, the PPRKS achieves lower errors across the whole spec-
tral interval while the systems that need to be solved are much smaller. Especially in the
area where the phase-preconditioned method has shifts it reproduces the comparison
solution remarkably well. A similar error comparison is shown in Figure 4.11, where the
error is plotted against points per wavelength.

To illustrate the effects of an increased error in the time-domain, we show the
time trace for the most distant source-receiver pair in Figure 4.9 (for the same Gaussian
pulse as used before in Figure 4.4) along with a comparison solution obtained with the
500-point Fourier method. We observe that the arrival times are approximated well; only
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the amplitudes are slightly off. Throughout our numerical work, we have found that this
result is typical for non-smooth problems. Furthermore, compared with the same trace
computed for smooth media as shown in Figure 4.4, it is clear that a larger part of the
pulse is scattered back to the receiver, as arrivals are visible on the complete time interval
of observation for the non-smooth velocity profile considered here.
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4.7.3. A RESONANT CAVITY EMBEDDED IN A SMOOTH GEOLOGY
In this section we investigate the performance of our algorithm in a configuration with
a resonant cavity. Figure 4.12(a) shows the wavespeed profile, which is inspired by bore-
hole exploration. Coinciding source-receiver pairs are placed at the surface and inside a
borehole of slow acoustical wavespeed.

The grid coarsening procedure and wavelet selection is equivalent to the previous
examples. A coarse grid operator with the same accuracy as selected in the previous ex-
ample is used to construct a phase-corrected RKS reduced-order model of order m = 40
with interpolation points on the imaginary axis covering the lower half of the spectrum
of the pulse such that 5 points per smallest wavelength are used for the highest interpo-
lation frequency. The center frequency of the pulse is again chosen at 5.5 ppw.

To approximate the cavity-resonances with few interpolation points, we extend
the approach discussed in this paper and factor out oscillations of resonance modes
along the borehole. To do so, we take the fact that the eikonal time Teik is multival-
ued into account. More specifically, each solution u(κi ) is split using two different phase
terms, a cavity-mode phase term and a propagation phase term. The eikonal phase term
shown in Figure 4.12(b) shows a caustic inside the borehole, which has a low wavespeed
compared to its surrounding. In this experiment we also factor out the cavity-mode
phase term g (sTeik;CM), where Teik;CM follows the borehole as shown in Figure 4.12(c).
The eikonal time of the cavity-mode Teik;CM is not the second arrival, but it is chosen to
correctly factor out resonances present in the borehole. At every interpolation point we
split the field into four amplitudes as

u[l ](s j ) = g (s j T [l ]
eik)c [l ]

out;eik(s j )+ g (−s j T [l ]
eik)c [l ]

in;eik(s j ), (4.34)

u[l ](s j ) = g (s j T [l ]
eik;CM)c [l ]

out;CM(s j )+ g (−s j T [l ]
eik;CM)c [l ]

in;CM(s j ). (4.35)

With 14 sources and 40 interpolation points we end up with 560 amplitudes for each of
the four amplitudes cin/out;eik/CM, which we compress to 30 each using an SVD. These
compressed amplitudes are then used to construct the phase-preconditioned rational
Krylov subspace on which the fine operator is projected.

For these types of configurations the time window of interest tends to be very
long due to the resonant nature of the configuration. FDTD therefore requires very long
runtimes, whereas the proposed algorithm just needs to evaluate the ROM on more fre-
quencies to avoid aliasing. The time-domain trace of the top most source-receiver pair
within the borehole is shown in Figure 4.13, where the emitted pulse bounces back and
forth within the cavity. The reduced-order model captures this resonant behavior, show-
ing that the resonant modes are well approximated. In Figure 4.14 a trace is shown from
a source within the borehole to a surface receiver. In this trace it can be seen that the in-
teraction of the pulse with the smooth geology is modeled correctly next to the repetitive
trace shape caused by the resonant cavity. An ordinary RKS method with no grid coars-
ening would perform well on this problem, since it is mainly dominated by the resonant
cavity; however, this would require solutions of the wave equation on a much finer grids
then the proposed approach. Furthermore, contrary to the proposed approach, the RKS
approximation deteriorates as the configuration size and thus the propagation distance
from the cavity to the receiver increases.
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(a) Simulated configuration with labeled
sources. Eight source-receiver pairs are placed
inside an elongated resonant cavity and six
pairs are placed at the surface. pairs
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(b) Contour lines of the eikonal time Teik used
to approximate the propagative part of the so-
lution.
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Figure 4.12: The source-receiver setup (a), and the eikonal times (b) and (c) used to decompose the fields into
smooth amplitude functions are depicted
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In this experiment we show that the developed algorithm shows potential for
reduced-order modeling of resonant cavities within slowly varying media. The combina-
tion of an RKS method together with phase-preconditioning can approximate both res-
onant eigenmodes as well as propagative modes. We point out that this is just a first ap-
proach in order to include resonant structures into reduced-order models that are travel
time dominated.
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Figure 4.13: Time-domain trace of the coinciding source-receiver pair number 1 after m = 40 interpolation
points together with the comparison solution.
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Figure 4.14: Time-domain responses of the resonant cavity test-case. Time-domain trace from source number
7 inside the borehole to the rightmost surface receiver number 14 after m = 40 interpolation points.
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4.7.4. SMOOTHED COMPLEX GEOLOGY
In this last experiment we investigate the performance of the proposed algorithm in a
complex geology with multiple caustics present in the eikonal solution. The simulated
configurations is shown in Figure 4.15 along with the eikonal solution of the leftmost
receiver is shown in Figure 4.16. In total 18 coinciding source-receiver pairs at the water-
air interface are simulated. The contour lines of the eikonal time in Figure 4.16 clearly
shows multiple caustics and a complex wavefront. For this example a coarse grid of
∆x = 4 m is used. The frequency-domain transfer-function for the most distant source-
receiver pair is shown in Figure 4.17, after m = 40 iterations and a truncation of the SVD
of cin/out after 80 vectors each. Until 4 ppw are reached, the ROM is in good agreement
with the comparison solution consisting out of 500 frequency-domain solves of an op-
erator with ∆x = 4 m. This example shows worse extrapolation then the previous ex-
amples as the frequency-domain response is not accurately reproduced until low points
per wavelength. However in the area were RKS shifts are placed the signal is reproduced
accurately. A Gaussian wavelet centered around 8 ppw with a cut-off at 3.5 ppw is used
in this example to obtain the time-domain trace from the ninth source from the left to
the rightmost receiver as shown in Figure 4.18. Comparison solution and ROM are indis-
tinguishable for this example.
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Figure 4.15: Smoothed section of the Marmousi model with multiple coinciding source-receiver pairs at the
surface.
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Figure 4.16: Contour lines of the eikonal time of the leftmost source. Multiple caustics are visible and the first
arrival for the rightmost sources comes from a diving wave.
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Figure 4.17: Frequency-domain transfer-function from the leftmost source to the rightmost receiver for the
Marmousi test configuration with grid coarsening.
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Figure 4.18: Time-domain trace from the middle source (9) to the rightmost receiver for a Gaussian wavelet
with a center frequency at 8 ppw and a cut-off of 3.5ppw for the Marmousi test configuration with grid coars-
ening.

4.8. DISCUSSION ON PARALLEL IMPLEMENTATION
The numerical experiments of the previous section (using a serial MATLAB prototype
code) showed significant compression of large-scale wave propagation due to phase-
preconditioning. To see how observed dimensionality reduction can be translated to
computational cost reduction using modern high performance platforms, e.g., cloud
computing, we consider the simplest parallel implementation, known in computer sci-
ence literature as an “embarrassingly parallel workflow2.”

Like the majority of the projection-based model reduction methods, the PPRKS
can be split into basis construction and ROM evaluation stages, as summarized in Fig-
ure 4.19. This figure is complemented by Table 4.2, where we compare computational
cost estimates for PPRKS with standard RKS neglecting O(Nf) terms and considering only
parallelism on the external level.

For both standard RKS and PPRKS the main cost of the first stage consists of
the computation of the block-RKS and the rank-revealing subspace truncation via SVD.
Phase-preconditioning adds the negligible cost of solving the eikonal equation and de-
composing the waves into incoming/outgoing amplitudes via ((4.17) and (4.18)). In the
table we assume that the block-RKS is computed by assigning solutions of Helmholtz
problems for different frequencies and right-hand sides to separate workers, so that the
PPRKS and RKS require NsrcmPPRKS and NsrcmRKS nodes, respectively. The PPRKS obvi-
ously reduces the number of Helmholtz solves; however, in the parallel implementation

2Term used for parallelization not requiring horizontal communication between nodes.
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Table 4.2: Cost estimates for PPRKS and RKS.

Step
PPRKS

Legend
Computations per worker # workers

Eikonal O(NflogNf) Nsrc Nsrc # sources
Basis Comp O

(
Ncψ(Nc)

)
NsrcmPPRKS Nc/f # coarse/fine grid notes

SVD O(Nc[2NsrcmPPRK S ]2) 1 m # ROM interpolation points
Eval O(NfN

2
srcM 2

SVD) Neval Neval # evaluation frequencies

RKS MSVD Size SVD compressed vectors

Basis Comp. O
(
Nfψ(Nf)

)
NsrcmRKS ψ(Nc/f) scaling function of Helmholtz solver

SVD O(Nc[2NsrcmRK S ]2) 1
Eval O(NfN

2
srcm2

RK S ) 1

the most important cost reduction lies in a single solve. In our case, this cost is critical
due to the high complexity and poor internal parallel scalability of available Helmholtz
solvers. In the table, ψ(N ) reflects this (usually faster than logarithmic) growth of the
computational complexity of the Helmholtz solver.

Thus, the observed reduction in grid nodes from Nf to Nc, which lies between
one and two orders of magnitude, can result in even stronger reductions of computation
time. Subspace truncation is another poorly-scalable bottle-neck of the basis genera-
tion stage (e.g., see [59]) and the compound effect of the reduction of mPPRKS and Nc

compared to mRKS and Nf is more than two orders.
The main cost of the second stage is the evaluation of the ROM frequency re-

sponse at quadrature points in the frequency domain. In particular, the computation of
the orthogonal basis and the Galerkin projection are the main bottlenecks with costs that
growth linear with respect to the fine grid dimension. The dimension of the PPRKS ap-
proximation space is the product of the size of the compressed amplitude space and the
number of sources, which is usually of the same order as the dimension needed for stan-
dard RKS3. Nonetheless, storage of the space is reduced by a factor of NsrcNf/Nc and the
computation of the coarse grid amplitudes is obviously cheaper. However, the phase-
preconditioned subspace is frequency-dependent, unlike standard RKS. Therefore, the
Galerkin projection should be computed for every frequency for the entire operator Q(s).
This is not a significant disadvantage thanks to the possibility of an embarrassingly par-
allel implementation; for every evaluation frequency a separate worker can be assigned.
Moreover, the compressed tensor-product representation (4.27) allows efficient lower
level parallelization for the evaluation phase of PPRKS, i.e., column-wise, element-wise
and via domain-decomposition of the inner products. Solving the Galerkin system as
well as carrying out inverse Fourier transforms to the time-domain do not depend on
the grid size and their costs can be neglected.

We choose to benchmark the prototype implementation of algorithm in two parts.
The basis construction is benchmarked on a CPU and the ROM evaluation on a GPU, as
our algorithm is intended for the modern high performance computing environment.
Efficient Helmholtz solvers or solvers for large, sparse matrix systems are generally de-

3Recall that this is due to the tensor–product structure of the PPRKS approximation space given by (4.27).
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Basis Construction
Coarse Grid computation

Embarrassingly
Parallel ROM Evaluation

Fine Grid Computation

Initialize Simulation

Compute T[l ]
eik

Solve coarse problem
single shot/frequency
Qcoarse(si )u[l ](si ) = b[l ]

Compute SVD of

c[l ]
out and c[l ]

in

Evaluate ROM single Frequency se

Rm;EIK =Vm;EIK(se)H QfineVm;EIK(se)
Fc,m =BH

s Vm;EIK(se)R−1
m;EIKVm;EIK(se)H Bs

Compute inverse
Fourier Transform

F̂m;c(t ) =F−1Fm;c(iω)

Figure 4.19: Overview of the proposed algorithm. External embarrassing parallelism is symbolized by parallel
blocks. Internal parallelism within a block is also possible.
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Table 4.3: Cost of the basis computation and evaluation of the reduced-order model.

Basis Computation comparison Computation Time
Block solve fine grid Qfine(si )−1B 10.3 s
Single solve fine grid Qfine(si )−1b 4.1 s
Block solve coarse grid Qcoarse(si )−1B 0.6 s
Single solve coarse grid Qcoarse(si )−1b 0.2 s
Evaluation Step Computation Time Scaling
Computing phase-functions exp(sTeik) 0.00546 s NsrcNf

Hadamard Products exp(sTeik)cSVD 0.01496 s MSVDNsrcNf

Galerkin inner product Vm;EIK(se)H ·QfineVm;EIK(se) 1.752 s NfM
2
SVDN 2

src

veloped for CPUs. GPUs, however, are designed for fast, parallel computation of large
inner products and therefore pre-eminently suitable for the evaluation stage of the pro-
posed model order reduction technique.

For the smooth geophysical structure example given in this paper with Nf = 4 ·
105, Nsrc = 12 we compare the most important computation times in Table 4.3. The basis
computation is performed on a CPU4 and the ROM evaluation on a GPU5. In the pro-
posed algorithm we solve the wave equation on a coarse grid only, leading to a much
lower cost in basis construction than standard RKS were fine-scale systems need to be
solved. This is especially important considering that for large 3D applications it can be-
come infeasible to solve the wave equation on a fine grid as the scaling function ψ(·) is
much worse for 3D systems than for 2D systems. To show the cost of the evaluation of
the reduced-order model we benchmarked the evaluation of a single frequency se on a
GPU. The used model parameters are Nf = 4 ·105, MSVD = 100, Nsrc = 12 and the results
are given in Table 4.3. The computationally most involving part is the computation of the
Galerkin inner product of left hand vectors Vm;EIK(se)H with the vectors QfineVm;EIK(se).
Even for this relatively small example the computational cost of the solving a coarse sys-
tem and projecting the ROM is smaller than evaluating the equation on a fine grid. We
infer that especially for large-scale models these computation times become negligible
with respect to basis construction, which scales worse. The phase-preconditioning ap-
proach drastically reduces the vertical communication of the algorithm as only coarse
grid amplitudes and phases need to be transferred to all workers instead of fine grid RKS
vectors. The ROM is essentially compressed and storage is drastically reduced.

In summary, the computational cost is shifted from the poorly scalable basis con-
struction to the highly scalable evaluation stage where inner products can be computed
in an embarrassingly parallel fashion on multiple GPUs. We should also mention signif-
icant storage reduction due to phase-preconditioning as the amplitude basis is smaller
than the standard RKS basis for the same accuracy and is stored on the coarse grid only,
which significantly reduces vertical communication.

4Solved using UMFPACK v 5.4.0 on a 4-Core Intel i5-4670 CPU@3.40 GHz with parallel BLAS level-3 routines.
5Double precision python implementation on an Nvidia GTX 1080 Ti.
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4.9. CONCLUSIONS
In this chapter we have introduced phase-preconditioned rational Krylov subspaces for
model order reduction and compression of wave propagation in unbounded domains
targeting problems with large propagation distances. Preconditioning is achieved by
splitting the RKS into incoming and outgoing waves and factoring out strongly-
oscillating phase-terms using the WKB approximation. The remaining slowly-varying
amplitude terms are SVD-compressed and then used in the construction of the precon-
ditioned projection space via combinations of the singular vectors of the compressed
space and the WKB phase terms computed for different inputs (sources). Finally, the
ROM is evaluated via structure-preserving model reduction.

Phase-preconditioning has multiple objectives, namely, reduction of the num-
ber of required interpolation points, right-hand sides, and spatial discretization. The
number of interpolation points needed for a non-preconditioned RKS method is fun-
damentally limited by the Nyquist frequency. However, phase-preconditioning weakens
this dependence of the interpolation points on the Nyquist limit. We quantified this ef-
fect for one-dimensional SISO problems with piecewise constant coefficients, where the
PPRKS solution is exact with the number of RKS shifts equal to the number of the ho-
mogeneous layers, i.e., this number plays the same role as the problem dimensionality
in a conventional RKS approach. Thus in 1D the number of interpolation points needed
is independent of the Nyquist rate. We do not have a rigorous estimate for the general
case of multidimensional MIMO problems. However, numerical experiments show that
the positive effects of preconditioning can increase due to simultaneous reduction of in-
terpolation points and right-hand sides. In addition, factorization significantly relaxes
requirements on the discretization grids for subspace computations, which is critical for
large-scale problems due to the poor scalability of available Helmholtz solvers.

Furthermore, factorization reduces the computation cost and increases the model-
reduction compression factor. More specifically, for a given approximation accuracy
the SVD compressed amplitude space is much smaller than the RKS basis. Numerical
experiments for sections of the 2D acoustic benchmark Marmousi problem show that
the best cost reduction in subspace generation and compression is achieved for smooth
wavespeed profiles; however, our approach is still competitive for discontinuous models
and can even be adapted to include resonant substructures.

Finally, we point out that due to the tensor product-like structure of the MIMO
preconditioned projection space, the dimension of this space is larger than the space
of compressed amplitudes and can even be comparable to the conventional block-RKSs
required for the same accuracy.

However, unlike subspace generation and compression, the projection is gen-
erally highly scalable and can be easily implemented in parallel on GPUs, leaving its
computation-time insignificant.

In this chapter, we presented a prototype implementation of PPRKS for 2D prob-
lems using serial computation; however, our eventual target is high-performance com-
puting of large-scale 3D seismic problems. In future work, we will also focus on optimal
placement of the interpolation points. Specifically, we plan to investigate the approxima-
tion quality of the reduced-order models when we move the interpolation points away
from the imaginary axis and into the complex plane. This can potentially improve both
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the approximation properties of the preconditioned RKS for the case of bounded time
intervals and the performance of Helmholtz iterative solvers used for RKS construction.
As a natural extension of PPRKS, we will also focus on the modeling of wave propaga-
tion in dispersive media using PPRKS, since this will not introduce additional costs to
the evaluation stage. Finally, we note that WKB-like asymptotic solutions are available
for many discrete and continuous dynamical systems, which opens up a number of pos-
sibilities to extend phase-preconditioning to such problems and related matrix-function
computations, in particular if the cost of the solution of the shifted systems is dominant
in the RKS algorithm.
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5
INVERSION IN THE

REDUCED-ORDER MODEL

FRAMEWORK

In metric, one milliliter of water occupies one cubic centimeter, weighs one gram, and
requires one calorie of energy to heat up by one degree centigrade – which is 1 percent of

the difference between its freezing point and its boiling point. An amount of hydrogen
weighing the same amount has exactly one mole of atoms in it. Whereas in the American

system, the answer to “How much energy does it take to boil a room-temperature gallon
of water?” is “Go fuck yourself,” because you can’t directly relate any of those quantities.

Josh Bazell in Wild Thing

Parts of the research in this chapter have been carried out at Schlumberger-Doll Research.
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5.1. INTRODUCTION

I N this chapter, we show the application of reduced-order modeling to inverse prob-
lems. The examples used highlight different model order reduction techniques for

inversion and imaging. We distinguish two types of ROMs for this application: online
and offline. In online reduced-order modeling a ROM is constructed and exploited dur-
ing the imaging algorithm. On the other hand, if the construction is done prior to the
imaging algorithm the reduced-model is constructed offline and exploited online.

In an imaging application one seeks to find the PDE coefficients m from mea-
sured data d using an operator F {m} that maps m to the data. In general, a minimizer of
the mismatch between simulated and measured data is desired which can be written as

minv = argmin
m

(||d−F {m}||) , (5.1)

where || · || is some suitably chosen norm. These types of imaging problems are typi-
cally ill-posed – they do not satisfy all of the Hadamard conditions for well-posedness.
Thus, the solution may not exist or may not be unique or the solution does not depend
continuously on the measured data. Especially in real measurement environments with
noise, a different noise realization can lead to a different solution. To obtain a well-posed
problem the above optimization problem needs to be regularized.

In this thesis we distinguish between inversion and imaging; inversion is gener-
ally an overdetermined problem and imaging is an underdetermined problem. As an
example of online ROM three-dimensional anisotropic diffusion imaging in boreholes is
considered. In the appendix B.5 we consider offline ROM inversion of nuclear neutron
measurements in boreholes. The author also apologizes for the use of imperial units in
the appendix section.

5.2. 3D ANISOTROPIC RESISTIVITY
If the parameter space for which the reduced-order model needs to be accurate is too big
or unknown, one cannot construct a reduced-order model offline. However, parameter
dependent ROMs can be build online in order to speed up the imaging of lossy rock for-
mations. Due to the high electrical losses in wet rock formations, the Maxwell equations
can be approximated by a diffusion equation in these types of applications, meaning that
the displacements currents ε∂t E in equation (2.8) can be dropped to arrive at diffusion
equation (2.37)). Furthermore, most rock formations are anisotropic in their response,
and the conductivity σ in equation (2.37) becomes a symmetric, positive-definite 3×3
tensor.

In this section we adapt the existing model order reduction approach (of [31]) and
implement a weighted-L2 regularization to preserve spatial jumps in the coefficients and
solve underdetermined problems. Here, model reduction techniques are used to build
a reduced-order model that interpolates the full-order model for all previously com-
puted sets of PDE coefficients encountered during the optimization. Subsequently, the
reduced-order model is used to solve the optimization problem stated in equation (5.1),
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only to run a full-order computation at the found minimum and to improve the reduced-
order model. This way a reduced-order model is constructed and exploited “online.”

The described problem is a particularly challenging inverse problem as it seeks
to reconstruct a symmetric tensor in 3D using diffusive measurements taken on a sin-
gle line (the borehole) at multiple frequencies. The problem is important as complex
geologies like faults or thin shale layers are not imaged accurately within a 2D or 1D
assumption, which is typically used in applications. The problem is intrinsically three-
dimensional and anisotropic and only a 3D anisotropic imaging algorithm can therefore
resolve these geologies.

In this section we also show that with enough measurement-data the full aniso-
tropic tensor can be reconstructed exactly. For an imaging application, which is typically
an underdetermined problem, with inexact measurements this is no longer the case.
However, it is shown that one does not obtain worse inversion results using the reduced-
order method compared to the solving the full PDE at every iteration. Furthermore, the
problem becomes easier to regularize in the model reduction framework.

5.2.1. PARAMETER DEPENDENT ROM FOR IMAGING
We pose the imaging problem as an optimization problem, where we minimize a cost-
function Ψ which is the sum of the squared data mismatch χ2 and a regularization func-
tion ψ with regularization parameter λ as

Ψ[σ(x)] =χ2[σ(x)]+λϕ[σ(x)], (5.2)

with

χ2 = 1

2

||Wweight(d− f[σ(x)])||2
||Wd||2 , (5.3)

where Wweight is a diagonal weight-matrix with diagonal elements equal to the inverse of
the standard deviation of the noise of each measurement and a frequency normalization
to put all measurements on equal footing. Furthermore, χ and ψ are scalar functions of
the spatially dependent conductivity tensor σ(x). In addition, d is a vector containing all
measurements and f[σ(x)] is the measurement function that maps the conductivities to
the measurements. Thus to compute f[σ(x)], a PDE has to be solved for multiple source
and receiver locations and multiple frequencies. Minimizing the cost-function is subject
to the constraint that the conductivity tensor is positive-definite on the whole inversion
domain.

We combine the optimization approach from [31] with the regularization pre-
sented in [1] to obtain a model order reduction algorithm for anisotropic imaging of the
conductivity tensor. We take the second-order diffusion equation

∇×∇× Ê+µσsÊ =−∇× K̂ext − sµĴext, (5.4)

as a starting point. We note that this diffusion equation is linear in the PDE coefficients
µ and σ. Discretizing the above equation on a Lebedev-grid leads to a discretized system
of equations, which can be written as

A(C, s)ul = bl (5.5)
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where l denotes the source index. Here, A is a symmetric matrix in the transpose bilinear
form that is linear in both C and s and has a real spectrum. In this form, C is the block-
diagonal medium matrix with the finite-difference approximation of the conductivity
tensor as blocks. We define the receiver matrix R = [r1, . . . ,rNr ], the source matrix B =
[b1, . . . ,bNs ], and the transfer-function f(σ) as

f(σ) = vec([vec(RT A(C, s1)−1B), . . . ,vec(RT A(C, sN f )−1B)]), (5.6)

where we used the vectorization function vec(·) which sorts a matrix lexicographically
into a column vector. For a Gauss-Newton (GN) inversion approach we need to compute
the Jacobian J = ∂f

∂C , which has the sensitivities of the transfer-function to the medium
parameters C as columns. Since our operator is self-adjoint in the transpose bilinear
form, we can easily find the elements via the adjoint solutions

vr =A(C, s)−1rr , for r = 1, . . . , Nr . (5.7)

The element of the Jacobian corresponding to the r -th receiver, l -th source and the j -th
element of the medium matrix can be computed via adjoint solutions as

(J)r l , j =−vT
r
∂A
∂C j

ul =−vT
r sMµ

∂C
∂C j

ul . (5.8)

Thus, the computation of a Jacobian involves evaluation of the inner product of the so-
lution and the adjoint solution over the voxels (indexed with j ) with which the imaging
problem is discretized.

In our Gauss-Newton optimization we update the current i -th iterate Ci in the
Gauss-Newton direction ∆CGN and perform a line search to find the step size α that min-
imizes the cost-function in the Gauss-Newton search direction. Therefore, the update
can be written as Ci+1 =Ci +α∆CGN. During the line search, full-order PDEs need to be
solved to evaluate the cost-function.

In the Model Reduction Gauss-Newton (MRGN) approach, the matrix A is pro-
jected onto the subspaces spanned by the solutions and adjoint solutions for all PDE
coefficients C0, . . . ,Ci previously visited by the Gauss-Newton optimization routine. The
reduced-order basis can be written as

Wi = [U0,V0, . . . ,Ui ,Vi ] with Vi =A(Ci , s)−1R and Ui =A(Ci , s)−1B. (5.9)

The reduced-order model follows as

Hi (C, s) = (Wi )T A(C, s)Wi (5.10)

or if the structure needs to be preserved it follows as

Hi
sp(C, s) = [ReWi ImWi ]H A(C, s)[ReWi ImWi ]. (5.11)

The ROM can now be updated efficiently by only reprojecting changes in the conductiv-
ity tensor C. Specifically, we have

Hi (C+∆C, s) =Hi (C, s)+ (Wi )T sMµ∆CWi . (5.12)
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This reduced-order model defines a reduced-order transfer-function

f i
ROM(σ) = vec([vec(RT Wi Hi (C, s1)−1(Wi )T B), . . . ,RT Wi Hi (C, sN f )−1(Wi )T B]). (5.13)

The MRGN algorithm now uses two nested iterations. In the outer iteration the
full PDE is solved and the ROM is updated. In the inner iterations a GN algorithm is
employed which uses the ROM transfer-function to compute the system response and
the Jacobian. Thus, no full-order PDE has to be solved inside the inner iterations. The
full-order GN and MRGN algorithms are schematically shown in Figures 5.1 and 5.2, re-
spectively.

Deflation of Wi may become necessary as soon as its columns become linearly
dependent or close to linearly dependent. Since our FD operator is self-adjoint, the
reduced-order model transfer-function f i

ROM(C, s) interpolates f(C, s) at all Cn ∀n = 1, . . . , i
at the operation frequencies.

COROLLARY 5.1. — The reduced-order transfer-function interpolates the transfer-function
as

f i
ROM(C, s) = f i (C, s) with ∀{C, s} ∈ {Cn ; sh} ∀{n = 1, . . . , i ;h = 1, . . . , N f }, (5.14)

and

∂f i
ROM(C, s)

∂C = ∂f i (C, s)

∂C with ∀{C, s} ∈ {Cn , sh} ∀{n = 1, . . . , i h = 1, . . . , N f }, (5.15)

and

∂f i
ROM(C, s)

∂s
= ∂f i (C, s)

∂s
with ∀{C, s} ∈ {Cn ; sh} ∀{n = 1, . . . , i ;h = 1, . . . , N f }. (5.16)

(5.17)

This is a corollary of Proposition 3.3.

The proof is analogous to the proof of Proposition 3.3 as solutions and adjoint-
solutions are in the subspace and the operator is self-adjoint in the used transpose bilin-
ear form. The reduced-order Jacobian also interpolates the full-order Jacobian as seen
in equation (5.15).

5.2.2. REGULARIZATION FOR IMAGING
Conductivities in the subsurface are not smooth functions of the spatial coordinates as
the conductivity can change abruptly when crossing layer beds or faults. Therefore, we
choose to use a weighted L2 regularizer that preserves spatial jumps [1]. Let σref be a
reference medium or initial guess and let σi be the conductivity tensor at the i -th iterate
of the Gauss-Newton optimization scheme. The regularization term of the i -th iterate is
now given by

ϕi (σ(x)) =
∫

D
b−2

i {[|∇σ(x)−σref|2]+δ2
i }dV (5.18)
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Find the conductivity tensor σ(x) that is positive definite
and minimizes the cost function Ψ(σ(x))

Initial Guess σ0(x)

Compute Full Response f(σi )
Solve system

Compute Jacobian J= ∂f
∂σ

Compute GN direction ∆σGN

Line search in GN direction
Find σi+1 minimizing Ψ(σi +α∆σGN ) NxFull Call

1xFull Call

Convergene

Stop criterion satisfied

Next iteration
i = i + 1

Figure 5.1: Ordinary Gauss-Newton inversion routine.
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Find the conductivity tensor σ(x) that is positive definite
and minimizes the cost function Ψ(σ(x))

Initial Guess σ0(x)

Compute Full Response F (σi )
Solve system

Update reduced order model Hi

k=1

Compute ROM Jacobian JROM = ∂f i
ROM
∂σ

Compute MRGN direction ∆σMRGN

Line search in MRGN direction with ROM f i
ROM

Find σi
k+1 minimizing ΨROM (σi

k +α∆σMRGN )

Stop criterion for inner iteration reached

1xFull Call

Convergene

Stop criterion satisfied

Next outer
iteration
i = i + 1

Next inner
iteration
k = k + 1

Figure 5.2: The MRGN inversion algorithm from [31].
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with

b2
i =

∫
D

{[|∇σ(x)i−1 −σref|2]+δ2
i−1}dV (5.19)

for unweighted L2 regularization with a normalization bi that is not spatially varying.
For weighted L2 regularization, bi becomes spatially dependent as

b2
i =V [|∇σ(x)i−1 −σref|2]+δ2

i−1. (5.20)

In these equations δ2
i = χ2

i /dV is a small positive scalar that prevents division by zero
and dV is a volume element used for discretization. We thus penalize introducing spatial
variation of σ into the domain at every step of the optimization. In the weighted form,
introducing variation in flat parts is penalized more than in areas with a large gradient
in σ. We note that ϕi (σi−1(x)) = 1 holds for both regularizers. Furthermore, we choose
a regularization parameter that reduces as the data mismatch reduces by setting λi =
χ2

i−1. The MRGN algorithm adjusts the regularization term more frequently as a few
inner iterations are used on one outer iteration. This makes the MRGN algorithm easier
to regularize as an overdamping of the system only leads to more inner MRGN iterations
which are computationally cheap.

5.2.3. INVERSION TEST
First, we test if all six components of the symmetric conductivity tensor can be recon-
structed from the data, i.e. does the data hold enough information to find the exact con-
ductivity values in a noiseless case. An anomaly of 6 m×6 m×2 m with a conductivity
tensor of

σ=
 3 0.3 0.1

0.3 2 0.2
0.1 0.2 1

 S/m, (5.21)

is embedded in a σBG = 1 S/m background. Two triaxial receivers are placed above the
anomaly and one triaxial source is placed below the anomaly. Three measurements are
carried out at the frequencies f = 630, 315, 80 kHz. The measurement setup is shown in
Figure 5.3. As an initial guess 2 S/m is used for the diagonal elements and 0.2 S/m for the
off diagonal elements.

Within eight outer iterations of the Gauss-Newton algorithm, the cost-function
was reduced by 4.5 orders of magnitude and all components of the conductivity tensor
converged. The full-order PDE was solved 13 times in the optimization routine. To reach
the same accuracy, the MRGN approach only needed seven evaluations of the full-order
PDE. The reduced-order model transfer-function approximates the full-order transfer-
function well enough after six iterations to reach the same accuracy. The cost-function
for the MRGN approach is shown in Figure 5.3(b).

The path taken by the MRGN algorithm is visualized in Figure 5.4. The path of
the outer iterations are visualized in the left figure and the path of the inner iterations
is shown on the right. In the second Gauss-Newton iteration it can be seen that the
Gauss-Newton direction of the σz y component changes sign within the inner iteration.
This shows that with even two conductivity tensors as parameter-interpolation points
the ROM already describes the response accurately.
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(a) Measurement configuration used to invert the
conductivity tensor of an anisotropic conductivity
anomaly shown in red.
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(b) Value of the cost-function during the
MRGN algorithm.

Figure 5.3: The measurement configuration with an anomaly of 6 m× 6 m× 2 m and embedded in a homo-
geneous isotropic background of 1 S/m (a). The reduction in cost function for the six parameter inversion
test-case by the MRGN algorithm is depicted (b).
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(a) Convergence path of the outer iterations.
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(b) Convergence path of the inner iterations.

Figure 5.4: Path of the MRGN algorithm for the six parameter inversion case.
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5.2.4. 1D IMAGING

(a) Imaging setup for the 2D imaging test.

Figure 5.5: Source and receiver setup for the inversion test. The three layers are marked with colors black, red
and yellow.

In this experiment, we consider a spatially varying anomaly to show the positive
effect of MRGN on regularization. A 4m×4m×10m anomaly with spatially varying con-
ductivity tensor is placed along the borehole. The conductivity only varies as a function
of the z-coordinate along the borehole. The anomaly has three sections as shown in Fig-
ure 5.5. The off-diagonal elements of the conductivity tensor are zero and the values of
the diagonal elements in the three sections are

σxx = (0.05,1,0.1) S/m, (5.22)

σy y = (0.1,0.8,0.2) S/m, (5.23)

σzz = (0.5,0.5,0.5) S/m. (5.24)

The background conductivity is taken to be 1 S/m. Six receivers in the z-direction and
two sources in the x-direction are used, leading to a poor sensitivity with respect to the
σy y component. The anomaly is discretized along the z-direction in equidistant steps of
0.5 m, where the first and last layers do not contain a source causing poor sensitivity, to
see the effect of the chosen regularization.

The inversion results are show in Figure 5.6. The cost-function was reduced by
2.5 orders of magnitude during seven outer iterations. The geometric average of the
diagonal components of the inverted conductivity tensor are shown in Figure 5.6(a), the
jump in conductivity along the borehole is reproduced. Since there is no receiver right
across the second interface, the inverted conductivity has a slight shift in the boundary.
In a real logging application the tool would move through the borehole and take multiple
independent measurements which will result in a better spatial resolution.

The conductivities during the outer Gauss-Newton iterations are shown in Fig-
ure 5.6(a) for σxx and in Figure 5.6(c) for σy y . The inversion results are better for the σxx
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(a) Path of the optimization routine during inversion shown for the σxx component weighted-L2
regularizer.
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(b) Path of the optimization routine during inversion
shown for the σxx component weighted-L2 regular-
izer without the model order reduction approach.
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(c) Path of the optimization routine during inversion
shown for the σy y component with weighted-L2 reg-
ularizer.
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(d) Inversion result if the L2-regularizer from equa-
tion (5.20) is used.
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(e) Geometric average of the diagonal elements of the
conductivity tensor. The final inversion result along
with the ground truth.

Figure 5.6: Inversion results for the 1D imaging problem.
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component as no transmitter or source in the y-direction is present, since we want to
study the effect of regularization in an underdetermined imaging application.

We use a weighted L2 regularizer to preserve spatial jumps as the conductivity of
a layered rock formation does not vary smoothly. The effect of the weighted and un-
weighted L2 regularizer can be understood when the inversion result from Figure 5.6(a)
is compared to the one obtained with an unweighted L2 regularizer in Figure 5.6(b). The
L2 regularizer penalizes an increase in spatial variation, whereas the weighted L2 regu-
larizer penalizes an increase in spatial variation at positions that featured little spatial
variation in the previous iteration. Therefore, the unweighted L2 regularizer smoothes
edges, while the weighted one preserves them. This is reproduced in our imaging results.

The MRGN approach needs six full-order PDE evaluation to reach the same accu-
racy as the full-order Gauss-Newton approach with 27 full-order PDE evaluations. Since
the MRGN requires many internal iterations, the regularization term gets adjusted more
frequently than in the full-order GN approach. This makes the MRGN algorithm eas-
ier to regularize and better behaved. The full-order GN approach takes very small steps
towards the end of the algorithm as the regularization term prevents it from introduc-
ing more spatial variation as shown in Figure 5.6(b). The MRGN algorithm computed 36
Jacobians to reach the same accuracy as the full GN algorithm with 10 Jacobians.

5.2.5. 2D IMAGING

In the last example, we consider a diagonal conductivity tensor that is invariant in the
z-direction along the borehole but varies in the x y-plane. In this test, we consider a di-
agonal conductivity tensor where all diagonal elements are equal σxx =σy y =σzz . How-
ever, we still invert for an anisotropic tensor and the imaging setup is less sensitive to σzz

than to σxx and σy y . Close to the borehole there is a resistive region, whereas conduc-
tive regions are to the sides of the inversion domain. The whole domain is embedded in
a conductive region with an isotropic conductivity of 1 S/m.

The inversion domain is 15× 15× 15 m3; however, we only discretize in the x y-
plane with a uniform step size of one meter. This leads to 625 parameters that need to
be estimated. We use one triaxial source and three triaxial receivers at three different
frequencies f = 320,127,16 kHz. The imaging configuration is shown in Figure 5.7 as a
3D illustration alongside a 2D cross section, where the borehole, indicated by the white
circle, is drilled in the normal direction of the depicted plane.

In Figure 5.8 the imaging results of this configuration are shown. The recon-
struction of all elements of the conductivity tensor are depicted in a plane through the
three-dimensional inversion domain along with the ground truth. The reconstruction
using the model reduction Gauss-Newton algorithm with a homogeneous initial guess
is shown after five outer Gauss-Newton steps. The high conductivity region at the lower
part of the image and the low conductivity region around the borehole are well imaged.
The σy y component is very sensitive to spatial changes in the xz-plane and the σxx com-
ponent to spatial changes in the z y-plane since a dipole source and receiver are mainly
sensitive in the plane normal to their dipole orientation. The recovery of σzz is very poor
as the setup is not very sensitive to this component of the conductivity tensor. The re-
sistive region around the borehole is well imaged, but far away from the wellbore the
results are less accurate. The geometrical mean of the inverted conductivities are shown
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(a) Imaging setup for the 2D imaging test.
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(b) The σxx/y y/zz component of the conduc-
tivity tensor in the x y-plane. The borehole is
indicated with a white circle.

Figure 5.7: Source and receiver setup for the 2D imaging test. The measurement configuration is shown to the
left and a cross section in the x y-plane is shown to the right. The medium only is invariant in the z-direction.

in Figure 5.8(c). The region is embedded in a very conductive background and the σxx

component even recovers a conductive region close to the edge at y = 0.
The full GN algorithm computes 15 full-order PDE solution and the MRGN only

needs 5 full-order computations to reach comparable results. Again, regularization of
the MRGN method is easier as the cost-function was computed and adjusted more fre-
quent in the MRGN algorithm.

5.3. CONCLUSIONS
In this section, we showed how model order reduction methods can be used to speed
up imaging applications by partially replacing full-order PDE solves with a fast surro-
gate reduced-order model. Significantly less PDE solves are needed to obtain imaging
results of the same accuracy and regularization is simplified as the MRGN algorithm re-
computes the cost-function more often, making it easier to introduce spatial variation
of the PDE coefficients into the imaging domain. In the MRGN algorithm the work is
basically shifted from solving large-scale PDE problems to computing large inner prod-
ucts needed for the computation of the reduced-order Jacobian. Due to recent advances
in GPU architectures [4], entries of the Jacobian for all imaging parameters can be com-
puted very fast in a parallel fashion. The conductivity tensor has to be positive definite
such that a different parametrization into principal components and angles may be ben-
eficial as the constraints on these are easier to implement than a positive definiteness
constraint on a tensor.
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(a) Ground truth solution for σxx/y y/zz with an indication of the well (left). Initial guess and reference
solution for all diagonal elements of the conductivity tensor (right).
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(b) Inversion results for σxx and σy y .

5 10 15

5

10

15

y-axis

x-
ax

is

INVERSION RESULTS σzz

5 10 15

5

10

15

y-axis

x-
ax

is

GEOMETRIC MEAN σxx/y y/zz

0

0.2

0.4

0.6

0.8

1

[S/m]

(c) Inversion result for σzz shown alongside the inversion result of the geometric mean of all components.

Figure 5.8: Source and receiver setup for the inversion test along with the ground truth solution for all three
diagonal components of the conductivity tensor.
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CONCLUSIONS

Neque porro quisquam est, qui dolorem ipsum, quia dolor sit, amet, consectetur, adipisci
velit [...].

Cicero in De finibus bonorum et malorum

R EDUCED-ORDER MODELING of wave equations can lower the computational demand
of existing forward and inverse wavefield simulations and allow us to solve wave-

field problems, which are otherwise deemed too demanding. The aim of this thesis is
to assess reduced-order modeling techniques for wave equations, to develop efficient
reduced-order modeling techniques for resonant as well as propagating fields and to
identify important application areas in which these techniques can have a significant
impact. We have shown that with Krylov subspace model order reduction it is indeed
possible to efficiently solve a wide class of time- and frequency-domain wavefield prob-
lems with applications ranging from high-frequency nano-optics to low-frequency geo-
physics. More specifically, the key contributions of this thesis are

1. the introduction of a novel model order reduction technique for three-dimensional
electromagnetic wavefields in dispersive media,

2. an explicit reduced-order model expression for the spontaneous decay rate of a
quantum emitter in three-dimensional and arbitrarily-shaped nano-resonators,

3. the development of a phase-preconditioning approach for rational Krylov model
order reduction that allows us to very efficiently compute time- and frequency-
domain wavefields in inhomogeneous media especially when these wavefields are
characterized by large travel times, and

4. application of reduced-order modeling to a Gauss-Newton imaging technique for
three-dimensional diffusive electromagnetic fields that is able to efficiently re-
trieve the elements of the conductivity tensor of a bounded anomaly based on
limited measurement data collected on a borehole axis.
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Since most wavefield problems are defined on open domains, wave propagation towards
infinity needs to be taken into account when setting up the models that need to be solved
on a computer. Simulating outward wave propagation can be realized by surrounding
the domain of interest by a so-called Perfectly Matched Layer (PML) in which the spa-
tial coordinates are stretched using frequency-dependent stretching functions. Since a
stretching function depends in a nonlinear manner on frequency, the resulting wavefield
models depend nonlinearly on frequency as well for spatial dimensions larger than one.
Moreover, dispersive media introduce an additional nonlinearity to the problem, since
the constitutive relations for dispersive media are generally nonlinear functions of fre-
quency. In conclusion, the wavefield models that need to be discretized and solved on a
computer depend in a nonlinear manner on frequency when simulating open wavefield
problems or considering dispersive materials.

In this thesis, two approaches are followed to deal with this nonlinearity. In the
first approach, we follow [28] and linearize the PML with respect to frequency. As shown
in [28], an additional stability-correction procedure involving nonentire matrix func-
tions is then necessary, but the main advantage of this approach is that it leads to models
with system matrices that are frequency-independent for nondispersive media. More-
over, these matrices have certain symmetry properties due to reciprocity that may be ex-
ploited to efficiently construct reduced-order models based on standard polynomial or
extended Laurent polynomial Krylov reduction techniques. In particular, polynomial re-
duction can be carried out using a three-term recurrence relation, while extended Krylov
reduction requires a five-term recurrence relation. In this thesis we have shown that
in electromagnetics this linearization approach can be extended to dispersive media.
By following the linearization approach for the PML outlined above and by introduc-
ing an auxiliary field variable, the Maxwell equations and the constitutive relation can
be written in a consistent first-order form with a system matrix that is again frequency-
independent. This system matrix does not have the same symmetry property as the sys-
tem matrix for nondispersive media, of course, but we have shown that a similar sym-
metry relation can be found for the system matrix in the dispersive case. In particu-
lar, we have shown that the latter system matrix is symmetric with respect to a partic-
ular Lagrangian bilinear form; it is this property that allows us to efficiently construct
reduced-order models based on polynomial Krylov reduction in a similar way as for the
nondispersive case. In addition, we have shown that the reduced-order models for the
electromagnetic fields can be used to find an explicit reduced-order model expression
for the spontaneous decay rate of a quantum emitter that is located in an arbitrarily-
shaped three-dimensional metallic nano-resonator. This model allows for frequency or
wavelength sweeps, meaning that a single model describes the decay rate over a com-
plete frequency or wavelength interval of interest. Finally, we have shown that by run-
ning the reduction algorithm twice, only three basis vectors of the Krylov reduction space
need to be kept in memory to explicitly determine the fields of the dominant modes that
are present in the resonator and are excited by a given source. Due to this work, three-
dimensional resonance fields of dispersive resonators with complex geometries can now
be computed in a few hours on a laptop computer. Further, expansion of field responses
in quasi-normal modes can be performed without a-priori selection of modes, contrary
to other approaches.
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In the second approach we deal with the nonlinear system directly and apply ra-
tional Krylov reduction to the wavefield models that describe wave propagation on open
domains. No linearization and stability-correction is necessary in this case, but a ratio-
nal Krylov method does require us to solve the large-scale models for particular frequen-
cies to increase the dimension of the rational Krylov space. Since solving such a model
is computationally expensive in general, we aim to keep the dimension of the space as
small as possible. For problems where the wavefield response is determined by a small
number of Hankel singular values (in resonant structures, for example), the subspace
dimension can indeed be very small and rational Krylov reduction can be very efficient.
However, for propagating waves travelling over large distances this is no longer the case,
since waves with large travel times are highly oscillatory in the frequency-domain and
these oscillations need to be captured according to the Nyquist-Shannon sampling the-
orem. Consequently, the sampling rate in the frequency-domain increases as the travel
time of the wave increases. Since the frequency-domain solution at a sampling fre-
quency is required to extend the rational Krylov subspace, this approach may become
prohibitively expensive for wave propagation problems with large travel times.

In this thesis, however, we have proposed a preconditioning technique for ratio-
nal Krylov subspace reduction that solves this problem. Specifically, we have first de-
composed the field into incoming and outgoing waves and subsequently factored out
the highly oscillatory part of these waves using high-frequency asymptotics for which
only the eikonal equation has to be solved. In other words, we have written the frequency-
domain wavefield as a product of a strongly oscillating phase-function, which is handled
analytically, and a smoothly varying amplitude-function, which is handled numerically.
Moreover, we have also demonstrated that if the real and imaginary parts of these field
expansions are used as frequency-dependent basis vectors, the resulting rational Krylov
reduction technique is structure-preserving, that is, essential wavefield properties of the
unreduced system and fields (causality, Schwarz reflection principle, etc.) carry over to
the reduced system and models. The models can also extrapolate in frequency, since
the basis vectors are frequency dependent. In addition, we have demonstrated that sig-
nificant additional wavefield compression is possible, since the amplitude-functions are
smooth and only weakly dependent on the source location. Specifically, for configura-
tions with multiple sources and receivers we have shown that redundancy in the set of
amplitude-functions that is used to expand the fields can be removed via the singular
value decomposition leading to models of an even smaller order. Finally, we have shown
that smooth amplitude-functions allow us to carry out our field computations on spatial
grids that are much coarser than the grids required if we solve for the frequency-domain
fields directly. In conclusion, factoring out the strongly oscillating phase term has impor-
tant consequences and enables us to reduce the model in multiple ways. Our numeri-
cal experiments have shown that the best reduction results are obtained for smoothly
varying inhomogeneous media, which is to be expected since the high-frequency field
expansions used to factor out the strongly oscillating phase term are more accurate for
smoothly varying media and the resulting amplitude-functions are obviously smoother
as well. For non-smooth media with jumps in the wavespeed profile, the high-frequency
field expansions used for preconditioning are no longer valid, but our numerical results
show that the proposed phase-preconditioned reduction approach still exhibits excel-
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lent approximation properties even for such non-smooth wavespeed profiles.
To illustrate the effectiveness of model order reduction in imaging applications,

we addressed the problem of finding the coefficients of the conductivity tensor of a
bounded three-dimensional anomaly using diffusive electromagnetic fields and limited
data sets collected on the axis of a borehole. We have shown how model order reduc-
tion methods can be used to speed up this large-scale and ill-posed imaging problem. In
particular, we have shown that significant speed ups can be realized in a Gauss-Newton
minimization framework by partially replacing full-order PDE solves with surrogate re-
duced-order models that can be evaluated very efficiently. Furthermore, compared to a
standard Gauss-Newton approach, significantly fewer forward solutions are needed to
obtain imaging results of the same accuracy with this method. Regularization is also
simplified, since the Model Reduction Gauss-Newton (MRGN, [30]) algorithm evaluates
the cost-function more often, making it easier to introduce spatial variation of the PDE
coefficients into the imaging domain. Finally, by incorporating model order reduction
into the Gauss-Newton algorithm, work is basically shifted from solving large-scale for-
ward problems to computing large inner products needed for the computation of the
reduced-order Jacobian. An important consequence of this feature is that the entries of
the Jacobian can be computed very efficiently in parallel due to recent advances in GPU
architectures [4]. In conclusion, the MRGN algorithm leads to substantial computational
savings compared with a standard Gauss-Newton approach and a significant reduction
in computation time as well, especially when implemented on a GPU architecture.
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A
APPENDIX –

PHASE-PRECONDITIONING

In this appendix we derive expressions for the wave amplitudes as given by equations (4.17)
and (4.18) in Chapter 4.

A.1. THE FIELD AMPLITUDES IN TWO DIMENSIONS
As is well known, the two-dimensional Laplace domain Greens function for a homoge-
neous medium with constant wavespeed c that describes causal wave propagation is
given by

G(R, s) = 1

2π
K0(sR/c) = 1

2π
g (sR/c),

where R is the distance from the point where the two-dimensional Dirac distribution is
active to the point of observation and g (z) =K0(z) is the modified Bessel function of the
second kind and order zero. In Chapter 4, this Bessel function was used to realize the
field splitting (see equation (4.15))

u = coutg (sT )+ cing (−sT ),

where T is the eikonal that follows from the eikonal equation for the inhomogeneous
medium of interest. The above splitting is obviously not unique and an additional re-
lation is required to uniquely determine the wave amplitudes cin and cout. To this end,
we take the spatial derivative of u in the direction of the rays ∇T and we impose the
condition

(∇T ·∇cout)K0(sT )+ (∇T ·∇cin)K0(−sT ) = 0.

This leads to the system of equations[
K0(−sT ) K0(sT )
−K1(−sT ) K1(sT )

][
cin

cout

]
=

[
u

− v2

s ∇T ·∇u

]
. (A.1)
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Solving this system for the amplitudes cin and cout, we find

cin = 1

W (sT )

[
K1(sT )u + v2

s
K0(sT )∇T ·∇u

]
(A.2)

and

cout = 1

W (sT )

[
K1(−sT )u − v2

s
K0(−sT )∇T ·∇u

]
, (A.3)

where the determinant is given by

W (z) =K0(−z)K1(z)+K0(z)K1(−z).

This expression for the determinant can be simplified using recurrence relations for
modified Bessel functions of the second kind and the asymptotic behavior of these func-
tions for large arguments. Specifically, if we compute the derivative of W with respect to
z and use the recurrence relations 10.29.2 and 10.29.3 of [19], we find that the determi-
nant satisfies

dW

dz
=−W

z
. (A.4)

Furthermore, for the modified Bessel functions we have

Kν(z) ≈
√
π/(2z)exp(−z)

as z →∞ in |arg(z)| < 3
2π with a principle branch that corresponds to the principle value

of the square root (see [19]). From this asymptotic behavior and equation (A.4) the de-
terminant is now obtained as

W (z) =
{

iπ
z if Im (z) > 0

− iπ
z if Im (z) < 0

(A.5)

and we arrive at the final expressions for the amplitudes as

cin = sT

sign[Im (s)]iπ

[
K1(sT )u + v2

s
K0(sT )∇T ·∇u

]
(A.6)

and

cout = sT

sign[Im (s)]iπ

[
K1(−sT )u − v2

s
K0(−sT )∇T ·∇u

]
. (A.7)

A.1.1. BEHAVIOR OF THE AMPLITUDE FUNCTIONS AT T (xS) = 0
In order to obtain the correct field splitting at the source location, we need to analyze
the behavior of the amplitude functions cin/out near the source location. To carry out
this analysis, we make use of the limiting forms (see 10.30.2 and 10.30.3 of [19])

K0(z) ≈−lnz and K1(z) ≈ 1/z as z → 0
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to obtain
lim

sT→0
sTK0(±sT ) = 0 and lim

sT→0
sTK1(±sT ) =±1.

With these results, the amplitude functions at the source location immediately follow as

cin(xs) = u(xs)

sign[Im (s)]iπ
and cout(xs) =− u(xs)

sign[Im (s)]iπ
. (A.8)

This result leads to interpolation of the original wavefield u, since the singularities of
K0(sT ) and K0(−sT ) cancel out.





B

125

B
APPENDIX – NUCLEAR SIGMA

IMAGING

In oil exploration, wells are drilled in places with high prospect for hydrocarbon deposits.
For certain reservoirs wells are drilled at high angle or close to horizontal in order to max-
imize the reservoir contact and stay inside a thin target zone. To image the formations
and allow for accurate well placement or evaluate physical properties of reservoirs, the
formations are logged during the drilling – so-called Logging-While-Drilling (LWD)[40].
For the formation evaluation, multi-physics LWD platforms combining multiple nuclear
and resistivity measurements are often used in high-angle and horizontal well [41], in
order to determine formation dip and structure as well as porosity and water saturation.

For instance, as part of the measurement system the resistivity of the formation
is derived from electromagnetic measurements (as shown in Chapter 5), the density and
porosity from γ-ray measurements and the position of the logging tool in the borehole
from a caliper measurement, derived from nuclear density. As part of the such an LWD
system, high-energy neutrons are shot into the formation adjacent to the logging tool.
The neutrons scatter in the formation, lose energy to become thermal neutrons and pro-
duce γ-rays. The thermal neutrons and γ-rays that return to the tool are measured in
detectors with three different spacings from the neutron source. The various spacings
allow one to obtain depth information about the scattering events. The detectors are
called long-spaced γ-detector (LS), short-spaced γ-detector (SS) and the detector that is
closest to the source is called TN for thermal neutrons. From these measurements, the
equivalent cross section for the absorption of thermal neutrons, called sigma, can be de-
rived and measured in capture units (c.u.), which is a relative measurement. Generally, it
is used to get a measurement of water saturation, detect thin beds and shallow invasion
of the borehole fluid into the formation[41].

After shooting neutrons into the formation, the count-rates in the detectors de-
cay. These decays are used to derive an effective measure called “apparent sigma” which
is used by well log analysts in saturation interpretation. Direct interpretation of sigma-
logs in complex formations like high angle wells, where many thin and potentially in-
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vaded beds are within the measurements depth of investigation, is a difficult task.

Inversion based interpretation of the measurements can help log analysts with
this task. In order to deliver a consistent petrophysical interpretation of the formation
all LWD-measurements should be integrated and processed together.

For instance, nuclear density images such as γ-ray density-measurements based
on Compton scattering are one of the most commonly used LWD measurements. Inver-
sion of these measurements deliver accurate estimates of the formation bed densities,
thickness and their dip and azimuthal orientation in complex formations [76, 60, 85].
Common model parameterization can subsequently be used to perform a model based
inversion of sigma measurements, where the formation structure is defined by the nu-
clear density inversion.

To make the inversion feasible, a model based approach is used where layer bound-
aries and the dip and azimuthal orientation of the formation is obtained from nuclear
density measurements. Using this information and fast forward modeling of the for-
mation neutron scattering one can invert the sigma of in the porous rock, as well as
the depth the borehole fluid invaded into the formation. The parametrization used for
model based inversion is thus the invasion radius, which is the depth of invasion of the
borehole fluid into the rock and the sigma of the virgin fluid that fills the porous rock
beyond the invaded area. In this approach we assume that the invasion is symmetric,
though it is common that the gravity segregation contributes to the draped (“tear-drop”)
invasion shape [61].

Scattering of neutrons in a formation is a stochastic process and modeled with
Monte Carlo N-particle algorithm[80]. These methods are computationally intense and
take days even on modern personal computers, which makes sigma inversion with these
models infeasible. However, one can obtain an approximate fast forward model as ex-
plained in the next section to approximately model this measurement. This class of fast
forward models does not fall into the class of projection-based reduced-order models as
discussed in the rest of this thesis. However, it is an offline computed fast proxy model
that allows inversion for sigma.

B.1. FAST FORWARD MODEL FOR NEUTRON SCATTERING

The fast forward model is based on previously computed Monte Carlo(MC) simulations
as described in [62, 80]. The model constructs an approximate detector count-rate in
inhomogeneous media from previously simulated responses and sensitivities in homo-
geneous media. The precomputed responses from homogeneous background media are
denoted nB (xR , t ,ΣB , H I ) and they are time-dependent count-rates for the different de-
tector locations xR . The count-rates are dependent on the hydrogen index (H I ) of the
material, and the sigma, is denoted by Σ. The spatial sensitivity of a sensor to changes
in Σ is given by the spatial flux-sensitivity function, denoted as F SF (xR ,x,ΣB ). The flux-
sensitivity functions are also obtained from Monte Carlo simulations. They also have an
azimuthal dependence which is embedded in the dependence of the F SF on x.

The Fast Forward Model (FFM) uses a first-order perturbation approximation,
which holds in case the simulated configuration is close to the one used to compute
nB (xR , t ,ΣB ), where the subscript R indicates that the function is evaluated at a receiver.
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Formally this perturbation in Σ can be written as

n(xR , t ,Σ, H I ) = nB (xR , t ,ΣB , H I )+nB (xR , t ,ΣB , H I )
∫
R3

F SF (xR ,x,ΣB )
∆Σ(x)

ΣB (x)
dx. (B.1)

Thus, the FSF is the measurement sensitivity to spatial changes in sigma for a given back-
ground formation sigma (ΣB ). During a measurement, neutrons are first shot into the
formation and the detectors count the events in predefined non-equidistant time-bins.
Only time-bins of 40−405µs hold information relevant for the inversion of sigma, so that
only these count-rates are modeled.

Monte Carlo simulations are used to build libraries of count-rates and FSF from
homogeneous media for the FFM. The decay curves are computed for a range of homo-
geneous background sigmas and hydrogen indices . The 3D spatial FSF is also computed
using the range of sigmas The FSF and nB are computed independently for each of the
three detectors. It should be noted that in very inhomogeneous media the model is no
longer valid as the perturbation assumption of a homogeneous formation is violated.
The model interpolates the libraries to provide smooth and differentiable responses of
the nB and the FSF to be used by the inversion based on Gauss-Newton optimization.

B.2. INVERSION APPROACH
The inversion for sigma is potentially part of a larger multi-physics inversion-based work-
flow [77, 86, 85].

Prior to the sigma inversion the layer boundaries, their orientation in space (dip
and azimuth) and the porosity of each layer is determined using nuclear density inver-
sion [76, 60]. In addition, the inversion determines the position of the tool inside the
borehole, or distance of the tool to borehole wall (so-called standoff). From a mud log
the properties of the used drilling fluid are known so that the sigma of the invading fluid
is known. From spectroscopy processing, the sigma of the matrix formation without any
fluids can be estimated, while the hydrogen index of the formation is also known from
measurements. In every layer of the formation we are therefore interested in the invasion
radius and the sigma of the virgin zone fluid. In other words, how deep did the drilling
fluid penetrate into the formation layer and what is the sigma of the fluid present in the
formation? In the model based approach these two quantities are used in parametriza-
tion every layer. The inversion is based on a Gauss-Newton algorithm, with a trust region
approach and dog-leg steps (see sec. 3.3 [54]). We minimize a quadratic cost function
and weigh the terms according to the noise present in the data.

The measurement window of the sigma measurement can extend across a few
thin beds, such that the sigma of adjacent beds influences the decay rates. The sigma of
beds that are far away do not influence this measurement. The inversion can therefore
be parallelized by slicing the whole inversion domain into multiple overlapping win-
dows, and simultaneously inverting for the medium parameters in all intervals. In the
second step, the windows are “stitched” together to obtain a consistent inversion result,
and if needed a second pass of simultaneous inversion can be performed to preserve the
consistency between results in neighboring intervals. The measurement noise is mainly
due to the discrete nature of counting particles. Therefore, the signal to noise ratio is
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related to the count-rate as
p

(nB ) and a lower drilling speed (rate of penetration) leads
to a better signal to noise ratio.

B.3. SYNTHETIC NINE LAYER EXAMPLE (INVERSE CRIME)
First, the inversion is tested using a synthetic formation model where the FFM is used
to generate the forward data (measurement responses). After that, noise is applied to
the signal using the reference signal level that corresponds to a rate of penetration of
120 ft/h. The described validation procedure is an inverse crime as the same approxi-
mate FFM is used to generate the data and in the inversion. In this 9 layer example with
a minimum bed thickness of 0.5 ft example we illustrate how the inversion domain and
logs are segmented into five windows, processed in parallel. The well in the test exam-
ple is deviated at 85◦. First, the modeled density data are inverted in order to obtain
the formation geometry for sigma inversion. A curtain section of the inverted and mea-
sured density data is displayed in Figure B.1. The figure also gives an indication of the
simulated formation, the layers two to five are thin beds.
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Figure B.1: Curtain section of the inverted density, showing measured and inverted density at the top. The
horizontal axis in the top two images shows the azimuthal angle in the borehole.

The data shown in Figure B.2 is inverted using the standoff, boundary locations
and dip obtained from density inversion and other measurements. Perfect knowledge
of sigma in the invaded zone is assumed since the porosity of the invaded rock, sigma
of the borehole fluid and sigma of the matrix rock are know from measurements and
density inversion. However, the inversion is rather stable with respect to errors in these
estimates.

The inversion was able to recover the formation properties as shown in Figure B.3.
After five iterations of the Gauss-Newton algorithm the data mismatch and cost function
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Figure B.2: Plots showing the inverted synthetic sigma data in the time-domain (a) and apparent sigma space
(b).

are reduced by a factor of three in most processing windows. Small errors occur because
of deep invasion, thin beds or errors in horizontal boundaries. The inversion result gives
a much better understanding of the formation than the apparent sigma log from Fig-
ure B.2. After convergence of the algorithm we compute the Fischer information matrix
and find that the invasion radius and the virgin sigma have a strong negative correlation.
This means that the minimum found by the optimization algorithm is very shallow and
recovering a larger invasion radius and smaller virgin sigma leads to only small increases
in the cost function.

B.4. INVERSION OF MONTE CARLO DATA
The nine layer inversion test was very optimistic, as we used the approximate forward
model to generate noisy measurement. To really see the influence of the approximate
FFM on the inversion result we use a Monte Carlo simulation to obtain more realistic logs
in a high angle well. Especially interesting are the zones close to layer boundaries and in
thin beds, where the linearity assumption of the FFM may break down. Furthermore, we
again add the realistic measurement noise to the data. We assume perfect knowledge of
boundaries and formation dip and azimuth as we do not have MC data for the density
images.

A curtain section of the formation simulated with the Monte Carlo solver is shown
in Figure B.4. The well deviation is 80 degrees and measurements in four azimuthal sec-
tors are taken every 0.5 ft along the well. This leads to 150 measurement points times
four azimuthal directions and nineteen time-bins. The borehole has a diameter of 8.25 in
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Figure B.3: Plots of the true and inverted formation parameters. The invaded sigma was not inverted but is
given as reference to show the contrast in sigma.
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Figure B.4: Curtain view of formation used for the Monte Carlo test. Layer one and five are semi-infinite and
layer two to four are 2ft wide. The indicated trajectories show the high angle well to the right and a vertical well
trajectory for comparison on the left.

and we assume a centered tool. The formation consists of a thin beds filled with oil and
a progressive invasion profile. The details of the formation are given in table B.1.

Table B.1: Formation details from the Monte Carlo inversion test.

Bore- Layer TST Porosity Virgin Matrix Invasion Invaded Virgin Invaded Virgin
hole fluid Sigma radius Sigma Sigma H.I. H.I.

[ft] [p.u.] [c.u.] [in] [c.u.] [c.u.]

200-ppk, Sigma
100.7, HI 0.916

0 ∞ pseudo-clay 0 n/a 24.3 n/a 0.2
1 2 20 oil 7.1 6 25.9 10.0 0.184 0.192
2 2 20 oil 7.1 4 25.9 10.0 0.184 0.192
3 2 20 oil 7.1 2 25.9 10.0 0.184 0.192
4 ∞ pseudo-clay 0 n/a 24.3 n/a 0.2

In Figure B.5 the inverted parameters and their correlation in the inversion are
shown. As the initial guess for the inversion we use a sigma of 12 c.u. and an invasion
radius of 3 in. The progressive invasion is well recovered; however, the inversion has
problems recovering the virgin zone sigma of the deeply invaded layer. The cost func-
tion dropped over two and a half orders of magnitude within five iterations of the opti-
mization algorithm. The sigma in the zones that were not invaded are recovered well.
The error bars shown on the inversion result are derived from the model covariance ma-
trix, linearizing the model near the solution, assuming that the noise and errors follow
Gaussian distribution. They can, however, be used qualitatively. To obtain more accu-
rate error bars and uncertainties one would need to perform a Bayesian inversion using
more realistic noise models.

In Figure B.6 the apparent sigma logs of the Monte Carlo data and the FFM with
the true formation data and the inverted formation parameters are shown. Clearly the
mismatch between the FFM and the Monte Carlo simulation with the true formation
parameters shows the shortcomings of the FFM. However, especially the short and long
spaced detector are well matched by the inversion. The thermal neutron detector has
the highest modeling mismatch. However, the inversion based interpretation of this log
is advantageous over the apparent sigma log as the progressive invasion is clearly visible
from the inversion result, contrary to the apparent sigma logs. The TN detector has the
highest modeling error in the FFM and the inversion thus over-fits the count-rates from
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Figure B.5: Reconstruction of virgin sigma (a) and invasion radius (b) as well as the correlation of all inverted
parameters in the inversion (c).
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Figure B.6: Apparent sigma log of the measurement, true formation (a), and reconstructed formation (b).

this detector.
Since the well is highly deviated, the inversion parameters of neighboring beds

are slightly correlated and due to the nature of the measurement, invasion radius and
virgin sigma have a strong negative correlation. This experiment shows that model based
inversion adds information to the log despite some shortcomings of the FFM modeling
approach. The inversion results are much easier to interpret than the apparent sigma
log.

B.5. CONCLUSIONS
We developed and tested sigma inversion for multi-physics inversion in high-angle wells.
It was integrated into a workflow that allows model based inversion to obtain a consisted
interpretation of the measurement data. We validated the inversion using synthetic data,
general-purpose Monte Carlo N-Particle data and field data. It was shown that time-
domain inversion of sigma measurements allows recovery of virgin sigma in invaded
beds.

Generally, deeply invaded beds and beds with small hydrogen index are causes
for errors in the inversion, whereas thin beds are handled well. Within the inversion the
invasion radius and the virgin sigma are negatively correlated as long as the sigma in the
invasion region is larger than in the virgin zone.

The FFM can be seen as an offline computed reduced order model for the com-
putation of neutron scattering. Performing this inversing with a Monte Carlo solver as
forward model is not feasible due to the computational requirements for Monte Carlo
simulations.
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GLOSSARY

A.D. Anno Domini
A.u.c. Ab Urbe Condita
cf. confer (compare)
c.u. capture units
CPU Central Processing unit
DtN Dirichlet to Neumann
EKS Extended Krylov Subspace
e.g. exempli gratia (for example)
FDFD Finite-Difference Frequency-Domain
FDTD Finite-Difference Time-Domain
FEM Finite-Element Method
FFM Fast forward model
GN Gauss-Newton
GPU Graphics Processing Unit
i.e. id est (that is)
LWD Logging-While-Drilling
MC Monte Carlo
MRGN Model Reduction Gauss-Newton
PDE Partial Differential Equation
PKS Polynomial Krylov Subspace
PPRKS Phase-Preconditioned Rational Krylov Subspace
RCWA Rigorous coupled-wave analysis
RKS Rational Krylov Subspace
ROM Reduced-Order Model
SD Spontaneous Decay
STW Stichting voor de Technische Wetenschappen
WKB Wentzel–Kramers–Brillouin
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NOTATION

Example Notation Meaning

A capital bold sans serif matrix
u bold sans serif vector
| · | single bars absolute value
|| · || double bars 2-norm
〈x|y〉 bra/ket inner product
Re - real part
Im - imaginary part
·̂ hat Laplace transformed quantity
Q(s) capital italic integral operator
A calligraphic operator or collection of fields
E bold field from physics
s italic s Laplace frequency
· overbar complex-conjugation
N {·} calligraphic N nonlinear numerical range
k italic k spatial dimensions
n italic n outward pointing normal
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